WO2009125729A1 - エチレン重合用固体状チタン触媒成分、エチレン重合用触媒およびエチレンの重合方法 - Google Patents
エチレン重合用固体状チタン触媒成分、エチレン重合用触媒およびエチレンの重合方法 Download PDFInfo
- Publication number
- WO2009125729A1 WO2009125729A1 PCT/JP2009/056972 JP2009056972W WO2009125729A1 WO 2009125729 A1 WO2009125729 A1 WO 2009125729A1 JP 2009056972 W JP2009056972 W JP 2009056972W WO 2009125729 A1 WO2009125729 A1 WO 2009125729A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymerization
- ethylene
- catalyst component
- solid titanium
- electron donor
- Prior art date
Links
- 0 CCC1(C)NC(C)(CC)*(*)(*)C(*)*(*)(C*C)C1(C)I Chemical compound CCC1(C)NC(C)(CC)*(*)(*)C(*)*(*)(C*C)C1(C)I 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
Definitions
- the present invention provides a solid titanium catalyst component for ethylene polymerization, an ethylene polymerization catalyst and an ethylene
- the present invention relates to a polymerization method.
- Ethylene polymers such as homopolyethylene and linear low-density ethylene polymer (LLDPE) are excellent in transparency and mechanical strength, and are widely used as films.
- Various methods for producing such an ethylene polymer have been conventionally known.
- a polymerization catalyst a solid titanium catalyst containing a titanium catalyst component containing titanium, magnesium, halogen and an optional electron donor is used. It is known that an ethylene polymer can be produced with high polymerization activity.
- a catalyst for ethylene polymerization containing a solid titanium catalyst component obtained by contacting a halogen-containing magnesium compound prepared in a liquid state as a titanium catalyst component, a liquid titanium compound, and an organosilicon compound having no active hydrogen.
- Patent Document 1 describes that when used, it exhibits high activity. Also, particles can be obtained by using an olefin polymerization catalyst containing an aluminum compound selected from aluminosiloxane, a reaction product of aluminum alkyl and calixarene, a reaction product of aluminum alkyl and cyclodextrin, and a halogen-containing magnesium compound and a titanium compound. Patent Document 2 describes the production of a polymer having excellent properties.
- a polymer obtained by polymerizing ethylene is usually obtained in a powder form regardless of a slurry method, a gas phase method or the like. At this time, it is desirable to be an ethylene polymer that does not contain fine powder and has a narrow particle size distribution and excellent particle fluidity.
- the ethylene polymer excellent in particle properties has various advantages such as being able to be used as it is without being pelletized depending on the application.
- a method of expanding the molecular weight distribution by multistage polymerization is known.
- the molecular weight is adjusted by adding hydrogen, but the activity tends to decrease when the amount of hydrogen is increased to produce a low molecular weight part. That is, a catalyst capable of adjusting the molecular weight with a small amount of hydrogen is advantageous in terms of activity even in multistage polymerization. Therefore, the appearance of an ethylene polymerization catalyst excellent in molecular weight controllability by hydrogen called hydrogen responsiveness is desired.
- the polymerization solvent soluble component tends to increase, but it is desirable to reduce the byproduct of this soluble component for product yield and environmental friendliness.
- the problem to be solved from the above background is to produce an ethylene-based polymer that can polymerize ethylene with high activity, has excellent hydrogen responsiveness, has few solvent-soluble components, and has good particle properties. It is to provide a solid titanium catalyst component for ethylene polymerization, a catalyst for ethylene polymerization, and a method for polymerizing ethylene using this catalyst.
- the present inventors have studied in order to solve the above problems.
- a liquid magnesium compound (A) containing a magnesium compound and two or more kinds of electron donors having a specific number of carbon atoms and a liquid titanium compound (C) are surprisingly obtained as an electron donor (B).
- the present inventors have found that the solid titanium catalyst component (I) for ethylene polymerization obtained by contacting in the presence can solve the above-mentioned problems, and has completed the present invention.
- a liquid magnesium compound (A) containing a magnesium compound, an electron donor (a) having 1 to 5 carbon atoms and an electron donor (b) having 6 to 30 carbon atoms, and a liquid titanium compound (C) are converted into electrons.
- a solid titanium catalyst component (I) for ethylene polymerization obtained by contacting in the presence of a donor (B) and containing titanium, magnesium and halogen.
- the molar ratio ((a) / (b)) between the amount of the electron donor (a) used and the amount of the electron donor (b) used is less than 1, and the electron donor (a)
- the electron donor (b) and the electron donor (B) are preferably heteroatom-containing compounds excluding the cyclic ether compound.
- the electron donor (a) is preferably an alcohol having 1 to 5 carbon atoms, and the electron donor (b) is preferably an alcohol having 6 to 12 carbon atoms.
- the electron donor (B) is a dicarboxylic acid ester compound or at least one compound selected from the group consisting of acid halides, acid amides, nitriles, acid anhydrides, organic acid esters and polyethers. It is preferable that
- a compound represented by the following formula (2), a diether compound represented by the following formula (3), or an organic acid having 2 to 18 carbon atoms is used as a more preferred embodiment of the electron donor (B).
- the mixture of ester and the diether compound represented by following formula (3) is mentioned.
- C a and C b represent carbon atoms
- n represents an integer of 5 to 10
- R 2 and R 3 are each independently COOR 1 or R ′
- R 2 and R 3 At least one of them is COOR 1. Any carbon-carbon bond other than the C a -C a bond and the C a -C b bond when R 3 is a hydrogen atom in the cyclic skeleton is It may be replaced with a double bond.
- a plurality of R 1 are hydrocarbon groups having 1 to 20 carbon atoms.
- a plurality of R ′ are independently selected from a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a nitrogen-containing group, an oxygen-containing group, a phosphorus-containing group, a halogen-containing group, and a silicon-containing group.
- A is a structure represented by the following formula or a heteroatom excluding an oxygen atom.
- a plurality of R's are the same as R 'above. ).
- m represents an integer of 1 to 10
- R 11 , R 12 , and R 31 to R 36 are each independently a hydrogen atom, or carbon, hydrogen, oxygen, fluorine, chlorine, bromine, A substituent having at least one element selected from iodine, nitrogen, sulfur, phosphorus, boron and silicon.
- Arbitrary R 11 , R 12 , R 31 to R 36 may jointly form a ring other than a benzene ring, and atoms other than carbon may be contained in the main chain. ).
- the ethylene polymerization catalyst of the present invention is characterized by containing the above-described solid titanium catalyst component (I) for ethylene polymerization and the organometallic compound catalyst component (II).
- the ethylene polymerization method of the present invention is characterized in that ethylene homopolymerization or copolymerization of ethylene and another olefin is carried out in the presence of the above-mentioned ethylene polymerization catalyst.
- an ethylene polymer having excellent hydrogen responsiveness, less solvent-soluble components, and excellent particle shape is obtained. It can be manufactured with activity. Moreover, it is excellent also in control of the molecular weight and molecular weight distribution of the obtained ethylene polymer.
- FIG. 1 illustrates the relationship between the intrinsic viscosity [ ⁇ ] and the solvent-soluble component ratio among the ethylene polymerization results described in Examples and Comparative Examples.
- a solid titanium catalyst component (I) for ethylene polymerization according to the present invention, an ethylene polymerization catalyst containing the catalyst component (I), and a method for polymerizing ethylene will be described.
- the term “polymerization” may be used to mean not only homopolymerization but also copolymerization, and the term “polymer” includes not only homopolymers but also copolymers. Sometimes used in meaning.
- the solid titanium catalyst component (I) for ethylene polymerization according to the present invention comprises a liquid magnesium compound (A) containing a magnesium compound, an electron donor (a) and an electron donor (b), and a liquid titanium compound (C). In the presence of an electron donor (B) and contains titanium, magnesium and halogen.
- the solid titanium catalyst component for ethylene polymerization (I) obtained by bringing the liquid magnesium compound (A) and the liquid titanium compound (C) into contact with each other in the presence of the electron donor (B) is excellent in hydrogen responsiveness. There is a tendency that it is easy to obtain an ethylene polymer excellent in particle shape with little generation of solvent-soluble components.
- the liquid magnesium compound (A), the electron donor (B), and the liquid titanium compound (C) will be described.
- the method for obtaining the liquid magnesium compound (A) used for the preparation of the solid titanium catalyst component (I) for ethylene polymerization according to the present invention includes a known magnesium compound, an electron donor (a) and an electron donor (b) described later. ) Is preferably brought into contact with each other in the presence of a liquid hydrocarbon medium to form a liquid.
- the magnesium compound include magnesium compounds described in JP-A-58-83006 and JP-A-56-811. In particular, it is preferable to use a solvent-soluble magnesium compound.
- magnesium halides such as magnesium chloride and magnesium bromide
- Alkoxy magnesium halides such as methoxy magnesium chloride and ethoxy magnesium chloride
- Aryloxymagnesium halides such as phenoxymagnesium chloride
- Alkoxymagnesium such as ethoxymagnesium, isopropoxymagnesium, butoxymagnesium, 2-ethylhexoxymagnesium
- Aryloxymagnesium such as phenoxymagnesium
- a known magnesium compound having no reducing ability such as a magnesium carboxylate such as magnesium stearate can be used.
- organomagnesium compounds represented by organomagnesium compounds and Grignard reagents can also be used.
- These magnesium compounds may be used alone or in combination of two or more. These magnesium compounds may be complex compounds with other metals, double compounds, or mixtures with other metal compounds.
- magnesium halide particularly magnesium chloride is preferably used
- alkoxymagnesium such as ethoxymagnesium is also preferably used.
- An organomagnesium compound having a reducing ability such as a Grignard reagent may be used in contact with a halogenated titanium, a halogenated silicon, a halogenated alcohol, or the like.
- the two or more electron donors used for the preparation of the liquid magnesium compound (A) are an electron donor (a) having 1 to 5 carbon atoms and an electron donor (b) having 6 to 30 carbon atoms. It is preferable. Specifically, it is preferable to use alcohols, aldehydes, amines, carboxylic acids, mixtures thereof, and the like that satisfy the definition of the number of carbon atoms.
- electron donor (a) include the following compounds.
- alcohols having 1 to 5 carbon atoms are preferable, and examples thereof include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, ethylene glycol and n-pentanol. Of these, alcohols having 1 to 3 carbon atoms with smaller carbon atoms are preferred, ethanol, n-propanol, and isopropanol are more preferred, and ethanol is particularly preferred.
- aldehydes examples include etanal (acetaldehyde), propanal, n-butanal, and n-pentanal.
- amines examples include ethylamine, diethylamine, trimethylamine, and diethylmethylamine.
- carboxylic acids examples include acetic acid, propionic acid, butanoic acid, pentanoic acid and the like.
- Two or more of the above compounds can be used in combination.
- alcohols are particularly preferably used.
- the electron donor (a) is highly reactive with the organometallic compound catalyst component (II) described later and has a rapid onset of catalytic activity, so that a catalyst having a high ethylene polymerization activity is often obtained.
- the electron donor (b) those having 6 to 30 carbon atoms are used, and those having 6 to 20 carbon atoms are more preferable.
- the alcohol of the electron donor (b) include aliphatic alcohols such as hexanol, 2-methylpentanol, 2-ethylbutanol, n-heptanol, n-octanol, 2-ethylhexanol, decanol, dodecanol; Cycloaliphatic alcohols such as cyclohexanol and methylcyclohexanol; Aromatic alcohols such as benzyl alcohol and methylbenzyl alcohol; Mention may be made of alcohols such as alkoxy group-containing aliphatic alcohols such as n-butyl cellosolve. Of these, aliphatic alcohols are preferred.
- aldehydes examples include aldehydes having 7 or more carbon atoms such as capric aldehyde and 2-ethylhexyl aldehyde.
- amines having 6 to 30 carbon atoms such as heptylamine, octylamine, nonylamine, laurylamine, 2-ethylhexylamine.
- carboxylic acid examples include organic carboxylic acids having 6 to 30 carbon atoms such as caprylic acid and 2-ethylhexanoic acid.
- the electron donor (b) tends to be able to solubilize the magnesium compound in a small amount (molar unit).
- the electron donor (b) is preferably an alcohol, and more preferably an alcohol having 6 to 12 carbon atoms.
- Specific preferred examples include aliphatic alcohols such as hexanol, 2-ethylhexanol, decanol, and dodecanol, with 2-ethylhexanol being particularly preferred.
- both are preferably alcohols.
- the amount of magnesium compound, electron donor (a) and electron donor (b) used in preparing the liquid magnesium compound (A) varies depending on the type, contact conditions, etc.
- the electron donor (a) is 0.1 to 20 mol, preferably 0.2 to 10 mol, more preferably 0.2 to 8 mol, and the electron donor (b) is 0.5 to 20 mol, The amount is preferably 1 to 10 mol, more preferably 1 to 5 mol.
- the total amount of the electron donor (a) and the electron donor (b) is 1.1 to 25 mol, more preferably 1.5 to 10 mol, still more preferably 2 to 5 mol, relative to 1 mol of the magnesium compound. is there.
- the electron donor (a) is preferably used in a smaller amount than the electron donor (b).
- (amount of electron donor (a) used (mol)) / (amount of electron donor (b) used (mol)) is preferably less than 1, more preferably less than 0.8, Preferably it is less than 0.6, particularly preferably less than 0.5, particularly preferably less than 0.4. If the ratio of the amount used of the electron donor (a) and the electron donor (b) is out of the above range, the magnesium compound may be difficult to dissolve.
- an electron donor (a), an electron donor (b), and an electron donor (B) are hetero atom containing compounds except a cyclic ether compound.
- the liquid magnesium compound (A) is preferably prepared in a liquid hydrocarbon medium.
- the magnesium concentration in the liquid hydrocarbon medium is 0.1 to 20 mol / liter, preferably 0.5 to 5 mol / liter.
- known hydrocarbon compounds such as heptane, octane and decane are preferable examples.
- the electron donor (B) used in the preparation of the solid titanium catalyst component (I) for ethylene polymerization according to the present invention is an ⁇ -olefin such as those disclosed in JP-A-58-83006 and JP-A-56-811.
- a preferred example is an electron donor used for preparing the solid titanium catalyst component for polymerization.
- dicarboxylic acid ester compounds examples include dicarboxylic acid ester compounds, and more specific examples include dicarboxylic acid ester compounds having a plurality of carboxylic acid ester groups and represented by the following formula (1).
- the dicarboxylic acid ester compound represented by the following formula (1) it is preferable in terms of excellent control of the molecular weight and molecular weight distribution of the resulting ethylene polymer.
- C a represents a carbon atom.
- R 2 and R 3 are each independently COOR 1 or R, and at least one of R 2 and R 3 is COOR 1 .
- the carbon-carbon bonds in the skeleton of formula (1) are preferably all single bonds, but any carbon-carbon bond other than the C a -C a bond in the skeleton is replaced with a double bond. It may be.
- a plurality of R 1 are each independently a monovalent carbon atom having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and particularly preferably 2 to 3 carbon atoms. It is a hydrogen group.
- Such hydrocarbon groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, neopentyl, hexyl, heptyl, octyl, 2-ethylhexyl, decyl.
- Plural Rs are each independently an atom selected from a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a nitrogen-containing group, an oxygen-containing group, a phosphorus-containing group, a halogen-containing group and a silicon-containing group. Or a group.
- R other than a hydrogen atom is preferably a hydrocarbon group having 1 to 20 carbon atoms, and more preferably a hydrocarbon group having 1 to 10 carbon atoms.
- hydrocarbon groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, Examples thereof include aliphatic hydrocarbon groups such as cyclohexyl group, vinyl group, phenyl group, octyl group, alicyclic hydrocarbon group, and aromatic hydrocarbon group, preferably methyl group, ethyl group, n-propyl group, isopropyl group.
- an aliphatic hydrocarbon group such as an n-butyl group, an isobutyl group, a sec-butyl group and an n-pentyl group, and an ethyl group, an n-propyl group and an isopropyl group are particularly preferable.
- R is a group as described above, it is preferable in terms of not only suppressing the generation of a solvent-soluble component derived from a low molecular weight, which will be described later, but also being excellent in particle properties.
- R may be bonded to at least two of them to form a ring, and the ring skeleton formed by bonding of R to each other may contain a double bond or a heteroatom.
- the ring skeleton contains two or more C a bonded with COOR 1 , the number of carbon atoms constituting the ring skeleton is 5 to 10.
- R 2 and R 3 which are not COOR 1 are preferably a hydrogen atom or a hydrocarbon group.
- a hydrogen atom, a secondary alkyl group such as isopropyl group, sec-butyl group, 2-pentyl group, 3-pentyl group, or a cycloalkyl group such as cyclohexyl group, cyclopentyl group, and cyclohexylmethyl group are preferable.
- at least one of R 2 and R 3 which are not COOR 1 bonded to C a is preferably a hydrogen atom.
- dicarboxylic acid ester compound represented by the formula (1) Diethyl 2,3-bis (2-ethylbutyl) succinate, Diethyl 2,3-dibenzylsuccinate, Diethyl 2,3-diisopropylsuccinate, Diisobutyl 2,3-diisopropylsuccinate, 2,3-bis (cyclohexylmethyl) succinate diethyl, Diethyl 2,3-diisobutyl succinate, Diethyl 2,3-dineopentyl succinate, Diethyl 2,3-dicyclopentylsuccinate, A mixture of diethyl 2,3-dicyclohexylsuccinate in the pure or optionally racemic form of the (S, R) (S, R) form.
- Such a dicarboxylic acid ester compound is preferred because it is excellent in controlling the molecular weight and molecular weight distribution of the resulting ethylene polymer.
- sec-diethyl butyl succinate Diethyl texyl succinate, Diethyl cyclopropyl succinate, Diethyl norbornyl succinate, (10-) diethyl perhydronaphthyl succinate, Diethyl trimethylsilylsuccinate, Diethyl methoxysuccinate, diethyl p-methoxyphenylsuccinate, diethyl p-chlorophenylsuccinate, Diethyl phenylsuccinate, Diethyl cyclohexylsuccinate, Diethyl benzylsuccinate, (Cyclohexylmethyl) diethyl succinate, diethyl t-butylsuccinate, Diethyl isobutyl succinate, Diethyl isopropyl succinate, It is diethyl neopentyl succinate.
- a preferred example of the compound in which R groups are bonded to form a cyclic structure in the above formula (1) includes a compound represented by the following formula (2).
- C a and C b represent carbon atoms.
- n is an integer of 5 to 10, preferably an integer of 5 to 8, more preferably an integer of 5 to 7, and most preferably 6.
- R 2 and R 3 are each independently COOR 1 or R ′, and at least one of R 2 and R 3 is COOR 1 .
- R 2 is COOR 1 and R 3 is R ′.
- the carbon-carbon bonds in the cyclic skeleton are preferably all single bonds, but other than the C a -C a bond in the cyclic skeleton and the C a -C b bond when R 3 is a hydrogen atom. Any carbon-carbon bond may be replaced with a double bond.
- a plurality of R 1 s are hydrocarbon groups having 1 to 20 carbon atoms, preferably hydrocarbon groups having 1 to 8 carbon atoms, more preferably R 1 in the compound of the formula (1). It is a hydrocarbon group having 2 to 3 carbon atoms.
- suitable R 1 are methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, neopentyl group, 2-ethylhexyl group, more preferably ethyl group, n-propyl group. Group, isopropyl group.
- A is a hetero atom except an oxygen atom.
- the ring formed by C a , C b and A is preferably a cyclic carbon structure, and the cyclic structure is particularly preferably a saturated alicyclic structure composed only of carbon.
- a plurality of R ′ are independently selected from a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a nitrogen-containing group, an oxygen-containing group, a phosphorus-containing group, a halogen-containing group, and a silicon-containing group.
- R ′ other than a hydrogen atom is preferably a hydrocarbon group having 1 to 20 carbon atoms, and more preferably a hydrocarbon group having 1 to 10 carbon atoms.
- hydrocarbon groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, Examples thereof include aliphatic hydrocarbon groups such as cyclohexyl group, vinyl group, phenyl group, octyl group, alicyclic hydrocarbon group, and aromatic hydrocarbon group, preferably methyl group, ethyl group, n-propyl group, isopropyl group.
- an aliphatic hydrocarbon group such as an n-butyl group, an isobutyl group, a sec-butyl group and an n-pentyl group, and an ethyl group, an n-propyl group and an isopropyl group are particularly preferable.
- R ′ is a group as described above, it is preferable in terms of not only suppressing the generation of a solvent-soluble component derived from a low molecular weight described later but also excellent particle properties.
- R ′ may be bonded to each other to form a ring, and the ring skeleton formed by bonding R ′ to each other may contain a double atom or a heteroatom excluding oxygen.
- the ring skeleton contains two or more C a bonded with COOR 1 , the number of carbon atoms constituting the ring skeleton is 5 to 10.
- ring skeleton examples include a norbornane skeleton and a tetracyclododecane skeleton.
- a plurality of R's may be a carbonyl structure-containing group such as a carboxylic acid ester group, an alkoxy group, a siloxy group, an aldehyde group or an acetyl group.
- R ′ is preferably a hydrogen atom or a hydrocarbon group.
- dicarboxylic acid ester compound represented by the formula (2) Cyclohexane-1,2-dicarboxylate diethyl, Cyclohexane-1,2-dicarboxylic acid di-n-propyl, Cyclohexane-1,2-dicarboxylate diisopropyl, Diethyl cyclohexane-1,3-dicarboxylate, Cyclohexane-1,3-dicarboxylate di-n-propyl, Cyclohexane-1,3-dicarboxylate diisopropyl, Diethyl 3-methylcyclohexane-1,2-dicarboxylate, Di-n-propyl 3-methylcyclohexane-1,2-dicarboxylate, 3-methylcyclohexane-1,2-dicarboxylate, 3-methylcyclohexane-1,2-dicarboxylate diisopropyl, 4-methylcyclohexane-1,3-dicarboxylate diethyl, Di-n-
- the compound having the above diester structure has isomers such as cis and trans, and any structure often has an effect corresponding to the object of the present invention.
- the reason is not only the catalyst performance, but also that these compounds can be produced at a relatively low cost by utilizing the Diels Alder reaction.
- the electron donor (B) the following acid halides, acid amides, nitriles, acid anhydrides, organic acid esters, polyethers and the like can be used.
- acid halides having 2 to 15 carbon atoms such as acetyl chloride, benzoyl chloride, toluic acid chloride, anisic acid chloride; Acid amides such as acetic acid N, N-dimethylamide, benzoic acid N, N-diethylamide, toluic acid N, N-dimethylamide; Nitriles such as acetonitrile, benzonitrile, trinitrile; Acid anhydrides such as acetic anhydride, phthalic anhydride, benzoic anhydride; Methyl formate, methyl acetate, ethyl acetate, vinyl acetate, propyl acetate, octyl acetate, cyclohexyl acetate, ethyl propionate, methyl butyrate, ethyl valerate, methyl chloroacetate, ethyl dichloroacetate, methyl methacrylate, ethyl croton
- organic acid esters in terms of price, safety, and availability, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, octyl benzoate, cyclohexyl benzoate, phenyl benzoate
- Benzoic acid esters such as benzyl benzoate, ethyl ethyl benzoate and ethyl ethoxybenzoate are preferably used.
- polyvalent carboxylic acid esters can be mentioned.
- specific examples of such polyvalent carboxylic acid esters include diethyl succinate, dibutyl succinate, diethyl methylmalonate, diethyl ethylmalonate, diethyl isopropylmalonate, diethyl butylmalonate, diethyl phenylmalonate, and diethylmalon.
- Aliphatic acids such as diethyl acid, diethyl dibutylmalonate, monooctyl maleate, dioctyl maleate, dibutyl maleate, dibutyl butyl maleate, diethyl butyl maleate, di-2-ethylhexyl fumarate, diethyl itaconate, dioctyl citraconic acid
- Aromatic polycarboxylic acid esters such as polycarboxylic acid esters, phthalic acid esters, naphthalene dicarboxylic acid esters, triethyl trimellitic acid, dibutyl trimellitic acid; 3,4-furandicarboxylic acid, etc. , And the like Fushiwa polycarboxylic acid ester.
- polyvalent carboxylic acid esters include diethyl adipate, diisobutyl adipate, diisopropyl sebacate, di-n-butyl sebacate, di-n-octyl sebacate, and di-2-ethylhexyl sebacate. And esters of chain dicarboxylic acids.
- the electron donor (B) include the polyethers as described above, that is, compounds having two or more ether bonds existing through a plurality of atoms (hereinafter referred to as “polyether”).
- polyether examples include compounds in which atoms present between ether bonds are carbon, silicon, oxygen, nitrogen, sulfur, phosphorus, boron, or two or more selected from these.
- a compound in which a relatively bulky substituent is bonded to an atom between ether bonds and a plurality of carbon atoms are contained in an atom present between two or more ether bonds is preferable.
- a diether compound represented by the following formula (3) is preferable.
- m is an integer of 1 to 10, more preferably an integer of 3 to 10, and particularly preferably 3 to 5.
- R 11 , R 12 , R 31 to R 36 are each independently at least one selected from a hydrogen atom or carbon, hydrogen, oxygen, fluorine, chlorine, bromine, iodine, nitrogen, sulfur, phosphorus, boron and silicon. A substituent having a seed element.
- R 11 and R 12 are preferably hydrocarbon groups having 1 to 10 carbon atoms, preferably hydrocarbon groups having 2 to 6 carbon atoms, and R 31 to R 36 are preferably hydrogen atoms or carbon atoms. It is a hydrocarbon group of the number 1-6.
- R 11 and R 12 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, isopentyl group, neopentyl group, hexyl group, heptyl group, octyl group, 2 -Ethylhexyl group, decyl group, cyclopentyl group, cyclohexyl group can be mentioned, and ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group are preferable.
- R 31 to R 36 include a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group, preferably a hydrogen atom and a methyl group.
- R 11 , R 12 , R 31 to R 36 preferably R 11 and R 12 may jointly form a ring other than a benzene ring, and atoms other than carbon are contained in the main chain. May be.
- 1,3-diethers are preferred, and in particular, 2-isopropyl-2-isobutyl-1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxypropane, 2-isopropyl-2-isopentyl- 1,3-dimethoxypropane, 2,2-dicyclohexyl-1,3-dimethoxypropane, and 2,2-bis (cyclohexylmethyl) 1,3-dimethoxypropane are preferred.
- examples of the electron donor (B) include an alkoxysilane compound represented by the general formula R n Si (OR ′) 4-n described later, and tetraalkoxysilanes such as tetraethoxysilane and tetrabutoxysilane. .
- These compounds listed as the electron donor (B) may be used alone or in combination of two or more kinds.
- a dicarboxylic acid ester having a cyclic structure represented by the above formula (2) or a mixture of the above organic acid esters and a diether compound represented by the above formula (3) is particularly preferable.
- dicarboxylic acid esters or organic acid esters were formed in the process of preparing the solid titanium catalyst component (I) for ethylene polymerization. May be.
- it can be formed in the process of contacting with the magnesium compound (A).
- an electron donation is provided by providing a step of substantially contacting the carboxylic anhydride corresponding to the above compound or the carboxylic acid halide and the corresponding alcohol.
- the body (B) can also be contained in the solid titanium catalyst component.
- Liquid titanium compound (C) Examples of the liquid titanium compound (C) used for preparing the solid titanium catalyst component (I) for ethylene polymerization according to the present invention are described in, for example, JP-A-58-83006 and JP-A-56-811.
- the titanium compound which can be mentioned can be mentioned.
- Specific examples of the liquid titanium compound (C) include a tetravalent titanium compound represented by the following formula (4).
- Titanium tetrahalides such as TiCl 4 and TiBr 4 ; Ti (OCH 3 ) Cl 3 , Ti (OC 2 H 5 ) Cl 3 , Ti (On-C 4 H 9 ) Cl 3 , Ti (OC 2 H 5 ) Br 3 , Ti (O iso-C 4 H 9) ) Trihalogenated alkoxytitanium such as Br 3 ; Dihalogenated alkoxytitanium such as Ti (OCH 3 ) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Cl 2 ; Monohalogenated alkoxytitanium such as Ti (OCH 3 ) 3 Cl, Ti (On-C 4 H 9 ) 3 Cl, Ti (OC (OCH 3 )
- titanium tetrahalide is preferable, and titanium tetrachloride is particularly preferable.
- These titanium compounds may be used alone or in combination of two or more.
- liquid magnesium compound (A) or the liquid titanium compound (C) contains a halogen.
- liquid magnesium compound (A) nor the titanium compound (C) contains a halogen
- a known halogen-containing compound such as a halogen-containing silicon compound in an arbitrary step.
- a typical example of such a halogen-containing compound is silicon tetrachloride.
- the solid titanium catalyst component (I) for ethylene polymerization of the present invention is obtained by contacting the liquid magnesium compound (A) and the liquid titanium compound (C) in the presence of the electron donor (B). .
- the liquid magnesium compound (A) may be in a state of being dissolved in a known liquid hydrocarbon medium such as heptane, octane, decane, or the like.
- the particles tend to be irregularly shaped particles or fine particles.
- the purification process by filtration or decantation may be poor, and the polymer produced from the resulting solid titanium catalyst component may have poor particle properties, leading to problems such as productivity and handling deterioration.
- a known method for obtaining a solid titanium catalyst component by contacting the liquid magnesium compound (A), the electron donor (B), and the liquid titanium compound (C) is used without limitation. I can do it.
- the following methods (P-1) to (P-5) can be mentioned.
- the electron donor (B) is further contacted to form a solid titanium composite.
- a method of precipitating the body may be contacted in a plurality of times.
- the electron donor (B) may be contacted again after the contact between the liquid magnesium compound (A) and the liquid titanium compound (C).
- the resulting solid titanium catalyst component has good particle properties (indefinite shape). Since it is difficult to produce particles and fine particles) and the purification process by filtration and decantation proceeds smoothly, it is preferable from the viewpoint of productivity and handling properties.
- the electron donor (B) is preferably used in an amount of 0.005 to 5 mol, more preferably 0.01 to 2 mol, particularly preferably 1 mol with respect to 1 mol of the liquid magnesium compound (A). Is in the range of 0.03 to 1 mole. However, the preferable range may differ depending on the amount of the liquid titanium compound (C) used.
- the liquid titanium compound (C) is preferably used in the range of 0.1 to 100 mol, more preferably 0.5 to 80 mol, even more preferably 1 mol of the liquid magnesium compound (A). Is 1 to 70 mol, particularly preferably 5 to 70 mol.
- the halogen / titanium (atomic ratio) contained in the solid titanium catalyst component (I) for ethylene polymerization of the present invention is 2 to 100, preferably 4 to 90, and magnesium / titanium (atomic ratio) is 1 to 100. Preferably, it is 1 to 50.
- the molar ratio between the electron donor (B), the electron donor (a) or the electron donor (b) and the titanium atom contained in the solid titanium catalyst component (I) for ethylene polymerization of the present invention is 0 to 100, preferably 0.01 to 10, more preferably 0.2 to 10.
- the ethylene polymerization catalyst according to the present invention includes the solid ethylene catalyst component (I) for ethylene polymerization obtained as described above and the organometallic compound catalyst component (II).
- an organometallic compound catalyst component (II) an organometallic compound containing a metal selected from Group 1, Group 2, and Group 13 of the periodic table is preferable.
- a complex alkylated product of a Group metal and aluminum, an organometallic compound of a Group 2 metal such as a Grignard reagent or an organomagnesium compound can be used. Among these, an organoaluminum compound is preferable.
- organometallic compound catalyst component (II) As the organometallic compound catalyst component (II), specifically, an organometallic compound catalyst component described in a known document such as EP585869A1 can be given as a preferred example. Particularly preferred are organoaluminum compounds such as triethylaluminum, tributylaluminum, triisobutylaluminum, trioctylaluminum and diethylaluminum hydride.
- the ethylene polymerization catalyst of the present invention can contain an electron donor (III) as necessary together with the organometallic compound catalyst component (II).
- the electron donor (III) is preferably an organosilicon compound.
- organosilicon compound include a compound represented by the following formula (5).
- R n Si (OR ′) 4-n (5) (Wherein R and R ′ are aliphatic, alicyclic and aromatic hydrocarbon groups having 1 to 20 carbon atoms, and 0 ⁇ n ⁇ 4)
- Specific examples of the organosilicon compound represented by the above formula (5) include diisopropyldimethoxysilane, t-butylmethyldimethoxysilane, t-butylmethyldiethoxysilane, t-amylmethyldiethoxysilane, dicyclohexyldimethoxysilane, Cyclohexylmethyldimethoxysilane, cyclohexylmethyldiethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, t-butyltriethoxysilane, phenyltriethoxysilane, cyclohexyltrimethoxysilane, cyclopentyltrimethoxysilane, 2-methylcyclopenty
- vinyltriethoxysilane, diphenyldimethoxysilane, dicyclohexyldimethoxysilane, cyclohexylmethyldimethoxysilane, dicyclopentyldimethoxysilane and the like are preferably used.
- These organosilicon compounds can be used in combination of two or more.
- Examples of the other electron donor (III) include those exemplified as the electron donor (B), electron donor (a), and electron donor (b) used for the solid titanium catalyst component (I) for ethylene polymerization. Can be mentioned. Among these, polyethers can be mentioned as preferred examples.
- the ethylene polymerization catalyst may contain other components useful for olefin polymerization, such as an antistatic agent, a particle flocculant, and a storage stabilizer, as necessary, in addition to the above components. it can.
- the ethylene polymerization method of the present invention is characterized in that an ethylene polymer is obtained by polymerizing ethylene alone or an olefin containing ethylene using the ethylene polymerization catalyst. That is, ethylene homopolymerization or copolymerization of ethylene and another olefin is carried out in the presence of the ethylene polymerization catalyst.
- ethylene polymerization method of the present invention it is also possible to perform the main polymerization in the presence of a prepolymerization catalyst obtained by prepolymerization of an olefin in the presence of the ethylene polymerization catalyst of the present invention.
- This prepolymerization is carried out by prepolymerizing the olefin in an amount of 0.1 to 1000 g, preferably 0.3 to 500 g, particularly preferably 1 to 200 g, per 1 g of the ethylene polymerization catalyst.
- a catalyst having a higher concentration than the catalyst concentration in the system in the main polymerization can be used.
- concentration of the solid titanium catalyst component (I) for ethylene polymerization in the prepolymerization is usually about 0.001 to 200 mmol, preferably about 0.01 to 50 mmol, particularly preferably in terms of titanium atom per liter of the liquid medium. Is preferably in the range of 0.1 to 20 mmol.
- the amount of the organometallic compound catalyst component (II) in the prepolymerization is such that 0.1 to 1000 g, preferably 0.3 to 500 g of polymer is formed per 1 g of the solid titanium catalyst component (I) for ethylene polymerization.
- 0.1 to 300 mol preferably about 0.5 to 100 mol, particularly preferably 1 to 50 mol per mol of titanium atom in the solid titanium catalyst component (I) for ethylene polymerization. It is desirable that the amount of
- an electron donor (III) or the like can be used as necessary.
- these components are added in an amount of 0.1 per mole of titanium atoms in the solid titanium catalyst component (I) for ethylene polymerization. It is used in an amount of ⁇ 50 mol, preferably 0.5 to 30 mol, more preferably 1 to 10 mol.
- the prepolymerization can be performed under mild conditions by adding an olefin and the above catalyst components to an inert hydrocarbon medium.
- inert hydrocarbon medium used examples include aliphatic hydrocarbons such as propane, butane, heptane, heptane, heptane, octane, decane, dodecane, and kerosene; Cycloaliphatic hydrocarbons such as cycloheptane, cycloheptane, methylcycloheptane; Aromatic hydrocarbons such as benzene, toluene, xylene; Examples thereof include halogenated hydrocarbons such as ethylene chloride and chlorobenzene, and mixtures thereof.
- aliphatic hydrocarbons such as propane, butane, heptane, heptane, heptane, octane, decane, dodecane, and kerosene
- Cycloaliphatic hydrocarbons such as cycloheptane, cycloheptane, methylcycloheptane
- Aromatic hydrocarbons such as
- the prepolymerization is preferably performed in a batch system.
- prepolymerization can be carried out using the olefin itself as a solvent, or the prepolymerization can be carried out in a substantially solvent-free state. In this case, it is preferable to perform preliminary polymerization continuously.
- olefin used in the prepolymerization known olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene can be used. Among these, ethylene and propylene are preferable.
- the temperature during the prepolymerization is usually in the range of about ⁇ 20 to + 100 ° C., preferably about ⁇ 20 to + 80 ° C., more preferably 0 to + 40 ° C.
- ethylene alone may be used, and other olefins may be used in addition to ethylene.
- ⁇ -olefins having 3 to 20 carbon atoms such as propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-decene, Examples include dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene and the like. Are preferably used.
- aromatic vinyl compounds such as styrene and allylbenzene
- alicyclic vinyl compounds such as vinylcycloheptane
- two or more of these compounds in combination.
- compounds having polyunsaturated bonds such as conjugated dienes and non-conjugated dienes such as dienes such as cyclopentene, cycloheptene, norbornene, tetracyclododecene, isoprene and butadiene are used as a raw material for polymerization together with ethylene and ⁇ -olefin. You can also.
- the prepolymerization and the main polymerization can be carried out by any of liquid phase polymerization methods such as solution polymerization and slurry polymerization, or gas phase polymerization methods.
- the main polymerization is preferably performed by slurry polymerization.
- the main polymerization takes the form of slurry polymerization
- the solid titanium catalyst component (I) for ethylene polymerization is usually about 0.0001 to 0.5 mmol in terms of titanium atoms per liter of polymerization volume, Preferably it is used in an amount of about 0.005 to 0.1 mmol.
- the organometallic compound catalyst component (II) is usually about 1 to 2000 moles, preferably about 5 to 500 moles in terms of metal atoms, relative to 1 mole of titanium atoms in the prepolymerization catalyst component in the polymerization system. Used in various amounts.
- the electron donor (III) When the electron donor (III) is used, 0.001 to 50 moles, preferably 0.01 to 30 moles, particularly preferably 0.001 moles per mole of metal atoms of the organometallic compound catalyst component (II). Used in an amount of 05 to 20 mol.
- the molecular weight of the resulting ethylene polymer can be adjusted, and an ethylene polymer having a high melt flow rate (hereinafter also referred to as “MFR”) can be obtained.
- MFR melt flow rate
- the ethylene polymerization catalyst of the present invention it tends to be easy to obtain a high MFR polymer with a smaller amount of hydrogen than the conventional ethylene polymerization catalyst.
- the polymerization temperature is usually set to about 20 to 250 ° C., preferably about 50 to 200 ° C.
- the pressure is usually set to normal pressure to 10 MPa, preferably about 0.2 to 5 MPa.
- the temperature is about 20 to 100 ° C., preferably about 50 to 90 ° C.
- the pressure is usually atmospheric pressure to 1.5 MPa, preferably about 0.2 to 1 MPa.
- the polymerization method of the present invention the polymerization can be carried out in any of batch, semi-continuous and continuous methods. Furthermore, the polymerization can be carried out in two or more stages by changing the reaction conditions.
- the ethylene polymer obtained by the ethylene polymerization method of the present invention is excellent in particle properties and has a high bulk density, it can be produced with high productivity.
- a by-product of a low molecular weight polymer that dissolves in an inert hydrocarbon used for slurry polymerization is small.
- the amount of such a solvent-soluble component by-product varies depending on the MFR of the ethylene polymer to be produced (the higher the MFR, the higher the solvent-soluble component tends to be), but the MFR is 300 to 400 g / 10 min. It is preferable that the solvent-soluble component in the production of the polymer is 8% or less.
- composition, particle size and bulk specific gravity of the solid titanium catalyst component for ethylene polymerization were measured as follows.
- Alcohol residue content A sufficiently dried catalyst was added to an acetone solution to which 10% by weight of water was added, and the alcohol obtained by hydrolysis was quantified by gas chromatography.
- Fine powder content (particle size distribution) Using a vibrator (Iida Seisakusho, Lowtap) and a sieve (Bunsei Furui, inner diameter 200 mm, opening 75 ⁇ m), the content of fine powder of less than 75 ⁇ m was measured.
- SP (%) 100 ⁇ ( ⁇ ) / (( ⁇ ) + ( ⁇ )) ( ⁇ ): Amount of powdery polymer ( ⁇ ): Amount of ethylene polymer dissolved in n-heptane solvent ( ⁇ ) is measured as the weight of the solid obtained by distilling off the solvent from the filtrate after filtration. Is done.
- Intrinsic viscosity [ ⁇ ] The intrinsic viscosity [ ⁇ ] was measured in decalin at a temperature of 135 ° C. by dissolving ethylene polymer particles in decalin.
- Example 1 "Preparation of solid titanium catalyst component for ethylene polymerization" Anhydrous magnesium chloride (4.76 g, 50 mmol), decane (28.1 ml) and 2-ethylhexyl alcohol (EHA) (16.3 g, 125 mmol) were heated and reacted at 130 ° C. for 3 hours to obtain a homogeneous solution, followed by ethyl alcohol (EtOH). 0.94 g (20 mmol) was added, and the mixture was heated at 50 ° C. for 1 hour.
- EHA 2-ethylhexyl alcohol
- the whole amount of the uniform solution thus obtained was charged dropwise into 200 ml (1.8 mol) of titanium tetrachloride at 0 ° C. over 1 hour with stirring.
- the temperature during the dropping was kept at 0 ° C.
- the temperature of the mixed solution is kept at 0 ° C. for 1 hour, then raised to 110 ° C. over 1 hour and 45 minutes, and then kept at the same temperature with stirring for 30 minutes, followed by filtration at the same temperature.
- the solid part was separated. This solid part was thoroughly washed with decane at 110 ° C. and then with hexane at room temperature until no free titanium compound was detected, to obtain a solid titanium catalyst component (I-1) for ethylene polymerization.
- the obtained solid titanium catalyst component was stored as a decane suspension, but partially dried for analysis.
- the composition was 7.0 wt% titanium, 14 wt% magnesium, 59 wt% chlorine, 0.9 wt% ethyl alcohol residue, and 6.9 wt% 2-ethylhexyl alcohol residue.
- polymerization In an autoclave having an internal volume of 1 liter, 500 ml of purified n-heptane was charged in an ethylene atmosphere, and 0.25 mmol of triethylaluminum, and the solid titanium catalyst component for ethylene polymerization (I-1) obtained above were mixed. After adding decane suspension in an amount equivalent to 0.005 mmol in terms of titanium atom, the temperature was raised to 80 ° C., hydrogen was supplied at 0.3 MPa, and ethylene was continuously added so that the gauge pressure became 0.6 MPa. Feed for 1.5 hours. The polymerization temperature was kept at 80 ° C.
- the ethylene polymer was filtered off from the n-heptane solvent, washed and dried. After drying, 133.4 g of a powdery polymer was obtained.
- the powder polymer had an MFR of 1.0 g / 10 min and an apparent bulk specific gravity of 0.31 g / ml.
- Example 2 "polymerization" After adding a solid titanium catalyst component (I-1) for ethylene polymerization in an amount equivalent to 0.015 mmol in terms of titanium atom, the temperature was raised to 80 ° C., hydrogen was supplied at 0.55 MPa, and then the gauge pressure was 0.6 MPa. The ethylene polymerization was carried out in the same manner as in Example 1 except that ethylene was continuously supplied for 1.5 hours. The results are shown in Table 1.
- Example 3 "polymerization" After adding a solid titanium catalyst component (I-1) for ethylene polymerization in an amount equivalent to 0.015 mmol in terms of titanium atom, the temperature was raised to 80 ° C., hydrogen was supplied at 0.58 MPa, and then the total pressure was 0.6 MPa. The ethylene polymerization was carried out in the same manner as in Example 1 except that ethylene was continuously supplied for 1.5 hours. The results are shown in Table 1.
- Example 4 "Preparation of solid titanium catalyst component for ethylene polymerization" A solid titanium catalyst component for ethylene polymerization (I-2) was obtained in the same manner as in Example 1 except that the temperature reached during the temperature increase was changed from 110 ° C. to 100 ° C. The composition was 7.3% by weight of titanium, 14% by weight of magnesium, 58% by weight of chlorine, 1.1% by weight of ethyl alcohol residue, and 9% by weight of 2-ethylhexyl alcohol residue.
- Example 5 "Preparation of solid titanium catalyst component for ethylene polymerization" A solid titanium catalyst component for ethylene polymerization (I-3) was obtained in the same manner as in Example 1 except that the holding time at 110 ° C. was changed from 30 minutes to 15 minutes. The composition was 7.1% by weight of titanium, 14% by weight of magnesium, 57% by weight of chlorine, 1.0% by weight of ethyl alcohol residue, and 7.9% by weight of 2-ethylhexyl alcohol residue.
- Example 6 "Preparation of solid titanium catalyst component for ethylene polymerization" Except that the amount of ethyl alcohol was changed from 0.94 g to 1.18 g and the holding time at 110 ° C. was changed from 30 minutes to 120 minutes, the solid titanium catalyst component for ethylene polymerization (I- 4) was obtained.
- the composition was 6.7% by weight of titanium, 15% by weight of magnesium, 58% by weight of chlorine, 0.6% by weight of ethyl alcohol residue, and 2.8% by weight of 2-ethylhexyl alcohol residue.
- Example 7 "Preparation of solid titanium catalyst component for ethylene polymerization" Except that the amount of 2-ethylhexyl alcohol was changed from 16.3 g to 19.5 g, the amount of ethyl alcohol was changed from 0.94 g to 1.88 g, and the holding time at 110 ° C. was changed from 30 minutes to 60 minutes.
- a solid titanium catalyst component (I-5) for ethylene polymerization was obtained.
- the composition was 7.0% by weight of titanium, 14% by weight of magnesium, 57% by weight of chlorine, 1.1% by weight of ethyl alcohol residue, and 5.1% by weight of 2-ethylhexyl alcohol residue.
- Example 8 "Preparation of solid titanium catalyst component for ethylene polymerization"
- a solid titanium catalyst component for ethylene polymerization (I-6) was prepared in the same manner as in Example 7 except that diisopropyl cis-cyclohexane-1,2-dicarboxylate was changed to diisopropyl trans-cyclohexane-1,2-dicarboxylate. Obtained.
- the composition was 7.4% by weight of titanium, 14% by weight of magnesium, 57% by weight of chlorine, 1.8% by weight of ethyl alcohol residue, and 7.7% by weight of 2-ethylhexyl alcohol residue.
- Example 9 Preparation of solid titanium catalyst component for ethylene polymerization
- the amount of 2-ethylhexyl alcohol was changed from 16.3 g to 19.5 g
- the amount of ethyl alcohol was changed from 0.94 g to 2.35 g
- the holding time at 110 ° C. was changed from 30 minutes to 60 minutes.
- a solid titanium catalyst component (I-7) for ethylene polymerization was obtained.
- the composition was 7.0% by weight of titanium, 15% by weight of magnesium, 58% by weight of chlorine, 1.2% by weight of ethyl alcohol residue, and 4.5% by weight of 2-ethylhexyl alcohol residue.
- the total amount of the homogeneous solution thus obtained was dropped into 200 ml (1.8 mol) of titanium tetrachloride at 0 ° C. over 1 hour with stirring.
- the temperature during the dropping was kept at 0 ° C.
- the temperature of the mixed solution is kept at 0 ° C. for 1 hour, then raised to 110 ° C. over 1 hour and 45 minutes, and then kept at the same temperature with stirring for 30 minutes, followed by filtration at the same temperature.
- the solid part was separated.
- the solid part was thoroughly washed with decane at 110 ° C. and then with hexane at room temperature until no free titanium compound was detected to obtain a solid titanium catalyst component (8).
- the obtained solid titanium catalyst component was stored as a decane suspension, but partially dried for analysis.
- the composition was 6.4% by weight of titanium, 16% by weight of magnesium, 54% by weight of chlorine, and 4.0% by weight of 2-ethylhexyl alcohol residue.
- polymerization In an autoclave having an internal volume of 1 liter, 500 ml of purified n-heptane was charged under a nitrogen atmosphere, and decane suspension of 0.25 mmol of triethylaluminum and the solid titanium catalyst component (8) obtained above was added. After adding an equivalent amount of 0.005 mmol in terms of titanium atom, the temperature is raised to 80 ° C., hydrogen is supplied at 0.3 MPa, and then ethylene is continuously supplied for 1.5 hours so that the gauge pressure is 0.6 MPa. did. The polymerization temperature was kept at 80 ° C.
- the ethylene polymer was separated from the n-heptane solvent and dried. After drying, 60.3 g of a powdery polymer was obtained.
- the powder polymer had an MFR of 1.7 g / 10 min and an apparent bulk specific gravity of 0.31 g / ml. The results are shown in Table 1.
- the whole amount of the homogeneous solution thus obtained was dropped into 200 ml (1.8 mol) of titanium tetrachloride maintained at 0 ° C. over 1 hour. After the completion of charging, the temperature of the mixed solution was raised to 110 ° C. over 1 hour and 45 minutes, and then kept at the same temperature with stirring for 2 hours, and then the solid part was separated at the same temperature. This solid part was sufficiently washed with decane at 110 ° C. and then with hexane at room temperature until no free titanium compound was detected to obtain a solid titanium catalyst component (9). The obtained solid titanium catalyst component was stored as a decane suspension, but a part was dried for analysis. The composition was 8.4 wt% titanium, 14 wt% magnesium, 58 wt% chlorine, and 4.3 wt% 2-ethylhexyl alcohol residue.
- Example 10 "polymerization" In an autoclave having an internal volume of 1 liter, 500 ml of purified n-heptane was charged in an ethylene atmosphere, and a decane suspension of 0.25 mmol of triethylaluminum and a solid titanium catalyst component (I-1) for ethylene polymerization was added. After adding an equivalent amount of 0.015 mmol in terms of titanium atom, the temperature was raised to 80 ° C., hydrogen was supplied at 0.6 MPa, and then ethylene was continuously supplied for 1.5 hours so that the total pressure was 0.8 MPa. did. The polymerization temperature was kept at 80 ° C.
- Example 11 Polymerization of ethylene was carried out in the same manner as in Example 10 except that 0.75 MPa of hydrogen was supplied. The results are shown in Table 2.
- Example 12 Polymerization of ethylene was carried out in the same manner as in Example 10 except that 0.76 MPa of hydrogen was supplied. The results are shown in Table 2.
- Example 13 Polymerization of ethylene was carried out in the same manner as in Example 10 except that 0.77 MPa of hydrogen was supplied. The results are shown in Table 2.
- Example 14 Preparation of solid titanium catalyst component
- a solid titanium catalyst component (I-10) was obtained in the same manner as in Example 1 except that ethyl alcohol was changed to 1.2 g (20 mmol) of n-propanol.
- Example 15 Preparation of solid titanium catalyst component
- a solid titanium catalyst component (I-11) was obtained in the same manner as in Example 1 except that ethyl alcohol was changed to 1.2 g (20 mmol) of iso-propanol.
- Example 16 Preparation of solid titanium catalyst component
- a solid titanium catalyst component (I-12) was obtained in the same manner as in Example 1 except that ethyl alcohol was changed to 1.48 g (20 mmol) of n-butanol.
- Example 17 Preparation of solid titanium catalyst component
- a solid titanium catalyst component (I-13) was obtained in the same manner as in Example 1 except that ethyl alcohol was changed to 1.48 g (20 mmol) of iso-butanol.
- Example 18 Preparation of solid titanium catalyst component
- a solid titanium catalyst component (I-14) was obtained in the same manner as in Example 1 except that ethyl alcohol was changed to 1.76 g (20 mmol) of n-pentanol.
- Example 19 Preparation of solid titanium catalyst component
- a solid titanium catalyst component (I-15) was obtained in the same manner as in Example 1, except that diisopropyl cis-cyclohexane-1,2-dicarboxylate was changed to 0.75 g (5 mmol) of ethyl benzoate.
- Example 20 Preparation of solid titanium catalyst component
- Example 1 was repeated except that 0.94 g to 1.38 g (30 mmol) of ethyl alcohol and diisopropyl cis-cyclohexane-1,2-dicarboxylate were changed to 0.75 g (5 mmol) of ethyl benzoate.
- a solid titanium catalyst component (I-16) was obtained.
- Example 21 Preparation of solid titanium catalyst component. Solid titanium as in Example 1 except that diisopropyl cis-cyclohexane-1,2-dicarboxylate was changed to 1.26 g (6.25 mmol) of 2-isopropyl-2-isobutyl-1,3-dimethoxypropane A catalyst component (I-17) was obtained.
- Example 23 Preparation of solid titanium catalyst component
- Example 24 Preparation of solid titanium catalyst component. Solid titanium as in Example 1 except that diisopropyl cis-cyclohexane-1,2-dicarboxylate was changed to 0.96 g (3.75 mmol) of di-n-propyl trans-cyclohexane-1,2-dicarboxylate Catalyst component (I-20) was obtained.
- Example 25 "polymerization" In an autoclave with an internal volume of 1 liter, 500 ml of purified n-heptane was charged in an ethylene atmosphere, and decane suspension of 0.25 mmol of triethylaluminum and solid titanium catalyst component (I-10) was converted to titanium atoms. After adding an equivalent amount of 0.015 millimoles, the temperature was raised to 80 ° C., hydrogen was supplied at 0.75 MPa, and then ethylene was continuously supplied for 1.5 hours so that the total pressure was 0.8 MPa. The polymerization temperature was kept at 80 ° C.
- Example 26 Polymerization of ethylene was carried out in the same manner as in Example 25 except that hydrogen was supplied at 0.77 MPa. The results are shown in Table 4.
- Example 27 Polymerization of ethylene was carried out in the same manner as in Example 25 except that a decane suspension of the solid titanium catalyst component (I-11) was added in an amount equivalent to 0.015 mmol in terms of titanium atom and hydrogen was further supplied at 0.76 MPa. did. The results are shown in Table 4.
- Example 28 Polymerization of ethylene was carried out in the same manner as in Example 27, except that 0.77 MPa of hydrogen was supplied. The results are shown in Table 4.
- Example 29 Polymerization of ethylene was carried out in the same manner as in Example 25 except that a decane suspension of the solid titanium catalyst component (I-12) was added in an amount equivalent to 0.015 mmol in terms of titanium atom and hydrogen was further supplied at 0.74 MPa. did. The results are shown in Table 4.
- Example 30 Polymerization of ethylene was carried out in the same manner as in Example 29 except that hydrogen was supplied at 0.77 MPa. The results are shown in Table 4.
- Example 31 Polymerization of ethylene was carried out in the same manner as in Example 25 except that a decane suspension of the solid titanium catalyst component (I-13) was added in an amount equivalent to 0.015 mmol in terms of titanium atom and hydrogen was further supplied at 0.74 MPa. did. The results are shown in Table 4.
- Example 32 Polymerization of ethylene was carried out in the same manner as in Example 31 except that 0.77 MPa of hydrogen was supplied. The results are shown in Table 4.
- Example 33 Polymerization of ethylene was carried out in the same manner as in Example 25 except that a decane suspension of the solid titanium catalyst component (I-15) was added in an amount equivalent to 0.015 mmol in terms of titanium atom and hydrogen was further supplied at 0.76 MPa. did. The results are shown in Table 4.
- Example 34 Polymerization of ethylene was carried out in the same manner as in Example 33 except that hydrogen was supplied at 0.79 MPa. The results are shown in Table 4.
- Example 35 Polymerization of ethylene was carried out in the same manner as in Example 25 except that a decane suspension of the solid titanium catalyst component (I-16) was added in an amount equivalent to 0.015 mmol in terms of titanium atom and hydrogen was further supplied at 0.77 MPa. did. The results are shown in Table 4.
- Example 36 Polymerization of ethylene was carried out in the same manner as in Example 35 except that hydrogen was supplied at 0.78 MPa. The results are shown in Table 4.
- Example 37 Polymerization of ethylene was carried out in the same manner as in Example 25 except that a decane suspension of the solid titanium catalyst component (I-17) was added in an amount equivalent to 0.015 mmol in terms of titanium atom and hydrogen was further supplied at 0.69 MPa. did. The results are shown in Table 4.
- Example 38 Polymerization of ethylene was carried out in the same manner as in Example 37 except that hydrogen was supplied at 0.72 MPa. The results are shown in Table 4.
- Example 39 Polymerization of ethylene was carried out in the same manner as in Example 25 except that a decane suspension of the solid titanium catalyst component (I-18) was added in an amount equivalent to 0.015 mmol in terms of titanium atom and hydrogen was further supplied at 0.72 MPa. did. The results are shown in Table 4.
- Example 40 Polymerization of ethylene was carried out in the same manner as in Example 39 except that hydrogen was supplied at 0.76 MPa. The results are shown in Table 4.
- Example 41 Preparation of solid titanium catalyst component
- Diisopropyl cis-cyclohexane-1,2-dicarboxylate was changed to 0.38 g (2.5 mmol) of ethyl benzoate and 0.51 g (2.5 mmol) of 2-isopropyl-2-isobutyl-1,3-dimethoxypropane. Except for the above, a solid titanium catalyst component (I-24) was obtained in the same manner as in Example 1.
- Example 42 Preparation of solid titanium catalyst component
- Diisopropyl cis-cyclohexane-1,2-dicarboxylate was changed to 0.50 g (3.4 mmol) of ethyl benzoate and 0.33 g (1.7 mmol) of 2-isopropyl-2-isobutyl-1,3-dimethoxypropane. Except for the above, a solid titanium catalyst component (I-25) was obtained in the same manner as in Example 1.
- Example 43 Preparation of solid titanium catalyst component
- Diisopropyl cis-cyclohexane-1,2-dicarboxylate was changed to 0.60 g (4.0 mmol) of ethyl benzoate and 0.20 g (1.0 mmol) of 2-isopropyl-2-isobutyl-1,3-dimethoxypropane. Except for the above, a solid titanium catalyst component (I-26) was obtained in the same manner as in Example 1.
- Example 44 Preparation of solid titanium catalyst component
- Diisopropyl cis-cyclohexane-1,2-dicarboxylate was changed to 0.64 g (4.3 mmol) of ethyl benzoate and 0.15 g (0.8 mmol) of 2-isopropyl-2-isobutyl-1,3-dimethoxypropane. Except for the above, a solid titanium catalyst component (I-27) was obtained in the same manner as in Example 1.
- Example 45 Preparation of solid titanium catalyst component
- Diisopropyl cis-cyclohexane-1,2-dicarboxylate was changed to 0.68 g (4.5 mmol) of ethyl benzoate and 0.10 g (0.5 mmol) of 2-isopropyl-2-isobutyl-1,3-dimethoxypropane. Except for the above, a solid titanium catalyst component (I-28) was obtained in the same manner as in Example 1.
- Example 46 Preparation of solid titanium catalyst component
- Diisopropyl cis-cyclohexane-1,2-dicarboxylate was changed to 0.71 g (4.8 mmol) of ethyl benzoate and 0.05 g (0.3 mmol) of 2-isopropyl-2-isobutyl-1,3-dimethoxypropane. Except for the above, a solid titanium catalyst component (I-29) was obtained in the same manner as in Example 1.
- Example 47 Preparation of solid titanium catalyst component 0.94 g to 1.38 g (30 mmol) of ethyl alcohol, 0.71 g (4.8 mmol) of ethyl benzoate and 2-isopropyl-2-isobutyl-1, diisopropyl cis-cyclohexane-1,2-dicarboxylate
- a solid titanium catalyst component (I-30) was obtained in the same manner as in Example 1 except that 0.05 g (0.3 mmol) of 3-dimethoxypropane was used.
- Example 48 Preparation of solid titanium catalyst component 0.94 g to 1.38 g (30 mmol) of ethyl alcohol, 0.68 g (4.5 mmol) of ethyl benzoate and 2-isopropyl-2-isobutyl-1, diisopropyl cis-cyclohexane-1,2-dicarboxylate
- the solid titanium catalyst was changed to 0.10 g (0.5 mmol) of 3-dimethoxypropane, and the temperature was further raised to 110 ° C., and the condition for 30 minutes with stirring was shortened to 15 minutes.
- Component (I-31) was obtained.
- Example 49 Preparation of solid titanium catalyst component 0.94 g to 1.38 g (30 mmol) of ethyl alcohol, 0.68 g (4.5 mmol) of ethyl benzoate and 2-isopropyl-2-isobutyl-1, diisopropyl cis-cyclohexane-1,2-dicarboxylate The amount was changed to 0.10 g (0.5 mmol) of 3-dimethoxypropane, and the condition for 30 minutes under stirring after the temperature was raised to 110 ° C. was changed to maintaining the stirring after the temperature was raised to 100 ° C. for 30 minutes. Except for the above, a solid titanium catalyst component (I-32) was obtained in the same manner as in Example 1.
- Example 50 Preparation of solid titanium catalyst component 0.94 g to 1.38 g (30 mmol) of ethyl alcohol, 0.68 g (4.5 mmol) of ethyl benzoate and 2-isopropyl-2-isobutyl-1, diisopropyl cis-cyclohexane-1,2-dicarboxylate The amount was changed to 0.10 g (0.5 mmol) of 3-dimethoxypropane, and the condition for 30 minutes under stirring after the temperature was raised to 110 ° C. was changed to maintaining the stirring after the temperature was raised to 100 ° C. for 15 minutes. Except for the above, a solid titanium catalyst component (I-33) was obtained in the same manner as in Example 1.
- Example 51 Preparation of solid titanium catalyst component 0.94 g to 1.38 g (30 mmol) of ethyl alcohol, 0.68 g (4.5 mmol) of ethyl benzoate and 2-isopropyl-2-isobutyl-1, diisopropyl cis-cyclohexane-1,2-dicarboxylate The amount was changed to 0.10 g (0.5 mmol) of 3-dimethoxypropane, and the condition for 30 minutes under stirring after the temperature was raised to 110 ° C. was changed to maintaining the stirring after the temperature was raised to 90 ° C. for 15 minutes. Except for the above, a solid titanium catalyst component (I-34) was obtained in the same manner as in Example 1.
- Example 52 "polymerization" In an autoclave with an internal volume of 1 liter, 500 ml of purified n-heptane was charged in an ethylene atmosphere, and decane suspension of 0.25 mmol of triethylaluminum and solid titanium catalyst component (I-24) was converted to titanium atoms. After adding an equivalent amount of 0.015 mmol, the temperature was raised to 80 ° C., 0.76 MPa of hydrogen was supplied, and then ethylene was continuously supplied for 1.5 hours so that the total pressure became 0.8 MPa. The polymerization temperature was kept at 80 ° C.
- Example 53 Polymerization of ethylene was carried out in the same manner as in Example 52 except that hydrogen was supplied at 0.74 MPa. The results are shown in Table 6.
- Example 54 Polymerization of ethylene was carried out in the same manner as in Example 52 except that 0.72 MPa of hydrogen was supplied. The results are shown in Table 6.
- Example 55 "polymerization" In an autoclave with an internal volume of 1 liter, 500 ml of purified n-heptane was charged in an ethylene atmosphere, and decane suspension of 0.25 mmol of triethylaluminum and solid titanium catalyst component (I-25) was converted to titanium atoms. After adding an equivalent amount of 0.015 mmol, the temperature was raised to 80 ° C., 0.76 MPa of hydrogen was supplied, and then ethylene was continuously supplied for 1.5 hours so that the total pressure became 0.8 MPa. The polymerization temperature was kept at 80 ° C.
- Example 56 Polymerization of ethylene was carried out in the same manner as in Example 55 except that 0.74 MPa of hydrogen was supplied. The results are shown in Table 6.
- Example 57 Polymerization of ethylene was carried out in the same manner as in Example 55 except that 0.72 MPa of hydrogen was supplied. The results are shown in Table 6.
- Example 58 "polymerization" In an autoclave with an internal volume of 1 liter, 500 ml of purified n-heptane was charged in an ethylene atmosphere, and decane suspension of 0.25 mmol of triethylaluminum and solid titanium catalyst component (I-26) was converted to titanium atoms. After adding an equivalent amount of 0.015 mmol, the temperature was raised to 80 ° C., 0.76 MPa of hydrogen was supplied, and then ethylene was continuously supplied for 1.5 hours so that the total pressure became 0.8 MPa. The polymerization temperature was kept at 80 ° C.
- Example 59 Polymerization of ethylene was carried out in the same manner as in Example 58 except that hydrogen was supplied at 0.74 MPa. The results are shown in Table 6.
- Example 60 Polymerization of ethylene was carried out in the same manner as in Example 58 except that hydrogen was supplied at 0.72 MPa. The results are shown in Table 6.
- Example 61 "polymerization" In an autoclave with an internal volume of 1 liter, 500 ml of purified n-heptane was charged in an ethylene atmosphere, and decane suspension of 0.25 mmol of triethylaluminum and solid titanium catalyst component (I-27) was converted to titanium atoms. After adding an equivalent amount of 0.015 mmol, the temperature was raised to 80 ° C., 0.76 MPa of hydrogen was supplied, and then ethylene was continuously supplied for 1.5 hours so that the total pressure became 0.8 MPa. The polymerization temperature was kept at 80 ° C.
- Example 62 Polymerization of ethylene was carried out in the same manner as in Example 61 except that 0.74 MPa of hydrogen was supplied. The results are shown in Table 6.
- Example 63 Polymerization of ethylene was carried out in the same manner as in Example 61 except that hydrogen was supplied at 0.72 MPa. The results are shown in Table 6.
- Example 64 "polymerization" In an autoclave with an internal volume of 1 liter, 500 ml of purified n-heptane was charged in an ethylene atmosphere, and decane suspension of 0.25 mmol of triethylaluminum and solid titanium catalyst component (I-28) was converted to titanium atoms. After adding an equivalent amount of 0.015 mmol, the temperature was raised to 80 ° C., 0.76 MPa of hydrogen was supplied, and then ethylene was continuously supplied for 1.5 hours so that the total pressure became 0.8 MPa. The polymerization temperature was kept at 80 ° C.
- Example 65 Polymerization of ethylene was carried out in the same manner as in Example 64 except that hydrogen was supplied at 0.74 MPa. The results are shown in Table 6.
- Example 66 "polymerization" In an autoclave with an internal volume of 1 liter, 500 ml of purified n-heptane was charged in an ethylene atmosphere, and decane suspension of 0.25 mmol of triethylaluminum and solid titanium catalyst component (I-29) was converted to titanium atoms. After adding an equivalent amount of 0.015 mmol, the temperature was raised to 80 ° C., 0.76 MPa of hydrogen was supplied, and then ethylene was continuously supplied for 1.5 hours so that the total pressure became 0.8 MPa. The polymerization temperature was kept at 80 ° C.
- Example 67 Polymerization of ethylene was carried out in the same manner as in Example 66 except that 0.74 MPa of hydrogen was supplied. The results are shown in Table 6.
- Example 68 "polymerization" In an autoclave with an internal volume of 1 liter, 500 ml of purified n-heptane was charged in an ethylene atmosphere, and decane suspension of 0.25 mmol of triethylaluminum and solid titanium catalyst component (I-30) was converted to titanium atoms. After adding an equivalent amount of 0.015 mmol, the temperature was raised to 80 ° C., 0.76 MPa of hydrogen was supplied, and then ethylene was continuously supplied for 1.5 hours so that the total pressure became 0.8 MPa. The polymerization temperature was kept at 80 ° C.
- Example 69 Polymerization of ethylene was carried out in the same manner as in Example 68 except that 0.74 MPa of hydrogen was supplied. The results are shown in Table 6.
- Example 70 "polymerization" In an autoclave with an internal volume of 1 liter, 500 ml of purified n-heptane was charged in an ethylene atmosphere, and decane suspension of 0.25 mmol of triethylaluminum and solid titanium catalyst component (I-31) was converted to titanium atoms. After adding an equivalent amount of 0.015 millimoles, the temperature was raised to 80 ° C., 0.78 MPa of hydrogen was supplied, and then ethylene was continuously supplied for 1.5 hours so that the total pressure became 0.8 MPa. The polymerization temperature was kept at 80 ° C.
- Example 71 Polymerization of ethylene was performed in the same manner as in Example 70 except that hydrogen was supplied at 0.79 MPa. The results are shown in Table 6.
- the ethylene polymerization catalyst of the present invention has excellent properties such as high polymerization activity, high molecular weight control hydrogen responsiveness, and low solvent-soluble component content.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
Abstract
Description
マグネシウム化合物と炭素原子数1~5の電子供与体(a)と炭素原子数6~30の電子供与体(b)とを含む液状マグネシウム化合物(A)と、液状チタン化合物(C)とを電子供与体(B)の存在下に接触させて得られ、チタン、マグネシウムおよびハロゲンを含有することを特徴とするエチレン重合用固体状チタン触媒成分(I)である。
本発明に係るエチレン重合用固体状チタン触媒成分(I)は、マグネシウム化合物と電子供与体(a)と電子供与体(b)とを含む液状マグネシウム化合物(A)と、液状チタン化合物(C)とを、電子供与体(B)の存在下に接触させて得られ、チタン、マグネシウムおよびハロゲンを含むことを特徴とする。液状マグネシウム化合物(A)と、液状チタン化合物(C)とを、電子供与体(B)の存在下に接触させて得られるエチレン重合用固体状チタン触媒成分(I)は、水素応答性に優れ、溶媒可溶性成分の生成が少なく、粒子形状に優れたエチレン系重合体を得やすくなる傾向がある。以下、液状マグネシウム化合物(A)、電子供与体(B)および液状チタン化合物(C)について説明する。
本発明に係るエチレン重合用固体状チタン触媒成分(I)の調製に用いられる液状マグネシウム化合物(A)を得る方法は、公知のマグネシウム化合物、後述する電子供与体(a)および電子供与体(b)を、好ましくは液状炭化水素媒体の存在下に接触させ、液状とする方法を代表例として挙げることが出来る。上記のマグネシウム化合物としては例えば特開昭58-83006号公報、特開昭56-811号公報に記載されているマグネシウム化合物を挙げることができる。特に、溶媒可溶性マグネシウム化合物を用いることが好ましい。
メトキシ塩化マグネシウム、エトキシ塩化マグネシウムなどのアルコキシマグネシウムハライド;
フェノキシ塩化マグネシウムなどのアリーロキシマグネシウムハライド;
エトキシマグネシウム、イソプロポキシマグネシウム、ブトキシマグネシウム、2-エチルヘキソキシマグネシウムなどのアルコキシマグネシウム;
フェノキシマグネシウムなどのアリーロキシマグネシウム;
ステアリン酸マグネシウムなどのマグネシウムのカルボン酸塩などの公知の還元能を有しないマグネシウム化合物を用いることができる。
シクロヘキサノール、メチルシクロヘキサノールなどの脂環族アルコール;
ベンジルアルコール、メチルベンジルアルコールなどの芳香族アルコール;
n-ブチルセルソルブなどのアルコキシ基含有脂肪族アルコール
などのアルコール類を挙げることができる。これらの中でも脂肪族アルコールが好ましい。
本発明に係るエチレン重合用固体状チタン触媒成分(I)の調製に用いられる電子供与体(B)は特開昭58-83006号公報、特開昭56-811号公報等のα-オレフィンの重合用固体状チタン触媒成分の調製に用いられる電子供与体を好ましい例として挙げることが出来る。
2,3-ビス(2-エチルブチル)コハク酸ジエチル、
2,3-ジベンジルコハク酸ジエチル、
2,3-ジイソプロピルコハク酸ジエチル、
2,3-ジイソプロピルコハク酸ジイソブチル、
2,3-ビス(シクロヘキシルメチル)コハク酸ジエチル、
2,3-ジイソブチルコハク酸ジエチル、
2,3-ジネオペンチルコハク酸ジエチル、
2,3-ジシクロペンチルコハク酸ジエチル、
2,3-ジシクロヘキシルコハク酸ジエチルの(S,R)(S,R)形態の純粋または、任意にラセミの形態での、混合物である。このようなジカルボン酸エステル化合物であると、得られるエチレン系重合体の分子量、分子量分布の制御に優れる点で好ましい。
sec-ブチルコハク酸ジエチル、
テキシルコハク酸ジエチル、
シクロプロピルコハク酸ジエチル、
ノルボルニルコハク酸ジエチル、
(10-)ペルヒドロナフチルコハク酸ジエチル、
トリメチルシリルコハク酸ジエチル、
メトキシコハク酸ジエチル、
p-メトキシフェニルコハク酸ジエチル、
p-クロロフェニルコハク酸ジエチル、
フェニルコハク酸ジエチル、
シクロヘキシルコハク酸ジエチル、
ベンジルコハク酸ジエチル、
(シクロヘキシルメチル)コハク酸ジエチル、
t-ブチルコハク酸ジエチル、
イソブチルコハク酸ジエチル、
イソプロピルコハク酸ジエチル、
ネオペンチルコハク酸ジエチルである。
2-エチル-2-メチルコハク酸ジエチル、
2-ベンジル-2-イソプロピルコハク酸ジエチル、
2-(シクロヘキシルメチル)-2-イソブチルコハク酸ジエチル、
2-シクロペンチル-2-n-プロピルコハク酸ジエチル、
2,2-ジイソブチルコハク酸ジエチル、
2-シクロヘキシル-2-エチルコハク酸ジエチル、
2-イソプロピル-2-メチルコハク酸ジエチル、
2,2-ジイソプロピルコハク酸ジエチル、
2-イソブチル-2-エチルコハク酸ジエチル、
2-(1,1,1-トリフルオロ-2-プロピル)-2-メチルコハク酸ジエチル、
2-イソペンチル-2-イソブチルコハク酸ジエチル、
2-フェニル-2-n-ブチルコハク酸ジエチル、
2,2-ジメチルコハク酸ジイソブチル、
2-エチル-2-メチルコハク酸ジイソブチル、
2-ベンジル-2-イソプロピルコハク酸ジイソブチル、
2-(シクロヘキシルメチル)-2-イソブチルコハク酸ジイソブチル、
2-シクロペンチル-2-n-プロピルコハク酸ジイソブチル、
シクロブタン-1,2-ジカルボン酸ジエチル、
3-メチルシクロブタン-1,2-ジカルボン酸ジエチルである。
Aは、
シクロヘキサン-1,2-ジカルボン酸ジエチル、
シクロヘキサン-1,2-ジカルボン酸ジn-プロピル、
シクロヘキサン-1,2-ジカルボン酸ジイソプロピル、
シクロヘキサン-1,3-ジカルボン酸ジエチル、
シクロヘキサン-1,3-ジカルボン酸ジn-プロピル、
シクロヘキサン-1,3-ジカルボン酸ジイソプロピル、
3-メチルシクロヘキサン-1,2-ジカルボン酸ジエチル、
3-メチルシクロヘキサン-1,2-ジカルボン酸ジn-プロピル、
3-メチルシクロヘキサン-1,2-ジカルボン酸ジイソプロピル、
4-メチルシクロヘキサン-1,3-ジカルボン酸ジエチル、
4-メチルシクロヘキサン-1,3-ジカルボン酸ジn-プロピル、
4-メチルシクロヘキサン-1,2-ジカルボン酸ジエチル、
4-メチルシクロヘキサン-1,2-ジカルボン酸ジn-プロピル、
4-メチルシクロヘキサン-1,2-ジカルボン酸ジイソプロピル、
5-メチルシクロヘキサン-1,3-ジカルボン酸ジエチル、
5-メチルシクロヘキサン-1,3-ジカルボン酸ジn-プロピル、
5-メチルシクロヘキサン-1,3-ジカルボン酸ジイソプロピル、
3,4-ジメチルシクロヘキサン-1,2-ジカルボン酸ジエチル、
3,4-ジメチルシクロヘキサン-1,2-ジカルボン酸ジn-プロピル、
3,4-ジメチルシクロヘキサン-1,2-ジカルボン酸ジイソプロピル、
3,6-ジメチルシクロヘキサン-1,2-ジカルボン酸ジエチル、
3,6-ジメチルシクロヘキサン-1,2-ジカルボン酸ジn-プロピル、
3,6-ジメチルシクロヘキサン-1,2-ジカルボン酸ジイソプロピル、
3-ヘキシルシクロヘキサン-1,2-ジカルボン酸ジエチル、
3-ヘキシルシクロヘキサン-1,2-ジカルボン酸ジn-プロピル、
3,6-ジヘキシルシクロヘキサン-1,2-ジカルボン酸ジn-プロピル、
3-ヘキシル6-ペンチルシクロヘキサン-1,2-ジカルボン酸ジエチル、
シクロペンタン-1,2-ジカルボン酸ジエチル、
シクロペンタン-1,2-ジカルボン酸ジn-プロピル、
シクロペンタン-1,2-ジカルボン酸ジイソプロピル、
シクロペンタン-1,3-ジカルボン酸ジエチル、
シクロペンタン-1,3-ジカルボン酸ジn-プロピル、
3-メチルシクロペンタン-1,2-ジカルボン酸ジエチル、
3-メチルシクロペンタン-1,2-ジカルボン酸ジn-プロピル、
3-メチルシクロペンタン-1,2-ジカルボン酸ジイソプロピル、
4-メチルシクロペンタン-1,3-ジカルボン酸ジエチル、
4-メチルシクロペンタン-1,3-ジカルボン酸ジn-プロピル、
4-メチルシクロペンタン-1,3-ジカルボン酸ジイソプロピル、
4-メチルシクロペンタン-1,2-ジカルボン酸ジエチル、
4-メチルシクロペンタン-1,2-ジカルボン酸ジn-プロピル、
4-メチルシクロペンタン-1,2-ジカルボン酸ジイソプロピル、
5-メチルシクロペンタン-1,3-ジカルボン酸ジエチル、
5-メチルシクロペンタン-1,3-ジカルボン酸ジn-プロピル、
3,4-ジメチルシクロペンタン-1,2-ジカルボン酸ジエチル、
3,4-ジメチルシクロペンタン-1,2-ジカルボン酸ジn-プロピル、
3,4-ジメチルシクロペンタン-1,2-ジカルボン酸ジイソプロピル、
3,5-ジメチルシクロペンタン-1,2-ジカルボン酸ジエチル、
3,5-ジメチルシクロペンタン-1,2-ジカルボン酸ジn-プロピル、
3,5-ジメチルシクロペンタン-1,2-ジカルボン酸ジイソプロピル、
3-ヘキシルシクロペンタン-1,2-ジカルボン酸ジエチル、
3,5-ジヘキシルシクロペンタン-1,2-ジカルボン酸ジエチル、
シクロヘプタン-1,2-ジカルボン酸ジエチル、
シクロヘプタン-1,2-ジカルボン酸ジn-プロピル、
シクロヘプタン-1,2-ジカルボン酸ジイソプロピル、
シクロヘプタン-1,3-ジカルボン酸ジエチル、
シクロヘプタン-1,3-ジカルボン酸ジn-プロピル、
3-メチルシクロヘプタン-1,2-ジカルボン酸ジエチル、
3-メチルシクロヘプタン-1,2-ジカルボン酸ジn-プロピル、
3-メチルシクロヘプタン-1,2-ジカルボン酸ジイソプロピル、
4-メチルシクロヘプタン-1,3-ジカルボン酸ジエチル、
4-メチルシクロヘプタン-1,2-ジカルボン酸ジエチル、
4-メチルシクロヘプタン-1,2-ジカルボン酸ジn-プロピル、
4-メチルシクロヘプタン-1,2-ジカルボン酸ジイソプロピル、
5-メチルシクロヘプタン-1,3-ジカルボン酸ジエチル、
3,4-ジメチルシクロヘプタン-1,2-ジカルボン酸ジエチル、
3,4-ジメチルシクロヘプタン-1,2-ジカルボン酸ジn-プロピル、
3,4-ジメチルシクロヘプタン-1,2-ジカルボン酸ジイソプロピル、
3,7-ジメチルシクロヘプタン-1,2-ジカルボン酸ジエチル、
3,7-ジメチルシクロヘプタン-1,2-ジカルボン酸ジn-プロピル、
3,7-ジメチルシクロヘプタン-1,2-ジカルボン酸ジイソプロピル、
3-ヘキシルシクロヘプタン-1,2-ジカルボン酸ジエチル、
3,7-ジヘキシルシクロヘプタン-1,2-ジカルボン酸ジエチル、
シクロオクタン-1,2-ジカルボン酸ジエチル、
3-メチルシクロオクタン-1,2-ジカルボン酸ジエチル、
シクロデカン-1,2-ジカルボン酸ジエチル、
3-メチルシクロデカン-1,2-ジカルボン酸ジエチル、
シクロオキシペンタン-3,4-ジカルボン酸ジエチル、
3,6-ジシクロヘキシルシクロヘキサン-1,2-ジカルボン酸ジエチル
等が挙げられる。
酢酸N,N-ジメチルアミド、安息香酸N,N-ジエチルアミド、トルイル酸N,N-ジメチルアミドなどの酸アミド類;
アセトニトリル、ベンゾニトリル、トリニトリルなどのニトリル類;
無水酢酸、無水フタル酸、無水安息香酸などの酸無水物;
ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ビニル、酢酸プロピル、酢酸オクチル、酢酸シクロヘキシル、プロピオン酸エチル、酪酸メチル、吉草酸エチル、クロル酢酸メチル、ジクロル酢酸エチル、メタクリル酸メチル、クロトン酸エチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、安息香酸オクチル、安息香酸シクロヘキシル、安息香酸フェニル、安息香酸ベンジル、トルイル酸メチル、トルイル酸エチル、トルイル酸アミル、エチル安息香酸エチル、アニス酸メチル、アニス酸エチル、エトキシ安息香酸エチル、γ-ブチルラクトン、δ-バレロラクトン、クマリン、フタリド、炭酸エチルなどの炭素原子数2~18の有機酸エステル類が挙げられる。上記の有機酸エステル類の中で、価格、安全性、入手容易性などの面で、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、安息香酸オクチル、安息香酸シクロヘキシル、安息香酸フェニル、安息香酸ベンジル、エチル安息香酸エチル、エトキシ安息香酸エチルなどの安息香酸エステルが好ましく用いられる。
2,2-ジシクロヘキシル-1,3-ジメトキシプロパン、
2,2-ジエチル-1,3-ジメトキシプロパン、
2,2-ジプロピル-1,3-ジメトキシプロパン、
2,2-ジブチル-1,3-ジメトキシプロパン、
2-メチル-2-プロピル-1,3-ジメトキシプロパン、
2-メチル-2-エチル-1,3-ジメトキシプロパン、
2-メチル-2-イソプロピル-1,3-ジメトキシプロパン、
2-メチル-2-シクロヘキシル-1,3-ジメトキシプロパン、
2,2-ビス(2-シクロヘキシルエチル)-1,3-ジメトキシプロパン、
2-メチル-2-イソブチル-1,3-ジメトキシプロパン、
2-メチル-2-(2-エチルヘキシル)-1,3-ジメトキシプロパン、
2,2-ジイソブチル-1,3-ジメトキシプロパン、
2,2-ビス(シクロヘキシルメチル)-1,3-ジメトキシプロパン、
2,2-ジイソブチル-1,3-ジエトキシプロパン、
2,2-ジイソブチル-1,3-ジブトキシプロパン、
2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン、
2,2-ジ-s-ブチル-1,3-ジメトキシプロパン、
2,2-ジ-t-ブチル-1,3-ジメトキシプロパン、
2,2-ジネオペンチル-1,3-ジメトキシプロパン、
2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン、
2-シクロヘキシル-2-シクロヘキシルメチル-1,3-ジメトキシプロパン、
2,3-ジシクロヘキシル-1,4-ジエトキシブタン、
2,3-ジイソプロピル-1,4-ジエトキシブタン、
2,4-ジイソプロピル-1,5-ジメトキシペンタン、
2,4-ジイソブチル-1,5-ジメトキシペンタン、
2,4-ジイソアミル-1,5-ジメトキシペンタン、
3-メトキシメチルテトラヒドロフラン、
3-メトキシメチルジオキサン、
1,2-ジイソブトキシプロパン、
1,2-ジイソブトキシエタン、
1,3-ジイソアミロキシエタン、
1,3-ジイソアミロキシプロパン、
1,3-ジイソネオペンチロキシエタン、
1,3-ジネオペンチロキシプロパン、
2,2-テトラメチレン-1,3-ジメトキシプロパン、
2,2-ペンタメチレン-1,3-ジメトキシプロパン、
2,2-ヘキサメチレン-1,3-ジメトキシプロパン、
1,2-ビス(メトキシメチル)シクロヘキサン、
2-シクロヘキシル-2-エトキシメチル-1,3-ジエトキシプロパン、
2-シクロヘキシル-2-メトキシメチル-1,3-ジメトキシプロパン、
2,2-ジイソブチル-1,3-ジメトキシシクロヘキサン、
2-イソプロピル-2-イソアミル-1,3-ジメトキシシクロヘキサン、
2-シクロヘキシル-2-メトキシメチル-1,3-ジメトキシシクロヘキサン、
2-イソプロピル-2-メトキシメチル-1,3-ジメトキシシクロヘキサン、
2-イソブチル-2-メトキシメチル-1,3-ジメトキシシクロヘキサン、
2-シクロヘキシル-2-エトキシメチル-1,3-ジエトキシシクロヘキサン、
2-シクロヘキシル-2-エトキシメチル-1,3-ジメトキシシクロヘキサン、
2-イソプロピル-2-エトキシメチル-1,3-ジエトキシシクロヘキサン、
2-イソプロピル-2-エトキシメチル-1,3-ジメトキシシクロヘキサン、
2-イソブチル-2-エトキシメチル-1,3-ジエトキシシクロヘキサン、
2-イソブチル-2-エトキシメチル-1,3-ジメトキシシクロヘキサン、
等を例示することができる。
本発明に係るエチレン重合用固体状チタン触媒成分(I)の調製に用いられる液状チタン化合物(C)としては、例えば特開昭58-83006号公報、特開昭56-811号公報に記載されているチタン化合物を挙げることができる。該液状チタン化合物(C)の具体例としては、下記式(4)で示される4価のチタン化合物を挙げることができる。
(式中、Rは炭素原子数1~5の脂肪族炭化水素基であり、Xはハロゲン原子であり、0≦g≦4である)
上記式(4)で示される4価のチタン化合物の具体例としては、
TiCl4、TiBr4などのテトラハロゲン化チタン;
Ti(OCH3)Cl3、Ti(OC2H5)Cl3、Ti(O n-C4H9)Cl3、Ti(OC2H5)Br3、Ti(O iso-C4H9)Br3などのトリハロゲン化アルコキシチタン;
Ti(OCH3)2Cl2、Ti(OC2H5)2Cl2などのジハロゲン化アルコキシチタン;
Ti(OCH3)3Cl、Ti(O n-C4H9)3Cl、Ti(OC2H5)3Brなどのモノハロゲン化アルコキシチタン;
Ti(OCH3)4、Ti(OC2H5)4、Ti(OC4H9)4、Ti(O 2-エチルヘキシル)4 などのテトラアルコキシチタン
などを挙げることができる。
本発明のエチレン重合用固体状チタン触媒成分(I)は、前記液状マグネシウム化合物(A)と前記液状チタン化合物(C)とを、前記電子供与体(B)の存在下に接触させて得られる。このとき、液状マグネシウム化合物(A)は、例えば、ヘプタン、オクタン、デカンなどの公知の液状炭化水素媒体などに溶解させた状態であってもよい。
本発明に係るエチレン重合用触媒は、上記のようにして得られたエチレン重合用固体状チタン触媒成分(I)と、有機金属化合物触媒成分(II)とを含んでいる。このような有機金属化合物触媒成分(II)としては、周期表の第1族、第2族、第13族から選択される金属を含有する有機金属化合物が好ましく、例えば、有機アルミニウム化合物、第1族金属とアルミニウムとの錯アルキル化物、グリニャール試薬や有機マグネシウム化合物などの第2族金属の有機金属化合物などを用いることができる。これらの中でも有機アルミニウム化合物が好ましい。
有機金属化合物触媒成分(II)として、具体的には、EP585869A1等の公知の文献に記載された有機金属化合物触媒成分を好ましい例として挙げることが出来る。特に好ましくはトリエチルアルミニウム、トリブチルアルミニウム、トリイソブチルアルミニウム、トリオクチルアルミニウム、ジエチルアルミニウムヒドリドなどの有機アルミニウム化合物である。
また、本発明のエチレン重合用触媒は、上記の有機金属化合物触媒成分(II)と共に、必要に応じて電子供与体(III)を含むことが出来る。電子供与体(III)として好ましくは、有機ケイ素化合物である。この有機ケイ素化合物としては、例えば下記式(5)で表される化合物を挙げることができる。
(式中、RおよびR’は炭素原子数1~20の脂肪族、脂環族、芳香族の炭化水素基であり、0<n<4である)
上記式(5)で示される有機ケイ素化合物としては、具体的には、ジイソプロピルジメトキシシラン、t-ブチルメチルジメトキシシラン、t-ブチルメチルジエトキシシラン、t-アミルメチルジエトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、t-ブチルトリエトキシシラン、フェニルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロペンチルトリメトキシシラン、2-メチルシクロペンチルトリメトキシシラン、シクロペンチルトリエトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロペンチルジエトキシシラン;トリシクロペンチルメトキシシラン、ジシクロペンチルメチルメトキシシラン、ジシクロペンチルエチルメトキシシラン、シクロペンチルジメチルエトキシシランが用いられる。
本発明のエチレン重合方法は、上記のエチレン重合用触媒を用いてエチレン単独、もしくはエチレンを含むオレフィンを重合させ、エチレン系重合体を得ることを特徴とする。すなわち、上記のエチレン重合用触媒の存在下にエチレン単独重合、またはエチレンと他のオレフィンとの共重合を行う。
シクロヘプタン、シクロヘプタン、メチルシクロヘプタンなどの脂環族炭化水素;
ベンゼン、トルエン、キシレンなどの芳香族炭化水素;
エチレンクロリド、クロルベンゼンなどのハロゲン化炭化水素、あるいはこれらの混合物などを挙げることができる。
ICP分析(島津製作所、ICPF 1000TR)により測定した。
硝酸銀滴定法により測定した。
10重量%の水を加えたアセトン溶液に充分乾燥した触媒を加え、加水分解して得られたアルコールをガスクロマトグラフィーで定量した。
振動機(飯田製作所、ロータップ製)およびふるい(Bunsei Furui、内径200mm、目開き75μm)を用いて、75μm未満の微粉の含有率を測定した。
JIS K-6721規格に準拠して測定した。
ASTM D1238Eに準拠し、190℃の条件で測定した。
下記式によって算出した。
(α):パウダー状重合体量
(β):n-ヘプタン溶媒に溶解したエチレン重合体量
尚、(β)は重合後に濾別した濾液から溶媒を留去して得られる固体の重量として測定される。
極限粘度[η]は、エチレン重合体粒子をデカリンに溶解させ、温度135℃のデカリン中で測定した。
「エチレン重合用固体状チタン触媒成分の調製」
無水塩化マグネシウム4.76g(50ミリモル)、デカン28.1mlおよび2-エチルヘキシルアルコール(EHA)16.3g(125ミリモル)を130℃で3時間加熱反応させて均一溶液とした後、エチルアルコール(EtOH)0.94g(20ミリモル)を加え、50℃で1時間加熱反応させた。この溶液中にシス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピル0.96g(3.75ミリモル)を添加し、50℃にてさらに1時間攪拌混合を行った後、室温に徐冷した。
内容積1リットルのオートクレーブ中に、エチレン雰囲気下、精製n-ヘプタン500mlを装入し、トリエチルアルミニウム0.25ミリモル、および上記で得られたエチレン重合用固体状チタン触媒成分(I-1)のデカン懸濁液をチタン原子換算で0.005ミリモル相当量加えた後、80℃に昇温し、水素を0.3MPa供給し、次いでゲージ圧で0.6MPaとなるようにエチレンを連続的に1.5時間供給した。重合温度は80℃に保った。
「重合」
エチレン重合用固体状チタン触媒成分(I-1)をチタン原子換算で0.015ミリモル相当量加えた後、80℃に昇温し、水素を0.55MPa供給し、次いでゲージ圧が0.6MPaとなるようにエチレンを連続的に1.5時間供給した以外は、実施例1と同様にエチレンの重合を実施した。結果を表1に示す。
「重合」
エチレン重合用固体状チタン触媒成分(I-1)をチタン原子換算で0.015ミリモル相当量加えた後、80℃に昇温し、水素を0.58MPa供給し、次いで全圧が0.6MPaとなるようにエチレンを連続的に1.5時間供給した以外は、実施例1と同様にエチレンの重合を実施した。結果を表1に示す。
「エチレン重合用固体状チタン触媒成分の調製」
昇温時の到達温度を110℃から100℃に変えた以外は、実施例1と同様にしてエチレン重合用固体状チタン触媒成分(I-2)を得た。その組成は、チタン7.3重量%、マグネシウム14重量%、塩素58重量%、エチルアルコール残基1.1重量%、2-エチルヘキシルアルコール残基9重量%であった。
エチレン重合用固体状チタン触媒成分(I-2)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表1に示す。
「エチレン重合用固体状チタン触媒成分の調製」
110℃での保持時間を30分から15分に変えた以外は、実施例1と同様にしてエチレン重合用固体状チタン触媒成分(I-3)を得た。その組成は、チタン7.1重量%、マグネシウム14重量%、塩素57重量%、エチルアルコール残基1.0重量%、2-エチルヘキシルアルコール残基7.9重量%であった。
エチレン重合用固体状チタン触媒成分(I-3)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表1に示す。
「エチレン重合用固体状チタン触媒成分の調製」
エチルアルコールの量を0.94gから1.18gに変え、110℃での保持時間を30分から120分に変えた以外は、実施例1と同様にしてエチレン重合用固体状チタン触媒成分(I-4)を得た。その組成は、チタン6.7重量%、マグネシウム15重量%、塩素58重量%、エチルアルコール残基0.6重量%、2-エチルヘキシルアルコール残基2.8重量%であった。
エチレン重合用固体状チタン触媒成分(I-4)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表1に示す。
「エチレン重合用固体状チタン触媒成分の調製」
2-エチルヘキシルアルコールの量を16.3gから19.5gに変え、エチルアルコールの量を0.94gから1.88gに変え、110℃での保持時間を30分から60分に変えた以外は、実施例1と同様にしてエチレン重合用固体状チタン触媒成分(I-5)を得た。その組成は、チタン7.0重量%、マグネシウム14重量%、塩素57重量%、エチルアルコール残基1.1重量%、2-エチルヘキシルアルコール残基5.1重量%であった。
エチレン重合用固体状チタン触媒成分(I-5)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表1に示す。
「エチレン重合用固体状チタン触媒成分の調製」
シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをトランス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルに変えた以外は、実施例7と同様にしてエチレン重合用固体状チタン触媒成分(I-6)を得た。その組成は、チタン7.4重量%、マグネシウム14重量%、塩素57重量%、エチルアルコール残基1.8重量%、2-エチルヘキシルアルコール残基7.7重量%であった。
エチレン重合用固体状チタン触媒成分(I-6)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表1に示す。
「エチレン重合用固体状チタン触媒成分の調製」
2-エチルヘキシルアルコールの量を16.3gから19.5gに変え、エチルアルコールの量を0.94gから2.35gに変え、110℃での保持時間を30分から60分に変えた以外は、実施例1と同様にしてエチレン重合用固体状チタン触媒成分(I-7)を得た。その組成は、チタン7.0重量%、マグネシウム15重量%、塩素58重量%、エチルアルコール残基1.2重量%、2-エチルヘキシルアルコール残基4.5重量%であった。
エチレン重合用固体状チタン触媒成分(I-7)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表1に示す。
「固体状チタン触媒成分の調製」
無水塩化マグネシウム4.76g(50ミリモル)、デカン28.1mlおよび2-エチルヘキシルアルコール16.3g(125ミリモル)を130℃で3時間加熱反応させて均一溶液とした後、この溶液中にシス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピル0.96g(3.75ミリモル)を添加し、50℃にてさらに1時間攪拌混合を行った後、室温まで徐冷した。
内容積1リットルのオートクレーブ中に、窒素雰囲気下、精製n-ヘプタン500mlを装入し、トリエチルアルミニウム0.25ミリモル、および上記で得られた固体状チタン触媒成分(8)のデカン懸濁液をチタン原子換算で0.005ミリモル相当量加えた後、80℃に昇温し、水素を0.3MPa供給し、次いでゲージ圧が0.6MPaとなるようにエチレンを連続的に1.5時間供給した。重合温度は80℃に保った。
「固体状チタン触媒成分の調製」
無水塩化マグネシウム7.14g(75ミリモル)、デカン37.5mlおよび2-エチルヘキシルアルコール29.3g(225ミリモル)を130℃で2時間加熱反応させて均一溶液とした後、この溶液中にテトラエトキシシラン3.1g(15ミリモル)を添加し、50℃にてさらに2時間攪拌混合を行った後、室温に徐冷した。
固体状チタン触媒成分(9)を用いた以外は比較例1と同様にしてエチレンの重合を実施した。重合結果を表1に示す。
「重合」
固体状チタン触媒成分(9)をチタン原子換算で0.015ミリモル相当量加えた後、80℃に昇温し、水素を0.55MPa供給し、次いでゲージ圧が0.6MPaとなるようにエチレンを連続的に1.5時間供給した以外は、比較例2と同様に実施した。結果を表1に示す。
「重合」
固体状チタン触媒成分(9)をチタン原子換算で0.015ミリモル相当量加えた後、80℃に昇温し、水素を0.58MPa供給し、次いでゲージ圧が0.6MPaとなるようにエチレンを連続的に1.5時間供給した以外は、比較例2と同様に実施した。結果を表1に示す。
「重合」
内容積1リットルのオートクレーブ中に、エチレン雰囲気下、精製n-ヘプタン500mlを装入し、トリエチルアルミニウム0.25ミリモル、およびエチレン重合用固体状チタン触媒成分(I-1)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加えた後、80℃に昇温し、水素を0.6MPa供給し、次いで全圧が0.8MPaとなるようにエチレンを連続的に1.5時間供給した。重合温度は80℃に保った。
「重合」
水素を0.75MPa供給した以外は実施例10と同様にしてエチレンの重合を実施した。結果を表2に示す。
「重合」
水素を0.76MPa供給した以外は実施例10と同様にしてエチレンの重合を実施した。結果を表2に示す。
「重合」
水素を0.77MPa供給した以外は実施例10と同様にしてエチレンの重合を実施した。結果を表2に示す。
「重合」
内容積1リットルのオートクレーブ中に、エチレン雰囲気下、精製n-ヘプタン500mlを装入し、トリエチルアルミニウム0.25ミリモル、および固体状チタン触媒成分(8)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加えた後、80℃に昇温し、水素を0.75MPa供給し、次いで全圧が0.8MPaとなるようにエチレンを連続的に1.5時間供給した。重合温度は80℃に保った。
「重合」
水素を0.78MPa供給した以外は比較例5と同様にしてエチレンの重合を実施した。結果を表2に示す。
「重合」
水素を0.79MPa供給した以外は比較例5と同様にしてエチレンの重合を実施した。結果を表2に示す。
「固体状チタン触媒成分の調製」
エチルアルコールをn-プロパノール1.2g(20ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-10)を得た。
固体状チタン触媒成分(I-10)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表3に示す。
「固体状チタン触媒成分の調製」
エチルアルコールをiso-プロパノール1.2g(20ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-11)を得た。
固体状チタン触媒成分(I-11)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表3に示す。
「固体状チタン触媒成分の調製」
エチルアルコールをn-ブタノール1.48g(20ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-12)を得た。
固体状チタン触媒成分(I-12)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表3に示す。
「固体状チタン触媒成分の調製」
エチルアルコールをiso-ブタノール1.48g(20ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-13)を得た。
固体状チタン触媒成分(I-13)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表3に示す。
「固体状チタン触媒成分の調製」
エチルアルコールをn-ペンタノール1.76g(20ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-14)を得た。
固体状チタン触媒成分(I-14)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表3に示す。
「固体状チタン触媒成分の調製」
シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをエチルベンゾエート0.75g(5ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-15)を得た。
固体状チタン触媒成分(I-15)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表3に示す。
「固体状チタン触媒成分の調製」
エチルアルコールを0.94gから1.38g(30ミリモル)に、さらにシス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをエチルベンゾエート0.75g(5ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-16)を得た。
固体状チタン触媒成分(I-16)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表3に示す。
「固体状チタン触媒成分の調製」
シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルを2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン1.26g(6.25ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-17)を得た。
固体状チタン触媒成分(I-17)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表3に示す。
「固体状チタン触媒成分の調製」
エチルアルコールを0.94gから1.38g(30ミリモル)に、さらにシス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルを2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン1.26g(6.25ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-18)を得た。
固体状チタン触媒成分(I-18)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表3に示す。
「固体状チタン触媒成分の調製」
シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをトランス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピル0.96g(3.75ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-19)を得た。
固体状チタン触媒成分(I-19)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表3に示す。
「固体状チタン触媒成分の調製」
シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをトランス-シクロヘキサン-1,2-ジカルボン酸ジn-プロピル0.96g(3.75ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-20)を得た。
固体状チタン触媒成分(I-20)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表3に示す。
「固体状チタン触媒成分の調製」
シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをエチルベンゾエート0.75g(5ミリモル)に変えた以外は比較例1と同様にして固体状チタン触媒成分(21)を得た。
固体状チタン触媒成分(21)を用いた以外は比較例1と同様にしてエチレンの重合を行った。結果を表3に示す。
「固体状チタン触媒成分の調製」
シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルを2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン1.26g(6.25ミリモル)に変えた以外は比較例1と同様にして固体状チタン触媒成分(22)を得た。
固体状チタン触媒成分(22)を用いた以外は比較例1と同様にしてエチレンの重合を行った。結果を表3に示す。
「固体状チタン触媒成分の調製」
シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをトランス-シクロヘキサン-1,2-ジカルボン酸ジn-プロピル0.96g(3.75ミリモル)に変えた以外は比較例1と同様にして固体状チタン触媒成分(23)を得た。
固体状チタン触媒成分(23)を用いた以外は比較例1と同様にしてエチレンの重合を行った。結果を表3に示す。
「重合」
内容積1リットルのオートクレーブ中に、エチレン雰囲気下、精製n-ヘプタン500mlを装入し、トリエチルアルミニウム0.25ミリモル、および固体状チタン触媒成分(I-10)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加えた後、80℃に昇温し、水素を0.75MPa供給し、次いで全圧が0.8MPaとなるようにエチレンを連続的に1.5時間供給した。重合温度は80℃に保った。
「重合」
水素を0.77MPa供給した以外は実施例25と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
固体状チタン触媒成分(I-11)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加え、さらに水素を0.76MPa供給した以外は実施例25と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
水素を0.77MPa供給した以外は実施例27と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
固体状チタン触媒成分(I-12)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加え、さらに水素を0.74MPa供給した以外は実施例25と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
水素を0.77MPa供給した以外は実施例29と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
固体状チタン触媒成分(I-13)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加え、さらに水素を0.74MPa供給した以外は実施例25と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
水素を0.77MPa供給した以外は実施例31と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
固体状チタン触媒成分(I-15)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加え、さらに水素を0.76MPa供給した以外は実施例25と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
水素を0.79MPa供給した以外は実施例33と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
固体状チタン触媒成分(I-16)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加え、さらに水素を0.77MPa供給した以外は実施例25と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
水素を0.78MPa供給した以外は実施例35と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
固体状チタン触媒成分(I-17)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加え、さらに水素を0.69MPa供給した以外は実施例25と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
水素を0.72MPa供給した以外は実施例37と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
固体状チタン触媒成分(I-18)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加え、さらに水素を0.72MPa供給した以外は実施例25と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
水素を0.76MPa供給した以外は実施例39と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
固体状チタン触媒成分(21)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加え、さらに水素を0.77MPa供給した以外は比較例5と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
固体状チタン触媒成分(22)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加え、さらに水素を0.74MPa供給した以外は比較例5と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
水素を0.78MPa供給した以外は比較例5と同様にしてエチレンの重合を実施した。結果を表4に示す。
「重合」
水素を0.79MPa供給した以外は比較例5と同様にしてエチレンの重合を実施した。結果を表4に示す。
「固体状チタン触媒成分の調製」
シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをエチルベンゾエート0.38g(2.5ミリモル)と2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン0.51g(2.5ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-24)を得た。
固体状チタン触媒成分(I-24)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表5に示す。
「固体状チタン触媒成分の調製」
シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをエチルベンゾエート0.50g(3.4ミリモル)と2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン0.33g(1.7ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-25)を得た。
固体状チタン触媒成分(I-25)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表5に示す。
「固体状チタン触媒成分の調製」
シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをエチルベンゾエート0.60g(4.0ミリモル)と2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン0.20g(1.0ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-26)を得た。
固体状チタン触媒成分(I-26)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表5に示す。
「固体状チタン触媒成分の調製」
シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをエチルベンゾエート0.64g(4.3ミリモル)と2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン0.15g(0.8ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-27)を得た。
固体状チタン触媒成分(I-27)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表5に示す。
「固体状チタン触媒成分の調製」
シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをエチルベンゾエート0.68g(4.5ミリモル)と2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン0.10g(0.5ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-28)を得た。
固体状チタン触媒成分(I-28)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表5に示す。
「固体状チタン触媒成分の調製」
シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをエチルベンゾエート0.71g(4.8ミリモル)と2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン0.05g(0.3ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-29)を得た。
固体状チタン触媒成分(I-29)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表5に示す。
「固体状チタン触媒成分の調製」
エチルアルコールを0.94gから1.38g(30ミリモル)に、シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをエチルベンゾエート0.71g(4.8ミリモル)と2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン0.05g(0.3ミリモル)に変えた以外は実施例1と同様にして固体状チタン触媒成分(I-30)を得た。
固体状チタン触媒成分(I-30)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表5に示す。
「固体状チタン触媒成分の調製」
エチルアルコールを0.94gから1.38g(30ミリモル)に、シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをエチルベンゾエート0.68g(4.5ミリモル)と2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン0.10g(0.5ミリモル)に変え、さらに110℃に昇温した後の攪拌下30分の条件を15分に短縮した以外は実施例1と同様にして固体状チタン触媒成分(I-31)を得た。
固体状チタン触媒成分(I-31)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表5に示す。
「固体状チタン触媒成分の調製」
エチルアルコールを0.94gから1.38g(30ミリモル)に、シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをエチルベンゾエート0.68g(4.5ミリモル)と2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン0.10g(0.5ミリモル)に変え、さらに110℃に昇温した後の攪拌下30分の条件を100℃に昇温した後の攪拌を30分維持することに変えた以外は実施例1と同様にして固体状チタン触媒成分(I-32)を得た。
固体状チタン触媒成分(I-32)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表5に示す。
「固体状チタン触媒成分の調製」
エチルアルコールを0.94gから1.38g(30ミリモル)に、シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをエチルベンゾエート0.68g(4.5ミリモル)と2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン0.10g(0.5ミリモル)に変え、さらに110℃に昇温した後の攪拌下30分の条件を100℃に昇温した後の攪拌を15分維持することに変えた以外は実施例1と同様にして固体状チタン触媒成分(I-33)を得た。
固体状チタン触媒成分(I-33)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表5に示す。
「固体状チタン触媒成分の調製」
エチルアルコールを0.94gから1.38g(30ミリモル)に、シス-シクロヘキサン-1,2-ジカルボン酸ジイソプロピルをエチルベンゾエート0.68g(4.5ミリモル)と2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン0.10g(0.5ミリモル)に変え、さらに110℃に昇温した後の攪拌下30分の条件を90℃に昇温した後の攪拌を15分維持することに変えた以外は実施例1と同様にして固体状チタン触媒成分(I-34)を得た。
固体状チタン触媒成分(I-34)を用いた以外は実施例1と同様にしてエチレンの重合を行った。結果を表5に示す。
「重合」
内容積1リットルのオートクレーブ中に、エチレン雰囲気下、精製n-ヘプタン500mlを装入し、トリエチルアルミニウム0.25ミリモル、および固体状チタン触媒成分(I-24)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加えた後、80℃に昇温し、水素を0.76MPa供給し、次いで全圧が0.8MPaとなるようにエチレンを連続的に1.5時間供給した。重合温度は80℃に保った。
「重合」
水素を0.74MPa供給した以外は実施例52と同様にしてエチレンの重合を実施した。結果を表6に示す。
「重合」
水素を0.72MPa供給した以外は実施例52と同様にしてエチレンの重合を実施した。結果を表6に示す。
「重合」
内容積1リットルのオートクレーブ中に、エチレン雰囲気下、精製n-ヘプタン500mlを装入し、トリエチルアルミニウム0.25ミリモル、および固体状チタン触媒成分(I-25)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加えた後、80℃に昇温し、水素を0.76MPa供給し、次いで全圧が0.8MPaとなるようにエチレンを連続的に1.5時間供給した。重合温度は80℃に保った。
「重合」
水素を0.74MPa供給した以外は実施例55と同様にしてエチレンの重合を実施した。結果を表6に示す。
「重合」
水素を0.72MPa供給した以外は実施例55と同様にしてエチレンの重合を実施した。結果を表6に示す。
「重合」
内容積1リットルのオートクレーブ中に、エチレン雰囲気下、精製n-ヘプタン500mlを装入し、トリエチルアルミニウム0.25ミリモル、および固体状チタン触媒成分(I-26)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加えた後、80℃に昇温し、水素を0.76MPa供給し、次いで全圧が0.8MPaとなるようにエチレンを連続的に1.5時間供給した。重合温度は80℃に保った。
「重合」
水素を0.74MPa供給した以外は実施例58と同様にしてエチレンの重合を実施した。結果を表6に示す。
「重合」
水素を0.72MPa供給した以外は実施例58と同様にしてエチレンの重合を実施した。結果を表6に示す。
「重合」
内容積1リットルのオートクレーブ中に、エチレン雰囲気下、精製n-ヘプタン500mlを装入し、トリエチルアルミニウム0.25ミリモル、および固体状チタン触媒成分(I-27)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加えた後、80℃に昇温し、水素を0.76MPa供給し、次いで全圧が0.8MPaとなるようにエチレンを連続的に1.5時間供給した。重合温度は80℃に保った。
「重合」
水素を0.74MPa供給した以外は実施例61と同様にしてエチレンの重合を実施した。結果を表6に示す。
「重合」
水素を0.72MPa供給した以外は実施例61と同様にしてエチレンの重合を実施した。結果を表6に示す。
「重合」
内容積1リットルのオートクレーブ中に、エチレン雰囲気下、精製n-ヘプタン500mlを装入し、トリエチルアルミニウム0.25ミリモル、および固体状チタン触媒成分(I-28)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加えた後、80℃に昇温し、水素を0.76MPa供給し、次いで全圧が0.8MPaとなるようにエチレンを連続的に1.5時間供給した。重合温度は80℃に保った。
「重合」
水素を0.74MPa供給した以外は実施例64と同様にしてエチレンの重合を実施した。結果を表6に示す。
「重合」
内容積1リットルのオートクレーブ中に、エチレン雰囲気下、精製n-ヘプタン500mlを装入し、トリエチルアルミニウム0.25ミリモル、および固体状チタン触媒成分(I-29)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加えた後、80℃に昇温し、水素を0.76MPa供給し、次いで全圧が0.8MPaとなるようにエチレンを連続的に1.5時間供給した。重合温度は80℃に保った。
「重合」
水素を0.74MPa供給した以外は実施例66と同様にしてエチレンの重合を実施した。結果を表6に示す。
「重合」
内容積1リットルのオートクレーブ中に、エチレン雰囲気下、精製n-ヘプタン500mlを装入し、トリエチルアルミニウム0.25ミリモル、および固体状チタン触媒成分(I-30)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加えた後、80℃に昇温し、水素を0.76MPa供給し、次いで全圧が0.8MPaとなるようにエチレンを連続的に1.5時間供給した。重合温度は80℃に保った。
「重合」
水素を0.74MPa供給した以外は実施例68と同様にしてエチレンの重合を実施した。結果を表6に示す。
「重合」
内容積1リットルのオートクレーブ中に、エチレン雰囲気下、精製n-ヘプタン500mlを装入し、トリエチルアルミニウム0.25ミリモル、および固体状チタン触媒成分(I-31)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加えた後、80℃に昇温し、水素を0.78MPa供給し、次いで全圧が0.8MPaとなるようにエチレンを連続的に1.5時間供給した。重合温度は80℃に保った。
「重合」
水素を0.79MPa供給した以外は実施例70と同様にしてエチレンの重合を実施した。結果を表6に示す。
「重合」
固体状チタン触媒成分(9)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加え、さらに水素を0.72MPa供給した以外は比較例5と同様にしてエチレンの重合を実施した。結果を表7に示す。
「重合」
固体状チタン触媒成分(9)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加え、さらに水素を0.75MPa供給した以外は比較例5と同様にしてエチレンの重合を実施した。結果を表7に示す。
「重合」
固体状チタン触媒成分(9)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加え、さらに水素を0.76MPa供給した以外は比較例5と同様にしてエチレンの重合を実施した。結果を表7に示す。
「重合」
固体状チタン触媒成分(9)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加え、さらに水素を0.77MPa供給した以外は比較例5と同様にしてエチレンの重合を実施した。結果を表7に示す。
「重合」
固体状チタン触媒成分(9)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加え、さらに水素を0.78MPa供給した以外は比較例5と同様にしてエチレンの重合を実施した。結果を表7に示す。
「重合」
固体状チタン触媒成分(9)のデカン懸濁液をチタン原子換算で0.015ミリモル相当量加え、さらに水素を0.79MPa供給した以外は比較例5と同様にしてエチレンの重合を実施した。結果を表7に示す。
Claims (10)
- マグネシウム化合物と炭素原子数1~5の電子供与体(a)と炭素原子数6~30の電子供与体(b)とを含む液状マグネシウム化合物(A)と、
液状チタン化合物(C)とを、
電子供与体(B)の存在下に接触させて得られ、
チタン、マグネシウムおよびハロゲンを含有するエチレン重合用固体状チタン触媒成分(I)。 - 前記電子供与体(a)の使用量と前記電子供与体(b)の使用量とのモル比((a)/(b))が1未満であり、かつ、前記電子供与体(a)、前記電子供与体(b)および前記電子供与体(B)が環状エーテル化合物を除くヘテロ原子含有化合物であることを特徴とする請求項1記載のエチレン重合用固体状チタン触媒成分(I)。
- 前記電子供与体(a)が炭素原子数1~5のアルコールであり、
前記電子供与体(b)が炭素原子数6~12のアルコールであることを特徴とする請求項1記載のエチレン重合用固体状チタン触媒成分(I)。 - 前記電子供与体(B)がジカルボン酸エステル化合物であることを特徴とする請求項1記載のエチレン重合用固体状チタン触媒成分(I)。
- 前記電子供与体(B)が、酸ハライド類、酸アミド類、ニトリル類、酸無水物、有機酸エステル類およびポリエーテル類よりなる群から選ばれる1種以上の化合物であることを特徴とする請求項1記載のエチレン重合用固体状チタン触媒成分(I)。
- 前記電子供与体(B)が、下記式(2)で表される化合物であることを特徴とする請求項1記載のエチレン重合用固体状チタン触媒成分(I);
複数個あるR1は、炭素原子数1~20の炭化水素基である。
複数個あるR'は、それぞれ独立に、水素原子、炭素原子数1~20の炭化水素基、ハロゲン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケイ素含有基から選ばれる原子または基である。
Aは、下記式で表される構造、または酸素原子を除くヘテロ原子である。
- 請求項1~8のいずれかに記載のエチレン重合用固体状チタン触媒成分(I)と、有機金属化合物触媒成分(II)とを含むエチレン重合用触媒。
- 請求項9記載のエチレン重合用触媒の存在下にエチレン単独重合、またはエチレンと他のオレフィンとの共重合を行うことを特徴とするエチレンの重合方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09730343.2A EP2264075B1 (en) | 2008-04-08 | 2009-04-03 | Solid titanium catalyst component for ethylene polymerization, ethylene polymerization catalyst and ethylene polymerization method |
US12/936,669 US9593175B2 (en) | 2008-04-08 | 2009-04-03 | Solid titanium catalyst component for ethylene polymerization, ethylene polymerization catalyst and ethylene polymerization method |
JP2010507228A JP5374498B2 (ja) | 2008-04-08 | 2009-04-03 | エチレン重合用固体状チタン触媒成分、エチレン重合用触媒およびエチレンの重合方法 |
BRPI0910435-6A BRPI0910435B1 (pt) | 2008-04-08 | 2009-04-03 | método para produzir um componente catalisador de titânio sólido (i) para polimerização de etileno, método para produzir um catalisador, componente catalisador de titânio sólido (i), catalisador de polimerização de etileno e método para polimerização de etileno |
CN2009801121975A CN101983211B (zh) | 2008-04-08 | 2009-04-03 | 乙烯聚合用固体状钛催化剂成分、乙烯聚合用催化剂以及乙烯的聚合方法 |
ES09730343.2T ES2575141T3 (es) | 2008-04-08 | 2009-04-03 | Componente de catalizador de titanio sólido para la polimerización de etileno, catalizador de la polimerización de etileno y método para la polimerización de etileno |
US13/101,754 US8383541B2 (en) | 2008-04-08 | 2011-05-05 | Solid titanium catalyst component for ethylene polymerization, ethylene polymerization catalyst and ethylene polymerization method |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-100255 | 2008-04-08 | ||
JP2008100255 | 2008-04-08 | ||
JP2008228490 | 2008-09-05 | ||
JP2008-228490 | 2008-09-05 | ||
JP2009005610 | 2009-01-14 | ||
JP2009-005610 | 2009-01-14 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/936,669 A-371-Of-International US9593175B2 (en) | 2008-04-08 | 2009-04-03 | Solid titanium catalyst component for ethylene polymerization, ethylene polymerization catalyst and ethylene polymerization method |
US13/101,754 Continuation US8383541B2 (en) | 2008-04-08 | 2011-05-05 | Solid titanium catalyst component for ethylene polymerization, ethylene polymerization catalyst and ethylene polymerization method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009125729A1 true WO2009125729A1 (ja) | 2009-10-15 |
Family
ID=41161862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/056972 WO2009125729A1 (ja) | 2008-04-08 | 2009-04-03 | エチレン重合用固体状チタン触媒成分、エチレン重合用触媒およびエチレンの重合方法 |
Country Status (8)
Country | Link |
---|---|
US (2) | US9593175B2 (ja) |
EP (1) | EP2264075B1 (ja) |
JP (1) | JP5374498B2 (ja) |
KR (1) | KR101213827B1 (ja) |
CN (1) | CN101983211B (ja) |
BR (1) | BRPI0910435B1 (ja) |
ES (1) | ES2575141T3 (ja) |
WO (1) | WO2009125729A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020164659A (ja) * | 2019-03-29 | 2020-10-08 | 三井化学株式会社 | エチレン重合用固体状チタン触媒成分の製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103059170B (zh) * | 2011-10-18 | 2015-11-25 | 中国石油化工股份有限公司 | 一种用于烯烃聚合的催化剂组分、催化剂及其制备方法 |
CN103059173B (zh) * | 2011-10-18 | 2015-07-22 | 中国石油化工股份有限公司 | 一种用于烯烃聚合的催化剂组分及其催化剂 |
CN102492061B (zh) * | 2011-11-26 | 2014-08-20 | 北京化工大学 | 烯烃聚合催化剂及制备方法和应用 |
US9593125B2 (en) | 2012-07-27 | 2017-03-14 | Emory University | Heterocyclic flavone derivatives, compositions, and methods related thereto |
CN103665205A (zh) * | 2012-09-20 | 2014-03-26 | 中国石油化工股份有限公司 | 用于烯烃聚合的催化剂组分及其制备方法和用于烯烃聚合的催化剂与应用 |
US11478781B2 (en) | 2019-06-19 | 2022-10-25 | Chevron Phillips Chemical Company Lp | Ziegler-Natta catalysts prepared from solid alkoxymagnesium halide supports |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56811A (en) | 1979-06-18 | 1981-01-07 | Mitsui Petrochem Ind Ltd | Preparation of olefin polymer or copolymer |
JPS5883006A (ja) | 1981-11-13 | 1983-05-18 | Mitsui Petrochem Ind Ltd | オレフインの重合方法 |
JPH0491103A (ja) * | 1990-08-04 | 1992-03-24 | Mitsui Petrochem Ind Ltd | エチレン・α―オレフィン共重合体の製造方法 |
JPH0491107A (ja) * | 1990-08-04 | 1992-03-24 | Mitsui Petrochem Ind Ltd | エチレン・α―オレフィン共重合体の製造方法 |
EP0585869A1 (en) | 1992-08-31 | 1994-03-09 | Mitsui Petrochemical Industries, Ltd. | Solid titanium catalyst component for olefin polymerization, process for preparing the same, catalyst for olefin polymerization and process for olefin polymerization |
JPH0762014A (ja) * | 1993-08-27 | 1995-03-07 | Tosoh Corp | 立体規則性ポリ−α−オレフィンの製造方法 |
JPH09328514A (ja) | 1995-05-22 | 1997-12-22 | Mitsui Petrochem Ind Ltd | 固体状チタン触媒成分、これを含むエチレン重合用触媒およびエチレンの重合方法 |
JPH1053612A (ja) | 1996-05-31 | 1998-02-24 | Intevep Sa | オレフィン重合触媒 |
JP2003026719A (ja) * | 2001-07-17 | 2003-01-29 | Mitsui Chemicals Inc | オレフィン重合用固体状チタン触媒成分の製造方法、オレフィン重合用触媒、オレフィン重合用予備重合触媒およびオレフィンの重合方法 |
JP2005213367A (ja) * | 2004-01-29 | 2005-08-11 | Mitsui Chemicals Inc | 重合体の嵩密度を制御する重合方法 |
WO2006011334A1 (ja) * | 2004-07-28 | 2006-02-02 | Mitsui Chemicals, Inc. | オレフィン重合用触媒及び該触媒を用いる重合方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5373279A (en) * | 1976-12-13 | 1978-06-29 | Mitsubishi Chem Ind Ltd | Preparation of olefin polymer |
JPS603323B2 (ja) * | 1978-12-11 | 1985-01-28 | 三井化学株式会社 | オレフイン類の重合方法 |
JPS59117508A (ja) * | 1982-12-24 | 1984-07-06 | Mitsui Petrochem Ind Ltd | エチレンの重合法 |
DE69127220T2 (de) * | 1990-04-13 | 1998-01-02 | Mitsui Petrochemical Ind | Festes Titan enthaltendes Katalysatorbestandteil und Katalysator für Olefinpolymerisation, vorpolymerisierte Olefinpolymerisationskatalysator und Verfahren für Olefinpolymerisation |
US5726262A (en) | 1990-04-13 | 1998-03-10 | Mitsui Petrochemical Industries, Ltd. | Solid titanium catalyst component for olefin polymerization, olefin polymerization catalyst, prepolymerized polyolefin-containing catalyst and method of olefin polymerization |
US5223466A (en) * | 1992-03-20 | 1993-06-29 | Amoco Corporation | Olefin polymerization and copolymerization catalyst |
GB2325004B (en) * | 1997-05-09 | 1999-09-01 | Samsung General Chemicals Co | A catalyst for polymerization and copolymerization of olefins |
EP0994905B1 (en) * | 1998-05-06 | 2004-01-21 | Basell Poliolefine Italia S.p.A. | Catalyst components for the polymerization of olefins |
PT1114070E (pt) * | 1999-06-04 | 2004-04-30 | Lg Chemical Ltd | Processo para preparar catalisadores de polimerizacao de poliolefina |
JP4091103B2 (ja) * | 2002-02-14 | 2008-05-28 | 株式会社キッツ | 管継手 |
WO2003085006A1 (en) * | 2002-04-04 | 2003-10-16 | Mitsui Chemicals, Inc | Solid titanium catalyst component for olefin polymerization, catalyst for olefin polymerization, and process for olefin polymerization |
JP4091107B1 (ja) * | 2002-04-26 | 2008-05-28 | 松下電器産業株式会社 | 可変長符号化装置および画像符号化装置 |
JP2004018697A (ja) * | 2002-06-17 | 2004-01-22 | Tosoh Corp | エチレン−共役ジエン系共重合体の製造方法 |
JP2004149673A (ja) * | 2002-10-30 | 2004-05-27 | Mitsui Chemicals Inc | エチレン系ワックスの製造方法 |
KR20060013486A (ko) | 2003-02-24 | 2006-02-10 | 차이나 페트로리움 앤드 케미컬 코포레이션 | 프로필렌 중합용 촉매의 복합 담체, 촉매 성분 및 이를포함하는 촉매 |
JP2006011334A (ja) * | 2003-07-23 | 2006-01-12 | Fuji Photo Film Co Ltd | ハロゲン化銀乳剤とその製造方法、およびそれを用いたハロゲン化銀感光材料 |
US8975353B2 (en) | 2004-11-17 | 2015-03-10 | Mitsui Chemicals, Inc. | Solid titanium catalyst component, olefin polymerization catalyst, and process for producing olefin polymer |
US7888438B2 (en) * | 2005-01-19 | 2011-02-15 | Mitsui Chemicals, Inc. | Catalyst for olefin polymerization and process for olefin polymerization |
EP2623523B1 (en) * | 2005-01-19 | 2015-03-11 | Mitsui Chemicals, Inc. | Process for producing olefin polymer |
BRPI0821817A2 (pt) * | 2007-12-28 | 2015-06-16 | Basell Poliolefine Srl | Componentes catalisadores para a polimerização de olefinas |
-
2009
- 2009-04-03 US US12/936,669 patent/US9593175B2/en active Active
- 2009-04-03 WO PCT/JP2009/056972 patent/WO2009125729A1/ja active Application Filing
- 2009-04-03 CN CN2009801121975A patent/CN101983211B/zh active Active
- 2009-04-03 BR BRPI0910435-6A patent/BRPI0910435B1/pt active IP Right Grant
- 2009-04-03 ES ES09730343.2T patent/ES2575141T3/es active Active
- 2009-04-03 KR KR1020107020917A patent/KR101213827B1/ko active IP Right Grant
- 2009-04-03 JP JP2010507228A patent/JP5374498B2/ja active Active
- 2009-04-03 EP EP09730343.2A patent/EP2264075B1/en active Active
-
2011
- 2011-05-05 US US13/101,754 patent/US8383541B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56811A (en) | 1979-06-18 | 1981-01-07 | Mitsui Petrochem Ind Ltd | Preparation of olefin polymer or copolymer |
JPS5883006A (ja) | 1981-11-13 | 1983-05-18 | Mitsui Petrochem Ind Ltd | オレフインの重合方法 |
JPH0491103A (ja) * | 1990-08-04 | 1992-03-24 | Mitsui Petrochem Ind Ltd | エチレン・α―オレフィン共重合体の製造方法 |
JPH0491107A (ja) * | 1990-08-04 | 1992-03-24 | Mitsui Petrochem Ind Ltd | エチレン・α―オレフィン共重合体の製造方法 |
EP0585869A1 (en) | 1992-08-31 | 1994-03-09 | Mitsui Petrochemical Industries, Ltd. | Solid titanium catalyst component for olefin polymerization, process for preparing the same, catalyst for olefin polymerization and process for olefin polymerization |
JPH0762014A (ja) * | 1993-08-27 | 1995-03-07 | Tosoh Corp | 立体規則性ポリ−α−オレフィンの製造方法 |
JPH09328514A (ja) | 1995-05-22 | 1997-12-22 | Mitsui Petrochem Ind Ltd | 固体状チタン触媒成分、これを含むエチレン重合用触媒およびエチレンの重合方法 |
JPH1053612A (ja) | 1996-05-31 | 1998-02-24 | Intevep Sa | オレフィン重合触媒 |
JP2003026719A (ja) * | 2001-07-17 | 2003-01-29 | Mitsui Chemicals Inc | オレフィン重合用固体状チタン触媒成分の製造方法、オレフィン重合用触媒、オレフィン重合用予備重合触媒およびオレフィンの重合方法 |
JP2005213367A (ja) * | 2004-01-29 | 2005-08-11 | Mitsui Chemicals Inc | 重合体の嵩密度を制御する重合方法 |
WO2006011334A1 (ja) * | 2004-07-28 | 2006-02-02 | Mitsui Chemicals, Inc. | オレフィン重合用触媒及び該触媒を用いる重合方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2264075A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020164659A (ja) * | 2019-03-29 | 2020-10-08 | 三井化学株式会社 | エチレン重合用固体状チタン触媒成分の製造方法 |
JP7228447B2 (ja) | 2019-03-29 | 2023-02-24 | 三井化学株式会社 | エチレン重合用固体状チタン触媒成分の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US9593175B2 (en) | 2017-03-14 |
EP2264075A4 (en) | 2012-08-08 |
CN101983211A (zh) | 2011-03-02 |
ES2575141T3 (es) | 2016-06-24 |
JP5374498B2 (ja) | 2013-12-25 |
CN101983211B (zh) | 2013-05-29 |
KR20100118603A (ko) | 2010-11-05 |
EP2264075A1 (en) | 2010-12-22 |
US8383541B2 (en) | 2013-02-26 |
JPWO2009125729A1 (ja) | 2011-08-04 |
BRPI0910435A2 (pt) | 2020-08-04 |
KR101213827B1 (ko) | 2012-12-18 |
US20110269924A1 (en) | 2011-11-03 |
US20110034648A1 (en) | 2011-02-10 |
BRPI0910435B1 (pt) | 2021-01-26 |
EP2264075B1 (en) | 2016-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5457835B2 (ja) | 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法 | |
JP5306225B2 (ja) | 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法 | |
JP5530054B2 (ja) | オレフィン重合体製造用固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法 | |
JP5374498B2 (ja) | エチレン重合用固体状チタン触媒成分、エチレン重合用触媒およびエチレンの重合方法 | |
JP5689232B2 (ja) | 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法 | |
US20080125555A1 (en) | Catalyst for olefin polymerization and process for olefin polymerization | |
JP5479734B2 (ja) | 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合方法 | |
JP2015140417A (ja) | オレフィン重合体の製造方法およびオレフィン重合用触媒 | |
JP4540056B2 (ja) | オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法 | |
JP2008024751A (ja) | 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合方法 | |
JP2013249445A (ja) | 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法 | |
JP7228447B2 (ja) | エチレン重合用固体状チタン触媒成分の製造方法 | |
JP6758165B2 (ja) | 固体状錯体化合物の製造方法、固体状チタン触媒成分の製造方法、オレフィン重合用触媒の製造方法およびオレフィン重合体の製造方法 | |
JP2010111755A (ja) | オレフィン重合用触媒およびオレフィン重合体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980112197.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09730343 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20107020917 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010507228 Country of ref document: JP Ref document number: 6741/DELNP/2010 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009730343 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12936669 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: PI0910435 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100930 |