WO2009122560A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2009122560A1
WO2009122560A1 PCT/JP2008/056444 JP2008056444W WO2009122560A1 WO 2009122560 A1 WO2009122560 A1 WO 2009122560A1 JP 2008056444 W JP2008056444 W JP 2008056444W WO 2009122560 A1 WO2009122560 A1 WO 2009122560A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory
transistor
region
gate electrode
source
Prior art date
Application number
PCT/JP2008/056444
Other languages
English (en)
French (fr)
Inventor
智史 鳥井
Original Assignee
富士通マイクロエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通マイクロエレクトロニクス株式会社 filed Critical 富士通マイクロエレクトロニクス株式会社
Priority to PCT/JP2008/056444 priority Critical patent/WO2009122560A1/ja
Priority to EP08739557A priority patent/EP2264756B1/en
Priority to KR1020107020831A priority patent/KR101383618B1/ko
Priority to JP2010505217A priority patent/JP5316532B2/ja
Priority to CN200880128431.9A priority patent/CN101983423B/zh
Priority to EP10195176A priority patent/EP2312624B1/en
Publication of WO2009122560A1 publication Critical patent/WO2009122560A1/ja
Priority to US12/892,388 priority patent/US8014204B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0433Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and one or more separate select transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device having a memory cell composed of a memory transistor and a selection transistor.
  • CHE channel hot electrons
  • a method for writing information into a memory cell without flowing current in the channel region a method of taking electrons or holes generated by avalanche breakdown or band-to-band tunneling (BTBT) into a charge retention layer of a memory transistor, that is, an avalanche writing method is used. is there.
  • BTBT band-to-band tunneling
  • the avalanche writing method writing is performed by applying a voltage to the gate electrode and the source diffusion region of the memory transistor, as in the CHE writing method.
  • the avalanche writing method is different from the CHE writing method in that writing is performed only by the substrate current.
  • a two-transistor cell that constitutes a NOR-type memory cell by a selection transistor and a memory transistor is described in, for example, Japanese Patent Laid-Open No. 2005-116970 (Patent Document 1).
  • a circuit for connecting a selection transistor of a two-transistor cell adopting a writing method using CHE to a bit line is described in JP-A-2005-122772 (Patent Document 2).
  • the circuit is configured to connect the source regions of a plurality of memory transistors connected to a common word line to the common source line.
  • FIG. 10 of Japanese Patent Application Laid-Open No. 11-177068 shows a write type memory circuit using CHE in which a drain region of a selection transistor is connected to a bit line and a source region of the memory transistor is connected to a source line. A memory circuit connected to the memory is disclosed. *
  • An object of the present invention is to provide a semiconductor device having a new memory cell array.
  • a first memory cell having a first memory transistor and a first selection transistor
  • a second memory cell having a second memory transistor and a second selection transistor
  • the first memory transistor And a first word line electrically connected to the gate electrode of the second select transistor, and a first word line electrically connected to the gate electrode of the second memory transistor and the gate electrode of the first select transistor.
  • a semiconductor device having two word lines, and a first source line electrically connected to a source region of the first memory transistor and a source region of the second memory transistor.
  • a first memory cell comprising a first memory transistor and a first selection transistor, a second memory cell comprising a second memory transistor and a second selection transistor, A third memory cell comprising three memory transistors and a third selection transistor having a first shared drain region shared with the first selection transistor;
  • a fourth memory cell, a fourth memory cell comprising a fourth select transistor having a second shared drain region shared with the second select transistor, a gate electrode of the first memory transistor, and a gate of the second memory transistor
  • a first word line electrically connected to the electrode; a second word line electrically connected to the gate electrode of the third memory transistor; and the gate electrode of the fourth memory transistor;
  • a first bit line, the semiconductor device according to claim is provided to have a second
  • the gate electrode of one memory transistor and the gate electrode of the other selection transistor are connected to the first word line
  • the gate electrode of the select transistor and the gate electrode of the other memory transistor are connected to the second word line.
  • the source regions of both memory transistors are connected to the same source line.
  • the drain regions of the first and third memory cell transistors of the first and third memory cells are set.
  • the drain regions of the second and fourth memory transistors of the second and fourth memory cells are also made common.
  • the gate electrodes of the first and second memory transistors are connected by a first word line, and the gate electrodes of the third and fourth memory transistors are connected by a second word line.
  • a common first source line is connected to the drain region of the first memory transistor and the source region of the fourth memory transistor, and the second and third source lines are connected to the other two source regions, respectively.
  • FIG. 1 is a cross-sectional view showing a memory circuit constituting a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the semiconductor device according to the first embodiment of the present invention.
  • 3A to 3C are cross-sectional views showing the operation of the semiconductor device shown in FIG.
  • FIGS. 4A to 4C are cross-sectional views (part 1) showing the process of forming the semiconductor device according to the first embodiment of the invention.
  • FIGS. 5A to 5C are cross-sectional views (part 2) illustrating the process of forming the semiconductor device according to the first embodiment of the invention.
  • 6A to 6C are cross-sectional views (part 3) illustrating the process of forming the semiconductor device according to the first embodiment of the invention.
  • FIGS. 7A to 7C are cross-sectional views (part 4) showing the process of forming the semiconductor device according to the first embodiment of the invention.
  • 8A to 8C are cross-sectional views (part 5) showing the process of forming the semiconductor device according to the first embodiment of the invention.
  • FIGS. 9A to 9C are cross-sectional views (No. 6) showing the process of forming the semiconductor device according to the first embodiment of the invention.
  • FIGS. 10A to 10C are sectional views (No. 7) showing the process for forming the semiconductor device according to the first embodiment of the invention.
  • FIGS. 11A to 11C are cross-sectional views (No. 8) showing the process for forming the semiconductor device according to the first embodiment of the invention.
  • 12A to 12C are cross-sectional views (No.
  • FIGS. 13A to 13C are sectional views (No. 10) showing the process for forming the semiconductor device according to the first embodiment of the invention.
  • FIGS. 14A to 14C are sectional views (No. 11) showing the process for forming the semiconductor device according to the first embodiment of the invention.
  • FIGS. 15A to 15C are cross-sectional views (part 12) illustrating the process of forming the semiconductor device according to the first embodiment of the invention.
  • FIGS. 16A and 16B are cross-sectional views (No. 13) showing the process of forming the semiconductor device according to the first embodiment of the invention.
  • FIG. 17 is a cross-sectional view showing a memory cell array region of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 18 is a cross-sectional view showing a peripheral circuit region of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 19A and FIG. 19B are plan views (part 1) illustrating a process for forming a semiconductor device according to the first embodiment of the present invention.
  • 19C and 19D are plan views (part 2) illustrating the process of forming the semiconductor device according to the first embodiment of the invention.
  • FIG. 19E and FIG. 19F are plan views (part 3) illustrating the process of forming the semiconductor device according to the first embodiment of the invention.
  • FIGS. 19H are plan views (part 4) illustrating the process of forming the semiconductor device according to the first embodiment of the invention.
  • FIG. 19I and FIG. 19J are plan views (part 5) illustrating the process of forming the semiconductor device according to the first embodiment of the invention.
  • FIG. 20 is a sectional view showing a semiconductor device according to the second embodiment of the present invention.
  • FIG. 21 is a circuit diagram of a memory cell array of a semiconductor device according to the second embodiment of the present invention.
  • 22A and 22B are cross-sectional views illustrating the operation of the semiconductor device illustrated in FIG.
  • FIGS. 23A to 23C are cross-sectional views (part 1) showing the formation process of the gate insulating film in the formation process of the semiconductor device according to the second embodiment of the present invention.
  • FIGS. 23A to 23C are cross-sectional views (part 1) showing the formation process of the gate insulating film in the formation process of the semiconductor device according to the second embodiment of the present invention.
  • 24A to 24C are cross-sectional views (part 2) showing the formation process of the gate insulating film in the formation process of the semiconductor device according to the second embodiment of the present invention.
  • 25A to 25C are cross-sectional views (part 3) showing the step of forming the gate insulating film in the step of forming the semiconductor device according to the second embodiment of the present invention.
  • FIG. 26 is a sectional view showing a semiconductor device according to the third embodiment of the present invention.
  • FIG. 27 is a cross-sectional view showing an n-type impurity ion implantation step in the step of forming a semiconductor device according to the third embodiment of the present invention.
  • FIG. 28 is a sectional view showing a semiconductor device according to the fourth embodiment of the present invention.
  • FIGS. 29A and 29B are cross-sectional views showing an ion implantation step in the step of forming a semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 30 is a sectional view showing a semiconductor device according to the fifth embodiment of the present invention.
  • 31A to 31C are cross-sectional views showing a gate insulating film forming step in the semiconductor device forming step according to the fifth embodiment of the present invention.
  • FIG. 32 is a sectional view showing a semiconductor device according to the sixth embodiment of the present invention.
  • 33A to 33C are cross-sectional views showing the operation of the semiconductor device shown in FIG.
  • FIGS. 34A to 34C are sectional views (No. 1) showing the process for forming the semiconductor device according to the sixth embodiment of the invention.
  • FIGS. 34A to 34C are sectional views (No. 1) showing the process for forming the semiconductor device according to the sixth embodiment of the invention.
  • FIGS. 34A to 34C are sectional views (No. 1) showing the process for
  • 35A to 35C are sectional views (No. 2) showing the process for forming the semiconductor device according to the sixth embodiment of the invention.
  • FIGS. 36A to 36C are cross-sectional views (part 3) illustrating the process of forming the semiconductor device according to the sixth embodiment of the invention.
  • 37A to 37C are cross-sectional views (part 4) showing the process for forming the semiconductor device according to the sixth embodiment of the invention.
  • FIGS. 38A to 38C are cross-sectional views (part 5) showing the process of forming the semiconductor device according to the sixth embodiment of the invention.
  • FIG. 39 is a cross-sectional view showing a memory circuit constituting a semiconductor device according to the seventh embodiment of the present invention.
  • 40A and 40B are cross-sectional views illustrating the operation of the semiconductor device shown in FIG.
  • FIG. 41 is a cross-sectional view showing a memory circuit constituting a semiconductor device according to the eighth embodiment of the present invention.
  • FIG. 42 is a cross-sectional view showing a memory circuit constituting the semiconductor device according to the ninth embodiment of the present invention.
  • FIG. 43 is a sectional view showing a semiconductor device according to the tenth embodiment of the present invention.
  • 44A, 44B, and 44C are plan views (part 1) illustrating a process of forming a semiconductor device according to the tenth embodiment of the present invention.
  • 44D, 44E, and 44F are plan views (part 2) illustrating the process of forming the semiconductor device according to the tenth embodiment of the invention.
  • 44G, 44H, and 44I are plan views (part 3) illustrating the process of forming the semiconductor device according to the tenth embodiment of the invention.
  • 44J, 44K, and 44L are plan views (No. 4) showing a step of forming a semiconductor device according to the tenth embodiment of the invention.
  • 44M, 44N and 44O are plan views (No. 5) showing the steps of forming the semiconductor device according to the tenth embodiment of the invention.
  • 44P and 44Q are plan views (No. 6) showing the steps of forming the semiconductor device according to the tenth embodiment of the invention.
  • FIG. 1 is a circuit block diagram of a flash memory which is a semiconductor device according to the first embodiment of the present invention.
  • a flash memory 1 includes a memory cell array 2, and further includes a bit line decoder 3, a sense amplifier 6, word line decoders 4a and 4b, a source decoder 5 and the like as peripheral circuits.
  • the bit line decoder 3 is also called a column decoder, and the first and second word line decoders 4a and 4b are also called row decoders.
  • the memory cell array 2 has a plurality of memory cells MC arranged in a matrix. For example, n memory cells MC are arranged in the same row direction (X direction in the figure) and m in the same column direction (Y direction in the figure).
  • a plurality of word lines WL1 and WL2 are connected to the word line decoders 4a and 4b, a plurality of source lines SL are connected to the source line decoder 5, and a plurality of bit lines BL are connected to the bit line decoder 3. ing.
  • the source lines SL and the bit lines BL are alternately arranged substantially in parallel, and the word lines WL1 and WL2 extend in a direction intersecting the source lines SL and the bit lines BL, for example, a direction orthogonal thereto.
  • the signals of the word lines WL1 and WL2 are controlled by the word line decoders 4a and 4b, and the signal of the bit line BL is controlled by the bit line decoder 3 and the source line SL The signal is controlled by the source decoder 5. Specific examples of these signals will be described later. Note that the two symbols WL1 and WL2 indicating the word lines are only used for ease of explanation, and are not for grouping in the following embodiments unless otherwise limited. .
  • the memory cell MC has a memory transistor MT and a selection transistor ST connected in series with each other.
  • the drain of the selection transistor ST is electrically connected to the bit line BL, and the source of the memory transistor MT is electrically connected to the source line SL via interconnection lines.
  • the memory transistor MT and the select transistor ST have, for example, the structure shown in FIG.
  • the memory transistor MT includes an oxide / nitride / silicon oxide (ONO) film 13 serving as a charge retention layer formed on an N well 12 of a silicon substrate 11 as a semiconductor substrate, and a memory gate formed on the ONO film 13.
  • the electrode 14 has a p-type source region 15 and a p-type source / drain region 16 formed in the N well 12 on both sides of the memory gate electrode 14.
  • the p-type source region 15 includes a low-concentration impurity p-type extension region 15a and a p-type high-concentration impurity diffusion region 15b.
  • the memory gate electrode 14 is also referred to as a control gate electrode.
  • the ONO film 13 has a structure in which, for example, a lower silicon oxide film 13a, a silicon nitride film 13b, and an upper silicon oxide film 13c are formed in this order.
  • the lower silicon oxide film 13a is 2.4 nm
  • the silicon nitride film 13b is 4 nm
  • the upper silicon oxide film 13c is 4 nm, for example.
  • the selection transistor ST includes a selection gate electrode 18 formed on the N well 12 via a gate insulating film 17 and a p-type source / drain region 16 formed in the N well 12 on both sides of the selection gate electrode 18.
  • a drain region 19 is composed of a low impurity concentration p-type extension region 19a and a p-type high concentration impurity diffusion region 19b.
  • the select transistor ST and the memory transistor MT share the p-type source / drain region 16.
  • Sidewalls 20 are formed on the side walls of the memory gate electrode 14 and the selection gate electrode 18, and silicide layers 21 a and 21 b are formed on the upper layer portions thereof, respectively.
  • silicide layers 21c and 21d are also formed on the surfaces of the p-type source region 15 and the p-type drain region 19, respectively.
  • a cobalt silicide layer having a thickness of 8 nm is formed as the silicide layers 21a to 21d.
  • the memory gate electrode 14 and the selection gate electrode 18 are formed substantially in parallel.
  • the memory gate electrode 14 constitutes a part of one of the two adjacent word lines WL1 and WL2, and the selection gate electrode 18 constitutes the other part of the word lines WL1 and WL2.
  • An interlayer insulating film 22 is formed on the memory transistor MT and the select transistor ST.
  • First and second contact holes 22a and 22b are formed on the silicide layers 21c and 21d on the p-type source region 15 and the p-type drain region 19 in the interlayer insulating film 22, respectively.
  • a first conductive plug 23 and a second conductive plug 24 are embedded.
  • the first conductive plug 23 on the p-type source region 15 is connected to the source line SL, and the second conductive plug 24 on the p-type drain region 17 is connected to the bit line BL. Therefore, the difference in the write state of the memory transistor MT does not affect the parasitic capacitance of the bit line BL.
  • the plurality of memory cells MC adjacent in the column direction are connected in series by sharing one of the p-type source region 15 and the p-type drain region 19. Accordingly, in the plurality of memory cells MC connected in series in the column direction, the arrangement of the memory transistors MT and the selection transistors ST is alternately reversed. As a result, the number of connection points between the source lines SL and bit lines BL and the plurality of memory cells MC in the memory cell array 2 is reduced.
  • the memory gate electrode 14 of one memory cell MC is a gate electrode for selecting the other memory cell MC via the word line WL1 (or WL2).
  • 18 and the selection gate electrode 18 of one memory cell MC is connected to the memory gate electrode 14 of the other memory cell MC via another word line WL2 (or WL1).
  • the p-type source regions 15 are connected to the same source line SL, or the p-type drain regions 19 are They are connected to the same bit line BL.
  • the two p-type source regions 15 may be arranged obliquely with respect to the longitudinal direction of the word lines WL1 and WL2, and may be electrically connected to each other via, for example, the source branch line SLd.
  • the two p-type drain regions 19 may be disposed obliquely with respect to the longitudinal direction of the word lines WL1 and WL2, and may be electrically connected through, for example, the bit branch line BLd.
  • Source branch line SLd is electrically connected to source line SL
  • bit branch line BLd is electrically connected to bit line BL.
  • Table 1 lists examples of values of voltages applied to the word lines WL1, WL2, the bit line BL, and the source line SL at the time of writing, reading, and erasing of the memory cell MC.
  • Table 1 shows a case where the first word line WL1 is connected to the selection transistor ST, and the second word line WL2 is connected to the memory transistor MT. Note that the values shown in parentheses in Table 1 indicate the voltage of the non-selected line.
  • a voltage of 5 V is applied to the memory gate electrode 14 of the memory transistor MT through the first word line WL1, and ⁇ A voltage of 5V is applied.
  • each voltage of the bit line BL and the N well 12 is set to 0V.
  • the voltage of the selection gate electrode 18 is set to 0 V through the second word line WL2.
  • the threshold value of the memory transistor MT changes to a positive value.
  • the voltage of the selection gate electrode 18 and the bit line BL is 0 V, and no current flows in the channel region of the selection transistor ST.
  • the voltage of the source line SL connected to the unselected memory cell MC is 0 V, and electrons are not generated due to band-to-band tunneling.
  • a voltage of ⁇ 1.8 V is applied to the selection gate electrode 18 of the selection transistor ST through the first word line WL1, and also to the bit line BL. Apply a voltage of -1.8V.
  • each voltage of the memory gate electrode 14, the bit line BL, and the N well 12 is set to 0V.
  • a channel is formed in the surface layer of the N well 12 below the selection gate electrode 18, and a potential difference is generated between the p-type drain region 19 and the p-type source region 15.
  • a channel is also formed below the memory gate electrode 14 by the electrons held in the ONO film 13. As a result, a current flows from the p-type source region 15 to the p-type drain region 19 as indicated by a broken-line arrow in FIG.
  • the same gate electrode 18 and memory gate electrode 14 are connected with the same ⁇ 5V through the first and second word lines WL1 and WL2. A voltage is applied, and a voltage of 5 V is applied to the source line SL and the bit line BL. Further, the voltage of the N well 12 is set to 5V.
  • FIG. 4A to 16A and 17 are cross-sectional views showing the manufacturing process of the semiconductor device according to the first embodiment of the present invention, and are partial cross-sections in the extending direction of the word lines in the memory cell array region.
  • FIG. 4B to 16B and 17 are partial cross-sectional views in the extending direction of the bit line or the source line in the manufacturing process of the semiconductor device.
  • FIG. 4 to FIG. 16C and FIG. 18 is a partial cross-sectional view of the peripheral circuit portion in the manufacturing process of the semiconductor device.
  • FIG. 19A to FIG. 19J are plan views showing manufacturing steps of the memory cell array in the semiconductor device according to the first embodiment of the present invention.
  • a silicon oxide film 31 is formed on the silicon substrate 11 to a thickness of, for example, 10 nm by a thermal oxidation method or a vapor deposition (CVD) method. Further, a silicon nitride film 32 having a thickness of 150 nm to 200 nm, for example, is formed on the silicon oxide film 31 by the CVD method.
  • a photoresist is applied on the silicon nitride film 32, and this is exposed and developed to form a resist pattern (not shown) having an opening in the element isolation region.
  • the silicon nitride film 32, the silicon oxide film 31, and a part of the silicon substrate 11 are etched by the reactive ion etching (RIE) method, thereby forming the element isolation trench 33.
  • the depth of the element isolation trench 33 in the silicon substrate 11 is about 300 nm, for example.
  • a region surrounded by the element isolation trench 33 in the silicon substrate 11 includes an active region.
  • an active region For example, in the memory cell array region shown in FIGS. 4A and 4B, stripe-shaped active regions 34 are arranged adjacent to the stripe-shaped element isolation trenches 33, and these active regions 34 are formed as memory transistors.
  • a region 34a and a select transistor formation region 34b are included.
  • the plurality of active regions surrounded by the element isolation trench 33 are, in order from the left, a 5V NMOSFET region 35a, a 5V PMOSFET region 35b, and a 5V low threshold NMOSFET.
  • a region 35c, a 1.8V NMOSFET region 35d, and a 1.8V PMOSFET region 35e are formed.
  • a silicon oxide film is formed to a thickness of 3 nm on the inner surface of the element isolation trench 33 by a thermal oxidation method.
  • a silicon oxide film 36a is grown on the silicon nitride film 32 and in the element isolation trench 33 by a high-density plasma CVD method.
  • the silicon oxide film 36 a is grown to a thickness that completely fills the element isolation trench 33, for example, a thickness of 500 nm on the silicon nitride film 32.
  • the silicon oxide film 36a on the silicon nitride film 32 is removed by a chemical mechanical polishing (CMP) method, and the upper surface of the remaining silicon oxide film 36a is removed. To flatten.
  • the silicon nitride film 32 functions as a polishing stopper.
  • the silicon oxide film 36 a remaining in the element isolation trench 33 is used as a shallow trench isolation (STI) 36.
  • STI shallow trench isolation
  • the STI 36 formed at a position sandwiching the plurality of stripe-shaped active regions 34 is formed substantially parallel to the bit line BL and the source line SL.
  • a plurality of such STIs 36 are arranged at intervals in a direction orthogonal to the word lines WL1 and WL2.
  • the silicon oxide film 36a constituting the STI 36 is annealed to be densified.
  • the silicon nitride film 32 is removed by phosphoric acid boiling.
  • the silicon oxide film 31 first formed on the surface of the silicon substrate 11 is removed by hydrogen fluoride.
  • the surface of the silicon substrate 11 is thermally oxidized to form a sacrificial oxide film 37 with a thickness of 10 nm, for example.
  • n-type impurities such as arsenic (As) and phosphorus (P) are ion-implanted into the memory cell array region of the silicon substrate 11 to form an N well 12.
  • n-type impurities are ion-implanted into the 5V PMOSFET region 35b and the 1.8V PMOSFET region 36e in the peripheral circuit region of the silicon substrate 11 to form N wells 42a and 42b.
  • the peripheral circuit area includes a logic area.
  • p-type impurities such as boron (B) are ion-implanted to form P wells 41a and 41b.
  • the ion implantation of these n-type impurity and p-type impurity is selected by covering a region where no ion implantation is performed with a photoresist. Accordingly, in the ion implantation process, the pattern formation of the photoresist, ion implantation, and photoresist removal are repeated a plurality of times.
  • an ONO film 13 is formed on the silicon substrate 11.
  • the ONO film 13 has the layer structure shown in FIG. 2, and after the lower silicon oxide film 13a having a thickness of 2.4 nm is formed on the surface of the silicon substrate 11 by a thermal oxidation method, the ONO film 13 is formed on the lower silicon oxide film 13a. Then, a silicon nitride film 13b is formed to a predetermined thickness by the CVD method. Further, the upper silicon oxide film 13c is formed by thermally oxidizing the upper layer portion of the silicon nitride film 13b. Thereby, the thickness of the upper silicon oxide film 13c is set to 4 nm, for example, and the thickness of the remaining silicon nitride film 13b is set to 4 nm.
  • the ONO film is formed with the memory transistor formation region 34b in the memory cell array region and the 1.8V NMOSFET region 35d and 1.8V PMOSFET region 35e in the peripheral circuit region covered with a resist pattern (not shown). 13 is etched.
  • the ONO film 13 is etched by, for example, a reactive ion etching (RIE) method and a wet etching method using hydrofluoric acid.
  • RIE reactive ion etching
  • the selection transistor formation region 34a in the memory cell region and the 5V NMOSFET region 35a, the 5V PMOSFET region 35b, and the 5V low threshold NMOSFET 35c region in the peripheral circuit region are exposed on the surface of the silicon substrate 11.
  • a silicon oxide film is grown as a first gate insulating film 38 to a thickness of, for example, 9 nm on the surface of the silicon substrate 11 in a region not covered with the ONO film 13 by a thermal oxidation method.
  • FIGS. 9A to 9C is formed.
  • the ONO film 13 in these regions is etched in a state where the regions other than the 1.8V NMOSFET region 35d and the 1.8V PMOSFET region 35e in the peripheral circuit region are covered with a resist pattern (not shown). After the etching, the resist pattern is removed.
  • the first gate insulating film 38 is thickened to 12 nm by thermal oxidation, and the 1.8V NMOSFET region 35d and the 1.8V PMOSFET region are formed.
  • a silicon oxide film to be the second gate insulating film 39 is grown to a thickness of 3 nm on the surface of 35e.
  • the first gate electrode 38 in the select transistor formation region 34a becomes the gate insulating film 17 shown in FIG.
  • a first gate insulating film 38 having a thickness of 12 nm is formed in the select transistor formation region 35a, and the 5V NMOSFET region 35a, the 5V PMOSFET region 35b, and the 5V low threshold NMOSFET region 35c are also thick.
  • a 12 nm first gate insulating film 38 is formed.
  • the ONO film 13 is separated on the STI 36, and further, the selection transistor formation region 34b is exposed and has a pattern shape covering the memory transistor formation region. .
  • a polysilicon film is formed to a thickness of 180 nm on the ONO film 13 and the first and second gate insulating films 38 and 39 by the CVD method.
  • the polysilicon film may be formed by a step of heat-treating the amorphous silicon film after the amorphous silicon film is formed.
  • the polysilicon film is etched by the RIE method. In the RIE method, a chlorine-based gas is used as an etching gas.
  • the polysilicon film has a plurality of stripe shapes extending in the row direction, and these are word lines WL1 and WL2.
  • the word lines WL1 and WL2 are in a state where the word lines WL1 and WL2 overlap the ONO film 13 in the memory transistor formation region, as shown in FIG. 19C.
  • a part of the word lines WL1 and WL2 becomes the selection gate electrode 14 and the memory gate electrode 18 shown in FIG.
  • the interval between the selection gate electrode 14 and the memory gate electrode 18 in each memory cell is, for example, about 0.18 ⁇ m.
  • a 5V NMOSFET region 35a a 5V PMOSFET region 35b, a 5V low threshold NMOSFET region 35c, a 1.8V NMOSFET region 35d, and a 1.8V PMOSFET.
  • gate electrodes 51g, 52g, 53g, 54g, and 55g made of a stripe-shaped polysilicon film and other wirings are formed.
  • n-type impurities are ion-implanted into the P wells 41a and 41b and the 5V low-threshold NMOSFET region 35c in the peripheral circuit region. Regions 51a, 51b, 53a, 53b, 54a, and 54b are formed. Further, p-type impurities are ion-implanted into the N wells 42a and 42b using the gate electrodes 52g and 55g as masks to form p-type extension regions 52a, 52b, 55a, and 55b as source / drain regions. Note that when ion implantation of p-type impurities or n-type impurities is performed, a region where ions are not implanted is covered with a photoresist.
  • the peripheral circuit region is covered with a photoresist 50 and the memory cell array region is exposed.
  • the word lines WL1 and WL2 as a mask, the upper silicon oxide film 13c and the silicon nitride film 13b of the ONO film 13 in the regions exposed from the word lines WL1 and WL2 are respectively removed by reactive ion etching (RIE). .
  • RIE reactive ion etching
  • the lower silicon oxide film 13 of the ONO film 13 is left.
  • the gate insulating film 17 in the region exposed from the word lines WL1 and WL2 is also thinned.
  • the ONO film 13 exists as it is under the word lines WL1 and WL2, that is, the memory gate electrode.
  • p-type impurities are ion-implanted into the memory cell array region using the word lines WL1 and WL2 as a mask.
  • ion implantation conditions in this case, boron fluoride ions are used, the ion implantation energy is 30 Kev, and the dose is 3 ⁇ 10 14 / cm 2 .
  • the p-type extension regions 15a and 19a and the p-type source / drain region 16 shown in FIG. 2 are formed on both sides of the word lines WL1 and WL2.
  • the p-type source / drain region 16 is formed in a region sandwiched between the memory gate electrode 14 and the selection gate electrode 18 in each of the memory cell regions. Thereafter, the photoresist 50 is removed.
  • a silicon oxide film having a thickness of about 100 nm is formed on the word lines WL1 and WL2, the gate electrodes 51g, 52g, 53g, 54g, and 55g and the silicon substrate 11 by a CVD method. After that, the silicon oxide film is etched back to expose a part of the silicon substrate 11 and leave it as a sidewall 20 on the side walls of the word lines WL1 and WL2 and the gate electrodes 51g, 52g, 53g, 54g and 55g. A side wall 20 is buried between the selection gate electrode 18 and the memory gate electrode 14 in each memory cell.
  • boron fluoride ions are implanted as a p-type impurity into the N well 12 using the word lines WL1 and WL2 and the sidewalls 20 in the memory cell array region as masks.
  • boron fluoride ions are implanted as p-type impurities into the N wells 42a and 42b using the gate electrodes 52g and 55g and the sidewalls 20 in the peripheral circuit region as masks.
  • no p-type high concentration impurity diffusion region is formed in the p-type source / drain region 16.
  • the p-type high concentration impurity diffusion region 19b of the p-type drain region 15 shared by the adjacent selection transistors ST is formed. Furthermore, a p-type high concentration impurity diffusion region 15b of the p-type source region 15 shared by adjacent memory transistors MT is formed.
  • p-type high concentration impurity diffusion regions 52c, 52d, 55c, and 55d in the source / drain regions are formed on both sides of the gate electrodes 52g and 55g.
  • arsenic is ion-implanted as an n-type impurity using the gate electrodes 51g, 53g and 54g and the sidewall 20 as a mask, thereby forming an n-type high source / drain region.
  • Concentration impurity diffusion regions 51c, 51d, 53c, and 53d are formed.
  • a cobalt film is deposited on the entire surface by sputtering. Thereafter, by performing heat treatment at a temperature of 400 ° C. to 900 ° C., the polysilicon film and the cobalt film constituting the word lines WL1 and WL2 and the gate electrodes 51g, 52g, 53g, 54g, and 55g are caused to undergo a silicidation reaction. Silicide layers 21a, 21b, 21e, 21f, 21g, 21h, and 21i are formed on the top surfaces of WL1 and WL2 and the gate electrodes 51g, 52g, 53g, 54g, and 55g.
  • silicide reaction is performed between the silicon substrate 1 and the cobalt film to form silicide layers 21c, 21d, 21j, 21k, 21m, 21n, and 21p. Thereafter, the unreacted cobalt film is removed using hydrofluoric acid or the like.
  • the bulk process is completed, and a plurality of memory cells MC including the selection transistors ST and the memory transistors MT are alternately formed in the stripe-shaped active region 34 in the memory cell array region.
  • NMOSFETs t 1 , t 3 and t 4 are formed in the P wells 41 a and 41 b in the peripheral circuit region, and PMOSFETs t 2 and t 5 are formed in the N wells 42 a and 42 b.
  • a silicon nitride film 56 as an etch stop film is formed on the silicide layers 21a to 21k, 21m, 21n, 21p, STI 36, etc. to a thickness of 20 nm by the CVD method.
  • a BPSG (boron phosphorus silica glass) film as a first interlayer insulating film 57 on the silicon nitride film 56 to a thickness of 1600 nm by the CVD method, the BPSG film is planarized by heat treatment.
  • the first interlayer insulating film 57 and the silicon nitride film 56 are patterned by a photolithographic method, whereby a plurality of p-type high-concentration impurity diffusions in the memory cell array region are performed.
  • Contact holes 22a and 22b are formed on the regions 15b and 19b.
  • the first interlayer insulating film 57 and the silicon nitride film 56 correspond to the interlayer insulating film 22 shown in FIG.
  • a titanium (Ti) film having a thickness of 30 nm, a titanium nitride (TiN) film having a thickness of 20 nm, and a tungsten (W) film having a thickness of 300 nm are formed in the contact holes 22a and 22b and the upper surface of the first interlayer insulating film 57.
  • TiN titanium nitride
  • W tungsten
  • the W film, the TiN film, and the Ti film left in the contact holes 22a and 22b are used as the conductive contact plugs 23 and 24, respectively.
  • the plurality of conductive contact plugs 23 and 24 formed in the memory cell array region are connected to the p-type high concentration impurity diffusion regions 15b and 19b in the active region 34, as shown in FIG. 19E.
  • a 60 nm thick Ti film, a 30 nm thick TiN film, a 360 nm thick aluminum (Al) film, and a 5 nm thick Ti film are formed on the first interlayer insulating film 57 and the conductive contact plugs 23 and 24.
  • a first conductive film made of a film and a 70 nm thick TiN film is sequentially formed by, for example, sputtering.
  • a plurality of conductive pads 59 connected separately for each of the conductive contact plugs 23 and 24 are formed. That is, as shown in FIG. 19F, the conductive pads 59 are formed above the p-type high-concentration impurity diffusion regions 15b and 19b and their peripheral regions, and are further arranged in a matrix in the column direction and the row direction.
  • a lower silicon oxide film 60a covering the conductive pad 59 is formed to a thickness of 720 nm by a high density plasma CVD method.
  • an upper silicon oxide film 60b having a thickness of 1100 nm is formed on the lower silicon oxide film 60a by a CVD method using TEOS (tetraethoxysilane) as a reaction gas.
  • TEOS tetraethoxysilane
  • the two silicon oxide films 60 a and 60 b formed in succession are used as the second interlayer insulating film 61.
  • the surface of the second interlayer insulating film 61 is polished and planarized by the CMP method.
  • the second interlayer insulating film 61 is patterned by photolithography to form first and second via holes 61 a and 61 b on the conductive pad 59. As shown in FIG. 19G, one first via hole 61 a is formed for each p-type source region 15, and one second via hole 61 b is formed for each p-type drain region 19.
  • the first via hole 61 a is disposed near one end of the conductive pad 59 and connected to the p-type source region 15.
  • the second via hole 61 b is disposed near the other end of the conductive pad 59 and connected to the p-type drain region 19.
  • the first via holes 61a and the second via holes 61b are alternately arranged in the extending direction of the word lines WL1 and WL2. Furthermore, a plurality of first via holes 61 a are arranged along the same active region 34, and a plurality of second via holes 61 b are arranged along the same active region 34.
  • a Ti film having a thickness of 10 nm, a TiN film having a thickness of 7 nm, and a W film having a thickness of 300 nm are sequentially formed in the first and second via holes 61 a and 61 b and on the second interlayer insulating film 61.
  • the W film, the TiN film, and the Ti film are polished by CMP and removed from the second interlayer insulating film 61. Thereby, the W film, TiN film, and Ti film remaining in the first and second via holes 61a and 61b become the first and second vias 62a and 62b.
  • a 60 nm thick Ti film, a 30 nm thick TiN film, a 360 nm thick Al film, and a 5 nm thick Ti film are formed on the second interlayer insulating film 61 and the first and second vias 62a and 62b.
  • a second conductive film made of a TiN film having a thickness of 70 nm is sequentially formed by, for example, a sputtering method.
  • a plurality of rectangular source branch lines 63a and a plurality of substantially rectangular bit branch lines 63b are formed.
  • the source branch line 63a is the source branch line SLd shown in FIG. 1
  • the bit branch line 63b is the bit branch line BLd shown in FIG.
  • the source branch lines 63a and the bit branch lines 63b are alternately arranged in a zigzag manner in a direction orthogonal to the word lines WL1 and WL2.
  • the source branch line 63a connects two first vias 62a that are obliquely adjacent to the word lines WL1 and WL2, thereby connecting the first branch 62a to the p-type source region 15 of the memory transistor MT via the first via 62a and the like. Electrically connected.
  • the bit branch line 63b connects two second vias 62b adjacent to each other in the opposite diagonal direction to the word lines WL1 and WL2, thereby selecting the memory cell selection transistor ST via the second via 62b.
  • the p-type drain region 19 is electrically connected.
  • a lower silicon oxide film 64a covering the source branch line 63a and the bit branch line 63b is formed to a thickness of 720 nm by a high density plasma CVD method.
  • an upper silicon oxide film 64b having a thickness of 1100 nm is formed on the lower silicon oxide film 64a by a CVD method using TEOS as a reaction gas.
  • the two silicon oxide films 64a and 64b formed in succession are used as the third interlayer insulating film 64, and the surface thereof is polished by CMP to planarize the third interlayer insulating film 64.
  • the third interlayer insulating film 64 is patterned by photolithography, and as shown in FIG. 19I, a third via hole 64a and a fourth via hole are respectively formed on the centers of the source branch line 63a and the bit branch line 63b. 64b is formed. Subsequently, a Ti film having a thickness of 10 nm, a TiN film having a thickness of 7 nm, and a W film having a thickness of 300 nm are sequentially formed in the third and fourth via holes 64 a and 64 b and on the third interlayer insulating film 64.
  • the W film, the TiN film, and the Ti film are polished by CMP and removed from the upper surface of the third interlayer insulating film 64.
  • the W film, the TiN film, and the Ti film remaining in the third and fourth via holes 64a and 64b are defined as the third and fourth vias 65a and 65b.
  • a Ti film with a thickness of 60 nm, a TiN film with a thickness of 30 nm, an Al film with a thickness of 360 nm, and a Ti film with a thickness of 5 nm are formed on the third interlayer insulating film 64 and the third and fourth vias 65a and 65b.
  • a third conductive film made of a TiN film having a thickness of 70 nm is sequentially formed by, for example, a sputtering method.
  • each source line SL is electrically connected to a plurality of source branch lines 63a through a plurality of third vias 65a formed in a direction orthogonal to the word lines WL1 and WL2.
  • Each bit line BL is connected to a plurality of bit branch lines 63b through a plurality of fourth vias 65b formed in a direction orthogonal to the word lines WL1 and WL2.
  • fourth and fifth interlayer insulating films 66 and 67 covering the source line SL and the bit line BL are formed.
  • the fourth and fifth interlayer insulating films 66 and 67 are formed using substantially the same method as the third interlayer insulating film 64, respectively.
  • a silicon oxide film 68 is formed by a high-density plasma CVD method.
  • a silicon nitride film is formed as a cover film 69 to a thickness of 1000 nm by a plasma CVD method.
  • the three-layer metal wiring pattern is formed as described above.
  • the three-layer metal wiring pattern includes a conductive pad 59 on the first interlayer insulating film 57, a source branch line 63a and a bit branch line 63b on the second interlayer insulating film 61, and a source on the third interlayer insulating film 64.
  • Line SL and bit line BL are formed in the peripheral circuit region.
  • more than that, for example, five layers of metal wiring are formed. Therefore, the wiring forming process in the peripheral circuit region will be briefly described with reference to FIG.
  • the conductive contact plugs 58c to 58h connected to the NMOSFETs t 1 , t 3 , t 4 , PMOSEFTt 2 , t 5 in the peripheral circuit region.
  • a first metal wiring 59a connected to the conductive contact plugs 58c to 58h is formed on the first interlayer insulating film 57 in the peripheral circuit region.
  • first vias 62a and 62b are formed in the memory cell region, and at the same time, a fifth via 62c connected to a part of the first metal wiring 59a. , 62d, 62e are formed. Thereafter, the source branch line 63a and the bit branch line 63b are formed in the memory cell region, and at the same time, in the peripheral circuit region, the second metal wiring 63c connected to the fifth vias 62c, 62d, and 62e is connected to the second interlayer insulating film. 61 is formed.
  • the second metal wiring 63 c is covered with the third interlayer insulating film 64 and is connected to sixth vias 65 c and 65 d formed in the third interlayer insulating film 64. Further, in the peripheral circuit region, the source line SL and the bit line BL are formed, and at the same time, the third metal wiring 70 is formed on the third interlayer insulating film 64. A seventh via 71 connected to a part of the third metal wiring 70 is formed in the fourth interlayer insulating film 66 formed thereafter. Thereafter, a fourth metal wiring layer 72, a fifth interlayer insulating film 67, eighth vias 73a and 73b, a fifth metal wiring 74, a silicon oxide film 68, and a cover film 69 are formed in this order.
  • the sixth, seventh, and eighth vias 65c, 65d, 71, 73a, and 73b are formed by substantially the same method as the third and fourth vias 65a and 65b in the memory cell region.
  • the fourth and fifth metal wirings 72 and 74 are formed by substantially the same method as the formation of the third metal wiring 70 or a similar method. According to the process as described above, the bit branch line 63a and the source branch line 73b that connect the diagonally adjacent memory cells MC are placed in the layer between the memory cell MC and the bit line BL, thereby allowing the memory shown in FIG. A cell array is configured. However, since the bit branch line 63a and the source branch line 63b are formed at the same time as the second metal wiring 63c in the peripheral circuit region, the number of processes does not increase as compared with the prior art.
  • FIG. 20 is a cross-sectional view showing a memory cell array of a flash memory which is a semiconductor device according to the second embodiment of the present invention. 20, the same reference numerals as those in FIG. 2 denote the same elements.
  • a memory cell MC shown in FIG. 20 includes a memory transistor MT and a selection transistor ST.
  • the memory transistor MT includes a memory gate electrode 14, a p-type source region 15, a p-type source / drain region 16, an ONO film 13, and the like.
  • the selection transistor ST includes a selection gate electrode 18, a p-type source / drain region 16, a p-type source region 19 and the like, as in the first embodiment.
  • the gate insulating film 17a formed between the selection gate electrode 18 and the N well 12 is thinner than the gate insulating film 17 of the first embodiment, for example, 7 nm.
  • the breakdown voltage of the insulating film 17a is equal to or lower than the memory erase voltage of the ONO film 13.
  • the gate insulating film 17a constituting the selection transistor ST is thinned and a voltage higher than the threshold is applied to the selection gate electrode 18, the surface layer of the N well 12 between the p-type source / drain region 16 and the p-type drain region 19 Therefore, a channel is easily formed. As a result, a larger channel current flows than the selection transistor ST of the first embodiment, and the probability of a read error is reduced.
  • FIG. 21 shows an example of voltages applied to the bit line BL, the source line SL, the first word line WL1, and the second word line WL2 in the memory cell array during memory erasure.
  • + 3V is applied to one of two word lines WL1 and WL2 connected to the memory gate electrode 14 and the selection gate electrode 18 of the memory cell MC, and ⁇ 5V is applied to the other.
  • 5V is applied to the source line SL and the N well 12 respectively, and the voltage of the bit line BL is set to 0V.
  • Data erasure of the memory cell is performed in two steps as follows.
  • ⁇ 5 V is applied to the memory gate electrode 14 and +3 V is applied to the selection gate electrode 18 of the first memory cell MC1.
  • +3 V is applied to the selection gate electrode 18 of the first memory cell MC1.
  • electrons in the silicon nitride film 13b of the ONO film 13 move to the N well 12 due to a tunnel phenomenon, and data is erased. Further, no channel is formed below the selection gate electrode 18.
  • ⁇ 5V is applied to the selection gate electrode 18 in the second memory cell MC2 adjacent to the first memory cell MC1 in the word line extending direction.
  • a channel is formed below the selection gate electrode 18 of the selection transistor ST.
  • the bit line BL is 0V
  • the channel is 0V.
  • a voltage of +3 V is applied to the memory gate electrode 14
  • no channel is formed below it, and the potential difference of the N well 12 is small, and electrons are not injected into the memory transistor MT.
  • the voltages applied to the adjacent word lines WL1 and WL2 are opposite to those in the first step.
  • +3 V is applied to the memory gate electrode 14 and ⁇ 5 is applied to the selection gate electrode 18 of the second memory cell MC2.
  • the second memory cell MC electrons in the ONO film 13 of the memory transistor MT move to the N well 12 due to a tunnel phenomenon, and data is erased.
  • a channel is formed in the selection transistor of the first memory cell MC1, but since the bit line is 0V, the channel is 0V.
  • bit line BL is set to 0 V at the time of erasing, only a voltage of ⁇ 5 V is applied to the gate insulating film 17a of the selection transistor ST in the memory cell MC to be erased. Thin film thickness is better than The reason why 3V is applied to the word line WL2 connected to the selection transistor ST of the memory cell MC to be erased is to prevent the selection transistor SL from being turned on, and the source line SL in the memory cell MC. This is to prevent a current from flowing through the bit line BL.
  • the memory cell shown in FIG. 20 is applied as the memory cell MC of the memory cell array shown in FIG.
  • the STI 36 is formed on the silicon substrate 11 to form the N wells 12, 42a, 42b and the P wells 41a, 41b, and then the ONO film 13 as shown in FIG. Form.
  • the gate insulating film 17a of the selection transistor ST is formed by the following process.
  • the ONO film 13 in the 5V NMOSFET region 35a, the 5V PMOSFET region 35b, and the 5V low threshold NMOSFET region 35c in the peripheral circuit region is subjected to, for example, a reactive ion etching (RIE) method and a wet etching method using hydrofluoric acid. Use to remove.
  • RIE reactive ion etching
  • the ONO film 13 in the other region is covered with a photoresist.
  • the 5V NMOSFET region 35a, the 5V PMOSFET region 35b, and the 5V low threshold NMOSFET region 35c in the peripheral circuit region are removed with the photoresist removed.
  • a silicon oxide film having a thickness of 5 nm is formed as the gate insulating film 38.
  • the ONO film 13 in the select transistor formation region 34b is removed by a process similar to that of the first embodiment.
  • the surface of the silicon substrate 11 in the selection transistor region 34b is thermally oxidized to form a silicon oxide film having a thickness of 4 nm as the gate insulating film 17a.
  • the thickness of the gate oxide film 38 already formed in the peripheral circuit region is 9 nm.
  • the ONO film 13 in the 1.8V NMOSFET 35d region and the 1.8V PMOSFET region 35e in the peripheral circuit region is removed by etching in the same process as in the first embodiment.
  • the surface of the silicon substrate 11 in the 1.8V NMOSFET region 35d and the 1.8V PMOSFET region 35e is thermally oxidized to form a silicon oxide as a gate insulating film 39.
  • a film is formed to a thickness of 3 nm.
  • the gate insulating film 38 in the 5V NMOSFET region 35a, the 5V PMOSFET region 35b, and the 5V low threshold NMOSFET region 35c increases to 12 nm, and the gate insulating film 17a in the select transistor formation region 34b increases to 7 nm.
  • a memory device is formed according to the same process as in the first embodiment.
  • the breakdown voltage of the gate insulating film 17a of the select transistor ST formed by the above process is equal to or less than the potential difference between the word lines WL1 and WL2 and the source line SL at the time of memory erasing, but as shown in Table 1 at the time of writing and reading. At the time of erasing, no voltage exceeding the withstand voltage is applied as described above, so there is no problem.
  • FIG. 26 is a cross-sectional view showing a memory array of a flash memory which is a semiconductor device according to the third embodiment of the present invention. 26, the same reference numerals as those in FIG. 2 denote the same elements.
  • a memory cell MC shown in FIG. 26 includes a memory transistor MT and a selection transistor ST.
  • the memory transistor MT has a memory gate electrode 14, a p-type source region, a p-type source / drain region 16, an ONO film 13, and the like, as in the second embodiment.
  • the selection transistor ST includes a selection gate electrode 18, a p-type drain region, a p-type source / drain region 16, a gate insulating film 17a and the like as in the second embodiment. Note that the gate insulating film 17a of the selection transistor ST may have the same thickness as that of the first embodiment.
  • n-type impurity diffusion regions 15 c and 19 c having an impurity concentration higher than that of the N well 12 are formed around the p-type source region 15 and the p-type drain region 19.
  • the change in the impurity concentration distribution of the pn junction at the boundary between the p-type source region 15 and the N well 12 becomes steep and the diffusion potential increases, so that electrons generated by avalanche breakdown or interband tunneling are generated by the ONO film 13. It becomes easy to be injected inside.
  • the n-type impurity diffusion region is not formed around the p-type source / drain region 16 because of the potential difference between the p-type source / drain region 16 and the N-well 12 at the time of erasing shown in the second embodiment. This is to prevent avalanche breakdown or band-to-band tunneling from occurring in the p-type source / drain region 16.
  • the memory cell is applied as a memory cell of the circuit shown in FIG.
  • the STI 36, the N wells 12, 42a, 42b, the P wells 41a, 41b are formed in the silicon substrate 11, and the ONO film 13 and the word lines WL1, WL2 are formed.
  • 12 (a) and 12 (b) p-type extension regions 15a and 19a are formed on the sides of the memory gate electrode 14 and the selection gate electrode 18, respectively.
  • the memory gate electrode 14 and the selection gate electrode 18 constitute part of the word lines WL1 and WL2.
  • a resist pattern R is formed to expose the p-type extension regions 15a and 19a in the memory cell array region, while covering the p-type source / drain region 16 and other regions.
  • the resist pattern R is formed by applying a photoresist on the entire surface of the silicon substrate 11 to cover the word lines WL1, WL2, etc., and then exposing and developing the photoresist.
  • arsenic as an n-type dopant is ion-implanted into the p-type extension regions 15a and 19a not covered with the resist pattern R under the conditions of an acceleration energy of 20 keV and a dose of 1 ⁇ 10 13 / cm 2 , thereby diffusing the n-type impurity. Regions 15c and 19c are formed.
  • the sidewall 20 is formed as in the first embodiment, and the p-type source region 15 of the silicon substrate 11 and the p-type high-concentration impurity diffusion regions 15b, 19b of the p-type drain region 19 are formed.
  • the impurity is activated by heat treatment after the impurity ion implantation.
  • Subsequent steps form a memory device according to the first embodiment. Thereby, the memory cell shown in FIG. 26 is completed.
  • FIG. 28 is a sectional view showing a memory array of a flash memory which is a semiconductor device according to the fourth embodiment of the present invention. 28, the same reference numerals as those in FIG. 2 denote the same elements.
  • a memory cell MC shown in FIG. 28 includes a memory transistor MT and a selection transistor ST.
  • the memory transistor MT has a memory gate electrode 14, a p-type source region 15, a p-type source / drain region 16a, an ONO film 13, and the like, as in the second embodiment.
  • the selection transistor ST includes a selection gate electrode 18, a p-type drain region 19, a p-type source / drain region 16a, a gate insulating film 17a, and the like.
  • the impurity concentration of the p-type source / drain region 16a in the region between the memory gate electrode 14 and the selection gate electrode 18 is lower than that of the p-type source / drain region 16 of the second embodiment, and the LDD region It has become. According to such a structure, the diffusion potential of the pn junction existing in the region between the memory gate electrode 14 and the selection gate electrode 18 is reduced, and avalanche breakdown or interband tunneling is less likely to occur.
  • 5 V is applied to the N well 12 and 0 V is applied to the p-type drain region 19 in the memory cell MC that is not the object of erasure, thereby p-type source / drain. Even when a potential difference of about 5 V occurs in the region 16, avalanche breakdown or band-to-band tunneling hardly occurs in the second p-type source / drain region 16, and erroneous writing to the memory cell MC is prevented.
  • the STI 36, the N wells 12, 42a, 42b, and the P wells 41a, 41b are formed in the silicon substrate 11, and the ONO film 13 and the word lines WL1, WL2 are formed.
  • a photoresist is applied to the entire surface of the silicon substrate 11, and then exposed and developed to cover the peripheral circuit region, and in the memory cell array region, the selection gate electrode 18 and forming a resist pattern R 1 covering between two word lines WL1, WL2 to be the gate electrode 14 for memory.
  • boron fluoride is used as a p-type impurity in the region between the memory gate electrodes 14 and the region between the selection gate electrodes 18 with acceleration energy of 30 keV and a dose of 3 ⁇ 10 14 / Inject under conditions of cm 2 .
  • the p-type extension regions 15 a and 19 a of the p-type source region 15 and the p-type drain region 19 are formed. Removing the resist pattern R 1 thereafter.
  • a photoresist is again applied to the entire surface of the silicon substrate 11, and then exposed and developed, so that a region between the selection gate electrode 18 and the memory gate electrode 14 is formed. causes exposed to form a resist pattern R 2 covering the other region.
  • boron fluoride as a p-type impurity is implanted into the N well 12 in the region between the selection gate electrode 18 and the memory gate electrode 14 under conditions of an acceleration energy of 30 keV and a dose of 5 ⁇ 10 13 / cm 2. To do. As a result, a p-type source / drain region 16a having a low impurity concentration is formed. Removing the resist pattern R 2 thereafter. After that, when the sidewall 20 is formed by the same method as in the first embodiment and then the p-type high concentration impurity diffusion regions 15b and 19b are formed, the memory cell MC shown in FIG. 28 is formed. The subsequent steps are the same as those in the first embodiment.
  • FIG. 30 is a cross-sectional view showing a memory cell used in an OTP (one time programmable) ROM, which is a semiconductor device according to a fifth embodiment of the present invention.
  • the same reference numerals as those in FIG. 20 indicate the same elements.
  • the memory transistor MT has a memory gate electrode 14, a p-type source region 15, a p-type source / drain region 16 and the like, as in the second embodiment.
  • the selection transistor ST includes a selection gate electrode 18, a p-type drain region 19, a p-type source / drain region 16 and the like, as in the second embodiment.
  • the memory cell MC is connected to the word lines WL1 and WL2, the bit line BL, and the source line SL as shown in FIG.
  • the difference from the memory cell MC shown in the second embodiment is that the lower silicon oxide film 13d constituting the ONO film 13 of the memory transistor MT is formed to be 4 nm thick and the gate insulating film 17b of the select transistor ST. Is thinly formed to a thickness of 3 nm.
  • Table 2 lists examples of voltage values applied to the respective parts during writing and reading.
  • Table 2 shows a case where the word line WL1 is connected to the selection transistor (selection TR) and the word line WL2 is connected to the memory transistor (memory TR). Note that the values shown in parentheses in Table 2 indicate the voltage of the non-selected line.
  • a voltage of 1.8 V is applied to the memory gate electrode 14 of the memory transistor MT through the word line WL2, and a voltage of ⁇ 5 V is applied to the source line SL.
  • each voltage of the bit line BL and the N well 12 is set to 0V.
  • the threshold value of the memory transistor MT changes to a positive value.
  • the voltage of the bit line BL is 0 V, and no current flows in the channel region of the select transistor ST.
  • the voltage of the source line SL connected to the unselected memory cell MC is 0 V, and no electrons are generated due to band-to-band tunneling. Reading from the memory cell MC is the same as that of the memory cell of the first embodiment.
  • the main characteristic of the operating voltage condition in this embodiment is that erasing is not required. Therefore, unlike Table 1, the voltage for the word line WL and the bit line BL is larger than the voltage required for reading. It is not necessary to apply a voltage. That is, a voltage higher than the breakdown voltage of the low voltage transistor is not applied to the word line WL and the bit line BL. Therefore, the word line decoders 4a and 4b and the bit line decoder 3 shown in FIG. 1 can be composed of low voltage transistors. Since the low voltage transistor has a small area, the size of the peripheral circuit can be reduced. In addition, high-speed reading can be performed using the performance of the low-voltage transistor.
  • the STI 36 is formed on the silicon substrate 11 to form the N wells 12, 42a, 42b and the P wells 41a, 41b, and then the ONO film 13 as shown in FIG. Form.
  • the thicknesses of the lower silicon oxide film 13d, the upper silicon oxide film 13c, and the silicon nitride film 13b constituting the ONO film 13 are 4 nm, respectively.
  • the lower silicon oxide film 13d is formed by a thermal oxidation method as in the first embodiment.
  • the gate insulating film 17b of the select transistor ST is formed by the following process.
  • the ONO film 13 in the 5V NMOSFET region 35a, the 5V PMOSFET region 35b, and the 5V low threshold NMOSFET region 35c in the peripheral circuit region is formed by, for example, a reactive ion etching (RIE) method and a wet etching method using hydrofluoric acid. Use to remove.
  • RIE reactive ion etching
  • the ONO film 13 in the other region is covered with a photoresist.
  • the silicon substrate of the 5V NMOSFET region 35a, the 5V PMOSFET region 35b, and the 5V low threshold NMOSFET region 35c in the peripheral circuit region, as shown in FIGS. 11 is thermally oxidized to form a silicon oxide film having a thickness of about 9 nm as the gate insulating film 38.
  • the ONO film 13 in the select transistor formation region 34b is etched with the memory transistor formation region in the memory cell array region and a part of the peripheral circuit region covered with a resist pattern.
  • the select transistor formation region 34b in the memory cell array region and the 1.8V NMOSFET region 35d and the 1.8V PMOSFET region 35e in the peripheral circuit region are exposed on the surface of the silicon substrate 11.
  • the surface of the silicon substrate 11 in the selection transistor region 34b, the 1.8V NMOSFET region 35d and the 1.8V PMOSFET region 35e in the peripheral circuit region is thermally oxidized.
  • a silicon oxide film having a thickness of 3 nm is formed as the gate insulating films 17b and 39.
  • the thickness of the gate oxide film 38 already formed in a part of the peripheral circuit region is 12 nm.
  • a memory device is formed according to the same process as in the first embodiment.
  • the breakdown voltage of the gate insulating film 17b of the selection transistor ST formed by the above process is equal to or less than the potential difference between the word lines WL1 and WL2 and the bit line BL. However, as described above, a voltage higher than the breakdown voltage is applied to the gate insulating film 17b. Not applied.
  • FIG. 32 is a cross-sectional view showing a memory cell of a flash memory which is a semiconductor device according to the sixth embodiment of the present invention. 32, the same reference numerals as those in FIG. 1 denote the same elements.
  • a memory cell MC shown in FIG. 31 includes an n-type memory transistor MT and an n-type selection transistor ST. The selection transistor ST is connected to a bit line BL, and the memory transistor MT is connected to a source line SL.
  • the memory transistor MT includes an ONO film 13 which is a charge holding layer formed on the P well 72 of the silicon substrate 11, a memory gate electrode 74 formed on the ONO film 13, and both sides of the memory gate electrode 74. It has an n-type source region 75 and an n-type source / drain region 76 formed in the P-well 72. In the P well 72 between the n-type source region 75 and the n-type source / drain region 76, impurities are implanted for adjusting the threshold voltage.
  • the selection transistor ST includes a selection gate electrode 78 formed on the P well 72 via the gate insulating film 17, and an n-type drain region 79 formed in the P well 72 on both sides of the selection gate electrode 78. And an n-type source / drain diffusion region 76. Note that the memory transistor MT and the select transistor ST share a common n-type source / drain region 76.
  • the selection gate electrode 78 and the memory gate electrode 74 constitute part of one of the word lines WL1 or WL2, and are arranged substantially in parallel.
  • the n-type source region 75 and the n-type drain region 79 are composed of extension regions 75a and 79a of n-type low concentration impurity diffusion regions and n-type high concentration impurity diffusion regions 75b and 79b, respectively.
  • p-type impurity regions 75 c and 79 c having a higher impurity concentration than the P well 72 are formed around the n-type source region 75 and the n-type drain region 79, respectively.
  • the impurity concentration distribution of the pn junction formed by the n-type source region 75, the n-type drain region 79, and the periphery thereof changes sharply, and avalanche breakdown and band-to-band tunneling are likely to occur.
  • Silicide layers 21a and 21b are formed on the upper portion of the memory gate electrode 74 and the selection gate electrode 78, and silicide layers 21c and 21d are also formed on the surfaces of the n-type source region 75 and the n-type drain region 79, respectively.
  • the silicide layer for example, a cobalt silicide layer having a thickness of 8 nm is formed.
  • an insulating sidewall 20 is formed on each side surface of the memory gate electrode 74 and the selection gate electrode 79.
  • the memory transistor MT and the select transistor ST are covered with an interlayer insulating film 22. Further, first and second contact holes 22a and 22b are formed in the interlayer insulating film 22 on the n-type source region 75 and the n-type drain region 79, respectively. A plug 24 is embedded. The first conductive plug 23 on the n-type source region 75 is connected to the source line SL, and the second conductive plug 24 on the n-type drain region 79 is connected to the bit line BL. Therefore, the writing state of the selection transistor ST is prevented from affecting the fluctuation of the parasitic capacitance of the bit line BL.
  • connection of the plurality of memory cells MC having the above configuration is the same as in the first embodiment. Accordingly, in two memory cells MC adjacent in the row direction, the memory gate electrode 74 of one memory transistor MT and the selection gate electrode 78 of the other selection transistor MT are connected to the same word line WL1 (or WL2). One selection gate electrode 78 and the other memory gate electrode 74 are connected to the same word line WL2 (or WL1).
  • the memory cells MC arranged vertically and horizontally are connected to the source line SL and the bit line BL in the same relationship as in the first embodiment. From the above, when one source line SL and one word line WL1 (or WL2) are selected, only one memory transistor MT connected to them has their source line SL and word line WL1. (Or WL2) can be simultaneously received, and electrons generated by avalanche breakdown or band-to-band tunneling can be injected into the ONO film 13 which is a charge retention layer. Next, a method of writing, reading and erasing the memory cell MC will be described. Table 3 shows examples of values of voltages applied to the respective parts at the time of writing, reading, and erasing.
  • Table 3 shows a case where the word line WL1 is connected to the selection transistor (selection TR) and the word line WL2 is connected to the memory transistor (memory TR). Note that the values shown in parentheses in Table 3 indicate the voltage of the non-selected line.
  • a voltage of 5 V is applied to the memory gate electrode 74 through the word line WL2, and a voltage of 5 V is applied to the source line SL.
  • each voltage of the bit line BL and the P well 72 is set to 0V.
  • electrons generated by avalanche breakdown at the pn junction between the n-type source region 75 and the P well 72 are injected into the silicon nitride film 13 b of the ONO film 13.
  • the threshold value of the memory transistor MT becomes a positive value.
  • the voltages of the selection gate electrode 78 and the bit line BL are each 0 V, and no current flows in the channel region of the selection transistor ST.
  • the voltage of the source line SL connected to the unselected memory cell is 0 V, and no electrons are generated due to avalanche breakdown.
  • a voltage of 1.8 V is applied to the selection gate electrode 78 through the word line WL1, and a voltage of 1.8 V is also applied to the bit line BL.
  • each voltage of the memory gate electrode 74, the bit line BL, and the P well 72 is set to 0V.
  • a channel is formed below the selection gate electrode 78, and a potential difference is generated between the n-type drain region 79 and the n-type source region 75.
  • a voltage of ⁇ 5V is applied to the selection gate electrode 78 and the memory gate electrode 74 through the word lines WL1 and WL2, and a voltage of 5V is applied to the source line SL.
  • the bit line BL is set to 0V.
  • the voltage of the P well 72 is set to 0V.
  • FIGS. 33A to 38A are cross-sectional views showing the manufacturing process of the semiconductor device according to the sixth embodiment of the present invention, and are partial cross-sectional views in the extending direction of the word lines in the memory cell array region.
  • FIGS. 33 to 38 is a partial cross-sectional view in the extending direction of the bit line or the source line in the manufacturing process of the semiconductor device.
  • FIG. 32 to FIG. 38C is a partial cross-sectional view of the peripheral circuit portion in the manufacturing process of the semiconductor device.
  • the STI 36 is formed on the silicon substrate 11 by the same method as in the first embodiment, and then the sacrificial oxide film 37 is formed on the surface of the silicon substrate 11.
  • the silicon substrate 11 is p-type. Thereafter, the peripheral circuit region of the silicon substrate 11 is covered with a photoresist, and the memory cell array region is exposed. Then, by implanting n-type impurities into the memory cell array region under predetermined conditions, a buried N well 71 is formed in a region deeper than the STI 36.
  • a p-type impurity is ion-implanted under predetermined conditions to form a flash P-well 72 in a region shallower than the buried N-well 71.
  • the P well 72, the buried N well 71 and the p-type silicon substrate 11 thereunder constitute a triple well.
  • P wells 41a and 41b and N wells 42a and 42b are formed as in the first embodiment.
  • the periphery of the buried N well 71 and the P well 72 is surrounded by an N well (not shown).
  • n-type or p-type impurity ions are implanted into the P well 72 in the memory cell array region, the P wells 41a and 41b, the N wells 42a and 42b, etc. in the peripheral circuit region for threshold adjustment.
  • the ONO film 13 is formed on the silicon substrate 11 in the same manner as shown in FIGS.
  • the ONO film 13 has a three-layer structure shown in FIG.
  • An insulating film 17 is formed.
  • a gate insulating film 38 made of a silicon oxide film having a thickness of 12 nm is formed on the surface of the silicon substrate 11 in the 5V NMOSFET region 35a, the 5V PMOSFET region 35b, and the 5V low threshold NMOSFET region 35c.
  • a gate insulating film 39 made of a silicon oxide film having a thickness of 3 nm is formed on the surface of the silicon substrate 11 in the NMOSFET region 35d and the 1.8V PMOSFET region 35e.
  • a plurality of word lines WL1 and WL2 extending in the row direction are formed in the memory cell array region by the same method as in the first embodiment.
  • a part of the word lines WL1 and WL2 becomes the selection gate electrode 78 and the memory gate electrode 74 shown in FIG.
  • the word lines WL1 and WL2 are in a state where the word line overlaps the ONO film 13, as shown in FIG. 19C.
  • a 5V NMOSFET region 35a a 5V PMOSFET region 35b, a 5V low threshold NMOSFET region 35c, a 1.8V NMOSFET region 35d and a 1.8V one are used in the same manner as in the first embodiment.
  • Gate electrodes 51g, 52g, 53g, 54g, 55g and other wirings are formed in each of the PMOSFET regions 35e.
  • n-type extension regions 51a, 51b, 53a, 53b, 54a and 54b are formed in the P wells 41a and 41b and the 5V low threshold NMOSFET region 35c in the peripheral circuit region by the same method as in the first embodiment. Further, p-type extension regions 52a, 52b, 55a, and 55b are formed in the N wells 42a and 42b in the peripheral circuit region.
  • the peripheral circuit region is covered with a photoresist 50 and the memory cell array region is exposed.
  • the upper silicon oxide film 13c and the silicon nitride film 13b in the ONO film 13 are removed by the reactive ion etching (RIE) method using the word lines WL1 and WL2 as a mask, and the lower silicon oxide film 13d is left as it is.
  • RIE reactive ion etching
  • n-type extension regions 75a and 79a and n-type source / drain regions 76 shown in FIG. 32 are formed on both sides below word lines WL1 and WL2. Thereafter, the photoresist 50 is removed.
  • a resist pattern 50a is formed to expose the n-type extension regions 75a and 79a in the memory cell array region, while covering the n-type source / drain region 76 and other regions.
  • the resist pattern 50a is formed by applying a photoresist to the entire surface of the silicon substrate 11 to cover the word lines WL1, WL2, etc., and then exposing and developing the photoresist.
  • boron ions are ion-implanted into the n-type extension regions 75a and 79a not covered with the resist pattern 50a under the conditions of an acceleration energy of 20 keV and a dose of 1 ⁇ 10 13 / cm 2 , thereby forming the n-type extension regions 75a, P-type impurity diffusion regions 75c and 79c are formed under 79a.
  • the sidewalls 20 are formed on the sidewalls of the word lines WL1 and WL2 and the gate electrodes 51g, 52g, 53g, 54g, and 55g by the same method as in the first embodiment.
  • the sidewall 20 is buried between the selection gate electrode 78 and the memory gate electrode 74.
  • arsenic is ion-implanted as an n-type impurity into the P well 72 using the word lines WL1 and WL2 and the sidewalls 20 in the memory cell array region as masks.
  • an n-type high concentration impurity diffusion region 75b of the n-type drain region 79 shared by two adjacent select transistors ST is formed, and at the same time, shared by two adjacent memory transistors MT.
  • An n-type high concentration impurity diffusion region 79b of the n-type source region 75 to be formed is formed.
  • arsenic ions are ion-implanted as n-type impurities using the gate electrodes 51g, 53g and 54g and the sidewall 20 as a mask, thereby forming n-type high concentration which becomes source / drain regions.
  • Impurity diffusion regions 51c, 51d, 53c and 53d are formed.
  • p-type high concentration impurity diffusion regions 52c, 52d, 55c, and 55d in the source / drain regions are formed on both sides of the gate electrodes 52g and 55g.
  • a region where no ion implantation is performed is covered with a photoresist.
  • the impurity ion-implanted as described above is activated by annealing.
  • silicide layers 21a and 21g are formed on the upper surfaces of the word lines WL1 and WL2 and the gate electrodes 51g, 52g, 53g, 54g, and 55g by the same process as in the first embodiment.
  • p-type high concentration impurity diffusion regions 75b, 79b, 51c, 51d, 53c, 53d, 54c, 54d and n-type high concentration impurity diffusion regions 52c, 52d, 55c, 55d are formed.
  • Silicide layers 21j, 21k, 21m, 21n, and 21p are also formed on the upper surface of.
  • a plurality of memory cells MC in which the directions of the selection transistors ST and the memory transistors MT are alternately formed are formed in each of the stripe-shaped active regions in the memory cell array region. Therefore, when the two memory cells MC adjacent along the longitudinal direction of the word lines WL1 and WL2 are compared, the direction of the selection transistor ST and the memory transistor MT is opposite.
  • the selection transistor ST and the memory transistor MT are NMOS EFET types.
  • NMOSFETs t 6 , t 8 , and t 9 are formed in the P wells 41 a and 41 b in the peripheral circuit region, and PMOSFETs t 7 and t 10 are formed in the N wells 42 a and 42 b.
  • wiring layers such as conductive plugs, vias, and wirings are formed by the same method as in the first embodiment.
  • FIG. 39 is a circuit diagram of a memory cell array constituting the semiconductor device according to the seventh embodiment of the present invention.
  • 40A and 40B are cross-sectional views showing the memory cells constituting the memory cell array.
  • the memory cell includes the n-channel type memory transistor MT and the selection transistor ST described in the sixth embodiment. 40, the same reference numerals as those in FIG. 32 denote the same elements.
  • FIG. 39 a memory cell surrounded by a dashed ellipse is a memory cell MC1 to be written, and a memory cell surrounded by an alternate long and short dash line is a memory cell MC0 that is not written.
  • FN writing is performed on the designated memory cell MC1
  • a voltage having a value shown in FIGS. 39 and 40A is applied to the bit line BL, the source line SL, the word lines WL1 and WL2, and the P well 72.
  • the memory cell MC1 designated for writing As shown in FIG. 40A, with ⁇ 5V applied to the P well 72, + 5V is applied to the word line WL1 connected to the memory gate electrode 74. Further, ⁇ 5V is applied to the source line SL, and ⁇ 5V is also applied to the bit line. Further, the source line SL connected to the memory cell MC0 not designated for writing is set to a voltage of 0V. Therefore, the potential difference between the channel of the selected memory transistor MT and the word line WL1 is 10V. As a result, electrons are FN injected into the ONO film 13 and writing is performed.
  • +5 V is also applied to the memory gate electrode 74 of the non-selected memory cell MC0 connected to the same word line WL1.
  • the voltage of the source line SL is set to 0 V in the non-selected memory cell MC0
  • the voltage of the channel below the memory gate electrode 74 becomes 0 V via the n-type source region 75, and the memory gate electrode
  • the potential difference between 74 and the channel is 5V.
  • FN writing in the non-selected memory cell MC0 is avoided. From the above, by adopting a circuit as shown in FIG. 39, FN writing can be performed even if a circuit configuration in which the selection transistor ST is arranged on the bit line BL side with respect to the memory transistor MT is adopted.
  • FIG. 41 is a circuit diagram of a memory cell array constituting the semiconductor device according to the eighth embodiment of the present invention.
  • the bit erasing method of the flash memory according to the present embodiment shown in FIG. 41 will be described below.
  • Bit erasing is to individually erase an arbitrary memory cell. In other words, the data can be rewritten only in the selected memory cell.
  • ⁇ 10V is also applied to the memory gate electrode 14 of the unselected memory cell MC connected to the same word line WL2, but the voltage of the source line SL connected to the memory transistor MT is set to ⁇ 5V. Therefore, the channel below the memory gate electrode 14 is ⁇ 5V through the p-type source region 15, and the potential difference between the memory gate electrode 14 and the channel is 5V. Thereby, erasure of data in the non-selected memory cell mc is avoided.
  • bit erasure in the case where the n-channel type memory cell shown in FIG. 32 and the memory cell having the selection transistor are used as the memory cell MC shown in FIG.
  • a voltage having a value shown in Table 5 is applied to each of the bit line BL, the source line SL, the word line, and the N well 12.
  • -5V is applied to the memory gate electrode 74 of the word line WL1 while the P well 72 shown in FIG. 32 is set to 0V, and 5V is applied to the source line SL.
  • the bit line BL is set to 0V.
  • hot holes generated by band-to-band tunneling at the pn junction between the n-type source region 75 and the P well 72 are injected into the silicon nitride film 13b of the ONO film 13, and the threshold value of the memory transistor MT becomes negative. .
  • the data in the memory cell MCd is erased.
  • ⁇ 5V is also applied to the memory gate electrode 74 of the non-selected memory cell MC connected to the same word line WL1, but when the voltage of the source line SL connected to the memory transistor MT is set to 0V. No hot holes are generated. Thereby, erasure of data in the non-selected memory cell MC is avoided. From the above, as shown in FIG. 41, even when the source of the select transistor ST of the memory cell MC is directly connected to the bit line BL, the data in the memory cell MC can be individually erased. .
  • FIG. 42 is a circuit diagram of a memory cell array constituting the semiconductor device according to the eighth embodiment of the present invention. 42, the same reference numerals as those in FIG. 1 denote the same elements. 42, a plurality of memory cells MC are arranged vertically and horizontally, for example, n in the row direction and m in the column direction. Each memory cell MC includes a memory transistor MT and a selection transistor ST, and has the structure shown in any of the first to sixth embodiments. In the following description, the memory cell MC including the structure shown in FIG. 2 will be described as an example.
  • the bit line BL and the source line SL extend in a direction crossing the word lines WL1 and WL2.
  • a plurality of memory cells MC are respectively formed in a plurality of stripe-shaped active regions extending in the same direction as the bit line BL and the source line SL. Since the word line WL2 is connected only to the selection transistor ST as will be described later, it is hereinafter referred to as a selection line SGL.
  • Two memory cells MC adjacent in the active region are arranged with the positions of the memory transistor MT and the select transistor ST reversed, and are connected in series. Therefore, a plurality of adjacent memory cells MC share at least one of the source region 15 and the drain region 19.
  • the memory cells MC adjacent in the longitudinal direction of the word line WL1 and the selection line SGL are arranged with the memory transistor MT and the selection transistor ST in the same direction. This arrangement is different from the memory cell array shown in FIG.
  • the memory gate electrodes 14 are connected to the same word line WL1, and the selection gate electrodes 18 of the selection transistors ST are the same selected. Connected to line SGL.
  • the source region 15 of the memory cell MC is electrically connected to one of the source regions 15 of other memory cells MC that are obliquely adjacent to the word line WL1.
  • the drain region 19 of each memory cell MC is connected to one of the drain regions 19 of other memory cells MC adjacent to the word line WL1 in an oblique direction.
  • a plurality of common source regions 15 formed in each active region are connected to every other source line SL, and the remaining common source regions 15 are connected to another source line SL.
  • every other common drain region 19 is connected to one bit line BL, and the remaining common drain regions 19 are connected to another bit line BL. Note that the circuit shown in FIG. 42 can be applied to an EEPROM memory cell array. The element structure will be described in the next embodiment.
  • the source regions 15 of the memory transistors MT are different. Connected to the source line SL, the select transistor ST can be connected to a different bit line BL. Thus, by selecting one word line WL1 and one source line SL, one memory transistor MT can be selected and written. Further, reading and erasing can be performed as in the first to eighth embodiments. With such a configuration, the influence on the parasitic capacitance of the bit line BL due to the writing state of the selection transistor ST can be prevented.
  • FIG. 43 is a cross-sectional view showing a memory cell constituting an EEPROM which is a semiconductor device according to the tenth embodiment of the present invention.
  • the memory cell MC has a structure in which a memory transistor MT and a selection transistor ST are connected in series.
  • the memory transistor MT includes a gate insulating film 83a formed on the N well 82 of the silicon substrate 81, a floating gate electrode 84 formed as a charge storage layer on the gate insulating film 83a, and an ONO film on the floating gate electrode 84.
  • a control gate electrode 88 formed through the gate electrode 86, and a p-type source region 91 and a p-type source / drain region 92 formed in the N well 82 on both sides of the floating gate electrode 84.
  • the p-type source region 91 includes a p-type extension region 91a and a p-type high-concentration impurity diffusion region 91b formed in a region extending below the floating gate electrode 94.
  • the selection transistor ST includes a selection gate electrode 85 formed on the N well 82 via a gate insulating film 83b, and a p-type source / drain formed in the N well 82 on both sides of the selection gate electrode 85.
  • a region 92 and a p-type drain region 93 are provided.
  • the p-type drain region 93 is composed of a p-type extension region 93 a and a p-type high concentration diffusion region 93 b formed in a region extending under the selection gate electrode 85.
  • a conductive polysilicon film 89 is formed on the selection gate electrode 85 via an ONO film 87.
  • the selection transistor ST and the memory transistor MT share the p-type source / drain region 92.
  • Silicide layers 94a and 94b are formed on the upper layer portions of the control gate electrode 88, respectively. Further, silicide layers 94b and 94c are formed on the p-type source region 91 and the p-type drain region 93, respectively.
  • the two ONO films 86 and 87 are formed in the same layer, and each have a lower silicon oxide film 86a and 87a having a thickness of 4 nm, a silicon nitride film 86b and 87b having a thickness of 5 nm, and an upper silicon oxide film 86c having a thickness of 4 nm. 87c is formed in order.
  • the film thickness of the gate insulating films 83a and 83b is, for example, 10 nm.
  • a first interlayer insulating film 95 is formed on the memory transistor MT and the select transistor ST. Further, first and second contact holes 95a and 95b are formed in the first interlayer insulating film 95 on the p-type source region 91 and the p-type drain region 93, respectively, and the first conductive holes are formed therein. The conductive contact plug 96 and the second conductive contact plug 97 are embedded.
  • the first conductive plug 96 on the p-type source region 91 is connected to the source line SL, and the second conductive plug 97 on the p-type drain region 93 is connected to the bit line BL. This prevents the difference in the write state of the select transistor ST from affecting the parasitic capacitance of the bit line BL.
  • the control gate electrode 88 and the selection gate electrode 85 are connected to different word lines WL1 and selection lines SGL, respectively. Note that the thickness of the gate insulating film 83b of the selection transistor ST may be reduced as in the second and fifth embodiments. Further, the impurity concentration of the p-type source / drain region 92 may be lower than that of the p-type extension regions 91a and 93a as in the fourth embodiment.
  • an opposite conductivity type that is, an n-type impurity diffusion region may be formed under the p-type high concentration impurity diffusion regions 91b and 93b.
  • the memory transistor MT and the selection transistor ST may be n-type transistors.
  • the memory cell MC having the above configuration is applied to the memory cell array shown in FIGS. 1 and 42, for example.
  • FIG. 42 when the memory cells MC are adjacent to each other along the bit line BL and the source line SL, the arrangement of the memory transistors MT and the selection transistors SL in each memory cell MC is alternately reversed. Thus, the directions of the memory cells MC adjacent along the word line WL1 may be the same.
  • These memory cells MC are connected to the source line SL, the bit line BL, the word line WL1, and the selection line SGL, as in FIG.
  • the methods of the first to eighth embodiments described above for example, the methods of the first to eighth embodiments described above may be employed.
  • voltages applied to the source line SL, the bit line BL, the word line WL1, and the selection line SGL are set to values according to the EEPROM.
  • FIG. 44A an STI 98 is formed in the element isolation region of the silicon substrate 81.
  • the element isolation region is disposed in a region sandwiching a plurality of stripe-shaped active regions 99.
  • the STI 98 is formed by the same method as the STI 36 of the first embodiment, for example.
  • an n-well 82 is formed by introducing an n-type impurity into the active region 99 of the silicon substrate 81 by the same method as in the first embodiment.
  • the active region 99 of the silicon substrate 81 is thermally oxidized to form a gate insulating film 83 having a thickness of 10 nm, for example.
  • the gate insulating film 83 is used as the gate insulating films 83a and 83b shown in FIG.
  • a first polysilicon film 101 is formed on the gate insulating film 83 to a predetermined thickness.
  • the first polysilicon film 101 is patterned by a photolithography method to form an opening 102 on the STI 98 on the side of the region where the floating gate electrode 84 is to be formed.
  • an ONO film is formed on the first polysilicon film 101.
  • the first polysilicon film 101 is thermally oxidized to form a lower silicon oxide film having a thickness of, for example, 6 nm, and then a silicon nitride film is formed by a CVD method.
  • the method includes a step of thermally oxidizing the surface to form an upper silicon oxide film with a thickness of 4 nm, for example.
  • the final silicon nitride film is, for example, 5 nm.
  • a second polysilicon film is formed on the ONO film. Thereafter, the layers from the second polysilicon film to the first polysilicon film 101 are patterned by photolithography using the same mask to form stripe-like word lines WL1 and selection lines SGL that are long in the row direction. .
  • the word line WL1 is composed of a second polysilicon film, and is formed in a stripe shape passing over the opening 102 on the STI 98.
  • a floating gate electrode 84 composed of the first polysilicon film 101 is formed in the active region 99 below the word line WL1.
  • the floating gate electrode 84 is separated by the opening 102 on the STI 98 and has an isolated shape on the active region 99.
  • the word line WL1 is the control gate electrode 88 of the memory transistor MT shown in FIG. 43 on the floating gate electrode 84.
  • the ONO film formed on the first polysilicon film 101 becomes the ONO film 86 between the control gate electrode 88 and the floating gate electrode 84 shown in FIG. 44C to 44Q, the position of the floating gate electrode 84 is indicated by a shaded pattern.
  • the selection lines SGL are composed of the first polysilicon film 101, and two selection lines SGL are formed at intervals between the plurality of word lines WL1. A part of the selection line SGL constitutes a selection gate electrode 85 shown in FIG. 43 in the active region 99. Note that the ONO film and the second polysilicon film formed on the first polysilicon film 101 are left in the same planar shape as the selection line SGL, and become the ONO film 87 and the polysilicon film 89 shown in FIG. .
  • p-type impurities are ion-implanted into each active region 99 to form extension regions 91a and 93a, and further on the side surfaces of the word line WL1 and the selection line SGL.
  • Sidewalls 90 are formed, and then a p-type source region 91 and a p-type drain region 93 are formed by ion implantation of p-type impurities using the word line WL1, the selection line SGL, and the sidewalls 90 as a mask.
  • silicide layers 94 a to 94 d are formed on the word line WL 1, the second polysilicon film 89, the p-type source region 91, and the p-type drain region 93.
  • Those processes are in accordance with, for example, the first to seventh embodiments.
  • the sidewall 90 is omitted.
  • the memory cell MC including the memory transistor MT and the selection transistor ST shown in FIG. 43 is formed.
  • the control gate electrodes 88 of the memory transistors MT adjacent to each other along the word line WL1 are connected to each other through the word line WL1.
  • the selection gate electrodes 85 of the selection transistors ST adjacent to each other along the selection line SGL are connected to each other via the selection line SGL.
  • the directions of the adjacent memory cells MC along the active region 99 are alternately arranged opposite to each other, whereby the two memory transistors MT share the p-type source region 91 and are connected to each other. Also, two select transistors ST adjacent to each other along the active region 99 share the p-type drain region 93 and are connected to each other.
  • a first interlayer insulating film 95 is formed on the word line WL1, the selection line SGL, the memory transistor MT, and the selection transistor MT.
  • the first interlayer insulating film 95 is formed by the same process as shown in the first embodiment.
  • the second to seventh interlayer insulating films described below are also formed by the same method.
  • first and second contact holes are formed on the p-type source region 91 and the p-type drain region 93 as shown in FIG. 44D.
  • 95a and 95b are formed.
  • first and second conductive contact plugs 96 and 97 are formed in the first and second contact holes 95a and 95b, respectively, as shown in FIG.
  • the method shown in the first embodiment is adopted.
  • a metal film is formed on the first interlayer insulating film 95, and is patterned by photolithography to form a plurality of first wirings 104a, 104b, 104c, 104d and a plurality of first lines.
  • the conductive pads 105 are formed separately from each other.
  • the first conductive pad 105 is individually connected to each second conductive contact plug 97 on the p-type drain region 93 and has a planar shape that overlaps a part of the two selection lines SGL before and after the first conductive pad 105. .
  • the first wirings 104a to 104d are of four types, each individually connected to the first conductive contact plug 96 on the p-type source region 91, and further bent and led out onto the STI 98.
  • the first type first wiring 104a is bent in an L shape along the active region 99 on the front right side in the drawing.
  • the second type first wiring 104b is bent in an L-shape along the active region 99 on the left rear side in the drawing.
  • the third type first wiring 104c is bent in an L shape along the active region 99 on the front left side in the drawing.
  • the fourth type first wiring 104d is bent in an L shape along the active region 99 on the rear right side in the drawing.
  • the first wiring 104a and 104c of the first type and the third type are alternately arranged along the same active region 99.
  • the second type and the fourth type of the first wirings 104b and 104d are alternately arranged along the active region 99 adjacent to the first type of the first wiring 104a.
  • the first type and the third type of the first wirings 104a and 104c are alternately arranged along the two adjacent word lines WL1, and the second type and the fourth type of the first wirings 104b, 104d is also alternately arranged along two adjacent word lines WL1.
  • a second interlayer insulating film 106 that covers the first wirings 104 a and 104 b and the first conductive pad 105 is formed. Then, by patterning the second interlayer insulating film 106 by photolithography, a first via hole 107 and a second via hole 108 are formed as shown in FIG. 44F.
  • the first via hole 107 is formed on the upper end of the STI 98 among the first wirings 104a to 104d.
  • the second via hole 108 is formed on the first conductive pad 105 and close to the unbent end portions of the first wirings 104a to 104d. Thereby, each of the second via holes 108 is arranged in a zigzag manner along two adjacent selection lines SGL.
  • first and second via plugs 109 and 110 are formed in the first and second via holes 107 and 108, respectively.
  • the first and second via plugs 109 and 110 are formed by, for example, the via plug forming method shown in the first embodiment.
  • a metal film is formed on the second interlayer insulating film 106 and patterned by a photolithography method, whereby a plurality of second wirings 111 and a plurality of second conductive pads 112 are formed as shown in FIG. 44G. Are formed separately from each other.
  • the second conductive pads 112 are individually connected to the first via plugs 109 and are disposed above the STI 98. Accordingly, the second conductive pad 112 is electrically connected to the p-type source region 91 through the first via plug 109, the first wirings 104a to 104d, and the first contact plug.
  • the second wiring 111 has a substantially H-shaped planar shape, straddles two adjacent word lines WL1 on the side of the second conductive pad 112, and further, an oblique direction closest to the straddled location
  • the two second via plugs 110 are electrically connected.
  • the plurality of p-type drain regions 93 formed in the same active region 99 are obliquely arranged on the left side through the second wiring 111, the second via plug 110, the first conductive pad 105, and the first contact plug 97, respectively.
  • the adjacent p-type drain regions 93 and the right oblique p-type drain regions 93 are alternately electrically connected. Therefore, the second wiring 111 constitutes a part of the bit branch line BLd shown in FIG.
  • a third interlayer insulating film 113 that covers the second conductive pad 112 and the second wiring 111 is formed.
  • a third via hole 114 is formed at substantially the center of the second wiring 111 as shown in FIG. 44H, and the second conductive pad 112 is formed.
  • a fourth via hole 115 is formed thereon.
  • third and fourth via plugs 116 and 117 are formed in the third and fourth via holes 114 and 115, respectively.
  • the third and fourth via plugs 116 and 117 are located above the STI 98.
  • a metal film is formed on the third interlayer insulating film 113, and is patterned by a photolithography method, whereby a plurality of third wirings 118a and 118b and a plurality of third conductive properties are formed as shown in FIG. 44I.
  • Pads 119 are formed separately from each other.
  • the third conductive pads 119 are individually connected to the third via plugs 116, respectively.
  • the third wirings 118a and 118b include a substantially S-shaped first type and a substantially inverted S-shaped second type.
  • the third wirings 118a and 118b form part of the source branch line SLd that connects the p-type source regions 91 of the memory transistor MT shown in FIG.
  • the third wirings 118a and 118b have a structure in which two adjacent p-type source regions 91 in the diagonal direction are electrically connected to each other in two adjacent active regions 99. That is, the third wirings 118a and 118b are connected to the two p-type source regions 91 via the fourth via plug 117, the second conductive pad 112, the first via plug 109, the first wirings 104a to 104d, and the first contact plug 96. Connected to.
  • the third conductive pad 119 is connected to the H-shaped second wiring 111 via the third via plug 116, is disposed above the STI 98, and is surrounded by four surrounding third wirings 118a and 118b.
  • a fourth interlayer insulating film 120 is formed to cover the third conductive pad 119 and the third wirings 118a and 118b.
  • the fourth interlayer insulating film 120 is patterned by a photolithography method, thereby forming the fifth via hole 121 on the third wirings 118a and 118b that are the source branch lines SLd as shown in FIG. 44J.
  • a sixth via hole 122 is formed on the third conductive pad 119 electrically connected to the bit branch line BLd.
  • the sixth via hole 122 is formed above each STI 98.
  • every fifth via hole 121 is stacked above the STI 98. Accordingly, every other STI 98 that overlaps both the fifth and sixth via holes 121 and 122 exists in the direction along the word line WL1 and the selection line SGL, and one STI 98 that overlaps only the sixth via hole 122 exists. It exists every other. This is because the sixth via hole 122 connected to the plurality of bit branch lines BLd connecting the two p-type drain regions 93 is divided into two groups. In the first group, the fifth via holes 121 are sandwiched between the STIs 98 at intervals. In the second group, the fifth via hole 121 does not exist on the STI 98.
  • fifth and sixth via plugs 123 and 124 are formed in the fifth and sixth via holes 121 and 122, respectively.
  • the source line SL and the bit line BL are formed.
  • a metal film is formed on the fourth interlayer insulating film 120 and patterned by a photolithography method, whereby a plurality of first bit lines BL1 and a plurality of fourth and fifth conductive layers are formed as shown in FIG. 44K.
  • the conductive pads 125 and 126 are formed separately from each other.
  • the first bit line BL1 is disposed above the STI 98 that does not overlap with the fifth via hole 122, and is thereby electrically connected to a part of the second wiring 111 that is the drain branch line BLd via the sixth via plug 124 of the second group. Connected to.
  • the fourth conductive pad 125 is formed on the sixth via hole 122 of the first group, and is electrically connected to the remaining second wiring 111 through the sixth via plug 124.
  • the fifth conductive pad 126 is connected to the third wirings 118 a and 118 b that are the source branch lines SLd via the fifth via plug 123.
  • a fifth interlayer insulating film 127 is formed to cover the fourth and fifth conductive pads 125 and 126 and the first bit line BL1.
  • the seventh, Eighth via holes 128 and 129 are formed. Further, seventh and eighth via plugs 130 and 131 are formed in the seventh and eighth via holes 128 and 129, respectively. Accordingly, the seventh via plug 130 is connected to the third wirings (source branch lines) 118a and 118b via the fourth conductive pad 125 and the fifth via plug 123. The eighth via plug 131 is connected to the second wiring (bit branch line) 111 through the fifth conductive pad 126, the sixth via plug 124, the third conductive pad 119, and the third via plug.
  • a metal film is formed on the fifth interlayer insulating film 127 and patterned by a photolithography method, whereby a plurality of second bit lines BL2 and sixth conductive pads 132 are formed as shown in FIG. 44M. Are formed separately from each other.
  • the second bit line BL2 is formed in parallel above the first bit line BL2, and is connected to the eighth via plug 131 on the side thereof.
  • the sixth conductive pad 132 is arranged connected to the seventh via plug 130 not connected to the second bit line BL2, and the lower p-type is interposed via the fourth conductive pad 125, the fifth via plug 123, etc. below the sixth conductive pad 132. It is electrically connected to the source region 91.
  • a sixth interlayer insulating film 137 is formed to cover the sixth electric pad 132 and the second bit line BL2. Thereafter, by patterning the sixth interlayer insulating film 137 by photolithography, a ninth via hole 134 is formed above the center of each of the sixth conductive pads 132 as shown in FIG. 44N. Further, ninth via plugs 135 are formed in the ninth via holes 134, respectively.
  • a metal film is formed on the sixth interlayer insulating film 133, and is patterned by a photolithography method, whereby the eighth film disposed in the region between the second bit lines BL2 as shown in FIG. 44O.
  • a seventh conductive pad 136 connected to the via plug 135 is formed.
  • the seventh conductive pads 136 arranged along the extending direction of the second bit line BL2 are alternately directed toward the second bit line BL2 on one side and the second bit line BL2 on the other side. It has an expanded shape.
  • a seventh interlayer insulating film 137 is formed to cover the seventh conductive pad 136. Thereafter, by patterning the seventh interlayer insulating film 137 by photolithography, as shown in FIG. 44P, the tenth via hole is formed on the side portion of each seventh conductive pad 133 close to the second bit line BL2. 138 is formed. Further, a tenth via plug 139 is formed in the tenth via hole 138.
  • a metal film is formed on the seventh interlayer insulating film 137 and patterned by a photolithography method, thereby forming a plurality of source lines SL as shown in FIG. 44Q.
  • the source line SL is arranged to extend in parallel with the active region 99, and the tenth via plug 139, the seventh conductive pad 136, the fifth via plug, the sixth via plug pad, the seventh via plug, the fourth conductive plug thereunder.
  • the third conductive pad (source branch line) 119 is connected to the third conductive pad 125 and the fifth via plug. Note that the wiring directions of the circuits shown in the above embodiments are not limited as long as they are equivalent.
  • the memory cell array formed by the above steps has an electric circuit as shown in FIG. 42, and has a configuration in which the source region of the memory transistor MT is connected to the source line SL and the drain region of the selection transistor ST is connected to the bit line BL. It has become.
  • the embodiment described above is merely given as a typical example, and it is obvious for those skilled in the art to combine the components or modifications and variations thereof, and those skilled in the art will describe the principle of the present invention and the claims. Obviously, various modifications of the above-described embodiments can be made without departing from the scope of the invention as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

【課題】アバランシェ書き込みが可能なメモリセルアレイを備えた半導体装置を提供する。 【解決手段】第1メモリトランジスタMTと第1選択トランジスタSTを有する第1のメモリセルMCと、第2メモリトランジスタMTと第2選択トランジスタSTを有する第2のメモリセルMCと、第1メモリトランジスタMTのゲート電極と第2選択トランジスタMTのゲート電極に電気的に接続された第1ワード線WL1と、第2メモリトランジスタMTのゲート電極と第1選択トランジスタSTのゲート電極に電気的に接続された第2ワード線WL2と、第1メモリトランジスタMTのソース領域と第2メモリトランジスタMTのソース領域に電気的に接続されたソース線SLとを有する。

Description

半導体装置
 本発明は、半導体装置、特に、メモリトランジスタと選択トランジスタから構成されるメモリセルを有する半導体装置に関する。
 不揮発性半導体記憶装置であるフラッシュメモリやEEPROMにおける情報の書き込み方式として、メモリトランジスタのチャネル領域でチャンネル・ホット・エレクトロン(CHE)を発生させて電荷保持層に取り込む方法が広く利用されている。
 CHEを利用した書き込み方法によれば、選択トランジスタのソース・ドレイン間に大きな電流を流す必要があるため、消費電流が多くなる。
 チャネル領域に電流を流さずにメモリセルに情報を書き込む方法として、アバランシェブレークダウン又はバンド間トンネリング(BTBT)により発生した電子或いは正孔をメモリトランジスタの電荷保持層に取り込む方式、即ちアバランシェ書き込み方式がある。
 アバランシェ書き込み方式においても、CHE書き込み方式と同様にメモリトランジスタのゲート電極とソース拡散領域に電圧を印加することにより書き込む。しかし、アバランシェ書き込み方式では、基板電流だけで書き込みが実施される点でCHE書き込み方式と異なる。
 選択トランジスタとメモリトランジスタによりNOR型メモリセルを構成する2トランジスタセルが、例えば特開2005-116970号公報(特許文献1)に記載されている。
 2トランジスタセルの消費電流を節約するためには、アバランシェ書き込み方式を採用することが好ましい。この場合、選択トランジスタは基板電流を制御することができないので、書き込みをするか否かの制御に選択トランジスタを用いることはできない。
 このため、2トランジスタセルをNOR型のフラッシュメモリに使用している特許文献1の図2に記載の回路では、メモリトランジスタをビット線側に配置して、ビット線とワード線でメモリトランジスタを選択することになる。
 しかし、ビット線にメモリトランジスタを接続すると、書き込み状態によってメモリトランジスタによる寄生容量が異なることになるので、読み出しが不安定になるおそれがある。そこで、安定した読み出しを実現するためには、選択トランジスタをビット線側に置き、メモリトランジスタをソース線側に置くことが好ましい。
 ところで、CHEを利用した書き込み方法を採用した2トランジスタセルの選択トランジスタをビット線に接続する回路については、特開2005-122772号公報(特許文献2)に記載されている。その回路は、共通のワード線に接続される複数のメモリトランジスタのソース領域を共通のソース線に接続する構成となっている。
 そのようなメモリ回路について、アバランシェによる書き込み方式を採用してワード線とソース線の間に電圧を印加すると、複数のメモリトランジスタが同時に書き込み状態となり、メモリトランジスタを選択することができない。
 また、特開平11-177068号公報(特許文献3)の図10は、CHEを利用した書き込み方式のメモリ回路において、選択トランジスタのドレイン領域をビット線に接続し、メモリトランジスタのソース領域をソース線に接続するメモリ回路を開示している。  
 しかし、特許文献3に記載の回路では、2トランジスタセル同士を接続させず、コラム毎にソース線とビット線を配置しているので、特許文献1又は2に記載の回路と比較するとソース線、ビット線とトランジスタの接続点が多くなってメモリセル面積が大きくなる。
特開2005-116970号公報 特開2005-122772号公報 特開平11-177068号公報
 本発明の目的は、新たなメモリセルアレイを有する半導体装置を提供することにある。
 本発明の実施形態に従えば、第1メモリトランジスタと第1選択トランジスタを有する第1のメモリセルと、第2メモリトランジスタと第2選択トランジスタを有する第2のメモリセルと、前記第1メモリトランジスタのゲート電極と前記第2選択トランジスタのゲート電極に電気的に接続された第1ワード線と、前記第2メモリトランジスタのゲート電極と前記第1選択トランジスタのゲート電極に電気的に接続された第2ワード線と、前記第1メモリトランジスタのソース領域と前記第2メモリトランジスタのソース領域に電気的に接続された第1ソース線と、を有することを特徴とする半導体装置が提供される。
 また、本発明の別な実施形態に従えば、第1メモリトランジスタと第1選択トランジスタからなる第1のメモリセルと、第2メモリトランジスタと第2選択トランジスタからなる第2のメモリセルと、第3メモリトランジスタと、前記第1選択トランジスタと共有する第1共有ドレイン領域を有する第3選択トランジスタからなる第3のメモリセルと、
 第4メモリトランジスタと、前記第2選択トランジスタと共有する第2共有ドレイン領域を有する第4選択トランジスタからなる第4のメモリセルと、前記第1メモリトランジスタのゲート電極と前記第2メモリトランジスタのゲート電極に電気的に接続された第1ワード線と、前記第3メモリトランジスタのゲート電極と前記第4メモリトランジスタのゲート電極に電気的に接続された第2ワード線と、前記第1メモリトランジスタのソース領域と、前記第4メモリトランジスタのソース領域に電気的に接続された第1ソース線と、前記第2メモリトランジスタのソース領域に電気的に接続された第2ソース線と、前記第3メモリトランジスタのソース領域に電気的に接続された第3ソース線と、前記第1共有ドレイン領域に電気的に接続された第1ビット線と、前記第2共有ドレイン領域に電気的に接続された第2ビット線と、を有することを特徴とする半導体装置が提供される。
 本発明の実施形態によれば、メモリセルトランジスタと選択トランジスタを有する2つのメモリセルにおいて、一方のメモリトランジスタのゲート電極と他方の選択トランジスタのゲート電極を第1ワード線に接続し、また、一方の選択トランジスタのゲート電極と他方のメモリトランジスタのゲート電極を第2ワード線に接続している。さらに、双方のメモリトランジスタのソース領域を同じソース線に接続している。
 これにより、第1ワード線と第2ワード線の一方とソース線に所定電圧を印加することにより、双方の所定電圧を受けた1つのメモリトランジスタのみがアバランシェ書き込みによりデータが書き込まれる。しかも、双方のメモリトランジスタをソース領域に接続することになるので、書き込み状態の変化によるビット線への寄生容量に及ぼす影響を抑制することができる。
 また、本発明の実施形態によれば、メモリセルトランジスタと選択トランジスタを有する第1~第4メモリセルにおいて、第1、第3メモリセルの第1、第3メモリセルトランジスタのそれぞれのドレイン領域を共通にし、第2、第4メモリセルの第2、第4メモリトランジスタのそれぞれのドレイン領域も共通にしている。また、第1、第2メモリトランジスタのゲート電極同士を第1ワード線で接続し、第3、第4メモリトランジスタのゲート電極同士を第2ワード線で接続している。さらに、第1メモリトランジスタのドレイン領域と第4メモリトランジスタのソース領域に共通の第1ソース線を接続し、他の2つのソース領域にそれぞれ第2、第3ソース線を接続している。
 これにより、第1ワード線と第2ワード線の一方と第1~第3のソース線に所定の電圧を印加することにより、双方の所定電圧を受けた1つのメモリトランジスタのみがアバランシェ書き込みによりデータが書き込まれる。しかも、4つのメモリトランジスタをソース線に接続することになるので、書き込み状態の変化によるビット線への寄生容量に及ぼす影響を抑制することができる。
図1は、本発明の実施形態に係る半導体装置を構成するメモリ回路を示す断面図である。 図2は、本発明の第1実施形態に係る半導体装置を示す断面図である。 図3(a)~(c)は、図2に示した半導体装置の動作を示す断面図である。 図4(a)~(c)は、本発明の第1実施形態に係る半導体装置の形成工程を示す断面図(その1)である。 図5(a)~(c)は、本発明の第1実施形態に係る半導体装置の形成工程を示す断面図(その2)である。 図6(a)~(c)は、本発明の第1実施形態に係る半導体装置の形成工程を示す断面図(その3)である。 図7(a)~(c)は、本発明の第1実施形態に係る半導体装置の形成工程を示す断面図(その4)である。 図8(a)~(c)は、本発明の第1実施形態に係る半導体装置の形成工程を示す断面図(その5)である。 図9(a)~(c)は、本発明の第1実施形態に係る半導体装置の形成工程を示す断面図(その6)である。 図10(a)~(c)は、本発明の第1実施形態に係る半導体装置の形成工程を示す断面図(その7)である。 図11(a)~(c)は、本発明の第1実施形態に係る半導体装置の形成工程を示す断面図(その8)である。 図12(a)~(c)は、本発明の第1実施形態に係る半導体装置の形成工程を示す断面図(その9)である。 図13(a)~(c)は、本発明の第1実施形態に係る半導体装置の形成工程を示す断面図(その10)である。 図14(a)~(c)は、本発明の第1実施形態に係る半導体装置の形成工程を示す断面図(その11)である。 図15(a)~(c)は、本発明の第1実施形態に係る半導体装置の形成工程を示す断面図(その12)である。 図16(a)、(b)は、本発明の第1実施形態に係る半導体装置の形成工程を示す断面図(その13)である。 図17は、本発明の第1実施形態に係る半導体装置のメモリセルアレイ領域を示す断面図である。 図18は、本発明の第1実施形態に係る半導体装置の周辺回路領域を示す断面図である。 図19A、図19Bは、本発明の第1実施形態に係る半導体装置の形成工程を示す平面図(その1)である。 図19C、図19Dは、本発明の第1実施形態に係る半導体装置の形成工程を示す平面図(その2)である。 図19E、図19Fは、本発明の第1実施形態に係る半導体装置の形成工程を示す平面図(その3)である。 図19G、図19Hは、本発明の第1実施形態に係る半導体装置の形成工程を示す平面図(その4)である。 図19I、図19Jは、本発明の第1実施形態に係る半導体装置の形成工程を示す平面図(その5)である。 図20は、本発明の第2実施形態に係る半導体装置を示す断面図である。 図21は、本発明の第2実施形態に係る半導体装置のメモリセルアレイの回路図である。 図22(a)、(b)は、図20に示した半導体装置の動作を示す断面図である。 図23(a)~(c)は、本発明の第2実施形態に係る半導体装置の形成工程におけるゲート絶縁膜の形成工程を示す断面図(その1)である。 図24(a)~(c)は、本発明の第2実施形態に係る半導体装置の形成工程におけるゲート絶縁膜の形成工程を示す断面図(その2)である。 図25(a)~(c)は、本発明の第2実施形態に係る半導体装置の形成工程におけるゲート絶縁膜の形成工程を示す断面図(その3)である。 図26は、本発明の第3実施形態に係る半導体装置を示す断面図である。 図27は、本発明の第3実施形態に係る半導体装置の形成工程におけるn型不純物のイオン注入工程を示す断面図である。 図28は、本発明の第4実施形態に係る半導体装置を示す断面図である。 図29(a)、(b)は、本発明の第4実施形態に係る半導体装置の形成工程におけるイオン注入工程を示す断面図である。 図30は、本発明の第5実施形態に係る半導体装置を示す断面図である。 図31(a)~(c)は、本発明の第5実施形態に係る半導体装置の形成工程のうちゲート絶縁膜の形成工程を示す断面図である。 図32は、本発明の第6実施形態に係る半導体装置を示す断面図である。 図33(a)~(c)は、図2に示した半導体装置の動作を示す断面図である。 図34(a)~(c)は、本発明の第6実施形態に係る半導体装置の形成工程を示す断面図(その1)である。 図35(a)~(c)は、本発明の第6実施形態に係る半導体装置の形成工程を示す断面図(その2)である。 図36(a)~(c)は、本発明の第6実施形態に係る半導体装置の形成工程を示す断面図(その3)である。 図37(a)~(c)は、本発明の第6実施形態に係る半導体装置の形成工程を示す断面図(その4)である。 図38(a)~(c)は、本発明の第6実施形態に係る半導体装置の形成工程を示す断面図(その5)である。 図39は、本発明の第7実施形態に係る半導体装置を構成するメモリ回路を示す断面図である。 図40(a)、(b)は、図39に示した半導体装置の動作を示す断面図である。 図41は、本発明の第8実施形態に係る半導体装置を構成するメモリ回路を示す断面図である。 図42は、本発明の第9実施形態に係る半導体装置を構成するメモリ回路を示す断面図である。 図43は、本発明の第10実施形態に係る半導体装置を示す断面図である。 図44A、図44B及び図44Cは、本発明の第10実施形態に係る半導体装置の形成工程を示す平面図(その1)である。 図44D、図44E及び図44Fは、本発明の第10実施形態に係る半導体装置の形成工程を示す平面図(その2)である。 図44G、図44H及び図44Iは、本発明の第10実施形態に係る半導体装置の形成工程を示す平面図(その3)である。 図44J、図44K及び図44Lは、本発明の第10実施形態に係る半導体装置の形成工程を示す平面図(その4)である。 図44M、図44N及び図44Oは、本発明の第10実施形態に係る半導体装置の形成工程を示す平面図(その5)である。 図44P及び図44Qは、本発明の第10実施形態に係る半導体装置の形成工程を示す平面図(その6)である。
 以下に、本発明の実施形態を図面に基づいて詳細に説明する。
(第1の実施の形態)
 図1は、本発明の第1実施形態に係る半導体装置であるフラッシュメモリの回路ブロック図である。
 図1において、フラッシュメモリ1は、メモリセルアレイ2を有し、さらに周辺回路として、ビット線デコーダ3、センスアンプ6、ワード線デコーダ4a、4b、ソースデコーダ5等を有している。なお、ビット線デコーダ3はカラムデコーダともいい、第1、第2のワード線デコーダ4a、4bはロウデコーダともいう。
 メモリセルアレイ2は、マトリクス状に配置した複数のメモリセルMCを有している。メモリセルMCは、例えば同一行方向(図中X方向)にn個、同一列方向(図中Y方向)にm個で配置されている。
 ワード線デコーダ4a、4bには複数のワード線WL1、WL2が接続され、ソース線デコーダ5には複数のソース線SLが接続され、さらに、ビット線デコーダ3には複数のビット線BLが接続されている。
 ソース線SLとビット線BLは実質的に平行して交互に配置され、また、ワード線WL1、WL2はソース線SLとビット線BLと交差する方向、例えば直交する方向に延在している。
 メモリセルアレイ2の書き込み時、読み出し時、消去時において、ワード線WL1、WL2の信号はワード線デコーダ4a、4bにより制御され、ビット線BLの信号はビット線デコーダ3により制御され、ソース線SLの信号はソースデコーダ5により制御される。それらの信号の具体例については後述する。
 なお、ワード線を示している2つの符号WL1、WL2は、説明を容易にするために用いているだけであり、以下の実施形態においても特に限定する場合を除きグループ化するためのものではない。
 メモリセルMCは、互いに直列に接続されるメモリトランジスタMTと選択トランジスタSTを有している。選択トランジスタSTのドレインはビット線BLに、メモリトランジスタMTのソースはソース線SLにそれぞれ相互接続配線を介して電気的に接続されている。
 メモリトランジスタMTと選択トランジスタSTは、例えば図2に示す構造を有している。
 メモリトランジスタMTは、半導体基板であるシリコン基板11のNウェル12上に形成される電荷保持層となる酸化・窒化・酸化シリコン(ONO)膜13と、ONO膜13上に形成されたメモリ用ゲート電極14と、メモリ用ゲート電極14の両側のNウェル12内に形成されたp型ソース領域15及びp型ソース/ドレイン領域16とを有している。p型ソース領域15は、低濃度不純物のp型エクステンション領域15aとp型高濃度不純物拡散領域15bから構成される。なお、メモリ用ゲート電極14はコントロールゲート電極ともいう。
 ONO膜13は、例えば、下側シリコン酸化膜13a、シリコン窒化膜13b、上側シリコン酸化膜13cを順に形成した構造を有している。この場合、下側シリコン酸化膜13aを例えば2.4nm、シリコン窒化膜13bを例えば4nm、上側シリコン酸化膜13cを例えば4nmとする。
 選択トランジスタSTは、Nウェル12上にゲート絶縁膜17を介して形成された選択用ゲート電極18と、選択用ゲート電極18の両側のNウェル12内に形成されたp型ソース/ドレイン領域16とドレイン領域19とを有している。p型ドレイン領域19は、低不純物濃度のp型エクステンション領域19aとp型高濃度不純物拡散領域19bから構成される。
 選択トランジスタSTとメモリトランジスタMTは、p型ソース/ドレイン領域16を共有している。
 メモリ用ゲート電極14及び選択用ゲート電極18の側壁にはサイドウォール20が形成され、それらの上層部にはそれぞれシリサイド層21a、21bが形成されている。さらに、p型ソース領域15及びp型ドレイン領域19のそれぞれの表面にもシリサイド層21c、21dが形成されている。シリサイド層21a~21dとして、例えば、厚さ8nmのコバルトシリサイド層を形成する。
 メモリ用ゲート電極14と選択用ゲート電極18は実質的に平行に形成される。また、メモリ用ゲート電極14は、隣接している2つのワード線WL1、WL2のうち一方の一部を構成し、また、選択用ゲート電極18は、ワード線WL1、WL2の他方の一部を構成する。
 メモリトランジスタMTと選択トランジスタSTの上には層間絶縁膜22が形成されている。層間絶縁膜22のうちp型ソース領域15、p型ドレイン領域19の上のシリサイド層21c、21d上には、それぞれ第1、第2のコンタクトホール22a、22bが形成され、それらの中には第1導電性プラグ23、第2導電性プラグ24がそれぞれ埋め込まれている。
 p型ソース領域15上の第1導電性プラグ23はソース線SLに接続され、また、p型ドレイン領域17上の第2導電性プラグ24はビット線BLに接続される。従って、メモリトランジスタMTの書き込み状態の違いがビット線BLの寄生容量に影響を与えない。
 図1において、列方向に隣り合う複数の上記メモリセルMCは、p型ソース領域15とp型ドレイン領域19の一方を共有することにより直列に接続されている。従って、列方向に直列に接続される複数のメモリセルMCにおいて、それぞれのメモリトランジスタMTと選択トランジスタSTの配置は交互に逆向きとなっている。これにより、メモリセルアレイ2におけるソース線SL及びビット線BLと複数のメモリセルMCの接続箇所が少なくなる。
 ワード線WL1、WL2に沿って隣り合う2つのメモリセルMCにおいて、一方のメモリセルMCのメモリ用ゲート電極14は、ワード線WL1(又はWL2)を介して他方のメモリセルMCの選択用ゲート電極18に接続され、また、一方のメモリセルMCの選択用ゲート電極18は、別のワード線WL2(又はWL1)を介して他方のメモリセルMCのメモリ用ゲート電極14に接続される。
 また、ワード線WL1、WL2に沿っていずれか一方向に隣接する2つのメモリセルMCにおいて、それらのp型ソース領域15同士は同じソース線SLに接続され、又は、p型ドレイン領域19同士は同じビット線BLに接続されている。
 この場合、2つのp型ソース領域15はワード線WL1、WL2の長手方向に対して斜め方向に配置され、例えばソース分岐線SLdを介して互いに電気的に接続されてもよい。また、2つのp型ドレイン領域19はワード線WL1、WL2の長手方向に対して斜め方向に配置され、例えばビット分岐線BLdを介して電気的に接続されてもよい。
 ソース分岐線SLdはソース線SLに電気的に接続され、また、ビット分岐線BLdはビット線BLに電気的に接続される。
 以上の構成によれば、1本のソース線SLと1本のワード線WL1又はWL2を選択したときに、これらに接続された1つのメモリトランジスタMTだけが、そのソース線SLとそのワード線WL1又はWL2の両方の電圧を同時に受け取ることができる。
 そこで次に、メモリセルMCの書き込み時、読み出し時、消去時のそれぞれにおいてワード線WL1、WL2、ビット線BL、ソース線SLに印加する電圧の値の一例を表1に挙げる。
 表1では、選択トランジスタSTに第1のワード線WL1を、メモリトランジスタMTに第2のワード線WL2を接続した場合を示している。なお、表1に括弧で示す値は、非選択線の電圧を示している。
Figure JPOXMLDOC01-appb-T000001
 まず、メモリセルMCに対する書き込み動作は、図3(a)に示すように、第1のワード線WL1を通してメモリトランジスタMTのメモリ用ゲート電極14に5Vの電圧を印加するとともに、ソース線SLに-5Vの電圧を印加する。この場合、ビット線BL及びNウェル12の各電圧を0Vとする。
 ここで、選択トランジスタSTをオフにするために、第2のワード線WL2を通して選択用ゲート電極18の電圧を0Vに設定する。
 これにより、p型ソース領域15とNウェル12のバンド間トンネリングにより発生した電子が、メモリ用ゲート電極14とNウェル12の間の電圧によりONO膜13のシリコン窒化膜13bに注入される。この結果、メモリトランジスタMTの閾値が正の値に変わる。この時、選択用ゲート電極18とビット線BLの電圧は0Vであり、選択トランジスタSTのチャネル領域には電流は流れない。また、選択されないメモリセルMCに接続されるソース線SLの電圧は0Vであり、バンド間トンネリングによる電子は発生しない。
 メモリセルMCに対する読み出しは、図3(b)に示すように、第1のワード線WL1を通して選択トランジスタSTの選択用ゲート電極18に-1.8Vの電圧を印加するとともに、ビット線BLにも-1.8Vの電圧を印加する。この場合、メモリ用ゲート電極14、ビット線BL及びNウェル12の各電圧を0Vとする。
 これにより、選択用ゲート電極18の下方のNウェル12表層にチャネルが形成され、p型ドレイン領域19とp型ソース領域15に電位差が生じる。しかも、メモリトランジスタMTではONO膜13中に保持された電子によりメモリ用ゲート電極14の下方にもチャネルが形成される。これにより、図3(b)の破線矢印に示すように、p型ソース領域15からp型ドレイン領域19へ電流が流れる。
 一方、ONO膜13に電子が保持されていない状態、即ち消去状態ならば、0Vの電位であるメモリ用ゲート電極14の下方にはチャネルが形成されない。これにより、p型ソース領域15からp型ドレイン領域19へ電流が流れない。
 以上のような電流の流れの違いはビット線BLを通してセンスアンプ4により検出され、“1”又は“0”のデータとして読み出される。
 メモリセルMCのデータを消去する場合には、図3(c)に示すように、第1、第2のワード線WL1、WL2を通して選択用ゲート電極18とメモリ用ゲート電極14に同じ-5Vの電圧を印加するとともに、ソース線SL及びビット線BLに5Vの電圧を印加する。また、Nウェル12の電圧を5Vにする。
 これにより、Nウェル12とメモリ用ゲート電極14の間の電位差によりトンネル現象が生じ、メモリトランジスタMTのONO膜13のシリコン窒化膜13bに蓄積されている電子が基板側に引き抜かれてメモリセルMCは消去状態となる。これにより、メモリトランジスタMTの閾値が負の値になる。ここで、第1、第2のワード線WL1、WL2には-5Vが印加されているので、それらの線に接続される全てのメモリセルMCは消去状態となる。メモリセルMCの個別の消去については後述する。    
 次に、上記のメモリセルアレイの製造方法について説明する。
 図4~図16の各(a)と図17は、本発明の第1実施形態に係る半導体装置の製造工程を示す断面図であって、メモリセルアレイ領域のワード線の延在方向の部分断面図である。図4~図16の各(b)と図17は、その半導体装置の製造工程のうち、ビット線又はソース線の延在方向の部分断面図である。図4~図16の各(c)と図18は、その半導体装置の製造工程のうち周辺回路部の部分断面図である。図19A~図19Jは、本発明の第1実施形態に係る半導体装置におけるメモリセルアレイの製造工程を示す平面図である。
 次に、図4(a)~(c)に示す構造を形成するまでの工程を説明する。
 まず、シリコン基板11上にシリコン酸化膜31を熱酸化法又は気相成長(CVD)法により例えば10nmの厚さに形成する。さらに、シリコン酸膜31上に例えば厚さ150nm~200nmのシリコン窒化膜32をCVD法により形成する。
 続いて、シリコン窒化膜32上にフォトレジストを塗布し、これを露光、現像することにより、素子分離領域に開口を有するレジストパターン(不図示)を形成する。そして、そのレジストパターンをマスクにしてシリコン窒化膜32、シリコン酸化膜31と一部のシリコン基板11を反応性イオンエッチング(RIE)法によりエッチングし、これにより素子分離用溝33を形成する。シリコン基板11内での素子分離用溝33の深さを例えば300nm程度とする。
 シリコン基板11のうち素子分離用溝33で囲まれた領域は活性領域を含んでいる。
 例えば、図4(a)、(b)に示すメモリセルアレイ領域において、ストライプ状の素子分離用溝33に隣接してそれぞれストライプ状の活性領域34が配置され、それらの活性領域34はメモリトランジスタ形成領域34aと選択トランジスタ形成領域34bを含んでいる。
 また、図4(c)に示す周辺回路領域において、素子分離用溝33に囲まれた複数の活性領域は、左から順に、5V用NMOSFET領域35a、5V用PMOSFET領域35b、5V用低閾値NMOSFET領域35c、1.8V用NMOSFET領域35d及び1.8V用PMOSFET領域35eとなっている。
 そのレジストパターンを除去した後に、素子分離用溝33内面にシリコン酸化膜を熱酸化法により3nmの厚さに形成する。
 次に、図5(a)~(c)に示すように、シリコン窒化膜32の上と素子分離用溝33の中にシリコン酸化膜36aを高密度プラズマCVD法により成長する。シリコン酸化膜36aは、素子分離用溝33内を完全に埋め込む厚さ、例えばシリコン窒化膜32上で500nmの厚さに成長する。
 次に、図6(a)~(c)に示すように、化学機械研磨(CMP)法により、シリコン窒化膜32上のシリコン酸化膜36aを除去するとともに、残されたシリコン酸化膜36aの上面を平坦化する。この場合、シリコン窒化膜32は研磨ストッパーとして機能する。
 これにより、素子分離用溝33の中に残されたシリコン酸化膜36aを、シャロー・トレンチ・アイソレーション(STI)36とする。
 メモリセルアレイ領域において、図20Aに示すように、ストライプ状の複数の活性領域34を挟む位置に形成されたSTI36は、ビット線BL及びソース線SLに実質的に平行に形成されている。そのような複数のSTI36は、ワード線WL1、WL2に直交する方向で間隔をおいて複数配置されている。
 その後に、STI36を構成するシリコン酸化膜36aをアニールして緻密化する。そのアニール後に、リン酸ボイルによりシリコン窒化膜32を除去する。さらに、シリコン基板11表面に最初に形成したシリコン酸化膜31をフッ化水素により除去する。
 次に、図7(a)~(c)に示すように、シリコン基板11の表面を熱酸化することにより、その表面に犠牲酸化膜37を例えば10nmの厚さに形成する。
 続いて、シリコン基板11のメモリセルアレイ領域にヒ素(As)、燐(P)等のn型不純物をイオン注入してNウェル12を形成する。また、シリコン基板11の周辺回路領域のうち5V用PMOSFET領域35b及び1.8V用PMOSFET領域36eにもn型不純物をイオン注入してNウェル42a、42bを形成する。なお、周辺回路領域には、ロジック領域が含まれる。
 さらに、シリコン基板11の周辺回路領域のうち5V用NMOSFET領域35a、1.8V用NMOSFET領域35dには、ホウ素(B)等のp型不純物をイオン注入してPウェル41a、41bを形成する。
 それらのn型不純物とp型不純物のイオン注入は、イオン注入をしない領域をフォトレジストによって覆うことにより選択される。従って、イオン注入の工程では、フォトレジストのパターン形成、イオン注入、フォトレジスト除去が複数回繰り返されることになる。
 次に、犠牲酸化膜37をフッ酸により除去した後に、図8(a)~(c)に示すように、シリコン基板11の上にONO膜13を形成する。
 ONO膜13は、図2に示した層構造を有し、シリコン基板11の表面に熱酸化法により厚さ2.4nmの下側シリコン酸化膜13aを形成した後に、下側シリコン酸化膜13a上にCVD法によりシリコン窒化膜13bを所定の厚さに形成する。さらに、シリコン窒化膜13bの上層部を熱酸化することにより上側シリコン酸化膜13cを形成する。これにより、上側シリコン酸化膜13cの厚さを例えば4nmとし、残されたシリコン窒化膜13bの厚さを4nmとする。
 次に、図9(a)~(c)に示す構造を形成するまでの工程を説明する。
 まず、メモリセルアレイ領域内のメモリトランジスタ形成領域34bと、周辺回路領域内の1.8V用NMOSFET領域35d、1.8V用PMOSFET領域35eとをレジストパターン(不図示)により覆った状態で、ONO膜13をエッチングする。ONO膜13のエッチングは、例えば反応性イオンエッチング(RIE)法とフッ酸を使用するウェットエッチング法とによる。
 これにより、シリコン基板11表面のうち、メモリセル領域の選択用トランジスタ形成領域34aと、周辺回路領域内の5V用NMOSFET領域35a、5V用PMOSFET領域35b及び5V用低閾値NMOSFET35c領域が露出する。
 その後に、ONO膜13に覆われない領域のシリコン基板11表面に、熱酸化法によって第1のゲート絶縁膜38としてシリコン酸化膜を例えば9nmの厚さに成長する。
 以上により、図9(a)~(c)に示す構造が形成される。
 さらに、周辺回路領域内の1.8V用NMOSFET領域35d、1.8V用PMOSFET領域35eを除く領域をレジストパターン(不図示)で覆った状態で、それらの領域にあるONO膜13をエッチングする。そのエッチング後に、レジストパターンを除去する。
 次に、図10(a)~(c)に示すように、熱酸化法によって、第1のゲート絶縁膜38を12nmまで厚くするとともに、1.8V用NMOSFET領域35d、1.8V用PMOSFET領域35eの表面に第2のゲート絶縁膜39となるシリコン酸化膜を3nmの厚さに成長する。
 なお、選択トランジスタ形成領域34aにおける第1のゲート電極38は、図2に示すゲート絶縁膜17となる。
 これにより、選択トランジスタ形成領域35aには厚さ12nmの第1のゲート絶縁膜38が形成され、また、5V用NMOSFET領域35a、5V用PMOSFET領域35b及び5V用低閾値NMOSFET領域35cにも厚さ12nmの第1のゲート絶縁膜38が形成される。
 以上の工程によって図19Bに示すように、メモリセルアレイ領域では、ONO膜13がSTI36上で分離され、さらに、選択用トランジスタ形成領域34bを露出し、メモリトランジスタ形成領域を覆うパターン形状となっている。
 次に、図11(a)~(b)に示す構造を形成するまでの工程を説明する。
 まず、CVD法により、ONO膜13、第1、第2のゲート絶縁膜38、39上にポリシリコン膜を180nmの厚さに形成する。なお、ポリシリコン膜は、アモルファスシリコン膜を形成した後に、そのアモルファスシリコン膜を熱処理する工程により形成されることもある。
 さらに、ワード線形成領域、ゲート電極形成領域、その他の配線形成領域を覆うレジストパターン(不図示)をポリシリコン膜上に形成した後に、ポリシリコン膜をRIE法によりエッチングする。そのRIE法では、エッチングガスとして塩素系ガスを用いる。
 これにより、図11(a)、(b)、図19Cに示すように、メモリセルアレイ領域では、ポリシリコン膜が行方向に延びる複数本のストライプ形状となり、これらをワード線WL1、WL2とする。
 ワード線WL1、WL2は、メモリセルアレイ領域では、図19Cに示すように、メモリトランジスタ形成領域では、ワード線WL1、WL2がONO膜13に重なった状態となる。また、ワード線WL1、WL2の一部は、図2に示した選択用ゲート電極14とメモリ用ゲート電極18となる。なお、各メモリセルトにおける選択用ゲート電極14とメモリ用ゲート電極18の間隔を例えば0.18μm程度とする。
 一方、周辺回路領域では、図11(c)に示すように、5V用NMOSFET領域35a、5V用PMOSFET領域35b、5V用低閾値NMOSFET領域35c、1.8V用NMOSFET領域35d及び1.8V用PMOSFET領域35eのそれぞれには、ストライプ状のポリシリコン膜から構成されるゲート電極51g、52g、53g、54g、55g及びその他の配線が形成される。
 続いて、周辺回路領域においてゲート電極51g、53g、54gをマスクにして、周辺回路領域のPウェル41a、41bと5V用低閾値NMOSFET領域35cにn型不純物をイオン注入することにより、n型エクステンション領域51a、51b、53a、53b、54a、54bを形成する。さらに、ゲート電極52g、55gをマスクにしてNウェル42a、42bにp型不純物をイオン注入して、ソース/ドレイン領域のp型エクステンション領域52a、52b、55a、55bを形成する。
 なお、p型不純物又はn型不純物のイオン注入時には、イオン注入しない領域をフォトレジストで覆う。
 次に、図12(a)~(c)に示すように、周辺回路領域をフォトレジスト50で覆うとともに、メモリセルアレイ領域を露出させる。
 そして、ワード線WL1、WL2をマスクにして、ワード線WL1、WL2から露出した領域のONO膜13のうち上側シリコン酸化膜13cとシリコン窒化膜13bをそれぞれ反応性イオンエッチング(RIE)法により除去する。この場合、ONO膜13の下層シリコン酸化膜13は残される。これと同時に、ワード線WL1、WL2から露出した領域のゲート絶縁膜17も薄くなる。
 なお、メモリセルアレイ領域において、図19Dに示すように、ONO膜13は、ワード線WL1、WL2、即ちメモリ用ゲート電極14の下でそのまま存在する。
 この後に、ワード線WL1、WL2をマスクに使用して、メモリセルアレイ領域にp型不純物をイオン注入する。この場合のイオン注入条件として、フッ化ホウ素イオンを使用し、イオン注入エネルギーを30Kev とし、ドーズ量を3×1014/cmとする。
 これにより、ワード線WL1、WL2の両側には、図2に示した、p型エクステンション領域15a、19aとp型ソース/ドレイン領域16が形成される。なお、p型ソース/ドレイン領域16は、メモリセル領域のそれぞれにおいてメモリ用ゲート電極14と選択用ゲート電極18に挟まれた領域に形成される。その後に、フォトレジスト50を除去する。
 次に、図13(a)~(c)に示す構造を形成するまでの工程を説明する。
 ワード線WL1、WL2、ゲート電極51g、52g、53g、54g、55g及びシリコン基板11の上に、CVD法によりシリコン酸化膜を約100nmの厚さに形成する。その後に、シリコン酸化膜をエッチバックすることにより、シリコン基板11の一部を露出させるとともに、ワード線WL1、WL2、ゲート電極51g、52g、53g、54g、55gの側壁にサイドウォール20として残す。
 なお、各メモリセルにおける選択用ゲート電極18とメモリ用ゲート電極14の間にはサイドウォール20が埋め込まれた状態となる。
 続いて、メモリセルアレイ領域のワード線WL1、WL2及びサイドウォール20をマスクに使用して、Nウェル12にp型不純物としてフッ化ホウ素イオンを注入する。同時に、周辺回路領域のゲート電極52g、55g及びサイドウォール20をマスクにして、Nウェル42a、42bにもp型不純物としてフッ化ホウ素イオンを注入する。
 この場合、選択トランジスタSTとメモリトランジスタMTの間ではサイドウォール20によってイオン注入が阻止されるので、p型ソース/ドレイン領域16にはp型高濃度不純物拡散領域は形成されない。
 これにより、メモリセルアレイ領域のうちワード線WL1、WL2に交差する方向に延びた活性領域34では、隣接する選択トランジスタST同士で共用するp型ドレイン領域15のp型高濃度不純物拡散領域19bが形成され、さらに、隣接するメモリトランジスタMT同士で共用するp型ソース領域15のp型高濃度不純物拡散領域15bが形成される。
 また、周辺回路領域のNウェル42a、42bでは、ゲート電極52g、55gの両側にソース/ドレイン領域のp型高濃度不純物拡散領域52c、52d、55c、55dが形成される。
 その後に、周辺回路領域のPウェル41a、41bでは、ゲート電極51g、53g、54g及びサイドウォール20をマスクにしてn型不純物としてヒ素をイオン注入し、これによりソース/ドレイン領域となるn型高濃度不純物拡散領域51c、51d、53c、53dを形成する。
 以上のようなn型不純物とp型不純物のイオン注入する際には、イオン注入をしない領域をフォトレジストによって覆う。
 なお、以上のようにイオン注入された不純物はアニールにより活性化される。
 次に、図14(a)~(c)に示す構造を形成するまでの工程を説明する。
 まず、全面に、スパッタリング法により例えばコバルト膜を堆積する。その後、温度400℃~900℃の熱処理を行うことによって、ワード線WL1、WL2、ゲート電極51g、52g、53g、54g、55gを構成するポリシリコン膜とコバルト膜をシリサイド反応させ、これによりワード線WL1、WL2、ゲート電極51g、52g、53g、54g、55gの上面にシリサイド層21a、21b、21e、21f、21g、21h、21iを形成する。
 これと同時に、シリコン基板1とコバルト膜をシリサイド反応させてシリサイド層21c、21d、21j、21k、21m、21n、21pを形成する。その後、フッ酸等を用いて、未反応のコバルト膜を除去する。
 以上の工程により、バルクプロセスが完了し、メモリセルアレイ領域のうちストライプ状の活性領域34には、選択トランジスタST及びメモリトランジスタMTからなるメモリセルMCが交互に向きを変えて複数個形成される。一方、周辺回路領域のPウェル41a,41b等にはNMOSFETt、t、tが形成され、Nウェル42a、42bにはPMOSFETt、tが形成される。
 次に、図15(a)~(c)に示すように、シリサイド層21a~21k、21m、21n、21p、STI36等の上にエッチストップ膜としてシリコン窒化膜56をCVD法により20nmの厚さに形成する。さらに、シリコン窒化膜56上に第1層間絶縁膜57としてBPSG(ボロンリンシリカガラス)膜をCVD法により1600nmの厚さに形成した後に、BPSG膜を熱処理により平坦化する。
 次に、図16(a)、(b)に示すように、第1層間絶縁膜57とシリコン窒化膜56をフォトリソグラフィー法によりパターニングすることにより、メモリセルアレイ領域の複数のp型高濃度不純物拡散領域15b、19bの上にコンタクトホール22a、22bを形成する。なお、第1層間絶縁膜57とシリコン窒化膜56は、図2に示す層間絶縁膜22に相当する。
 続いて、コンタクトホール22a、22b内と第1層間絶縁膜57上面に、膜厚30nmのチタン(Ti)膜、膜厚20nmのチタンナイトライド(TiN)膜、膜厚300nmのタングステン(W)膜を順に形成する。その後に、それらの膜をCMP法によって、第1層間絶縁膜57上から除去するとともに第1層間絶縁膜57の上面を平坦にする。
 これにより、コンタクトホール22a、22b内に残されたW膜、TiN膜及びTi膜を導電性コンタクトプラグ23、24とする。メモリセルアレイ領域に形成された複数の導電性コンタクトプラグ23、24は、図19Eに示すように、活性領域34のうちp型高濃度不純物拡散領域15b、19bに接続される。
 続いて、第1層間絶縁膜57及び導電性コンタクトプラグ23、24の上に、膜厚60nmのTi膜、膜厚30nmのTiN膜、膜厚360nmのアルミニウム(Al)膜、膜厚5nmのTi膜、膜厚70nmのTiN膜からなる第1導電膜を例えばスパッタリング法により順に形成する。
 そして、第1導電膜をフォトリソグラフィー法によりパターニングすることにより、導電性コンタクトプラグ23、24毎に別々に接続される複数の導電性パッド59を形成する。即ち、導電性パッド59は、図19Fに示すように、p型高濃度不純物拡散領域15b、19b及びその周辺領域の上方に形成され、さらに列方向と行方向にマトリクス状に配置される。
 次に、図17に示す構造を形成するまでの工程を説明する。
 まず、導電性パッド59を覆う下側シリコン酸化膜60aを高密度プラズマCVD法により720nmの厚さに形成する。続いて、TEOS(テトラエトキシシラン)を反応ガスに使用するCVD法により、下側シリコン酸化膜60a上に上側シリコン酸化膜60bを1100nmの厚さに形成する。ここで、連続して形成された2つのシリコン酸化膜60a、60bを第2層間絶縁膜61とする。さらに、第2層間絶縁膜61の表面をCMP法により研磨して平坦化する
 次に、第2層間絶縁膜61をフォトリソグラフィー法によりパターニングして、導電性パッド59の上に第1、第2ビアホール61a、61bを形成する。図19Gに示すように、第1ビアホール61aは、p型ソース領域15毎に1つずつ形成され、また、第2ビアホール61bは、p型ドレイン領域19毎に1つずつ形成される。
 第1ビアホール61aは、導電性パッド59の一端寄りに配置されてp型ソース領域15に接続される。また、第2ビアホール61bは、導電性パッド59の他端寄りに配置されてp型ドレイン領域19に接続される。第1ビアホール61aと第2ビアホール61bは、ワード線WL1、WL2の延在方向で交互に配置されている。さらに、第1ビアホール61aは、同じ活性領域34に沿って複数配置され、また、第2ビアホール61bは、同じ活性領域34に沿って複数配置される。
 次に、第1、第2ビアホール61a、61b内と第2層間絶縁膜61上に、膜厚10nmのTi膜、膜厚7nmのTiN膜、膜厚300nmのW膜を順に形成する。
 続いて、W膜、TiN膜及びTi膜をCMPにより研磨して第2層間絶縁膜61上から除去する。これにより、第1、第2ビアホール61a、61b内に残存したW膜、TiN膜及びTi膜は、第1、第2ビア62a、62bとなる。
 次に、第2層間絶縁膜61及び第1、第2ビア62a、62bの上に、膜厚60nmのTi膜、膜厚30nmのTiN膜、膜厚360nmのAl膜、膜厚5nmのTi膜、膜厚70nmのTiN膜からなる第2導電膜を例えばスパッタリング法により順に形成する。
 そして、第2導電膜をフォトリソグラフィー法によりパターニングすることにより、図19Hに示すように、複数の矩形状のソース分岐線63aと複数の略矩形状のビット分岐線63bを形成する。なお、ソース分岐線63aは図1に示すソース分岐線SLdであり、ビット分岐線63bは図1に示すビット分岐線BLdである。
 ソース分岐線63aとビット分岐線63bは、それぞれワード線WL1、WL2に直交する方向にジグザグ且つ交互に配置されている。
 ソース分岐線63aは、ワード線WL1、WL2に対して斜め方向に隣接する2つの第1ビア62a同士を接続し、これにより第1ビア62a等を介してメモリトランジスタMTのp型ソース領域15に電気的に接続される。
 また、ビット分岐線63bは、ワード線WL1、WL2に対して反対の斜め方向に隣接する2つの第2ビア62b同士を接続し、これにより第2ビア62bを介してメモリセルの選択用トランジスタSTのp型ドレイン領域19に電気的に接続される。
 次に、ソース分岐線63aとビット分岐線63bを覆う下側シリコン酸化膜64aを高密度プラズマCVD法により720nmの厚さに形成する。続いて、TEOSを反応ガスに使用するCVD法により、下側シリコン酸化膜64a上に上側シリコン酸化膜64bを1100nmの厚さに形成する。ここで、連続して形成された2つのシリコン酸化膜64a、64bを第3層間絶縁膜64とし、その表面をCMP法により研磨して第3層間絶縁膜64を平坦化する
 次に、第3層間絶縁膜64をフォトリソグラフィー法によりパターニングして、図19Iに示すように、ソース分岐線63aとビット分岐線63bのそれぞれの中央の上にそれぞれ第3ビアホール64a、第4ビアホール64bを形成する。
 続いて、第3、第4ビアホール64a、64b内と第3層間絶縁膜64上に、膜厚10nmのTi膜、膜厚7nmのTiN膜、膜厚300nmのW膜を順に形成する。
 続いて、W膜、TiN膜及びTi膜をCMPにより研磨して第3層間絶縁膜64上面から除去する。これにより、第3,第4ビアホール64a、64b内に残存したW膜、TiN膜及びTi膜を第3,第4ビア65a、65bとする。
 次に、第3層間絶縁膜64及び第3,第4ビア65a、65bの上に、膜厚60nmのTi膜、膜厚30nmのTiN膜、膜厚360nmのAl膜、膜厚5nmのTi膜、膜厚70nmのTiN膜からなる第3導電膜を例えばスパッタリング法により順に形成する。
 そして、第3導電膜をフォトリソグラフィー法によりパターニングすることにより、図4Jに示すように、ワード線WL1、WL2に直交する方向に延びるソース線SLとビット線BLを交互に複数形成する。
 各ソース線SLは、ワード線WL1、WL2に直交する方向に形成された複数の第3ビア65aを介して複数のソース分岐線63aに電気的に接続される。また、各ビット線BLは、ワード線WL1、WL2に直交する方向に形成された複数の第4ビア65bを介して複数のビット分岐線63bに接続される。
 これにより、メモリセルアレイ領域に形成された複数のメモリセルMCは、図1に示す電気的接続関係となる。
 この後に、図17に示すように、ソース線SL及びビット線BLを覆う第4、第5層間絶縁膜66、67を形成する。第4、第5層間絶縁膜66、67の形成方法は、それぞれ第3層間絶縁膜64と実質的に同じ方法を採用する。その後に、高密度プラズマCVD法によりシリコン酸化膜68を形成し、最後に、プラズマCVD法によりカバー膜69としてシリコン窒化膜を1000nmの厚さに形成する。
 ところで、メモリセルアレイ領域では、上記のように3層の金属配線パターンが形成される。3層の金属配線パターンは、第1層間絶縁膜57上の導電性パッド59と、第2層間絶縁膜61上のソース分岐線63a及びビット分岐線63bと、第3層間絶縁膜64上のソース線SLとビット線BLである。しかし、周辺回路領域では、それよりも多い、例えば5層の金属配線が形成される。
 そこで、図18を参照して周辺回路領域の配線形成工程を簡単に説明する。
 まず、メモリセル領域で導電性コンタクトプラグ23、24を形成する工程において、周辺回路領域には、NMOSFETt、t、t、PMOSEFTt、tに接続される導電性コンタクトプラグ58c~58hを形成する。
 また、メモリセル領域で導電性パッド59を形成すると同時に、周辺回路領域の第1層間絶縁膜57上には、導電性コンタクトプラグ58c~58hに接続する第1の金属配線59aが形成される。
 第1の金属配線59aを覆う第2層間絶縁間61内には、メモリセル領域に第1ビア62a、62bを形成すると同時に、第1の金属配線59aの一部に接続される第5ビア62c、62d、62eを形成する。
 その後に、メモリセル領域でソース分岐線63a及びビット分岐線63bを形成すると同時に、周辺回路領域では、第5ビア62c、62d、62eに接続される第2の金属配線63cを第2層間絶縁膜61上に形成する。
 第2の金属配線63cは、第3層間絶縁膜64に覆われるとともに、第3層間絶縁膜64内に形成される第6ビア65c、65dに接続される。
 さらに、周辺回路領域では、ソース線SL及びビット線BLを形成すると同時に、第3層間絶縁膜64上に第3の金属配線70を形成する。その後に形成される第4層間絶縁膜66内には、第3の金属配線70の一部に接続される第7ビア71が形成される。この後に、第4の金属配線層72、第5層間絶縁膜67、第8ビア73a、73b、第5の金属配線74、シリコン酸化膜68、カバー膜69が順に形成される。
 第6、第7、第8ビア65c、65d、71、73a、73bは、メモリセル領域の第3、第4ビア65a、65bと実質的に同様な方法により形成される。また、第4、第5の金属配線72、74は、第3の金属配線70の形成と実質的に同じ方法か類似の方法により形成される。
 以上のような工程によれば、メモリセルMCとビット線BLの間の層に、斜め隣のメモリセルMC同士を接続するビット分岐線63a、ソース分岐線73bを入れることにより図1に示すメモリセルアレイが構成される。
 しかし、ビット分岐線63a、ソース分岐線63bは、周辺回路領域の第2の金属配線63cと同時に形成するようにしたので、従来に比べて工程が増えることはない。
(第2の実施の形態)
 図20は、本発明の第2実施形態に係る半導体装置であるフラッシュメモリのメモリセルアレイを示す断面図である。図20において、図2と同じ符号は同じ要素を示している。
 図20に示すメモリセルMCは、メモリトランジスタMTと選択トランジスタSTを有している。
 メモリトランジスタMTは、第1実施形態と同様に、メモリ用ゲート電極14、p型ソース領域15、p型ソース/ドレイン領域16、ONO膜13等を有している。また、選択トランジスタSTは、第1実施形態と同様に、選択用ゲート電極18、p型ソース/ドレイン領域16、p型ソース領域19等を有している。
 選択トランジスタSTにおいて、選択用ゲート電極18とNウェル12の間に形成されるゲート絶縁膜17aは、第1実施形態のゲート絶縁膜17に比べて膜厚が例えば7nmと薄く、これにより、ゲート絶縁膜17aの耐圧がONO膜13のメモリ消去電圧以下となっている。
 しかし、選択トランジスタSTを構成するゲート絶縁膜17aを薄くし、選択用ゲート電極18に閾値以上の電圧を印加すると、p型ソース/ドレイン領域16とp型ドレイン領域19の間のNウェル12表層にチャネルが形成され易くなる。これにより、第1実施形態の選択トランジスタSTに比べて大きなチャネル電流が流れ、読み出しエラーの確率が小さくなる。
 そのようなメモリセルの消去は次のような方法で行う。
 図21は、メモリ消去時のメモリセルアレイにおけるビット線BL、ソース線SL、第1のワード線WL1、第2のワード線WL2へのそれぞれの印加電圧の一例を示している。
 1つのメモリセルMCにおいて、メモリセルMCのメモリ用ゲート電極14と選択用ゲート電極18に接続される2つのワード線WL1、WL2のいずれか一方に+3V、他方に-5Vを印加し、また、ソース線SLとNウェル12にはそれぞれ5Vを印加するとともに、ビット線BLの電圧を0Vに設定する。
 メモリセルのデータ消去は次のように2ステップで行われる。
 消去の第1ステップでは、図22(a)に示すように、第1のメモリセルMC1のメモリ用ゲート電極14に-5Vを、選択用ゲート電極18に+3Vを印加する。
 これにより、ONO膜13のシリコン窒化膜13b中の電子がトンネル現象によりNウェル12に移動してデータが消去される。また、選択用ゲート電極18の下方にはチャネルは形成されない。
 この場合、図22(b)に示すように、ワード線延在方向で第1のメモリセルMC1に隣接する第2のメモリセルMC2では、選択用ゲート電極18に-5Vが印加されるので、選択トランジスタSTの選択用ゲート電極18の下方にはチャネルが形成される。しかし、ビット線BLは0Vなので、そのチャネルは0Vとなる。また、メモリ用ゲート電極14には+3Vの電圧が印加されているので、その下方にはチャネルが形成されず、しかもNウェル12の電位差は小さく、メモリトランジスタMTには電子が注入されない。
 消去の第2ステップでは、隣接するワード線WL1、WL2にそれぞれ印加する電圧を第1ステップとは反対にする。これにより、第2のメモリセルMC2のメモリ用ゲート電極14に+3Vが、選択用ゲート電極18に-5が印加される。
 これにより、第2のメモリセルMCでは、メモリトランジスタMTのONO膜13内の電子がトンネル現象によりNウェル12に移動してデータが消去される。この場合、第1のメモリセルMC1の選択トランジスタにはャネルが形成されるが、ビット線が0Vなので、そのチャネルは0Vとなる。
 以上のように、消去時にはビット線BLを0Vにしているので、消去対象となるメモリセルMC内の選択トランジスタSTのゲート絶縁膜17aには高々-5Vの電圧しか印加されないので、第1実施形態に比べて薄い膜厚でよくなる。
 なお、消去対象となるメモリセルMCの選択トランジスタSTに接続されるワード線WL2に3Vを印加する理由は、その選択トランジスタSLがON状態になることを防止し、そのメモリセルMCでソースラインSLからビット線BLに電流を流さないようにするためである。
 なお、図20に示すメモリセルは、図1に示したメモリセルアレイのメモリセルMCとして適用される。
 次に、選択トランジスタSTのゲート絶縁膜17aを周辺回路領域の5V用NMOSFETtのゲート絶縁膜よりも薄く形成する工程を説明する。
 まず、第1実施形態に説明した工程に従って、シリコン基板11にSTI36を形成し、Nウェル12、42a、42b、Pウェル41a、41bを形成し、その後に図8に示したようにONO膜13を形成する。
 続いて、選択トランジスタSTのゲート絶縁膜17aを以下の工程により形成する。
 まず、周辺回路領域内の5V用NMOSFET領域35a、5V用PMOSFET領域35b及び5V用低閾値NMOSFET領域35cのONO膜13を例えば反応性イオンエッチング(RIE)法とフッ酸を用いたウェットエッチング法を使用して除去する。この場合、他の領域のONO膜13をフォトレジストで覆う。
 次に、図23(a)~(c)に示すように、フォトレジストを除去した状態で、周辺回路領域内の5V用NMOSFET領域35a、5V用PMOSFET領域35b及び5V用低閾値NMOSFET領域35cのシリコン基板11の表面を熱酸化することにより、ゲート絶縁膜38として膜厚5nmのシリコン酸化膜を形成する。
 続いて、第1実施形態と同様な工程により、選択トランジスタ形成領域34bのONO膜13を除去する。
 その後に、図24(a)~(c)に示すように、選択トランジスタ領域34bのシリコン基板11表面を熱酸化してゲート絶縁膜17aとしてシリコン酸化膜を4nmの厚さに形成する。このとき、周辺回路領域に既に形成されたゲート酸化膜38の厚さが9nmとなる。
 次に、第1実施形態と同様な工程により、周辺回路領域のうち1.8V用NMOSFET35d領域及び1.8V用PMOSFET領域35eのONO膜13をエッチングして除去する。
 その後に、図25(a)~(c)に示すように、1.8V用NMOSFET領域35d及び1.8V用PMOSFET領域35eのシリコン基板11の表面を熱酸化してゲート絶縁膜39としてシリコン酸膜を3nmの厚さに形成する。このとき、5V用NMOSFET領域35a、5V用PMOSFET領域35b及び5V用低閾値NMOSFET領域35cのゲート絶縁膜38は12nmに増加し、また、選択トランジスタ形成領域34bのゲート絶縁膜17aは7nmに増加する。
 その後、第1実施形態と同様な工程に従ってメモリデバイスを形成する。
 以上の工程により形成された選択トランジスタSTのゲート絶縁膜17aの耐圧は、メモリ消去時のワード線WL1、WL2とソース線SLの電位差以下になるが、書き込み時、読み出し時には表1のように、消去時には上記のように耐圧以上の電圧は印加されないので不都合はない。
(第3の実施の形態)
 図26は本発明の第3実施形態に係る半導体装置であるフラッシュメモリのメモリアレイを示す断面図である。図26において、図2と同じ符号は同じ要素を示している。
 図26に示すメモリセルMCは、メモリトランジスタMTと選択トランジスタSTを有している。
 メモリトランジスタMTは、第2実施形態と同様に、メモリ用ゲート電極14、p型ソース領域、p型ソース/ドレイン領域16、ONO膜13等を有している。また、選択トランジスタSTは、第2実施形態と同様に選択用ゲート電極18、p型ドレイン領域、p型ソース/ドレイン領域16、ゲート絶縁膜17a等を有している。なお、選択トランジスタSTのゲート絶縁膜17aは、第1実施形態と同様な厚さでもよい。
 さらに、p型ソース領域15、p型ドレイン領域19の周囲には、Nウェル12よりも高い不純物濃度のn型不純物拡散領域15c、19cが形成されている。
 これにより、p型ソース領域15とNウェル12の境界におけるpn接合の不純物濃度分布の変化が急峻になって拡散電位が大きくなるので、アバランシェブレークダウないしバンド間トンネリングで発生する電子がONO膜13中に注入されやすくなる。
 ところで、p型ソース/ドレイン領域16の周囲にはn型不純物拡散領域が形成されないのは、第2実施形態に示した消去時に、p型ソース/ドレイン領域16とNウェル12の間の電位差によりp型ソース/ドレイン領域16でアバランシェブレークダウン或いはバンド間トンネリングが発生することを防止するためである。
 なお、メモリセルは、図1に示した回路のメモリセルとして適用される。
 次に、メモリセルMCのn型不純物領域15c、19cの形成工程について説明する。
 まず、第1実施形態に説明した工程に従って、シリコン基板11にSTI36、Nウェル12、42a、42b、Pウェル41a、41bを形成し、ONO膜13、ワード線WL1、WL2を形成した後に、図12(a)、(b)に示したように、p型エクステンション領域15a、19aをメモリ用ゲート電極14、選択用ゲート電極18の側方に形成する。なお、メモリ用ゲート電極14、選択用ゲート電極18はワード線WL1、WL2の一部を構成している。
 その後に、図27に示すように、レジストパターンRを形成してメモリセルアレイ領域のp型エクステンション領域15a、19aを露出する一方、p型ソース/ドレイン領域16及びその他の領域を覆う。レジストパターンRは、フォトレジストをシリコン基板11の全面に塗布してワード線WL1、WL2等を覆った後に、これを露光、現像することにより形成される。
 続いて、レジストパターンRに覆われないp型エクステンション領域15a、19aに、n型ドーパントであるヒ素を加速エネルギー20keV 、ドーズ量1×1013/cmの条件でイオン注入し、n型不純物拡散領域15c、19cを形成する。
 レジストパターンRの除去後に、第1実施形態と同様に、サイドウォール20を形成し、さらに、シリコン基板11のp型ソース領域15とp型ドレイン領域19のp型高濃度不純物拡散領域15b、19bを形成する。なお、不純物イオン注入後には熱処理により不純物を活性化させる。
 その後の工程は、第1実施形態に従い、メモリデバイスを形成する。これにより、図26に示したメモリセルが完成する。
(第4の実施の形態)
 図28は本発明の第4実施形態に係る半導体装置であるフラッシュメモリのメモリアレイを示す断面図である。図28において、図2と同じ符号は同じ要素を示している。
 図28に示すメモリセルMCは、メモリトランジスタMTと選択トランジスタSTを有している。
 メモリトランジスタMTは、第2実施形態と同様に、メモリ用ゲート電極14、p型ソース領域15、p型ソース/ドレイン領域16a、ONO膜13等を有している。また、選択トランジスタSTは、第2実施形態と同様に、選択用ゲート電極18、p型ドレイン領域19、p型ソース/ドレイン領域16a、ゲート絶縁17a膜等を有している。
 ただし、メモリ用ゲート電極14と選択用ゲート電極18の間の領域にあるp型ソース/ドレイン領域16aの不純物濃度は、第2実施形態のp型ソース/ドレイン領域16に比べて低く、LDD領域となっている。
 そのような構造によれば、メモリ用ゲート電極14と選択用ゲート電極18の間の領域に存在するpn接合の拡散電位が小さくなってアバランシェブレークダウン或いはバンド間トンネリングがより発生しにくくなる。
 例えば、第2実施形態において説明したような2ステップのデータ消去時に、消去の対象にならないメモリセルMCにおいて、Nウェル12に5V、p型ドレイン領域19に0Vを印加してp型ソース/ドレイン領域16に約5Vの電位差が生じても、第2のp型ソース/ドレイン領域16においてアバランシェブレークダウン或いはバンド間トンネリングが発生しにくくなり、メモリセルMCへの誤書き込みが防止される。
 次に、p型エクステンション領域15a、19aよりも不純物濃度の低いp型ソース/ドレイン領域16の形成工程について説明する。
 まず、第1実施形態に説明した工程に従って、シリコン基板11にSTI36、Nウェル12、42a、42b、Pウェル41a、41bを形成し、ONO膜13、ワード線WL1、WL2を形成する。
 その後に、図29(a)に示すように、フォトレジストをシリコン基板11の全面に塗布し、ついで露光、現像することにより、周辺回路領域を覆うとともに、メモリセルアレイ領域では選択用ゲート電極18とメモリ用ゲート電極14となる2つのワード線WL1、WL2の間を覆うレジストパターンRを形成する。
 それに続いて、メモリ用ゲート電極14同士の間の領域と選択用ゲート電極18同士の間の領域のNウェル12に、p型不純物としてフッ化ホウ素を加速エネルギー30keV、ドーズ量3×1014/cmの条件で注入する。これにより、p型ソース領域15とp型ドレイン領域19のp型エクステンション領域15a、19aが形成される。この後にレジストパターンRを除去する。
 次に、図29(b)に示すように、再びフォトレジストをシリコン基板11の全面に塗布し、ついで露光、現像することにより、選択用ゲート電極18とメモリ用ゲート電極14の間の領域を露出させるとともに、その他の領域を覆うレジストパターンRを形成する。
 それに続いて、選択用ゲート電極18とメモリ用ゲート電極14の間の領域のNウェル12に、p型不純物としてフッ化ホウ素を加速エネルギー30keV、ドーズ量5×1013/cmの条件で注入する。これにより、低不純物濃度のp型ソース/ドレイン領域16aが形成される。この後にレジストパターンRを除去する。
 その後に、第1実施形態と同様な方法により、サイドウォール20を形成し、ついでp型高濃度不純物拡散領域15b、19bを形成すると、図28に示したメモリセルMCが形成される。その後の工程は、第1実施形態と同様とする。
(第5の実施の形態)
 図30は本発明の第5実施形態に係る半導体装置であって、OTP(one time programmable)ROMに利用されるメモリセルを示す断面図である。図31において、図20と同じ符号は同じ要素を示している。
 図30に示すメモリセルMCにおいて、メモリトランジスタMTは、第2実施形態と同様に、メモリ用ゲート電極14、p型ソース領域15、p型ソース/ドレイン領域16等を有している。また、選択トランジスタSTは、第2実施形態と同様に、選択用ゲート電極18、p型ドレイン領域19、p型ソース/ドレイン領域16等を有している。メモリセルMCは図1に示すと同様にワード線WL1、WL2、ビット線BL、ソース線SLに接続される。
 第2実施形態に示したメモリセルMCとの違いは、メモリトランジスタMTのONO膜13を構成する下側シリコン酸化膜13dが4nmに厚く形成されていることと、選択トランジスタSTのゲート絶縁膜17bが3nmの厚さに薄く形成されていることである。
 これにより、メモリトランジスタMTのONO膜13のシリコン窒化膜13bに蓄えられる電子が抜けにくく、良好なリテンション特性が得られる。また、選択トランジスタSTのゲート絶縁膜17bが薄いので、第2実施形態と同様に、大きな読み出し電流が得られる。
 なお、書き込み方法と読み出し方法は、第1実施形態に示したメモリセルと同様となる。
 次に、メモリセルMCの書き込み方法、読み出し方法を説明する。書き込み、読み出しの際に各部に印加する電圧の値の例を表2に挙げる。
 表2では、選択トランジスタ(選択TR)にワード線WL1を、メモリトランジスタ(メモリTR)にワード線WL2を接続した場合を示している。なお、表2に括弧で示す値は、非選択線の電圧を示している。
Figure JPOXMLDOC01-appb-T000002
 まず、メモリセルMCに対する書き込み動作は、ワード線WL2を通してメモリトランジスタMTのメモリ用ゲート電極14に1.8Vの電圧を印加するとともに、ソース線SLに-5Vの電圧を印加する。この場合、ビット線BL及びNウェル12の各電圧を0Vとする。
 これにより、p型ソース領域15とNウェル12のバンド間トンネリングにより発生した電子が、メモリ用ゲート電極14の電圧によりONO膜13のシリコン窒化膜13bに注入される。この結果、メモリトランジスタMTの閾値が正の値に変わる。この時、ビット線BLの電圧は0Vであり、選択トランジスタSTのチャネル領域には電流は流れない。
 また、選択されないメモリセルMCに接続されるソース線SLの電圧は0Vであり、バンド間トンネリングによる電子は発生しない。メモリセルMCに対する読み出しは、第1実施形態のメモリセルと同様である。
 表2から明らかなように、本実施形態における動作電圧条件の大きな特徴として、消去が不要であるので、表1とは異なり、ワード線WLとビット線BLに対して読み出しに必要な電圧より大きな電圧を印加しなくてもよい。即ち、ワード線WLとビット線BLには、低電圧トランジスタの耐圧以上の電圧が印加されない。
 従って、図1に示したワード線デコーダ4a、4bと、ビット線デコーダ3を低電圧トランジスタから構成することができる。低電圧トランジスタは面積が小さいので、周辺回路の寸法を小さくすることができる。また、低電圧トランジスタの性能を利用して、高速読み出しが可能になる。
 次に、選択トランジスタSTのゲート絶縁膜17bを周辺回路領域の5V用NMOSFETtのゲート絶縁膜38よりも薄く形成する工程を説明する。
 まず、第1実施形態に説明した工程に従って、シリコン基板11にSTI36を形成し、Nウェル12、42a、42b、Pウェル41a、41bを形成し、その後に図8に示したようにONO膜13を形成する。なお、本実施形態では、ONO膜13を構成する下側シリコン酸化膜13d、上側シリコン酸化膜13cとシリコン窒化膜13bの厚さをそれぞれ4nmとする。下側シリコン酸化膜13dは第1実施形態と同様に熱酸化法により形成される。
 続いて、選択トランジスタSTのゲート絶縁膜17bを以下の工程により形成する。
 まず、周辺回路領域内の5V用NMOSFET領域35a、5V用PMOSFET領域35b及び5V用低閾値NMOSFET領域35cのONO膜13を例えば反応性イオンエッチング(RIE)法とフッ酸を使用するウェットエッチング法とを使用して除去する。この場合、他の領域のONO膜13をフォトレジストで覆う。
 さらに、フォトレジストを除去した後に、図23(a)~(c)に示したと同様に、周辺回路領域の5V用NMOSFET領域35a、5V用PMOSFET領域35b及び5V用低閾値NMOSFET領域35cのシリコン基板11の表面を熱酸化することにより、ゲート絶縁膜38として膜厚約9nmのシリコン酸化膜を形成する。
 次に、メモリセルアレイ領域内のメモリトランジスタ形成領域と、周辺回路領域の一部をレジストパターンにより覆った状態で、選択トランジスタ形成領域34bにあるONO膜13をエッチングする。
 これにより、シリコン基板11表面のうち、メモリセルアレイ領域内の選択トランジスタ形成領域34bと、周辺回路領域内の1.8V用NMOSFET領域35d、1.8V用PMOSFET領域35eが露出する。
 続いて、図31(a)~(c)に示すように、選択トランジスタ領域34bと周辺回路領域の1.8V用NMOSFET領域35dと1.8V用PMOSFET領域35eのシリコン基板11表面を熱酸化してゲート絶縁膜17b、39としてシリコン酸化膜を3nmの厚さに形成する。このとき、周辺回路領域の一部に既に形成されたゲート酸化膜38の厚さは12nmとなる。
 その後、第1実施形態と同様な工程に従ってメモリデバイスを形成する。
 以上の工程により形成された選択トランジスタSTのゲート絶縁膜17bの耐圧は、ワード線WL1、WL2とビット線BLの電位差以下になるが、上記のようにゲート絶縁膜17bには耐圧以上の電圧は印加されない。
(第6の実施の形態)
 図32は、本発明の第6実施形態に係る半導体装置であるフラッシュメモリのメモリセルを示す断面図である。図32において、図1と同じ符号は同じ要素を示している。
 図31に示すメモリセルMCは、n型のメモリトランジスタMTとn型の選択トランジスタSTを有し、選択トランジスタSTはビット線BLに接続され、メモリトランジスタMTはソース線SLに接続されている。
 メモリトランジスタMTは、シリコン基板11のPウェル72上に形成された電荷保持層であるONO膜13と、ONO膜13上に形成されたメモリ用ゲート電極74と、メモリ用ゲート電極74の両側のPウェル72内に形成されたn型ソース領域75とn型ソース/ドレイン領域76を有している。なお、n型ソース領域75とn型ソース/ドレイン領域76の間のPウェル72では、閾値電圧調整のために不純物が注入されている。
 また、選択トランジスタSTは、Pウェル72上にゲート絶縁膜17を介して形成された選択用ゲート電極78と、選択用ゲート電極78の両側のPウェル72内に形成されたn型ドレイン領域79とn型ソース/ドレイン拡散領域76を有している。なお、メモリトランジスタMTと選択トランジスタSTは、共通のn型ソース/ドレイン領域76を共有している。
 選択用ゲート電極78とメモリ用ゲート電極74はいずれかのワード線WL1又はWL2の一部を構成し、実質的に平行に配置される。
 n型ソース領域75とn型ドレイン領域79は、それぞれn型低濃度不純物拡散領域のエクステンション領域75a、79aと、n型高濃度不純物拡散領域75b、79bから構成されている。
 また、n型ソース領域75とn型ドレイン領域79のそれぞれの周囲には、Pウェル72よりも高不純物濃度のp型不純物領域75c、79cが形成されている。これにより、n型ソース領域75とn型ドレイン領域79とその周囲により形成されるpn接合の不純物濃度分布が急峻に変化し、アバランシェブレークダウンやバンド間トンネリングが発生しやすくなる。
 メモリ用ゲート電極74と選択用ゲート電極78の上層部はシリサイド層21a、21bが形成され、また、n型ソース領域75とn型ドレイン領域79のそれぞれの表面にもシリサイド層21c、21dが形成されている。シリサイド層として、例えば、厚さ8nmのコバルトシリサイド層を形成する。さらに、メモリ用ゲート電極74と選択用ゲート電極79のそれぞれの側面には絶縁性サイドウォール20が形成されている。
 メモリトランジスタMTと選択トランジスタSTは層間絶縁膜22に覆われている。また、層間絶縁膜22のうちn型ソース領域75とn型ドレイン領域79の上には第1、第2のコンタクトホール22a、22bが形成され、それぞれ第1導電性プラグ23、第2導電性プラグ24が埋め込まれている。n型ソース領域75上の第1導電性プラグ23はソース線SLに接続され、また、n型ドレイン領域79上の第2導電性プラグ24はビット線BLに接続されている。
 従って、選択トランジスタSTの書き込み状態がビット線BLの寄生容量の変動に影響を与えることを防止している。
 以上のような構成を有する複数のメモリセルMCの接続は、第1実施形態と同様になる。従って、行方向に隣り合う2つのメモリセルMCにおいて、一方のメモリトランジスタMTのメモリ用ゲート電極74と他方の選択トランジスタMTの選択用ゲート電極78は同一のワード線WL1(又はWL2)に接続され、また、一方の選択用ゲート電極78と他方のメモリ用ゲート電極74は同一のワード線WL2(又はWL1)に接続される。
 なお、縦横に配列されたメモリセルMCは、第1実施形態と同様な関係でソース線SL、ビット線BLに接続される。
 以上のことから、1本のソース線SLと1本のワード線WL1(又はWL2)を選択したときに、これらに接続された1つのメモリトランジスタMTだけが、それらのソース線SL、ワード線WL1(又はWL2)の両方の電圧を同時に受けることができ、アバランシェブレークダウン、或いはバンド間トンネリングで発生した電子を電荷保持層であるONO膜13に注入することができる。
 次に、メモリセルMCの書き込み、読み出し、消去の方法を説明する。書き込み、読み出し、消去の際に各部に印加する電圧の値の例を表3に挙げる。
 表3では、選択トランジスタ(選択TR)にワード線WL1を、メモリトランジスタ(メモリTR)にワード線WL2を接続した場合を示している。なお、表3に括弧で示す値は、非選択線の電圧を示している。
Figure JPOXMLDOC01-appb-T000003
 まず、メモリセルMCに対する書き込み時には、ワード線WL2を通してメモリ用ゲート電極74に5Vの電圧を印加するとともに、ソース線SLに5Vの電圧を印加する。この場合、ビット線BL及びPウェル72の各電圧を0Vとする。
 これにより、n型ソース領域75とPウェル72のpn接合部でアバランシェブレークダウンにより発生した電子が、ONO膜13のシリコン窒化膜13bに注入される。この結果、メモリトランジスタMTの閾値が正の値になる。
 この時、選択用ゲート電極78、ビット線BLの電圧はそれぞれ0Vであり、選択トランジスタSTのチャネル領域には電流は流れない。また、選択されないメモリセルに接続されるソース線SLの電圧は0Vであり、アバランシェブレークダウンによる電子は発生しない。
 メモリセルMCに対する読み出しは、ワード線WL1を通して選択用ゲート電極78に1.8Vの電圧を印加するとともに、ビット線BLにも1.8Vの電圧を印加する。この場合、メモリ用ゲート電極74、ビット線BL及びPウェル72の各電圧を0Vとする。
 これにより選択されたメモリセルMCにおいて、選択用ゲート電極78の下方にチャネルが形成され、また、n型ドレイン領域79とn型ソース領域75の間に電位差が生じる。
 メモリトランジスタMTのONO膜13中に電子が保持されている場合には、その電子によりメモリ用ゲート電極74の下方にチャネルが形成されない。これにより、n型ソース領域75からn型ドレイン領域79へ電流が流れない。
 一方、ONO膜13に電子が保持されていない状態、即ち消去状態ならば、0Vの電位であるメモリ用ゲート電極74の下方にはチャネルが形成される。これにより、n型ソース領域75からn型ドレイン領域79に電流が流れる。
 以上のような電流の流れの違いは図1のセンスアンプ6により検出され、データとして読み出される。
 メモリセルMCのデータを消去する場合には、ワード線WL1、WL2を通して選択用ゲート電極78とメモリ用ゲート電極74に-5Vの電圧を印加するとともに、ソース線SLに5Vの電圧を印加し、ビット線BLを0Vに設定する。また、Pウェル72の電圧を0Vにする。
 これにより、n型ソース領域75ではバンド間トンネリング現象により発生したホットホールがメモリトランジスタMTのONO膜13に注入され、メモリトランジスタMTの閾値は負の値になる。
 次に、上記のメモリセルアレイの製造方法について説明する。なお、メモリセルMCに接続される配線は、第1実施形態で参照した図4A~図4Jに示す工程によって形成されるので、以下の説明では、バルクの製造工程を主に説明する。
 図33~図38の各(a)は、本発明の第6実施形態に係る半導体装置の製造工程を示す断面図であって、メモリセルアレイ領域のワード線の延在方向の部分断面図である。図33~図38の各(b)は、その半導体装置の製造工程のうち、ビット線又はソース線の延在方向の部分断面図である。図32~図38の各(c)は、その半導体装置の製造工程のうち周辺回路部の部分断面図である。
 次に、図33(a)~(c)に示す構造を形成するまでの工程を説明する。
 まず、第1実施形態と同様な方法により、シリコン基板11にSTI36を形成し、その後に、シリコン基板11の表面に犠牲酸化膜37を形成する。シリコン基板11はp型とする。
 その後に、シリコン基板11の周辺回路領域をフォトレジストで覆うとともに、メモリセルアレイ領域を露出させる。そして、メモリセルアレイ領域に所定の条件でn型不純物をイオン注入することにより、STI36よりも深い領域に埋込Nウェル71を形成する。
 さらに、所定の条件で、p型不純物をイオン注入することにより、埋込Nウェル71よりも浅い領域にフラッシュ用のPウェル72を形成する。Pウェル72と埋込Nウェル71とその下のp型シリコン基板11によりトリプルウェルが構成される。
 シリコン基板11の周辺回路領域には、第1実施形態と同様に、Pウェル41a、41bとNウェル42a、42bを形成する。
 なお、埋込Nウェル71とPウェル72の周囲は図示しないNウェルに囲まれる。
 この後に、メモリセルアレイ領域のPウェル72と、周辺回路領域のPウェル41a、41b、Nウェル42a、42b等に閾値調整のためにn型又はp型の不純物イオンが注入される。
 次に、フッ酸溶液により犠牲酸化膜37を除去した後に、図8(a)~(c)に示したと同様に、シリコン基板11の上にONO膜13を形成する。ONO膜13は図32に示した三層構造を有している。
 次に、図34(a)~(c)に示すように、第1実施形態に示した方法に従って、選択トランジスタ領域34bのシリコン基板11表面に厚さ7nmの厚さのシリコン酸化膜からなるゲート絶縁膜17を形成する。
 また、5V用NMOSFET領域35a、5V用PMOSFET領域35b及び5V用低閾値NMOSFET領域35cのシリコン基板11表面に、厚さ12nmのシリコン酸化膜からなるゲート絶縁膜38を形成し、さらに、1.8V用NMOSFET領域35d、1.8V用PMOSFET領域35eのシリコン基板11表面に厚さ3nmのシリコン酸化膜からなるゲート絶縁膜39を形成する。
 次に、図35(a)~(c)に示す構造を形成するまでの工程を説明する。
 まず、第1実施形態と同様な方法により、メモリセルアレイ領域において、行方向に延びる複数本のワード線WL1、WL2を形成する。ワード線WL1、WL2の一部は、図32に示した選択用ゲート電極78とメモリ用ゲート電極74となる。ワード線WL1、WL2は、メモリトランジスタ形成領域では、図19Cに示すように、ワード線がONO膜13に重なった状態となる。
 また、第1実施形態と同様な方法により、周辺回路領域のうち、5V用NMOSFET領域35a、5V用PMOSFET領域35b、5V用低閾値NMOSFET領域35c、1.8V用NMOSFET領域35d及び1.8V用PMOSFET領域35eのそれぞれに、ゲート電極51g、52g、53g、54g、55g、その他の配線を形成する。
 続いて、第1実施形態と同様な方法により周辺回路領域のPウェル41a、41bと5V用低閾値NMOSFET領域35cにn型エクステンション領域51a、51b、53a、53b、54a、54bを形成する。さらに、周辺回路領域のNウェル42a、42bにp型エクステンション領域52a、52b、55a、55bを形成する。
 次に、周辺回路領域をフォトレジスト50で覆うとともに、メモリセルアレイ領域を露出させる。
 そして、ワード線WL1、WL2をマスクにしてONO膜13のうち上側シリコン酸化膜13cとシリコン窒化膜13bを反応性イオンエッチング(RIE)法により除去し、下側シリコン酸化膜13dをそのまま残す。これにより、図19Dに示したように、メモリ用ゲート電極74の下に残されたONO膜13は電荷蓄積絶縁層となる。
 この後に、ワード線WL1、WL2をマスクに使用して、メモリセルアレイ領域にp型不純物をイオン注入する。この場合のイオン種として、ヒ素イオンを使用し、イオン注入エネルギーを20Kev とし、ドーズ量を6×1014/cmとする。
 これにより、ワード線WL1、WL2下方の両側には、図32に示したn型エクステンション領域75a、79aとn型ソース/ドレイン領域76が形成される。その後、フォトレジスト50を除去する。
 次に、図36(a)~(c)に示す構造を形成するまでの工程を説明する。
 まず、レジストパターン50aを形成してメモリセルアレイ領域のn型エクステンション領域75a、79aを露出する一方、n型ソース/ドレイン領域76及びその他の領域を覆う。レジストパターン50aは、フォトレジストをシリコン基板11の全面に塗布してワード線WL1、WL2等を覆った後に、これを露光、現像することにより形成される。
 続いて、レジストパターン50aに覆われないn型エクステンション領域75a、79aに、ホウ素イオンを加速エネルギー20keV 、ドーズ量1×1013/cmの条件でイオン注入することにより、n型エクステンション領域75a、79aの下にp型不純物拡散領域75c、79cを形成する。
 その後、第1実施形態と同じ方法により、ワード線WL1、WL2、ゲート電極51g、52g、53g、54g、55gの側壁にサイドウォール20を形成する。ここで、選択用ゲート電極78とメモリ用ゲート電極74の間はサイドウォール20が埋め込まれた状態となる。
 次に、図37(a)~(c)に示す構造を形成するまでの工程を説明する。
 まず、メモリセルアレイ領域のワード線WL1、WL2及びサイドウォール20をマスクに使用して、Pウェル72にn型不純物としてヒ素をイオン注入する。これにより、活性領域34では、隣接する2つの選択トランジスタSTで共用する第n型ドレイン領域79のn型高濃度不純物拡散領域75bが形成され、これと同時に、隣接する2つのメモリトランジスタMTで共用するn型ソース領域75のn型高濃度不純物拡散領域79bが形成される。
 また、周辺回路領域のPウェル41a、41bでは、ゲート電極51g、53g、54g及びサイドウォール20をマスクにしてn型不純物としてヒ素をイオン注入し、これによりソース/ドレイン領域となるn型高濃度不純物拡散領域51c、51d、53c、53dを形成する。
 その後、周辺回路領域のNウェル42a、42bでは、ゲート電極52g、55gの両側にソース/ドレイン領域のp型高濃度不純物拡散領域52c、52d、55c、55dが形成される。
 以上のようなn型不純物とp型不純物のイオン注入する際には、イオン注入をしない領域をフォトレジストによって覆う。
 なお、以上のようにイオン注入された不純物はアニールにより活性化される。
 次に、図38(a)~(c)に示すように、第1実施形態と同じ工程により、ワード線WL1、WL2、ゲート電極51g、52g、53g、54g、55gの上面にシリサイド層21a、21b、21e~21iを形成し、これと同時に、p型高濃度不純物拡散領域75b、79b、51c、51d、53c、53d,54c、54dとn型高濃度不純物拡散領域52c、52d、55c、55dの上面においてもシリサイド層21j、21k、21m、21n、21pを形成する。
 以上により、メモリセルアレイ領域のうちストライプ状の活性領域のそれぞれには、選択トランジスタST及びメモリトランジスタMTの向きを交互に変えたメモリセルMCが複数形成される。従って、ワード線WL1、WL2の長手方向に沿って隣接する2つのメモリセルMCを比べると、選択トランジスタSTとメモリトランジスタMTの向きが反対方向になる。
 この場合、選択トランジスタST及びメモリトランジスタMTは、NMOSEFET型となる。一方、周辺回路領域のPウェル41a、41b等にはNMOSFETt、t、tが形成され、また、Nウェル42a、42bにはPMOSFETt、t10が形成される。
 以上により、バルクプロセスが完了する。この後に、第1実施形態と同じ方法によって導電性プラグ、ビア、配線等の配線層が形成される。
(第7の実施の形態)
 図39は、本発明の第7実施形態に係る半導体装置を構成するメモリセルアレイの回路図である。また、図40(a)、(b)は、そのメモリセルアレイを構成するメモリセルを示す断面図である。
 図40(a)、(b)において、メモリセルは、第6実施形態に示したnチャンネル型のメモリトランジスタMT及び選択トランジスタSTにより構成されている。図40において、図32と同じ符号は同じ要素を示している。
 次に、メモリセルのFN書き込み方法を説明する。
 図39において破線の楕円で囲まれたメモリセルは、書き込みされるメモリセルMC1であり、また、一点鎖線の楕円で囲まれたメモリセルは、書き込みされないメモリセルMC0である。
 指定したメモリセルMC1にFN書き込みをする場合には、ビット線BL、ソース線SL、ワード線WL1、WL2及びPウェル72に図39、図40(a)に示す値の電圧を印加する。
 書き込みが指定されたメモリセルMC1において、図40(a)に示すように、Pウェル72に-5Vを印加した状態で、メモリ用ゲート電極74に接続されたワード線WL1には+5Vを印加し、また、ソース線SLには-5Vを印加し、ビット線にも-5Vを印加する。また、書き込みが指定されないメモリセルMC0 に接続されるソース線SLを電圧0Vに設定する。
 従って、選択されたメモリトランジスタMTのチャネルとワード線WL1の電位差は10Vになる。これにより、ONO膜13に電子がFN注入され、書き込みが行われる。
 この場合、図40(b)に示すように、同じワード線WL1に接続された非選択のメモリセルMC0のメモリ用ゲート電極74にも+5Vが印加される。しかし、非選択のメモリセルMC0において、ソース線SLの電圧を0Vにしているので、メモリ用ゲート電極74の下方のチャネルの電圧は、n型ソース領域75を介して0Vとなり、メモリ用ゲート電極74とチャネルの間の電位差は5Vとなる。これにより、非選択のメモリセルMC0におけるFN書き込みは回避される。
 以上のことから、図39に示すような回路を採用することにより、選択トランジスタSTをメモリトランジスタMTよりもビット線BL側に配置する回路構成を採用してもFN書き込みが可能となる。
(第8の実施の形態)
 図41は、本発明の第8実施形態に係る半導体装置を構成するメモリセルアレイの回路図である。
 以下に、図41に示す本実施形態に係るフラッシュメモリのビット消去方法について説明する。ビット消去とは、任意のメモリセルを個別に消去することである。換言すれば、選択したメモリセルに限定してデータを書き換えることができるということである。
 図41に示すメモリセルMCとして、図2に示したpチャネル型であるメモリトランジスタと選択トランジスタを有するメモリセルを使用する場合について説明する。
 まず、1つのメモリセルMCdを消去する場合には、ビット線BL、ソース線SL、ワード線、Nウェル12に表4に示す値の電圧を印加する。
Figure JPOXMLDOC01-appb-T000004
 消去が指定されたメモリセルMCdにおいて、図2に示すNウェル12を0Vに設定した状態で、ワード線WL2に接続されたメモリ用ゲート電極14に-10Vを印加し、また、ソース線SL、ビット線BLをともに0Vに設定する。
 従って、選択されたメモリトランジスタMTのチャネル領域とワード線WL2の電位差は-10Vになる。これにより、電子がONO膜13からチャネル側にトンネルし、メモリセルMCdのデータが消去される。
 この場合、同じワード線WL2に接続された非選択のメモリセルMCのメモリ用ゲート電極14にも-10Vが印加されるが、そのメモリトランジスタMTに接続されるソース線SLの電圧を-5Vにしているので、メモリ用ゲート電極14下方のチャネルはp型ソース領域15を通して-5Vであり、メモリ用ゲート電極14とチャネルの間の電位差は5Vとなる。これにより、非選択のメモリセルmcにおけるデータの消去は回避される。
 次に、図41に示すメモリセルMCとして、図32に示したnチャネル型であるメモリセルと選択トランジスタを有するメモリセルを使用する場合のビット消去について説明する。
 1つのメモリセルMCdを消去する場合には、ビット線BL、ソース線SL、ワード線、Nウェル12のそれぞれに表5に示す値の電圧を印加する。
Figure JPOXMLDOC01-appb-T000005
 消去が指定されたメモリセルMCdにおいて、図32に示すPウェル72を0Vに設定した状態で、ワード線WL1のメモリ用ゲート電極74に-5Vを印加し、また、ソース線SLに5Vを印加するとともに、ビット線BLを0Vに設定する。
 これにより、n型ソース領域75とPウェル72のpn接合部でバンド間トンネリングにより発生したホットホールが、ONO膜13のシリコン窒化膜13bに注入され、メモリトランジスタMTの閾値が負の値になる。この結果、メモリセルMCdのデータが消去される。
 この場合、同じワード線WL1に接続された非選択のメモリセルMCのメモリ用ゲート電極74にも-5Vが印加されるが、そのメモリトランジスタMTに接続されるソース線SLの電圧を0Vにすると、ホットホールは発生しない。これにより、非選択のメモリセルMCにおけるデータの消去は回避される。
 以上のことから、図41に示すように、メモリセルMCの選択トランジスタSTのソースを直接にビット線BLに接続する場合であっても、メモリセルMCのデータを個別に消去することが可能なる。
(第9の実施の形態)
 図42は、本発明の第8実施形態に係る半導体装置を構成するメモリセルアレイの回路図である。図42において、図1と同じ符号は同じ要素を示している。
 図42において、メモリセルMCは、縦横に複数配置され、例えば行方向にn個、列方向にm個で配置されている。
 それぞれのメモリセルMCは、メモリトランジスタMTと選択トランジスタSTを有し、第1~第6実施形態のいずれかに示した構造を有している。なお、以下の説明では、図2に示した構造を含むメモリセルMCを例に挙げて説明する。
 図42において、ビット線BL、ソース線SLはワード線WL1、WL2に交差する方向に延在している。また、メモリセルMCは、ビット線BL、ソース線SLと同じ方向に延在するストライプ状の複数の活性領域にそれぞれ複数形成されている。
 なお、ワード線WL2は、後述するように選択トランジスタSTのみに接続されるので、以下に選択線SGLという。
 活性領域内で隣接する2つのメモリセルMCは、メモリトランジスタMTと選択トランジスタSTの位置を逆にして配置され、直列に接続されている。従って、隣接する複数のメモリセルMCはソース領域15かドレイン領域19の少なくとも一方を共有している。
 一方、ワード線WL1、選択線SGLの長手向に隣り合うメモリセルMCは、メモリトランジスタMTと選択トランジスタSTをそれぞれ同じ向きにして配置されている。この配置は、図1に示すメモリセルアレイとは異なる。
 ワード線WL1、選択線SGLの延在方向に並ぶ複数のメモリセルMCにおいて、各メモリ用ゲート電極14は同じワード線WL1に接続され、また、各選択トランジスタSTの選択用ゲート電極18は同じ選択線SGLに接続される。
 メモリセルMCのソース領域15は、ワード線WL1に対して斜め方向に隣接する他のメモリセルMCのソース領域15の1つに電気的に接続されている。また、各メモリセルMCのドレイン領域19は、ワード線WL1に対して斜めの方向に隣接する他のメモリセルMCのドレイン領域19の1つに接続されている。
 各活性領域に形成された複数の共通したソース領域15は1つおきに1つのソース線SLに接続され、残りの共通したソース領域15は別のソース線SLに接続されている。
 また、各活性領域34において、共通したドレイン領域19は1つおきに1つのビット線BLに接続され、残りの共通したドレイン領域19は別のビット線BLに接続される。
 なお、図42に示す回路は、EEPROMのメモリセルアレイに適用することができる。その素子構造については次の実施形態において説明する。
 以上のような構成によれば、ワード線WL1に沿って並ぶメモリセルMCのそれぞれのメモリトランジスタMTと選択トランジスタSTの向きを同じにする構造においても、それらのメモリトランジスタMTのソース領域15を異なるソース線SLに接続し、選択トランジスタSTを異なるビット線BLに接続することができる。
 これにより、1つのワード線WL1と1つのソース線SLを選択することにより、1つのメモリトランジスタMTを選択して書き込むことができる。また、読み出し、消去については第1~第8実施形態と同様に行うことができる。
 そのような構成により、選択トランジスタSTの書き込み状態によるビット線BLの寄生容量への影響を防止することができる。
(第10の実施の形態)
 図43は、本発明の第10実施形態に係る半導体装置であるEEPROMを構成するメモリセルを示す断面図である。
 メモリセルMCは、メモリトランジスタMTと選択トランジスタSTを直列に接続した構造を有している。
 メモリトランジスタMTは、シリコン基板81のNウェル82上に形成されたゲート絶縁膜83aと、ゲート絶縁膜83a上に電荷蓄積層として形成されたフローティングゲート電極84と、フローティングゲート電極84上にONO膜86を介して形成されたコントロールゲート電極88と、フローティングゲート電極84の両側のNウェル82内に形成されたp型ソース領域91とp型ソース/ドレイン領域92とを有している。p型ソース領域91は、フローティングゲート電極94の下に延びる領域に形成されるp型エクステンション領域91aとp型高濃度不純物拡散領域91bから構成されている。
 また、選択トランジスタSTは、Nウェル82上にゲート絶縁膜83bを介して形成された選択用ゲート電極85と、選択用ゲート電極85の両側のNウェル82内に形成されたp型ソース/ドレイン領域92とp型ドレイン領域93とを有している。p型ドレイン領域93は、選択用ゲート電極85の下に延びる領域に形成されるp型エクステンション領域93aとp型高濃度拡散領域93bから構成されている。選択用ゲート電極85の上には、ONO膜87を介して導電性ポリシリコン膜89が形成されている。
 選択用トランジスタSTとメモリトランジスタMTは、p型ソース/ドレイン領域92を共有している。
 また、コントロールゲート電極88の上層部にはそれぞれシリサイド層94a、94bが形成されている。さらに、p型ソース領域91、p型ドレイン領域93のそれぞれの上にもシリサイド層94b、94cが形成されている。
 2つのONO膜86、87は、同層に形成され、それぞれ厚さ4nmの下側シリコン酸化膜86a、87a、厚さ5nmのシリコン窒化膜86b、87b及び厚さ4nmの上側シリコン酸化膜86c、87cを順に形成して構成されている。
 なお、ゲート絶縁膜83a、83bの膜厚は例えば10nmである。
 メモリトランジスタMTと選択トランジスタSTの上には第1層間絶縁膜95が形成されている。また、第1層間絶縁膜95のうちp型ソース領域91、p型ドレイン領域93の上にはそれぞれ第1、第2のコンタクトホール95a、95bが形成され、それらの中には第1の導電性コンタクトプラグ96、第2の導電性コンタクトプラグ97がそれぞれ埋め込まれている。
 p型ソース領域91上の第1導電性プラグ96はソース線SLに接続され、また、p型ドレイン領域93上の第2導電性プラグ97はビット線BLに接続される。これにより、選択トランジスタSTの書き込み状態の違いがビット線BLの寄生容量に影響を及ぼすことが防止される。
 また、コントロールゲート電極88と選択用ゲート電極85はそれぞれ異なるワード線WL1、選択線SGLに接続されている。
 なお、選択トランジスタSTのゲート絶縁膜83bの厚を第2、第5実施形態のように薄くしてもよい。また、p型ソース/ドレイン領域92の不純物濃度を第4実施形態のようにp型エクステンション領域91a、93aよりも低濃度にしてもよい。さらに、第3実施形態のように、p型高濃度不純物拡散領域91b、93bの下に反対導電型、即ちn型不純物拡散領域を形成してもよい。また、第6実施形態のように、上記のメモリトランジスタMTと選択トランジスタSTがn型トランジスタであってもよい。
 以上のような構成を有するメモリセルMCは、例えば図1、図42に示したメモリセルアレイに適用される。
 例えば、図42に示すように、メモリセルMCをビット線BL、ソース線SLに沿って隣接させる場合に、各メモリセルMCにおけるメモリトランジスタMTと選択トランジスタSLの配置を交互に逆向きにする一方で、ワード線WL1に沿って隣接する各メモリセルMCの向きを同じにしてもよい。
 それらのメモリセルMCは、図42と同様に、ソース線SL、ビット線BL、ワード線WL1、選択線SGLに接続される。
 書き込み、読み出し、消去として、例えば上記の第1~第8の実施形態の方法を採用してもよい。ただし、ソース線SL、ビット線BL、ワード線WL1、選択線SGLにそれぞれ印加する電圧はEEPROMに合わせた値とする。
 次に、図43に示した構造のメモリセルを図42に示す回路に適用する場合の半導体装置の形成工程について、図44A~図44Qを参照して以下に説明する。なお、図44A~図44Qに示す回路は、図43において一点鎖線で囲んだ範囲を示している。
 まず、図44Aに示すように、シリコン基板81の素子分離領域にSTI98を形成する。素子分離領域は、複数のストライプ状の活性領域99を挟む領域に配置される。
 STI98は、例えば第1実施形態のSTI36と同じ方法により形成される。さらに、第1実施形態と同様な方法により、シリコン基板81の活性領域99にn型不純物を導入してNウェル82を形成する。
 その後に、シリコン基板81の活性領域99を熱酸化して例えば厚さ10nmのゲート絶縁膜83を形成する。ゲート絶縁膜83は、図43に示すゲート絶縁膜83a、83bとして使用される。
 次に、ゲート絶縁膜83の上に第1ポリシリコン膜101を所定の厚さに形成する。
 続いて、図44Bに示すように、第1ポリシリコン膜101をフォトリソグラフィー法によりパターニングすることにより、フローティングゲート電極84を形成する領域の側方のSTI98の上に開口部102を形成する。
 次に、図44Cに示す構造を形成するまでの工程を説明する。
 まず、第1ポリシリコン膜101の上にONO膜を形成する。ONO膜の形成工程は、第1ポリシリコン膜101を熱酸化して下側シリコン酸化膜を例えば6nmの厚さに形成し、ついで、CVD法によりシリコン窒化膜を形成し、さらにシリコン窒化膜の表面を熱酸化することにより上側シリコン酸化膜を例えば4nmの厚さに形成する工程からなる。ここで、最終的なシリコン窒化膜を例えば5nmとする。
 さらに、ONO膜上に第2ポリシリコン膜を形成する。その後に、フォトリソグラフィー法により、同じマスクを使用して第2ポリシリコン膜から第1ポリシリコン膜101までの各層をパターニングして行方向に長いストライプ状のワード線WL1、選択線SGLを形成する。
 ワード線WL1は、第2ポリシリコン膜から構成され、STI98上の開口部102の上方を通ってストライプ状に形成される。また、ワード線WL1の下の活性領域99では、第1ポリシリコン膜101から構成されるフローティングゲート電極84が形成される。フローティングゲート電極84は、STI98上の開口部102により分離され、活性領域99上で孤立した形状となる。
 ワード線WL1は、フローティングゲート電極84の上では、図43に示したメモリトランジスタMTのコントロールゲート電極88となっている。また、第1のポリシリコン膜101上に形成されたONO膜は、図43に示すコントロールゲート電極88とフローティングゲート電極84の間のONO膜86となる。
 なお、図44C~44Qでは、フローティングゲート電極84の位置を網掛け模様で示す。
 選択線SGLは、第1のポリシリコン膜101から構成され、複数のワード線WL1の間に間隔をおいて2本ずつ形成される。また、選択線SGLの一部は、活性領域99において図43に示す選択用ゲート電極85を構成する。
 なお、第1のポリシリコン膜101上に形成されたONO膜、第2のポリシリコン膜は、選択線SGLと同じ平面形状に残され、図43に示すONO膜87、ポリシリコン膜89となる。
 次に、ワード線WL1、選択線SGLをマスクに用いて、各活性領域99にp型不純物をイオン注入することによりエクステンション領域91a、93aを形成し、さらにワード線WL1、選択線SGLの側面にサイドウォール90を形成し、その後にワード線WL1、選択線SGL及びサイドウォール90をマスクにしてp型不純物をイオン注入してp型ソース領域91とp型ドレイン領域93を形成する。続いて、ワード線WL1、第2のポリシリコン膜89、p型ソース領域91及びp型ドレイン領域93の上にシリサイド層94a~94dを形成する。それらの工程は、例えば第1~第7実施形態に従う。
 なお、図44Cにおいて、サイドウォール90は省略されている。
 以上のような工程により、図43に示したメモリトランジスタMTと選択トランジスタSTを備えたメモリセルMCが形成される。この場合、図44Cに示したように、ワード線WL1に沿って隣り合う各メモリトランジスタMTのコントロールゲート電極88同士はワード線WL1を介して互いに接続される。また、選択線SGLに沿って隣り合う各選択トランジスタSTの選択用ゲート電極85同士は選択線SGLを介して互いに接続される。
 活性領域99に沿って隣り合うメモリセルMCの向きは交互に逆向きに配置され、これにより、2つのメモリトランジスタMTはp型ソース領域91を共有して互いに接続される。また、活性領域99に沿って隣り合う2つの選択トランジスタSTはp型ドレイン領域93を共有して互いに接続される。
 次に、ワード線WL1、選択線SGL、メモリトランジスタMT及び選択トランジスタMTの上に第1層間絶縁膜95を形成する。第1層間絶縁膜95は第1実施形態で示したと同様な工程で形成される。なお、以下に説明する第2~第7の層間絶縁膜も同様な方法により形成される。
 続いて、第1層間絶縁膜95をフォトリソグラフィー法によりパターニングすることにより、図44Dに示すように、p型ソース領域91、p型ドレイン領域93のそれぞれの上に第1、第2のコンタクトホール95a、95bを形成する。
 さらに、第1、第2のコンタクトホール95a、95b内にはそれぞれ図43に示したように第1、第2の導電性コンタクトプラグ96、97を形成する。第1、第2の導電性コンタクトプラグ96、97の形成方法について、例えば第1実施形態に示した方法を採用する。
 次に、図44Eに示すように、第1層間絶縁膜95上に金属膜を形成し、これをフォトリソグラフィー法によりパターニングして複数の第1配線104a、104b、104c、104dと複数の第1導電性パッド105を互いに分離して形成する。
 第1導電性パッド105は、p型ドレイン領域93上の各第2の導電性コンタクトプラグ97に個別に接続され、その前後の2つの選択線SGLの一部に重なる平面形状を有している。
 第1配線104a~104dは4つのタイプがあり、それぞれp型ソース領域91上の第1の導電性コンタクトプラグ96に個別に接続され、さらに屈曲してSTI98上に引き出されている。
 第1のタイプの第1配線104aは、活性領域99に沿って図中前方右側にL字状に屈曲している。第2のタイプの第1配線104bは、活性領域99に沿って図中後方左側にL字状に屈曲している。第3のタイプの第1配線104cは、活性領域99に沿って図中前方左側にL字状に屈曲している。第4のタイプの第1配線104dは、活性領域99に沿って図中後方右側にL字状に屈曲している。
 第1のタイプと第3のタイプの第1配線104a、104cは、同一の活性領域99の上に沿って交互に配置されている。また、第2のタイプと第4のタイプの第1配線104b、104dは、第1のタイプの第1配線104aの隣の活性領域99の上に沿って交互に配置されている。さらに、第1のタイプと第3のタイプの第1配線104a、104cはそれぞれ隣接する2つのワード線WL1に沿って交互に配置され、第2のタイプと第4のタイプの第1配線104b、104dも隣接する別の2つのワード線WL1に沿って交互に配置されている。
 続いて、第1配線104a、104bと第1導電性パッド105を覆う第2層間絶縁膜106を形成する。そして、第2層間絶縁膜106をフォトリソグラフィー法によりパターニングすることにより、図44Fに示すように、第1ビアホール107と第2ビアホール108を形成する。
 第1ビアホール107は、第1配線104a~104dのうちSTI98の上方の端部上に形成される。また、第2ビアホール108は、第1導電性パッド105の上であって第1配線104a~104dの屈曲しない端部に寄せて形成されている。これにより、第2ビアホール108のそれぞれは、隣接する2本の選択線SGLに沿ってジグザグに配置される。
 その後に、第1、第2ビアホール107、108内にそれぞれ第1、第2ビアプラグ109、110を形成する。なお、第1、第2ビアプラグ109,110は、例えば、第1実施形態に示したビアプラグの形成方法により形成される。
 次に、第2層間絶縁膜106上に金属膜を形成し、これをフォトリソグラフィー法によりパターニングすることにより、図44Gに示すように、複数の第2配線111と複数の第2導電性パッド112を互いに分離して形成する。
 第2導電性パッド112は、第1ビアプラグ109に個別に接続され、STI98の上方に配置される。これにより、第2導電性パッド112は、第1ビアプラグ109、第1配線104a~104d、及び第1コンタクトプラグを介してp型ソース領域91に電気的に接続される。
 第2配線111は、略H字型の平面形状を有していて、第2導電性パッド112の側方で隣接する2本のワード線WL1を跨ぎ、さらに、跨いだ場所に最も近い斜め方向の2つの第2ビアプラグ110を電気的に接続する構造となっている。
 これにより、同じ活性領域99に形成された複数のp型ドレイン領域93は、第2配線111、第2ビアプラグ110、第1導電性パッド105及び第1コンタクトプラグ97を介して、それぞれ左側の斜め隣りにあるp型ドレイン領域93と右側の斜め隣りにあるp型ドレイン領域93に交互に電気的に接続される。従って、第2配線111は、図42に示すビット分岐線BLdの一部を構成する。
 次に、第2導電性パッド112と第2配線111を覆う第3層間絶縁膜113を形成する。
 その後に、フォトリソグラフィー法により第3層間絶縁膜113をパターニングすることにより、図44Hに示すように、第2配線111のほぼ中央に第3ビアホール114を形成するとともに、第2導電性パッド112の上に第4ビアホール115を形成する。さらに、第3、第4ビアホール114、115内にそれぞれ第3、第4ビアプラグ116、117を形成する。第3、第4ビアプラグ116、117はSTI98の上方に位置する。
 続いて、第3層間絶縁膜113上に金属膜を形成し、これをフォトリソグラフィー法によりパターニングすることにより、図44Iに示すように、複数の第3配線118a、118bと複数の第3導電性パッド119を互いに分離して形成する。
 第3導電性パッド119は、第3ビアプラグ116にそれぞれ個別に接続されている。また、第3配線118a、118bは、略S字形の第1タイプと、略逆S字形の第2タイプがある。
 第3配線118a、118bは、図42に示したメモリトランジスタMTのp型ソース領域91同士を接続するソース分岐線SLdの一部を構成する。
 第3配線118a、118bは、隣り合う2つの活性領域99において、斜め方向に隣接するp型ソース領域91同士を2つずつ電気的に接続する構造となっている。即ち、第3配線118a、118bは、第4ビアプラグ117、第2導電性パッド112、第1ビアプラグ109、第1配線104a~104d及び第1コンタクトプラグ96を介して、2つのp型ソース領域91に接続される。
 第3導電性パッド119は、第3ビアプラグ116を介してH字状の第2配線111に接続され、STI98の上方に配置され、その周囲の4つの第3配線118a、118bに囲まれる。
 次に、第3導電性パッド119と第3配線118a、118bを覆う第4層間絶縁膜120を形成する。
 その後に、フォトリソグラフィー法により第4層間絶縁膜120をパターニングすることにより、図44Jに示すように、ソース分岐線SLdである第3配線118a、118bの上に第5ビアホール121を形成する。これと同時に、ビット分岐線BLdに電気的に接続される第3導電性パッド119の上に第6ビアホール122を形成する。
 第6ビアホール122は、各STI98の上方に形成される。これに対して、第5ビアホール121は、STI98の上方に一つおきに重ねられる。これにより、ワード線WL1、選択線SGLに沿った方向で、第5、第6ビアホール121、122の双方に重なるSTI98が一つおきに存在し、第6のビアホール122だけに重なるSTI98が一つおきに存在する。
 これは、2つのp型ドレイン領域93を接続している複数のビット分岐線BLdに接続される第6ビアホール122を2つのグループに分けるためである。第1グループでは、STI98上で間隔をおいて第5のビアホール121を間に挟んでいる。第2グループでは、STI98上で第5のビアホール121が間に存在しない。
 この後に、第5、第6ビアホール121、122内にそれぞれ第5、第6ビアプラグ123、124を形成する。
 これ以降は、ソース線SLとビット線BLの形成工程となる。
 まず、第4層間絶縁膜120上に金属膜を形成し、これをフォトリソグラフィー法によりパターニングすることにより、図44Kに示すように、複数の第1ビット線BL1と複数の第4、第5導電性パッド125、126を互いに分離して形成する。
 第1ビット線BL1は、第5ビアホール122に重ならないSTI98の上方に配置され、これにより第2グループの第6ビアプラグ124を介してドレイン分岐線BLdである一部の第2配線111に電気的に接続される。
 また、第4導電性パッド125は、第1グループの第6ビアホール122の上に形成され、第6ビアプラグ124を介して残りの第2配線111に電気的に接続される。さらに、第5導電性パッド126は、第5ビアプラグ123を介してソース分岐線SLdである第3配線118a、118bに接続される。
 次に、第4、第5導電性パッド125、126と第1ビット線BL1を覆う第5層間絶縁膜127を形成する。
 その後に、フォトリソグラフィー法により第5層間絶縁膜127をパターニングすることにより、図44Lに示すように、第4導電性パッド125、第5導電性パッド126のそれぞれの中央の上方に、第7、第8ビアホール128、129を形成する。さらに、第7、第8ビアホール128、129内にそれぞれ第7、第8ビアプラグ130、131を形成する。
 これにより、第7ビアプラグ130は、第4導電性パッド125、第5ビアプラグ123を介して第3配線(ソース分岐線)118a、118bに接続される。また、第8ビアプラグ131は、第5導電性パッド126、第6ビアプラグ124、第3導電性パッド119及び第3ビアプラグを介して第2配線(ビット分岐線)111に接続される。
 続いて、第5層間絶縁膜127上に金属膜を形成し、これをフォトリソグラフィー法によりパターニングすることにより、図44Mに示すように、複数の第2ビット線BL2と、第6導電性パッド132を互いに分離して形成する。
 第2ビット線BL2は、第1ビット線BL2の上方に平行に形成されるとともに、その側方の第8ビアプラグ131に接続される。
 第6導電性パッド132は、第2のビット線BL2に接続されない第7ビアプラグ130に接続されて配置され、その下方の第4導電性パッド125、第5ビアプラグ123等を介して下方のp型ソース領域91に電気的に接続される。
 次に、第6電性パッド132と第2ビット線BL2を覆う第6層間絶縁膜137を形成する。その後に、フォトリソグラフィー法により第6層間絶縁膜137をパターニングすることにより、図44Nに示すように、第6導電性パッド132のそれぞれの中央の上方に、第9ビアホール134を形成する。さらに、第9ビアホール134内にそれぞれ第9ビアプラグ135を形成する。
 続いて、第6層間絶縁膜133上に金属膜を形成し、これをフォトリソグラフィー法によりパターニングすることにより、図44Oに示すように、第2ビット線BL2の間の領域に配置された第8ビアプラグ135に接続される第7導電性パッド136を形成する。
 第2のビット線BL2の延在方向に沿って配置される各第7導電性パッド136は、その一側方の第2ビット線BL2と他側方の第2ビット線BL2に向けて交互に拡張した形状となっている。
 次に、第7導電性パッド136を覆う第7層間絶縁膜137を形成する。その後に、フォトリソグラフィー法により第7層間絶縁膜137をパターニングすることにより、図44Pに示すように、各第7導電性パッド133のうち第2ビット線BL2に近い側部の上に第10ビアホール138を形成する。さらに、第10ビアホール138内に第10ビアプラグ139を形成する。
 続いて、第7層間絶縁膜137上に金属膜を形成し、これをフォトリソグラフィー法によりパターニングすることにより、図44Qに示すように、複数のソース線SLを形成する。ソース線SLは、活性領域99に平行に延在して配置され、その下の第10ビアプラグ139、第7導電性パッド136、第5ビアプラグ、第6度津延性パッド第7ビアプラグ、第4導電性パッド125及び第5ビアプラグを介して第3導電性パッド(ソース分岐線)119に接続される。
 なお、上記の各実施形態において示した回路は、等価であれば配線方向は限定されるものではない。
 以上の工程により形成されたメモリセルアレイは、図42に示すような電気回路となり、メモリトランジスタMTのソース領域をソース線SLに接続し、選択トランジスタSTのドレイン領域をビット線BLに接続した構成となっている。
 以上説明した実施形態は典型例として挙げたに過ぎず、各構成要素を組み合わせること、或いはその変形およびバリエーションは当業者にとって明らかであり、当業者であれば本発明の原理および請求の範囲に記載した発明の範囲を逸脱することなく上述の実施形態の種々の変形を行えることは明らかである。

Claims (20)

  1.  第1メモリトランジスタと第1選択トランジスタを有する第1のメモリセルと、
     第2メモリトランジスタと第2選択トランジスタを有する第2のメモリセルと、
     前記第1メモリトランジスタのゲート電極と前記第2選択トランジスタのゲート電極に電気的に接続された第1ワード線と、
     前記第2メモリトランジスタのゲート電極と前記第1選択トランジスタのゲート電極に電気的に接続された第2ワード線と、
     前記第1メモリトランジスタのソース領域と前記第2メモリトランジスタのソース領域に電気的に接続された第1ソース線と、
    を有することを特徴とする半導体装置。
  2.  前記第1選択トランジスタのドレイン領域に接続された第1ビット線と、
     前記第2選択トランジスタのドレイン領域に接続された第2ビット線と
    をさらに有することを特徴とする請求項1に記載の半導体装置。
  3.  前記第1のメモリセルは、前記第1メモリトランジスタと前記第1選択トランジスタの間に共通の第1のソース/ドレイン領域を有し、
     前記第2のメモリセルは、前記第2メモリトランジスタと前記第2選択トランジスタの間に共通する第2のソース/ドレイン領域を有する
    ことを特徴とする請求項1又は請求項2に記載の半導体装置。
  4. 前記第1、前記第2のソース/ドレイン領域は、前記第1、前記第2メモリトランジスタの前記ソース領域よりも不純物濃度が低いことを特徴とする請求項3に記載の半導体装置。
  5.  前記第1、前記第2メモリセルは、前記第1、前記第2のメモリトランジスタにアバランシェ書き込みを行う不揮発性メモリセルであることを特徴とする請求項1乃至4のいずれか1つに記載の半導体装置。
  6.  前記第1、前記第2メモリトランジスタのそれぞれの前記ゲート電極と半導体基板の間には電荷蓄積絶縁膜が形成されていることを特徴とする請求項1乃至請求項5のいずれか1つに記載の半導体装置。
  7. 前記第1、前記第2選択トランジスタのそれぞれの前記ゲート電極と半導体基板の間には、メモリ消去時に前記第1のワード線、前記第2のワード線と前記第1ソース線の間に印加される電圧よりも低い耐圧のゲート絶縁膜が形成されていることを特徴とする請求項1乃至請求項6のいずれか1つに記載の半導体装置。
  8.  前記第1、前記第2選択トランジスタのそれぞれの前記ゲート電極と半導体基板の間には、前記第1、前記第2選択トランジスタの前記ゲート電極に印加される読み出し用の電圧より高い耐圧のゲート絶縁膜が形成されていることを特徴とする請求項1乃至請求項6のいずれか1つに記載の半導体装置。
  9.  前記第1メモリセルは、前記第1選択トランジスタと前記第1メモリトランジスタの向きを交互に変えて直列に複数接続され、
     前記第2メモリセルは、前記第1メモリセルの側方において、前記第2選択トランジスタと前記第2メモリトランジスタの向きを交互に変えて直列に複数接続されている
    ことを特徴とする請求項1乃至請求項8のいずれか1つに記載の半導体装置。
  10.  第1メモリトランジスタと第1選択トランジスタからなる第1のメモリセルと、
     第2メモリトランジスタと第2選択トランジスタからなる第2のメモリセルと、
     第3メモリトランジスタと、前記第1選択トランジスタと共有する第1共有ドレイン領域を有する第3選択トランジスタからなる第3のメモリセルと、
     第4メモリトランジスタと、前記第2選択トランジスタと共有する第2共有ドレイン領域を有する第4選択トランジスタからなる第4のメモリセルと、
     前記第1メモリトランジスタのゲート電極と前記第2メモリトランジスタのゲート電極に電気的に接続された第1ワード線と、
     前記第3メモリトランジスタのゲート電極と前記第4メモリトランジスタのゲート電極に電気的に接続された第2ワード線と、
     前記第1メモリトランジスタのソース領域と、前記第4メモリトランジスタのソース領域に電気的に接続された第1ソース線と、
     前記第2メモリトランジスタのソース領域に電気的に接続された第2ソース線と、
     前記第3メモリトランジスタのソース領域に電気的に接続された第3ソース線と、
     前記第1共有ドレイン領域に電気的に接続された第1ビット線と、
     前記第2共有ドレイン領域に電気的に接続された第2ビット線と、
    を有することを特徴とする半導体装置。
  11.  前記第1選択トランジスタのゲート電極と、前記第2選択トランジスタのゲート電極に電気的に接続された第1選択線と、
     前記第3選択トランジスタのゲート電極と、前記第4選択トランジスタのゲート電極に電気的に接続された第2選択線と、
    をさらに有することを特徴とする請求項10に記載の半導体装置。
  12.  前記第1、前記第2、前記第3及び前記第4メモリセルのそれぞれは、前記第1、前記第2、第3及び第4メモリトランジスタのそれぞれにアバランシェ書き込みを行う不揮発性メモリセルであることを特徴とする請求項10又は請求項11に記載の半導体装置。
  13.  前記第1、前記第2、前記第3及び前記第4メモリトランジスタのそれぞれの前記ゲート電極と半導体基板の間には電荷蓄積絶縁膜が形成されていることを特徴とする請求項10乃至請求項12のいずれか1つに記載の半導体装置。
  14.  前記第1、前記第2、前記第3及び前記第4メモリトランジスタのそれぞれの前記ゲート電極と半導体基板の間には、上と下から絶縁膜に挟まれたフローティングゲート電極が形成されていることを特徴とする請求項10乃至請求項13に記載の半導体装置。
  15.  前記第1のメモリセルは、前記第1メモリトランジスタと前記第1選択トランジスタの間に共通のソース/ドレイン領域を有し、
     前記第2のメモリセルは、前記第2メモリトランジスタと前記第2選択トランジスタの間に共通のソース/ドレイン領域を有し、
     前記第3のメモリセルは、前記第3メモリトランジスタと前記第3選択トランジスタの間に共通のソース/ドレイン領域を有し、
     前記第4のメモリセルは、前記第4メモリトランジスタと前記第4選択トランジスタの間に共通するソース/ドレイン領域を有する
    ことを特徴とする請求項10乃至請求項14のいずれか1つに記載の半導体装置。
  16. 前記ソース/ドレイン領域のそれぞれは、前記第1、前記第2、第3及び第4メモリトランジスタの前記ソース領域よりも不純物濃度が低いことを特徴とする請求項15に記載の半導体装置。
  17.  前記第1、前記第2、前記第3及び前記第4選択トランジスタのそれぞれの前記ゲート電極と半導体基板の間には、メモリ消去時に前記第1のワード線、前記第2のワード線と前記第1、第2、第3ソース線のいずれかの間に印加される電圧よりも低い耐圧のゲート絶縁膜が形成されていることを特徴とする請求項10乃至請求項16のいずれか1つに記載の半導体装置。
  18.  前記第1、前記第2、前記第3及び前記第4選択トランジスタのそれぞれの前記ゲート電極と半導体基板の間には、前記第1、前記第2、前記第3及び前記第4選択トランジスタの前記ゲート電極に印加される読み出し用の電圧よりも高い耐圧のゲート絶縁膜が形成されていることを特徴とする請求項10乃至請求項16のいずれか1つに記載の半導体装置。
  19.  前記第1ソース線に接続される2つの前記ソース領域は、前記第1、前記第2ワード線に対して斜め方向に配置されていることを特徴とする請求項1乃至請求項18のいずれか1つに記載の半導体装置。
  20.  前記ソース領域のそれぞれの下には、前記第ソース領域とは導電型の異なる不純物拡散領域が形成されていることを特徴とする請求項1乃至請求項19のいずれか1つに記載の半導体装置。
PCT/JP2008/056444 2008-03-31 2008-03-31 半導体装置 WO2009122560A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2008/056444 WO2009122560A1 (ja) 2008-03-31 2008-03-31 半導体装置
EP08739557A EP2264756B1 (en) 2008-03-31 2008-03-31 Semiconductor device
KR1020107020831A KR101383618B1 (ko) 2008-03-31 2008-03-31 반도체 장치
JP2010505217A JP5316532B2 (ja) 2008-03-31 2008-03-31 半導体装置
CN200880128431.9A CN101983423B (zh) 2008-03-31 2008-03-31 半导体器件
EP10195176A EP2312624B1 (en) 2008-03-31 2008-03-31 NOR EEPROM device comprising memory cells with one memory transistor and one selection transistor
US12/892,388 US8014204B2 (en) 2008-03-31 2010-09-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056444 WO2009122560A1 (ja) 2008-03-31 2008-03-31 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/892,388 Continuation US8014204B2 (en) 2008-03-31 2010-09-28 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2009122560A1 true WO2009122560A1 (ja) 2009-10-08

Family

ID=41134980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056444 WO2009122560A1 (ja) 2008-03-31 2008-03-31 半導体装置

Country Status (6)

Country Link
US (1) US8014204B2 (ja)
EP (2) EP2312624B1 (ja)
JP (1) JP5316532B2 (ja)
KR (1) KR101383618B1 (ja)
CN (1) CN101983423B (ja)
WO (1) WO2009122560A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124256A (ja) * 2009-12-08 2011-06-23 Renesas Electronics Corp 半導体装置
WO2020262248A1 (ja) * 2019-06-28 2020-12-30 株式会社ソシオネクスト 半導体記憶装置
CN113488503A (zh) * 2020-06-18 2021-10-08 台湾积体电路制造股份有限公司 存储器器件、集成电路器件及其方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100078244A (ko) * 2008-12-30 2010-07-08 주식회사 동부하이텍 Otp 메모리 소자 및 otp 메모리 소자의 제조 방법
US8692310B2 (en) 2009-02-09 2014-04-08 Spansion Llc Gate fringing effect based channel formation for semiconductor device
KR101152446B1 (ko) * 2010-12-08 2012-06-01 한양대학교 산학협력단 프린징 효과 및 정전차폐를 이용하는 플래시 메모리
US8559231B2 (en) * 2011-03-08 2013-10-15 Micron Technology, Inc. Sense operation in a stacked memory array device
US8928113B2 (en) * 2011-04-08 2015-01-06 Taiwan Semiconductor Manufacturing Co., Ltd. Layout scheme and method for forming device cells in semiconductor devices
CN102917178A (zh) * 2012-10-22 2013-02-06 清华大学 一种浮栅型图像传感器的字线译码电路布局结构
JP6053474B2 (ja) * 2012-11-27 2016-12-27 株式会社フローディア 不揮発性半導体記憶装置
US9293468B2 (en) * 2012-11-30 2016-03-22 SK Hynix Inc. Nonvolatile memory device
KR101950357B1 (ko) * 2012-11-30 2019-02-20 에스케이하이닉스 주식회사 비휘발성 메모리 장치 및 그 제조방법
US9224474B2 (en) * 2013-01-09 2015-12-29 Macronix International Co., Ltd. P-channel 3D memory array and methods to program and erase the same at bit level and block level utilizing band-to-band and fowler-nordheim tunneling principals
KR20140099728A (ko) * 2013-02-04 2014-08-13 삼성전자주식회사 비휘발성 메모리 소자 및 이의 제조 방법
CN104347634B (zh) * 2013-07-30 2017-05-24 中芯国际集成电路制造(上海)有限公司 一种闪存存储单元阵列
US9236453B2 (en) 2013-09-27 2016-01-12 Ememory Technology Inc. Nonvolatile memory structure and fabrication method thereof
US9805806B2 (en) 2015-10-16 2017-10-31 Ememory Technology Inc. Non-volatile memory cell and method of operating the same
US11367731B2 (en) * 2017-11-24 2022-06-21 Taiwan Semiconductor Manufacturing Company Ltd. Memory device and method of manufacturing the same
CN118524706A (zh) * 2019-08-13 2024-08-20 长鑫存储技术有限公司 反熔丝存储单元及其制作方法
US11424257B2 (en) * 2019-10-15 2022-08-23 Ememory Technology Inc. Method for manufacturing semiconductor structure and capable of controlling thicknesses of oxide layers
US11443819B2 (en) * 2020-07-24 2022-09-13 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device, integrated circuit device and method
KR20220045628A (ko) 2020-10-06 2022-04-13 에스케이하이닉스 주식회사 3차원 메모리 장치 및 그 제조방법
TWI777662B (zh) * 2021-07-09 2022-09-11 鈺成投資股份有限公司 可多次編寫記憶體的單元結構及其操作方法
CN114758955B (zh) * 2022-06-13 2022-09-02 广州粤芯半导体技术有限公司 一种闪存结构及其制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05167044A (ja) * 1991-12-18 1993-07-02 Citizen Watch Co Ltd 半導体不揮発性記憶装置とその書き込み方法
JPH0836894A (ja) * 1994-07-26 1996-02-06 Mitsubishi Electric Corp 不揮発性半導体記憶装置
JPH08255495A (ja) * 1995-03-16 1996-10-01 Toshiba Corp 不揮発性半導体記憶装置
JPH1093058A (ja) * 1996-08-30 1998-04-10 Samsung Electron Co Ltd フラッシュメモリ装置
JPH11177068A (ja) 1997-12-10 1999-07-02 Matsushita Electron Corp 不揮発性半導体記憶装置及びその駆動方法
JPH11251537A (ja) * 1998-02-27 1999-09-17 Sanyo Electric Co Ltd 不揮発性半導体メモリ
JP2005116970A (ja) 2003-10-10 2005-04-28 Toshiba Corp 不揮発性半導体記憶装置
JP2005122772A (ja) 2003-10-14 2005-05-12 Matsushita Electric Ind Co Ltd 不揮発性半導体記憶装置の駆動方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4258378A (en) * 1978-05-26 1981-03-24 Texas Instruments Incorporated Electrically alterable floating gate memory with self-aligned low-threshold series enhancement transistor
JP2713575B2 (ja) 1987-05-09 1998-02-16 株式会社リコー 複写装置
US5557569A (en) * 1993-10-12 1996-09-17 Texas Instruments Incorporated Low voltage flash EEPROM C-cell using fowler-nordheim tunneling
US5610858A (en) * 1994-05-12 1997-03-11 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and method of manufacturing the same
TW412861B (en) * 1998-02-27 2000-11-21 Sanyo Electric Co Non-volatile semiconductor memory
JP3999900B2 (ja) * 1998-09-10 2007-10-31 株式会社東芝 不揮発性半導体メモリ
US6128219A (en) * 1999-10-27 2000-10-03 Stmicroelectronics, S.R.L. Nonvolatile memory test structure and nonvolatile memory reliability test method
JPWO2003003473A1 (ja) * 2001-06-28 2004-10-21 株式会社日立製作所 不揮発性半導体記憶素子及び半導体記憶装置
JP3906177B2 (ja) * 2002-05-10 2007-04-18 株式会社東芝 不揮発性半導体記憶装置
KR100604850B1 (ko) * 2003-05-20 2006-07-31 삼성전자주식회사 균일하지 않은 채널 유전막 두께를 갖는 이이피롬 셀 구조및 그 제조방법
JP2005183763A (ja) * 2003-12-22 2005-07-07 Toshiba Microelectronics Corp 不揮発性メモリを含む半導体装置の製造方法
US7816728B2 (en) * 2005-04-12 2010-10-19 International Business Machines Corporation Structure and method of fabricating high-density trench-based non-volatile random access SONOS memory cells for SOC applications
US7349264B2 (en) * 2005-12-28 2008-03-25 Sandisk Corporation Alternate sensing techniques for non-volatile memories

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05167044A (ja) * 1991-12-18 1993-07-02 Citizen Watch Co Ltd 半導体不揮発性記憶装置とその書き込み方法
JPH0836894A (ja) * 1994-07-26 1996-02-06 Mitsubishi Electric Corp 不揮発性半導体記憶装置
JPH08255495A (ja) * 1995-03-16 1996-10-01 Toshiba Corp 不揮発性半導体記憶装置
JPH1093058A (ja) * 1996-08-30 1998-04-10 Samsung Electron Co Ltd フラッシュメモリ装置
JPH11177068A (ja) 1997-12-10 1999-07-02 Matsushita Electron Corp 不揮発性半導体記憶装置及びその駆動方法
JPH11251537A (ja) * 1998-02-27 1999-09-17 Sanyo Electric Co Ltd 不揮発性半導体メモリ
JP2005116970A (ja) 2003-10-10 2005-04-28 Toshiba Corp 不揮発性半導体記憶装置
JP2005122772A (ja) 2003-10-14 2005-05-12 Matsushita Electric Ind Co Ltd 不揮発性半導体記憶装置の駆動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2264756A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124256A (ja) * 2009-12-08 2011-06-23 Renesas Electronics Corp 半導体装置
WO2020262248A1 (ja) * 2019-06-28 2020-12-30 株式会社ソシオネクスト 半導体記憶装置
US11688480B2 (en) 2019-06-28 2023-06-27 Socionext Inc. Semiconductor storage device
CN113488503A (zh) * 2020-06-18 2021-10-08 台湾积体电路制造股份有限公司 存储器器件、集成电路器件及其方法
CN113488503B (zh) * 2020-06-18 2024-02-27 台湾积体电路制造股份有限公司 存储器器件、集成电路器件及其方法

Also Published As

Publication number Publication date
CN101983423B (zh) 2014-03-26
US20110044112A1 (en) 2011-02-24
EP2312624A1 (en) 2011-04-20
EP2264756A1 (en) 2010-12-22
EP2264756B1 (en) 2012-08-29
EP2264756A4 (en) 2011-04-06
KR101383618B1 (ko) 2014-04-10
CN101983423A (zh) 2011-03-02
JPWO2009122560A1 (ja) 2011-07-28
KR20100123727A (ko) 2010-11-24
JP5316532B2 (ja) 2013-10-16
US8014204B2 (en) 2011-09-06
EP2312624B1 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5316532B2 (ja) 半導体装置
US7910979B2 (en) Nonvolatile semiconductor memory device
KR100829034B1 (ko) 불휘발성 반도체 기억 장치 및 그 제조 방법
JP4908238B2 (ja) 不揮発性半導体記憶装置
JP4818061B2 (ja) 不揮発性半導体メモリ
JP4472934B2 (ja) 半導体装置および半導体メモリ
JP2005012227A (ja) 不揮発性メモリが内蔵された単一チップデータ処理装置及びその製造方法
JP2008538868A (ja) 自己整合型stisonos
CN102446921A (zh) 非易失性存储器件及其制造方法
KR100743513B1 (ko) 반도체장치 및 그 제조방법
JP2004095904A (ja) メモリ集積回路装置の製造方法
JP2010040995A (ja) 半導体装置及びその製造方法
JP2009081202A (ja) 半導体記憶装置及びその製造方法
US11164881B2 (en) Transistor device, memory arrays, and methods of forming the same
US20090242960A1 (en) Semiconductor memory device and manufacturing method thereof
JP2009277847A (ja) 不揮発性半導体記憶装置
KR100953014B1 (ko) 반도체 장치 및 그 제조 방법
JP2005116582A (ja) 半導体装置およびその製造方法
JP2010212506A (ja) 半導体記憶装置及びその製造方法
JP5817459B2 (ja) 半導体装置
JP2006196622A (ja) 不揮発性半導体記憶装置及び不揮発性半導体記憶装置の製造方法
JP2010147491A (ja) 半導体記憶装置の製造方法
JP2010062369A (ja) 半導体記憶装置
JP2004193598A (ja) 不揮発性半導体記憶装置及びその製造方法
JP2007012739A (ja) 不揮発性半導体記憶装置およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128431.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739557

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505217

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107020831

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008739557

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE