WO2009122477A1 - 空調給湯複合システム - Google Patents

空調給湯複合システム Download PDF

Info

Publication number
WO2009122477A1
WO2009122477A1 PCT/JP2008/056287 JP2008056287W WO2009122477A1 WO 2009122477 A1 WO2009122477 A1 WO 2009122477A1 JP 2008056287 W JP2008056287 W JP 2008056287W WO 2009122477 A1 WO2009122477 A1 WO 2009122477A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
hot water
water supply
heat exchanger
heat medium
Prior art date
Application number
PCT/JP2008/056287
Other languages
English (en)
French (fr)
Inventor
宏典 藪内
純一 亀山
航祐 田中
智 赤木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP08739401.1A priority Critical patent/EP2275757B1/en
Priority to US12/811,641 priority patent/US8991202B2/en
Priority to PCT/JP2008/056287 priority patent/WO2009122477A1/ja
Priority to JP2010505139A priority patent/JP5121922B2/ja
Publication of WO2009122477A1 publication Critical patent/WO2009122477A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0073Arrangements for preventing the occurrence or proliferation of microorganisms in the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0252Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air-conditioning and hot-water supply complex system equipped with a heat pump cycle and capable of simultaneously providing a cooling load, a heating load and a hot water supply load.
  • the first compressor, the refrigerant distributor, the first heat exchanger, the second heat exchanger, the first expansion device, the outdoor heat exchanger, the four-way valve, and the first compressor are connected in this order.
  • the four-way valve, the indoor heat exchanger, and the second expansion device are interposed in this order from the refrigerant distribution device, and connected between the second heat exchanger and the first expansion device, and the first refrigerant
  • a low-stage refrigerant circuit through which the second refrigerant flows, a second compressor, a condenser, a third expansion device, the first heat exchanger, and the second compressor are connected in this order, and the second refrigerant flows.
  • a “heat pump type hot water supply apparatus including a stage-side refrigerant circuit, the second heat exchanger, and the condenser connected in this order, and a hot water supply path through which hot water flows through (for example, Patent Document 2). reference).
  • JP-A-11-270920 page 3-4, FIG. 1
  • Japanese Patent Laid-Open No. 4-263758 page 2-3, FIG. 1
  • the multi-function heat pump system described in Patent Document 1 provides a cooling load, a heating load, and a hot water supply load simultaneously by a single refrigeration cycle, that is, one refrigeration cycle.
  • a single refrigeration cycle that is, one refrigeration cycle.
  • the temperature of the heat dissipation process for heating water and the temperature of the heat dissipation process for heating are almost the same, so that a high temperature hot water supply load must be covered during cooling operation.
  • stable heat could not be supplied throughout the year.
  • the heat pump type hot water supply apparatus described in Patent Document 2 provides a cooling load, a heating load, and a hot water supply load simultaneously by two refrigeration cycles, that is, two refrigeration cycles.
  • the refrigerant circuit that performs air conditioning in the indoor unit and the refrigerant circuit that performs hot water supply are handled differently, and a hot water supply function cannot simply be added as an alternative to the indoor unit. There is a problem that it cannot be easily introduced into an existing air conditioner.
  • the present invention has been made to solve the above problems, and provides an air-conditioning and hot-water supply complex system capable of simultaneously processing a cooling load, a heating load, and a high-temperature hot-water supply load and supplying a stable heat source throughout the year. It is an object.
  • the combined air conditioning and hot water supply system includes an air conditioning compressor, a flow path switching means, an outdoor heat exchanger, an indoor heat exchanger, and an air conditioning throttle means connected in series, and refrigerant-refrigerant heat exchange.
  • a first refrigerant circuit that is connected in series to the indoor heat exchanger and the air conditioning throttle means, and circulates the air conditioning refrigerant in the first refrigerant circuit.
  • An air conditioning refrigeration cycle a hot water supply compressor, a heat medium-refrigerant heat exchanger, hot water supply throttle means, and a second refrigerant circuit in which the refrigerant-refrigerant heat exchanger is connected in series
  • the air-conditioning refrigeration cycle and the hot-water supply refrigeration cycle are cascade-connected in the refrigerant-refrigerant heat exchanger so that the air-conditioning refrigerant and the hot-water supply refrigerant perform heat exchange, and the hot-water supply
  • the refrigeration cycle for hot water and the hot water supply load are cascade-connected so that the hot water supply refrigerant and the water exchange heat in the heat medium-refrigerant heat exchanger
  • a bypass pipe having a bypass solenoid valve installed in parallel with the heat medium-refrigerant heat exchanger is provided between the inlet and outlet of the refrigerant side circuit of the heat medium-refrigerant heat exchanger.
  • the amount of hot water supply refrigerant flowing into the heat medium-refrigerant heat exchanger is controlled by allowing the hot water supply refrigerant to flow into the bypass pipe by opening and closing the solenoid valve. For example, even during the defrosting operation, the bypass pipe is controlled.
  • By flowing a low-pressure refrigerant into the hot water supply load side it is possible to supply a stable heat source without causing a sudden temperature change on the hot water supply load side.
  • by allowing the low-pressure refrigerant to flow into the bypass pipe it is possible to prevent water held in the heat medium-refrigerant heat exchanger from being frozen and to prevent damage to the heat medium-refrigerant heat exchanger.
  • FIG. 6 is a refrigerant circuit diagram which shows the refrigerant circuit structure of the air-conditioning / hot-water supply combined system which concerns on Embodiment 1.
  • FIG. It is a schematic circuit block diagram for demonstrating another example of the load for hot water supply. It is explanatory drawing for demonstrating an example of the structure of an outdoor heat exchanger. It is a flowchart which shows the flow of the process at the time of adjusting the operating range of the compressor for an air conditioning. 6 is an explanatory diagram for explaining a hot water supply refrigeration cycle according to Embodiment 2.
  • FIG. It is a flowchart which shows the flow of a process at the time of opening and closing a bypass solenoid valve.
  • FIG. 6 is an explanatory diagram for explaining a hot water circulation pipe according to a third embodiment. It is the schematic for demonstrating the height of a trap.
  • FIG. 1 is a refrigerant circuit diagram showing a refrigerant circuit configuration (particularly, a refrigerant circuit configuration during heating-main operation) of an air conditioning and hot water supply combined system 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the refrigerant circuit configuration of the combined air-conditioning and hot water supply system 100, particularly the refrigerant circuit configuration during heating-main operation will be described.
  • This air conditioning and hot water supply complex system 100 is installed in a building, a condominium, etc., and can supply a cooling load, a heating load, and a hot water supply load simultaneously by using a refrigeration cycle (heat pump cycle) that circulates a refrigerant (air conditioning refrigerant). is there.
  • a refrigeration cycle heat pump cycle
  • refrigerant air conditioning refrigerant
  • the combined air conditioning and hot water supply system 100 includes an air conditioning refrigeration cycle 1, a hot water supply refrigeration cycle 2, and a hot water supply load 3.
  • the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are as follows. Is a refrigerant-refrigerant heat exchanger 41, and the hot water supply refrigeration cycle 2 and hot water supply load 3 are heat medium-refrigerant heat exchangers 51, and are configured to exchange heat without mutual refrigerant and water mixing. ing.
  • the load on the cooling indoor unit B is smaller than the total load on the heating indoor unit C and the hot water supply heat source circuit D, and the outdoor heat exchanger 103 serves as an evaporator.
  • the state of the cycle when working (for convenience, referred to as heating main operation) is shown.
  • the air-conditioning refrigeration cycle 1 includes a heat source unit A, a cooling indoor unit B in charge of a cooling load, a heating indoor unit C in charge of a heating load, a hot water supply heat source circuit D serving as a heat source of the hot water supply refrigeration cycle 2, And a repeater E.
  • the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D are connected and mounted in parallel to the heat source unit A.
  • the relay machine E installed between the heat source unit A, the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D switches the flow of the refrigerant, so that the cooling indoor unit B, the heating indoor unit The functions as C and hot water supply heat source circuit D are exhibited.
  • the heat source machine A is configured by connecting a compressor 101 for air conditioning, a four-way valve 102 that is a flow path switching unit, an outdoor heat exchanger 103, and an accumulator 104 in series. It has the function of supplying cold heat to the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D.
  • a blower such as a fan for supplying air to the outdoor heat exchanger 103 may be provided in the vicinity of the outdoor heat exchanger 103.
  • the flow of the air-conditioning refrigerant is allowed only in a predetermined direction (the direction from the heat source unit A to the relay unit E) in the high-pressure side connection pipe 106 between the outdoor heat exchanger 103 and the relay unit E.
  • the reverse check valve 105a that allows the flow of the air-conditioning refrigerant only in a predetermined direction (direction from the relay machine E to the heat source machine A) in the low-pressure side connection pipe 107 between the four-way valve 102 and the relay machine E. Stop valves 105b are provided respectively.
  • the high-pressure side connection pipe 106 and the low-pressure side connection pipe 107 are opposite to the first connection pipe 130 that connects the upstream side of the check valve 105a and the upstream side of the check valve 105b, and the downstream side of the check valve 105a.
  • the second connection pipe 131 is connected to the downstream side of the stop valve 105b. That is, the connection part a between the high-pressure side connection pipe 106 and the first connection pipe 130 is upstream of the connection part b between the high-pressure side connection pipe 106 and the second connection pipe 131 across the check valve 105a.
  • the connection part c between the low-pressure side connection pipe 107 and the first connection pipe 130 is also upstream of the connection part d between the low-pressure side connection pipe 107 and the second connection pipe 131 across the check valve 105b. Yes.
  • the first connection pipe 130 is provided with a check valve 105 c that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.
  • the second connection pipe 131 is also provided with a check valve 105 d that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.
  • the check valve 105a and the check valve 105b are in a closed state (shown in black), the check valve 105b and the check valve 105c. Is open (shown in white).
  • the air-conditioning compressor 101 sucks air-conditioning refrigerant and compresses the air-conditioning refrigerant to a high temperature and high pressure state.
  • the four-way valve 102 switches the flow of the air conditioning refrigerant.
  • the outdoor heat exchanger 103 functions as an evaporator or a radiator (condenser), performs heat exchange between air supplied from a blower (not shown) and the air conditioning refrigerant, and converts the air conditioning refrigerant into evaporated gas or Condensed liquid.
  • the accumulator 104 is disposed between the four-way valve 102 and the air-conditioning compressor 101 during heating-main operation, and stores excess air-conditioning refrigerant.
  • the accumulator 104 may be any container that can store excess air-conditioning refrigerant.
  • the cooling indoor unit B and the heating indoor unit C are mounted with an air conditioning throttle means 117 and an indoor heat exchanger 118 connected in series. Further, in the cooling indoor unit B and the heating indoor unit C, an example is shown in which two air conditioning throttle means 117 and two indoor heat exchangers 118 are mounted in parallel.
  • the cooling indoor unit B receives a supply of cold from the heat source unit A and takes charge of the cooling load
  • the heating indoor unit C has a function of receiving the supply of cold heat from the heat source unit A and taking charge of the heating load. Yes.
  • the first embodiment shows a state in which it is determined by the relay device E that the cooling indoor unit B is in charge of the cooling load, and the heating indoor unit C is determined to be in charge of the heating load.
  • a blower such as a fan for supplying air to the indoor heat exchanger 118 may be provided in the vicinity of the indoor heat exchanger 118.
  • the connection pipe connected from the relay E to the indoor heat exchanger 118 is referred to as a connection pipe 133
  • the connection pipe connected from the relay E to the air conditioning throttle means 117 is referred to as a connection pipe 134. Shall be explained.
  • the air conditioning throttle means 117 functions as a pressure reducing valve or an expansion valve, and decompresses and expands the air conditioning refrigerant.
  • the air-conditioning throttle means 117 may be constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the indoor heat exchanger 118 functions as a radiator (condenser) or an evaporator, and performs heat exchange between air supplied from an air blower (not shown) and the air conditioning refrigerant to condense or liquefy the air conditioning refrigerant. Evaporative gasification.
  • the air conditioning throttle means 117 and the indoor heat exchanger 118 are connected in series.
  • the hot water supply heat source circuit D includes a hot water supply heat source throttling means 119 and a refrigerant-refrigerant heat exchanger 41 connected in series, and the cold heat from the heat source unit A is transferred to the refrigerant-refrigerant heat exchanger 41. It has the function to supply to the hot water supply refrigeration cycle 2 via the. That is, the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are cascade-connected by the refrigerant-refrigerant heat exchanger 41.
  • the connecting pipe connecting the relay E to the refrigerant-refrigerant heat exchanger 41 is connected to the connecting pipe 135, and the connecting pipe connecting the relay E to the hot water supply heat source throttle means 119 is connected to the connecting pipe. It shall be described as 136.
  • the hot water supply heat source throttling means 119 functions as a pressure reducing valve or an expansion valve, like the air conditioning throttling means 117, and decompresses and expands the air conditioning refrigerant.
  • the hot water supply heat source throttling means 119 is preferably constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
  • the refrigerant-refrigerant heat exchanger 41 functions as a radiator (condenser) and an evaporator, and serves as a hot water supply refrigerant that circulates through the refrigeration cycle of the hot water supply refrigeration cycle 2 and an air conditioner that circulates through the refrigeration cycle of the air conditioning refrigeration cycle 1. Heat exchange is performed with the refrigerant for use.
  • the relay unit E has a function of connecting each of the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D to the heat source unit A, and also has the valve means 109a or the valve means 109b of the first distribution unit 109. Is selectively opened or closed to determine whether the indoor heat exchanger 118 is a radiator or an evaporator, and whether the refrigerant-refrigerant heat exchanger 41 is a chiller or a water heater. It has a function to do.
  • the relay E includes a gas-liquid separator 108, a first distributor 109, a second distributor 110, a first internal heat exchanger 111, a first relay throttle means 112, and a second internal heat.
  • the exchanger 113 and the second relay stop means 114 are configured.
  • connection pipe 133 and the connection pipe 135 are branched into two, one (the connection pipe 133b and the connection pipe 135b) is connected to the low-pressure side connection pipe 107, and the other (the connection pipe 133a and the connection pipe).
  • the pipe 135a) is connected to a connection pipe (referred to as a connection pipe 132) connected to the gas-liquid separator 108.
  • the valve means 109a that is controlled to open / close the connection pipe 133a and the connection pipe 135a so as not to conduct the refrigerant is controlled to open / close to the connection pipe 133b and the connection pipe 135b and conducts the refrigerant.
  • Valve means 109b that may or may not be provided is provided.
  • the open / closed states of the valve means 109a and the valve means 109b are represented by white (open state) and black (closed state).
  • connection pipe 134 and the connection pipe 136 are branched into two, one (the connection pipe 134a and the connection pipe 136a) is connected at the first meeting part 115, and the other (the connection pipe 134b and the connection pipe).
  • a pipe 136b) is connected at the second meeting part 116.
  • the check valve 110a that allows only one of the refrigerant to flow in the connecting pipe 134a and the connecting pipe 136a is reverse to allow only one of the refrigerant to flow in the connecting pipe 134b and the connecting pipe 136b.
  • a stop valve 110b is provided.
  • the open / closed states of the check valve 110a and the check valve 110b are indicated by white (open state) and black (closed state).
  • the first meeting unit 115 is connected from the second distribution unit 110 to the gas-liquid separator 108 via the first relay squeezing means 112 and the first internal heat exchanger 111.
  • the second meeting unit 116 branches between the second distribution unit 110 and the second internal heat exchanger 113, one of which is for the second distribution unit 110 and the first relay device via the second internal heat exchanger 113.
  • the second meeting section 116a is connected to the first meeting section 115 between the throttling means 112, and the other (second meeting section 116a) is connected to the second relay throttling means 114, the second internal heat exchanger 113, and the first internal heat exchanger 111.
  • the gas-liquid separator 108 separates the air-conditioning refrigerant into a gas refrigerant and a liquid refrigerant.
  • the gas-liquid separator 108 is provided in the high-pressure side connection pipe 106, one of which is connected to the valve means 109 a of the first distribution unit 109, and the other.
  • the first distributor 115 is connected to the second distributor 110.
  • the first distribution unit 109 has a function of allowing the air conditioning refrigerant to flow into the indoor heat exchanger 118 and the refrigerant-refrigerant heat exchanger 41 by selectively opening or closing either the valve means 109a or the valve means 109b. Yes.
  • the 2nd distribution part 110 has a function which permits the flow of the refrigerant for air-conditioning to either one by check valve 110a and check valve 110b.
  • the first internal heat exchanger 111 is provided in the first meeting portion 115 between the gas-liquid separator 108 and the first relay throttle means 112, and is used for air conditioning in which the first meeting portion 115 is conducted. Heat exchange is performed between the refrigerant and the air-conditioning refrigerant that is conducted through the second meeting part 116a from which the second meeting part 116 is branched.
  • the first repeater throttle means 112 is provided in the first meeting section 115 between the first internal heat exchanger 111 and the second distribution section 110, and decompresses and expands the air-conditioning refrigerant. .
  • the first repeater throttle means 112 may be configured with a variable opening degree controllable means, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the second internal heat exchanger 113 is provided in the second meeting part 116, and includes an air conditioning refrigerant that is conducted through the second meeting part 116, and a second meeting part 116a from which the second meeting part 116 is branched. Heat exchange is performed with the air-conditioning refrigerant that is conducted.
  • the second relay throttling means 114 is provided in the second meeting section 116 between the second internal heat exchanger 113 and the second distribution section 110, functions as a pressure reducing valve and an expansion valve, and is an air conditioning refrigerant. Is expanded under reduced pressure.
  • the second relay unit throttle unit 114 can be controlled to have a variable opening, for example, a precise flow rate control unit using an electronic expansion valve, or a low cost such as a capillary tube.
  • the refrigerant flow rate adjusting means may be used.
  • the air-conditioning refrigeration cycle 1 includes the air-conditioning compressor 101, the four-way valve 102, the indoor heat exchanger 118, the air-conditioning throttle means 117, and the outdoor heat exchanger 103 connected in series, and the air-conditioning compression cycle.
  • Machine 101, four-way valve 102, refrigerant-refrigerant heat exchanger 41, hot water supply heat source throttling means 119, and outdoor heat exchanger 103 are connected in series, and the indoor heat exchanger 118 and refrigerant-refrigerant are connected via relay E. This is established by connecting the heat exchanger 41 in parallel to form a first refrigerant circuit, and circulating the air-conditioning refrigerant in the first refrigerant circuit.
  • the air conditioning compressor 101 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state.
  • the air-conditioning compressor 101 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the air-conditioning compressor 101 may be configured as a type in which the rotation speed can be variably controlled by an inverter, or may be configured as a type in which the rotation speed is fixed.
  • the type of the refrigerant circulating through the air-conditioning refrigeration cycle 1 is not particularly limited.
  • natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium, and alternatives that do not contain chlorine such as HFC410A, HFC407C, and HFC404A
  • HFC410A, HFC407C, and HFC404A Either a refrigerant or a fluorocarbon refrigerant such as R22 or R134a used in existing products may be used.
  • the air-conditioning refrigerant heated to a high temperature and high pressure by the air-conditioning compressor 101 is discharged from the air-conditioning compressor 101, passes through the four-way valve 102, passes through the check valve 105 c, and enters the high-pressure side connection pipe 106. It is guided and flows into the gas-liquid separator 108 of the relay E in the superheated gas state.
  • the superheated gas-conditioning refrigerant flowing into the gas-liquid separator 108 is distributed to a circuit in which the valve means 109a of the first distribution unit 109 is open.
  • the refrigerant for air conditioning in the superheated gas state flows into the heating indoor unit C and the hot water supply heat source circuit D.
  • the air-conditioning refrigerant flowing into the heating indoor unit C dissipates heat in the indoor heat exchanger 118 (that is, warms the room air), is depressurized by the air-conditioning throttle means 117, and joins at the first meeting unit 115.
  • the air-conditioning refrigerant that has flowed into the hot water supply heat source circuit D dissipates heat in the refrigerant-refrigerant heat exchanger 41 (that is, gives heat to the hot water supply refrigeration cycle 2), and is depressurized by the hot water supply heat source throttling means 119.
  • the air-conditioning refrigerant that has flowed out of the indoor unit C merges at the first meeting unit 115.
  • a part of the air-conditioning refrigerant in the superheated gas state that has flowed into the gas-liquid separator 108 is the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay expansion means 114 in the first internal heat exchanger 111.
  • the degree of supercooling is obtained by heat exchange.
  • the air-conditioning refrigerant used for air-conditioning flows into the indoor heat exchanger 118 or refrigerant-refrigerant heat exchange. And the first meeting part 115 merge. It should be noted that a part of the superheated gas conditioning refrigerant that passes through the first repeater throttle means 112 may be eliminated by fully closing the first repeater throttle means 112. Thereafter, the second internal heat exchanger 113 performs heat exchange with the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay throttle unit 114 to obtain a degree of supercooling. This refrigerant for air conditioning is distributed to the second meeting part 116 side and the second relay unit throttle means 114 side.
  • the air-conditioning refrigerant that conducts through the second meeting portion 116 is distributed to a circuit in which the valve means 109b is open.
  • the air-conditioning refrigerant that conducts through the second meeting portion 116 flows into the cooling indoor unit B, is expanded to low temperature and low pressure by the air-conditioning throttle means 117, is evaporated by the indoor heat exchanger 118, and the valve means 109 b. After that, the low pressure side connecting pipe 107 joins.
  • the air-conditioning refrigerant that has passed through the second repeater throttle means 114 evaporates by exchanging heat in the second internal heat exchanger 113 and the first internal heat exchanger 111, and in the cooling chamber through the low-pressure side connection pipe 107.
  • the air-conditioning refrigerant merged in the low-pressure side connection pipe 107 is led to the outdoor heat exchanger 103 through the check valve 105d, and depending on the operating conditions, the remaining liquid refrigerant is evaporated, and the four-way valve 102, the accumulator The process returns to the air conditioning compressor 101 via 104.
  • the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41. That is, the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, a hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41 connected in series by the refrigerant pipe 45. This is established by constituting a two refrigerant circuit and circulating a hot water supply refrigerant in the second refrigerant circuit. The operation of the hot water supply refrigeration cycle 2 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is being executed or the heating main operation is being executed.
  • the hot water supply compressor 21 sucks in the hot water supply refrigerant and compresses the hot water supply refrigerant to a high temperature and high pressure state.
  • the hot water supply compressor 21 may be configured as a type in which the rotation speed can be variably controlled by an inverter, or may be configured as a type in which the rotation speed is fixed. Further, the hot water supply compressor 21 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state.
  • the hot water supply compressor 21 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the heat medium-refrigerant heat exchanger 51 performs heat exchange between water (heat medium) circulating through the hot water supply load 3 and hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. That is, the hot water supply refrigeration cycle 2 and the hot water supply load 3 are cascade-connected by the heat medium-refrigerant heat exchanger 51.
  • the hot water supply throttling means 22 functions as a pressure reducing valve and an expansion valve, and decompresses the hot water supply refrigerant to expand it.
  • the hot water supply throttling means 22 may be constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
  • the refrigerant-refrigerant heat exchanger 41 performs heat exchange between the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 and the air conditioning refrigerant circulating in the air conditioning refrigeration cycle 1.
  • the type of refrigerant circulating in the hot water supply refrigeration cycle 2 is not particularly limited.
  • natural refrigerants such as carbon dioxide, hydrocarbons and helium, alternative refrigerants not containing chlorine such as HFC410A, HFC407C, and HFC404A, or existing Any of chlorofluorocarbon refrigerants such as R22 and R134a used in this product may be used.
  • the hot water supply refrigerant that has been heated to a high temperature and high pressure by the hot water supply compressor 21 is discharged from the hot water supply compressor 21 and flows into the heat medium-refrigerant heat exchanger 51.
  • the flowing hot water supply refrigerant radiates heat by heating the water circulating in the hot water supply load 3.
  • This hot water supply refrigerant is expanded by the hot water supply throttling means 22 to a temperature equal to or lower than the outlet temperature of the refrigerant-refrigerant heat exchanger 41 in the hot water supply heat source circuit D of the air conditioning refrigeration cycle 1.
  • the expanded hot water supply refrigerant receives and evaporates from the air conditioning refrigerant flowing through the hot water supply heat source circuit D constituting the air conditioning refrigeration cycle 1 in the refrigerant-refrigerant heat exchanger 41, and returns to the hot water supply compressor 21.
  • the hot water supply load 3 includes a water circulation pump 31, a heat medium-refrigerant heat exchanger 51, and a hot water storage tank 32. That is, in the hot water supply load 3, the water circulation pump 31, the heat medium-refrigerant heat exchanger 51, and the hot water storage tank 32 are connected in series by the hot water storage water circulation pipe 203 to form a water circuit (heat medium circuit). This is achieved by circulating hot water supply water in this water circuit.
  • the operation of the hot water supply load 3 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is executed or the heating main operation is executed.
  • the hot water circulating pipe 203 constituting the water circuit is constituted by a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like.
  • the water circulation pump 31 sucks the water stored in the hot water storage tank 32, pressurizes the water, and circulates the inside of the hot water supply load 3.
  • the water circulation pump 31 is of a type whose rotational speed is controlled by an inverter. Configure.
  • the heat medium-refrigerant heat exchanger 51 exchanges heat between water (heat medium) circulating through the hot water supply load 3 and hot water refrigerant circulating through the hot water supply refrigeration cycle 2. It is.
  • the hot water storage tank 32 stores water heated by the heat medium-refrigerant heat exchanger 51.
  • the relatively low temperature water stored in the hot water storage tank 32 is drawn from the bottom of the hot water storage tank 32 and pressurized by the water circulation pump 31.
  • the water pressurized by the water circulation pump 31 flows into the heat medium-refrigerant heat exchanger 51, and receives heat from the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 by the heat medium-refrigerant heat exchanger 51. . That is, the water flowing into the heat medium-refrigerant heat exchanger 51 is boiled by the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2, and the temperature rises. Then, the boiled water returns to the relatively hot upper portion of the hot water storage tank 32 and is stored in the hot water storage tank 32.
  • the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are independent refrigerant circuit configurations (the first refrigerant circuit constituting the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 constituting the first refrigerant circuit 1).
  • the refrigerant circulating through each refrigerant circuit may be the same type or different types. That is, the refrigerant in each refrigerant circuit flows so as to exchange heat with each other in the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 without being mixed.
  • a refrigerant having a low critical temperature when used as the hot water supply refrigerant, it is assumed that the hot water supply refrigerant in the heat dissipation process in the heat medium-refrigerant heat exchanger 51 enters a supercritical state when hot water supply is performed. .
  • the COP fluctuates greatly due to changes in the radiator pressure and the outlet temperature of the radiator, and more advanced control is required in order to obtain a high COP.
  • a refrigerant having a low critical temperature has a high saturation pressure for the same temperature, and accordingly, it is necessary to increase the thickness of the piping and the compressor, which causes an increase in cost.
  • the target temperature of hot water supply is often 60 ° C. or higher at a minimum. Is done.
  • a refrigerant having a critical temperature of 60 ° C. or higher is adopted as the hot water supply refrigerant. This is because, if such a refrigerant is employed as the hot water supply refrigerant of the hot water supply refrigeration cycle 2, a high COP can be obtained more stably at a lower cost.
  • the refrigerant is regularly used in the vicinity of the critical temperature, it is assumed that the refrigerant circuit has a high temperature and a high pressure. Therefore, the hot water supply compressor 21 is stabilized by using a compressor of a type using a high pressure shell. Driving is possible.
  • FIG. 1 shows an example in which two or more cooling indoor units B and heating indoor units C are connected, but the number of connected units is not particularly limited. It is only necessary that there is no heating indoor unit C or one or more is connected. And the capacity
  • the hot water supply load system is configured in a two-way cycle, so that hot water supply demand (for example, 80 ° C.) is provided. What is necessary is just to make the temperature of the heat radiator of the refrigerating cycle 2 high (for example, condensing temperature 85 degreeC), and when there is another heating load, it is made to increase also to the condensing temperature (for example, 50 degreeC) of the heating indoor unit C. This saves energy. Also, for example, when there was a demand for hot water supply during the air conditioning and cooling operation in summer, it was necessary to provide it with a boiler, etc., but it was necessary to collect hot water that had been discharged into the atmosphere and reuse it. Therefore, the system COP is greatly improved and energy is saved.
  • hot water supply demand for example, 80 ° C.
  • FIG. 2 is a schematic circuit configuration diagram for explaining another example of the hot water supply load 3. Based on FIG. 2, an example of a mechanism for heating the circulating water with the hot water supply load 3 in another form will be described.
  • a hot water supply water circulation cycle (hot water supply heat medium circulation cycle) 4 is connected to the heat medium-refrigerant heat exchanger 51 and water-water heat. Cascade connection is performed via an exchanger (heat medium-heat medium heat exchanger) 201.
  • the hot water supply load 3 configured as an open circuit shows an example in which water is directly heated by the heat medium-refrigerant heat exchanger 51, but in FIG.
  • the hot water supply load 3 configured as a circuit is an example in which a hot water supply water circulation cycle 4 is provided between the hot water supply refrigeration cycles 2 and water is indirectly heated by the water-water heat exchanger 201. Show.
  • the hot water supply water circulation cycle 4 includes a heat medium circulation pump 31 a, a heat medium-refrigerant heat exchanger 51, and a water-water heat exchanger 201.
  • the hot water supply water circulation cycle 4 includes a heat circuit circulation pump 31a, a heat medium-refrigerant heat exchanger 51, and a water-water heat exchanger 201 connected in series by a circulation water pipe 202 to form a water circuit (heat This is established by configuring a medium circuit) and circulating a heating heat medium (heating water) through the heat medium circuit (water circuit).
  • the circulating water pipe 202 constituting the water circuit is constituted by a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like.
  • the heat medium circulation pump 31a sucks water (heat medium) conducted through the circulation water pipe 202, pressurizes the water, and circulates the hot water supply water circulation cycle 4. It is good to comprise by the type by which is controlled.
  • the heat medium-refrigerant heat exchanger 51 performs heat exchange between the water circulating in the hot water supply water circulation cycle 4 and the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2.
  • the water-water heat exchanger 201 performs heat exchange between the water circulating through the hot water supply water circulation cycle 4 and the water circulating through the hot water supply load 3.
  • other fluids such as brine (antifreeze) may be circulated as a heat medium.
  • the relatively low temperature water stored in the hot water storage tank 32 is drawn from the bottom of the hot water storage tank 32 and pressurized by the water circulation pump 31.
  • the water pressurized by the water circulation pump 31 flows into the water-water heat exchanger 201, and receives heat from the water circulating in the hot water supply water circulation cycle 4 by the water-water heat exchanger 201. That is, the water flowing into the water-water heat exchanger 201 is boiled by the water circulating in the hot water supply water circulation cycle 4 and the temperature rises. Then, the boiled water returns to the relatively hot upper portion of the hot water storage tank 32 and is stored in the hot water storage tank 32. That is, heat from the hot water supply refrigeration cycle 2 is transmitted to the hot water supply water circulation cycle 4 by the heat medium-refrigerant heat exchanger 51 and to the hot water supply load 3 by the water-water heat exchanger 201. .
  • FIG. 3 is an explanatory diagram for explaining an example of the structure of the outdoor heat exchanger 103. Based on FIG. 3, the outdoor heat exchanger 103 which enabled the heating operation through the year is demonstrated.
  • the air conditioning and hot water supply complex system 100 is used only for normal air conditioning applications, it is common to perform the heating operation at an outdoor air wet bulb temperature of 15 ° C. or less. However, when performing the hot water supply operation, the hot water supply operation is performed regardless of the outside air temperature. Need to do. Therefore, FIG. 3 shows an example in which the outdoor heat exchanger 103 has a divided structure having a plurality of heat exchangers (hereinafter referred to as a divided heat exchanger 103a).
  • the outdoor heat exchanger 103 may have a divided structure in which four heat exchangers are combined, or may have a divided structure in which one heat exchanger is divided into four.
  • the high-pressure side connection pipe 106 is branched into a plurality of parts and connected to each of the divided heat exchangers 103 a constituting the outdoor heat exchanger 103.
  • each of the branched high-pressure side connection pipes 106 is provided with an electromagnetic valve 209 that is an on-off valve that is controlled to be opened and closed so as not to conduct the refrigerant.
  • one of the high-pressure side connection pipes 106 branched into a plurality is a bypass circuit 300 that bypasses the divided heat exchanger 103a.
  • the bypass circuit 300 is also provided with a solenoid valve 209a that is a bypass on-off valve.
  • the outdoor heat exchanger 103 constituting the air-conditioning refrigeration cycle 1 can adjust the amount of refrigerant flowing in by controlling the opening and closing of the solenoid valve 209 and the solenoid valve 209a, and the heat exchanger capacity can be divided. It has become.
  • the heat exchanger capacity of the outdoor heat exchanger 103 is reduced. It is desirable to make it. Therefore, in the air conditioning and hot water supply complex system 100, all or part of the solenoid valve 209 is controlled to be closed so that the refrigerant flowing into the outdoor heat exchanger 103 is shut off so as not to deviate from the operating range of the air conditioning compressor 101. .
  • the number of divided heat exchangers 103a into which refrigerant flows is determined in accordance with the operating range of the air conditioning compressor 101, and the inflow amount of refrigerant is adjusted by closing control of the electromagnetic valve 209 according to the number.
  • the operation range of the air conditioning compressor 101 is not deviated.
  • the operation range of the air conditioning compressor 101 may be deviated.
  • the solenoid valve 209 a installed in the bypass circuit 300 is controlled to be opened so that the refrigerant is returned to the suction side of the air-conditioning compressor 101 without flowing into the outdoor heat exchanger 103.
  • the solenoid valve 209a installed in the bypass circuit 300 has an equation Cva ⁇ if the flow coefficient of refrigerant flowing through the bypass circuit 300 is CVb, where Cva is the flow coefficient of refrigerant when passing through the outdoor heat exchanger 103. It is selected so as to satisfy CVb. Furthermore, when the operation range of the air conditioning compressor 101 cannot be maintained only by dividing the heat exchanger capacity, the operation range is maintained by opening the electromagnetic valve 209a installed in the bypass circuit 300 to bypass the refrigerant. Note that the split structure may be controlled using an electronic expansion valve instead of using an electromagnetic valve.
  • FIG. 4 is a flowchart showing a process flow when adjusting the operating range of the air-conditioning compressor 101. Based on FIG. 4, the process at the time of adjusting the operation range of the compressor 101 for air conditioning demonstrated in FIG. 3 is demonstrated in detail.
  • the air conditioning and hot water supply complex system 100 when used only for normal air conditioning applications, it is not necessary to perform heating operation when the outside air temperature is relatively high (for example, 15 ° C. or higher), and the outside air wet bulb temperature is ⁇ 20. Heating operation is generally performed when the temperature is between 1 ° C and 15.5 ° C. However, when the air conditioning and hot water supply complex system 100 performs the hot water supply operation, it is necessary to perform the hot water supply operation regardless of the outside air temperature.
  • step S101 when the air conditioning and hot water supply complex system 100 starts operation, it is determined whether or not the current operation mode is heating operation (step S101).
  • the operation mode is the cooling operation (step S101; NO)
  • the operation range of the air conditioning compressor 101 does not deviate, and thus the cooling operation is continued without special control.
  • the operation mode is the heating operation (step S101; YES)
  • step S102 when the outside air temperature is higher than A ° C. (step S102; YES), it is determined whether or not the pressure of the refrigerant sucked into the air conditioning compressor 101 is equal to or higher than the saturation pressure of the predetermined temperature A ° C. (step S103). ).
  • the suction pressure is equal to or lower than the saturation pressure of A ° C. (step S103; NO)
  • the operation range of the air-conditioning compressor 101 does not deviate, and thus the heating operation is continued without special control.
  • the suction pressure is equal to or higher than the saturation pressure of A ° C.
  • step S103 the operating range of the air-conditioning compressor 101 is likely to deviate, so that it is provided in the vicinity of the outdoor heat exchanger 103.
  • Control is performed so as to determine the number of electromagnetic valves 209 to be lowered and to reduce the rotation speed of the air blowing means such as a fan (step S104).
  • the operating range of the air conditioning compressor 101 is adjusted so that the suction pressure to the air conditioning compressor 101 does not exceed the allowable value by reducing the heat exchanger capacity of the outdoor heat exchanger 103. is there. Then, it is again determined whether or not the suction pressure to the air conditioning compressor 101 is equal to or higher than the saturation pressure at the predetermined temperature A ° C. (step S105). When the suction pressure becomes equal to or lower than the saturation pressure (step S105; NO), it can be determined that the operation range of the air conditioning compressor 101 does not deviate, so the heating operation is continued with the blower unit and the electromagnetic valve 209 controlled. To do.
  • step S105 when the suction pressure is still equal to or higher than the saturation pressure (step S105; YES), there is still a possibility that the operation range of the air-conditioning compressor 101 deviates.
  • the number of solenoid valves 209 to be controlled is controlled to increase (step S104).
  • the criterion for the predetermined temperature A ° C. is generally determined by the air-conditioning compressor 101 to be used.
  • the normal air-conditioning compressor 101 is provided with limit values for the suction pressure and the discharge pressure.
  • the outdoor heat exchanger 103 acts as an evaporator.
  • the suction pressure of the air conditioning compressor 101 is substantially the same value as the saturation pressure calculated from the outside air wet bulb temperature.
  • the operating range of the air conditioning compressor 101 is determined based on the outside air temperature.
  • control device constituted by a microcomputer or the like.
  • This control device may be provided in any of the heat source unit A or the relay unit E, the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D.
  • low pressure detection means such as a pressure sensor for detecting the pressure of the refrigerant sucked into the air conditioning compressor 101 may be provided in the suction side pipe connected to the air conditioning compressor 101.
  • the number of the divided heat exchangers 103a constituting the outdoor heat exchanger 103 that is, the number of divided heat exchangers 103 is not particularly limited.
  • FIG. FIG. 5 is an explanatory diagram for explaining a hot water supply refrigeration cycle 2 a according to Embodiment 2 of the present invention.
  • the hot water supply refrigeration cycle 2a which is a feature of the second embodiment, will be described.
  • 5A shows a partially enlarged view of the hot water supply refrigeration cycle 2a
  • FIG. 5B shows a partially enlarged view of the hot water supply refrigeration cycle 2 as a comparative example.
  • the refrigerant pipe 45 is branched between the hot water supply compressor 21 and the heat medium-refrigerant heat exchanger 51, and the hot water supply throttling means 22 and the refrigerant-refrigerant heat exchanger 41 are between them.
  • a connected bypass pipe 45a is provided and a bypass circuit 310 is formed.
  • a bypass electromagnetic valve 309 is installed in the bypass pipe 45a.
  • the heat medium-refrigerant heat exchanger 51 performs heat exchange between the refrigerant circulating in the hot water supply refrigeration cycle 2 and the heat medium such as water circulating in the hot water supply load 3.
  • the operation mode may be changed to the defrosting operation depending on the outside air temperature.
  • a low-pressure refrigerant of 0 ° C. or lower flows into the heat medium-refrigerant heat exchanger 51a.
  • the operation mode is changed to the defrosting operation, when a low-pressure refrigerant of 0 ° C. or less flows into the heat medium-refrigerant heat exchanger 51 according to Embodiment 1, as a result, the hot water supply load 3 is circulated.
  • the water held in the heat medium-refrigerant heat exchanger 51 may be frozen.
  • bypass solenoid valve 309 installed in the bypass pipe 45a is controlled from closed to open.
  • the refrigerant can be prevented from flowing into the heat medium-refrigerant heat exchanger 51. Therefore, even when the defrosting operation is being performed, a stable heat source can be supplied by causing a low-pressure refrigerant to flow into the bypass circuit 310 without causing a sudden temperature change on the hot water supply load 3 side.
  • bypassing the low-pressure refrigerant with the bypass pipe 45a freezing of the water held in the heat medium-refrigerant heat exchanger 51 can be prevented, and damage to the heat medium-refrigerant heat exchanger 51 can be prevented. Can be prevented.
  • the bypass of the low-pressure refrigerant may not be performed by the bypass electromagnetic valve 309 but may be performed by an electronic expansion valve or a mechanical expansion valve.
  • FIG. 6 is a flowchart showing the flow of processing when the bypass solenoid valve 309 is opened and closed. Based on FIG. 6, the process at the time of controlling the opening and closing of the bypass electromagnetic valve 309 and making a refrigerant
  • the operation mode may be changed to the defrosting operation depending on the outside air temperature.
  • the air-conditioning and hot water supply combined system 100 can perform the defrosting operation by controlling the four-way valve 102 and making the refrigerant flow the same as in the cooling operation.
  • step S201 when the air conditioning and hot water supply complex system 100 starts operation, it is determined whether or not the current operation mode is heating operation (step S201).
  • the operation mode is the cooling operation (step S201; NO)
  • the defrosting operation is not performed and the refrigerant does not need to be conducted to the bypass pipe 45a, so that the bypass electromagnetic valve 309 is closed to perform the cooling.
  • the operation mode is the heating operation (step S201; YES)
  • step S202 it is determined whether or not the outside air temperature is equal to or lower than a preset predetermined temperature A ° C.
  • the defrosting operation is not performed and the refrigerant does not need to be conducted to the bypass pipe 45a, so that the bypass solenoid valve 309 is closed and the heating operation is performed.
  • step S203 whether or not the defrosting operation is performed is determined based on whether or not the surface temperature of the outdoor heat exchanger 103 is equal to or lower than a predetermined temperature (step S203).
  • the defrosting operation is not necessary, that is, when the surface temperature of the outdoor heat exchanger 103 is higher than a predetermined temperature (step S203; NO)
  • the bypass solenoid valve 309 is not necessary because the refrigerant does not need to be conducted to the bypass pipe 45a. Keep it closed and continue heating operation.
  • step S203 when the defrosting operation is required, that is, when the surface temperature of the outdoor heat exchanger 103 is equal to or lower than the predetermined temperature (step S203; YES), the defrosting operation is executed and the bypass solenoid valve 309 is controlled to be in the open state. The refrigerant is allowed to flow through the bypass pipe 45a (step S204).
  • the determination based on this flowchart and the control of each device are executed by the control device as in FIG. Moreover, it is preferable to provide temperature detection means such as a temperature sensor for detecting the temperature of the surface of the outdoor heat exchanger 103 on or near the surface of the outdoor heat exchanger 103.
  • the bypass solenoid valve 309 is not opened only when the defrosting operation is started. For example, when the refrigerant flow direction is reversed, for example, when the heating operation is switched to the cooling operation, the low-temperature refrigerant flows into the heat medium-refrigerant heat exchanger 51. Therefore, the bypass solenoid valve 309 is opened.
  • the refrigerant may be allowed to flow into the bypass pipe 45a. However, in this case, the operation may be started after adjusting the refrigerant flow rate so that the refrigerant does not change suddenly in the bypass pipe 45a circuit.
  • FIG. 7 is an explanatory diagram for explaining a hot water circulation pipe 203a according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic diagram for explaining the height of the trap 210.
  • the piping 203a for hot water storage water circulation which is the characteristic matter of Embodiment 3 is demonstrated.
  • 7A shows a partially enlarged view of the hot water storage water circulation pipe 203a
  • FIG. 7B shows a partial enlarged view of the hot water storage water circulation pipe 203 as a comparative example.
  • the hot water circulating pipe 203a is different from the hot water circulating pipe 203 in that it is provided so as to form the trap 210.
  • the pipe When constructing the hot water circulation pipe 203 according to the first and second embodiments, the pipe is directly connected to the water side inlet / outlet of the heat medium-refrigerant heat exchanger 51 as shown in FIG. Is common.
  • the fluid flows in the direction of the arrow, an air layer stays in the upper part of the heat medium-refrigerant heat exchanger 51. If an air layer stays in the upper part of the heat medium-refrigerant heat exchanger 51, a scale adheres to that part, and there is a high possibility that the life of the heat medium-refrigerant heat exchanger 51 will be shortened.
  • a trap 210 is formed in the hot water circulating pipe 203 a constituting the hot water supply load 3 so that the air layer does not stay in the upper part of the heat medium-refrigerant heat exchanger 51.
  • This trap 210 makes a part of the hot water circulation pipe 203 a on the outlet side of the heat medium-refrigerant heat exchanger 51 higher by A mm than the hot water circulation pipe 203 a on the inlet side of the heat medium-refrigerant heat exchanger 51. It is formed by that. If the trap 210 is formed in the hot water circulating pipe 203a in this way, an air layer can stay in the trap 210, and the air layer does not stay on the heat medium-refrigerant heat exchanger 51.
  • the air staying in the trap 210 can be discharged to the outside by maximizing the flow rate of the water circulation pump 31. If the air is discharged at a time when the piping is constructed, the air stays in the trap 210. The scale does not adhere to the piping 203a for circulating hot water.
  • an air vent valve or the like may be provided at a portion where the trap 210 is formed so that air staying in the trap 210 is removed.
  • the height A of the trap 210 is 0 mm or more.
  • the height of the heat medium-refrigerant heat exchanger 51 is set to B or less.
  • the water circulation pump 31 is selected in consideration of the height A of the trap 210, the height A of the trap 210 is not particularly limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 冷房負荷、暖房負荷及び高温の給湯負荷を同時に処理でき、年間を通し、安定した熱源を供給できる空調給湯複合システムを提供する。  空調給湯複合システム100は、熱媒体-冷媒熱交換器51の冷媒配管45の出入口間に、熱媒体-冷媒熱交換器51と並列にバイパス電磁弁309を設置したバイパス管45aを設け、バイパス電磁弁309の開閉でバイパス管45aに給湯用冷媒を流入させることで、熱媒体-冷媒熱交換器51への給湯用冷媒の流入量を制御している。

Description

空調給湯複合システム
 本発明は、ヒートポンプサイクルを搭載し、冷房負荷、暖房負荷及び給湯負荷を同時に提供することができる空調給湯複合システムに関するものである。
 従来から、一元の冷凍サイクルによって冷房負荷、暖房負荷及び給湯負荷を同時に提供することができる空調給湯複合システムが存在する。そのようなものとして、「1台の圧縮機を備え、該圧縮機と、室外熱交換器、室内熱交換器、蓄冷熱槽および給湯熱交換器とを接続した冷媒回路により構成され、それぞれの熱交換器への冷媒の流れを切り換えることにより、冷暖房・給湯・蓄熱・蓄冷の単独運転およびそれらの複合運転を可能とする冷凍サイクルを構成してなる多機能ヒートポンプシステム」が提案されている(たとえば、特許文献1参照)。
 また、二元の冷凍サイクルによって高温の給湯と室内空調機能を同時に提供することができる空調給湯複合システムも存在している。そのようなものとして、「第1圧縮機、冷媒分配装置、第1熱交換器、第2熱交換器、第1絞り装置、室外熱交換器、四方弁および上記第1圧縮機をこの順に接続するとともに、上記冷媒分配装置から上記四方弁、室内熱交換器及び第2絞り装置をこの順に介装して上記第2熱交換器と上記第1絞り装置の間に接続し、第1の冷媒が流される低段側の冷媒回路と、第2圧縮機、凝縮器、第3の絞り装置、上記第1熱交換器および上記第2圧縮機をこの順に接続し、第2の冷媒が流れる高段側の冷媒回路と、上記第2熱交換器及び上記凝縮器をこの順に接続し、給湯水が流される給湯経路とを備えたヒートポンプ式給湯装置」が提案されている(たとえば、特許文献2参照)。
特開平11-270920号公報(第3-4頁、図1) 特開平4-263758号公報(第2-3頁、図1)
 特許文献1に記載の多機能ヒートポンプシステムは、一元の冷凍サイクル、つまり1つの冷凍サイクルによって冷房負荷、暖房負荷及び給湯負荷を同時に提供するようにしたものである。しかしながら、このようなシステムでは、水の加熱を行なう放熱過程の温度と、暖房を行なう放熱過程の温度とが、概同一となるため、冷房運転を行っている際、高温の給湯負荷を賄うことができず、年間を通して安定した温熱を供給することができないという問題があった。
 特許文献2に記載のヒートポンプ式給湯装置は、二元の冷凍サイクル、つまり2つの冷凍サイクルによって冷房負荷、暖房負荷及び給湯負荷を同時に提供するようにしたものである。しかしながら、このようなシステムでは、室内機にて空調を行なう冷媒回路と、給湯を行なう冷媒回路とが、異なる取り扱いとなっており、単純に室内機の代替として給湯機能を付加することができないため、既設の空気調和機に容易には導入できないという問題があった。
 本発明は、上記の問題を解決するためになされたもので、冷房負荷、暖房負荷及び高温の給湯負荷を同時に処理でき、年間を通し、安定した熱源を供給できる空調給湯複合システムを提供することを目的としている。
 本発明に係る空調給湯複合システムは、空調用圧縮機、流路切替手段、室外熱交換器、室内熱交換器、及び、空調用絞り手段が直列に接続されているとともに、冷媒-冷媒熱交換器及び給湯熱源用絞り手段が直列に接続されて前記室内熱交換器及び前記空調用絞り手段に並列に接続されている第1冷媒回路を備え、前記第1冷媒回路に空調用冷媒を循環させる空調用冷凍サイクルと、給湯用圧縮機、熱媒体-冷媒熱交換器、給湯用絞り手段、及び、前記冷媒-冷媒熱交換器が直列に接続されている第2冷媒回路を備え、前記第2冷媒回路に給湯用冷媒を循環させる給湯用冷凍サイクルと、水循環用ポンプ、前記熱媒体-冷媒熱交換器、及び、貯湯タンクが直列に接続されている水回路を備え、前記水回路に給湯用水を循環させる給湯用負荷と、を備え、前記空調用冷凍サイクルと前記給湯用冷凍サイクルとは、前記冷媒-冷媒熱交換器で、前記空調用冷媒と前記給湯用冷媒とが熱交換を行なうようにカスケード接続され、前記給湯用冷凍サイクルと前記給湯用負荷とは、前記熱媒体-冷媒熱交換器で、前記給湯用冷媒と前記水とが熱交換を行なうようにカスケード接続されており、前記熱媒体-冷媒熱交換器に接続している冷媒配管の出入口間に、前記熱媒体-冷媒熱交換器と並列にバイパス電磁弁を設置したバイパス管を設け、前記バイパス電磁弁の開閉で前記バイパス管に前記給湯用冷媒を流入させることで、前記熱媒体-冷媒熱交換器への前記給湯用冷媒の流入量を制御することを特徴とする。
 本発明に係る空調給湯複合システムによれば、熱媒体-冷媒熱交換器の冷媒側回路の出入口間に、熱媒体-冷媒熱交換器と並列にバイパス電磁弁を設置したバイパス管を設け、バイパス電磁弁の開閉でバイパス管に給湯用冷媒を流入させることで、熱媒体-冷媒熱交換器への給湯用冷媒の流入量を制御しているので、たとえば除霜運転実行中においても、バイパス管に低圧の冷媒を流入させることで、給湯用負荷側で急激な温度変化を与えることがなく、安定した熱源を供給することができる。また、バイパス管に低圧の冷媒を流入させることで、熱媒体―冷媒熱交換器内にて保有している水の凍結を防ぐことができ、熱媒体―冷媒熱交換器の破損を防止できる。
実施の形態1に係る空調給湯複合システムの冷媒回路構成を示す冷媒回路図である。 給湯用負荷の別の形態例を説明するための概略回路構成図である。 室外熱交換器の構造の一例を説明するための説明図である。 空調用圧縮機の運転範囲を調整する際の処理の流れを示すフローチャートである。 実施の形態2に係る給湯用冷凍サイクルを説明するための説明図である。 バイパス電磁弁の開閉を行なう際の処理の流れを示すフローチャートである。 実施の形態3に係る貯湯水循環用配管を説明するための説明図である。 トラップの高さを説明するための概略図である。
符号の説明
 1 空調用冷凍サイクル、2 給湯用冷凍サイクル、2a 給湯用冷凍サイクル、3 給湯用負荷、4 給湯用水循環サイクル、21 給湯用圧縮機、22 給湯用絞り手段、31 水循環用ポンプ、31a 熱媒体循環用ポンプ、32 貯湯タンク、41 冷媒-冷媒熱交換器、45 冷媒配管、45a バイパス管、51 熱媒体-冷媒熱交換器、51a 熱媒体-冷媒熱交換器、100 空調給湯複合システム、101 空調用圧縮機、102 四方弁、103 室外熱交換器、103a 分割熱交換器、104 アキュムレータ、105a 逆止弁、105b 逆止弁、105c 逆止弁、105d 逆止弁、106 高圧側接続配管、107 低圧側接続配管、108 気液分離器、109 分配部、109a 弁手段、109b 弁手段、110 分配部、110a 逆止弁、110b 逆止弁、111 内部熱交換器、112 第1中継機用絞り手段、113 内部熱交換器、114 第2中継機用絞り手段、115 会合部、116 会合部、116a 会合部、117 空調用絞り手段、118 室内熱交換器、119 給湯熱源用絞り手段、130 接続配管、131 接続配管、132 接続配管、133 接続配管、133a 接続配管、133b 接続配管、134 接続配管、134a 接続配管、134b 接続配管、135 接続配管、135a 接続配管、135b 接続配管、136 接続配管、136a 接続配管、136b 接続配管、201 水-水熱交換器、202 循環水用配管、203 貯湯水循環用配管、203a 貯湯水循環用配管、209 電磁弁(開閉弁)、209a 電磁弁(バイパス開閉弁)、210 トラップ、300 バイパス回路、309 バイパス電磁弁、A 熱源機、B 冷房室内機、C 暖房室内機、D 給湯熱源用回路、E 中継機、a 接続部分、b 接続部分、c 接続部分、d 接続部分。
 以下、図面に基づいて本発明の実施の形態について説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係る空調給湯複合システム100の冷媒回路構成(特に、暖房主体運転時の冷媒回路構成)を示す冷媒回路図である。図1に基づいて、空調給湯複合システム100の冷媒回路構成、特に暖房主体運転時の冷媒回路構成について説明する。この空調給湯複合システム100は、ビルやマンション等に設置され、冷媒(空調用冷媒)を循環させる冷凍サイクル(ヒートポンプサイクル)を利用することで冷房負荷、暖房負荷及び給湯負荷を同時に供給できるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 この実施の形態1に係る空調給湯複合システム100は、空調用冷凍サイクル1と、給湯用冷凍サイクル2と、給湯用負荷3とで構成されており、空調用冷凍サイクル1と給湯用冷凍サイクル2とは冷媒-冷媒熱交換器41で、給湯用冷凍サイクル2と給湯用負荷3とは熱媒体-冷媒熱交換器51で、互いの冷媒や水が混ざることなく熱交換を行なうように構成されている。なお、図1では、空調用冷凍サイクル1において、暖房室内機Cと給湯熱源用回路Dとに対する負荷の合計よりも冷房室内機Bに対する負荷の方が小さく、室外熱交換器103が蒸発器として働く場合のサイクルの状態(便宜上、暖房主体運転と称する)を示している。
[空調用冷凍サイクル1]
 空調用冷凍サイクル1は、熱源機Aと、冷房負荷を担当する冷房室内機Bと、暖房負荷を担当する暖房室内機Cと、給湯用冷凍サイクル2の熱源となる給湯熱源用回路Dと、中継機Eと、によって構成されている。このうち、冷房室内機B、暖房室内機C及び給湯熱源用回路Dは、熱源機Aに対して並列となるように接続されて搭載されている。そして、熱源機Aと、冷房室内機B、暖房室内機C及び給湯熱源用回路Dとの、間に設置される中継機Eが冷媒の流れを切り換えることで、冷房室内機B、暖房室内機C及び給湯熱源用回路Dとしての機能を発揮させるようになっている。
[熱源機A]
 熱源機Aは、空調用圧縮機101と、流路切替手段である四方弁102と、室外熱交換器103と、アキュムレータ104とが直列に接続されて構成されており、この熱源機Aは、冷房室内機B、暖房室内機C及び給湯熱源用回路Dに冷熱を供給する機能を有している。なお、室外熱交換器103の近傍に、この室外熱交換器103に空気を供給するためのファン等の送風機を設けるとよい。また、熱源機Aでは、室外熱交換器103と中継機Eとの間における高圧側接続配管106に所定の方向(熱源機Aから中継機Eへの方向)のみに空調用冷媒の流れを許容する逆止弁105aが、四方弁102と中継機Eとの間における低圧側接続配管107に所定の方向(中継機Eから熱源機Aへの方向)のみに空調用冷媒の流れを許容する逆止弁105bが、それぞれ設けられている。
 そして、高圧側接続配管106と低圧側接続配管107とは、逆止弁105aの上流側と逆止弁105bの上流側を接続する第1接続配管130と、逆止弁105aの下流側と逆止弁105bの下流側を接続する第2接続配管131とで接続されている。つまり、高圧側接続配管106と第1接続配管130との接続部分aは、逆止弁105aを挟んで高圧側接続配管106と第2接続配管131との接続部分bよりも上流側になっており、低圧側接続配管107と第1接続配管130との接続部分cも、逆止弁105bを挟んで低圧側接続配管107と第2接続配管131との接続部分dよりも上流側になっている。
 第1接続配管130には、低圧側接続配管107から高圧側接続配管106の方向のみに空調用冷媒の流通を許容する逆止弁105cが設けられている。第2接続配管131にも、低圧側接続配管107から高圧側接続配管106の方向のみに空調用冷媒の流通を許容する逆止弁105dが設けられている。なお、図1では、暖房主体運転時における冷媒回路構成を示しているため、逆止弁105a及び逆止弁105bが閉状態(黒塗りで示している)、逆止弁105b及び逆止弁105cが開状態(白抜きで示している)となっている。
 空調用圧縮機101は、空調用冷媒を吸入し、その空調用冷媒を圧縮して高温・高圧の状態にするものである。四方弁102は、空調用冷媒の流れを切り替えるものである。室外熱交換器103は、蒸発器や放熱器(凝縮器)として機能し、図示省略の送風機から供給される空気と空調用冷媒との間で熱交換を行ない、空調用冷媒を蒸発ガス化又は凝縮液化するものである。アキュムレータ104は、暖房主体運転時において、四方弁102と空調用圧縮機101との間に配置され、過剰な空調用冷媒を貯留するものである。なお、アキュムレータ104は、過剰な空調用冷媒を貯留できる容器であればよい。
[冷房室内機B及び暖房室内機C]
 冷房室内機B及び暖房室内機Cには、空調用絞り手段117と、室内熱交換器118とが、直列に接続されて搭載されている。また、冷房室内機B及び暖房室内機Cには、2台の空調用絞り手段117と、2台の室内熱交換器118とが、それぞれ並列に搭載されている場合を例に示している。冷房室内機Bは、熱源機Aからの冷熱の供給を受けて冷房負荷を担当し、暖房室内機Cは、熱源機Aからの冷熱の供給を受けて暖房負荷を担当する機能を有している。
 つまり、実施の形態1では、中継機Eによって、冷房室内機Bが冷房負荷を担当するように決定され、暖房室内機Cが暖房負荷を担当するように決定された状態を示しているのである。なお、室内熱交換器118の近傍に、この室内熱交換器118に空気を供給するためのファン等の送風機を設けるとよい。また、便宜的に、中継機Eから室内熱交換器118に接続している接続配管を接続配管133と、中継機Eから空調用絞り手段117に接続している接続配管を接続配管134と称して説明するものとする。
 空調用絞り手段117は、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この空調用絞り手段117は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。室内熱交換器118は、放熱器(凝縮器)や蒸発器として機能し、図示省略の送風手段から供給される空気と空調用冷媒との間で熱交換を行ない、空調用冷媒を凝縮液化又は蒸発ガス化するものである。なお、空調用絞り手段117及び室内熱交換器118は、直列に接続されている。
[給湯熱源用回路D]
 給湯熱源用回路Dは、給湯熱源用絞り手段119と、冷媒-冷媒熱交換器41とが、直列に接続されて構成されており、熱源機Aからの冷熱を冷媒-冷媒熱交換器41を介して給湯用冷凍サイクル2に供給する機能を有している。つまり、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、冷媒-冷媒熱交換器41でカスケード接続されているのである。なお、便宜的に、中継機Eから冷媒-冷媒熱交換器41に接続している接続配管を接続配管135と、中継機Eから給湯熱源用絞り手段119に接続している接続配管を接続配管136と称して説明するものとする。
 給湯熱源用絞り手段119は、空調用絞り手段117と同様に、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この給湯熱源用絞り手段119は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。冷媒-冷媒熱交換器41は、放熱器(凝縮器)や蒸発器として機能し、給湯用冷凍サイクル2の冷凍サイクルを循環する給湯用冷媒と、空調用冷凍サイクル1の冷凍サイクルを循環する空調用冷媒との、間で熱交換を行なうようになっている。
[中継機E]
 中継機Eは、冷房室内機B、暖房室内機C及び給湯熱源用回路Dのそれぞれと、熱源機Aとを、接続する機能を有すると共に、第1分配部109の弁手段109a又は弁手段109bの何れかを択一的に開閉することにより、室内熱交換器118を放熱器とするか蒸発器とするか、冷媒-冷媒熱交換器41を冷水器とするか給湯機とするかを決定する機能を有している。この中継機Eは、気液分離器108と、第1分配部109と、第2分配部110と、第1内部熱交換器111と、第1中継機用絞り手段112と、第2内部熱交換器113と、第2中継機用絞り手段114とで、構成されている。
 第1分配部109では、接続配管133及び接続配管135が2つに分岐されており、一方(接続配管133b及び接続配管135b)が低圧側接続配管107に接続し、他方(接続配管133a及び接続配管135a)が気液分離器108に接続している接続配管(接続配管132と称する)に接続するようになっている。また、第1分配部109では、接続配管133a及び接続配管135aに開閉制御されて冷媒を導通したりしなかったりする弁手段109aが、接続配管133b及び接続配管135bに開閉制御されて冷媒を導通したりしなかったりする弁手段109bがそれぞれ設けられている。なお、弁手段109a及び弁手段109bの開閉状態を白抜き(開状態)及び黒塗り(閉状態)で表している。
 第2分配部110では、接続配管134及び接続配管136が2つに分岐されており、一方(接続配管134a及び接続配管136a)が第1会合部115で接続され、他方(接続配管134b及び接続配管136b)が第2会合部116で接続されるようになっている。また、第2分配部110では、接続配管134a及び接続配管136aに冷媒の流通を一方のみに許容する逆止弁110aが、接続配管134b及び接続配管136bに冷媒の流通を一方のみに許容する逆止弁110bがそれぞれ設けられている。なお、逆止弁110a及び逆止弁110bの開閉状態を白抜き(開状態)及び黒塗り(閉状態)で表している。
 第1会合部115は、第2分配部110から第1中継機用絞り手段112及び第1内部熱交換器111を介して気液分離器108に接続している。第2会合部116は、第2分配部110と第2内部熱交換器113との間で分岐し、一方が第2内部熱交換器113を介して第2分配部110と第1中継機用絞り手段112との間における第1会合部115に接続され、他方(第2会合部116a)が第2中継機用絞り手段114、第2内部熱交換器113及び第1内部熱交換器111を介して低圧側接続配管107に接続されている。
 気液分離器108は、空調用冷媒をガス冷媒と液冷媒とに分離するものであり、高圧側接続配管106に設けられ、一方が第1分配部109の弁手段109aに接続され、他方が第1会合部115を経て第2分配部110に接続されている。第1分配部109は、弁手段109a又は弁手段109bの何れかが択一的に開閉され、室内熱交換器118及び冷媒-冷媒熱交換器41に空調用冷媒を流入させる機能を有している。第2分配部110は、逆止弁110a及び逆止弁110bによって、空調用冷媒の流れをいずれか一方に許容する機能を有している。
 第1内部熱交換器111は、気液分離器108と第1中継機用絞り手段112との間における第1会合部115に設けられており、第1会合部115を導通している空調用冷媒と、第2会合部116が分岐された第2会合部116aを導通している空調用冷媒と、の間で熱交換を実行するものである。第1中継機用絞り手段112は、第1内部熱交換器111と第2分配部110との間における第1会合部115に設けられており、空調用冷媒を減圧して膨張させるものである。この第1中継機用絞り手段112は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。
 第2内部熱交換器113は、第2会合部116に設けられており、第2会合部116を導通している空調用冷媒と、第2会合部116が分岐された第2会合部116aを導通している空調用冷媒と、の間で熱交換を実行するものである。第2中継機用絞り手段114は、第2内部熱交換器113と第2分配部110との間における第2会合部116に設けられており、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この第2中継機用絞り手段114は、第1中継機用絞り手段112と同様に、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。
 以上のように、空調用冷凍サイクル1は、空調用圧縮機101、四方弁102、室内熱交換器118、空調用絞り手段117及び室外熱交換器103が直列に接続されるとともに、空調用圧縮機101、四方弁102、冷媒-冷媒熱交換器41、給湯熱源用絞り手段119及び室外熱交換器103が直列に接続されており、中継機Eを介して室内熱交換器118と冷媒-冷媒熱交換器41とが並列に接続されて第1冷媒回路を構成し、この第1冷媒回路に空調用冷媒を循環させることで成立している。
 なお、空調用圧縮機101は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して空調用圧縮機101を構成することができる。この空調用圧縮機101は、インバータにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。また、空調用冷凍サイクル1を循環する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素(CO)や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。
 ここで、空調用冷凍サイクル1の暖房主体運転動作について説明する。
 まず、空調用圧縮機101で高温・高圧にされた空調用冷媒は、空調用圧縮機101から吐出して、四方弁102を経由し、逆止弁105cを導通し、高圧側接続配管106に導かれ、過熱ガス状態で中継機Eの気液分離器108へ流入する。気液分離器108に流入した過熱ガス状態の空調用冷媒は、第1分配部109の弁手段109aが開いている回路に分配される。ここでは、過熱ガス状態の空調用冷媒は、暖房室内機Cや給湯熱源用回路Dに流入するようになっている。
 暖房室内機Cに流入した空調用冷媒は、室内熱交換器118で放熱し(つまり、室内空気を暖め)、空調用絞り手段117で減圧され、第1会合部115で合流する。また、給湯熱源用回路Dに流入した空調用冷媒は、冷媒-冷媒熱交換器41で放熱し(つまり、給湯用冷凍サイクル2に熱を与え)、給湯熱源用絞り手段119で減圧され、暖房室内機Cから流出した空調用冷媒と第1会合部115で合流する。一方、気液分離器108に流入した過熱ガス状態の空調用冷媒の一部は、第1内部熱交換器111で第2中継機用絞り手段114にて低温・低圧に膨張した空調用冷媒と熱交換を行なうことにより過冷却度を得る。
 それから、第1中継機用絞り手段112を通過して、空調用として利用された空調用冷媒(暖房室内機Cや給湯熱源用回路Dに流入し、室内熱交換器118や冷媒-冷媒熱交換器41で放熱した空調用冷媒)と第1会合部115で合流する。なお、第1中継機用絞り手段112を通る一部の過熱ガス状態の空調用冷媒は、第1中継機用絞り手段112を全閉にして、皆無にしてもよい。その後、第2内部熱交換器113で、第2中継機用絞り手段114にて低温・低圧に膨張した空調用冷媒と熱交換を行なうことにより過冷却度を得る。この空調用冷媒は、第2会合部116側と第2中継機用絞り手段114側とに分配される。
 第2会合部116を導通する空調用冷媒は、弁手段109bが開いている回路に分配される。ここでは、第2会合部116を導通する空調用冷媒は、冷房室内機Bに流入し、空調用絞り手段117にて低温・低圧に膨張され、室内熱交換器118で蒸発し、弁手段109bを経て低圧側接続配管107で合流する。また、第2中継機用絞り手段114を導通した空調用冷媒は、第2内部熱交換器113及び第1内部熱交換器111で熱交換を行なって蒸発し、低圧側接続配管107で冷房室内機Bを流出した空調用冷媒と合流する。そして、低圧側接続配管107で合流した空調用冷媒は、逆止弁105dを通って室外熱交換器103に導かれ、運転条件によっては残留している液冷媒を蒸発させ、四方弁102、アキュムレータ104を経て空調用圧縮機101へ戻る。
[給湯用冷凍サイクル2]
 給湯用冷凍サイクル2は、給湯用圧縮機21と、熱媒体-冷媒熱交換器51と、給湯用絞り手段22と、冷媒-冷媒熱交換器41と、によって構成されている。つまり、給湯用冷凍サイクル2は、給湯用圧縮機21、熱媒体-冷媒熱交換器51、給湯用絞り手段22、及び、冷媒-冷媒熱交換器41が冷媒配管45で直列に接続されて第2冷媒回路を構成し、この第2冷媒回路に給湯用冷媒を循環させることで成立している。なお、給湯用冷凍サイクル2の動作は、空調用冷凍サイクル1の運転状態、つまり冷房主体運転を実行しているか、暖房主体運転を実行しているかで相違するものではない。
 給湯用圧縮機21は、給湯用冷媒を吸入し、その給湯用冷媒を圧縮して高温・高圧の状態にするものである。この給湯用圧縮機21は、インバータにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。また、給湯用圧縮機21は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して給湯用圧縮機21を構成することができる。
 熱媒体-冷媒熱交換器51は、給湯用負荷3を循環する水(熱媒体)と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。つまり、給湯用冷凍サイクル2と給湯用負荷3とは、熱媒体-冷媒熱交換器51でカスケード接続されている。給湯用絞り手段22は、減圧弁や膨張弁として機能し、給湯用冷媒を減圧して膨張させるものである。この給湯用絞り手段22は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。
 冷媒-冷媒熱交換器41は、給湯用冷凍サイクル2を循環する給湯用冷媒と、空調用冷凍サイクル1を循環する空調用冷媒との、間で熱交換を行なうものである。なお、給湯用冷凍サイクル2を循環する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。
 ここで、給湯用冷凍サイクル2の運転動作について説明する。
 まず、給湯用圧縮機21で高温・高圧にされた給湯用冷媒は、給湯用圧縮機21から吐出して、熱媒体-冷媒熱交換器51に流入する。この熱媒体-冷媒熱交換器51では、流入した給湯用冷媒が、給湯用負荷3を循環している水を加熱することで放熱する。この給湯用冷媒は、給湯用絞り手段22で空調用冷凍サイクル1の給湯熱源用回路Dにおける冷媒-冷媒熱交換器41の出口温度以下まで膨張される。膨張された給湯用冷媒は、冷媒-冷媒熱交換器41で、空調用冷凍サイクル1を構成する給湯熱源用回路Dを流れる空調用冷媒から受熱して蒸発し、給湯用圧縮機21へ戻る。
[給湯用負荷3]
 給湯用負荷3は、水循環用ポンプ31と、熱媒体-冷媒熱交換器51と、貯湯タンク32と、によって構成されている。つまり、給湯用負荷3は、水循環用ポンプ31、熱媒体-冷媒熱交換器51、及び、貯湯タンク32が貯湯水循環用配管203で直列に接続されて水回路(熱媒体回路)を構成し、この水回路に給湯用水を循環させることで成立している。なお、給湯用負荷3の動作は、空調用冷凍サイクル1の運転状態、つまり冷房主体運転を実行しているか、暖房主体運転を実行しているかで相違するものではない。また、水回路を構成する貯湯水循環用配管203は、銅管やステンレス管、鋼管、塩化ビニル系配管などによって構成されている。
 水循環用ポンプ31は、貯湯タンク32に蓄えられている水を吸入し、その水を加圧し、給湯用負荷3内を循環させるものであり、たとえばインバータにより回転数が制御されるタイプのもので構成するとよい。熱媒体-冷媒熱交換器51は、上述したように、給湯用負荷3を循環する水(熱媒体)と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。貯湯タンク32は、熱媒体-冷媒熱交換器51で加熱された水を貯えておくものである。
 まず、貯湯タンク32に蓄えられている比較的低温な水は、水循環用ポンプ31によって貯湯タンク32の底部から引き出されるとともに加圧される。水循環用ポンプ31で加圧された水は、熱媒体-冷媒熱交換器51に流入し、この熱媒体-冷媒熱交換器51で給湯用冷凍サイクル2を循環している給湯用冷媒から受熱する。すなわち、熱媒体-冷媒熱交換器51に流入した水は、給湯用冷凍サイクル2を循環している給湯用冷媒によって沸き上げられて、温度が上昇するのである。そして、沸き上げられた水は、貯湯タンク32の比較的高温な上部へ戻り、この貯湯タンク32に蓄えられることになる。
 なお、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、上述したように、それぞれ独立した冷媒回路構成(空調用冷凍サイクル1を構成する第1冷媒回路及び給湯用冷凍サイクル2を構成する第2冷媒回路)になっているため、各冷媒回路を循環させる冷媒を同じ種類のものとしてもよいし、別の種類のものとしてもよい。つまり、各冷媒回路の冷媒は、それぞれ混ざることなく冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51にて互いに熱交換するように流れている。
 また、給湯用冷媒として臨界温度の低い冷媒を用いた場合、高温の給湯を行なう際に熱媒体-冷媒熱交換器51における放熱過程での給湯用冷媒が超臨界状態となることが想定される。しかしながら、一般に放熱過程の冷媒が超臨界状態にある場合、放熱器圧力や放熱器出口温度の変化によるCOPの変動が大きく、高いCOPを得る運転を行なうためには、より高度な制御が要求される。一方、一般に、臨界温度の低い冷媒は、同一温度に対する飽和圧力が高く、その分、配管や圧縮機の肉厚を大きくする必要があるので、コスト増の要因ともなる。
 さらに、レジオネラ菌等の繁殖を抑えるための貯湯タンク32内に蓄えられる水の推奨温度が60℃以上であることを鑑みると、給湯の目標温度が最低でも60℃以上となることが多いと想定される。以上のことを踏まえ、給湯用冷媒には、最低でも60℃以上の臨界温度を持つ冷媒を採用している。このような冷媒を給湯用冷凍サイクル2の給湯用冷媒として採用すれば、より低コストで、より安定的に、高いCOPを得ることができるからである。冷媒を臨界温度付近で常用する場合、冷媒回路内が高温・高圧になることが想定されるため、給湯用圧縮機21は、高圧シェルを用いたタイプの圧縮機を使用することで、安定した運転が可能となる。
 また、空調用冷凍サイクル1において余剰冷媒を受液器(アキュムレータ104)によって貯蔵する場合を示したが、これに限るものではなく、冷凍サイクルにおいて放熱器となる熱交換器にて貯蔵するようにすれば、アキュムレータ104を取り除いてもよい。さらに、図1では、冷房室内機Bと暖房室内機Cとが2台以上接続されている場合を例に示しているが、接続台数を特に限定するものではなく、たとえば冷房室内機Bが1台以上、暖房室内機Cがないか若しくは1台以上を接続されていればよい。そして、空調用冷凍サイクル1を構成している各室内機の容量は、全部を同一としてもよく、大から小まで異なるようにしてもよい。
 以上のように、この実施の形態1に係る空調給湯複合システム100では、給湯負荷系統を二元サイクルで構成しているため、高温の給湯需要(たとえば、80℃)を提供する場合に、給湯用冷凍サイクル2の放熱器の温度を高温(たとえば、凝縮温度85℃)にすればよく、他に暖房負荷がある場合に、暖房室内機Cの凝縮温度(たとえば、50℃)までも増加させずに済むので、省エネとなる。また、たとえば夏期の空調冷房運転中に高温の給湯需要があった場合、従来はボイラーなどによって提供する必要があったが、従来大気中に排出していた温熱を回収し、再利用して給湯を行なうので、システムCOPが大幅に向上し、省エネとなる。
 図2は、給湯用負荷3の別の形態例を説明するための概略回路構成図である。図2に基づいて、給湯用負荷3を別の形態とし、循環する水を加熱する仕組みの一例について説明する。図2に示すように、給湯用冷凍サイクル2と給湯用負荷3との間には、給湯用水循環サイクル(給湯用熱媒体循環サイクル)4が熱媒体-冷媒熱交換器51及び水-水熱交換器(熱媒体-熱媒体熱交換器)201を介してカスケード接続されている。図1では、開回路として構成されている給湯用負荷3は、熱媒体-冷媒熱交換器51で水を直接的に加温していく場合を例に示しているが、図2では、開回路として構成されている給湯用負荷3は、給湯用冷凍サイクル2の間に給湯用水循環サイクル4を設け、水-水熱交換器201で水を間接的に加温していく場合を例に示している。
[給湯用水循環サイクル4]
 給湯用水循環サイクル4は、熱媒体循環用ポンプ31aと、熱媒体-冷媒熱交換器51と、水-水熱交換器201と、によって構成されている。つまり、給湯用水循環サイクル4は、熱媒体循環用ポンプ31a、熱媒体-冷媒熱交換器51、及び、水-水熱交換器201が循環水用配管202で直列に接続されて水回路(熱媒体回路)を構成し、この熱媒体回路(水回路)に加温用熱媒体(加温用水)を循環させることで成立している。なお、水回路を構成する循環水用配管202は、銅管やステンレス管、鋼管、塩化ビニル系配管などによって構成されている。
 熱媒体循環用ポンプ31aは、循環水用配管202を導通している水(熱媒体)を吸入し、その水を加圧し、給湯用水循環サイクル4を循環させるものであり、たとえばインバータにより回転数が制御されるタイプのもので構成するとよい。熱媒体-冷媒熱交換器51は、給湯用水循環サイクル4を循環する水と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。水-水熱交換器201は、給湯用水循環サイクル4を循環する水と、給湯用負荷3を循環する水との、間で熱交換を行なうものである。なお、給湯用水循環サイクル4に水を循環させた場合を例に説明するが、他の流体、たとえばブライン(不凍液)などを熱媒体として循環させてもよい。
 まず、貯湯タンク32に蓄えられている比較的低温な水は、水循環用ポンプ31によって貯湯タンク32の底部から引き出されるとともに加圧される。水循環用ポンプ31で加圧された水は、水-水熱交換器201に流入し、この水-水熱交換器201で給湯用水循環サイクル4を循環している水から受熱する。すなわち、水-水熱交換器201に流入した水は、給湯用水循環サイクル4を循環している水によって沸き上げられて、温度が上昇するのである。そして、沸き上げられた水は、貯湯タンク32の比較的高温な上部へ戻り、この貯湯タンク32に蓄えられることになる。すなわち、給湯用冷凍サイクル2からの熱は、熱媒体-冷媒熱交換器51で給湯用水循環サイクル4に、水-水熱交換器201で給湯用負荷3にそれぞれ伝達されるようになっている。
 図3は、室外熱交換器103の構造の一例を説明するための説明図である。図3に基づいて、年間を通して暖房運転をできるようにした室外熱交換器103について説明する。通常の空調用途のみに空調給湯複合システム100を用いる場合、外気湿球温度が15℃以下で暖房運転を行なうことが一般的であるが、給湯運転を行なう場合、外気温度に関係なく給湯運転を行なう必要がある。そこで、図3では、室外熱交換器103が、内部に複数の熱交換器(以下、分割熱交換器103aと称する)を有する分割構造となっている場合を例に示している。なお、室外熱交換器103は、4つ熱交換器を組み合わせた分割構造としてもよく、1つの熱交換器を4分割した分割構造としてもよい。
 図3に示すように、高圧側接続配管106を複数に分岐させて、室外熱交換器103を構成している分割熱交換器103aのそれぞれに接続するようにしている。また、分岐された高圧側接続配管106のそれぞれには、開閉制御されて冷媒を導通したりしなかったりする開閉弁である電磁弁209が設置されている。なお、複数に分岐した高圧側接続配管106の1つを分割熱交換器103aを迂回するバイパス回路300としている。そして、このバイパス回路300にも、バイパス開閉弁である電磁弁209aを設置している。つまり、空調用冷凍サイクル1を構成している室外熱交換器103は、電磁弁209及び電磁弁209aの開閉を制御することにより、流入する冷媒の量を調整でき、熱交換器容量が分割可能になっているのである。
 外気湿球温度が上昇した場合、つまり空調用圧縮機101の吸入温度が運転範囲を超えそうな場合(一般的には最高15℃)には、室外熱交換器103の熱交換器能力を低下させることが望ましい。そこで、空調給湯複合システム100では、電磁弁209の全部あるいは一部を閉制御し、室外熱交換器103に流入する冷媒を遮断し、空調用圧縮機101の運転範囲を逸脱しないようにしている。つまり、空調用圧縮機101の運転範囲に応じて、冷媒を流入させる分割熱交換器103aの個数を決定し、その個数に応じた電磁弁209を閉制御することで、冷媒の流入量を調整し、空調用圧縮機101の運転範囲を逸脱しないようにしている。
 ところが、電磁弁209を閉制御することで室外熱交換器103の熱交換器能力を低下させた場合でも、空調用圧縮機101の運転範囲を逸脱してしまう場合がある。この場合、冷媒を室外熱交換器103に流入させずに、空調用圧縮機101に戻すことが望ましい。そこで、バイパス回路300に設置してある電磁弁209aを開制御し、冷媒を室外熱交換器103に流入させずに、空調用圧縮機101の吸入側に戻すようにしているのである。こうすることで、蒸発温度の上昇を防ぎ、空調用圧縮機101の運転範囲を逸脱することなく運転することができる。
 また、バイパス回路300に設置する電磁弁209aは、室外熱交換器103を通過する際の冷媒の流量係数をCvaとした場合、バイパス回路300を導通する冷媒の流量係数をCVbとすると式Cva<CVbを満たすように選定される。さらに、熱交換器容量の分割のみで空調用圧縮機101の運転範囲を維持できない場合は、バイパス回路300に設置した電磁弁209aを開として冷媒をバイパスさせることで、運転範囲を維持する。なお、分割構造は電磁弁で行なわず、電子式膨張弁を使用し制御を行なう構造としてもよい。
 図4は、空調用圧縮機101の運転範囲を調整する際の処理の流れを示すフローチャートである。図4に基づいて、図3で説明した空調用圧縮機101の運転範囲を調整する際の処理を詳細に説明する。上述したように、通常の空調用途のみに空調給湯複合システム100を用いる場合、外気温度が比較的高い場合(たとえば、15℃以上)に暖房運転を行なう必要がなく、外気湿球温度が-20℃~15.5℃である場合に暖房運転を行なうことが一般的になっている。しかしながら、空調給湯複合システム100が給湯運転を行なう場合、外気温度に関係なく給湯運転を行なう必要がある。
 まず、空調給湯複合システム100が運転を開始すると、現在の運転モードが暖房運転であるか否かを判定する(ステップS101)。そして、運転モードが冷房運転である場合には(ステップS101;NO)、空調用圧縮機101の運転範囲が逸脱しないため、特段の制御をすることなく冷房運転を継続する。一方、運転モードが暖房運転である場合には(ステップS101;YES)、外気温度が予め設定されている所定温度A℃よりも大きいか否かを判定する(ステップS102)。そして、外気温度がA℃以下である場合(ステップS102;NO)、空調用圧縮機101の運転範囲が逸脱しないため、特段の制御をすることなく暖房運転を継続する。
 一方、外気温度がA℃よりも大きい場合(ステップS102;YES)、空調用圧縮機101に吸入される冷媒の圧力が所定温度A℃の飽和圧力以上であるか否かを判定する(ステップS103)。そして、吸入圧力がA℃の飽和圧力以下である場合(ステップS103;NO)、空調用圧縮機101の運転範囲が逸脱しないため、特段の制御をすることなく暖房運転を継続する。一方、吸入圧力がA℃の飽和圧力以上である場合(ステップS103;YES)、空調用圧縮機101の運転範囲が逸脱する可能性が高いため、室外熱交換器103の近傍に設けられているファンなどの送風手段の回転数を低下、閉状態にする電磁弁209の個数を決定するように制御する(ステップS104)。
 つまり、室外熱交換器103の熱交換器能力を低下させることで、空調用圧縮機101への吸入圧力が許容値を超えないようにして空調用圧縮機101の運転範囲を調整しているのである。それから、再度、空調用圧縮機101への吸入圧力が所定温度A℃の飽和圧力以上であるか否かを判定する(ステップS105)。そして、吸入圧力が飽和圧力以下になった場合(ステップS105;NO)、空調用圧縮機101の運転範囲が逸脱しないと判断できるので、送風手段及び電磁弁209を制御した状態で暖房運転を継続する。一方、まだ吸入圧力が飽和圧力以上である場合(ステップS105;YES)、空調用圧縮機101の運転範囲が逸脱する可能性がまだ残っているため、更に送風手段の回転数を低下、閉状態にする電磁弁209の個数を増加するように制御する(ステップS104)。
 なお、通常の運転状態において、所定温度A℃の判定基準は、使用する空調用圧縮機101によって一般的に決められる。通常の空調用圧縮機101は、吸入圧力と吐出圧力とに制限値が設けられている。また、一般的に暖房運転になった場合、室外熱交換器103が蒸発器として作用する。室外熱交換器103が蒸発器として作用している場合、空調用圧縮機101の吸入圧力は外気湿球温度から算出した飽和圧力とほぼ同様の値となる。さらに、外気温度を基準に空調用圧縮機101の運転範囲を判定しているが、室外熱交換器103近傍の送風手段が最低速で数分間回転している場合や、空調用圧縮機101が最低速で数分間回転している場合に基づいて判定してもよい。この場合に示す数分間とは、室外機制御タイミングと同等時間若しくは瞬時であるものとする。
 上記のフローチャートに基づく判定及び各機器の制御は、マイコンなどで構成される制御装置(図示省略)が実行するようになっている。この制御装置は、熱源機A又は中継機E、冷房室内機B、暖房室内機C、給湯熱源用回路Dのいずれに設けられていてもよい。また、空調用圧縮機101に吸入される冷媒の圧力を検知する圧力センサなどの低圧検出手段を空調用圧縮機101に接続している吸入側配管に設けておくとよい。さらに、室外熱交換器103を構成する分割熱交換器103aの個数、つまり室外熱交換器103の分割数を特に限定するものではない。
実施の形態2.
 図5は、本発明の実施の形態2に係る給湯用冷凍サイクル2aを説明するための説明図である。図5に基づいて、実施の形態2の特徴事項である給湯用冷凍サイクル2aについて説明する。なお、図5(a)が給湯用冷凍サイクル2aの部分拡大図を、図5(b)が比較例としての給湯用冷凍サイクル2の部分拡大図をそれぞれ示している。この給湯用冷凍サイクル2aは、給湯用圧縮機21と熱媒体-冷媒熱交換器51との間で冷媒配管45を分岐し、給湯用絞り手段22と冷媒-冷媒熱交換器41との間に接続したバイパス管45aを設け、バイパス回路310を形成している点で、給湯用冷凍サイクル2と相違している。また、バイパス管45aにはバイパス電磁弁309が設置されている。
 上述したように、熱媒体-冷媒熱交換器51は、給湯用冷凍サイクル2を循環する冷媒と、給湯用負荷3を循環する水などの熱媒体とで熱交換を行なうものである。空調給湯複合システム100で暖房運転を行っている場合、外気温度によっては、除霜運転に運転モードが変更することがある。除霜運転に運転モードが変化した場合、熱媒体―冷媒熱交換器51aに0℃以下の低圧の冷媒が流入する可能性がある。また、除霜運転に運転モードが変化した場合、実施の形態1に係る熱媒体-冷媒熱交換器51に0℃以下の低圧の冷媒が流入すると、その結果として、給湯用負荷3を循環し、熱媒体―冷媒熱交換器51で保有している水が凍結することが考えられる。
 そこで、給湯用冷凍サイクル2aにバイパス管45aを追加することで、除霜運転に運転モードが変化した場合でも、バイパス管45aに設置したバイパス電磁弁309を閉から開に制御することで、低圧の冷媒を熱媒体―冷媒熱交換器51内に流入させないようにすることができる。したがって、除霜運転実行中においても、バイパス回路310に低圧の冷媒を流入させることで、給湯用負荷3側で急激な温度変化を与えることがなく、安定した熱源を供給することができる。また、バイパス管45aで低圧の冷媒をバイパスすることで、熱媒体―冷媒熱交換器51内にて保有している水の凍結を防ぐことができ、熱媒体―冷媒熱交換器51の破損を防止できる。なお、低圧冷媒のバイパスをバイパス電磁弁309で行なわず、電子式膨張弁又は機械式膨張弁で行なうようにしてもよい。
 図6は、バイパス電磁弁309の開閉を行なう際の処理の流れを示すフローチャートである。図6に基づいて、バイパス電磁弁309の開閉を制御してバイパス管45aに冷媒を導通させる際の処理を詳細に説明する。上述したように、空調給湯複合システム100で暖房運転を行っている場合、外気温度によっては、除霜運転に運転モードが変更することがある。この場合、空調給湯複合システム100は、四方弁102を制御し、冷房運転時と同様の冷媒の流れにすることで除霜運転を実行することが可能になっている。
 まず、空調給湯複合システム100が運転を開始すると、現在の運転モードが暖房運転であるか否かを判定する(ステップS201)。そして、運転モードが冷房運転である場合には(ステップS201;NO)、除霜運転をすることがなく、バイパス管45aに冷媒を導通させる必要がないためバイパス電磁弁309を閉状態にして冷房運転を継続する。一方、運転モードが暖房運転である場合には(ステップS201;YES)、外気温度が予め設定されている所定温度A℃以下であるか否かを判定する(ステップS202)。そして、外気温度がA℃よりも大きい場合(ステップS202;NO)、除霜運転をすることがなく、バイパス管45aに冷媒を導通させる必要がないためバイパス電磁弁309を閉状態にして暖房運転を継続する。
 一方、外気温度がA℃以下である場合(ステップS202;YES)、室外熱交換器103の表面温度が所定温度以下になったかどうかで除霜運転の有無を判定する(ステップS203)。そして、除霜運転が不要である場合、つまり室外熱交換器103の表面温度が所定温度より高い場合(ステップS203;NO)、バイパス管45aに冷媒を導通させる必要がないためバイパス電磁弁309を閉状態にして暖房運転を継続する。一方、除霜運転を要する場合、つまり室外熱交換器103の表面温度が所定温度以下である場合(ステップS203;YES)、除霜運転を実行するとともに、バイパス電磁弁309を開状態に制御し、バイパス管45aに冷媒が流れるようにする(ステップS204)。
 このフローチャートに基づく判定及び各機器の制御は、図4と同様に制御装置が実行するようになっている。また、室外熱交換器103の表面の温度を検知する温度センサなどの温度検出手段を室外熱交換器103の表面や近傍に設けておくとよい。なお、除霜運転に入った場合のみにバイパス電磁弁309を開状態にするものではない。たとえば、冷媒の流れ方向が反転する場合、たとえば暖房運転から冷房運転に切り替わった場合にも、熱媒体-冷媒熱交換器51に低温の冷媒が流入することになるため、バイパス電磁弁309を開状態にしてバイパス管45aに冷媒を流入させるようにしてもよい。ただし、この場合、バイパス管45a回路で急激に冷媒の変化が起こらないように冷媒流量を調節した後に運転を開始するとよい。
実施の形態3.
 図7は、本発明の実施の形態3に係る貯湯水循環用配管203aを説明するための説明図である。図8は、トラップ210の高さを説明するための概略図である。図7及び図8に基づいて、実施の形態3の特徴事項である貯湯水循環用配管203aについて説明する。なお、図7(a)が貯湯水循環用配管203aの部分拡大図を、図7(b)が比較例としての貯湯水循環用配管203の部分拡大図をそれぞれ示している。この貯湯水循環用配管203aは、トラップ210を形成するように設けられている点で、貯湯水循環用配管203と相違している。
 実施の形態1及び実施の形態2に係る貯湯水循環用配管203を施工する際、図7(b)に示すように熱媒体-冷媒熱交換器51の水側入出口に直接配管を接続するのが一般的である。その結果、流体を矢印方向に流した場合、熱媒体-冷媒熱交換器51の上部に空気層が滞留することになる。熱媒体-冷媒熱交換器51の上部に空気層が滞留すると、その部分にスケールが付着し、熱媒体-冷媒熱交換器51の寿命が短くなってしまう可能性が高くなる。
 そこで、給湯用負荷3を構成する貯湯水循環用配管203aにトラップ210を形成し、熱媒体-冷媒熱交換器51の上部に空気層を滞留させないようにしている。このトラップ210は、熱媒体-冷媒熱交換器51の出口側における貯湯水循環用配管203aの一部を、熱媒体-冷媒熱交換器51の入口側における貯湯水循環用配管203aよりもAmm分高くすることで形成されている。このように、貯湯水循環用配管203aにトラップ210を形成すれば、トラップ210に空気層を滞留させることができ、熱媒体-冷媒熱交換器51の上部に空気層が滞留しなくなる。
 その結果、硬度分が多く含まれた環境で使用されたような場合、空気が熱媒体-冷媒熱交換器51内に滞留することを事前に防止し、スケールの付着を防止し、熱媒体-冷媒熱交換器51の寿命の延長を測ることができる。また、トラップ210内に滞留した空気は、水循環用ポンプ31の流量を最大にすることで、外部へ吐き出すことが可能となり、配管施工時に一度に吐き出すようにすれば、トラップ210内に空気が滞留することもなくなり、貯湯水循環用配管203a内にスケールが付着することもない。
 また、トラップ210の形成部分に空気抜き弁などを設け、トラップ210内に滞留した空気を抜くような構造としてもよい。なお、図8に示すように、トラップ210の高さをA(mm)、熱媒体-冷媒熱交換器の高さをB(mm)とした場合、トラップ210の高さAは、0mm以上でかつ熱媒体-冷媒熱交換器51の高さB以下とする。ただし、トラップ210の高さAを考慮して水循環用ポンプ31を選定する場合であれば、トラップ210の高さAを特に制限するものではない。

Claims (5)

  1.  空調用圧縮機、流路切替手段、室外熱交換器、室内熱交換器、及び、空調用絞り手段が直列に接続されているとともに、冷媒-冷媒熱交換器及び給湯熱源用絞り手段が直列に接続されて前記室内熱交換器及び前記空調用絞り手段に並列に接続されている第1冷媒回路を備え、前記第1冷媒回路に空調用冷媒を循環させる空調用冷凍サイクルと、
     給湯用圧縮機、熱媒体-冷媒熱交換器、給湯用絞り手段、及び、前記冷媒-冷媒熱交換器が直列に接続されている第2冷媒回路を備え、前記第2冷媒回路に給湯用冷媒を循環させる給湯用冷凍サイクルと、
     水循環用ポンプ、前記熱媒体-冷媒熱交換器、及び、貯湯タンクが直列に接続されている水回路を備え、前記水回路に給湯用水を循環させる給湯用負荷と、
    を備え、
     前記空調用冷凍サイクルと前記給湯用冷凍サイクルとは、前記冷媒-冷媒熱交換器で、前記空調用冷媒と前記給湯用冷媒とが熱交換を行なうようにカスケード接続され、
     前記給湯用冷凍サイクルと前記給湯用負荷とは、前記熱媒体-冷媒熱交換器で、前記給湯用冷媒と前記水とが熱交換を行なうようにカスケード接続されており、
     前記熱媒体-冷媒熱交換器に接続している冷媒配管の出入口間に、前記熱媒体-冷媒熱交換器と並列にバイパス電磁弁を設置したバイパス管を設け、
     前記バイパス電磁弁の開閉で前記バイパス管に前記給湯用冷媒を流入させることで、前記熱媒体-冷媒熱交換器への前記給湯用冷媒の流入量を制御する
     ことを特徴とする空調給湯複合システム。
  2.  前記室外熱交換器の表面温度が除霜運転を行なうように設定してある温度以下のとき、
     前記バイパス電磁弁を開状態にし、前記バイパス管に前記給湯用冷媒を流入させる
     ことを特徴とする請求項1に記載の空調給湯複合システム。
  3.  前記給湯用冷凍サイクルと前記給湯用負荷との間に、熱媒体循環用ポンプ、前記熱媒体-冷媒熱交換器、及び、熱媒体-熱媒体熱交換器が直列に接続されている熱媒体回路を備え、前記熱媒体回路に加温用熱媒体を循環させる給湯用熱媒体循環サイクルを設け、
     前記給湯用冷凍サイクルと前記給湯用熱媒体循環サイクルとは、前記熱媒体-冷媒熱交換器で、前記給湯用冷媒と前記熱媒体とが熱交換を行なうようにカスケード接続され、
     前記給湯用熱媒体循環サイクルと前記給湯用負荷とは、前記熱媒体-熱媒体熱交換器で、前記熱媒体と前記水とが熱交換を行なうようにカスケード接続される
     ことを特徴とする請求項1又は2に記載の空調給湯複合システム。
  4.  前記給湯用水を導通している貯湯水循環用配管には、
     前記熱媒体-冷媒熱交換器の出口側の一部を前記熱媒体-冷媒熱交換器の入口側よりも高い位置に配管したトラップが形成されている
     ことを特徴とする請求項1~3のいずれかに記載の空調給湯複合システム。
  5.  前記給湯用冷媒には、臨界温度が60℃以上の冷媒を採用している
     ことを特徴とする請求項1~4のいずれかに記載の空調給湯複合システム。
     
PCT/JP2008/056287 2008-03-31 2008-03-31 空調給湯複合システム WO2009122477A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08739401.1A EP2275757B1 (en) 2008-03-31 2008-03-31 Air-conditioning and hot water complex system
US12/811,641 US8991202B2 (en) 2008-03-31 2008-03-31 Air-conditioning hot-water supply complex system
PCT/JP2008/056287 WO2009122477A1 (ja) 2008-03-31 2008-03-31 空調給湯複合システム
JP2010505139A JP5121922B2 (ja) 2008-03-31 2008-03-31 空調給湯複合システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056287 WO2009122477A1 (ja) 2008-03-31 2008-03-31 空調給湯複合システム

Publications (1)

Publication Number Publication Date
WO2009122477A1 true WO2009122477A1 (ja) 2009-10-08

Family

ID=41134898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056287 WO2009122477A1 (ja) 2008-03-31 2008-03-31 空調給湯複合システム

Country Status (4)

Country Link
US (1) US8991202B2 (ja)
EP (1) EP2275757B1 (ja)
JP (1) JP5121922B2 (ja)
WO (1) WO2009122477A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061792A1 (ja) * 2009-11-18 2011-05-26 三菱電機株式会社 冷凍サイクル装置及びそれに適用される情報伝達方法
WO2011099054A1 (ja) * 2010-02-10 2011-08-18 三菱電機株式会社 空気調和装置
EP2381180A2 (en) * 2010-04-23 2011-10-26 LG Electronics, Inc. Heat pump type hot water supply apparatus
US20130061622A1 (en) * 2010-06-18 2013-03-14 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus
WO2014049673A1 (ja) * 2012-09-25 2014-04-03 三菱電機株式会社 空調給湯複合システム
US20140138064A1 (en) * 2012-11-19 2014-05-22 Seokhoon Jang Air conditioner and method of controlling an air conditioner
WO2014091548A1 (ja) 2012-12-11 2014-06-19 三菱電機株式会社 空調給湯複合システム
EP2527751A4 (en) * 2010-01-19 2018-03-14 Mitsubishi Electric Corporation Air conditioning-hot water supply combined system
JP2020020482A (ja) * 2018-07-30 2020-02-06 ダイハツ工業株式会社 車両の空調装置
CN113587524A (zh) * 2021-07-15 2021-11-02 珠海格力电器股份有限公司 一种冷水机组旁通调节控制方法、系统及冷水机组

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9470149B2 (en) * 2008-12-11 2016-10-18 General Electric Company Turbine inlet air heat pump-type system
KR101608538B1 (ko) * 2009-12-31 2016-04-01 엘지전자 주식회사 냉매사이클 연동 물 순환 시스템
EP2559953B1 (en) * 2010-04-15 2016-09-28 Mitsubishi Electric Corporation Hot water supply system and method for operating the system
KR101212698B1 (ko) 2010-11-01 2013-03-13 엘지전자 주식회사 히트 펌프식 급탕장치
KR101203579B1 (ko) * 2010-11-05 2012-11-21 엘지전자 주식회사 공조 겸용 급탕 장치 및 그 운전방법
CN103229006B (zh) 2010-12-22 2015-11-25 三菱电机株式会社 供热水空调复合装置
CN102003736B (zh) * 2010-12-22 2012-11-21 哈尔滨工业大学 供热负荷分阶段质量调节方法
KR20120125857A (ko) * 2011-05-09 2012-11-19 엘지전자 주식회사 이원냉동사이클을 갖는 축열장치 및 그 운전방법
KR101454756B1 (ko) * 2011-05-09 2014-10-27 한국전력공사 이원냉동사이클을 갖는 축열장치 및 그 운전방법
WO2013046269A1 (ja) * 2011-09-29 2013-04-04 三菱電機株式会社 空調給湯複合システム
JP5494770B2 (ja) * 2012-09-25 2014-05-21 三菱電機株式会社 ヒートポンプ給湯機
JP5759080B2 (ja) * 2012-10-01 2015-08-05 三菱電機株式会社 空気調和装置
EP2908070B1 (en) * 2012-10-10 2020-08-05 Mitsubishi Electric Corporation Air conditioning device
US10006670B2 (en) * 2013-05-02 2018-06-26 Carrier Corporation Method for managing a refrigerant charge in a multi-purpose HVAC system
US20150040841A1 (en) * 2013-08-06 2015-02-12 Carrier Corporation System and method for improving a water heating cycle in a multi-purpose hvac system
AU2014391505B2 (en) * 2014-04-22 2018-11-22 Mitsubishi Electric Corporation Air conditioner
FI127027B (fi) * 2014-10-15 2017-09-29 Mika Manner Menetelmä ja järjestely käyttöveden lämmittämiseksi
KR20160055583A (ko) * 2014-11-10 2016-05-18 삼성전자주식회사 히트 펌프
CN107990586B (zh) * 2017-12-28 2023-06-09 福建工程学院 一种多联式同时制冷制热空调系统及其控制方法
KR20200114031A (ko) * 2019-03-27 2020-10-07 엘지전자 주식회사 공기조화 장치
CN110030774A (zh) * 2019-04-22 2019-07-19 珠海格力电器股份有限公司 换热系统及空调热水机组
KR20220117772A (ko) * 2021-02-17 2022-08-24 (주)윤진환경 제어형 난분해성 고농도 공정수 동결분리 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277181A (ja) * 1988-04-28 1989-11-07 M T Akua:Kk 冷房給湯装置,暖房給湯装置及び冷暖給湯装置
JPH04263758A (ja) 1991-02-18 1992-09-18 Kansai Electric Power Co Inc:The ヒートポンプ式給湯装置
JPH0630673U (ja) * 1992-09-22 1994-04-22 石川島播磨重工業株式会社 ガストラップ差圧設定装置
JPH08261599A (ja) * 1995-03-24 1996-10-11 Kyushu Electric Power Co Inc 空気調和装置
JPH11270920A (ja) 1998-03-20 1999-10-05 Mitsubishi Electric Corp 多機能ヒートポンプシステムおよびその運転制御方法
JP2004132647A (ja) * 2002-10-11 2004-04-30 Daikin Ind Ltd 給湯装置、空調給湯システム、及び給湯システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697598A (en) * 1968-08-20 1972-10-10 Mo Och Ab Continuous process for preparing monoalkanolamines from ammonia and alkylene oxides
US5694780A (en) * 1995-12-01 1997-12-09 Alsenz; Richard H. Condensed liquid pump for compressor body cooling
JP2004293857A (ja) * 2003-03-26 2004-10-21 Matsushita Electric Ind Co Ltd ヒートポンプ装置
JP2007003169A (ja) * 2005-06-22 2007-01-11 Noriyuki Yamauchi 二酸化炭素を冷媒に使用する冷凍・給湯・暖房装置およびそれに用いる凝縮システム
KR100823655B1 (ko) * 2006-09-01 2008-04-18 주식회사 창조이십일 통신장비용 냉방장치 및 그 제어방법
JP4738293B2 (ja) 2006-09-13 2011-08-03 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ給湯機
JP4492634B2 (ja) 2007-04-06 2010-06-30 パナソニック株式会社 ヒートポンプシステム
EP1978317B1 (en) * 2007-04-06 2017-09-06 Samsung Electronics Co., Ltd. Refrigerant cycle device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277181A (ja) * 1988-04-28 1989-11-07 M T Akua:Kk 冷房給湯装置,暖房給湯装置及び冷暖給湯装置
JPH04263758A (ja) 1991-02-18 1992-09-18 Kansai Electric Power Co Inc:The ヒートポンプ式給湯装置
JPH0630673U (ja) * 1992-09-22 1994-04-22 石川島播磨重工業株式会社 ガストラップ差圧設定装置
JPH08261599A (ja) * 1995-03-24 1996-10-11 Kyushu Electric Power Co Inc 空気調和装置
JPH11270920A (ja) 1998-03-20 1999-10-05 Mitsubishi Electric Corp 多機能ヒートポンプシステムおよびその運転制御方法
JP2004132647A (ja) * 2002-10-11 2004-04-30 Daikin Ind Ltd 給湯装置、空調給湯システム、及び給湯システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2275757A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642085B2 (ja) * 2009-11-18 2014-12-17 三菱電機株式会社 冷凍サイクル装置及びそれに適用される情報伝達方法
WO2011061792A1 (ja) * 2009-11-18 2011-05-26 三菱電機株式会社 冷凍サイクル装置及びそれに適用される情報伝達方法
CN102695929B (zh) * 2009-11-18 2014-07-30 三菱电机株式会社 冷冻循环装置及适用于该冷冻循环装置的信息传递方法
CN102695929A (zh) * 2009-11-18 2012-09-26 三菱电机株式会社 冷冻循环装置及适用于该冷冻循环装置的信息传递方法
JPWO2011061792A1 (ja) * 2009-11-18 2013-04-04 三菱電機株式会社 冷凍サイクル装置及びそれに適用される情報伝達方法
EP2527751A4 (en) * 2010-01-19 2018-03-14 Mitsubishi Electric Corporation Air conditioning-hot water supply combined system
US9353958B2 (en) 2010-02-10 2016-05-31 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2011099054A1 (ja) * 2010-02-10 2011-08-18 三菱電機株式会社 空気調和装置
EP2381180A3 (en) * 2010-04-23 2015-04-15 LG Electronics, Inc. Heat pump type hot water supply apparatus
EP2381180A2 (en) * 2010-04-23 2011-10-26 LG Electronics, Inc. Heat pump type hot water supply apparatus
US20130061622A1 (en) * 2010-06-18 2013-03-14 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus
JP5893151B2 (ja) * 2012-09-25 2016-03-23 三菱電機株式会社 空調給湯複合システム
JPWO2014049673A1 (ja) * 2012-09-25 2016-08-18 三菱電機株式会社 空調給湯複合システム
WO2014049673A1 (ja) * 2012-09-25 2014-04-03 三菱電機株式会社 空調給湯複合システム
US20140138064A1 (en) * 2012-11-19 2014-05-22 Seokhoon Jang Air conditioner and method of controlling an air conditioner
US9631826B2 (en) 2012-12-11 2017-04-25 Mistubishi Electric Corporation Combined air-conditioning and hot-water supply system
WO2014091548A1 (ja) 2012-12-11 2014-06-19 三菱電機株式会社 空調給湯複合システム
JP2020020482A (ja) * 2018-07-30 2020-02-06 ダイハツ工業株式会社 車両の空調装置
JP6997048B2 (ja) 2018-07-30 2022-01-17 ダイハツ工業株式会社 車両の空調装置
CN113587524A (zh) * 2021-07-15 2021-11-02 珠海格力电器股份有限公司 一种冷水机组旁通调节控制方法、系统及冷水机组

Also Published As

Publication number Publication date
EP2275757A4 (en) 2015-05-27
EP2275757B1 (en) 2018-02-28
US20100282435A1 (en) 2010-11-11
JPWO2009122477A1 (ja) 2011-07-28
US8991202B2 (en) 2015-03-31
EP2275757A1 (en) 2011-01-19
JP5121922B2 (ja) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5084903B2 (ja) 空調給湯複合システム
JP5121922B2 (ja) 空調給湯複合システム
JP5518101B2 (ja) 空調給湯複合システム
EP2131122B1 (en) Heat pump device
JP5042262B2 (ja) 空調給湯複合システム
US9003817B2 (en) Air-conditioning hot-water supply system, and heat pump unit
WO2009098751A1 (ja) 空調給湯複合システム
CN103229006B (zh) 供热水空调复合装置
JP5642085B2 (ja) 冷凍サイクル装置及びそれに適用される情報伝達方法
JP5264936B2 (ja) 空調給湯複合システム
EP2584285B1 (en) Refrigerating air-conditioning device
JP2015117902A (ja) 冷凍サイクル装置
JP2020051730A (ja) 空調システム
KR100643689B1 (ko) 히트 펌프 공기조화기
JPH10122605A (ja) 蓄熱式空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010505139

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12811641

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008739401

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE