WO2013046269A1 - 空調給湯複合システム - Google Patents

空調給湯複合システム Download PDF

Info

Publication number
WO2013046269A1
WO2013046269A1 PCT/JP2011/005499 JP2011005499W WO2013046269A1 WO 2013046269 A1 WO2013046269 A1 WO 2013046269A1 JP 2011005499 W JP2011005499 W JP 2011005499W WO 2013046269 A1 WO2013046269 A1 WO 2013046269A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
water supply
hot water
refrigerant
indoor
Prior art date
Application number
PCT/JP2011/005499
Other languages
English (en)
French (fr)
Inventor
智一 川越
博文 ▲高▼下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP11873455.7A priority Critical patent/EP2781848B1/en
Priority to PCT/JP2011/005499 priority patent/WO2013046269A1/ja
Publication of WO2013046269A1 publication Critical patent/WO2013046269A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1039Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H6/00Combined water and air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0312Pressure sensors near the indoor heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to an air conditioning and hot water supply combined system that is equipped with a heat pump cycle and can simultaneously provide an air conditioning load and a hot water supply load.
  • an air-conditioning and hot-water supply combined system that is equipped with a heat pump cycle and can simultaneously provide an air-conditioning load and a hot-water supply load has been proposed.
  • an air-conditioning and hot-water supply complex system that can simultaneously provide a cooling load, a heating load, and a hot-water supply load by cascading hot-water supply refrigerant systems having a refrigerant-refrigerant heat exchanger (see, for example, Patent Document 1).
  • the air conditioning and hot water supply combined system described in Patent Document 1 allows a hot water supply unit and an indoor unit to be multi-connected to a heat source unit by a single refrigerant system, thereby enabling simultaneous operation of an air conditioning load and a hot water supply load.
  • the indoor unit capacity and the hot water supply unit capacity are selected based on the maximum load generated by the indoor load and hot water supply load. Select a heat source unit that satisfies the total capacity of the capacity and hot water supply unit capacity.
  • the air-conditioning and hot-water supply complex system is used in different environments depending on the season in the installed environment and the air-conditioning and hot-water equipment used (for example, floor heating by hot water supply or heating by a fan coil in winter, and air conditioning in summer.
  • the air conditioning by the heat source is used
  • the load during the period when the air conditioning load and the hot water supply load are both small for example, the intermediate period between summer and winter
  • Unit capacity may be excessive, and capital investment costs may increase.
  • problems such as an increase in the size of the heat source unit due to an increase in the capacity of the heat source unit and an increase in installation space due to the installation of a plurality of refrigerant systems to satisfy the load may occur.
  • the timer scheduler is used for starting and stopping the indoor unit and hot water supply unit.
  • the present invention has been made to solve the above-described problems, and allows the indoor unit and the hot water supply unit to be connected in excess of the allowable capacity of the heat source unit under the restrictions under the usage environment of the air conditioning load and the hot water supply load.
  • it aims to provide a low-cost and space-saving air-conditioning hot-water supply system by adding a simple energy-saving control function.
  • An air conditioning and hot water supply complex system includes at least one heat source unit on which a compressor and a heat exchanger are mounted, at least one indoor unit on which an indoor heat exchanger and an indoor expansion device are mounted, And at least one hot water supply unit on which a refrigerant-water heat exchanger and a hot water supply side throttle device are mounted, and a branch unit that connects the indoor unit and the hot water supply unit in parallel to the heat source unit.
  • the hot water supply unit for which there has been an operation permission request is added when there is an operation permission request from at least one of the hot water supply units in a state where the indoor unit and at least one hot water supply unit are operating.
  • the predetermined condition is satisfied until the operation capacity is within the allowable operation capacity of the heat source unit.
  • the indoor unit during operation plus stopped, is to distribute the capacity of the heat source unit to the hot water supply unit for which the add request.
  • the indoor unit and the hot water supply unit can be connected in excess of the allowable capacity of the heat source unit under the restrictions of the usage environment of the air conditioning load and the hot water supply load, and simple energy saving is possible.
  • the cost can be reduced and the space can be saved.
  • FIG. 1 is a circuit diagram schematically showing a refrigerant circuit configuration of an air conditioning and hot water supply complex system 100 according to an embodiment of the present invention. Based on FIG. 1, the structure of the air-conditioning hot-water supply complex system 100 is demonstrated. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
  • the air conditioning and hot water supply complex system 100 is installed in a building, condominium, hotel, etc., and can simultaneously supply a cooling load, a heating load, and a hot water supply load by using a refrigeration cycle (heat pump) that circulates refrigerant.
  • the air conditioning and hot water supply complex system 100 is configured by connecting a heat source unit 110, a branch unit 120, an indoor unit 130, and a hot water supply unit 140. Among these, the indoor unit 130 and the hot water supply unit 140 are connected in parallel to the heat source unit 110.
  • the heat source unit 110 and the branch unit 120 are connected by two refrigerant pipes (a high pressure main pipe 151 and a low pressure main pipe 152).
  • the branch unit 120 and the indoor unit 130 are connected by two refrigerant pipes (a liquid refrigerant pipe 153 and a gas refrigerant pipe 154).
  • the branch unit 120 and the hot water supply unit 140 are also connected by two refrigerant pipes (liquid refrigerant pipe 153 and gas refrigerant pipe 154).
  • the heat source unit 110 communicates with the indoor unit 130 and the hot water supply unit 140 via the branch unit 120.
  • a water circuit 155 is connected to the hot water supply unit 140 so that water is supplied.
  • a water pipe is connected to the water circuit 155.
  • FIG. 1 shows an example in which two indoor units 130 are connected, and suffixes “a” and “b” are attached to the reference numerals to distinguish them. Further, the subscript “a” is assigned to each component corresponding to the indoor unit 130a, and the subscript “b” is also added to each component corresponding to the indoor unit 130b. Further, in order to distinguish from the indoor unit 130, the subscript “c” is attached to each part of the component corresponding to the hot water supply unit 140. Unless otherwise specified, all of “a”, “b”, and “c” are referred to.
  • liquid refrigerant pipe 153 is branched (three branches here) corresponding to the number of indoor units 130 connected to the branch unit 120 and the number of hot water supply units 140.
  • the branched liquid refrigerant pipe 153 is referred to as a liquid branch pipe 153a, a liquid branch pipe 153b, and a liquid branch pipe 153c.
  • the gas refrigerant pipe 154 is branched (three branches here) corresponding to the number of indoor units 130 connected to the branch unit 120 and the number of hot water supply units 140.
  • the branched gas refrigerant pipes 154 are referred to as a gas branch pipe 154a, a gas branch pipe 154b, and a gas branch pipe 154c.
  • the liquid branch pipe 153a and the gas branch pipe 154a are connected to the indoor unit 130a, the liquid branch pipe 153b and the gas branch pipe 154b are connected to the indoor unit 130b, and the liquid branch pipe 153c and the gas branch pipe 154c are connected to the hot water supply unit 140, respectively. .
  • the heat source unit 110 has a function of supplying hot or cold heat to the indoor unit 130 and the hot water supply unit 140 via the branch unit 120.
  • the heat source unit 110 is mainly composed of a compressor 111, a switching valve 112, a heat exchanger 114, and an accumulator (reservoir container) 116, and the circuit shown in FIG. Yes.
  • selection of refrigerant circuit components used in the unit and a refrigerant circuit may be configured.
  • the compressor 111 is not particularly limited as long as it sucks the refrigerant and compresses the refrigerant to bring it into a high temperature / high pressure state.
  • the compressor 111 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the compressor 111 may be of a type that can be variably controlled by an inverter.
  • the switching valve 112 is composed of, for example, a four-way valve or the like, and switches the flow of the refrigerant according to a required operation mode.
  • the heat exchanger 114 has a role of radiating or absorbing heat mainly from a heat source (for example, air, water, brine).
  • the type of the heat exchanger 114 may be selected according to the heat source to be used. If the air is a heat source, it is composed of a pneumatic heat exchanger, and if water or brine is a heat source, it is constituted by a water heat exchanger. do it.
  • a blower 115 may be provided around the heat exchanger 114.
  • the accumulator 116 only needs to be able to store excess refrigerant.
  • the heat source unit 110 is provided with four check valves 113 (check valve 113a to check valve 113d).
  • the check valve 113 a is provided in the low-pressure main pipe 152 between the switching valve 112 and the branch unit 120, and allows the refrigerant to flow only in the direction from the branch unit 120 to the heat source unit 110.
  • the check valve 113d is provided in the high-pressure main pipe 151 between the heat exchanger 114 and the branch unit 120, and allows the refrigerant to flow only in the direction from the heat source unit 110 to the branch unit 120.
  • the high-pressure main pipe 151 and the low-pressure main pipe 152 are the first connection pipe 10 that connects the upstream side of the check valve 113d and the upstream side of the check valve 113a, the downstream side of the check valve 113d, and the downstream side of the check valve 113a. And a second connection pipe 11 for connecting the two.
  • the first connection pipe 10 is provided with a check valve 113 b that allows the refrigerant to flow only in the direction from the low pressure main pipe 152 to the high pressure main pipe 151.
  • the second connection pipe 11 is provided with a check valve 113 c that allows the refrigerant to flow only in the direction from the low pressure main pipe 152 to the high pressure main pipe 151.
  • the first connection pipe 10 By providing the first connection pipe 10, the second connection pipe 11, the check valve 113a, the check valve 113b, the check valve 113c, and the check valve 113d, a branch is made regardless of the operation required by the indoor unit 130.
  • the flow of the refrigerant flowing into the unit 120 can be in a certain direction. These are not essential.
  • the branch unit 120 has a function of supplying the hot or cold supplied from the heat source unit 110 to the indoor unit 130 and the hot water supply unit 140.
  • the branch unit 120 mainly includes a gas-liquid separator 121, a flow path switching valve 124, a throttle device 122, and a throttle device 123.
  • the flow path switching valve 124 is provided in a number corresponding to the number of indoor units 130 connected to the branch unit 120 and the number of hot water supply units 140 connected to the branch unit 120 (three in this case). It has been.
  • the flow path switching valve 124 switches the flow of refrigerant supplied to the indoor unit 130 and the hot water supply unit 140.
  • each load side unit (the indoor unit 130 and the hot water supply unit 140) connected to the branch unit 120 simultaneously performs cooling (cooling) and heating (hot water supply). It is possible to execute.
  • the flow path switching valve 124 is composed of a three-way valve or the like, one connected to the low pressure main pipe 152, the other connected to the gas-liquid separator 121, and the other connected to the indoor side heat exchanger 132, hot water supply of the indoor unit 130.
  • the unit 140 is connected to the refrigerant-water heat exchanger 142.
  • the gas-liquid separator 121 is connected to the high-pressure main pipe 151 and connected to each of the inflow and outflow sides of the indoor unit 130.
  • the gas-liquid separator 121 has a function of separating the inflowing refrigerant into a gas refrigerant and a liquid refrigerant.
  • the gas-liquid separator 121 is mounted when the refrigerant pipe between the heat source unit 110 and the branch unit 120 is a two-pipe type.
  • FIG. 1 an air conditioning and hot water supply complex system 100 in which a plurality of indoor units 130 and one hot water supply unit 140 are connected to one branch unit 120 is illustrated as an example.
  • the refrigerant piping between the unit 120 is a three-pipe type, a configuration may be adopted in which one branch unit 120 is connected to one load-side unit.
  • the expansion device 122 is provided between the gas-liquid separator 121, the indoor expansion device 131, and the hot water supply expansion device 141, and expands the refrigerant by decompressing it.
  • the expansion device 123 is provided in a connecting pipe connecting the low pressure main pipe 152 and the piping between the expansion device 122 and the indoor side expansion device 131 and the hot water supply side expansion device 141, and expands the refrigerant by reducing the pressure. is there.
  • the throttling device 122 and throttling device 123 may be configured by a device whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the indoor unit 130 has a function of receiving heating or cooling supply from the heat source unit 110 and taking charge of heating load or refrigerant load.
  • the indoor unit 130 is mainly composed of an indoor expansion device 131 and an indoor heat exchanger (load-side heat exchanger) 132, which are mounted in series. Note that FIG. 1 shows an example in which two indoor units 130a and 130b are connected in parallel, but the number of units is not particularly limited, and three or more indoor units 130 are the same. You may make it connect to.
  • the indoor unit 130 may be provided with an indoor fan 133 such as a fan for supplying air to the indoor heat exchanger 132 in the vicinity of the indoor heat exchanger 132.
  • the indoor throttle device 131 has a function as a pressure reducing valve or an expansion valve, and expands the refrigerant by reducing the pressure.
  • the indoor-side throttling device 131 may be constituted by a device whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate adjustment means such as a capillary tube, or the like.
  • the indoor heat exchanger 132 functions as a radiator (condenser) during the heating cycle and as an evaporator during the cooling cycle, and performs heat exchange between the air supplied from the indoor blower 133 and the refrigerant to condense the refrigerant. It is liquefied or vaporized.
  • the indoor unit 130 is provided with a temperature detection element 134.
  • the temperature detection element 134 detects the load at the installation location, and is constituted by, for example, a thermistor.
  • the installation location and type of the temperature detection element 134 are not particularly limited, and the installation location and type may be selected according to the characteristics of the indoor unit 130 and the load to be detected.
  • the hot water supply unit 140 has a function of supplying hot or cold heat from the heat source unit 110 to the water circuit via the refrigerant-water heat exchanger 142.
  • the hot water supply unit 140 is mainly configured by a hot water supply side expansion device 141 and a refrigerant-water heat exchanger 142, which are mounted in series.
  • FIG. 1 the state in which one hot water supply unit 140 is connected is shown as an example, but the number of units is not particularly limited.
  • the hot water supply side expansion device 141 has the same function as the indoor side expansion device 131.
  • an independent refrigerant circuit (at least a refrigerant-refrigerant heat exchanger, a compressor, a refrigerant-water heat exchanger 142, an expansion valve) is provided between the heat source unit 110 and the hot water supply unit 140.
  • a refrigerant circuit in which pipes are connected) may be provided to constitute a two-way cycle.
  • heat of the air conditioning and hot water supply combined system 100 may be transferred from the refrigerant-refrigerant heat exchanger, and high-temperature water for high-temperature hot water may be generated via the refrigerant-water heat exchanger 142.
  • the heat of the air conditioning and hot water supply combined system 100 is transferred from the refrigerant-refrigerant heat exchanger described above, and the heat is transferred to the high temperature side. A high water temperature that cannot be discharged at a refrigerant temperature of 100 can be discharged.
  • the refrigerant-water heat exchanger 142 performs heat exchange between water flowing through the water circuit 155 and refrigerant flowing through the refrigerant pipe.
  • the water heated or cooled by the refrigerant-water heat exchanger 142 is used for hot water supply or cold water.
  • the water circuit 155 includes a pump (not shown) that circulates water in the water circuit 155, a hot water storage tank that stores water heated or cooled by the refrigerant-water heat exchanger 142, and the like. That is, the water circuit 155 is established by circulating water heated or cooled by the refrigerant-water heat exchanger 142.
  • the hot water supply unit 140 is provided with a temperature detection element 143 and a temperature detection element 144.
  • the temperature detection element 143 and the temperature detection element 144 are for detecting the load at the installation location, and are constituted by, for example, a thermistor.
  • the installation location and type of the temperature detection element 143 and the temperature detection element 144 are not particularly limited, and the installation location and type may be selected according to the characteristics of the indoor unit 130 and the load to be detected.
  • the water pipe connected to the water circuit 155 may be constituted by a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like. Further, although water has been described as an example of the heat medium for circulating the water circuit 155, not only water but also antifreeze (brine) or the like may be circulated.
  • the air conditioning and hot water supply complex system 100 has a system configuration in which the heat source unit 110 is connected to the indoor unit 130 and the hot water supply unit 140 via the branch unit 120.
  • the air conditioning and hot water supply complex system 100 is provided with a control unit 200 that performs overall control of the entire air conditioning and hot water supply complex system 100.
  • This control means 200 controls the drive frequency of the compressor 111, the rotation speed of the blower (blower 115, indoor blower 133), switching of the switching valve 112, opening of each throttle means, switching of the flow path switching valve 124, and the like. To do. That is, the control means 200 is based on the detection information from various detection elements (not shown) and instructions from the remote controller, based on the actuators (the compressor 111, the switching valve 112, the blower 115, the indoor expansion device 131, the hot water supply expansion device). 141, etc.). The control means 200 will be described in detail with reference to FIG.
  • FIG. 1 an example of the case where the air-conditioning and hot water supply combined system 100 is a two-tube type cooling and heating simultaneous type in which the heat source unit 110, the indoor unit 130, and the hot water supply unit 140 are connected via the branch unit 120 with two refrigerant pipes.
  • the present invention is not limited to this, and the air conditioning and hot water supply combined system 100 may be configured by a three-tube type cooling / heating simultaneous type or cooling / heating switching type connected by three refrigerant pipes.
  • FIG. 2 is a control block diagram showing an electrical configuration of the air conditioning and hot water supply complex system 100. Based on FIG. 2, the control means 200 mounted in the air conditioning and hot water supply complex system 100 will be described in detail.
  • the air conditioning and hot water supply complex system 100 includes the control means 200.
  • the control means 200 is configured by a microcomputer, a DSP, or the like, and has a function of controlling the entire system of the air conditioning and hot water supply complex system 100.
  • the control means 200 includes a heat source unit control means 210, a branch unit control means 220, an indoor unit control means 230, and a hot water supply unit control means 240.
  • control means corresponding to each unit may be given, and each unit may be independent distributed cooperative control in which control is independently performed, and any one unit has all control means,
  • the unit having the control means may give a control command to another unit using communication or the like.
  • the heat source unit 110 includes the heat source unit control means 210
  • the branch unit 120 includes the branch unit control means 220
  • the indoor unit 130 includes the indoor unit control means 230
  • the hot water supply unit 140 includes the hot water supply unit control means 240.
  • each unit can control independently.
  • Each control means can transmit information by wireless or wired communication means.
  • the heat source unit control means 210 has a function of controlling the refrigerant pressure state and the refrigerant temperature state in the heat source unit 110.
  • the heat source unit control unit 210 includes a heat source unit capacity information output unit 211, a pressure sensor / temperature sensor information storage unit 212, an arithmetic processing circuit 213, and an actuator control signal output unit 214.
  • the heat source unit control means 210 stores the information obtained by the pressure sensor / temperature sensor as data in the pressure sensor / temperature sensor information storage means 212, and stores the information inside the heat source unit 110 based on the stored information.
  • the actuator control signal output means 214 After performing the arithmetic processing by the arithmetic processing circuit 213, the actuator control signal output means 214 outputs the operating frequency of the compressor 111, the fan rotation speed of the blower 115, and the switching of the switching valve 112. It has a function to do.
  • the heat source unit capacity information output means 211 defines the number of indoor units 130 and hot water supply units 140 that can be connected to the branch unit 120 according to the capacity of the heat source unit 110 and the maximum value of the capacity, and this information is sent to the branch unit 120. It has a function to transmit.
  • the branch unit control means 220 operates the flow path switching valve 124 of the branch unit 120, or controls the opening degree of the expansion valve in the arithmetic processing circuit 224 based on the pressure sensor / temperature sensor information of the branch unit 120 itself. It has the function of Further, the branch unit control means 220 restricts the connection capacity and operation capacity of the indoor unit 130 and the hot water supply unit 140 by the operation permission unit determination means 226 based on the connection capacity and operation capacity information received from the heat source unit 110. It also has a function to perform.
  • the indoor unit control means 230 has a function of controlling the degree of superheating during the cooling operation of the indoor unit 130 and the degree of supercooling during the heating operation of the indoor unit 130. Specifically, the indoor unit control means 230 changes the heat exchange area of the indoor heat exchanger 132, controls the fan rotation speed of the indoor blower 133, and controls the opening degree of the indoor expansion device 131. It has a function to do.
  • the hot water supply unit control means 240 has a function of controlling the degree of superheat during the cold water operation of the hot water supply unit 140 and the degree of supercooling during the hot water operation of the hot water supply unit 140. More specifically, the hot water supply unit control means 240 controls the opening degree of the hot water supply side throttle device 141, or is not shown in FIG. 1, but adjusts the water flow rate so as to adjust the water flow rate. 155 has a function of controlling a three-way valve, a pump, or the like.
  • the air conditioning and hot water supply complex system 100 includes a pressure sensor for detecting the refrigerant discharge pressure, a pressure sensor for detecting the refrigerant suction pressure, a temperature sensor for detecting the refrigerant discharge temperature, and an air conditioning refrigerant suction.
  • a temperature sensor that detects the temperature a temperature sensor that detects the temperature of the refrigerant flowing into and out of the heat exchanger 114, a temperature sensor that detects the outside air temperature taken into the heat source unit 110, and a refrigerant that flows into and out of the indoor heat exchanger 132
  • a temperature sensor that detects the temperature, a temperature sensor that detects the temperature of water stored in a hot water storage tank (not shown), and the like may be provided.
  • Information (measurement information such as temperature information and pressure information) detected by these various sensors is sent to the control means 200 and used for controlling each actuator.
  • the low-pressure gas refrigerant is sucked into the compressor 111, becomes a high-temperature / high-pressure gas refrigerant, and flows into the heat exchanger 114 through the switching valve 112.
  • the high-pressure gas refrigerant flowing into the heat exchanger 114 is condensed by exchanging heat with the air supplied to the heat exchanger 114 to become a high-pressure liquid refrigerant, and flows out of the heat exchanger 114.
  • the high-pressure liquid refrigerant that has flowed out of the heat exchanger 114 flows through the check valve 113d to the high-pressure main pipe 151, flows out of the heat source unit 110, and then flows into the branch unit 120.
  • the high-pressure liquid refrigerant that has flowed from the high-pressure main pipe 151 flows to the liquid refrigerant pipe 153 through the gas-liquid separator 121 and the expansion device 122, and flows out from the branch unit 120.
  • the refrigerant that has flowed out of the branch unit 120 flows into the indoor unit 130 and the hot water supply unit 140.
  • the indoor expansion device 131 becomes a low-pressure liquid and gas two-phase refrigerant or a low-pressure liquid refrigerant and flows to the indoor heat exchanger 132.
  • the low-pressure two-phase refrigerant or low-pressure liquid refrigerant that has flowed into the indoor heat exchanger 132 evaporates in the indoor heat exchanger 132, becomes a low-pressure gas refrigerant, and flows out of the indoor heat exchanger 132.
  • the hot water supply side expansion device 141 becomes a low-pressure liquid-gas two-phase refrigerant or a low-pressure liquid refrigerant and flows to the refrigerant-water heat exchanger 142.
  • the low-pressure two-phase refrigerant or low-pressure liquid refrigerant that has flowed into the refrigerant-water heat exchanger 142 evaporates in the refrigerant-water heat exchanger 142, becomes a low-pressure gas refrigerant, and flows out of the refrigerant-water heat exchanger 142.
  • the low-pressure gas refrigerant that has flowed out of the indoor heat exchanger 132 and the refrigerant-water heat exchanger 142 flows through the gas refrigerant pipe 154 and out of the indoor unit 130, and then flows into the branch unit 120.
  • the low-pressure gas refrigerant that has flowed into the branch unit 120 is merged through the flow path switching valve 124 (the flow path switching valve 124a, the flow path switching valve 124b, and the flow path switching valve 124c) and flows to the low pressure main pipe 152.
  • the low-pressure gas refrigerant that has flowed into the low-pressure main pipe 152 flows out of the branch unit 120 and then flows into the heat source unit 110.
  • the low-pressure gas refrigerant that has flowed into the heat source unit 110 is sucked into the compressor 111 again via the check valve 113a, the switching valve 112, and the accumulator 116.
  • the circuit through which the refrigerant flows is used as the main circuit during the cooling operation.
  • the low-pressure gas refrigerant is sucked into the compressor 111, becomes a high-temperature / high-pressure gas refrigerant, and flows to the high-pressure main pipe 151 through the switching valve 112 and the check valve 113c.
  • the refrigerant that has flowed into the high-pressure main pipe 151 flows out of the heat source unit 110 and then flows into the branch unit 120.
  • the branch unit 120 the high-pressure gas refrigerant flowing from the high-pressure main pipe 151 passes through the gas-liquid separator 121 and the flow path switching valve 124 (flow path switching valve 124a, flow path switching valve 124b, flow path switching valve 124c).
  • the gas refrigerant pipe 154 flows.
  • the refrigerant flowing through the gas refrigerant pipe 154 flows out from the branch unit 120 and then flows into the indoor unit 130 and the hot water supply unit 140.
  • the high-pressure gas refrigerant that has flowed into the indoor unit 130 flows into the indoor heat exchanger 132, is condensed in the indoor heat exchanger 132, and flows out of the indoor heat exchanger 132 as a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 132 becomes a low-pressure liquid and gas two-phase refrigerant or a low-pressure liquid refrigerant in the indoor expansion device 131 and flows to the liquid refrigerant pipe 153, and the indoor unit. After flowing out from 130, it flows into the branch unit 120.
  • the high-pressure gas refrigerant that has flowed into the hot water supply unit 140 flows into the refrigerant-water heat exchanger 142, is condensed in the refrigerant-water heat exchanger 142, and becomes a high-pressure liquid refrigerant. It flows out from 142.
  • the high-pressure liquid refrigerant that has flowed out of the refrigerant-water heat exchanger 142 becomes a low-pressure liquid-gas two-phase refrigerant or a low-pressure liquid refrigerant in the hot-water supply side expansion device 141, and flows into the liquid refrigerant pipe 153. After flowing out of the unit 140, it flows into the branch unit 120.
  • the low-pressure refrigerant flowing through the liquid refrigerant pipe 153 is merged by the branch unit 120 and then flows to the low-pressure main pipe 152 through the expansion device 123.
  • the low-pressure refrigerant flowing from the low-pressure main pipe 152 flows out from the branch unit 120 and then flows into the heat source unit 110.
  • the refrigerant flowing into the heat source unit 110 is sucked into the compressor 111 again via the check valve 113b, the heat exchanger 114, the switching valve 112, and the accumulator 116.
  • the circuit through which the refrigerant flows is used as a main circuit during heating operation.
  • an evaporator cooling operation indoor unit
  • a condenser heating operation indoor unit, water heater
  • the mixed operation there are two types of operation modes, a cooling main operation mode and a heating main operation mode, and the refrigerant condensing temperature and evaporation temperature of the air conditioning and hot water supply combined system 100 are compared with target values set in the heat source unit.
  • the operation mode is switched so as to maximize the capacity or efficiency.
  • Each operation mode will be described below.
  • the low-pressure gas refrigerant is sucked into the compressor 111, becomes a high-temperature / high-pressure gas refrigerant, and flows into the heat exchanger 114 through the switching valve 112.
  • the high-pressure gas refrigerant that has flowed into the heat exchanger 114 is condensed by exchanging heat with the air supplied to the heat exchanger 114 to become a two-phase refrigerant of high-pressure liquid and gas, and flows out of the heat exchanger 114.
  • the high-pressure two-phase refrigerant flowing out of the heat exchanger 114 flows through the check valve 113d to the high-pressure main pipe 151, flows out of the heat source unit 110, and then flows into the branch unit 120.
  • the high-pressure two-phase refrigerant flowing from the high-pressure main pipe 151 is separated into a high-pressure saturated gas and a high-pressure saturated liquid by the gas-liquid separator 121.
  • the high-pressure saturated gas separated by the gas-liquid separator 121 flows to the gas branch pipe 154c via the flow path switching valve 124c.
  • the high-pressure gas refrigerant flowing from the gas branch pipe 154 c flows out from the branch unit 120 and then flows into the hot water supply unit 140.
  • the refrigerant flowing into the hot water supply unit 140 is condensed in the refrigerant-water heat exchanger 142 to become a high-pressure liquid refrigerant, and flows out from the refrigerant-water heat exchanger 142.
  • the high-pressure liquid refrigerant that has flowed out of the refrigerant-water heat exchanger 142 becomes a two-phase refrigerant of medium pressure liquid and gas, or a medium pressure liquid refrigerant in the hot water supply side expansion device 141, and flows to the liquid refrigerant pipe 153. After flowing out of the hot water supply unit 140, it is reused as a refrigerant used during cooling.
  • the high-pressure saturated liquid separated by the gas-liquid separator 121 merges with the refrigerant flowing from the hot water supply unit 140 via the throttling device 122, flows to the liquid refrigerant pipe 153, and flows out from the branch unit 120.
  • the refrigerant that has flowed out of the branch unit 120 flows into the indoor unit 130.
  • the indoor expansion device 131 becomes a low-pressure liquid and gas two-phase refrigerant or a low-pressure liquid refrigerant and flows to the indoor heat exchanger 132.
  • the low-pressure two-phase refrigerant or low-pressure liquid refrigerant that has flowed into the indoor heat exchanger 132 evaporates in the indoor heat exchanger 132, becomes a low-pressure gas refrigerant, and flows out of the indoor heat exchanger 132.
  • the low-pressure gas refrigerant that has flowed out of the indoor heat exchanger 132 flows through the gas branch pipe 154a and the gas branch pipe 154b, out of the indoor unit 130, and then flows into the branch unit 120.
  • the liquid line pressure is adjusted by allowing the liquid accumulated in the liquid line to flow through the low pressure pipe 152 by appropriately opening the expansion device 123. Therefore, the refrigerant flowing out of the branch unit 120 becomes a low-pressure two-phase refrigerant by mixing the low-pressure gas refrigerant flowing in from the indoor unit 130 and the liquid refrigerant flowing in from the expansion device 123.
  • the low-pressure two-phase refrigerant that has flowed into the branch unit 120 is merged via the flow path switching valve 124 (flow path switching valve 124a, flow path switching valve 124b) and flows to the low pressure main pipe 152.
  • the low-pressure two-phase refrigerant that has flowed into the low-pressure main pipe 152 flows out of the branch unit 120 and then flows into the heat source unit 110.
  • the low-pressure two-phase refrigerant that has flowed into the heat source unit 110 is sucked into the compressor 111 again via the check valve 113a, the switching valve 112, and the accumulator 116.
  • the circuit through which the refrigerant flows is used as the main circuit during the cooling main operation.
  • heating main operation mode Next, the refrigerant circuit in the heating main operation mode in which the indoor unit 130 performs the cooling and heating mixed operation, the hot water supply unit 140 performs the hot water supply operation, and the heating load is larger than the cooling load, and the operation Explain the contents.
  • the heating main operation mode will be described by taking as an example the case where the indoor unit 130 is in the cooling operation and the hot water supply unit 140 is in the hot water supply operation.
  • the low-pressure gas refrigerant is sucked into the compressor 111, becomes a high-temperature / high-pressure gas refrigerant, and flows to the high-pressure main pipe 151 through the switching valve 112 and the check valve 113c.
  • the refrigerant that has flowed into the high-pressure main pipe 151 flows out of the heat source unit 110 and then flows into the branch unit 120.
  • the branch unit 120 the high-pressure gas refrigerant flowing from the high-pressure main pipe 151 flows to the gas branch pipe 154c via the gas-liquid separator 121 and the flow path switching valve 124c.
  • the refrigerant flowing through the gas branch pipe 154 c flows out of the branch unit 120 and then flows into the hot water supply unit 140.
  • the high-pressure gas refrigerant that has flowed into the hot water supply unit 140 flows into the refrigerant-water heat exchanger 142, is condensed in the refrigerant-water heat exchanger 142, and becomes high-pressure liquid refrigerant from the refrigerant-water heat exchanger 142. leak.
  • the high-pressure liquid refrigerant that has flowed out of the refrigerant-water heat exchanger 142 becomes a two-phase refrigerant of intermediate pressure liquid and gas, or an intermediate-pressure liquid refrigerant in the hot water supply side expansion device 141, and flows to the liquid branch pipe 153c. After flowing out of the hot water supply unit 140, it flows into the branch unit 120.
  • the intermediate-pressure refrigerant that has flowed into the branch unit 120 flows into the liquid branch pipe 153a and the liquid branch pipe 153b.
  • the refrigerant flows out of the branch unit 120 and then flows into the indoor unit 130a and the indoor unit 130b.
  • the refrigerant flowing into the indoor unit 130a and the indoor unit 130b becomes a low-pressure liquid and gas two-phase refrigerant or a low-pressure liquid refrigerant in the indoor expansion device 131 and flows into the indoor heat exchanger 132.
  • the low-pressure liquid refrigerant that has flowed into the indoor heat exchanger 132 evaporates in the indoor heat exchanger 132, becomes a low-pressure gas refrigerant, and flows out of the indoor heat exchanger 132.
  • the liquid line pressure is adjusted by allowing the liquid accumulated in the liquid line to flow through the low pressure pipe 152 by appropriately opening the expansion device 123. Therefore, the refrigerant flowing out of the branch unit 120 becomes a low-pressure two-phase refrigerant by mixing the low-pressure gas refrigerant flowing in from the indoor unit 130 and the liquid refrigerant flowing in from the expansion device 123.
  • the refrigerant that has flowed out of the indoor heat exchanger 132 flows to the gas refrigerant pipe 154.
  • the low-pressure two-phase refrigerant flowing from the gas refrigerant pipe 154 flows out from the indoor unit 130a and the indoor unit 130b, and then flows into the branch unit 120.
  • the low-pressure two-phase refrigerant that has flowed into the branch unit 120 flows to the low-pressure main pipe 152 via the flow path switching valve 124 (flow path switching valve 124a, flow path switching valve 124b).
  • the low-pressure two-phase refrigerant that has flowed into the low-pressure main pipe 152 flows out of the branch unit 120 and then flows into the heat source unit 110.
  • the low-pressure gas refrigerant flowing into the heat source unit 110 is sucked into the compressor 111 again via the check valve 113b, the heat exchanger 114, the switching valve 112, and the accumulator 116.
  • the circuit through which the refrigerant flows is used as the main circuit during the driving operation.
  • FIG. 3 is a flowchart showing the flow of the operation capacity restriction process when the operation of the indoor unit 130 is added. Based on FIG. 3, the flow of the operating capacity restriction process when the operation of the indoor unit 130 performed by the air conditioning and hot water supply complex system 100 is added will be described. The process 320 shown in FIG. 3 is executed by steps S321 to S326.
  • the operation capacity restriction process is executed (step S310).
  • the control unit 200 calculates the sum value ⁇ Qj_IDU of the capacity value (for example, the capacity code Qj) of the indoor unit 130 during operation (step S321).
  • the control means 200 calculates a sum ⁇ Qj_HWS of values indicating the capacity of the hot water supply unit 140 (step S322).
  • the control means 200 stores the capacity ⁇ Qj of the indoor unit 130 outputting the “operation permission request” (step S323).
  • step S324 When the capacity ⁇ Qj of the indoor unit 130 outputting the “operation permission request” is added to the total value ⁇ Qj_IDU and the total value ⁇ Qj_HWS, the control unit 200 exceeds the maximum value ⁇ Qj_max of the operation capacity. It is determined whether or not (step S324). This determination may be performed using the mathematical expression ( ⁇ Qj_IDU + ⁇ Qj_HWS + ⁇ Qj ⁇ ⁇ Qj_max) shown in step S324 of FIG.
  • control means 200 determines that ⁇ Qj_IDU + ⁇ Qj_HWS + ⁇ Qj ⁇ ⁇ Qj_max (step S324; YES)
  • the control means 200 transmits “operation permission” to the indoor unit 130 outputting the “operation permission request”, and operates the indoor unit 130. (Step S325).
  • the control means 200 determines that ⁇ Qj_IDU + ⁇ Qj_HWS + ⁇ Qj> ⁇ Qj_max (step S324; No)
  • it transmits “stop operation” to the indoor unit 130 outputting the “operation permission request”, and the indoor unit 130 Is not started (step S326).
  • FIG. 4 is a flowchart showing the flow of the operation capacity restriction process when the operation of the hot water supply unit 140 is added. Based on FIG. 4, the flow of the operating capacity restriction process when adding the operation of the hot water supply unit 140 executed by the air conditioning and hot water supply complex system 100 will be described.
  • the flowchart shown in FIG. 4 shows the flow of processing when there is an additional request from another hot water supply unit 140 while at least one of the indoor units 130 and at least one of the hot water supply units 140 are operating. Yes.
  • the process 420 shown in FIG. 4 is executed in steps S421 to S427.
  • the process 425 shown in FIG. 4 is executed in steps S425a to S425c.
  • step S410 When the control means 200 receives an “operation permission request” from the hot water supply unit 140, an operation capacity restriction process is executed (step S410). When the process of receiving the “operation permission request” from the hot water supply unit 140 is performed, the control unit 200 calculates a total value ⁇ Qj_HWS of values indicating the capacity of the hot water supply unit 140 during operation (including thermo ON / OFF) (step S421). ). Next, the control means 200 stores the capacity ⁇ Qj of the hot water supply unit 140 outputting the “operation permission request” (step S422).
  • Step S423 the control means 200 determines whether or not the maximum value ⁇ Qj_max of the operation capacity is exceeded. This determination may be performed using the mathematical formula ( ⁇ Qj_HWS + ⁇ Qj ⁇ ⁇ Qj_max) shown in step S423 of FIG.
  • control means 200 determines that ⁇ Qj_HWS + ⁇ Qj ⁇ ⁇ Qj_max (step S423; YES)
  • the control means 200 calculates the sum value ⁇ Qj_IDU of the capacity values of the indoor unit 130 during operation (including thermo ON / OFF) (step S424).
  • the control means 200 monitors the load information (thermo temperature (suction temperature), set temperature, address number for identifying each indoor unit 130) of the indoor unit 130 and the hot water supply unit 140 (step S425a).
  • the control unit 200 then satisfies the indoor unit 130 that satisfies all the predetermined conditions ((1) “thermo temperature ⁇ set temperature” is minimum) and (2) the address is the youngest among (1)).
  • “Prohibit driving" is transmitted to (step S425b).
  • the temperature difference between the thermo-temperature (suction temperature) inside the indoor unit 130 and the set temperature is regarded as a load, and the required load of the operating indoor unit 130 is The size can be managed, and the indoor unit 130 having a large required load can be preferentially operated within an arbitrarily set time.
  • control means 200 adds the sum value ⁇ Qj_IDU of the capacity value of the indoor unit 130 in operation to the sum value ⁇ Qj_HWS + ⁇ Qj, and determines whether this value exceeds the maximum value ⁇ Qj_max of the operation capacity (step S425c). ). This determination may be performed using the formula ( ⁇ Qj_IDU + ⁇ Qj_HWS + ⁇ Qj ⁇ ⁇ Qj_max) shown in step S425c of FIG.
  • control means 200 determines that ⁇ Qj_IDU + ⁇ Qj_HWS + ⁇ Qj ⁇ ⁇ Qj_max (step S425c; YES), it transmits “operation permission” to hot water supply unit 140 outputting “operation permission request”, and operates hot water supply unit 140. (Step S426).
  • the control unit 200 determines that ⁇ Qj_IDU + ⁇ Qj_HWS + ⁇ Qj> ⁇ Qj_max (step S425c; No)
  • the control unit 200 returns to the process of step S425b and repeats until ⁇ Qj_IDU + ⁇ Qj_HWS + ⁇ Qj ⁇ ⁇ Qj_max.
  • control means 200 determines in step S423 that ⁇ Qj_HWS + ⁇ Qj> ⁇ Qj_max (step S423; No), it sends “stop operation” to hot water supply unit 140 that is outputting “operation permission request”. The operation of the hot water supply unit 140 is not started (step S427).
  • FIG. 5 is a flowchart showing the flow of the operation capacity restriction process when the operation of the unit is stopped. Based on FIG. 5, the flow of the operation capacity restriction process when the operation of the unit executed by the air conditioning and hot water supply complex system 100 is stopped will be described. Note that the units here include both the indoor unit 130 and the hot water supply unit 140.
  • step S510 When the control means 200 performs a process of receiving “operation stop” from at least one of the indoor unit 130 and the hot water supply unit 140, an operation capacity restriction process is executed (step S510).
  • the control unit 200 performs processing for receiving “operation stop” from at least one of the indoor unit 130 and the hot water supply unit 140, the control unit 200 stops the unit that output “operation stop” and receives the “operation permission request”. However, it is confirmed whether or not there is a unit to which “operation stop” is transmitted in step S326 or step S427 (step S511).
  • the hot water supply determines whether the unit is the indoor unit 130 or not. It is confirmed whether or not it is a unit 140 (step S512). If it is determined that the unit is the indoor unit 130 (step S512; indoor unit), the control means 200 executes the process 320 shown in FIG. On the other hand, when it is determined that the unit is hot water supply unit 140 (step S512; hot water supply unit), control means 200 executes processing 420 shown in FIG.
  • control process is terminated (step S520). ).
  • the control means 200 acquires information on the inlet water temperature and the outlet water temperature from the temperature detection element 143 (inlet water temperature sensor) and the temperature detection element 144 (outlet water temperature sensor) with respect to the hot water supply unit 140.
  • the control means 200 compares the temperature difference between the inlet water temperature and the outlet water temperature with the rated water temperature. Then, when the temperature difference between the inlet water temperature and the outlet water temperature is smaller than the rated water temperature, the control unit 200 determines that the capacity is insufficient, that is, the supply capacity is small with respect to the required load. Processing 425 shown is performed. By doing so, it becomes possible to stop one of the units having the smallest difference between the thermo temperature and the set temperature of the indoor unit 130 and perform the process of allocating the capacity to the hot water supply unit 140.
  • the heat source unit 110 can be connected and operated with a capacity that can be operated and operated while satisfying air conditioning and hot water supply loads. Further, in the air conditioning and hot water supply complex system 100, since the heat source unit 110 can be connected and operated at a capacity exceeding the operable capacity, it is possible to not only reduce the capital investment cost but also contribute to the saving of the installation space. .
  • the processing 425 shown in FIG. 4 may be performed sequentially at an arbitrarily set time.
  • the loads of the indoor unit 130 and the hot water supply unit 140 are confirmed,
  • the hot water supply unit 140 can be changed, and the indoor unit 130 can be operated while rotating under the restriction of the maximum operation capacity ⁇ Qj_max. Therefore, according to the air-conditioning / hot-water supply complex system 100, it is possible to operate the indoor unit 130 that apparently exceeds the operation capacity of the heat source unit 110 when viewed in a long time in a season with a small load such as an intermediate period. .
  • the refrigerant that can be used in the air-conditioning and hot water supply complex system 100 will be described.
  • Examples of the refrigerant that can be used in the refrigeration cycle of the air conditioning and hot water supply complex system 100 include a non-azeotropic refrigerant mixture, a pseudo-azeotropic refrigerant mixture, and a single refrigerant.
  • Non-azeotropic refrigerant mixture includes R407C (R32 / R125 / R134a) which is an HFC (hydrofluorocarbon) refrigerant.
  • this non-azeotropic refrigerant mixture is a mixture of refrigerants having different boiling points, it has a characteristic that the composition ratio of the liquid-phase refrigerant and the gas-phase refrigerant is different.
  • the pseudo azeotropic refrigerant mixture includes R410A (R32 / R125) and R404A (R125 / R143a / R134a) which are HFC refrigerants.
  • This pseudo azeotrope refrigerant has the same characteristic as that of the non-azeotrope refrigerant and has an operating pressure of about 1.6 times that of R22.
  • the single refrigerant includes R22 which is an HCFC (hydrochlorofluorocarbon) refrigerant, R134a which is an HFC refrigerant, and the like. Since this single refrigerant is not a mixture, it has the property of being easy to handle.
  • natural refrigerants such as carbon dioxide, propane, isobutane, and ammonia can be used.
  • R22 represents chlorodifluoromethane
  • R32 represents difluoromethane
  • R125 represents pentafluoromethane
  • R134a represents 1,1,1,2-tetrafluoromethane
  • R143a represents 1,1,1-trifluoroethane. Yes. Therefore, it is good to use the refrigerant
  • the heat source unit 110 can be connected and operated with a capacity exceeding the operable capacity while satisfying the air conditioning and hot water supply load, and the capital investment cost can be reduced. This also contributes to saving installation space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 空調給湯複合システム100は、少なくとも1台の室内ユニット130と少なくとも1台の給湯ユニット140が運転している状態において室内ユニット130及び給湯ユニット140の少なくとも1台から運転許可要求があったときであって、運転許可要求があった室内ユニット130及び給湯ユニット140の少なくとも1台を追加運転すると熱源ユニット110の容量を超えてしまうとき、熱源ユニット110の運転容量許容内に入るまで、所定の条件を満たした運転中の室内ユニット130を停止させ、追加要求のあった給湯ユニット140に前記熱源ユニットの能力を分配する。 

Description

空調給湯複合システム
 本発明は、ヒートポンプサイクルを搭載し、空調負荷及び給湯負荷を同時に提供することができる空調給湯複合システムに関するものである。
 従来から、ヒートポンプサイクルを搭載し、空調負荷及び給湯負荷を同時に提供することができる空調給湯複合システムが提案されている。そのようなものとして、コンプレッサー、室外熱交換器、絞り装置、室内熱交換器、及び、アキュームレーターを有する空調冷媒系統の凝縮器の一部に、コンプレッサー、水熱交換器、絞り装置、及び、冷媒-冷媒熱交換器を有した給湯冷媒系統をカスケード接続することにより冷房負荷、暖房負荷及び給湯負荷を同時に提供することができる空調給湯複合システムが存在する(たとえば、特許文献1参照)。
WO2009/098751号公報(第1頁、図1等)
 特許文献1に記載されている空調給湯複合システムは、熱源ユニットに対し、給湯ユニット、室内ユニットを単一の冷媒系統にてマルチ接続して、空調負荷と給湯負荷の同時運転を可能としている。このようなビルマルチエアコンの考え方を踏襲した空調給湯複合システム構成の場合、室内負荷及び給湯負荷にて発生する最大負荷を基準にして室内ユニットの容量と給湯ユニットの容量を選定し、さらに室内ユニット容量と給湯ユニット容量の合計容量を満足する熱源ユニットを選定する。
 しかしながら、空調給湯複合システムは、設置される環境下や使用される空調給湯設備においては、季節によって使用される用途が異なる地域(たとえば、冬場は給湯による床暖やファンコイルによる暖房、夏場はエアコンによる空調が使用される場合)や、空調負荷及び給湯負荷ともに小さくなるような期間(たとえば、夏場と冬場の間の中間期)の負荷を鑑みると、熱源ユニットに要求される負荷に対して熱源ユニット容量が過大となり、設備投資費用が増大してしまうことがある。
 また、熱源ユニット容量の大型化による熱源ユニットの寸法の増大、負荷を満たすために複数冷媒系統を設置したことによる設置スペースの増大等の問題が生じてしまう。
 さらに、ユーザー側で室内ユニット及び給湯ユニットの発停または設定温度の変更にて簡易的に空調の省エネ制御を実施したい場合、たとえば室内ユニット及び給湯ユニットに対して、タイマスケジューラーを用いて発停による運転制御できる別売の高価な上位制御コントローラーを購入する必要があった。
 本発明は、上記のような課題を解決するためになされたもので、空調負荷、給湯負荷の使用環境下の制約のもとで熱源ユニットの許容容量以上に室内ユニット及び給湯ユニットを接続可能とするとともに、簡易的な省エネ制御の機能を加えることで、低コストかつ省スペースな空調給湯システムを提供することを目的としている。
 本発明に係る空調給湯複合システムは、圧縮機及び熱交換器が搭載された少なくとも1台の熱源ユニットと、室内側熱交換器及び室内側絞り装置が搭載された少なくとも1台の室内ユニットと、冷媒-水熱交換器及び給湯側絞り装置が搭載された少なくとも1台の給湯ユニットと、前記室内ユニットと前記給湯ユニットとを前記熱源ユニットに対して並列接続させる分岐ユニットと、を備え、少なくとも1台の前記室内ユニットと少なくとも1台の前記給湯ユニットが運転している状態において前記給湯ユニットの少なくとも1台から運転許可要求があったときであって、運転許可要求があった前記給湯ユニットを追加運転すると前記熱源ユニットの容量を超えてしまうとき、前記熱源ユニットの運転容量許容内に入るまで、所定の条件を満たした運転中の前記室内ユニットを停止させ、追加要求のあった前記給湯ユニットに前記熱源ユニットの能力を分配するものである。
 本発明に係る空調給湯複合システムによれば、空調負荷、給湯負荷の使用環境下の制約のもとで熱源ユニットの許容容量以上に室内ユニット及び給湯ユニットを接続可能とするとともに、簡易的な省エネ制御の機能を加えることで、低コストかつ省スペースなものになる。
本発明の実施の形態に係る空調給湯複合システムの冷媒回路構成を概略的に示す回路図である。 本発明の実施の形態に係る空調給湯複合システムの電気的な構成を示す制御ブロック図である。 室内ユニットの運転追加時における運転容量制約処理の流れを示すフローチャートである。 給湯ユニットの運転追加時における運転容量制約処理の流れを示すフローチャートである。 ユニットの運転停止時における運転容量制約処理の流れを示すフローチャートである。
 以下、図面に基づいて本発明の実施の形態について説明する。
 図1は、本発明の実施の形態に係る空調給湯複合システム100の冷媒回路構成を概略的に示す回路図である。図1に基づいて、空調給湯複合システム100の構成について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 空調給湯複合システム100は、ビルやマンション、ホテル等に設置され、冷媒を循環させる冷凍サイクル(ヒートポンプ)を利用することで冷房負荷、暖房負荷及び給湯負荷を同時に供給できるものである。空調給湯複合システム100は、熱源ユニット110と、分岐ユニット120と、室内ユニット130と、給湯ユニット140と、が接続されて構成されている。このうち室内ユニット130と給湯ユニット140は、熱源ユニット110に対して並列に接続されている。
 熱源ユニット110と分岐ユニット120は、2本の冷媒配管(高圧主管151、低圧主管152)で接続されている。分岐ユニット120と室内ユニット130は、2本の冷媒配管(液冷媒配管153、ガス冷媒配管154)で接続されている。分岐ユニット120と給湯ユニット140も、2本の冷媒配管(液冷媒配管153、ガス冷媒配管154)で接続されている。熱源ユニット110は、分岐ユニット120を経由して室内ユニット130及び給湯ユニット140へ連絡するようになっている。さらに、給湯ユニット140には水回路155が接続され、水が供給されるようになっている。水回路155には、水配管が接続されている。
 なお、図1には、2台の室内ユニット130が接続されている場合を例に示しており、それらを区別するために添え字「a」、「b」を符号に付している。また、室内ユニット130aに対応する部品にも添え字「a」をそれぞれの符号に付し、室内ユニット130bに対応する部品にも添え字「b」をそれぞれの符号に付している。さらに、室内ユニット130と区別するために、給湯ユニット140に対応する部品には添え字「c」をそれぞれの符号に付している。そして、特に断りがないときは、「a」、「b」及び「c」の全部を称しているものとする。
 また、液冷媒配管153は、分岐ユニット120に接続されている室内ユニット130の台数、給湯ユニット140の台数に対応して分岐(ここでは3分岐)されている。この分岐された液冷媒配管153を、液枝管153a、液枝管153b、液枝管153cと称している。同様に、ガス冷媒配管154も、分岐ユニット120に接続されている室内ユニット130の台数、給湯ユニット140の台数に対応して分岐(ここでは3分岐)されている。この分岐されたガス冷媒配管154を、ガス枝管154a、ガス枝管154b、ガス枝管154cと称している。液枝管153a及びガス枝管154aは室内ユニット130aに、液枝管153b及びガス枝管154bは室内ユニット130bに、液枝管153c及びガス枝管154cは給湯ユニット140に、それぞれ接続されている。
[熱源ユニット110]
 熱源ユニット110は、分岐ユニット120を介して、室内ユニット130、給湯ユニット140に温熱又は冷熱を供給する機能を有している。この熱源ユニット110は、主に圧縮機111、切替弁112、熱交換器114、アキュームレーター(液溜め容器)116で構成され、図1に示す回路はこれらを順次直列に接続して構成している。熱源ユニット110の用途により、ユニット内部で使用される冷媒回路部品の選定及び冷媒回路を構成すればよい。
 圧縮機111は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して圧縮機111を構成することができる。この圧縮機111は、インバーターにより回転数が可変に制御可能なタイプのもので構成するとよい。
 切替弁112は、たとえば四方弁等で構成され、要求される運転モードに応じて冷媒の流れを切り替えるものである。熱交換器114は、主に熱源(たとえば、空気や水、ブライン等)から熱を放熱または吸熱する役割を持つ。熱交換器114の種類は、使用される熱源に応じて選定すればよく、空気が熱源の場合であれば空気式熱交換器、水またはブラインが熱源の場合であれば水熱交換器で構成すればよい。図1に例示するように、熱交換器114が空気式熱交換器である場合には、熱交換器114の周辺に送風機115を設けるとよい。アキュームレーター116は、過剰な冷媒を貯留できるものであればよい。
 また、熱源ユニット110には、4つの逆止弁113(逆止弁113a~逆止弁113d) が設けられている。逆止弁113aは、切替弁112と分岐ユニット120との間における低圧主管152に設けられ、分岐ユニット120から熱源ユニット110への方向のみに冷媒の流れを許容するようになっている。逆止弁113dは、熱交換器114と分岐ユニット120との間における高圧主管151に設けられ、熱源ユニット110から分岐ユニット120への方向のみに冷媒の流れを許容するようになっている。
 高圧主管151と低圧主管152とは、逆止弁113dの上流側と逆止弁113aの上流側を接続する第1接続配管10と、逆止弁113dの下流側と逆止弁113aの下流側を接続する第2接続配管11と、で接続されている。そして、第1接続配管10には、低圧主管152から高圧主管151の方向のみに冷媒の流通を許容する逆止弁113bが設けられている。第2接続配管11には、低圧主管152から高圧主管151の方向のみに冷媒の流通を許容する逆止弁113cが設けられている。
 第1接続配管10、第2接続配管11、逆止弁113a、逆止弁113b、逆止弁113c、及び、逆止弁113dを設けることで、室内ユニット130の要求する運転に関わらず、分岐ユニット120に流入させる冷媒の流れを一定方向にすることができる。なお、これらは、必須のものではない。
[分岐ユニット120]
 分岐ユニット120は、熱源ユニット110から供給された温熱または冷熱を、室内ユニット130、給湯ユニット140に供給する機能を有している。分岐ユニット120は、主に気液分離器121、流路切替弁124、絞り装置122、絞り装置123で構成されている。なお、流路切替弁124は、分岐ユニット120に接続されている室内ユニット130の台数、及び、分岐ユニット120に接続されている給湯ユニット140の台数に対応した個数(ここでは3個)が設けられている。
 流路切替弁124は、室内ユニット130及び給湯ユニット140に供給する冷媒の流れを切り替えるものである。この流路切替弁124によって、冷媒流路を切り替えることで、分岐ユニット120に接続されている各々の負荷側ユニット(室内ユニット130および給湯ユニット140)が冷房(冷却)、暖房(給湯)を同時に実行することが可能である。流路切替弁124は、三方弁等で構成され、一方が低圧主管152に接続し、他方が気液分離器121に接続し、更にもう他方が室内ユニット130の室内側熱交換器132、給湯ユニット140の冷媒-水熱交換器142に接続するようになっている。
 気液分離器121は、高圧主管151に接続されるとともに、室内ユニット130の流出入側のそれぞれに接続される。気液分離器121は、流入した冷媒をガス冷媒と液冷媒とに分離する機能を有している。気液分離器121は、熱源ユニット110と分岐ユニット120との間の冷媒配管が2管式である場合に搭載される。なお、図1では、1台の分岐ユニット120に対して複数の室内ユニット130と、1台の給湯ユニット140を接続した空調給湯複合システム100を例に示しているが、たとえば熱源ユニット110と分岐ユニット120との間の冷媒配管が3管式である場合には、1台の負荷側ユニットに対して1台の分岐ユニット120を接続するような構成にしてもよい。
 絞り装置122は、気液分離器121と室内側絞り装置131及び給湯側絞り装置141との間に設けられ、冷媒を減圧して膨張させるものである。絞り装置123は、低圧主管152と、絞り装置122と室内側絞り装置131及び給湯側絞り装置141との間における配管と、を接続した接続配管に設けられ、冷媒を減圧して膨張させるものである。絞り装置122及び絞り装置123は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。
[室内ユニット130]
 室内ユニット130は、熱源ユニット110からの温熱または冷熱の供給を受けて暖房負荷または冷媒負荷を担当する機能を有している。室内ユニット130は、主に室内側絞り装置131、室内側熱交換器(負荷側熱交換器)132で構成されており、これらが直列に接続されて搭載されている。なお、図1では、室内ユニット130aと室内ユニット130bの2台が並列に接続されている状態を例に示しているが、台数を特に限定するものではなく、3台以上の室内ユニット130を同様に接続するようにしてもよい。また、室内ユニット130には、室内側熱交換器132に空気を供給するためのファン等の室内側送風機133を室内側熱交換器132の近傍に設けるとよい。
 室内側絞り装置131は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。この室内側絞り装置131は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調整手段等で構成するとよい。室内側熱交換器132は、暖房サイクル時には放熱器(凝縮器)、冷房サイクル時には蒸発器として機能し、室内側送風機133から供給される空気と冷媒との間で熱交換を行い、冷媒を凝縮液化または蒸発ガス化するものである。
 また、室内ユニット130には、温度検知素子134が設けられている。この温度検知素子134は、設置場所の負荷検知を行うものであり、たとえばサーミスタ等で構成されている。なお、温度検知素子134の設置場所や種類を、特に限定するものではないため、室内ユニット130の特性や、検知させたい負荷に応じて設置場所や種類を選定すればよい。
[給湯ユニット140]
 給湯ユニット140は、熱源ユニット110からの温熱又は冷熱を冷媒-水熱交換器142を介して水回路に供給する機能を有している。給湯ユニット140は、主に給湯側絞り装置141、冷媒-水熱交換器142で構成されており、これらが直列に接続されて搭載されている。なお、図1では、1台の給湯ユニット140が接続されている状態を例に示しているが、台数を特に限定するものではない。また、給湯側絞り装置141は、室内側絞り装置131と同じ機能を有している。さらに、高温出湯が要求される場合においては、熱源ユニット110と給湯ユニット140との間に、独立した冷媒回路(少なくとも冷媒-冷媒熱交換器、圧縮機、冷媒-水熱交換器142、膨張弁を配管接続させた冷媒回路)を設けて、2元サイクルを構成してもよい。
 この場合、冷媒-冷媒熱交換器から空調給湯複合システム100の熱を授受し、冷媒-水熱交換器142を介して高温出湯用の高温水を生成するとよい。このように、2元サイクルを給湯で用いるようにすれば、前述した冷媒-冷媒熱交換器から空調給湯複合システム100の熱を授受し、高温側へ熱を搬送することで、空調給湯複合システム100の冷媒温度では出湯不可能な高水温が出湯可能となる。
 冷媒-水熱交換器142は、水回路155を流れる水と、冷媒配管を流れる冷媒との間で熱交換を行なうものである。そして、冷媒-水熱交換器142で加熱又は冷却された水が、給湯利用又は冷水利用されるようになっている。水回路155は、水回路155内を水を循環させるポンプ(図示省略)、冷媒-水熱交換器142で加熱又は冷却された水を貯える貯湯タンク等によって構成されている。つまり、水回路155は、冷媒-水熱交換器142で加熱又は冷却された水を循環させることで成立している。
 また、給湯ユニット140には、温度検知素子143、温度検知素子144が設けられている。温度検知素子143、温度検知素子144は、設置場所の負荷検知を行うものであり、たとえばサーミスタ等で構成されている。なお、温度検知素子143、温度検知素子144の設置場所や種類を、特に限定するものではないため、室内ユニット130の特性や、検知させたい負荷に応じて設置場所や種類を選定すればよい。なお、水回路155に接続されている水配管は、銅管やステンレス管、鋼管、塩化ビニル系配管などによって構成するとよい。また、水回路155を循環させる熱媒体として水を例に説明しているが、水に限らず、不凍液(ブライン)等を循環させるようにしてもよい。
 以上のように、空調給湯複合システム100は、熱源ユニット110を分岐ユニット120を介して室内ユニット130及び給湯ユニット140に接続したシステム構成となっている。
 なお、空調給湯複合システム100には、空調給湯複合システム100のシステム全体を統括制御する制御手段200が設けられている。この制御手段200は、圧縮機111の駆動周波数、送風機(送風機115、室内側送風機133)の回転数、切替弁112の切り替え、各絞り手段の開度、流路切替弁124の切り替え等を制御する。つまり、制御手段200は、図示省略の各種検知素子での検出情報及びリモコンからの指示に基づいて、各アクチュエーター(圧縮機111、切替弁112、送風機115、室内側絞り装置131、給湯側絞り装置141等の駆動部品)を制御するようになっている。なお、制御手段200については図2で詳細に説明する。
[その他対象システム構成]
 図1では、空調給湯複合システム100が、熱源ユニット110と室内ユニット130及び給湯ユニット140とを分岐ユニット120を介して2本の冷媒配管で接続した2管式の冷暖同時タイプである場合を例に挙げたが、これに限定するものではなく、3本の冷媒配管で接続した3管式の冷暖同時タイプ又は冷暖切替タイプで空調給湯複合システム100を構成してもよい。
 図2は、空調給湯複合システム100の電気的な構成を示す制御ブロック図である。図2に基づいて、空調給湯複合システム100に搭載されている制御手段200について詳細に説明する。
 上述したように、空調給湯複合システム100は、制御手段200を備えている。制御手段200は、マイクロコンピューターやDSPなどで構成されており、空調給湯複合システム100のシステム全体を制御する機能を有している。この制御手段200は、熱源ユニット制御手段210、分岐ユニット制御手段220、室内ユニット制御手段230、及び、給湯ユニット制御手段240を備えている。
 各制御手段の割り振りについては、各々のユニットに対応する制御手段を与え、各々のユニットが独立して制御を行なう自立分散協調制御でもよく、どれか一つのユニットが全制御手段を有し、その制御手段を有したユニットが通信等を用いて他ユニットに制御指令を与えるようにしてもよい。たとえば、熱源ユニット110に熱源ユニット制御手段210を、分岐ユニット120に分岐ユニット制御手段220を、室内ユニット130に室内ユニット制御手段230を、給湯ユニット140に給湯ユニット制御手段240を、それぞれ備えるようにすれば、各々のユニットが独立して制御を行なうことができる。なお、各制御手段は、無線又は有線の通信手段で情報伝達が可能となっている。
 熱源ユニット制御手段210は、熱源ユニット110における冷媒の圧力状態及び冷媒の温度状態を制御する機能を有している。熱源ユニット制御手段210は、熱源ユニット容量情報出力手段211、圧力センサ・温度センサ情報格納手段212、演算処理回路213、及び、アクチュエーター制御信号出力手段214を有している。具体的には、熱源ユニット制御手段210は、圧力センサ・温度センサで得た情報をデータとして圧力センサ・温度センサ情報格納手段212で格納し、格納された情報を基にして熱源ユニット110内部で演算処理を演算処理回路213で実施した後、アクチュエーター制御信号出力手段214から、圧縮機111の運転周波数を出力したり、送風機115のファン回転数を出力したり、切替弁112の切替を出力したりする機能を有している。
 熱源ユニット容量情報出力手段211は、熱源ユニット110の容量に応じて分岐ユニット120に接続できる室内ユニット130及び給湯ユニット140の台数及び容量の最大値を規定しており、本情報を分岐ユニット120へ送信する機能を有している。
 分岐ユニット制御手段220は、分岐ユニット120の流路切替弁124を動作させたり、分岐ユニット120自身の圧力センサ・温度センサの情報から、演算処理回路224において、膨張弁の開度を制御する等の機能を有している。また、分岐ユニット制御手段220は、熱源ユニット110から受けた接続容量及び運転容量の情報を基に、運転許可ユニット判断手段226にて、室内ユニット130及び給湯ユニット140の接続容量及び運転容量の制約を行う機能も有している。
 室内ユニット制御手段230は、室内ユニット130の冷房運転時における過熱度、室内ユニット130の暖房運転時における過冷却度を制御する機能を有している。室内ユニット制御手段230は、具体的には、室内側熱交換器132の熱交換面積を変化させたり、室内側送風機133のファン回転数を制御したり、室内側絞り装置131の開度を制御したりする機能を有している。
 給湯ユニット制御手段240は、給湯ユニット140の冷水運転時における過熱度、給湯ユニット140の給湯運転時における過冷却度を制御する機能を有している。給湯ユニット制御手段240は、具体的には、給湯側絞り装置141の開度を制御したり、図1には図示していないが、水流量の調整を行なうために給湯ユニット140内の水回路155に設置された三方弁またはポンプ等を制御したりする機能を有している。
 また、図示していないが、空調給湯複合システム100には、冷媒の吐出圧力を検知する圧力センサや冷媒の吸入圧力を検知する圧力センサ、冷媒の吐出温度を検知する温度センサ、空調冷媒の吸引温度を検知する温度センサ、熱交換器114に流出入する冷媒の温度を検知する温度センサ、熱源ユニット110に取り込まれる外気温を検知する温度センサ、室内側熱交換器132に流出入する冷媒の温度を検知する温度センサ、図示省略の貯湯タンク内に貯留される水の温度を検知する温度センサ等を設けておくとよい。これらの各種センサで検知された情報(温度情報や圧力情報等の計測情報)は、制御手段200に送られ、各アクチュエーターの制御に利用されることになる。
 次に、空調給湯複合システム100の動作について説明する。
 空調給湯複合システム100が実行する運転モードには、運転している室内ユニット130の全部が冷房運転、給湯ユニット140が冷却運転を実行する冷房運転モード、運転している室内ユニット130の全部が暖房運転、給湯ユニット140が給湯運転を実行する暖房運転モード、暖房運転している室内ユニット130と冷房運転している室内ユニット130が混在し、給湯ユニット140で冷却運転又は給湯運転を実行し、冷房及び冷却負荷の方が大きい冷房主体運転モード、暖房運転している室内ユニット130と冷房運転している室内ユニット130が混在し、給湯ユニット140で冷却運転又は給湯運転を実行し、暖房及び給湯負荷の方が大きい暖房主体運転モードがある。
[冷房運転モード]
 まず、運転している全部の室内ユニット130が冷房運転をしており、給湯ユニット140が冷却運転をしているときの冷房運転モード時における冷媒回路、及び、その運転内容を説明する。
 熱源ユニット110において、低圧のガス冷媒は、圧縮機111へ吸入され、高温・高圧のガス冷媒となり、切替弁112を経て、熱交換器114へ流入する。熱交換器114に流入した高圧のガス冷媒は、熱交換器114に供給される空気と熱交換することにより凝縮して高圧の液冷媒となり、熱交換器114から流出する。熱交換器114から流出した高圧の液冷媒は、逆止弁113dを経て、高圧主管151へ流れ、熱源ユニット110から流出した後、分岐ユニット120に流入する。
 分岐ユニット120において、高圧主管151から流れてきた高圧の液冷媒は、気液分離器121及び絞り装置122を経て、液冷媒配管153へ流れ、分岐ユニット120から流出する。分岐ユニット120から流出した冷媒は、室内ユニット130及び給湯ユニット140に流入する。室内ユニット130では、室内側絞り装置131にて、低圧の液とガスの二相冷媒、または、低圧の液冷媒となり、室内側熱交換器132へ流れる。室内側熱交換器132に流入した低圧二相冷媒または低圧液冷媒は、室内側熱交換器132にて蒸発し、低圧のガス冷媒となり、室内側熱交換器132から流出する。
 また、給湯ユニット140では、給湯側絞り装置141にて、低圧の液とガスの二相冷媒、または、低圧の液冷媒となり、冷媒-水熱交換器142へ流れる。冷媒-水熱交換器142に流入した低圧二相冷媒または低圧液冷媒は、冷媒-水熱交換器142にて蒸発し、低圧のガス冷媒となり、冷媒-水熱交換器142から流出する。
 室内側熱交換器132及び冷媒-水熱交換器142から流出した低圧ガス冷媒は、ガス冷媒配管154を流れて室内ユニット130から流出した後、分岐ユニット120に流入する。分岐ユニット120に流入した低圧のガス冷媒は、流路切替弁124(流路切替弁124a、流路切替弁124b、流路切替弁124c)を経て、合流されて低圧主管152に流れる。低圧主管152に流れた低圧のガス冷媒は、分岐ユニット120から流出した後、熱源ユニット110に流入する。熱源ユニット110に流入した低圧のガス冷媒は、逆止弁113a、切替弁112、アキュームレーター116を経て、再び圧縮機111へ吸入される。このように冷媒が流れる回路を冷房運転時の主回路とする。
[暖房運転モード]
 次に、運転している全部の室内ユニット130が暖房運転をしており、給湯ユニット140が給湯運転をしているときの暖房運転モード時における冷媒回路、及び、その運転内容を説明する。
 熱源ユニット110において、低圧のガス冷媒は、圧縮機111へ吸入され、高温・高圧のガス冷媒となり、切替弁112、逆止弁113cを経て、高圧主管151へ流れる。高圧主管151へ流れた冷媒は、熱源ユニット110から流出した後、分岐ユニット120に流入する。分岐ユニット120において、高圧主管151から流れてきた高圧のガス冷媒は、気液分離器121、流路切替弁124(流路切替弁124a、流路切替弁124b、流路切替弁124c)を経て、ガス冷媒配管154へ流れる。ガス冷媒配管154を流れる冷媒は、分岐ユニット120から流出した後、室内ユニット130及び給湯ユニット140に流入する。
 室内ユニット130に流入した高圧のガス冷媒は、室内側熱交換器132に流入し、室内側熱交換器132にて凝縮され、高圧の液冷媒となって室内側熱交換器132から流出する。室内側熱交換器132から流出した高圧の液冷媒は、室内側絞り装置131にて、低圧の液とガスの二相冷媒、または、低圧の液冷媒となり、液冷媒配管153へ流れ、室内ユニット130から流出した後、分岐ユニット120に流入する。
 また、給湯ユニット140に流入した高圧のガス冷媒は、冷媒-水熱交換器142に流入し、冷媒-水熱交換器142にて凝縮され、高圧の液冷媒となって冷媒-水熱交換器142から流出する。冷媒-水熱交換器142から流出した高圧の液冷媒は、給湯側絞り装置141にて、低圧の液とガスの二相冷媒、または、低圧の液冷媒となり、液冷媒配管153へ流れ、給湯ユニット140から流出した後、分岐ユニット120に流入する。
 液冷媒配管153を流れる低圧の冷媒は、分岐ユニット120にて合流された後、絞り装置123を経て、低圧主管152へ流れる。低圧主管152から流れる低圧の冷媒は、分岐ユニット120から流出した後、熱源ユニット110に流入する。熱源ユニット110に流入した冷媒は、逆止弁113b、熱交換器114、切替弁112、アキュームレーター116を経て、再び圧縮機111へ吸入される。このように冷媒が流れる回路を暖房運転時の主回路とする。
 次に負荷側ユニットに蒸発器(冷房運転室内機)と凝縮器(暖房運転室内機、給湯機)が混在した運転について説明する。混在した運転としては冷房主体運転モードと暖房主体運転モードの2種類の運転モードが存在し、空調給湯複合システム100の冷媒の凝縮温度と蒸発温度を熱源ユニット内で設定された目標値と比較することで、能力または効率が最も高くになるように運転モードを切換えるようになっている。以下にそれぞれの運転モードについて説明する。
[冷房主体運転モード]
 次に、室内ユニット130が冷房暖房混在運転をしており、給湯ユニット140が給湯運転をしており、暖房負荷よりも冷房負荷の方が大きい冷房主体運転モード時における冷媒回路、及び、その運転内容を説明する。なお、ここでは、室内ユニット130が冷房運転、給湯ユニット140が給湯運転をしているときを例に冷房主体運転モードを説明する。
 熱源ユニット110において、低圧のガス冷媒は、圧縮機111へ吸入され、高温・高圧のガス冷媒となり、切替弁112を経て、熱交換器114へ流入する。熱交換器114に流入した高圧のガス冷媒は、熱交換器114に供給される空気と熱交換することにより凝縮して高圧の液とガスの二相冷媒となり、熱交換器114から流出する。熱交換器114から流出した高圧の二相冷媒は、逆止弁113dを経て、高圧主管151へ流れ、熱源ユニット110から流出した後、分岐ユニット120に流入する。
 分岐ユニット120において、高圧主管151から流れてきた高圧の二相冷媒は、気液分離器121にて高圧の飽和ガスと高圧の飽和液に分離される。気液分離器121で分離された高圧の飽和ガスは、流路切替弁124cを経て、ガス枝管154cへ流れる。ガス枝管154cから流れる高圧のガス冷媒は、分岐ユニット120から流出した後、給湯ユニット140に流入する。給湯ユニット140に流入した冷媒は、冷媒-水熱交換器142にて凝縮され、高圧の液冷媒となり、冷媒-水熱交換器142から流出する。冷媒-水熱交換器142から流出した高圧の液冷媒は、給湯側絞り装置141にて、中間圧の液とガスの二相冷媒、または、中間圧の液冷媒となり、液冷媒配管153へ流れ、給湯ユニット140から流出した後、冷房時に用いる冷媒として再利用される。
 一方、気液分離器121で分離された高圧の飽和液は、絞り装置122を経て、給湯ユニット140から流れてきた冷媒と合流し、液冷媒配管153へ流れ、分岐ユニット120から流出する。分岐ユニット120から流出した冷媒は、室内ユニット130に流入する。室内ユニット130では、室内側絞り装置131にて、低圧の液とガスの二相冷媒、または、低圧の液冷媒となり、室内側熱交換器132へ流れる。室内側熱交換器132に流入した低圧二相冷媒または低圧液冷媒は、室内側熱交換器132にて蒸発し、低圧のガス冷媒となり、室内側熱交換器132から流出する。
 室内側熱交換器132から流出した低圧ガス冷媒は、ガス枝管154a、ガス枝管154bを流れて室内ユニット130から流出した後、分岐ユニット120に流入する。
 また、液管153の区間に溜まる液冷媒量が多くなると、液管の圧力が上昇し、暖房室内ユニットとの差圧が小さくなることから、暖房室内機に流れる冷媒循環量が少なくなり、暖房能力低下となる。そのため、液ラインに溜まった液を逃がすため、絞り装置123を適度に開くことで液ラインに溜まる液を低圧管152へ流すことで液ラインの圧力の調整をする。よって、分岐ユニット120から流出した冷媒は室内ユニット130から流入した低圧のガス冷媒と絞り装置123から流入した液冷媒が混合することで低圧の二相冷媒となる。分岐ユニット120に流入した低圧の二相冷媒は、流路切替弁124(流路切替弁124a、流路切替弁124b)を経て、合流されて低圧主管152に流れる。低圧主管152に流れた低圧の二相冷媒は、分岐ユニット120から流出した後、熱源ユニット110に流入する。熱源ユニット110に流入した低圧の二相冷媒は、逆止弁113a、切替弁112、アキュームレーター116を経て、再び圧縮機111へ吸入される。このように冷媒が流れる回路を冷房主体運転時の主回路とする。
[暖房主体運転モード]
 次に、室内ユニット130が冷房暖房混在運転をしており、給湯ユニット140が給湯運転をしており、冷房負荷よりも暖房負荷の方が大きい暖房主体運転モード時における冷媒回路、及び、その運転内容を説明する。なお、ここでは、室内ユニット130が冷房運転、給湯ユニット140が給湯運転をしているときを例に暖房主体運転モードを説明する。
 熱源ユニット110において、低圧のガス冷媒は、圧縮機111へ吸入され、高温・高圧のガス冷媒となり、切替弁112、逆止弁113cを経て、高圧主管151へ流れる。高圧主管151へ流れた冷媒は、熱源ユニット110から流出した後、分岐ユニット120に流入する。分岐ユニット120において、高圧主管151から流れてきた高圧のガス冷媒は、気液分離器121、流路切替弁124cを経て、ガス枝管154cへ流れる。ガス枝管154cを流れる冷媒は、分岐ユニット120から流出した後、給湯ユニット140に流入する。
 給湯ユニット140に流入した高圧のガス冷媒は、冷媒-水熱交換器142に流入し、冷媒-水熱交換器142にて凝縮され、高圧の液冷媒となって冷媒-水熱交換器142から流出する。冷媒-水熱交換器142から流出した高圧の液冷媒は、給湯側絞り装置141にて、中間圧の液とガスの二相冷媒、または、中間圧の液冷媒となり、液枝管153cへ流れ、給湯ユニット140から流出した後、分岐ユニット120に流入する。
 分岐ユニット120に流入した中間圧の冷媒は、液枝管153a、液枝管153bへ流れる。この冷媒は、分岐ユニット120から流出した後、室内ユニット130a、室内ユニット130bに流入する。室内ユニット130a、室内ユニット130bに流入した冷媒は、室内側絞り装置131にて、低圧の液とガスの二相冷媒、または、低圧の液冷媒となり、室内側熱交換器132へ流入する。室内側熱交換器132に流入した低圧の液冷媒は、室内側熱交換器132にて蒸発し、低圧のガス冷媒となり、室内側熱交換器132から流出する。
 また、液管153の区間に溜まる液冷媒量が多くなると、液管の圧力が上昇し、暖房室内ユニットとの差圧が小さくなることから、暖房室内機に流れる冷媒循環量が少なくなり、暖房能力低下となる。そのため、液ラインに溜まった液を逃がすため、絞り装置123を適度に開くことで液ラインに溜まる液を低圧管152へ流すことで液ラインの圧力の調整をする。よって、分岐ユニット120から流出した冷媒は室内ユニット130から流入した低圧のガス冷媒と絞り装置123から流入した液冷媒が混合することで低圧の二相冷媒となる。室内側熱交換器132から流出した冷媒は、ガス冷媒配管154へ流れる。ガス冷媒配管154から流れる低圧の二相冷媒は、室内ユニット130a、室内ユニット130bから流出した後、分岐ユニット120に流入する。分岐ユニット120に流入した低圧の二相冷媒は、流路切替弁124(流路切替弁124a、流路切替弁124b)を経て、低圧主管152に流れる。低圧主管152に流れた低圧の二相冷媒は、分岐ユニット120から流出した後、熱源ユニット110に流入する。熱源ユニット110に流入した低圧のガス冷媒は、逆止弁113b、熱交換器114、切替弁112、アキュームレーター116を経て、再び圧縮機111へ吸入される。このように冷媒が流れる回路を運転主体運転時における主回路とする。
[室内ユニット130から『運転許可要求』を受けた場合の処理]
 図3は、室内ユニット130の運転追加時における運転容量制約処理の流れを示すフローチャートである。図3に基づいて、空調給湯複合システム100が実行する室内ユニット130の運転追加時における運転容量制約処理の流れについて説明する。図3に示す処理320は、ステップS321~ステップS326により実行される。
 制御手段200が室内ユニット130から『運転許可要求』を受信した際に運転容量制約処理を実行する(ステップS310)。制御手段200は、室内ユニット130から『運転許可要求』を受信する処理をした場合、運転中の室内ユニット130の容量値(たとえば容量のコードQj)の合算値ΣQj_IDUを算出する(ステップS321)。次に、制御手段200は、給湯ユニット140の容量を示す値の合算値ΣQj_HWSを算出する(ステップS322)。それから、制御手段200は、『運転許可要求』を出力している室内ユニット130の容量ΔQjを格納する(ステップS323)。
 そして、制御手段200は、合算値ΣQj_IDUと合算値ΣQj_HWSに対して、『運転許可要求』を出力している室内ユニット130の容量ΔQjが加算された場合、運転容量の最大値ΣQj_maxを超えているかどうかを判断する(ステップS324)。この判断は、図3のステップS324に示す数式(ΣQj_IDU+ΣQj_HWS+ΔQj≦ΣQj_max)を用いて行うとよい。
 制御手段200は、ΣQj_IDU+ΣQj_HWS+ΔQj≦ΣQj_maxであると判断すると(ステップS324;YES)、『運転許可要求』を出力している室内ユニット130に対し、『運転許可』を送信し、その室内ユニット130の運転を実施する(ステップS325)。一方、制御手段200は、ΣQj_IDU+ΣQj_HWS+ΔQj>ΣQj_maxであると判断すると(ステップS324;No)、『運転許可要求』を出力している室内ユニット130に対し、『運転停止』を送信し、その室内ユニット130の運転を開始させない(ステップS326)。
[給湯ユニット140から『運転許可要求』を受けた場合の処理]
 図4は、給湯ユニット140の運転追加時における運転容量制約処理の流れを示すフローチャートである。図4に基づいて、空調給湯複合システム100が実行する給湯ユニット140の運転追加時における運転容量制約処理の流れについて説明する。図4に示すフローチャートは、室内ユニット130のうち少なくとも1台、給湯ユニット140のうち少なくとも1台が運転している状態において他の給湯ユニット140から追加要求があった場合の処理の流れを示している。なお、図4に示す処理420は、ステップS421~ステップS427により実行される。また、図4に示す処理425は、ステップS425a~ステップS425cにより実行される。
 制御手段200が給湯ユニット140から『運転許可要求』を受信した際に運転容量制約処理を実行する(ステップS410)。制御手段200は、給湯ユニット140から『運転許可要求』を受信する処理をした場合、運転中(サーモON/OFF含む)の給湯ユニット140の容量を示す値の合算値ΣQj_HWSを算出する(ステップS421)。次に、制御手段200は、『運転許可要求』を出力している給湯ユニット140の容量ΔQjを格納する(ステップS422)。
 そして、制御手段200は、合算値ΣQj_HWSに対して、『運転許可要求』を出力している給湯ユニット140の容量ΔQjが加算された場合、運転容量の最大値ΣQj_maxを超えているかどうかを判断する(ステップS423)。この判断は、図4のステップS423に示す数式(ΣQj_HWS+ΔQj≦ΣQj_max)を用いて行うとよい。
 制御手段200は、ΣQj_HWS+ΔQj≦ΣQj_maxであると判断すると(ステップS423;YES)、運転中(サーモON/OFF含む)の室内ユニット130の容量値の合算値ΣQj_IDUを計算する(ステップS424)。それから、制御手段200は、室内ユニット130及び給湯ユニット140の負荷情報(サーモ温度(吸込温度)、設定温度、各室内ユニット130を識別するアドレス番号)をモニタする(ステップS425a)。そして、制御手段200は、所定の条件((1)「サーモ温度-設定温度」が最小)であること、(2)(1)の中でアドレスが最も若いこと)を全部満たした室内ユニット130に対して「運転禁止」を送信する(ステップS425b)。
 すなわち、少なくとも1台の室内ユニット130が運転している状態において、室内ユニット130内部のサーモ温度(吸込温度)と設定温度の温度差を負荷として捉え、運転している室内ユニット130の要求負荷の大きさを管理でき、任意に設定した時間内において要求負荷の大きい室内ユニット130から優先的に運転させることが可能になる。
 その後で、制御手段200は、運転中の室内ユニット130の容量値の合算値ΣQj_IDUを、合算値ΣQj_HWS+ΔQjに加算し、この値が運転容量の最大値ΣQj_maxを超えているかどうかを判断する(ステップS425c)。この判断は、図4のステップS425cに示す数式(ΣQj_IDU+ΣQj_HWS+ΔQj≦ΣQj_max)を用いて行うとよい。
 制御手段200は、ΣQj_IDU+ΣQj_HWS+ΔQj≦ΣQj_maxであると判断すると(ステップS425c;YES)、『運転許可要求』を出力している給湯ユニット140に対し、『運転許可』を送信し、その給湯ユニット140の運転を実施する(ステップS426)。一方、制御手段200は、ΣQj_IDU+ΣQj_HWS+ΔQj>ΣQj_maxであると判断すると(ステップS425c;No)、ステップS425bの処理に戻り、ΣQj_IDU+ΣQj_HWS+ΔQj≦ΣQj_maxとなるまで繰り返す。
 なお、制御手段200は、ステップS423でΣQj_HWS+ΔQj>ΣQj_maxであると判断すると(ステップS423;No)、『運転許可要求』を出力している給湯ユニット140に対し、『運転停止』を送信し、その給湯ユニット140の運転を開始させない(ステップS427)。
[ユニット運転停止時における処理]
 図5は、ユニットの運転停止時における運転容量制約処理の流れを示すフローチャートである。図5に基づいて、空調給湯複合システム100が実行するユニットの運転停止時における運転容量制約処理の流れについて説明する。なお、ここでいうユニットとは、室内ユニット130、給湯ユニット140の双方を含んでいるものとする。
 制御手段200が室内ユニット130及び給湯ユニット140のうちの少なくとも1台から『運転停止』を受信する処理をした際に運転容量制約処理を実行する(ステップS510)。制御手段200は、室内ユニット130及び給湯ユニット140のうちの少なくとも1台から『運転停止』を受信する処理をした場合、『運転停止』を出力したユニットを停止させ、『運転許可要求』を受信したが、ステップS326又はステップS427にて『運転停止』が送信されているユニットが存在しているかどうかの確認を実施する(ステップS511)。
 制御手段200は、『運転許可要求』を出力したが『運転停止』が送信されているユニットが存在していると判断すると(ステップS511;ユニット有)、そのユニットが室内ユニット130であるのか給湯ユニット140であるのかどうかを確認する(ステップS512)。そのユニットが室内ユニット130であると判断すると(ステップS512;室内ユニット)、制御手段200は、図3に示す処理320を実行する。一方、そのユニットが給湯ユニット140であると判断すると(ステップS512;給湯ユニット)、制御手段200は、図4に示す処理420を実行する。
 一方、制御手段200は、『運転許可要求』を出力したが『運転停止』が送信されているユニットが存在していないと判断すると(ステップS511;ユニット無)、制御処理を終了する(ステップS520)。
[給湯ユニット140の能力が不足している場合]
 制御手段200は、給湯ユニット140に関して、温度検知素子143(入口水温センサ)、温度検知素子144(出口水温センサ)から入口水温及び出口水温の情報を取得している。制御手段200は、入口水温と出口水温との差温と定格の水温とを比較する。そして、制御手段200は、入口水温と出口水温との差温が定格の水温よりも小さい場合には、能力不足、つまり要求されている負荷に対して供給能力が小さいと判断し、図4に示す処理425を実施する。こうすることで、室内ユニット130のサーモ温度と設定温度の差温がもっとも小さいものを1台停止し、給湯ユニット140へ能力を配分する処理を実施することが可能になる。
 上記の処理を実施することで、空調給湯複合システム100において給湯ユニット140優先の制御動作を組み込むことが可能になり、特定の室内ユニット130を運転させないようにして、冬場でのチラー主体の運転が実現できる。そのため、熱源ユニット110に対しより多くの室内ユニット130、給湯ユニット140を接続することが可能である。よって、空調給湯複合システムでは、空調、給湯負荷を満足しつつ、熱源ユニット110が接続、運転可能な容量以上の接続、運転が可能となる。また、空調給湯複合システム100では、熱源ユニット110が接続、運転可能な容量以上の接続、運転が可能となるため、設備投資費用が低コストになるだけでなく、設置スペースの節約にも寄与できる。
 また、図4に示す処理425を任意に設定した時間で逐次実施するとよい。こうすることで、『運転許可要求』を出力したが『運転停止』が送信されているユニットが存在している場合、室内ユニット130及び給湯ユニット140の負荷を確認し、運転する室内ユニット130及び給湯ユニット140を交代させることができ、運転最大容量ΣQj_maxの制約の中で室内ユニット130をローテーションさせながら運転させることができる。よって、空調給湯複合システム100によれば、中間期等の負荷が小さい季節において、長時間で見た場合に見かけ上、熱源ユニット110の運転容量以上の室内ユニット130を運転させることが可能である。
 ここで、空調給湯複合システム100に使用可能な冷媒について説明する。空調給湯複合システム100の冷凍サイクルに使用できる冷媒には、非共沸混合冷媒や擬似共沸混合冷媒、単一冷媒等がある。非共沸混合冷媒には、HFC(ハイドロフルオロカーボン)冷媒であるR407C(R32/R125/R134a)等がある。この非共沸混合冷媒は、沸点が異なる冷媒の混合物であるので、液相冷媒と気相冷媒との組成比率が異なるという特性を有している。擬似共沸混合冷媒には、HFC冷媒であるR410A(R32/R125)やR404A(R125/R143a/R134a)等がある。この擬似共沸混合冷媒は、非共沸混合冷媒と同様の特性の他、R22の約1.6倍の動作圧力という特性を有している。
 また、単一冷媒には、HCFC(ハイドロクロロフルオロカーボン)冷媒であるR22やHFC冷媒であるR134a等がある。この単一冷媒は、混合物ではないので、取り扱いが容易であるという特性を有している。そのほか、自然冷媒である二酸化炭素やプロパン、イソブタン、アンモニア等を使用することもできる。なお、R22はクロロジフルオロメタン、R32はジフルオロメタン、R125はペンタフルオロメタンを、R134aは1,1,1,2-テトラフルオロメタンを、R143aは1,1,1-トリフルオロエタンをそれぞれ示している。したがって、空調給湯複合システム100の用途や目的に応じた冷媒を使用するとよい。
 以上のように、空調給湯複合システム100によれば、空調、給湯負荷を満足しつつ、熱源ユニット110が接続、運転可能な容量以上の接続、運転が可能となり、さらに設備投資費用が低コストになり、設置スペースの節約に寄与することにもなる。
 10 第1接続配管、11 第2接続配管、100 空調給湯複合システム、110 熱源ユニット、111 圧縮機、112 切替弁、113 逆止弁、113a 逆止弁、113b 逆止弁、113c 逆止弁、113d 逆止弁、114 熱交換器、115 送風機、116 アキュームレーター、120 分岐ユニット、121 気液分離器、122 絞り装置、123 絞り装置、124 流路切替弁、124a 流路切替弁、124b 流路切替弁、124c 流路切替弁、130 室内ユニット、130a 室内ユニット、130b 室内ユニット、131 室内側絞り装置、131a 室内側絞り装置、131b 室内側絞り装置、132 室内側熱交換器、132a 室内側熱交換器、132b 室内側熱交換器、133 室内側送風機、133a 室内側送風機、133b 室内側送風機、134 温度検知素子、134a 温度検知素子、134b 温度検知素子、140 給湯ユニット、141 給湯側絞り装置、142 冷媒-水熱交換器、143 温度検知素子、144 温度検知素子、151 高圧主管、152 低圧主管、153 液冷媒配管、153a 液枝管、153b 液枝管、153c 液枝管、154 ガス冷媒配管、154a ガス枝管、154b ガス枝管、154c ガス枝管、155 水回路、200 制御手段、210 熱源ユニット制御手段、211 熱源ユニット容量情報出力手段、212 圧力センサ・温度センサ情報格納手段、213 演算処理回路、214 アクチュエーター制御信号出力手段、220 分岐ユニット制御手段、224 演算処理回路、226 運転許可ユニット判断手段、230 室内ユニット制御手段、240 給湯ユニット制御手段。

Claims (6)

  1.  圧縮機及び熱交換器が搭載された少なくとも1台の熱源ユニットと、
     室内側熱交換器及び室内側絞り装置が搭載された少なくとも1台の室内ユニットと、
     冷媒-水熱交換器及び給湯側絞り装置が搭載された少なくとも1台の給湯ユニットと、
     前記室内ユニットと前記給湯ユニットとを前記熱源ユニットに対して並列接続させる分岐ユニットと、
     を備え、
     少なくとも1台の前記室内ユニットと少なくとも1台の前記給湯ユニットが運転している状態において前記給湯ユニットの少なくとも1台から運転許可要求があったときであって、運転許可要求があった前記給湯ユニットを追加運転すると前記熱源ユニットの容量を超えてしまうとき、
     前記熱源ユニットの運転容量許容内に入るまで、所定の条件を満たした運転中の前記室内ユニットを停止させ、追加要求のあった前記給湯ユニットに前記熱源ユニットの能力を分配する
     空調給湯複合システム。
  2.  前記冷媒-水熱交換器の入口水温と出口水温との温度差が所定値よりも小さくなった場合に、要求されている負荷に対して供給できる能力が小さいと判断し、
     前記熱源ユニットの運転容量許容内に入るまで、所定の条件を満たした運転中の前記室内ユニットを停止させ、追加要求のあった前記給湯ユニットに前記熱源ユニットの能力を分配する
     請求項1に記載の空調給湯複合システム。
  3.  運転中の前記室内ユニット及び前記給湯ユニットの少なくとも1台が停止した際に、運転許可要求があったにもかかわらず停止していた前記給湯ユニットに対し運転許可を与える
     請求項1又は2に記載の空調給湯複合システム。
  4.  停止している前記室内ユニットから運転許可要求があり、運転許可要求があった前記室内ユニットを追加運転すると前記熱源ユニットの容量を超えてしまうとき、
     前記熱源ユニットの運転容量許容内に入るまで運転許可要求があった前記室内ユニットを停止させる
     請求項3に記載の空調給湯複合システム。
  5.  運転している前記室内ユニットのサーモ温度と設定温度との温度差を負荷として捉え、任意に設定した時間内において要求負荷の大きい前記室内ユニットを優先的に運転させる 請求項1~4のいずれか一項に記載の空調給湯複合システム。
  6.  前記熱源ユニットと前記給湯ユニットとの間に、高温出湯用の冷媒回路を接続することで2元サイクル構成とした
     請求項1~5のいずれか一項に記載の空調給湯複合システム。
PCT/JP2011/005499 2011-09-29 2011-09-29 空調給湯複合システム WO2013046269A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11873455.7A EP2781848B1 (en) 2011-09-29 2011-09-29 Combined air-conditioning/hot water supply system
PCT/JP2011/005499 WO2013046269A1 (ja) 2011-09-29 2011-09-29 空調給湯複合システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005499 WO2013046269A1 (ja) 2011-09-29 2011-09-29 空調給湯複合システム

Publications (1)

Publication Number Publication Date
WO2013046269A1 true WO2013046269A1 (ja) 2013-04-04

Family

ID=47994394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005499 WO2013046269A1 (ja) 2011-09-29 2011-09-29 空調給湯複合システム

Country Status (2)

Country Link
EP (1) EP2781848B1 (ja)
WO (1) WO2013046269A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219152A (ja) * 2013-05-08 2014-11-20 三菱電機株式会社 空気調和装置
EP2799784A3 (en) * 2013-04-25 2015-04-29 Panasonic Intellectual Property Management Co., Ltd. Heat pump system control device, heat pump system, and heat pump system control method
WO2015104815A1 (ja) * 2014-01-09 2015-07-16 三菱電機株式会社 空調給湯複合システム
CN105650834A (zh) * 2016-04-05 2016-06-08 珠海格力电器股份有限公司 一种双热源空调机组防冷风的控制方法
US10088198B2 (en) 2014-11-27 2018-10-02 Mitsubishi Electric Corporation Air-conditioning and hot water supplying composite system
CN108844165A (zh) * 2018-09-18 2018-11-20 中国建筑西北设计研究院有限公司 一种具有分布式冷热源的大型集中空调系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3299738B1 (en) * 2016-09-23 2024-08-14 Daikin Industries, Ltd. System for air-conditioning and hot-water supply
CN108105907A (zh) * 2017-03-01 2018-06-01 宁波港菱环境科技股份有限公司 一种热水、空调、采暖三联供系统
MY191401A (en) * 2017-04-11 2022-06-24 Hitachi Johnson Controls Air Conditioning Inc Air-conditioner

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020660B2 (ja) * 1977-09-28 1985-05-23 ダイキン工業株式会社 分離形空気調和機
JPS62162834A (ja) * 1986-01-10 1987-07-18 Daikin Ind Ltd 空気調和機
JPS63189739A (ja) * 1987-01-30 1988-08-05 Daikin Ind Ltd ヒ−トポンプシステム
JPH01281379A (ja) * 1988-05-06 1989-11-13 Daikin Ind Ltd ヒートポンプシステム
JPH02290476A (ja) * 1989-04-28 1990-11-30 Matsushita Electric Ind Co Ltd 冷暖給湯システム装置
JPH0633914B2 (ja) * 1986-06-06 1994-05-02 ダイキン工業株式会社 ヒ−トポンプシステム
JPH07324795A (ja) * 1994-05-30 1995-12-12 Sanyo Electric Co Ltd 蒸気圧縮式空気調和機の制御方法
JPH11118228A (ja) * 1997-10-17 1999-04-30 Mitsubishi Electric Corp 空気調和システム
JP2000193288A (ja) * 1998-12-28 2000-07-14 Sanyo Electric Co Ltd 空気調和装置
JP2004036966A (ja) * 2002-07-02 2004-02-05 Sanyo Electric Co Ltd 給湯暖房ユニットを備えたエンジン駆動ヒートポンプ式空気調和装置及びその運転制御方法
JP2006125722A (ja) * 2004-10-28 2006-05-18 Hitachi Home & Life Solutions Inc ヒートポンプ給湯暖房システム
WO2009098751A1 (ja) 2008-02-04 2009-08-13 Mitsubishi Electric Corporation 空調給湯複合システム
WO2011089652A1 (ja) * 2010-01-22 2011-07-28 三菱電機株式会社 空調給湯複合システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100282434A1 (en) * 2008-03-31 2010-11-11 Mitsubishi Electric Corporation Air conditioning and hot water supply complex system
US8991202B2 (en) * 2008-03-31 2015-03-31 Mitsubishi Electric Corporation Air-conditioning hot-water supply complex system
US20120222440A1 (en) * 2009-11-18 2012-09-06 Mitsubishi Electric Corporation Regrigeration cycle apparatus and information transfer method used therein

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020660B2 (ja) * 1977-09-28 1985-05-23 ダイキン工業株式会社 分離形空気調和機
JPS62162834A (ja) * 1986-01-10 1987-07-18 Daikin Ind Ltd 空気調和機
JPH0633914B2 (ja) * 1986-06-06 1994-05-02 ダイキン工業株式会社 ヒ−トポンプシステム
JPS63189739A (ja) * 1987-01-30 1988-08-05 Daikin Ind Ltd ヒ−トポンプシステム
JPH01281379A (ja) * 1988-05-06 1989-11-13 Daikin Ind Ltd ヒートポンプシステム
JPH02290476A (ja) * 1989-04-28 1990-11-30 Matsushita Electric Ind Co Ltd 冷暖給湯システム装置
JPH07324795A (ja) * 1994-05-30 1995-12-12 Sanyo Electric Co Ltd 蒸気圧縮式空気調和機の制御方法
JPH11118228A (ja) * 1997-10-17 1999-04-30 Mitsubishi Electric Corp 空気調和システム
JP2000193288A (ja) * 1998-12-28 2000-07-14 Sanyo Electric Co Ltd 空気調和装置
JP2004036966A (ja) * 2002-07-02 2004-02-05 Sanyo Electric Co Ltd 給湯暖房ユニットを備えたエンジン駆動ヒートポンプ式空気調和装置及びその運転制御方法
JP2006125722A (ja) * 2004-10-28 2006-05-18 Hitachi Home & Life Solutions Inc ヒートポンプ給湯暖房システム
WO2009098751A1 (ja) 2008-02-04 2009-08-13 Mitsubishi Electric Corporation 空調給湯複合システム
WO2011089652A1 (ja) * 2010-01-22 2011-07-28 三菱電機株式会社 空調給湯複合システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2781848A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2799784A3 (en) * 2013-04-25 2015-04-29 Panasonic Intellectual Property Management Co., Ltd. Heat pump system control device, heat pump system, and heat pump system control method
JP2014219152A (ja) * 2013-05-08 2014-11-20 三菱電機株式会社 空気調和装置
WO2015104815A1 (ja) * 2014-01-09 2015-07-16 三菱電機株式会社 空調給湯複合システム
GB2537453A (en) * 2014-01-09 2016-10-19 Mitsubishi Electric Corp Combined air-conditioning and hot-water supply system
US10088198B2 (en) 2014-11-27 2018-10-02 Mitsubishi Electric Corporation Air-conditioning and hot water supplying composite system
CN105650834A (zh) * 2016-04-05 2016-06-08 珠海格力电器股份有限公司 一种双热源空调机组防冷风的控制方法
CN108844165A (zh) * 2018-09-18 2018-11-20 中国建筑西北设计研究院有限公司 一种具有分布式冷热源的大型集中空调系统
CN108844165B (zh) * 2018-09-18 2023-12-05 中国建筑西北设计研究院有限公司 一种具有分布式冷热源的大型集中空调系统

Also Published As

Publication number Publication date
EP2781848A4 (en) 2015-06-24
EP2781848A1 (en) 2014-09-24
EP2781848B1 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
WO2013046269A1 (ja) 空調給湯複合システム
JP5774225B2 (ja) 空気調和装置
JP6138364B2 (ja) 空気調和機
JP5511983B2 (ja) 空調給湯複合システム
EP2527756B1 (en) Air-conditioning hot-water supply combined system
JP5595521B2 (ja) ヒートポンプ装置
EP2808622B1 (en) Air-conditioning device
WO2016084186A1 (ja) 空調給湯複合システム
EP2902726B1 (en) Combined air-conditioning and hot-water supply system
JPWO2011030429A1 (ja) 空気調和装置
JP6120943B2 (ja) 空気調和装置
JPWO2012032580A1 (ja) 空気調和装置
JP5955409B2 (ja) 空気調和装置
EP2808625B1 (en) A refrigerant charging method for an air-conditioning apparatus
JP5996089B2 (ja) 空気調和装置
JPWO2013046269A1 (ja) 空調給湯複合システム
WO2017179166A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013535635

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011873455

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE