WO2009116156A1 - ジヒドロキシベンゼン誘導体の製造方法 - Google Patents

ジヒドロキシベンゼン誘導体の製造方法 Download PDF

Info

Publication number
WO2009116156A1
WO2009116156A1 PCT/JP2008/055144 JP2008055144W WO2009116156A1 WO 2009116156 A1 WO2009116156 A1 WO 2009116156A1 JP 2008055144 W JP2008055144 W JP 2008055144W WO 2009116156 A1 WO2009116156 A1 WO 2009116156A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
compound represented
ester
water
hydroxyphenyl
Prior art date
Application number
PCT/JP2008/055144
Other languages
English (en)
French (fr)
Inventor
昭憲 長友
大垣 弘毅
剛史 小林
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to BRPI0822448A priority Critical patent/BRPI0822448B1/pt
Priority to US12/918,852 priority patent/US8222446B2/en
Priority to CN200880127751.2A priority patent/CN101959839B/zh
Priority to PCT/JP2008/055144 priority patent/WO2009116156A1/ja
Priority to JP2010503709A priority patent/JP5362703B2/ja
Priority to EP08722518.1A priority patent/EP2269976A4/en
Publication of WO2009116156A1 publication Critical patent/WO2009116156A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/14Preparation of carboxylic acid esters from carboxylic acid halides

Definitions

  • the present invention relates to a method for producing a dihydroxybenzene derivative, and in particular, is used for the purpose of improving the adhesion durability between a metal reinforcing material such as a steel cord and rubber used for rubber articles such as pneumatic tires and industrial belts.
  • the present invention relates to a method for producing a dihydroxybenzene derivative such as a resorcin diester compound.
  • RF resin resorcin-formaldehyde resin
  • FIG. JP-A-2001-234140 an adhesive material made of a mixed polyester having a resorcin skeleton having a weight average molecular weight of 3000 to 45000 has been reported (Japanese Patent Laid-Open No. 7-118621).
  • the present inventors have reported a dihydroxybenzene derivative such as a resorcin diester compound and its composition, which can further improve the wet heat-resistant adhesion property as compared with the above technique (WO 2005-087704).
  • the dihydroxybenzene derivative is usually produced by reacting dihydroxybenzene with a divalent carboxylic acid halide in the presence of a basic compound.
  • the crude yield and the composition are reduced. Reproducibility was not obtained. That is, depending on the diester / oligoester ratio, the physical properties of the obtained cake differed, and there was a problem that the crude yield varied. In particular, when the oligoester was rich, the cake was so sticky that it could not be obtained as a solid.
  • the difference in the composition (diester / oligoester ratio) does not greatly affect wet heat resistance, but there are problems in quality control because of differences in handling and basic physical properties such as melting point. It was.
  • the first object of the present invention is to stably reproduce the composition (diester / oligoester ratio) when a dihydroxybenzene derivative is produced by reacting dihydroxybenzene with a divalent carboxylic acid halide. It is possible to provide a production method capable of maintaining a high crude yield.
  • the dihydroxybenzene derivative usually needs to be produced by reacting a large excess of dihydroxybenzene with a divalent carboxylic acid halide in the presence of a basic compound. There was a need to efficiently recover and optimize the process.
  • the second object of the present invention is to optimize the process for producing dihydroxybenzene derivatives by reacting dihydroxybenzene with divalent carboxylic acid halides, which can efficiently recover dihydroxybenzene. It is to provide a manufacturing method.
  • the present inventors have found that the composition is rich in oligoesters only by reacting dihydroxybenzene and a divalent carboxylic acid halide at a relatively low temperature. It was found that due to the thermal history in the separation process, the oligoester was reacted with the remaining dihydroxybenzene and changed to a diester. It was also confirmed that the divalent carboxylic acid halide has poor thermal stability and cannot withstand the reaction at high temperatures.
  • the production method of the present invention comprises: In the presence of a basic compound, the following general formula (1): And a compound represented by the following general formula (2): [Wherein R represents a divalent aliphatic group having 1 to 16 carbon atoms or a divalent aromatic group, and X represents a halogen atom].
  • the compound represented by the general formula (1) is reacted with the carboxylic acid halide represented by the general formula (2) at a molar ratio of 4 to 30 times. .
  • the step (i) for producing the ester is performed at ⁇ 20 ° C. to 80 ° C.
  • the step (ii) for decomposing the oligomer is carried out at 110 ° C. to 140 ° C.
  • the basic compound is preferably an organic base.
  • the compound represented by the general formula (3) is represented by the following general formula (4): [Wherein, R represents a divalent aliphatic group having 1 to 16 carbon atoms or a divalent aromatic group] is preferable.
  • the suitable example of the manufacturing method of this invention is as follows.
  • a step (a) of dissolving or suspending the compound represented by the general formula (1) in an organic solvent substantially immiscible with water and partially neutralizing with a basic compound Subsequently, the step (b) of reacting while dropping the carboxylic acid halide represented by the general formula (2) to produce an ester,
  • An organic solvent substantially immiscible with water is added to the wastewater generated in the solid-liquid separation operation of the step (d), and the unreacted compound represented by the general formula (1) used as a raw material is obtained.
  • Extracting step (e) After adjusting the concentration of the liquid obtained by dissolving the compound represented by the general formula (1) in an organic solvent immiscible with water obtained in the step (e), the step (a) And a step (f) as a raw material.
  • the substantially water-immiscible organic solvent is preferably selected from ketone-based, ether-based and ester-based organic solvents.
  • the pH of the aqueous layer when extracting the unreacted compound represented by the general formula (1) used as a raw material can be adjusted to 6.5 to 7.5. preferable.
  • the dihydroxybenzene derivative used in order to improve the adhesive durability of metal reinforcement materials, such as a steel cord used for rubber articles, such as a pneumatic tire and an industrial belt, and rubber can be obtained with good reproducibility.
  • a manufacturing method can be provided.
  • the manufacturing method from which a dihydroxybenzene derivative can be obtained efficiently by simple operation can be provided.
  • the method for producing the compound represented by the general formula (3) according to the present invention includes a compound represented by the general formula (1) and a carboxylic acid represented by the general formula (2) in the presence of a basic compound. It comprises a step (i) of reacting with a halide to produce an ester, and a step (ii) of decomposing an oligomer in the ester by heat treatment subsequent to the step (i).
  • Examples of the compound represented by the general formula (1) include catechol, resorcin and hydroquinone. Of these, resorcin is preferred.
  • R in the formula represents a divalent aliphatic group having 1 to 16 carbon atoms or a divalent aromatic group.
  • examples of the divalent aliphatic group having 1 to 16 carbon atoms include linear or branched alkylene such as methylene group, ethylene group, butylene group, isobutylene group, octylene group, and 2-ethylhexylene group.
  • divalent aromatic group include an optionally substituted phenylene group, an optionally substituted naphthylene group, a biphenyl group, and a diphenyl ether group.
  • an alkylene group having 2 to 10 carbon atoms and a phenylene group are preferable, and an ethylene group, a butylene group, and an octylene group are particularly preferable.
  • X in the formula represents a halogen atom.
  • halogen atom chlorine and bromine are preferable.
  • Examples of the carboxylic acid halide represented by the general formula (2) include malonic acid dichloride, succinic acid dichloride, fumaric acid dichloride, maleic acid dichloride, glutaric acid dichloride, adipic acid dichloride, suberic acid dichloride, azelaic acid dichloride, and sebacic acid.
  • Alicyclic such as aliphatic dicarboxylic acid dichloride such as dichloride, 1,10-decanedicarboxylic acid dichloride, 1,12-dodecanedicarboxylic acid dichloride, 1,16-hexadecanedicarboxylic acid dichloride, cyclohexanedicarboxylic acid dichloride, cyclohexene dicarboxylic acid dichloride
  • Aromatic dicarboxylic acid dichlorides such as dicarboxylic acid dichloride, isophthalic acid dichloride, terephthalic acid dichloride, malonic acid dibromide, succinic acid Bromide, fumaric acid dibromide, maleic acid dibromide, glutaric acid dibromide, adipic acid dibromide, suberic acid dibromide, azelaic acid dibromide, sebacic acid dibromide, 1,10-decanedicarboxylic acid dibromide, 1,12
  • malonic acid dichloride succinic acid dichloride, adipic acid dichloride, azelaic acid dichloride, sebacic acid dichloride, terephthalic acid dichloride, isophthalic acid dichloride
  • malonic acid dibromide succinic acid dibromide, adipic acid dibromide, azelaic acid dichloride
  • succinic acid dibromide succinic acid dibromide
  • adipic acid dibromide azelaic acid dichloride
  • Bromide sebacic acid dibromide, terephthalic acid dibromide, isophthalic acid dibromide and the like are preferred.
  • Examples of the compound represented by the general formula (3) include a compound represented by the general formula (4).
  • R in General formula (3) and General formula (4) is synonymous with R in General formula (2).
  • the compound represented by the general formula (3) include malonic acid bis (2-hydroxyphenyl) ester, succinic acid bis (2-hydroxyphenyl) ester, fumaric acid bis (2-hydroxyphenyl) ester, Maleic acid bis (2-hydroxyphenyl) ester, Malic acid bis (2-hydroxyphenyl) ester, Itaconic acid bis (2-hydroxyphenyl) ester, Citraconic acid bis (2-hydroxyphenyl) ester, Adipic acid bis (2- Hydroxyphenyl) ester, tartrate bis (2-hydroxyphenyl) ester, azelaic acid bis (2-hydroxyphenyl) ester, sebacic acid bis (2-hydroxyphenyl) ester, cyclohexanedicarboxylic acid bis (2-hydroxyphenyl) ester, Bis (2-hydroxyphenyl) oxalate, bis (2-hydroxyphenyl) isophthalate, bis (3-hydroxyphenyl) malonate, bis (3-hydroxyphenyl) succinate, bis (3-hydroxy fume,
  • malonic acid bis (3-hydroxyphenyl) ester succinic acid bis (3-hydroxyphenyl) ester, fumaric acid bis (3-hydroxyphenyl) ester, maleic acid bis (3-hydroxyphenyl) ester, malic acid Bis (3-hydroxyphenyl) ester, Itaconic acid bis (3-hydroxyphenyl) ester, Citraconic acid bis (3-hydroxyphenyl) ester, Adipic acid bis (3-hydroxyphenyl) ester, Tartrate bis (3-hydroxyphenyl) Esters, azelaic acid bis (3-hydroxyphenyl) ester, sebacic acid bis (3-hydroxyphenyl) ester, cyclohexanedicarboxylic acid bis (3-hydroxyphenyl) ester are preferred, and in particular, succinic acid bis (3-hydroxyphenyl) ester. Phenyl) ester, adipic acid bis (3-hydroxyphenyl) ester, sebacic acid bis (3-hydroxyphenyl) ester are preferred.
  • the compound represented by the general formula (1) and the dicarboxylic acid halide represented by the general formula (2) are converted into a basic compound.
  • the oligoester represented by the above general formula (5) There is also a significant amount of body. Therefore, in the step (ii), that is, in the “oligomer decomposition step”, the compound represented by the above general formula (1) (for example, resorcin) remaining excessively after the esterification step is used.
  • the oligoester represented by the formula (5) is converted into a compound represented by the above general formula (3), particularly a compound represented by the above general formula (4) by transesterification.
  • the basic compound used in the esterification step (i) may be an organic base or an inorganic base.
  • the organic base include organic amines such as pyridine, ⁇ -picoline, N-methylmorpholine, dimethylaniline, diethylaniline, trimethylamine, triethylamine, and tributylamine.
  • the inorganic base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkali metal carbonates such as potassium carbonate and sodium carbonate.
  • organic bases that also act as a solvent are preferable, and pyridine, ⁇ -picoline, N-methylmorpholine, dimethylaniline, and the like are particularly preferable in consideration of basicity.
  • the amount of the basic compound used in the esterification step (i) is not particularly limited, and the compound represented by the general formula (1) can be dissolved and stirred at the reaction temperature of the esterification step (i). As long as it is possible to ensure fluidity. Usually, 1/2 to 3 times the weight of the compound of the general formula (1) used is used.
  • the compound represented by the general formula (1) is usually 4 to 30 times, preferably 5 to 25 times, more than the carboxylic acid halide represented by the general formula (2).
  • the reaction is preferably performed at a molar ratio of 8 to 20 times.
  • the oligoester is the main product.
  • the molar ratio of the compound represented by the general formula (1) is higher than the above range, not only a difference in reaction selectivity is not observed, but also volume efficiency is deteriorated.
  • a solvent can be used for the purpose of dissolving raw materials and products.
  • the above-described organic base may be used as it is, or another organic solvent that does not inhibit the reaction may be used.
  • examples of such a solvent include ether solvents such as dimethyl ether and dioxane.
  • the raw material charging method is not particularly limited.
  • the carboxylic acid halide represented by the general formula (2) is dropped into the solution of the compound represented by the general formula (1). Is adopted.
  • the dropping rate of the carboxylic acid halide is not particularly limited, and may be appropriately determined within a range in which a desired temperature in the esterification step (i) can be maintained.
  • the dropping time is about 2 to 20 hours.
  • an aging time may be introduced as appropriate, and the aging time is usually about 1 to 10 hours.
  • the esterification step (i) is usually performed at ⁇ 20 ° C. to 80 ° C., preferably ⁇ 10 ° C. to 60 ° C., more preferably 0 ° C. to 50 ° C. If the temperature is lower than this, the reaction rate decreases and time is required. At higher temperatures, the reaction selectivity at the end of the oligomer decomposition step (ii) tends to decrease.
  • the oligomer decomposition step (ii) is usually 105 ° C. to 140 ° C., preferably 110 ° C. to 140 ° C., more preferably 110 ° C. to 130 ° C., even more preferably 115 ° C. to 130 ° C., particularly 115 ° C. to 125 ° C. Done in Below this temperature, the oligomer degradation rate is slow and time is required. At higher temperatures, depending on the type of diester, the skeletal balance tends to be lost, and by-products may be observed due to thermal history.
  • the time required for the oligomer decomposition step (ii) varies depending on the molar ratio of the compound represented by the general formula (1) and the carboxylic acid halide represented by the general formula (2), but is usually about 2 to 20 hours. Is a guide. When the time is shorter than this, the decomposition of the oligomer is insufficient and the diester / oligoester ratio tends to deteriorate. On the other hand, when aging is performed for a longer time than this, there is a concern that by-products and decomposition products are generated due to thermal history.
  • a desired temperature at the time of oligomer decomposition may not be reached depending on the type.
  • the temperature may be raised to the desired oligomer decomposition temperature after or after the used base or solvent is distilled off.
  • the oligomer decomposition reaction occurs when the desired temperature is reached during the distillation of the basic compound, but the higher the concentration of the compound represented by the general formula (1), the better the oligomer decomposition efficiency. It is preferable to perform oligomer decomposition after distilling off the compound.
  • the compound represented by the general formula (3) obtained by the production method of the present invention can be isolated from the reaction mixture by a known method. That is, a basic compound used in the reaction and a compound represented by the general formula (1) by an operation such as distillation under reduced pressure, and a method of distilling off the organic solvent when an organic solvent is used in the reaction, Examples include a method of reprecipitation by adding a poor solvent of the compound represented by the general formula (3) to the reaction mixture, a method of adding water and an organic solvent immiscible with water to the reaction mixture, and extracting the organic layer. It is done. Moreover, you may refine
  • water is usually used as a poor solvent for the compound represented by the general formula (3).
  • the organic solvent immiscible with water include esters such as ethyl acetate and butyl acetate, and ketones such as methyl isobutyl ketone and diisobutyl ketone.
  • the compound represented by the general formula (4) is obtained, but the product represented by the general formula (5)
  • the oligoester body represented by this may be contained.
  • the compound represented by the general formula (4) is usually 60 to 100% by weight
  • the general formula (5) In which n is 3 and 0 to 10% by weight, and the compound represented by the general formula (5) and n is 4 to 6 is contained in a total of about 10% by weight, preferably in the general formula (5) 0 to 30% by weight of the represented compound is contained.
  • ratios can be controlled by changing the molar ratio of the carboxylic acid halide and resorcin represented by the general formula (2). That is, the higher the molar ratio of resorcin to carboxylic acid halide, the lower the ratio of the oligoester represented by the general formula (5).
  • a product contains these oligoester bodies, it can be isolated from a reaction mixture containing these by a method similar to the isolation method of the compound represented by the general formula (3).
  • the oligoester represented by the general formula (5) reacts with excess resorcin (transesterification reaction), and the diester composition represented by the general formula (4) becomes rich. Thereafter, the oligomer decomposition mass is discharged into water to perform reprecipitation. Since there is concern about hydrolysis of the product, it is usually carried out by a prescription in which an oligomer decomposition mass is dropped into water cooled to about 5 to 30 ° C. The resulting precipitate is collected by filtration, washed with water, and then dried at about 40 to 80 ° C. under reduced pressure or in an inert gas stream.
  • the reaction is generally performed using a large excess of the compound represented by the general formula (1) with respect to the carboxylic acid halide represented by the general formula (2) in the presence of a basic compound. Therefore, in the implementation, it is preferable to efficiently recover the unreacted compound represented by the general formula (1) to optimize the process.
  • the substantially water-immiscible organic solvent means an organic solvent having a solubility in water of 5% by weight or less, and is generally selected from ketone-based, ether-based and ester-based organic solvents.
  • the ketone organic solvent include methyl isobutyl ketone, ethyl isobutyl ketone, and diisobutyl ketone.
  • the ether organic solvent include diethyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether and the like.
  • the ester organic solvent include ethyl acetate, butyl acetate, amyl acetate and the like. Among these, methyl isobutyl ketone is most preferable from the viewpoints of reaction selectivity, recovery rate of the compound represented by the general formula (1), boiling point, and the like.
  • an organic base or an inorganic base may be used as in the above step (i).
  • an inorganic base is preferable in the step (a), and sodium hydroxide and potassium hydroxide are particularly preferable.
  • These inorganic bases may be used as a solid or as an aqueous solution.
  • the amount of the basic compound used for partial neutralization in the step (a) is usually 1.0 to 1.5 equivalents, preferably 1 of the carboxylic acid halide represented by the general formula (2) used in the reaction. 0.0 to 1.2 equivalents, more preferably 1.0 to 1.05 equivalents. Below this range, it is deficient than the stoichiometric amount. On the other hand, when it exceeds this range, the yield tends to decrease.
  • the esterification step (b) is performed while dropping the carboxylic acid halide represented by the general formula (2).
  • the molar ratio of the compound represented by the general formula (1) and the carboxylic acid halide represented by the general formula (2), the dropping rate of the carboxylic acid halide, the dropping time, the aging time, and the like are the steps described above ( Same as i).
  • the esterification step (b) is usually performed at ⁇ 20 ° C. to 50 ° C., preferably ⁇ 10 ° C. to 40 ° C., more preferably 0 ° C. to 30 ° C. If the temperature is lower than this range, the reaction rate decreases and time is required. On the other hand, at temperatures higher than this range, depending on the type of carboxylic acid halide, the reaction selectivity at the end of the oligomer decomposition step tends to decrease.
  • the concentration of the esterification step (b) is not particularly limited as long as liquidity sufficient to sufficiently stir in the desired temperature range can be secured, and the compound represented by the general formula (1) in the step (a)
  • the concentration is usually 5 to 60% by weight, preferably 10 to 55% by weight, more preferably 20 to 50% by weight. At concentrations lower than this range, volumetric efficiency is low. On the other hand, if the concentration is higher than this range, the viscosity tends to be high, and the stirring tends to fail.
  • step (a) when an inorganic base is used as the basic substance, neutralized product water is generated. Furthermore, when an aqueous solution of an alkali metal hydroxide or the like is used, water derived from the basic compound is present in the system. If the process proceeds to the oligomer decomposition step (c) while containing water in the system, there is a concern about hydrolysis of the product, so it is necessary to remove water after the esterification step (b). In many cases, water has an azeotropic composition with a substantially water-immiscible organic solvent to be used, and the organic solvent separated from the distillate in the system by a known azeotropic dehydration operation. The water is distilled off while returning to the water. Usually, the water concentration in the system is 2% by weight or less, preferably 1% by weight or less as a guide for dehydration.
  • the temperature of the oligomer decomposition step (c) needs to be higher than the temperature in the step (b) and is the same as the step (ii) described above.
  • the esterification reaction mixture (dehydrated in some cases) may be used as it is, or a mixture obtained by distilling off the organic solvent may be used.
  • the desired oligomer decomposition temperature may not be reached. Therefore, the temperature is often raised to the oligomer decomposition temperature after or after the organic solvent is distilled off.
  • the organic solvent is distilled off, there is an advantage that moisture that cannot be sufficiently removed due to mutual solubility during azeotropic dehydration can be removed. It may be distilled off while gradually increasing the internal temperature at a constant degree of vacuum, or may be distilled off while adjusting the degree of vacuum so that the internal temperature becomes constant.
  • the oligomer decomposition step (c) is usually carried out for about 2 to 20 hours, although it depends on the type and temperature of the compound. When the temperature is raised while distilling off the organic solvent, the time is also included. In a time shorter than this range, oligomer decomposition is insufficient and the product composition becomes oligomer rich. On the other hand, heat treatment longer than this range is wasted because no composition change is observed, and in some cases, by-product formation may be observed due to thermal history.
  • the process may proceed to the next step (d) as it is, or may proceed to the step (d) after removing the organic solvent.
  • the concentration of the organic solvent in the mixed liquid after concentration may be 20% or less, preferably 10% or less, as a standard for concentration.
  • the above step (d) is a step of bringing the mixed solution, which has been reacted in the oligomer decomposition step (c), into contact with water to precipitate the product.
  • the solvent used in the step (d) is basically a poor solvent for the compound represented by the general formula (3) that is a product, and is a good solvent for the compound represented by the general formula (1) that is a raw material. Any solvent can be used, and water is usually used.
  • the water used as the poor solvent in the above step (d) is used 5 to 100 times by weight with respect to the reaction mixture. Below this range, precipitation is insufficient and the yield is low. Above this range, volumetric efficiency deteriorates.
  • the temperature at which the reaction mixture is brought into contact with water which is a poor solvent is usually 0 ° C. to 40 ° C., preferably 0 ° C. to 25 ° C. At temperatures higher than this range, there is a concern about the hydrolysis of the product.
  • the method of bringing the reaction mixture into contact with water which is a poor solvent is not particularly limited as long as the desired temperature can be maintained.
  • the reaction mixture is in a state where most of the solvent is distilled off and the product is dissolved in the compound represented by the general formula (1) as a raw material.
  • a method is adopted in which the precipitate is deposited while dropping or dividing the reaction mixture under heating into water set to a desired temperature.
  • the charging speed is not particularly limited as long as the desired temperature can be maintained, and the step (d) is performed over 0.5 to 10 hours. If the time is shorter than this range, the filtration rate of the crystals obtained tends to be slow. In addition, the state is not particularly changed over a longer time than this range, but the crystal size may change due to the shearing or crushing effect by stirring, and the filtration rate may be slow.
  • the precipitate obtained by contact with water is isolated by solid-liquid separation operations such as filtration and centrifugation.
  • the wet body isolated by the solid-liquid separation operation in the step (d) is dried under normal pressure or reduced pressure.
  • the drying temperature is not particularly limited, but it is often 20 ° C. to 120 ° C., preferably 40 ° C. to 80 ° C. If the temperature is higher than this range, the product may be hydrolyzed. In addition, drying can be shortened while suppressing hydrolysis by increasing the temperature continuously or stepwise from the beginning to the latter half of the drying.
  • the dried solid obtained in the above step (d) may be purified by recrystallization or column purification.
  • the wastewater generated by the solid-liquid separation operation contains a compound represented by the general formula (1) used in excess as a raw material.
  • the same substantially water-immiscible organic solvent as used in the reaction is added to the waste water, and the compound represented by the general formula (1) is extracted. It is a process to do.
  • the amount of the organic solvent used for extraction is not particularly limited, and is appropriately determined depending on the target recovery rate and the number of extractions.
  • the organic solvent is generally 0.05 to 10 times by weight, preferably 0.1 to 5 times by weight, more preferably 0.2 to 2 times by weight of the wastewater per extraction operation. Used by weight. Extraction is insufficient below this range, and even if used above this range, no improvement in extraction rate is observed, leading to deterioration in volumetric efficiency.
  • the number of extractions is not particularly limited and is appropriately determined depending on the target recovery rate, but the conditions (solvent amount, time, temperature) may be determined so as to be completed in about 1 to 3 times. Many.
  • the extraction time is not particularly limited, and it may be extracted after approximately 0.5 to 2 hours of extraction, and then allowed to stand for 0.5 to 2 hours.
  • the extraction temperature is not particularly limited, and is usually 5 ° C. to 80 ° C., preferably 10 ° C. to 70 ° C., and more preferably 20 ° C. to 50 ° C.
  • the wastewater generated in the step (d) there may be a compound represented by the general formula (3) corresponding to the solubility.
  • the compound represented by the general formula (3) is extracted to the organic solvent side in the extraction operation of the step (e), and is used as a raw material after the concentration operation of the step (f). This will improve the yield of the next reaction. Therefore, when the extraction temperature is higher than this range, hydrolysis of the compound represented by the general formula (3) may not lead to an improvement in the yield of the next reaction.
  • the pH of the aqueous layer it is preferable to adjust the pH of the aqueous layer to 6.5 to 7.5 when extracting the unreacted compound represented by the general formula (1) used as a raw material.
  • the pH can be appropriately adjusted by adding an acid such as acetic acid, hydrochloric acid or sulfuric acid, or a base such as sodium hydroxide or potassium hydroxide according to a known method.
  • the step (f) is a step of concentrating the extract obtained in the step (e) so that it can be used as a raw material for the step (a).
  • an organic solvent is used. Add to adjust concentration.
  • the extract contains water corresponding to the saturation solubility, and may be distilled off together with the solvent, or may be first subjected to azeotropic dehydration with the solvent to make it substantially non-aqueous and then concentrated. .
  • the temperature at the time of concentration or azeotropic dehydration is not particularly limited, and is usually carried out at normal pressure or reduced pressure at 20 ° C. to 100 ° C., more preferably 30 ° C. to 70 ° C., more preferably Is 40 ° C. to 60 ° C.
  • the temperature is lower than this range, a high vacuum is required, so that the equipment load such as a vacuum pump and a condenser becomes large.
  • a preferred embodiment of the production method of the present invention including the steps (a) to (f) described above is shown below. 10 times moles of dihydroxybenzene with respect to the carboxylic acid halide used as a raw material is dissolved in a water immiscible solvent of the same weight, and 1.0 to 1.1 equivalents of 25 wt% to the functional group in the carboxylic acid halide. Partial neutralization is performed by adding 30 wt% NaOH water. Thereafter, the mixture is cooled to 10 ° C., the esterification reaction is carried out while continuously or dividedly dropping the carboxylic acid halide while maintaining 10 ° C. to 15 ° C., and ripening is carried out for about 1 hr after the completion of the dropping.
  • the yield of the target dihydroxybenzene derivative represented by the general formula (3) is about 30% to 40%, and most of the oligomer is occupied.
  • azeotropic dehydration with a water-immiscible solvent is performed at 40 ° C. to 65 ° C. to reduce the water concentration in the reaction system to 1% by weight or less, and then the water-immiscible solvent is distilled out of the system.
  • the internal temperature rises as the distillation proceeds, but the solvent distillation ends when the temperature rises to the oligomer decomposition temperature.
  • disassembly is implemented.
  • the composition of the product is determined, and the target dihydroxybenzene derivative represented by the general formula (3) becomes the main product. Then, while keeping the oligomer decomposition mass at such a level that fluidity can be maintained, it is discharged continuously or divided into water cooled to 5 ° C to 25 ° C and re-precipitated. The resulting precipitate is filtered and attached by washing with water. After removing the dihydroxybenzene to be dried, it is dried at about 40 to 80 ° C. under reduced pressure or in an inert gas stream.
  • Example A-1 While a solution of 330.6 g (3.0 mol) of resorcin in 600.0 g of pyridine was kept at 15 ° C. or lower on an ice bath, 54.9 g (0.30 mol) of adipoyl chloride was gradually added dropwise thereto. After completion of the dropwise addition, the resulting reaction mixture was raised to room temperature, and then pyridine was distilled off from the reaction mixture under reduced pressure. Finally, the internal temperature reached about 72 ° C. Thereafter, the temperature was raised to 120 ° C. and aged for 2 hours at the same temperature. The obtained reaction mixture was discharged into 1200 g of water kept at 15 ° C., and cooled to 3 to 5 ° C. to precipitate a precipitate.
  • the oligomer 2) contained 2.0% by weight and the raw material resorcin was contained 2.5% by weight.
  • Example A-2 While a solution of 330.6 g (3.0 mol) of resorcin in 600.0 g of pyridine was kept at 15 ° C. or lower on an ice bath, 54.9 g (0.30 mol) of adipoyl chloride was gradually added dropwise thereto. After completion of the dropwise addition, the resulting reaction mixture was gradually heated and aged at 116 ° C. for 2 hours. Thereafter, pyridine was distilled off under reduced pressure while maintaining 80 ° C. The obtained reaction mixture was discharged into 1200 g of water kept at 15 ° C. and cooled with ice, whereby a precipitate was deposited.
  • the deposited precipitate was filtered and washed with water, and the obtained wet body was dried under reduced pressure to obtain 88.9 g of a white to pale yellow powder (crude yield 89.7% / adipoyl chloride).
  • bis (3-hydroxyphenyl) adipate in the powder was 88.9% by weight.
  • the powder contained 7.2% by weight of oligomer 1, 2.2% by weight of oligomer 2, and 2.2% by weight of raw material resorcin.
  • Example A-3 While maintaining a solution obtained by dissolving 330.6 g (3.0 mol) of resorcin in 600.0 g of pyridine at 15 ° C. or lower on an ice bath, 71.7 g (0.30 mol) of sebacic acid chloride was gradually added dropwise thereto. After completion of the dropwise addition, the resulting reaction mixture was raised to room temperature, and then pyridine was distilled off from the reaction mixture under reduced pressure. Finally, the internal temperature reached about 80 ° C. Thereafter, the temperature was raised to 120 ° C. and aged for 2 hours at the same temperature. The resulting reaction mixture was discharged into 1200 g of water maintained at 15 ° C. and cooled to 3 to 5 ° C. with ice to precipitate.
  • the deposited precipitate is filtered and washed with water, and the obtained wet body is dried under reduced pressure to obtain 75 g of white to pale yellow powder ( The crude yield was 75.7% / adipoyl chloride).
  • bis (3-hydroxyphenyl) adipate in the powder was 72% by weight.
  • the powder contained 10% by weight of oligomer 1, 5% by weight of oligomer 2, and 2.5% by weight of raw material resorcin.
  • Comparative Example A-2 The reaction was carried out in the same manner as in Comparative Example A-1 and the same operation, and the reaction was completed by allowing it to stand overnight. From the reaction mixture, pyridine was distilled off under reduced pressure, and the internal temperature finally reached about 70 ° C. When the obtained reaction solution is discharged into 1200 g of water kept at 15 ° C., a precipitate is deposited. The deposited precipitate is filtered and washed with water, and the obtained wet body is dried under reduced pressure to obtain a white to pale yellow sticky solid. 68 g (crude yield 68.6% / adipoyl chloride) was obtained.
  • the deposited precipitate was filtered and washed with water, and the obtained wet body was dried under reduced pressure to obtain 86.9 g of a white to pale yellow powder (crude yield 75.0% / sebacic acid chloride).
  • bis (3-hydroxyphenyl) sebacate in this powder was 79.1% by weight.
  • the powder contained 15% by area of other components considered to be dimers and 0.4% by weight of raw material resorcin.
  • Example A-1 and Example A-2 an operation of aging at 120 ° C. (oligomer decomposition) was introduced, so that a substantially constant yield and diester / oligoester ratio were obtained regardless of the difference in pyridine distillation. Is held.
  • Example B-1 Resorcin (hereinafter abbreviated as RS) 110.2 g (1.0 mol) was dissolved in methyl isobutyl ketone (hereinafter abbreviated as MIBK) 110 g, and 30.6 wt% NaOH aqueous solution 26.7 g (0.204 mol) was added. Neutralized. Thereafter, the mixture was cooled to 10 ° C., and an esterification reaction was carried out while dropping 18.3 g (0.10 mol) of adipoyl chloride (hereinafter abbreviated as ADC) over 1 hour while maintaining 10 ° C. to 15 ° C. Aging was performed for 1 hour.
  • ADC adipoyl chloride
  • azeotropic dehydration was performed under reduced pressure (around 40 torr) while raising the temperature.
  • the azeotropic dehydration was terminated when the internal temperature reached 65 ° C. after about 3 hours.
  • the water concentration in the system was 0.3% by weight.
  • MIBK was distilled off under reduced pressure (30 torr) while raising the temperature.
  • MIBK distillation was completed.
  • the concentration of MIBK in the system was 5% by weight.
  • the obtained RS / MIBK solution was supplemented and dissolved with a shortage of 23.74 g to prepare 220.2 g of a 50 wt% RS / MIBK solution.
  • Example B-2 The 20.6 g (0.204 mol) of 30.6 wt% NaOH aqueous solution was added to 220.2 g (RS: 1.0 mol) of the 50 wt% RS / MIBK solution obtained in Example B-1, and partially neutralized. Thereafter, the same operation as in Example B-1 was performed to obtain 30.4 g of a light brown powder (crude yield: 93.8% / ADC).
  • RS 1.0 mol
  • Example B-2 The results are shown in Table 1.
  • the obtained RS / MIBK solution was supplemented and dissolved with 23.9 g of the insufficient amount of RS to prepare 220.2 g of a 50 wt% RS / MIBK solution.
  • Example B-3 The same operation as in Example B-2 was carried out using 220.2 g of the 50 wt% RS / MIBK solution obtained in Example B-2 (RS: 1.0 mol). Table 1 shows the composition ratio and crude yield of the crystals obtained.
  • Example B-4 The same operation as in Example B-2 was performed using the 50 wt% RS / MIBK solution obtained in Example B-3. Table 1 shows the composition ratio and crude yield of the crystals obtained.
  • Example B-5 The same operation as in Example B-2 was performed using the 50 wt% RS / MIBK solution obtained in Example B-4. Table 1 shows the composition ratio and crude yield of the crystals obtained.
  • Example B-6 The same operation as in Example B-2 was performed using the 50 wt% RS / MIBK solution obtained in Example B-5. Table 1 shows the composition ratio and crude yield of the crystals obtained.
  • Example B-7 The same operation as in Example B-1 was performed to obtain 29.7 g of a white to pale yellow powder (crude yield 90.1% / ADC).
  • adipic acid bis (3-hydroxyphenyl) ester was 88.9% by weight
  • oligomer (dimer) was 7.4% by weight
  • raw material resorcin was 3.0% by weight. The results are shown in Table 2.
  • Example B-8 To 20.2 g (RS: 1.0 mol) of the 50 wt% RS / MIBK solution obtained in Example B-7, 26.7 g (0.204 mol) of 30.6 wt% NaOH aqueous solution was added for partial neutralization. Thereafter, the same operation as in Example B-1 was performed to obtain 30.3 g of a light brown powder (crude yield: 93.6% / ADC). As a result of HPLC analysis, it was found that the bis (3-hydroxyphenyl) adipate was 86.6% by weight, the oligomer (dimer) was 8.2% by weight, and the raw material resorcin was 3.1% by weight. The results are shown in Table 2.
  • Example B-7 the filtered solution generated by filtration and washing was treated in the same manner as in Example B-7 to prepare 220.2 g of a 50 wt% RS / MIBK solution.
  • Example B-9 The same operation as in Example B-8 was performed using the 50 wt% RS / MIBK solution obtained in Example B-8.
  • Table 2 shows the composition ratio and crude yield of the crystals obtained.
  • Example B-10 The same operation as in Example B-8 was performed using the 50 wt% RS / MIBK solution obtained in Example B-9. Table 2 shows the composition ratio and crude yield of the crystals obtained.
  • Example B-11 Using the 50 wt% RS / MIBK solution obtained in Example B-10, the same operation as in Example B-8 was performed, and the series of operations was repeated 6 times thereafter. Table 2 shows the composition ratio and crude yield of the crystals obtained.

Abstract

 本発明は、塩基性化合物の存在下、下記一般式(1): で表される化合物と、下記一般式(2): [式中、Rは炭素数1~16の2価の脂肪族基又は2価の芳香族基を表し、Xはハロゲン原子を表す]で表されるカルボン酸ハライドとを反応させて、エステルを生成させる工程(i)と、該工程(i)に引き続き熱処理して、前記エステル中のオリゴマーを分解する工程(ii)とを含む、下記一般式(3): [式中、Rは上記と同義である]で表される化合物の製造方法に関するものである。

Description

ジヒドロキシベンゼン誘導体の製造方法
 本発明は、ジヒドロキシベンゼン誘導体の製造方法に関し、特には、空気入りタイヤや工業用ベルト等のゴム物品に用いられるスチールコード等の金属補強材とゴムとの接着耐久性を向上させる目的で使用されるレゾルシンジエステル系化合物等のジヒドロキシベンゼン誘導体の製造方法に関するものである。
 自動車用タイヤ、コンベアベルト、ホース等、特に強度が要求されるゴム製品には、ゴムを補強し強度、耐久性を向上させる目的で、スチールコード等の金属補強材をゴム組成物で被覆した複合材料が用いられている。該ゴム-金属複合材料が高い補強効果を発揮し信頼性を得るためにはゴム-金属補強材間に混合、配合、貯蔵等の条件に左右されない安定した接着が必要である。かかる複合体を得るには、亜鉛、黄銅等でメッキされたスチールコード等の金属補強材を、硫黄を配合したゴム組成物に埋設し加熱加硫時に、ゴムの加硫と同時に接着させるいわゆる直接加硫接着が広く用いられており、これまで該直接加硫接着におけるゴム-金属補強材間の接着性、特に耐湿熱接着性向上のため様々な検討が行われている。
 例えば、レゾルシン又は、レゾルシンとホルマリンを縮合して得られる、レゾルシン-ホルムアルデヒド樹脂(以下、「RF樹脂」と略記する)を耐湿熱接着性向上の目的で配合したゴム組成物が報告されている(特開2001-234140号)。また、重量平均分子量が3000~45000のレゾルシン骨格を有する混合ポリエステルからなる、接着材料が報告されている(特開平7-118621号公報)。
 一方、本発明者らは、上記技術よりもさらに耐湿熱接着性を向上させることが可能なレゾルシンジエステル系化合物等のジヒドロキシベンゼン誘導体およびその組成物を報告している(WO2005-087704号)。
 しかしながら、上記ジヒドロキシベンゼン誘導体は、通常、塩基性化合物の存在下でジヒドロキシベンゼンと2価カルボン酸ハライドとを反応させて製造するが、粗収率およびその組成(ジエステル体/オリゴエステル体比)に再現性が得られなかった。即ち、ジエステル体/オリゴエステル体比により、得られるケーキの物性が異なり、粗収率がばらつく問題があった。特にオリゴエステル体がリッチな場合には、ケーキのべたつきが激しく、固体として得られない場合もあった。また、その組成(ジエステル体/オリゴエステル体比)の違いは、耐湿熱接着性には大きくは影響しないものの、ハンドリングや、融点等の基礎物性に差が現れるため、品質管理上の問題があった。
 そこで、本発明の第一の目的は、ジヒドロキシベンゼンと2価カルボン酸ハライドとを反応させてジヒドロキシベンゼン誘導体を製造する際に、その組成(ジエステル体/オリゴエステル体比)を安定的に再現することが可能で、それにより高い粗収率を維持できる製造方法を提供することにある。
 また、上記ジヒドロキシベンゼン誘導体は、通常、塩基性化合物の存在下で2価カルボン酸ハライドに対して大過剰のジヒドロキシベンゼンを反応させて製造する必要があるため、実施にあたっては、原料のジヒドロキシベンゼンを効率的に回収してプロセスを最適化する必要があった。
 そこで、本発明の第二の目的は、ジヒドロキシベンゼンと2価カルボン酸ハライドとを反応させてジヒドロキシベンゼン誘導体を製造する方法において、ジヒドロキシベンゼンを効率的に回収することが可能で、最適化された製造方法を提供することにある。
 本発明者らは、再現性確保のために鋭意検討した結果、ジヒドロキシベンゼンと2価カルボン酸ハライドとを比較的低温で反応させただけでは、その組成はオリゴエステル体リッチであり、その後の単離過程における熱履歴により、オリゴエステル体が残存するジヒドロキシベンゼンと反応してジエステル体へと変化している事を見出した。また、2価カルボン酸ハライドは、熱安定性に乏しく、高温での反応には耐えられない事も確認できた。そこで、ジヒドロキシベンゼンと2価カルボン酸ハライドとを比較的低温で反応させて、カルボン酸ハライド骨格をジエステル体あるいはオリゴエステル体に完全に転化させた後に、オリゴエステル体を高温で過剰のジヒドロキシベンゼンとのエステル交換反応によりジエステル体に変換する2段階の反応を行う事で、その組成および粗収率に再現性が得られる事を見出した。
 また、本発明者らは、更に検討した結果、反応、単離、ジヒドロキシベンゼン回収等の各単位操作の組み合わせを最適化する事で、簡便な操作で効率良くジヒドロキシベンゼン誘導体を製造できる事を見出し、本発明を完成するに至った。
 即ち、本発明の製造方法は、
 塩基性化合物の存在下、下記一般式(1):
Figure JPOXMLDOC01-appb-I000006
で表される化合物と、下記一般式(2):
Figure JPOXMLDOC01-appb-I000007
[式中、Rは炭素数1~16の2価の脂肪族基又は2価の芳香族基を表し、Xはハロゲン原子を表す]で表されるカルボン酸ハライドとを反応させて、エステルを生成させる工程(i)と、
 該工程(i)に引き続き熱処理して、前記エステル中のオリゴマーを分解する工程(ii)と
 を含むことを特徴とし、下記一般式(3):
Figure JPOXMLDOC01-appb-I000008
[式中、Rは炭素数1~16の2価の脂肪族基又は2価の芳香族基を表す]で表される化合物を製造することができる。
 本発明の製造方法の好適例においては、上記一般式(2)で表されるカルボン酸ハライドに対して、上記一般式(1)で表される化合物を4~30倍のモル比で反応させる。
 本発明の製造方法の他の好適例においては、前記エステルを生成させる工程(i)を-20℃~80℃で実施する。
 本発明の製造方法の他の好適例においては、前記オリゴマーを分解する工程(ii)を110℃~140℃で実施する。
 本発明の製造方法においては、前記塩基性化合物が有機塩基であることが好ましい。
 本発明の製造方法においては、上記一般式(3)で表される化合物が、下記一般式(4):
Figure JPOXMLDOC01-appb-I000009
[式中、Rは炭素数1~16の2価の脂肪族基又は2価の芳香族基を表す]で表される化合物であることが好ましい。
 また、本発明の製造方法の好適例は、
 実質的に水と不混和性の有機溶媒に上記一般式(1)で表される化合物を溶解または懸濁させ、塩基性化合物で部分中和する工程(a)と、
 続いて上記一般式(2)で表されるカルボン酸ハライドを滴下装入しつつ反応させてエステルを生成させる工程(b)と、
 該工程(b)の際の温度よりも高い温度で熱処理して、前記エステル中のオリゴマーを分解する工程(c)と、
 該工程(c)で得られた混合物を水と接触させて生成物を析出させ、固液分離操作および乾燥により生成物の固体を得る工程(d)と、
 該工程(d)の固液分離操作で発生する排水に、実質的に水と不混和性の有機溶媒を添加し、原料として用いた未反応の上記一般式(1)で表される化合物を抽出する工程(e)と、
 該工程(e)で得られた、実質的に水と不混和性の有機溶媒に上記一般式(1)で表される化合物が溶解した液の濃度を調整した後に、前記工程(a)の原料とする工程(f)と
 を含む。ここで、前記実質的に水と不混和性の有機溶媒は、ケトン系、エーテル系およびエステル系の有機溶媒から選択されることが好ましい。また、前記工程(e)においては、原料として用いた未反応の上記一般式(1)で表される化合物を抽出する際の水層のpHを6.5~7.5に調整することが好ましい。
 本発明の製造方法においては、上記一般式(4)で表される化合物中に、下記一般式(5):
Figure JPOXMLDOC01-appb-I000010
[式中、Rは炭素数1~16の2価の脂肪族基又は2価の芳香族基を表し、nは2~6の整数を示す]で表される化合物が0~30重量%含まれていてもよい。
 本発明によれば、空気入りタイヤや工業用ベルト等のゴム物品に用いられるスチールコード等の金属補強材とゴムとの接着耐久性を向上させる目的で使用されるジヒドロキシベンゼン誘導体が再現良く得られる製造方法を提供することができる。また、本発明によれば、簡便な操作で効率良くジヒドロキシベンゼン誘導体が得られる製造方法を提供することができる。
 以下に、本発明を詳細に説明する。本発明に従う上記一般式(3)で表わされる化合物の製造方法は、塩基性化合物の存在下、上記一般式(1)で表される化合物と、上記一般式(2)で表されるカルボン酸ハライドとを反応させて、エステルを生成させる工程(i)と、該工程(i)に引き続き熱処理して、前記エステル中のオリゴマーを分解する工程(ii)とを含むことを特徴とする。
 上記一般式(1)で表される化合物としては、カテコール、レゾルシンおよびハイドロキノンが挙げられる。これらの中ではレゾルシンが好ましい。
 上記一般式(2)で表されるカルボン酸ハライドにおいて、式中のRは、炭素数1~16の2価の脂肪族基、又は2価の芳香族基を表す。ここで、炭素数1~16の2価の脂肪族基としては、例えば、メチレン基、エチレン基、ブチレン基、イソブチレン基、オクチレン基、2-エチルヘキシレン基等の直鎖または分岐鎖のアルキレン基、ビニレン基(エテニレン基)基、ブテニレン基、オクテニレン基等の直鎖または分岐鎖のアルケニレン基、これらのアルキレン基又はアルケニレン基の水素原子がヒドロキシル基又はアミノ基等で置換されたアルキレン基又はアルケニレン基、シクロヘキシレン基等の脂環式基が挙げられる。また、2価の芳香族基としては、置換されていてもよいフェニレン基、置換されていてもよいナフチレン基、ビフェニル基、ジフェニルエーテル基等が挙げられる。これらの中でも入手の容易さ等を考慮すれば、炭素数2~10のアルキレン基及びフェニレン基が望ましく、特にはエチレン基、ブチレン基及びオクチレン基が好ましい。
 上記一般式(2)で表されるカルボン酸ハライドにおいて、式中のXは、ハロゲン原子を表わす。該ハロゲン原子としては、塩素及び臭素が好ましい。
 上記一般式(2)で表されるカルボン酸ハライドとしては、マロン酸ジクロライド、コハク酸ジクロライド、フマル酸ジクロライド、マレイン酸ジクロライド、グルタル酸ジクロライド、アジピン酸ジクロライド、スベリン酸ジクロライド、アゼライン酸ジクロライド、セバシン酸ジクロライド、1,10-デカンジカルボン酸ジクロライド、1,12-ドデカンジカルボン酸ジクロライド、1,16-ヘキサデカンジカルボン酸ジクロライド等の脂肪族ジカルボン酸ジクロライド、シクロヘキサンジカルボン酸ジクロライド、シクロヘキセンジカルボン酸ジクロライド等の脂環式ジカルボン酸ジクロライド、イソフタル酸ジクロライド、テレフタル酸ジクロライド等の芳香族ジカルボン酸ジクロライド、マロン酸ジブロマイド、コハク酸ジブロマイド、フマル酸ジブロマイド、マレイン酸ジブロマイド、グルタル酸ジブロマイド、アジピン酸ジブロマイド、スベリン酸ジブロマイド、アゼライン酸ジブロマイド、セバシン酸ジブロマイド、1,10-デカンジカルボン酸ジブロマイド、1,12-ドデカンジカルボン酸ジブロマイド、1,16-ヘキサデカンジカルボン酸ジブロマイド等の脂肪族ジカルボン酸ジブロマイド、シクロヘキサンジカルボン酸ジブロマイド、シクロヘキセンジカルボン酸ジブロマイド等の脂環式ジカルボン酸ジブロマイド、イソフタル酸ジブロマイド、テレフタル酸ジブロマイド等の芳香族ジカルボン酸ジブロマイドが挙げられる。これらの中でも、マロン酸ジクロライド、コハク酸ジクロライド、アジピン酸ジクロライド、アゼライン酸ジクロライド、セバシン酸ジクロライド、テレフタル酸ジクロライド、イソフタル酸ジクロライド、マロン酸ジブロマイド、コハク酸ジブロマイド、アジピン酸ジブロマイド、アゼライン酸ジブロマイド、セバシン酸ジブロマイド、テレフタル酸ジブロマイド、イソフタル酸ジブロマイド等が好ましい。
 上記一般式(3)で表される化合物としては、例えば、上記一般式(4)で表される化合物が挙げられる。なお、一般式(3)及び一般式(4)中のRは、一般式(2)中のRと同義である。
 上記一般式(3)で表される化合物の具体例としては、マロン酸ビス(2-ヒドロキシフェニル)エステル、コハク酸ビス(2-ヒドロキシフェニル)エステル、フマル酸ビス(2-ヒドロキシフェニル)エステル、マレイン酸ビス(2-ヒドロキシフェニル)エステル、リンゴ酸ビス(2-ヒドロキシフェニル)エステル、イタコン酸ビス(2-ヒドロキシフェニル)エステル、シトラコン酸ビス(2-ヒドロキシフェニル)エステル、アジピン酸ビス(2-ヒドロキシフェニル)エステル、酒石酸ビス(2-ヒドロキシフェニル)エステル、アゼライン酸ビス(2-ヒドロキシフェニル)エステル、セバシン酸ビス(2-ヒドロキシフェニル)エステル、シクロヘキサンジカルボン酸ビス(2-ヒドロキシフェニル)エステル、テレフタル酸ビス(2-ヒドロキシフェニル)エステル、イソフタル酸ビス(2-ヒドロキシフェニル)エステル、マロン酸ビス(3-ヒドロキシフェニル)エステル、コハク酸ビス(3-ヒドロキシフェニル)エステル、フマル酸ビス(3-ヒドロキシフェニル)エステル、マレイン酸ビス(3-ヒドロキシフェニル)エステル、リンゴ酸ビス(3-ヒドロキシフェニル)エステル、イタコン酸ビス(3-ヒドロキシフェニル)エステル、シトラコン酸ビス(3-ヒドロキシフェニル)エステル、アジピン酸ビス(3-ヒドロキシフェニル)エステル、酒石酸ビス(3-ヒドロキシフェニル)エステル、アゼライン酸ビス(3-ヒドロキシフェニル)エステル、セバシン酸ビス(3-ヒドロキシフェニル)エステル、シクロヘキサンジカルボン酸ビス(3-ヒドロキシフェニル)エステル、テレフタル酸ビス(3-ヒドロキシフェニル)エステル、イソフタル酸ビス(3-ヒドロキシフェニル)エステル、マロン酸ビス(4-ヒドロキシフェニル)エステル、コハク酸ビス(4-ヒドロキシフェニル)エステル、フマル酸ビス(4-ヒドロキシフェニル)エステル、マレイン酸ビス(4-ヒドロキシフェニル)エステル、イタコン酸ビス(4-ヒドロキシフェニル)エステル、シトラコン酸ビス(4-ヒドロキシフェニル)エステル、アジピン酸ビス(4-ヒドロキシフェニル)エステル、酒石酸ビス(4-ヒドロキシフェニル)エステル、アゼライン酸ビス(4-ヒドロキシフェニル)エステル、セバシン酸ビス(4-ヒドロキシフェニル)エステル、シクロヘキサンジカルボン酸ビス(4-ヒドロキシフェニル)エステル、テレフタル酸ビス(4-ヒドロキシフェニル)エステル、イソフタル酸ビス(4-ヒドロキシフェニル)エステル等が挙げられる。
 これらの中でも、マロン酸ビス(3-ヒドロキシフェニル)エステル、コハク酸ビス(3-ヒドロキシフェニル)エステル、フマル酸ビス(3-ヒドロキシフェニル)エステル、マレイン酸ビス(3-ヒドロキシフェニル)エステル、リンゴ酸ビス(3-ヒドロキシフェニル)エステル、イタコン酸ビス(3-ヒドロキシフェニル)エステル、シトラコン酸ビス(3-ヒドロキシフェニル)エステル、アジピン酸ビス(3-ヒドロキシフェニル)エステル、酒石酸ビス(3-ヒドロキシフェニル)エステル、アゼライン酸ビス(3-ヒドロキシフェニル)エステル、セバシン酸ビス(3-ヒドロキシフェニル)エステル、シクロヘキサンジカルボン酸ビス(3-ヒドロキシフェニル)エステルが好ましく、特にコハク酸ビス(3-ヒドロキシフェニル)エステル、アジピン酸ビス(3-ヒドロキシフェニル)エステル、セバシン酸ビス(3-ヒドロキシフェニル)エステルは好ましい。
 本発明の製造方法の工程(i)、即ち、「エステル化工程」では、上記一般式(1)で表される化合物と上記一般式(2)で表されるジカルボン酸ハライドとを塩基性化合物の存在下で反応させる。この段階では、反応生成物中に目的の一般式(3)で表される化合物、特には一般式(4)で表される化合物の他に、上記一般式(5)で表されるオリゴエステル体も相当量存在する。そこで、工程(ii)、即ち、「オリゴマー分解工程」で熱処理を施して、エステル化工程後に過剰に残存している上記一般式(1)で表される化合物(例えばレゾルシン)にて、上記一般式(5)で表されるオリゴエステル体をエステル交換反応により、上記一般式(3)で表される化合物、特には上記一般式(4)で表される化合物へと変換する。
 上記エステル化工程(i)で使用される塩基性化合物は、有機塩基でも無機塩基でもよい。有機塩基としては、ピリジン、β-ピコリン、N-メチルモルホリン、ジメチルアニリン、ジエチルアニリン、トリメチルアミン、トリエチルアミン、トリブチルアミン等の有機アミンが挙げられる。無機塩基としては、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、炭酸カリウム、炭酸ナトリウム等のアルカリ金属炭酸塩が挙げられる。これらの中でも、溶媒としての作用も有する有機塩基が好ましく、塩基性等を考慮すれば、特にピリジン、β-ピコリン、N-メチルモルホリン、ジメチルアニリン等が好ましい。
 上記エステル化工程(i)で使用される塩基性化合物の量は特に限定されず、エステル化工程(i)の反応温度において一般式(1)で表される化合物が溶解可能で、攪拌できる程度の流動性を確保可能であれば良い。通常は使用する一般式(1)の化合物の1/2重量~3倍重量が使用される。
 上記エステル化工程(i)においては、一般式(1)で表される化合物を一般式(2)で表されるカルボン酸ハライドに対して通常4~30倍、好ましくは5~25倍、より好ましくは8~20倍のモル比で反応させる。一般式(1)で表される化合物のモル比が上記範囲より低い場合は、オリゴエステルが主生成物となる。また、一般式(1)で表される化合物のモル比が上記範囲より高い場合は、反応選択率に差が観られないばかりか、容積効率を悪化させる。
 本発明の製造方法においては、原料および生成物を溶解させること等を目的として溶媒を用いる事ができる。溶媒としては、上述の有機塩基をそのまま溶媒として使用しても良いし、反応を阻害しない他の有機溶媒を用いても構わない。このような溶媒としては、例えば、ジメチルエーテル、ジオキサン等のエーテル系溶媒が挙げられる。
 上記エステル化工程(i)において、原料の仕込み方法はとくに限定されないが、通常は一般式(1)で表される化合物の溶液に一般式(2)で表されるカルボン酸ハライドを滴下装入する方法が採用される。カルボン酸ハライドの滴下速度は特に限定されず、エステル化工程(i)の所望の温度が保持できる範囲で適宜決定すれば良い。滴下時間は、概ね2時間~20時間程度となる。カルボン酸ハライドの滴下終了後、適宜、熟成時間を導入しても良く、熟成時間としては通常1時間~10時間程度が採用される。
 上記エステル化工程(i)は、通常-20℃~80℃、好ましくは-10℃~60℃、より好ましくは0℃~50℃で行われる。これより低い温度では反応速度が低下し時間を要する。また、これより高い温度では、オリゴマー分解工程(ii)終了時点での反応選択率が低下する傾向にある。
 上記オリゴマー分解工程(ii)は、通常105℃~140℃、好ましくは110℃~140℃、より好ましくは110℃~130℃、より一層好ましくは115℃~130℃、特には115℃~125℃で行われる。これより低い温度では、オリゴマー分解速度が遅く時間を要する。また、これより高い温度では、ジエステル体の種類にもよるが、その骨格バランスが崩れる傾向があり、また、熱履歴により副生物が観られる事もある。
 上記オリゴマー分解工程(ii)に要する時間は、一般式(1)で表される化合物と一般式(2)で表されるカルボン酸ハライドとのモル比により異なるが、通常2時間~20時間程度が目安となる。これより短い時間では、オリゴマーの分解が不十分で、ジエステル体/オリゴエステル体比が悪化する傾向にある。一方、これより長時間熟成を行った場合は、熱履歴による副生物、分解物の生成が懸念される。
 本発明の製造方法において、塩基あるいは有機溶媒を使用した場合、その種類によってはオリゴマー分解時の所望の温度に達しない場合がある。その場合、使用した塩基あるいは溶媒を留去した後あるいは留去しながら所望のオリゴマー分解温度まで昇温すれば良い。ここで、塩基性化合物の留去中に所望の温度に達すればオリゴマー分解反応は起こるが、一般式(1)で表される化合物の濃度が高い方がオリゴマー分解の効率は良いので、塩基性化合物を留去した後にオリゴマー分解を行う方が好ましい。
 本発明の製造方法により得られる一般式(3)で表される化合物は、公知の方法により反応混合物から単離することができる。即ち、減圧蒸留等の操作により、反応に用いた塩基性化合物および一般式(1)で表される化合物、反応に有機溶媒を使用した場合にはこの有機溶媒を留去し乾固させる方法、反応混合物に一般式(3)で表される化合物の貧溶媒を添加して再沈殿させる方法、反応混合液に水および水と混和しない有機溶媒を添加して有機層に抽出する方法等が挙げられる。また、場合によっては再結晶により精製しても良い。ここで前記一般式(3)で表される化合物の貧溶媒としては、通常、水が用いられる。また、上記水と混和しない有機溶媒としては、酢酸エチル、酢酸ブチル等のエステル類、メチルイソブチルケトン、ジイソブチルケトン等のケトン類が用いられる。
 本発明の製造方法において、一般式(1)で表される化合物としてレゾルシンを用いた場合には、一般式(4)で表される化合物が得られるが、生成物中に一般式(5)で表されるオリゴエステル体が含まれる事もある。生成物中には、通常、一般式(4)で表される化合物が60~100重量%、一般式(5)で表されnが2の化合物が0~20重量%、一般式(5)で表わされnが3の化合物が0~10重量%、一般式(5)で表わされnが4~6の化合物が合計で10重量%程度含有され、好ましくは一般式(5)で表される化合物が0~30重量%含まれる。これらの比率は一般式(2)で表されるカルボン酸ハライドとレゾルシンのモル比を変化させる事でコントロール可能である。即ち、カルボン酸ハライドに対するレゾルシンのモル比を高くするほど、一般式(5)で表されるオリゴエステル体の比率は低下する。なお、生成物がこれらオリゴエステル体を含んでいても、前記一般式(3)で表される化合物の単離方法と同様の方法により、これらを含む反応混合物から単離することができる。
 上述した本発明の製造方法の好適実施形態を以下に示す。使用するカルボン酸ジハライドに対して10倍モルのレゾルシンをレゾルシンと同重量の有機塩基に溶解させて15℃に保持する。同温度を維持しながらカルボン酸ジハライドを滴下装入しエステル化反応を行う。この段階では目的の一般式(4)で表される化合物の反応収率は30~40%程度であり、一般式(5)で表されるオリゴエステル体が大部分を占めている。その後、塩基性化合物を留去する。この過程において内温は徐々に上昇するが、オリゴマー分解温度までは上がっても良い。その後115℃~130℃/2hrオリゴマー分解を行う。この工程で一般式(5)で表されるオリゴエステル体が過剰のレゾルシンと反応(エステル交換反応)して、目的の一般式(4)で表されるジエステル体組成がリッチとなる。その後は、オリゴマー分解マスを水中に排出して再沈殿を行う。生成物の加水分解が懸念されるため、通常は5℃~30℃程度に冷却した水中にオリゴマー分解マスを滴下装入する処方で行う事が多い。得られた沈殿を濾取し、水洗した後に40~80℃程度で減圧下あるいは不活性ガス気流下で乾燥する。
 ところで、上述した製造方法においては、通常、塩基性化合物の存在下、一般式(2)で表されるカルボン酸ハライドに対して一般式(1)で表される化合物を大過剰使用して反応させる必要があるため、実施にあたっては、未反応の一般式(1)で表される化合物を効率的に回収して、プロセスを最適化することが好ましい。これに対して、(a)実質的に水と不混和性の有機溶媒に上記一般式(1)で表される化合物を溶解または懸濁させ、塩基性化合物で部分中和し、(b)続いて上記一般式(2)で表されるカルボン酸ハライドを滴下装入しつつ反応させてエステルを生成させ、(c)該工程(b)の際の温度よりも高い温度で熱処理して、前記エステル中のオリゴマーを分解し、(d)該工程(c)で得られた混合物を水と接触させて生成物を析出させ、固液分離操作および乾燥により生成物の固体を得、(e)該工程(d)の固液分離操作で発生する排水に、実質的に水と不混和性の有機溶媒を添加し、原料として用いた未反応の上記一般式(1)で表される化合物を抽出し、(f)該工程(e)で得られた、実質的に水と不混和性の有機溶媒に上記一般式(1)で表される化合物が溶解した液の濃度を調整した後に、前記工程(a)の原料とすることで、簡便に且つ効率良く、上記一般式(3)で表される化合物を製造することができる。
 上記実質的に水と不混和性の有機溶媒とは、水への溶解度が5重量%以下の有機溶媒を意味し、一般にはケトン系、エーテル系およびエステル系の有機溶媒から選択される。ケトン系有機溶媒としては、メチルイソブチルケトン、エチルイソブチルケトン、ジイソブチルケトン等が挙げられる。エーテル系有機溶媒としては、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル等が挙げられる。また、エステル系有機溶媒としては、酢酸エチル、酢酸ブチル、酢酸アミル等が挙げられる。これらの中でも、反応選択率、一般式(1)で表される化合物の回収率、沸点等の観点からメチルイソブチルケトンが最も好ましい。
 上記工程(a)で用いる塩基性化合物としては、上述した工程(i)と同様に、有機塩基および無機塩基のいずれを用いてもよい。しかしながら、価格面を考慮すれば、工程(a)では無機塩基が好ましく、特に水酸化ナトリウム、水酸化カリウムが好ましい。これら無機塩基は固体のまま使用しても、水溶液として使用しても差し支えない。
 上記工程(a)における部分中和に使用される塩基性化合物の量は、反応に使用する一般式(2)で表されるカルボン酸ハライドの通常1.0~1.5当量、好ましくは1.0~1.2当量、さらに好ましくは1.0~1.05当量である。この範囲未満では、化学量論量より不足する。一方、この範囲を超えて使用した場合には、収率が低下する傾向がある。
 上記エステル化工程(b)は、一般式(2)で表されるカルボン酸ハライドを滴下装入しつつ行われる。ここで、一般式(1)で表される化合物と一般式(2)で表されるカルボン酸ハライドとのモル比、カルボン酸ハライドの滴下速度、滴下時間、熟成時間等は、上述した工程(i)と同様である。
 上記エステル化工程(b)は、通常-20℃~50℃、好ましくは-10℃~40℃、より好ましくは0℃~30℃で行われる。この範囲より低い温度では、反応速度が低下し時間を要する。一方、この範囲より高い温度では、カルボン酸ハライドの種類にもよるが、オリゴマー分解工程終了時点での反応選択率が低下する傾向にある。
 上記エステル化工程(b)の濃度は、所望の温度範囲にて攪拌が十分に行われるだけの液性が確保できれば特に限定されず、工程(a)における一般式(1)で表される化合物の仕込み濃度で通常5~60重量%、好ましくは10~55重量%、さらに好ましくは20~50重量%で行われる。この範囲より低濃度では、容積効率が低い。また、この範囲より高濃度では、粘度が高く攪拌に不具合が生じる傾向にある。
 上記工程(a)において塩基性物質として無機塩基を用いた場合には、中和生成水が生じる。さらに、アルカリ金属水酸化物等の水溶液を用いた場合には、塩基性化合物に由来する水が系内に存在する。系内に水を含んだままでオリゴマー分解工程(c)に進んでしまうと生成物の加水分解が懸念されるため、エステル化工程(b)後に水を除去する必要がある。多くの場合、水は、使用する実質的に水と不混和性の有機溶媒と共沸組成を有しており、公知の共沸脱水操作にて、留出液より分離した有機溶媒を系内に戻しつつ水を留去する。通常、系内の水分濃度が2重量%以下、好ましくは1重量%以下を脱水の目安とする。
 上記オリゴマー分解工程(c)の温度は、上記工程(b)の際の温度よりも高いことを要し、上述した工程(ii)と同様である。オリゴマー分解工程(c)は、エステル化反応混合物(場合により脱水したもの)をそのまま使用しても良いし、有機溶媒を留去した混合物を用いても良い。使用する有機溶媒によっては所望のオリゴマー分解温度に達しない場合もある事から、有機溶媒を留去した後、あるいは留去しながらオリゴマー分解温度に昇温する事が多い。また、有機溶媒を留去する場合には、共沸脱水の際に相互溶解度の関係で十分に除去できなかった水分を除去できるメリットがある。減圧度一定で内温を徐々に上昇しつつ留去しても良いし、内温が一定となるように減圧度を調整しつつ留去しても良い。
 上記オリゴマー分解工程(c)は、化合物の種類や温度にもよるが、通常、2~20時間程度行う。また、有機溶媒を留去しながら昇温する場合には、その時間も含める。この範囲より短い時間では、オリゴマー分解が不十分で製品組成がオリゴマーリッチとなる。一方、この範囲より長時間の熱処理は組成変化が観られないので無駄になると共に、場合によっては熱履歴により副生物の生成が観られる事もある。
 有機溶媒を除去せずにオリゴマー分解工程(c)を行った場合、そのまま次工程(d)に進んでも構わないし、有機溶媒を除去した後に工程(d)に進んでも良い。使用している有機溶媒の量にもよるが、貧溶媒である水に対する比率が高い場合には沈殿析出に悪影響を及ぼす可能性があり、濃縮等により量を削減した後に工程(d)に進む事が多い。濃縮後の混合液中の有機溶媒濃度として20%重量以下、好ましくは10%重量以下を濃縮の目安とすれば良い。
 上記工程(d)は、オリゴマー分解工程(c)により反応が完結した混合液を水と接触させて生成物を析出させる工程である。工程(d)で使用する溶媒は、基本的には生成物である一般式(3)で表される化合物の貧溶媒であると共に、原料である一般式(1)で表される化合物の良溶媒であれば良く、通常は水が用いられる。
 上記工程(d)において貧溶媒として使用される水は、反応混合物に対して5重量倍~100重量倍使用される。この範囲以下では、析出が不十分で収率が低い。またこの範囲以上では、容積効率が悪化する。
 上記工程(d)において、反応混合物を貧溶媒である水と接触させる際の温度は、通常0℃~40℃、好ましくは0℃~25℃である。この範囲より高い温度では、生成物の加水分解が懸念される。
 上記工程(d)において、反応混合物と貧溶媒である水を接触させる方法は特に限定されず、所望の温度を維持できれば良い。反応混合物は、大半の溶媒が留去され、原料である一般式(1)で表される化合物に生成物が溶解している状態であるため、化合物種類にもよるがオリゴマー分解温度以下では流動性を維持できない場合が多い。従って、所望の温度に設定した水中に、加温下の反応混合物を滴下または分割装入しつつ沈殿を析出させる方法が採用される。装入の速度は所望の温度を維持できれば良く、特に限定はされないが、0.5時間~10時間かけて工程(d)を実施する。この範囲より時間が短い場合、得られる結晶の濾過速度が遅くなる傾向がある。また、この範囲より長時間かけても状態は特に変わらないが、攪拌によるせん断または破砕効果により結晶径に変化が生じて、濾過速度が遅くなる場合もある。
 上記工程(d)において、水との接触により得られた沈殿は、濾過、遠心分離などの固液分離操作により単離される。
 また、上記工程(d)において固液分離操作により単離した湿体は、常圧または減圧下で乾燥される。乾燥温度は特に限定されないが20℃~120℃、好ましくは40℃~80℃で行う事が多い。この範囲より高い温度では生成物の加水分解が懸念される。なお、乾燥初期~後半にかけて連続的あるいは段階的に温度を上げつつ乾燥する事で、加水分解を抑制しつつ乾燥時間を短くする事ができる。
 上記工程(d)で得られた乾燥固体に対しては、再結晶による精製や、カラム精製を行っても良い。
 上記工程(d)において、固液分離操作により発生する排水には、原料として過剰に使用した一般式(1)で表される化合物が含まれている。これに対して、工程(e)は、該排水に、反応で用いたのと同一の実質的に水と不混和性の有機溶媒を添加し、一般式(1)で表される化合物を抽出する工程である。
 上記工程(e)において、抽出に使用する有機溶媒の量は特に限定されず、目指す回収率および抽出回数などにより適宜決定される。該有機溶媒は、一般的には、抽出操作1回当たり、排水に対して0.05重量倍~10重量倍、好ましくは0.1重量倍~5重量倍、さらに好ましくは0.2~2重量倍用いられる。この範囲以下では抽出が不十分となり、この範囲以上に使用しても抽出率の向上は観られず容積効率の悪化に繋がる。
 上記工程(e)において、抽出回数は特に限定されず、目指す回収率により適宜決定されるが、1回~3回程度で終了するように条件(溶媒量、時間、温度)を決定する事が多い。抽出時間も特に限定されず、概ね0.5時間から2時間程度抽出し、その後0.5時間~2時間静置した後に分液すれば良い。
 上記工程(e)において、抽出温度は特に限定されず、通常5℃~80℃、好ましくは10℃~70℃、さらに好ましくは20~50℃である。工程(d)で発生する排水中には溶解度分の一般式(3)で表される化合物が存在する場合がある。この場合、一般式(3)で表される化合物は、工程(e)の抽出操作にて有機溶媒側に抽出され、工程(f)の濃縮操作の後、原料として仕込みに供されるため、次回反応の収量向上に繋がる。そのため、抽出温度がこの範囲より高い温度で行われた場合には、一般式(3)で表される化合物の加水分解により、次回反応の収量向上に繋がらない可能性がある。
 上記工程(e)においては、原料として用いた未反応の上記一般式(1)で表される化合物を抽出する際の水層のpHを6.5~7.5に調整することが好ましい。抽出する際のpHを6.5以上とすることで、酸成分混入による反応収率低下の可能性を低減できる。また、pHを7.5以下とすることで、水層への抽出ロスが低減され安定した抽出を実現できる。ここで、pHは、公知の方法に従い、例えば、酢酸、塩酸、硫酸等の酸や、水酸化ナトリウム、水酸化カリウム等の塩基を添加して、適宜調整することができる。
 上記工程(f)は、工程(e)で得られた抽出液を工程(a)の原料として使用出来るように濃縮する工程である。通常、一般式(1)で表される化合物の濃度が仕込みと同程度になるまで濃縮し、反応で消費された分の一般式(1)で表される化合物を追加した後に、有機溶媒を添加して濃度を調整する。該抽出液には飽和溶解度分の水が含まれており、溶媒と共に留去しても良いし、まず溶媒との共沸脱水を行い実質的に非水系にした後に濃縮操作を行っても良い。
 上記工程(f)において、濃縮あるいは共沸脱水の際の温度は特に限定されず、通常は常圧または減圧下、20℃~100℃で行われ、より好ましくは30℃~70℃、さらに好ましくは40℃~60℃である。この範囲より低い温度では、高真空が必要となるため、真空ポンプやコンデンサー等の設備負荷が大きくなる。また、この範囲より高い温度では抽出液中に含まれる一般式(3)で表される化合物の加水分解が懸念される。
 上述した工程(a)~(f)を含む本発明の製造方法の好適実施形態を以下に示す。原料となるカルボン酸ハライドに対して10倍モルのジヒドロキシベンゼンを同重量の水不混和性溶媒に溶解し、カルボン酸ハライド中の官能基に対して1.0~1.1当量の25wt%~30wt%NaOH水を添加して部分中和する。その後、10℃まで冷却し、10℃~15℃を保持しながらカルボン酸ハライドを連続あるいは分割滴下しつつエステル化反応を行い、滴下終了後に1hr程度の熟成を行う。この段階では目的の一般式(3)で表されるジヒドロキシベンゼン誘導体の収率は30%~40%程度であり、大部分はオリゴマーが占めている。その後、40℃~65℃で水不混和性溶媒との共沸脱水を行い、反応系内水分濃度を1重量%以下まで低減させた後に、水不混和性溶媒を系外に留去する。この際、留去が進むにつれ内温が上昇するが、オリゴマー分解温度まで上昇した時点で溶媒留去を終了する。その後、120℃/2hrオリゴマー分解を実施する。この段階で生成物の組成が決定し、目的の一般式(3)で表されるジヒドロキシベンゼン誘導体が主生成物となる。その後、オリゴマー分解マスを流動性が保持できる程度に保温しながら、5℃~25℃に冷却した水に連続または分割で排出し再沈殿を行い、得られた沈殿を濾取し、水洗により付着するジヒドロキシベンゼンを除去した後に、40~80℃程度で減圧下あるいは不活性ガス気流中で乾燥する。
<実施例>
 以下に、実施例及び比較例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。なお、以下の例において、HPLCの分析条件は下記の通りである。
 1.アジピン酸ビス(3-ヒドロキシフェニル)エステル、セバシン酸ビス(3-ヒドロキシフェニル)エステル、レゾルシンの分析
    カラム  : YMC社 A-312 ODS
    カラム温度: 40℃
    溶離液  : メタノール/水=7/3(リン酸でpH=3に調整)
    検出   : UV(254nm)
 2.オリゴマーの分析
    カラム  : YMC社 A-312 ODS
    カラム温度: 40℃
    溶離液  : アセトニトリル/水=8/2(酢酸でpH=3.5に調整)
    検出   : UV(254nm)
(実施例A-1)
 レゾルシン330.6g(3.0mol)をピリジン600.0gに溶解した溶液を氷浴上で15℃以下に保ちながら、これに塩化アジポイル54.9g(0.30mol)を徐々に滴下した。滴下終了後、得られた反応混合物を室温まで上昇した後、反応混合物からピリジンを減圧下で留去した。最終的に内温は72℃程度になった。その後120℃に昇温し、同温度で2時間熟成させた。得られた反応混合物を、15℃を保持した水1200g中に排出し、3~5℃まで氷冷すると沈殿が析出した。析出した沈殿をろ過、水洗し、得られた湿体を減圧乾燥して、白色~淡黄色の粉体89.8g(粗収率90.6%/塩化アジポイル)を得た。得られた粉体をHPLCにて分析した結果、この粉体中のアジピン酸ビス(3-ヒドロキシフェニル)エステルは89.3重量%であった。また、粉体中には、他に一般式(5)で表されnが2の化合物(以下オリゴマー1)が7.3重量%、一般式(5)で表されnが3の化合物(以下オリゴマー2)が2.0重量%、原料レゾルシンが2.5重量%含まれていた。
(実施例A-2)
 レゾルシン330.6g(3.0mol)をピリジン600.0gに溶解した溶液を氷浴上で15℃以下に保ちながら、これに塩化アジポイル54.9g(0.30mol)を徐々に滴下した。滴下終了後、得られた反応混合物を徐々に昇温し、116℃で2時間熟成した。その後、80℃を保持しつつピリジンを減圧下で留去した。得られた反応混合物を、15℃を保持した水1200gに排出して氷冷すると沈殿が析出した。析出した沈殿をろ過、水洗し、得られた湿体を減圧乾燥して、白色~淡黄色の粉体88.9g(粗収率89.7%/塩化アジポイル)を得た。得られた粉体をHPLCにて分析した結果、この粉体中のアジピン酸ビス(3-ヒドロキシフェニル)エステルは88.9重量%であった。また、粉体中には、他にオリゴマー1が7.2重量%、オリゴマー2が2.2重量%、原料レゾルシンが2.2重量%含まれていた。
(実施例A-3)
 レゾルシン330.6g(3.0mol)をピリジン600.0gに溶解した溶液を氷浴上で15℃以下に保ちながら、これにセバシン酸クロライド71.7g(0.30mol)を徐々に滴下した。滴下終了後、得られた反応混合物を室温まで上昇した後、反応混合物からピリジンを減圧下で留去した。最終的に内温は80℃程度になった。その後120℃に昇温し、同温度で2時間熟成させた。得られた反応混合物を、15℃を保持した水1200g中に排出し3~5℃まで氷冷すると沈殿が析出した。析出した沈殿をろ過、水洗し、得られた湿体を減圧乾燥して、白色~淡黄色の粉体105.3g(粗収率90.8%/セバシン酸クロライド)を得た。得られた粉体をHPLCにて分析した結果、この粉体中のセバシン酸ビス(3-ヒドロキシフェニル)エステルは99.1重量%であった。その他、原料レゾルシンが0.25重量%含まれていた。
(比較例A-1)
 レゾルシン330.6g(3.0mol)をピリジン600.0gに溶解した溶液を氷浴上で15℃以下に保ちながら、これに塩化アジポイル54.9g(0.30mol)を徐々に滴下した。滴下終了後、得られた反応混合物を室温まで上昇し、1昼夜放置し反応を完結させた。反応混合物から、ピリジンを減圧下で留去し、最終的に内温は80℃程度になった。得られた反応液を15℃に保持した水1200gに排出すると沈殿が析出し、析出した沈殿をろ過、水洗し、得られた湿体を減圧乾燥して、白色~淡黄色の粉体75g(粗収率75.7%/塩化アジポイル)を得た。得られた粉体をHPLCにて分析した結果、この粉体中のアジピン酸ビス(3-ヒドロキシフェニル)エステルは72重量%であった。また、粉体中には、他に、オリゴマー1が10重量%、オリゴマー2が5重量%、原料レゾルシンが2.5重量%含まれていた。
(比較例A-2)
 比較例A-1と同様の仕込みおよび同様の操作で反応を行い、1昼夜放置し反応を完結させた。反応混合物から、ピリジンを減圧下で留去し、最終的に内温は70℃程度になった。得られた反応液を15℃に保持した水1200gに排出すると沈殿が析出し、析出した沈殿をろ過、水洗し、得られた湿体を減圧乾燥して、白色~淡黄色のべたつきのある固体68g(粗収率68.6%/塩化アジポイル)を得た。得られた固体をHPLCにて分析した結果、この粉体中のアジピン酸ビス(3-ヒドロキシフェニル)エステルは65重量%であった。また、粉体中には、他にオリゴマー1が15重量%、オリゴマー2が7重量%、一般式(5)で表わされnが4の化合物(オリゴマー3)が2重量%、原料レゾルシンが2.4重量%含まれていた。
(比較例A-3)
 レゾルシン330.6g(3.0mol)をピリジン600.0gに溶解した溶液を氷浴上で15℃以下に保ちながら、これにセバシン酸クロライド71.7g(0.30mol)を徐々に滴下した。滴下終了後、得られた反応混合物を室温まで上昇した後、反応混合物からピリジンを減圧下で留去した。最終的に内温は80℃程度になった。得られた反応混合物を、15℃を保持した水1200g中に排出し3~5℃まで氷冷すると沈殿が析出した。析出した沈殿をろ過、水洗し、得られた湿体を減圧乾燥して、白色~淡黄色の粉体86.9g(粗収率75.0%/セバシン酸クロライド)を得た。得られた粉体をHPLCにて分析した結果、この粉体中のセバシン酸ビス(3-ヒドロキシフェニル)エステルは79.1重量%であった。また、粉体中には、その他、2量体と思われる成分が15面積%、原料レゾルシンが0.4重量%含まれていた。
(比較例A-4)
 レゾルシン330.6g(3.0mol)をピリジン600.0gに溶解した溶液を120℃まで加熱した。同温度に保ちながら、塩化アジポイル54.9g(0.30mol)を徐々に滴下した。滴下終了後、反応液を分析した結果、アジピン酸ビス(3-ヒドロキシフェニル)エステルの反応収率は54%しかなく、不明ピークが複数本観られた。
 比較例A-1および比較例A-2では同一の反応を行いながら、単離工程であるピリジン留去時の操作ブレにより、ジエステル/オリゴエステル体比が大きく異なる上、収率にも差が現れている。
 一方、実施例A-1および実施例A-2では120℃熟成(オリゴマー分解)という操作を導入する事で、ピリジン留去時の差に関係なくほぼ一定の収率およびジエステル/オリゴエステル体比が保持されている。
 また、比較例A-4で明らかな様に、エステル化反応そのものをオリゴマー分解工程の温度で実施すれば、酸クロライドの熱分解などにより選択率が著しく低下する。
(実施例B-1)
 レゾルシン(以下、RSと略)110.2g(1.0mol)をメチルイソブチルケトン(以下、MIBKと略)110gに溶解し、30.6重量%のNaOH水溶液26.7g(0.204mol)を添加し部分中和した。その後、10℃に冷却し、10℃~15℃を維持しながら塩化アジポイル(以下、ADCと略)18.3g(0.10mol)を1時間かけて滴下しつつエステル化反応を行い、同温度で1時間熟成を行った。その後、昇温しつつ減圧下(40torr前後)で共沸脱水を行った。凡そ3時間後に内温が65℃に達した時点で共沸脱水を終了した。系内水分濃度は0.3重量%であった。その後、昇温しつつ減圧下(30torr)でMIBKを留去した。凡そ2時間後に内温が120℃に達した時点でMIBK留去を終了した。この時系内MIBK濃度は5重量%であった。同温度で2時間熟成しオリゴマー分解を行った後に、5℃に冷却した540gの水中に30分かけて排出し、結晶を析出させた。ヌッチェでの減圧濾過により結晶を濾取し、540gの水で洗浄した後に60℃/15時間、減圧乾燥し29.8gの白色~淡黄色粉体を得た(粗収率90.3%/ADC)。HPLCにて分析した結果、アジピン酸ビス(3-ヒドロキシフェニル)エステルが89.0重量%、オリゴマー(二量体)が7.4重量%、原料レゾルシンが3.1重量%であった。結果を表1に示す。
 一方、濾過・洗浄により発生した濾洗液609.9gに対して、オリゴマー分解後に留去して回収したMIBK106gに新MIBKを添加して計492.8gのMIBKで30℃/1時間抽出-1時間静置分液を2回繰り返した。MIBK層中のレゾルシンは濾洗液中のRSに対して98.0%であった。その後、60℃/20torrで水およびMIBKを留去し、44.0重量%のRS/MIBK溶液196.5gを調製した。
 得られたRS/MIBK溶液に、不足分のRS23.74gを追加・溶解して50重量%のRS/MIBK溶液220.2gを調製した。
(実施例B-2)
 実施例B-1で得られた50重量%のRS/MIBK溶液220.2g(RS:1.0mol)に30.6重量%のNaOH水溶液26.7g(0.204mol)を添加し部分中和した。その後、実施例B-1と同様の操作を行い、30.4gの薄茶色粉体を得た(粗収率93.8%/ADC)。HPLCにて分析した結果、アジピン酸ビス(3-ヒドロキシフェニル)エステルが86.5重量%、オリゴマー(二量体)が8.2重量%、原料レゾルシンが3.0重量%であった。結果を表1に示す。
 一方、濾過・洗浄により発生した濾洗液611.2gに対して、オリゴマー分解後に留去して回収したMIBK108gに新MIBKを添加して計492.8gのMIBKで30℃/1時間抽出-1時間静置分液を2回繰り返した。MIBK層中のレゾルシンは濾洗液中のRSに対して98.1%であった。その後、60℃/20torrで水およびMIBKを留去し、44.0重量%のRS/MIBK溶液196.3gを調製した。
 得られたRS/MIBK溶液に、不足分のRS23.9gを追加・溶解して50重量%のRS/MIBK溶液220.2gを調製した。
(実施例B-3)
 実施例B-2で得られた50重量%のRS/MIBK溶液220.2g(RS:1.0mol)を用いて実施例B-2と同様の操作を行った。得られた結晶の組成比、粗収率を表1に示す。
(実施例B-4)
 実施例B-3で得られた50重量%のRS/MIBK溶液を用いて、実施例B-2と同様の操作を行った。得られた結晶の組成比、粗収率を表1に示す。
(実施例B-5)
 実施例B-4で得られた50重量%のRS/MIBK溶液を用いて、実施例B-2と同様の操作を行った。得られた結晶の組成比、粗収率を表1に示す。
(実施例B-6)
 実施例B-5で得られた50重量%のRS/MIBK溶液を用いて、実施例B-2と同様の操作を行った。得られた結晶の組成比、粗収率を表1に示す。
(実施例B-7)
 実施例B-1と同様の操作を行い、29.7gの白色~淡黄色粉体を得た(粗収率90.1%/ADC)。HPLCにて分析した結果、アジピン酸ビス(3-ヒドロキシフェニル)エステルが88.9重量%、オリゴマー(二量体)が7.4重量%、原料レゾルシンが3.0重量%であった。結果を表2に示す。
 一方、濾過・洗浄により発生した濾洗液610.5gを30重量%NaOH水溶液でpH=7.0に調整した(調整前pH=6.3)。pH調整後の濾洗液に、オリゴマー分解後に留去して回収したMIBK108gに新MIBKを添加して計492.8gのMIBKで30℃/1時間抽出-1時間静置分液を2回繰り返した。MIBK層中のレゾルシンは濾洗液中のRSに対して98.0%であった。その後、60℃/20torrで水およびMIBKを留去し、44.0重量%のRS/MIBK溶液196.2gを調製した。
 得られたRS/MIBK溶液に、不足分のRS24.0gを追加・溶解して50重量%のRS/MIBK溶液220.2gを調製した。
(実施例B-8)
 実施例B-7で得られた50重量%のRS/MIBK溶液220.2g(RS:1.0mol)に30.6重量%のNaOH水溶液26.7g(0.204mol)を添加し部分中和した。その後、実施例B-1と同様の操作を行い、30.3gの薄茶色粉体を得た(粗収率93.6%/ADC)。HPLCにて分析した結果、アジピン酸ビス(3-ヒドロキシフェニル)エステルが86.6重量%、オリゴマー(二量体)が8.2重量%、原料レゾルシンが3.1重量%であった。結果を表2に示す。
 一方、濾過・洗浄により発生した濾洗液を実施例B-7と同様の操作で処理し、50重量%のRS/MIBK溶液220.2gを調製した。
(実施例B-9)
 実施例B-8で得られた50重量%のRS/MIBK溶液を用いて、実施例B-8と同様の操作を行った。得られた結晶の組成比、粗収率を表2に示す。
(実施例B-10)
 実施例B-9で得られた50重量%のRS/MIBK溶液を用いて、実施例B-8と同様の操作を行った。得られた結晶の組成比、粗収率を表2に示す。
(実施例B-11)
 実施例B-10で得られた50重量%のRS/MIBK溶液を用いて、実施例B-8と同様の操作を行い、以降、一連の操作を6回繰り返した。得られた結晶の組成比、粗収率を表2に示す。
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
 表1及び2の結果から、レゾルシンをリサイクルしても、製品組成が殆ど変動しないことが分かる。
 また、表1の結果と表2の結果の比較から、レゾルシンを抽出する際の水層のpHを6.5~7.5に調整することで、酸成分混入による反応収率低下が抑制され、製品組成の変動幅がより小さくなり、目的生成物であるアジピン酸ビス(3-ヒドロキシフェニル)エステルの収量の低下をより確実に抑制できることが分かる。

Claims (10)

  1.  塩基性化合物の存在下、下記一般式(1):
    Figure JPOXMLDOC01-appb-I000001
    で表される化合物と、下記一般式(2):
    Figure JPOXMLDOC01-appb-I000002
    [式中、Rは炭素数1~16の2価の脂肪族基又は2価の芳香族基を表し、Xはハロゲン原子を表す]で表されるカルボン酸ハライドとを反応させて、エステルを生成させる工程(i)と、
     該工程(i)に引き続き熱処理して、前記エステル中のオリゴマーを分解する工程(ii)と
     を含むことを特徴とする下記一般式(3):
    Figure JPOXMLDOC01-appb-I000003
    [式中、Rは炭素数1~16の2価の脂肪族基又は2価の芳香族基を表す]で表される化合物の製造方法。
  2.  上記一般式(2)で表されるカルボン酸ハライドに対して、上記一般式(1)で表される化合物を4~30倍のモル比で反応させることを特徴とする請求項1に記載の製造方法。
  3.  前記エステルを生成させる工程(i)を-20℃~80℃で実施することを特徴とする請求項1または2に記載の製造方法。
  4.  前記オリゴマーを分解する工程(ii)を110℃~140℃で実施することを特徴とする請求項1または2に記載の製造方法。
  5.  前記塩基性化合物が有機塩基であることを特徴とする請求項1~4のいずれか1項に記載の製造方法。
  6.  上記一般式(3)で表される化合物が、下記一般式(4):
    Figure JPOXMLDOC01-appb-I000004
    [式中、Rは炭素数1~16の2価の脂肪族基又は2価の芳香族基を表す]で表される化合物であることを特徴とする請求項1~5のいずれか1項に記載の製造方法。
  7.  実質的に水と不混和性の有機溶媒に上記一般式(1)で表される化合物を溶解または懸濁させ、塩基性化合物で部分中和する工程(a)と、
     続いて上記一般式(2)で表されるカルボン酸ハライドを滴下装入しつつ反応させてエステルを生成させる工程(b)と、
     該工程(b)の際の温度よりも高い温度で熱処理して、前記エステル中のオリゴマーを分解する工程(c)と、
     該工程(c)で得られた混合物を水と接触させて生成物を析出させ、固液分離操作および乾燥により生成物の固体を得る工程(d)と、
     該工程(d)の固液分離操作で発生する排水に、実質的に水と不混和性の有機溶媒を添加し、原料として用いた未反応の上記一般式(1)で表される化合物を抽出する工程(e)と、
     該工程(e)で得られた、実質的に水と不混和性の有機溶媒に上記一般式(1)で表される化合物が溶解した液の濃度を調整した後に、前記工程(a)の原料とする工程(f)と
     を含むことを特徴とする請求項1~6のいずれか1項に記載の製造方法。
  8.  前記実質的に水と不混和性の有機溶媒が、ケトン系、エーテル系およびエステル系の有機溶媒から選択されることを特徴とする請求項7に記載の製造方法。
  9.  前記工程(e)において、原料として用いた未反応の上記一般式(1)で表される化合物を抽出する際の水層のpHを6.5~7.5に調整することを特徴とする請求項7または8に記載の製造方法。
  10.  上記一般式(4)で表される化合物中に、下記一般式(5):
    Figure JPOXMLDOC01-appb-I000005
    [式中、Rは炭素数1~16の2価の脂肪族基又は2価の芳香族基を表し、nは2~6の整数を示す]で表される化合物が0~30重量%含まれることを特徴とする請求項6に記載の製造方法。
PCT/JP2008/055144 2008-03-19 2008-03-19 ジヒドロキシベンゼン誘導体の製造方法 WO2009116156A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0822448A BRPI0822448B1 (pt) 2008-03-19 2008-03-19 método para produção de derivados de di-hidroxibenzeno
US12/918,852 US8222446B2 (en) 2008-03-19 2008-03-19 Method for producing dihydroxybenzene derivative
CN200880127751.2A CN101959839B (zh) 2008-03-19 2008-03-19 二羟基苯衍生物的制备方法
PCT/JP2008/055144 WO2009116156A1 (ja) 2008-03-19 2008-03-19 ジヒドロキシベンゼン誘導体の製造方法
JP2010503709A JP5362703B2 (ja) 2008-03-19 2008-03-19 ジヒドロキシベンゼン誘導体の製造方法
EP08722518.1A EP2269976A4 (en) 2008-03-19 2008-03-19 PROCESS FOR PREPARING A DIHYDROXYBENZOLE DERIVATIVE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/055144 WO2009116156A1 (ja) 2008-03-19 2008-03-19 ジヒドロキシベンゼン誘導体の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/877,624 Continuation US8304757B2 (en) 2008-03-19 2010-09-08 Semiconductor light-emitting device, optical module, transmitter, and optical communication system

Publications (1)

Publication Number Publication Date
WO2009116156A1 true WO2009116156A1 (ja) 2009-09-24

Family

ID=41090578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055144 WO2009116156A1 (ja) 2008-03-19 2008-03-19 ジヒドロキシベンゼン誘導体の製造方法

Country Status (6)

Country Link
US (1) US8222446B2 (ja)
EP (1) EP2269976A4 (ja)
JP (1) JP5362703B2 (ja)
CN (1) CN101959839B (ja)
BR (1) BRPI0822448B1 (ja)
WO (1) WO2009116156A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201116801D0 (en) * 2011-09-29 2011-11-09 Johnson Matthey Plc Purification process
JP6450230B2 (ja) * 2015-03-20 2019-01-09 Jxtgエネルギー株式会社 ジエンの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614526A (en) * 1979-07-17 1981-02-12 Mitsubishi Gas Chem Co Inc Production of low-molecular aromatic dihydroxy ester
JPH02232220A (ja) * 1989-01-17 1990-09-14 Dow Chem Co:The メソゲン含有高分子量化エポキシ化合物
JPH07118621A (ja) 1993-10-19 1995-05-09 Sumitomo Chem Co Ltd 接着剤およびそれのゴムへの適用
JP2001234140A (ja) 2000-02-25 2001-08-28 Bridgestone Corp 接着性ゴム組成物
WO2005087704A1 (ja) 2004-03-12 2005-09-22 Mitsui Chemicals, Inc. 化合物及びそれを含む組成物
JP2008127285A (ja) * 2006-11-16 2008-06-05 Mitsui Chemicals Inc レゾルシンジエステル系化合物の製造方法
JP2008127286A (ja) * 2006-11-16 2008-06-05 Mitsui Chemicals Inc ジヒドロキシベンゼン誘導体の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266661A (en) 1989-01-17 1993-11-30 The Dow Chemical Company Curable compositions containing mesogenic advanced resin compositions and curing agent therefore and cured products
US7491840B2 (en) 2004-03-12 2009-02-17 Mitsui Chemicals, Inc. Compound and composition containing the same
JP5037984B2 (ja) * 2007-03-27 2012-10-03 三井化学株式会社 レゾルシンジエステル系化合物の製造方法
JP5236887B2 (ja) * 2007-03-27 2013-07-17 三井化学株式会社 ジヒドロキシベンゼン誘導体の連続式製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614526A (en) * 1979-07-17 1981-02-12 Mitsubishi Gas Chem Co Inc Production of low-molecular aromatic dihydroxy ester
JPH02232220A (ja) * 1989-01-17 1990-09-14 Dow Chem Co:The メソゲン含有高分子量化エポキシ化合物
JPH07118621A (ja) 1993-10-19 1995-05-09 Sumitomo Chem Co Ltd 接着剤およびそれのゴムへの適用
JP2001234140A (ja) 2000-02-25 2001-08-28 Bridgestone Corp 接着性ゴム組成物
WO2005087704A1 (ja) 2004-03-12 2005-09-22 Mitsui Chemicals, Inc. 化合物及びそれを含む組成物
JP2008127285A (ja) * 2006-11-16 2008-06-05 Mitsui Chemicals Inc レゾルシンジエステル系化合物の製造方法
JP2008127286A (ja) * 2006-11-16 2008-06-05 Mitsui Chemicals Inc ジヒドロキシベンゼン誘導体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2269976A4 *

Also Published As

Publication number Publication date
EP2269976A4 (en) 2014-03-12
BRPI0822448B1 (pt) 2017-03-07
CN101959839B (zh) 2014-01-01
JPWO2009116156A1 (ja) 2011-07-21
JP5362703B2 (ja) 2013-12-11
EP2269976A1 (en) 2011-01-05
BRPI0822448A2 (pt) 2015-06-16
US8222446B2 (en) 2012-07-17
US20110004013A1 (en) 2011-01-06
CN101959839A (zh) 2011-01-26

Similar Documents

Publication Publication Date Title
JP6505917B2 (ja) 環状オリゴマーを調製する方法、及びそれにより得られる環状オリゴマー
JP5362703B2 (ja) ジヒドロキシベンゼン誘導体の製造方法
JP5000986B2 (ja) ジヒドロキシベンゼン誘導体の製造方法
JP2007106784A (ja) ポリフェニレンスルフィドオリゴマーの回収方法
KR20200032669A (ko) 폴리에스테르 수지 조성물 및 그 제조 방법
JP3720040B2 (ja) ナフタレンジカルボン酸のエステル化反応生成物混合液または混合物およびこれらの製造方法、ならびにポリエチレンナフタレートの製造方法
JP5037907B2 (ja) レゾルシンジエステル系化合物の製造方法
JP5037984B2 (ja) レゾルシンジエステル系化合物の製造方法
JP5236887B2 (ja) ジヒドロキシベンゼン誘導体の連続式製造方法
KR102262346B1 (ko) 폴리아미드 합성 방법
CA1133186A (fr) Procede d'obtention de copolyesters alcoylaromatiques
JP2014181245A (ja) 高重合度ポリブチレンテレフタレートの製造方法
JP5252799B2 (ja) ヒドロキシベンゼン誘導体およびその製造方法
JP5203619B2 (ja) レゾルシン系ジエステル化合物の製造方法
JPH03240750A (ja) 高純度ナフタレンカルボン酸の製造方法
KR102452871B1 (ko) 디메틸테레프탈레이트로부터 비스-(2-하이드록시에틸) 테레프탈레이트 생성하는 방법 및 이에 의한 에스테르 작용기를 포함하는 고분자의 효율적 해중합 방법
JPH0721053B2 (ja) 芳香族ポリ(チオ)エ−テルケトンの製造方法
JP4117373B2 (ja) ポリエチレンイソフタレート環状二量体の製造方法
EP3377469B1 (en) A method of producing terephthalic acid
EP4127027A1 (en) A method for the preparation of poly(phenylene sulfide)
JP3775953B2 (ja) 芳香族ジカルボン酸ジアリールエステルの製造方法
KR20230132222A (ko) 재생 비스-2-히드록시에틸테레프탈레이트를 이용한 폴리에스테르 수지 및 이를 포함하는 물품
JP5189001B2 (ja) 2,6−ナフタレンジカルボン酸の製造方法
JP2004359656A (ja) カルボン酸末端基を有するラクトン系ポリエステル不飽和単量体の製造方法
KR20110070011A (ko) 방향족 디카르복실산 클로라이드의 제조법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127751.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722518

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010503709

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12918852

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 6448/DELNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008722518

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0822448

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100917