WO2009113715A1 - Ddr型ゼオライト膜配設体の製造方法 - Google Patents

Ddr型ゼオライト膜配設体の製造方法 Download PDF

Info

Publication number
WO2009113715A1
WO2009113715A1 PCT/JP2009/055219 JP2009055219W WO2009113715A1 WO 2009113715 A1 WO2009113715 A1 WO 2009113715A1 JP 2009055219 W JP2009055219 W JP 2009055219W WO 2009113715 A1 WO2009113715 A1 WO 2009113715A1
Authority
WO
WIPO (PCT)
Prior art keywords
type zeolite
zeolite membrane
ddr type
porous substrate
adamantanamine
Prior art date
Application number
PCT/JP2009/055219
Other languages
English (en)
French (fr)
Inventor
谷島健二
野中久義
富田俊弘
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2010502912A priority Critical patent/JP5421899B2/ja
Publication of WO2009113715A1 publication Critical patent/WO2009113715A1/ja
Priority to US12/846,128 priority patent/US8263516B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/061Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/066Tubular membrane modules with a porous block having membrane coated passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/003Membrane bonding or sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/24Use of template or surface directing agents [SDA]

Definitions

  • the present invention relates to a method for producing a DDR type zeolite membrane, and more specifically, when a DDR type zeolite membrane is provided on a surface of a porous substrate in contact with a glass seal, This prevents the formation of the DDR type zeolite membrane from being disturbed at the contact portion between the type zeolite membrane and the glass seal, and also prevents the glass seal from being defective.
  • the present invention relates to a method for producing a DDR type zeolite membrane. Background art
  • Zeolite is used as a catalyst, a catalyst carrier, an adsorbent, and the like, and a zeolite membrane provided on the surface of a porous substrate made of metal or ceramic is a zeolite sieve. It has been used as a gas separation membrane and pervaporation membrane using its action.
  • DDR Deca_Dodecasil 3R
  • MFI molecular sieve
  • MOR a crystal whose main component is silica
  • AFI a polyhedron containing an oxygen 8-membered ring
  • FER a polyhedron containing an oxygen 8-membered ring
  • FAU FAU
  • DDR Deca_Dodecasil 3R
  • X 3.6 angstrom see WM Meier, DH Olson, Ch. Baerlocher, Atlas of zeolite structure types, Elsevier (1996).
  • DDR zeolite has a relatively small pore size among zeolites, and is used as a molecular sieve membrane for low molecular gases such as carbon dioxide (CO), methane (CH), and ethane (CH).
  • CO carbon dioxide
  • CH methane
  • CH ethane
  • the content ratio of 1-adamantanamine, silica, water, and ethylenediamine in the raw material solution is set to a specific ratio, so that the dense DDR type zeolite can be obtained in a short time.
  • a manufacturing method capable of manufacturing a film is disclosed (for example, see Patent Document 1). This method has an excellent effect that a dense DDR type zeolite membrane can be produced in a short time.
  • the DDR type zeolite membrane structure in which the DDR type zeolite membrane is formed on the surface of the porous substrate is sealed to a predetermined portion of the surface of the porous substrate according to the shape and usage method.
  • a material may be coated to form a seal portion, and the structure may be such that the fluid to be treated does not flow in or out from the seal portion.
  • a resin such as silicone resin, polyimide resin, or epoxy resin, or glass is used as a sealant for zeolite membrane. It is necessary to change depending on the usage environment (temperature, pressure, atmosphere, etc.) of the membrane, but when using the membrane in an atmosphere exposed to a relatively high temperature or organic solvent, a method of mixing filler materials, A method of using a mechanical sealing structure has been proposed (see, for example, Patent Documents 2 and 3).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-159518
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-109690
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2007-50322
  • the contacted portion is: Usually, it is necessary to be in airtight or liquid tight contact. This prevents the fluid to be treated from flowing in and out between the DDDR type zeolite membrane and the seal portion, thereby improving the separation performance of the DDR type zeolite membrane arrangement.
  • Patent Document 2 uses a paste in which an alumina powder is mixed as a filler material with a polyimide resin as a sealing material. This makes it possible to produce a zeolite film with a sealing material, and there is a concern that the polyimide resin will swell when exposed to water vapor, and the use of alumina powder as a filter is a work process. There is a problem that is complicated.
  • Patent Document 3 uses a resin and a dense ceramic or metal as a sealing material. This makes it possible to produce a zeolite membrane with a sealing material; many resins are subject to deterioration such as swelling and elution when exposed to water vapor or organic solvents, and the structure is complicated. Therefore, there is a problem that the shape of the porous substrate is limited.
  • porous A glass seal is disposed at a predetermined position on the surface of the porous substrate, and the porous substrate on which the glass seal is disposed is dipped in an alkaline solution containing a predetermined raw material, and hydrothermal synthesis is used for the DR type.
  • the glass sealing force disposed on the surface of the porous substrate may elute into the alkaline solution, causing problems such as poor sealing and poor film formation of the DDR type zeolite membrane. was there.
  • the film formation failure of the DDR type zeolite membrane is caused by the elution of the glass component into the raw material for forming the DDR type zeolite membrane. It is caused by
  • the present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a state where the DDR type zeolite membrane is in contact with the glass seal on the surface of the porous substrate. This prevents the DDR type zeolite membrane from being obstructed at the contact portion between the DDR type zeolite membrane and the glass seal, and also causes a poor seal of the glass seal. It is an object of the present invention to provide a method for producing a DDR type zeolite membrane-disposed body that can be prevented.
  • the present invention provides the following method for producing a DDR type zeolite membrane.
  • the porous substrate is immersed in a raw material solution containing 1-adamantanamine, silica, and water, and the DDR type zeolite is hydrothermally synthesized in the presence of the DDR type zeolite seed crystals, and the above is performed.
  • a DDR type zeolite membrane containing 1-adamantanamine is formed on the surface of the porous substrate, and the DDR type zeolite membrane containing 1-adamantanamine is contacted on the surface of the porous substrate.
  • the glass paste is applied and heated at 500 to 800 ° C.
  • a columnar shape having a plurality of through-holes penetrating the porous substrate in the central axis direction The monolith-shaped substrate is immersed in a raw material solution in a state where the DDDR type zeolite seed crystal is applied to the inner wall surface of the through-hole, hydrothermally synthesized, and the monolith-shaped substrate is formed.
  • a DDR type zeolite membrane containing 1-adamantanamine is formed on the inner wall surface of the through-hole, and the DDR type zeolite membrane containing 1-adamantanamine is in contact with both end faces of the monolithic substrate.
  • the monolith-shaped substrate, the DDR type zeolite membrane formed on the inner wall surface of the through hole of the monolith-shaped substrate, and the DDR type zeolite A DDR type zeolite membrane arrangement comprising the glass seals disposed on both end faces of the monolithic substrate so as to come into contact with the membrane is obtained. Production method.
  • the DDR type zeolite membrane containing 1-adamantanamine is provided at both end surfaces of the monolith-shaped substrate and each of the end surfaces of the monolithic substrate within a range of! To 50 mm.
  • the 1-adamantanamine is contained in both end faces of the monolith-shaped substrate and in a range of 1 to 50 mm from both end faces in the inner wall surface of the through hole.
  • a porous substrate, a DDR type zeolite membrane disposed on the surface of the porous substrate, and a surface of the porous substrate so as to partially overlap the surface of the DDR type zeolite membrane A DDR type zeolite membrane provided with a glass seal arranged on the surface.
  • a DDR type zeolite membrane containing 1-adamantanamine is formed on the surface of the porous substrate, After that, a glass paste is applied to the surface of the porous substrate so as to come into contact with the DDR type zeolite membrane containing 1-adamantanamine, and heated at 500-800 ° C to form a DDR type zeolite membrane.
  • the 1-adamantanamine contained is burned and removed, and the glass paste is melted to form a glassy glass film in contact with the DDR type zeolite film on the surface of the porous substrate.
  • FIG. 1 is a perspective view schematically showing a porous substrate used in an embodiment of a method for producing a DDR type zeolite membrane according to the present invention.
  • FIG. 2 In one embodiment of the method for producing a DDR type zeolite membrane provided according to the present invention, a plane parallel to the central axis of the porous substrate on which the DDR type zeolite membrane is provided after hydrothermal synthesis. It is a schematic diagram which shows the cut
  • FIG. 3 is a schematic view showing a cross section of the DDR type zeolite membrane provided body obtained by one embodiment of the manufacturing method of the DDR type zeolite membrane according to the present invention, cut along a plane parallel to the central axis. .
  • FIG. 4 is a schematic view showing a cross section of the DDR type zeolite membrane provided by another embodiment of the method for producing a DDR type zeolite membrane provided by the present invention, cut along a plane parallel to the central axis. It is.
  • FIG. 5A is an electron micrograph showing a boundary portion between a DDR type zeolite membrane and a glass seal of the DDR type zeolite membrane provided in Example 1.
  • FIG. 5B is an electron micrograph obtained by enlarging region S 1 in the electron micrograph of FIG. 5A.
  • FIG. 6A is an electron micrograph showing a boundary portion between a DDR type zeolite membrane and a glass seal of the DDR type zeolite membrane provided in Comparative Example 1.
  • FIG. 6A is an electron micrograph showing a boundary portion between a DDR type zeolite membrane and a glass seal of the DDR type zeolite membrane provided in Comparative Example 1.
  • FIG. 6B is an electron micrograph in which region S2 in the electron micrograph of FIG. 6A is enlarged.
  • a porous substrate is immersed in a raw material solution containing 1-adamantamine, silica and water, and a DDR type zeolite crystal is obtained.
  • DDR type zeolite is hydrothermally synthesized to form a “DDR type zeolite membrane containing 1-adamantanamine” on the surface of the porous substrate.
  • a glass paste is applied to the surface of the porous substrate so as to contact the “DDR type zeolite membrane containing 1-adamantanamine”.
  • the DDR type zeolite membrane is provided with a porous substrate, a DDR type zeolite membrane provided on the surface of the porous substrate, and a surface of the porous substrate so as to be in contact with the DDR type zeolite membrane. It is equipped with a glass seal.
  • the shape of the porous substrate used in the method for producing a zeolite membrane-arranged body of the present embodiment is not particularly limited, and can be any shape depending on the application.
  • a plate shape, a cylindrical shape, a honeycomb shape, a monolith shape, or the like can be given as a suitable example.
  • the monolith shape is preferable because the membrane area per unit volume can be increased and the seal portion area per membrane area can be reduced.
  • the “monolith shape” referred to in the present embodiment means a columnar shape in which a plurality of through holes penetrating in the central axis direction is formed.
  • a cross section perpendicular to the central axis direction has a lotus root shape. Say what you are.
  • FIG. 1 is a perspective view schematically showing a porous substrate 1 used in the method for producing a DDR type zeolite membrane provided body of the present embodiment.
  • the porous substrate 1 is a columnar monolithic substrate in which a plurality of through holes 2 penetrating in the central axis direction are formed.
  • the average porosity of the porous substrate 1 is preferably 10 to 60%, more preferably 20 to 40%. If it is lower than 10%, the pressure loss may increase during separation of the fluid to be treated, and if it is higher than 60%, the strength of the porous substrate 1 may decrease.
  • the average porosity is a value measured with a mercury porosimeter.
  • the porous substrate 1 is composed of a plurality of particle layers, the average pore diameter of the outermost surface layer facing the through-hole 2 is preferably 0.003 to 10 / im, preferably 0.01 to l / m. More preferred. If it is smaller than 0.03 ⁇ , the pressure loss may increase during separation of the fluid to be treated, and if it is larger than 10 m, the DDR type zeolite membrane formed on the surface tends to be defective.
  • the length of the porous substrate and the area of the cross section perpendicular to the central axis can be appropriately determined according to the purpose. For example, the length of the porous substrate is preferably in the range of about 40 to 1000 mm.
  • the material of the porous substrate 1 is preferably ceramics such as alumina, zirconia or mullite, glass, zeolite, clay, metal, carbon and the like.
  • alumina is preferable because it is excellent in strength and low cost.
  • the density of the through holes 2 formed in the porous substrate 1 (the number of through holes Z, the area of the cross section perpendicular to the central axis direction of the porous substrate) is 0.01 to 15 cm 2 It is preferable. 0. sometimes drops 01 present is less than / cm 2 capacity during separation of the fluid to be treated, sometimes the strength of the porous substrate is more than fifteen ZCM 2 decreases.
  • the size of one through hole is preferably such that the cross-sectional area perpendicular to the central axis is 0.5 to 28 mm 2 .
  • the pressure loss during separation of the fluid to be treated may be larger than 0.5 mm 2 , and if it is larger than 28 mm 2 , the strength of the porous substrate will be reduced, or the processing capacity during separation of the fluid to be treated will be reduced. May decrease.
  • the method for producing the porous substrate is not particularly limited, and any known method can be used.
  • a raw material solution containing 1-adamantanamine, silica and water is prepared.
  • 1-adamantanamine is used as a structure-directing agent for forming a DDR type zeolite membrane.
  • a raw material solution is prepared by mixing 1-adamantanamine, silica, water, ethylenediamine if necessary, and other additives.
  • silica silica sol is preferably used.
  • a part of Si constituting the DDDR type zeolite membrane can be replaced with A1.
  • the ratio of 1-adamantanamine to silica (1-adamantanamine / silica (molar ratio)) is preferably from 002 to 0.5, and from 0.002 to 0.2 Even better.
  • the 1-adamantanamamine, which is a structure directing agent, and the structure directing agent may be difficult to form DDR type zeolite, and when it is more than 0.5, it is difficult to form DDR type zeolite in the form of a film.
  • the amount of expensive 1-adamantanamine used increases, which may lead to increased manufacturing costs.
  • the ratio of water to silica is preferably 10 to 500, more preferably 10 to 200. If it is less than 10, the silica concentration is too high and it is difficult to form DDR type zeolite, and even if DDR type zeolite is formed, it may be difficult to form a film. Type zeolite may be difficult to form.
  • the raw material solution preferably contains ethylenediamine.
  • 1_adamantanamine By preparing a raw material solution by adding ethylenediamine, 1_adamantanamine can be easily dissolved, and a dense DDR type zeolite membrane having a uniform crystal size and film thickness can be produced. This is the power that makes possible.
  • the ratio of ethylenediamine to 1-adamantanamine (ethylenediamin / 1-adamantanamine (molar ratio)) is preferably 4 to 35, more preferably 8 to 32. The amount less than 4 is insufficient to make 1-adamantanamine easy to dissolve, and if it is larger than 35, ethylenediamine which does not contribute to the reaction becomes excessive and production costs may increase.
  • a 1-adamantanamine solution by previously dissolving 1-adamantanamine in ethylenediamine.
  • a raw material solution prepared by mixing a 1-adamantanamine solution prepared in this way with a silica zonole solution containing silica makes it possible to dissolve 1-adamantanamine more easily and completely and to obtain a uniform crystal size. It is preferable because a dense DDR type zeolite membrane having a film thickness can be produced.
  • the silica sol solution can be prepared by dissolving the fine powdered silica in water or by hydrolyzing the alkoxide, and adjusting the silica concentration of a commercial silica sol product.
  • DDR type zeolite Immerse the porous substrate in the raw material solution, hydrothermally synthesize DDR type zeolite in the presence of DDR type zeolite seed crystals, and add ⁇ 1-Damantanamine-containing D DR type zeolite to the surface of the porous substrate.
  • “in the presence of a seed crystal” means that the seed crystal is present in contact with the surface of the porous substrate during hydrothermal synthesis. Therefore, the seed crystal may be dispersed in the raw material solution in advance, and the porous substrate may be dipped therein to be hydrothermally synthesized.
  • the seed crystal may be applied in advance to the surface of the porous substrate, and the porous Hydrothermal synthesis may be performed by immersing the substrate in the raw material solution.
  • the seed crystal may be dispersed in the raw material solution and applied to the surface of the porous substrate, and the porous substrate may be immersed in the raw material solution for hydrothermal synthesis. From the viewpoint of uniformly disposing the seed crystal on the surface of the porous substrate, it is preferable to apply the seed crystal to the surface of the porous substrate in advance.
  • the seed crystal is described in “MJ denExter, JC Jansen, H. van Bekkum, Studies in Surface Science and Catalysis vol. 84, Ed. By J. Weitkamp et al., Elsevier (1994) 1159 — 1166”. It is preferable to use a DDR type zeolite powder produced according to the method for producing a DDR type zeolite and pulverized into a fine powder.
  • the seed crystal after pulverization is preferably in a predetermined particle size range using a sieve or the like.
  • a predetermined amount of the predetermined seed crystal is added when the raw material solution is prepared.
  • a general stirring method may be adopted.
  • PTFE polytetrafluoroethylene is formed on the surface of the porous substrate where no DDR type zeolite membrane is formed.
  • the method for immersing the porous substrate in the raw material solution and hydrothermally synthesizing the DDR type zeolite is not particularly limited. For example, when a seed crystal is applied to the surface of the porous substrate, the following method is used. A method is mentioned.
  • a method such as dip coating or filtration
  • the seed crystal is applied to the inner wall surface of the through hole.
  • the porous substrate coated with the seed crystal is placed in a pressure vessel or the like containing the raw material solution, and hydrothermal synthesis is performed by holding the porous substrate at the following predetermined temperature for a predetermined time.
  • a DDR type zeolite film 11 containing 1-adamantanamine is formed on the inner wall surface 5 of the through hole 2 of the substrate 1.
  • the seed crystal is not applied, and the DDR type zeolite membrane is not formed on the side surface 3 and both end surfaces 4 and 4 of the porous substrate 1.
  • the DDR type zeolite membrane 11 containing 1-adamantanamine is preferably disposed on both sides of the through-hole as shown in FIG. In other words, it is preferably disposed on the entire inner wall surface of the through hole.
  • the temperature condition during hydrothermal synthesis is preferably 90 to 200 ° C, more preferably 100 to 50 ° C. When hydrothermal synthesis is performed below 90 ° C, it may be difficult to form a DDR type zeolite membrane.
  • FIG. 2 shows a plane parallel to the central axis of the porous substrate on which the DDR type zeolite membrane is provided after hydrothermal synthesis in the method for manufacturing the DDR type zeolite membrane provided according to the present embodiment. It is a schematic diagram which shows the cut
  • the film thickness of the DDR-type zeolite membrane 11 containing 1-adamantanamine formed on the inner wall surface of the through hole of the porous substrate should be 0.05 to 15; preferably 0 More preferably, it is 1 to 5 / im, and particularly preferably 0.1 to 2 / xm. If it is thicker than 15 / zm, the amount of gas permeation may decrease. If it is thinner than 0.05 / xm, the strength of the DDR type zeolite membrane may decrease.
  • a large number of pores are opened on the surface of the porous substrate. It may become a film having.
  • film thickness refers to the thickness including the portion of the porous substrate that has entered the pores.
  • the film thickness of the DDR type zeolite membrane is the average value at the five cross-sectional positions measured by electron micrographs of the cross-section cut along the thickness direction.
  • a glass paste is applied to the surface of the porous substrate so as to contact the DDR type zeolite membrane containing 1-adamantanamine.
  • the portion to which the glass paste is applied is not particularly limited, and gas, liquid, fine particles, etc. move from the inside of the porous substrate to the outside or from the outside to the inside of the porous substrate in the surface of the porous substrate. It is preferable to apply it to the part to prevent.
  • glass paste is applied to both end faces of a porous substrate (monolith-shaped substrate). At this time, it is preferable not to form a gap at the contact portion between the DDR type zeolite membrane containing 1-adamantanamine formed on the inner wall surface of the through hole and the glass paste applied to both end faces. More preferably, a contact portion is formed on the surface of the DDR type zeolite membrane containing adamantamine so that a part of the glass paste overlaps.
  • the glass material applied to the surface of the porous substrate as a glass paste preferably has a softening point of 400 to 800 ° C, more preferably 450 to 750 ° C. If the temperature is lower than 400 ° C, the melting temperature of the glass paste becomes less than 500 ° C, and 1-adamantanamine may not be burned and removed at the same time. If the temperature is higher than 800 ° C, the glass paste is melted. Temperatures above 800 ° C may cause defects in DDR type zeolite membranes. Glass paste can be produced by dispersing powdered glass in a solvent such as water. Alternatively, the polymer may be added in addition to a solvent such as water.
  • the thermal expansion coefficient of the glass material is preferably close to the thermal expansion coefficient of the porous substrate.
  • a porous substrate is alumina
  • the thermal expansion coefficient of the alumina is about 7 X 10- 6 [K- is, as the thermal expansion coefficient of the glass material, 5 ⁇ 8 ⁇ 10- 6 [ ⁇ - Is preferred.
  • the composition system of the glass material is not particularly limited, but preferably satisfies the softening point and the thermal expansion coefficient, and more preferably does not include PbO (lead oxide). Examples include Na O-ZnO-B 0 series, Na 2 O-B 0 1 SiO series, CaO-BaO-SiO series.
  • the average particle size of the powdery glass is not particularly limited,
  • a DDR type zeolite membrane containing 1-adamantanamine is disposed on the inner wall surface 5 of the through-hole 2 and a glass paste is applied to both end faces 4 and 4 so as to be in contact with no gap.
  • the 1-adamantanamine contained in the DDR type zeolite membrane is burned and removed, and the glass paste is melted to melt the surface of the porous substrate (both ends).
  • a film-like glass seal in contact with the DDR type zeolite membrane is formed on the DDR type zeolite membrane, and a DDR type zeolite membrane assembly 100 as shown in FIG. FIG.
  • the obtained DDR-type zeolite membrane assembly 100 includes a porous substrate 1, a DDR-type zeolite membrane 12 disposed on the surface of the porous substrate 1, and a DDR-type zeolite membrane 12 on the surface of the porous substrate 1.
  • the DDR type zeolite membrane-arranged body includes a porous substrate, a DDR type zeolite membrane disposed on the surface of the porous substrate, and a surface of the DDR type zeolite membrane so as to partially overlap the porous substrate. More preferably, it is provided with a glass seal disposed on the surface.
  • the method for producing a DDR type zeolite membrane thus includes heating when forming a glass seal from a glass paste, and a DDR type zeolite membrane containing 1-adamantanamine. Since the glass seal is not immersed in the alkaline raw material solution by simultaneously performing heating to burn off and remove 1-adamantanamine from the glass seal, the glass seal is dissolved by the alkaline solution, resulting in poor sealing. Can be prevented. Furthermore, since the glass component is eluted in the raw material for forming the DDR type zeolite membrane, the composition of the raw material will not change, resulting in a composition that is not suitable for forming the DDR type zeolite membrane.
  • the DDR type zeolite membrane formed on the inner wall surface of the through hole of the porous substrate and the glass plates provided on both end surfaces of the porous substrate.
  • the contact area with the strike is airtight and liquid-tight so that gas, liquid, particulates, etc. do not leak out of or enter the contact area. It can be formed as is. In other words, it is possible to prevent a gap from being formed at the contact portion between the DDR type zeolite film containing 1-adamantanamine and the glass paste.
  • the temperature at which the porous substrate 1 in which the DDR type zeolite membrane containing 1-adamantanamine is arranged on the inner wall surface 5 of the through hole 2 and the glass paste is applied to both end faces 4 and 4 is heated. Is preferably from 500 to 800 ° C and preferably from 550 to 800 ° C. If the temperature is lower than 500 ° C, 1-adamantanamine may be difficult to burn and remove, and if it is higher than 800 ° C, defects may easily occur in the DDR type zeolite film.
  • the atmosphere during heating is preferably in the air. Although it does not specifically limit as a heating apparatus, An electric furnace etc. can be mentioned.
  • FIG. 4 is a schematic view showing a cross section of a DDR type zeolite membrane provided body 200 cut by a plane parallel to the central axis, obtained by another embodiment of the method for producing a DDR type zeolite membrane provided according to the present invention.
  • FIG. The manufacturing method of the DDR type zeolite membrane provided according to the present embodiment is different from the one embodiment of the manufacturing method of the DDR type zeolite membrane provided according to the present invention in that the method of “application of glass paste” is different. The other steps are the same.
  • the DDR type zeolite membrane arrangement 200 obtained by the method of manufacturing the DDR type zeolite membrane arrangement of the present embodiment is the same as that of the method of manufacturing the DDR type zeolite membrane arrangement of the present embodiment.
  • the shape power of the glass seal to be arranged is different from the case of the one embodiment of the method for producing the DDR type zeolite membrane according to the present invention, because the method of “application of glass paste” is different. This is different from the DDDR type zeolite membrane provided in one embodiment of the method for producing the DDR type zeolite membrane provided. '
  • a glass paste is applied to the surface of the porous substrate so as to come into contact with the DDR type zeolite membrane containing 1-adamantanamine.
  • the porous substrate (monolithic substrate) 1 In contact with DDR type zeolite membrane containing 1-adamantanamine at both end faces 4 and 4 and side face 3 in the range of l-50mm from both end faces 4 and 4 of porous substrate
  • the glass paste is applied, and from both the end faces 4 and 4 of the monolithic substrate 1 and the both end faces 4 and 4 of the porous substrate in the inner wall surface 5 of the through hole 2:!
  • To 50 mm of A glass paste is applied so as to contact the DDR type zeolite membrane containing 1-adamantanamine.
  • the resulting DDR type zeolite membrane arrangement 200 is obtained from each of both end faces 4 and 4 of the porous substrate in the side face 3!
  • the side seal part 22 is in the range of ⁇ 50mm
  • the seal part in the through hole 23 is in the range of l ⁇ 50mm from the both end faces 4 and 4 of the porous substrate in the inner wall surface 5 of the through hole 2 23
  • the glass seal 21 having the above is provided. Therefore, the glass seal 21 is disposed on the end surface 4 of the monolithic base, the side seal portion 22 formed integrally with the portion disposed on the end surface 4, and the through-hole seal portion. 23. As shown in FIG.
  • the through-hole seal portion 23 is preferably disposed so as to be laminated on the DDR type zeolite film disposed in the through-hole, glass paste is applied to the through-hole. In this case, it is preferable to apply to the surface of the DDR type zeolite membrane containing 1-adamantanamine.
  • the side seal portion 22 and the through-hole seal portion 23 are preferably provided as in the present embodiment, but may be either one or the other.
  • the glass seal 21 has the side surface seal portion 22, whereby the sealing performance of the end surface portion of the monolith-shaped base can be further improved. Further, since the glass seal 21 has the through-hole seal portion 23, the sealability of the contact portion with the DDR type zeolite membrane can be further improved.
  • the length D1 in the central axis direction of the side seal portion 22 is preferably in the range of 1 to 50 mm as described above, and more preferably in the range of 5 to 20 mm.
  • the length D1 in the central axis direction of the side seal portion 22 is shorter than 1 mm (the side seal portion 22 is formed in a range shorter than the range from the end surface 4 of the porous substrate to lmm in the side surface 3. ) And it may be difficult to ensure sealing performance. If the length is longer than 50 mm, the area of the side surface of the monolith-shaped substrate becomes small, which may hinder fluid flow.
  • the length D2 in the central axis direction of the seal part 23 in the through hole is preferably in the range of:!
  • the center axial length D2 of the through-hole seal portion 23 is shorter than lmm (the through-hole seal portion 23 is formed in a range shorter than the range from the end surface 4 to lmm of the porous substrate in the through-hole 2). It may be difficult to ensure sealing performance. If it is longer than 50 mm, the area of the DDR type zeolite membrane may be reduced and the separation efficiency may be reduced. Therefore, the glass paste is placed in the through hole of the monolithic substrate. When applying to the side surface, it is preferable to apply a glass paste to the position where the side surface seal portion 22 and the through-hole seal portion 23 are disposed.
  • the other conditions for the application of the glass paste are preferably the same as the conditions for the "application of the glass paste" in one embodiment of the method for producing the DDR type zeolite membrane provided according to the present invention.
  • the DDR type zeolite membrane provided according to the present invention includes a porous substrate, a DDR type zeolite membrane provided on the surface of the porous substrate, and a porous substrate so as to partially overlap the surface of the DDR type zeolite membrane. And a glass seal disposed on the surface of the glass.
  • a zeolite film is formed on the surface of the porous substrate, the zeolite film is formed not only on the surface of the porous substrate but also inside the substrate.
  • the zeolite membrane is formed so as to enclose the particles constituting the porous substrate, so that the physical strength between the zeolite membrane and the substrate is not limited to the adhesion strength due to the chemical bond between the zeolite and the substrate particles.
  • the adhesion strength between the zeolite film and the porous substrate is increased, and the zeolite film is difficult to peel off.
  • the zeolite film formed on the surface of the dense part is made of zeolite.
  • the adhesion strength due to the chemical bond between the materials that make up the dense part (eg glass) becomes dominant, and the physical adhesion strength between the zeolite film and the substrate hardly occurs.
  • the zeolite film formed on the surface of the portion where the glass seal or the like is densely formed is easily peeled off.
  • part of the zeolite substrate may be peeled off at the surface of the porous substrate and cracks may occur. It becomes difficult to secure performance. Therefore, when the glass seal and the DDR type zeolite membrane are arranged on the surface of the porous substrate so that they partially overlap each other, like the DDR type zeolite membrane arrangement of the present invention, the DDR type zeolite membrane is provided.
  • the upper strength of the zeolite membrane The DDR type zeolite membrane and the glass seal need to be disposed on the surface of the porous substrate so that the glass seal overlaps.
  • the DDR type zeolite membrane of the DDR type zeolite membrane arrangement has high adhesion strength with the porous substrate and is difficult to peel off.
  • the DDR type zeolite membrane provided body of the present invention is obtained by using the method for producing the DDR type zeolite membrane provided body of the present invention as described above, and the portion where the DDR type zeolite membrane and the glass seal are in contact with each other. It can be produced by forming a part of the glass seal so as to overlap the surface of the zeolite membrane.
  • the DDR type zeolite membrane arrangement obtained by the other embodiment of the method for producing the DDR type zeolite membrane arrangement of the present invention is the DDR type zeolite membrane arrangement of the present invention.
  • the constituent elements, characteristics, and the like of the DDR type zeolite membrane provided according to the present invention are the same as those in the DDR type zeolite membrane provided by the method for producing the DDR type zeolite membrane provided according to the present invention. This is the same as the embodiment in which a part of the glass seal is overlapped on the surface of the type zeolite membrane.
  • DDR type zeolite powder was produced, which was pulverized into a fine powder and used as a seed crystal. The seed crystal after pulverization was dispersed in water, and then coarse particles were removed to obtain a seed crystal dispersion.
  • the above seed crystal dispersion was mixed with a monolithic substrate made of alumina (diameter 30mm ⁇ , length 160mm, average pore diameter 0.1 ⁇ m on the outermost layer facing the through-hole, and through-hole with diameter 3mm ⁇ ).
  • a monolithic substrate made of alumina (diameter 30mm ⁇ , length 160mm, average pore diameter 0.1 ⁇ m on the outermost layer facing the through-hole, and through-hole with diameter 3mm ⁇ ).
  • substrate which has a filtration coating method.
  • the monolithic substrate with the seed crystal adhering to the through-hole was placed in a pressure vessel containing the raw material solution. As the monolithic substrate, one having an end not sealed with glass or the like was used. Thereafter, heat treatment (hydrothermal synthesis) was performed at 120 ° C. for 64 hours. After hydrothermal synthesis, it was washed with water and dried to obtain
  • a glass paste is applied to both end faces of the monolithic substrate and side portions within a range of 1.5 cm from the both end faces so as to contact the DDR type zeolite membrane (containing 1-adamantanamine).
  • GA-4 manufactured by Nippon Electric Glass Co., Ltd .: softening point 625 ° C
  • the glass paste was prepared by dispersing a powdery glass material in a mixed solution of water and polymer.
  • DDR type zeolite membrane coated with glass paste (containing 1-adamantanamine) is heated in an electric furnace to 650 ° C in the atmosphere to melt the glass and at the same time inside the DDR type zeolite pores 1-adamantanamine was burned and removed to obtain a DDR type zeolite membrane.
  • the “Diffraction peak of DDR type zeolite” in X-ray diffraction refers to International Center for Difiraction Data (ICDD) “Powder Diffracti on File” (No. 38-651 corresponding to Deca-dodecasil 3R shown here, or It is a diffraction peak described in ⁇ MA 41—71.
  • Example 2 Using a monolithic substrate with a glass seal on the end surface for hydrothermal synthesis, the same operation as in Example 1 was performed to obtain a DDR type zeolite membrane (containing 1-adamantanamine). On the end face The glass seal material used was SiO 2 -Na 2 O glass (softening point 780 ° C).
  • a glass paste was applied to the end face of the monolith-shaped substrate, the side face in a range of 2 cm from the end face, and the through hole. After that, it was heated to 650 ° C in the atmosphere with an electric furnace to burn and remove 1-adamantanamine in the pores of DDR type zeolite to obtain a DDR type zeolite membrane.
  • the glass paste the same glass paste as used in Example 1 was used.
  • Example 2 Using the monolith support with the glass seal 31b preliminarily applied to the end face, side face and through-hole for hydrothermal synthesis, the same operation as in Example 1 was performed, and a DDR type zeolite membrane (containing 1-adamantanamine) Got.
  • the glass seal material on the end face is made of SiO-NaO glass.
  • Example 1 Using the DDR type zeolite membrane provided in Example 1, a pervaporation test at 94 ° C for an ethanol 94 mass% aqueous solution was performed.
  • the water ethanol separation factor was 45.0.
  • the DDR type zeolite membrane provided in Example 1 had high separation performance.
  • the water ethanol separation factor is: [Water concentration in the liquid that permeated the membrane, ethanol concentration in the liquid that permeated the membrane)] Z [Water concentration of the liquid supplied to the membrane] Ethanol concentration of the liquid supplied to the membrane) ].
  • Example 2 Using the DDR type zeolite membrane provided in Comparative Example 1, a pervaporation test was conducted in the same manner as in Example 1. The water ethanol separation factor was 2.9. Further, the DDR type zeolite membrane provided in Comparative Example 1 was subjected to a pervaporation test after applying a silicone resin to a site where a seal failure occurred in the vicinity of the glass seal. The ethanol separation factor improved to 19.8. This shows that defects near the glass seal greatly reduce the separation performance of the DDR type zeolite membrane.
  • DDR type zeolite membranes that can be used for gas separation membranes and pervaporation membranes without inhibiting the formation of DDDR type zeolite membranes and without causing poor sealing. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

 原料溶液に多孔質基体を浸漬し、DDR型ゼオライト種結晶の存在下、DDR型ゼオライトを水熱合成して多孔質基体の表面に、1−アダマンタンアミンを含有するDDR型ゼオライト膜を形成し、多孔質基体の表面に、前記1−アダマンタンアミンを含有するDDR型ゼオライト膜に接触するようにガラスペーストを塗布し、500~800℃で加熱することにより、DDR型ゼオライト膜に含有される1−アダマンタンアミンを燃焼除去するとともに、ガラスペーストを溶融して多孔質基体の表面にDDR型ゼオライト膜に接した状態の膜状のガラスシールを形成してDDR型ゼオライト膜配設体を得るDDR型ゼオライト膜配設体の製造方法。DDR型ゼオライト膜とガラスシールとの接触部分において、DDR型ゼオライト膜の成膜が阻害されるのを防止し、ガラスシールのシール不良を防止できるDDR型ゼオライト膜配設体の製造方法を提供する。

Description

明 細 書
DDR型ゼオライト膜配設体の製造方法
技術分野
[0001] 本発明は、 DDR型ゼオライト膜配設体の製造方法に関し、さら〖こ詳しくは、 DDR型 ゼォライト膜を、多孔質基体の表面にガラスシールと接する状態で配設するときに、 DDR型ゼオライト膜とガラスシールとの接触部分にぉレ、て、 DDR型ゼオライト膜の成 膜が阻害されるのを防止することができるとともに、ガラスシールのシール不良が生じ ることを防止することができる DDR型ゼオライト膜配設体の製造方法に関する。 背景技術
[0002] ゼォライトは、触媒、触媒担体、吸着材等として利用されており、また、金属やセラミ ックスからなる多孔質基体の表面に成膜されたゼオライト膜配設体は、ゼォライトの分 子篩作用を利用し、ガス分離膜や浸透気化膜として用いられるようになってきてレ、る
[0003] ゼォライトは、その結晶構造により、 LTA、 MFI、 MOR、 AFI、 FER、 FAU、 DDR 等の多くの種類が存在する。これらの中で DDR (Deca_Dodecasil 3R)は、主成 分がシリカからなる結晶であり、その細孔は酸素 8員環を含む多面体によって形成さ れているとともに、酸素 8員環の細孔径は 4. 4 X 3. 6オングストロームであることが知 られている(W. M. Meier, D. H. Olson, Ch. Baerlocher, Atlas of zeolite structure types, Elsevier(1996)参照)。
[0004] DDR型ゼオライトは、ゼォライトの中では比較的細孔径が小さいものであり、二酸 化炭素(CO )、メタン (CH )、ェタン (C H )といった低分子ガスの分子篩膜として
2 4 2 6
適用できる可能性を有する。
[0005] そして、 DDR型ゼオライトの製造方法としては、原料溶液中の、 1—ァダマンタンァ ミン、シリカ、水及びエチレンジァミンの含有割合を特定の割合とすることにより、短時 間で緻密な DDR型ゼオライト膜を製造することが可能な製造方法が開示されている (例えば、特許文献 1参照)。この方法は、短時間で緻密な DDR型ゼオライト膜を製 造することが可能であるという優れた効果を奏するものである。 [0006] DDR型ゼオライト膜が多孔質基体の表面に成膜された DDR型ゼオライト膜配設体 は、その形状及び使用方法に応じて、多孔質基体の表面の中の所定の部分にシー ル材を塗膜してシール部分を形成し、そのシール部分からは被処理流体が流入又 は流出しないような構造とすることがある。
[0007] 一般的にゼォライト膜のシール材としては、シリコーン樹脂、ポリイミド樹脂やェポキ シ樹脂等の榭脂、またはガラスが使用される。膜の使用環境 (温度、圧力、雰囲気等 )に応じて変更する必要はあるが、比較的高い温度や有機溶媒に曝される雰囲気で 膜を使用する場合では、フィラー材を混合する方法や、機械的封止構造とする方法 などが提案されている (例えば、特許文献 2、 3参照)。
特許文献 1 :特開 2003— 159518号公報
特許文献 2:特開 2000— 109690号公報
特許文献 3 :特開 2007— 50322号公報
発明の開示
[0008] このようなシール部分を有する DDR型ゼオライト膜配設体において、シール部分と DDR型ゼオライト膜とが多孔質基体の表面上で互いに接してレ、る場合、その接して いる部分は、通常、気密又は液密に接触していることが必要である。それにより、 DD R型ゼオライト膜とシール部分との間力 被処理流体が流入及び流出させないように し、 DDR型ゼオライト膜配設体の分離性能を高めることができる。
[0009] 特許文献 2に記載の方法は、ポリイミド樹脂にアルミナ粉末をフイラー材として混合 したペーストを、シール材として使用している。これにより、シール材を施したゼォライ ト膜を作製してレ、る力 ポリイミド樹脂は水蒸気に曝されると膨潤するなど劣化の懸念 があり、また、アルミナ粉末をフイラ一として利用するため作業工程が複雑化するとい う問題がある。
[0010] 特許文献 3に記載の方法は、樹脂と、緻密なセラミックス又は金属とをシール材とし て使用している。これにより、シール材を施したゼォライト膜を作製している力;、多くの 樹脂は水蒸気や有機溶剤に曝されると膨潤ゃ溶出するなど劣化の懸念があり、また 、その構造が複雑であるため、多孔質基体の形状が限定されるという問題がある。
[0011] ガラスシールを配設した DDR型ゼオライト膜配設体を作製する方法としては、多孔 質基体の表面の所定の位置にガラスシールを配設し、ガラスシールが配設された多 孔質基体を、所定の原料が含有されるアルカリ性溶液に浸漬して、水熱合成により D DR型ゼオライト膜を多孔質基体の表面に成膜する方法がある。しかし、この方法で は、多孔質基体の表面に配設されたガラスシール力 アルカリ性溶液中に溶出する ことがあり、それによりシール不良や DDR型ゼオライト膜の成膜不良が発生するとレ、 う問題があった。 DDR型ゼオライト膜の成膜不良は、 DDR型ゼオライト膜を成膜する ための原料にガラス成分が溶出するにより、原料組成が変化し、 DDR型ゼオライト膜 の成膜に適さなレ、組成となつてしまうことによつて生じる。
[0012] 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その 目的とするところは、 DDR型ゼオライト膜を、多孔質基体の表面にガラスシールと接 する状態で配設するときに、 DDR型ゼオライト膜とガラスシールとの接触部分におい て、 DDR型ゼオライト膜の成膜が阻害されるのを防止することができるとともに、ガラ スシールのシール不良が生じることを防止することができる DDR型ゼオライト膜配設 体の製造方法を提供することにある。
[0013] 上記目的を達成するため、本発明によって以下の DDR型ゼオライト膜配設体の製 造方法が提供される。
[0014] [1] 1—ァダマンタンァミン、シリカ及び水を含有する原料溶液に多孔質基体を浸 漬し、 DDR型ゼオライト種結晶の存在下、 DDR型ゼオライトを水熱合成して前記多 孔質基体の表面に、 1—ァダマンタンアミンを含有する DDR型ゼオライト膜を形成し 、前記多孔質基体の表面に、前記 1ーァダマンタンアミンを含有する DDR型ゼォライ ト膜に接触するようにガラスペーストを塗布し、 500〜800°Cで加熱することにより、前 記 DDR型ゼオライト膜に含有される 1—ァダマンタンアミンを燃焼除去するとともに、 前記ガラスペーストを溶融して前記多孔質基体の表面に DDR型ゼオライト膜に接し た状態の膜状のガラスシールを形成して、前記多孔質基体と、前記多孔質基体の表 面に配設された DDR型ゼオライト膜と、前記多孔質基体の表面に、前記 DDR型ゼ オライト膜に接触するように配設された前記ガラスシールとを備えた DDR型ゼオライト 膜配設体を得る DDR型ゼオライト膜配設体の製造方法。
[0015] [2] 前記多孔質基体を、中心軸方向に貫通する複数の貫通孔が形成された柱状 のモノリス形状基体とし、前記モノリス形状基体を、前記貫通孔の内壁面に前記 DD R型ゼオライト種結晶を塗布した状態で、原料溶液に浸漬し、水熱合成して、前記モ ノリス形状基体の前記貫通孔の内壁面に 1ーァダマンタンアミンを含有する DDR型 ゼォライト膜を形成し、前記モノリス形状基体の両端面に、前記 1—ァダマンタンアミ ンを含有する DDR型ゼオライト膜に接触するようにガラスペーストを塗布し、 500〜8 00°Cで加熱することにより、前記モノリス形状基体と、前記モノリス形状基体の前記貫 通孔の内壁面に形成された DDR型ゼオライト膜と、前記 DDR型ゼオライト膜に接触 するように前記モノリス形状基体の両端面に配設ざれた前記ガラスシールとを備えた DDR型ゼオライト膜配設体を得る [ 1 ]に記載の DDR型ゼオライト膜配設体の製造方 法。
[0016] [3] 前記モノリス形状基体の両端面と、側面の中の、両端面のそれぞれから:!〜 50 mmの範囲とに、前記 1—ァダマンタンアミンを含有する DDR型ゼオライト膜に接触 するようにガラスペーストを塗布する [2]に記載の DDR型ゼオライト膜配設体の製造 方法。
[0017] [4] 前記モノリス形状基体の両端面と、前記貫通孔の内壁面の中の、両端面のそ れぞれから l〜50mmの範囲とに、前記 1—ァダマンタンアミンを含有する DDR型ゼ オライト膜に接触するようにガラスペーストを塗布する [2]又は [3]に記載の DDR型 ゼォライト膜配設体の製造方法。
[0018] [5] 多孔質基体と、前記多孔質基体の表面に配設された DDR型ゼオライト膜と、前 記 DDR型ゼオライト膜の表面に一部が重なるようにして前記多孔質基体の表面に配 設されたガラスシールとを備えた DDR型ゼオライト膜配設体。
[0019] このように、本発明の DDR型ゼオライト膜配設体の製造方法によれば、多孔質基 体の表面に、 1—ァダマンタンアミンを含有する DDR型ゼオライト膜を形成し、その 後、多孔質基体の表面に、 1—ァダマンタンアミンを含有する DDR型ゼオライト膜に 接触するようにガラスペーストを塗布し、 500〜800°Cでカロ熱することにより、 DDR型 ゼォライト膜に含有される 1—ァダマンタンアミンを燃焼除去するとともに、ガラスペ一 ストを溶融して多孔質基体の表面に DDR型ゼオライト膜に接した状態の膜状のガラ スシ一ルを形成して、ガラスシールが施された DDR型ゼオライト膜配設体を得るため 、ガラスシールをアルカリ性溶液に浸漬させずに DDR型ゼオライト膜配設体を作製 することができ、 DDR型ゼオライト膜の成膜が阻害されるのを防止することができると ともに、ガラスシールのシール不良が生じることを防止することができる。
図面の簡単な説明
[0020] [図 1]本発明の DDR型ゼオライト膜配設体の製造方法の一実施形態において用いる 多孔質基体を模式的に示す斜視図である。
[図 2]本発明の DDR型ゼオライト膜配設体の製造方法の一実施形態における、水熱 合成後の、 DDR型ゼオライト膜が配設された多孔質基体の、中心軸に平行な平面 で切断した断面を示す模式図である。
[図 3]本発明の DDR型ゼオライト膜配設体の製造方法の一実施形態により得られた DDR型ゼオライト膜配設体の、中心軸に平行な平面で切断した断面を示す模式図 である。
[図 4]本発明の DDR型ゼオライト膜配設体の製造方法の他の実施形態により得られ た、 DDR型ゼオライト膜配設体の、中心軸に平行な平面で切断した断面を示す模式 図である。
[図 5A]実施例 1で作製された DDR型ゼオライト膜配設体の、 DDR型ゼオライト膜と ガラスシールとの境界部分を示す電子顕微鏡写真である。
[図 5B]図 5Aの電子顕微鏡写真の中の領域 S 1を拡大した電子顕微鏡写真である。
[図 6A]比較例 1で作製された DDR型ゼオライト膜配設体の、 DDR型ゼオライト膜と ガラスシールとの境界部分を示す電子顕微鏡写真である。
[図 6B]図 6Aの電子顕微鏡写真の中の領域 S2を拡大した電子顕微鏡写真である。 符号の説明
[0021] 1 :多孔質基体、 2 :貫通孔、 3 :側面、 4 :端面、 5 :貫通孔の内壁面、 11 : 1ーァダマン タンアミンを含有する DDR型ゼオライト膜、 12 :DDR型ゼオライト膜、 21 :ガラスシー ノレ、 22 :側面シール部、 23 :貫通孔内シール部、 31a, 31b :ガラスシール、 32 :DD R型ゼオライト膜、 33 : DDR型ゼオライト結晶、 34 :モノリス形状基体、 100, 200 : D DR型ゼオライト膜配設体、 SI, S2 :領域。
発明を実施するための最良の形態 [0022] 次に本発明の実施の形態を図面を参照しながら詳細に説明するが、本発明は以下 の実施の形態に限定されるものではなぐ本発明の趣旨を逸脱しない範囲で、当業 者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解され るべきである。また、各図面において、同一の符号を付したものは、同一の構成要素 を示すものとする。
[0023] 本発明のゼォライト膜配設体の製造方法の一の実施形態は、まず、 1ーァダマンタ ンァミン、シリカ及び水を含有する原料溶液に多孔質基体を浸漬し、 DDR型ゼォライ ト種結晶の存在下、 DDR型ゼオライトを水熱合成して多孔質基体の表面に、「1ーァ ダマンタンアミンを含有する DDR型ゼオライト膜」を形成する。そして、多孔質基体の 表面に、その「1ーァダマンタンアミンを含有する DDR型ゼオライト膜」に接触するよう にガラスペーストを塗布する。そして、 500〜800°Cで加熱することにより、 DDR型ゼ オライト膜に含有される 1—ァダマンタンアミンを燃焼除去するとともに、ガラスペース トを溶融して多孔質基体の表面に DDR型ゼオライト膜に接した状態の膜状のガラス シールを形成して、 DDR型ゼオライト膜配設体を得る方法である。 DDR型ゼオライト 膜配設体は、多孔質基体と、多孔質基体の表面に配設された DDR型ゼオライト膜と 、多孔質基体の表面に、 DDR型ゼオライト膜に接触するように配設されたガラスシー ルとを備えるものである。
[0024] (多孔質基体)
本実施形態のゼォライト膜配設体の製造方法において用いる多孔質基体の形状 は、特に限定されず、用途に応じて任意の形状とすることができる。例えば、板状、筒 状、ハニカム形状、又は、モノリス形状等を好適例として挙げることができる。これらの 中でも、単位体積当たりの膜面積を大きくすることが可能であるとともに、膜面積当た りのシール部分面積を小さくすることが可能であるため、モノリス形状が好ましい。な お、本実施形態にいう「モノリス形状」とは、中心軸方向に貫通する複数の貫通孔が 形成された柱状を意味し、例えば、その中心軸方向に直交する断面が蓮根状になつ ているものをいう。以下、多孔質基体が、上記モノリス形状である場合(モノリス形状 基体)について説明するが、上記のように多孔質基体の形状はこれに限定されるもの ではな!/、。 [0025] 図 1は、本実施形態の DDR型ゼオライト膜配設体の製造方法において用いる多孔 質基体 1を模式的に示す斜視図である。多孔質基体 1は、中心軸方向に貫通する複 数の貫通孔 2が形成された円柱状のモノリス形状基体である。多孔質基体 1の平均 気孔率は、 10〜60%力好ましく、 20〜40%が更に好ましい。 10%より低いと被処理 流体の分離時に圧力損失が大きくなることがあり、 60%より高いと多孔質基体 1の強 度が低くなることがある。尚、平均気孔率は、水銀ポロシメータ一により測定した値で ある。多孔質基体 1は複数の粒子層からなるが、貫通孔 2に面する最表面層の平均 細孔径は、 0. 003〜10 /i mであること力好ましく、 0. 01〜l / mであることが更に好 ましレ、。 0. 003 μ πιより小さいと被処理流体の分離時に圧力損失が大きくなることが あり、 10 mより大きいと表面に形成された DDR型ゼオライト膜に欠陥が生じ易くな ること力;ある。多孔質基体の長さ、及び中心軸に直交する断面の面積は、目的に応じ て適宜決定することができ、例えば、多孔質基体の長さは 40〜: 1000mm程度の範 囲のものを好適に使用することができる。多孔質基体 1の材質は、アルミナ、ジルコ二 ァ又はムライト等のセラミックス、ガラス、ゼォライト、粘土、金属、炭素等が好ましい。 これらの中でも、強度やコストの低さに優れる点で、アルミナが好ましい。
[0026] 多孔質基体 1に形成される貫通孔 2の密度(貫通孔本数 Z多孔質基体の中心軸方 向に垂直な断面の面積)は、 0. 01〜; 15本ノ cm2であることが好ましい。 0. 01本/ c m2より少ないと被処理流体の分離時の処理能力が低下することがあり、 15本 Zcm2 より多いと多孔質基体の強度が低下することがある。一つの貫通孔の大きさは、中心 軸に直交する断面の面積が 0. 5〜28mm2であることが好ましい。 0. 5mm2より小さ レ、と被処理流体の分離時の圧力損失が大きくなることがあり、 28mm2より大きいと多 孔質基体の強度が低下したり、被処理流体の分離時の処理能力が低下することがあ る。
[0027] 多孔質基体の製造方法は、特に限定されるものではなぐ公知の方法を用いること ができる。
[0028] (原料溶液)
1—ァダマンタンァミン、シリカ及び水を含有する原料溶液を調製する。本実施形態 では、 DDR型ゼオライト膜を形成するための構造規定剤として 1—ァダマンタンアミ ンを用いる。まず、 1—ァダマンタンァミンとシリカ、水、要すればエチレンジァミン、及 びその他添加剤を混合して原料溶液を調製する。シリカとしてはシリカゾルを用いる ことが好ましい。例えば、添加剤として微量のアルミン酸ナトリウムを使用すると、 DD R型ゼオライト膜を構成する Siの一部を A1で置換することもできる。このように置換す ることにより、形成される DDR型ゼオライト膜に分離機能に加えて触媒作用等を付カロ することも可能である。原料溶液の調製に際して、シリカに対する 1—ァダマンタンァ ミンの比の値(1ーァダマンタンアミン/シリカ(モル比))は、◦. 002〜0. 5が好ましく 、 0. 002-0. 2カ更に好ましレヽ。 0. 002より /J、さレヽと構造規定剤である 1—ァダマン タンァミンが不足して DDR型ゼオライトが形成しにくいことがあり、 0. 5より大きいと膜 状に DDR型ゼオライトを形成しにくいこと、また高価な 1—ァダマンタンァミンの使用 量が増えるため製造コスト増につながることがある。シリカに対する水の比の値 (水 Z シリカ(モル比))は、 10〜500カ好ましく、 10〜200カ更に好ましレヽ。 10より小さいと シリカ濃度が高すぎて DDR型ゼオライトが形成しにくいこと、及び DDR型ゼオライト が形成しても膜状に形成しにくいことがあり、 500より大きいとシリカ濃度が低すぎて D DR型ゼオライトが形成しにくいことがある。
[0029] 原料溶液中には、エチレンジァミンを含有させることが好ましい。エチレンジァミンを 添加して原料溶液を調製することにより、 1 _ァダマンタンァミンを容易に溶解するこ とが可能となり、均一な結晶サイズ、膜厚を有する緻密な DDR型ゼオライト膜を製造 することが可能となる力 である。 1 -ァダマンタンァミンに対するエチレンジァミンの 比の値(エチレンジァミン /1ーァダマンタンアミン(モル比))は、 4〜35力好ましく、 8 〜32が更に好ましい。 4より小さレ、と、 1—ァダマンタンアミンを溶力 易くするための 量としては不充分であり、 35より大きいと、反応に寄与しないエチレンジァミンが過剰 となり製造コストがかかることがある。
[0030] また、 1ーァダマンタンアミンを予めエチレンジァミンに溶角军することにより 1—ァダマ ンタンアミン溶液を調製することが好ましい。このように調製した 1—ァダマンタンアミ ン溶液と、シリカを含むシリカゾノレ溶液とを混合して調製した原料溶液を用いることが 、より簡便かつ完全に 1—ァダマンタンアミンを溶解し、均一な結晶サイズ、膜厚を有 する緻密な DDR型ゼオライト膜を製造することが可能となるために好ましい。なお、 シリカゾル溶液は、微粉末状シリカを水に溶解すること、又は、アルコキシドを加水分 解することにより調製することができる力 シリカゾル市販品のシリカ濃度を調整して 用レ、ることもできる。
[0031] (水熱合成)
原料溶液に多孔質基体を浸漬し、 DDR型ゼオライト種結晶の存在下、 DDR型ゼ オライトを水熱合成して多孔質基体の表面に、「1ーァダマンタンアミンを含有する D DR型ゼオライト膜」を形成する。ここで、「種結晶の存在下」とは、種結晶が、水熱合 成時に、多孔質基体表面に接触した状態で存在していることをいう。従って、種結晶 を予め原料溶液中に分散させておき、そこに多孔質基体を浸漬して水熱合成しても よいし、種結晶を多孔質基体表面に予め塗布しておき、その多孔質基体を原料溶液 中に浸漬して水熱合成してもよい。また、種結晶を原料溶液に分散させるとともに、 多孔質基体表面にも塗布しておき、多孔質基体を原料溶液に浸漬して水熱合成し てもよレ、。種結晶を、均一に多孔質基体表面に配置させるという観点からは、多孔質 . 基体表面に種結晶を予め塗布することが好ましい。
[0032] 種結晶としては、「M. J. denExter, J. C. Jansen, H. van Bekkum, Studies in Surface Science and Catalysis vol. 84, Ed. by J. Weitkamp et al . , Elsevier (1994) 1159 _ 1166」に記載の DDR型ゼオライトを製造する方法に従 つて、 DDR型ゼオライト粉末を製造し、これを微粉末に粉砕したものを使用すること が好ましい。粉砕後の種結晶は、篩等を用いて所定の粒径範囲とすることが好ましい
[0033] また、種結晶を原料溶液中に分散させる場合は、原料溶液調製時に上記所定の種 結晶を所定量添加する。原料溶液に種結晶を分散させる方法としては、一般的な撹 拌方法を採用すればよいが、超音波処理等の方法を採用してもよぐ均一に分散さ せることにより、より緻密で均一な膜厚の DDR型ゼオライト膜を形成することができる 。尚、種結晶を分散させた原料溶液を用いて DDR型ゼオライト膜を水熱合成する場 合、多孔質基体の表面の中の DDR型ゼオライト膜を形成しない部分に PTFE (ポリ テトラフルォロエチレン)シールテープ等によりマスキングを施し、 DDR型ゼオライト 膜が形成されなレ、ようにしても良い。 [0034] 原料溶液に多孔質基体を浸漬し、 DDR型ゼオライトを水熱合成する方法としては、 特に限定されないが、例えば、種結晶を多孔質基体の表面に塗布する場合には、以 下の方法が挙げられる。
[0035] 種結晶分散液を、ディップコート法、ろ過コート法等の方法で、多孔質基体の貫通 孔の内壁面に塗布して、貫通孔の内壁面に種結晶が塗布された多孔質基体を形成 する。そして、原料溶液を入れた耐圧容器等に、種結晶が塗布された多孔質基体を 入れて、下記所定の温度で所定時間保持することにより水熱合成し、図 2に示すよう に、多孔質基体 1の貫通孔 2の内壁面 5に 1ーァダマンタンアミンを含有する DDR型 ゼォライト膜 11を形成する。この場合、種結晶を塗布していなレ、、多孔質基体 1の側 面 3及び両端面 4, 4には、 DDR型ゼオライト膜は形成されなレ、。 1—ァダマンタンァ ミンを含有する DDR型ゼオライト膜 11は、図 2に示すように、貫通孔の內壁面に、両 端部間に亘つて配設されることが好ましい。すなわち、貫通孔の内壁面全体に配設さ れていることが好ましい。本実施形態においては、水熱合成に際しての温度条件を 9 0〜200°Cとすることが好ましぐ 100〜 50°Cとすることが更に好ましレ、。 90°C未満 で水熱合成を行った場合には、 DDR型ゼオライト膜を形成し難いことがあり、 200°C 超で水熱合成を行った場合には、 DOH型ゼオライト等の、 DDR型ゼオライトとは異 なる結晶相が形成されることがある。また、水熱合成に際しての処理時間は、 1〜24 0時間が好ましく、:!〜 120時間が更に好ましい。図 2は、本実施形態の DDR型ゼォ ライト膜配設体の製造方法における、水熱合成後の、 DDR型ゼオライト膜が配設さ れた多孔質基体の、中心軸に平行な平面で切断した断面を示す模式図である。
[0036] 多孔質基体の貫通孔の内壁面に形成される、 1—ァダマンタンアミンを含有する D DR型ゼオライト膜 11の膜厚は 0. 05〜15 でぁることカ;好ましく、0. l〜5 /i mで あることが更に好ましく、 0. l〜2 /x mであることが特に好ましい。 15 /z mより厚いと、 ガスの透過量が少なくなることがある。 0. 05 /x mより薄いと DDR型ゼオライト膜の強 度が低くなることがある。ここで、多孔質基体の表面に膜を形成すると、多孔質基体 表面には多数の細孔が開いているため、多孔質基体表面上だけでなぐ多孔質体の 細孔内に入り込んだ部分を有する膜となる場合がある。本実施の形態において「膜 厚」というときは、このように、多孔質基体の細孔内に入り込んだ部分も含めた厚さを レ、う。また、 DDR型ゼオライト膜の膜厚は、厚さ方向に沿って切断した断面の電子顕 微鏡写真により測定した 5ケ所の断面位置での平均値である。
[0037] (ガラスペ一ストの塗布)
次に多孔質基体の表面に、 1—ァダマンタンアミンを含有する DDR型ゼオライト膜 に接触するようにガラスペーストを塗布する。ガラスペーストを塗布する部分は、特に 限定されず、多孔質基体の表面の中で、多孔質基体内から外部に、又は外部から多 孔質基体内に、ガス、液体、微粒子等が移動することを防止しょうとする部分に、塗 布することが好ましい。本実施形態においては、多孔質基体 (モノリス形状基体)の両 端面にガラスペーストを塗布する。このとき、貫通孔の内壁面に形成された 1ーァダマ ンタンアミンを含有する DDR型ゼオライト膜と、両端面に塗布されたガラスペーストと の接触部分に隙間が形成されないようにすることが好ましく、 1—ァダマンタンアミン を含有する DDR型ゼオライト膜の表面に、ガラスペーストの一部が重なるように接触 部分が形成されることが更に好ましい。
[0038] ガラスペーストとして多孔質基体の表面に塗布するガラス材料としては、軟化点が 4 00〜800°Cであることカ好ましく、 450〜750°Cであることカ更に好ましレ、。 400°Cよ り低いと、ガラスペーストを溶融する温度が 500°C未満となり、 1—ァダマンタンアミン の燃焼除去を同時に行えないことがあり、 800°Cより高いと、ガラスペーストを溶融す る温度が 800°Cより高くなり、 DDR型ゼオライト膜に欠陥が生じやすくなることがある 。ガラスペーストは粉末状のガラスを水等の溶媒に分散させることにより作製すること 力 Sできる。また、水等の溶媒に加えて高分子等を添加して作製しても良い。また、ガラ ス材料の熱膨張係数は、多孔質基体の熱膨張係数に近いことが好ましい。例えば、 多孔質基体がアルミナの場合は、アルミナの熱膨張係数が約 7 X 10—6[K— である ことから、ガラス材料の熱膨張係数としては、 5〜8 Χ 10— 6[Κ— が好ましい。また、 ガラス材料の組成系としては、特に限定されないが、前記軟化点、前記熱膨張係数 を満たすものであることが好まし Pb〇(酸化鉛)を含まない系が更に好ましい。例と しては、 Na O-ZnO-B〇系、 Na O— B〇 一 SiO系、 CaO— BaO— SiO系な
2 ' 2 3 2 2 3 2 2 どの組成系が挙げられる。また、粉末状のガラスの平均粒径は特に限定されなレ、が、
0. 1〜: L50 m力好ましく、 l〜30 m力より好ましレヽ。 [0039] (DDR型ゼオライト膜配設体の形成)
次に、貫通孔 2の内壁面 5に 1—ァダマンタンアミンを含有する DDR型ゼオライト膜 が配設され、それに隙間無く接触するように両端面 4, 4にガラスペーストが塗布され た多孔質基体 1を、 500〜800°Cで加熱することにより、 DDR型ゼオライト膜に含有 される 1—ァダマンタンアミンを燃焼除去するとともに、ガラスペーストを溶融して多孔 質基体の表面(両端面)に DDR型ゼオライト膜に接した状態の膜状のガラスシール を形成し、図 3に示すような、 DDR型ゼオライト膜配設体 100を作製する。図 3は、本 実施形態の DDR型ゼオライト膜配設体の製造方法により得られた DDR型ゼオライト 膜配設体の、中心軸に平行な平面で切断した断面を示す模式図である。得られる D DR型ゼオライト膜配設体 100は、多孔質基体 1と、多孔質基体 1の表面に配設され た DDR型ゼオライト膜 12と、多孔質基体 1の表面に、 DDR型ゼオライト膜 12に接触 するように配設されたガラスシール 21とを備えた DDR型ゼオライト膜配設体 100であ る。そして、 DDR型ゼオライト膜配設体は、多孔質基体と、多孔質基体の表面に配 設された DDR型ゼオライト膜と、 DDR型ゼオライト膜の表面に一部が重なるようにし て多孔質基体の表面に配設されたガラスシールとを備えたものであることが更に好ま しい。
[0040] 本実施形態の DDR型ゼオライト膜配設体の製造方法は、このように、ガラスペース トからガラスシールを形成するときの加熱と、 1—ァダマンタンアミンを含有する DDR 型ゼオライト膜から 1ーァダマンタンアミンを燃焼除去するための加熱とを、同時に行 うことにより、ガラスシールをアルカリ性の原料溶液に浸漬することがないため、ガラス シールがアルカリ性溶液により溶解してシール不良が生じることを防止することができ る。更に、 DDR型ゼオライト膜を成膜するための原料にガラス成分が溶出することに より、原料組成が変化し、 DDR型ゼオライト膜の成膜に適さない組成となってしまう、 ということがないため、 DDR型ゼオライト膜の成膜が阻害されるのを防止することがで きる。そのため、本実施形態の DDR型ゼオライト膜配設体の製造方法により、多孔質 基体の貫通孔の内壁面に形成された DDR型ゼオライト膜と、多孔質基体の両端面 に配設されたガラスペ一ストとの接触部分を、ガス、液体、微粒子等がその接触部分 から漏れ出したり、その接触部分から浸入したりしないように、気密であり且つ液密で あるように形成することができる。つまり、 1—ァダマンタンアミンを含有する DDR型ゼ オライト膜と、ガラスペーストとの接触部分に隙間が形成されないようにすることができ る。
[0041] 貫通孔 2の内壁面 5に 1ーァダマンタンアミンを含有する DDR型ゼオライト膜が配 設され、両端面 4, 4にガラスペーストが塗布された多孔質基体 1を、加熱する温度は 、 500〜800°Cであり、 550〜800°Cであること力好ましい。 500°Cより低レヽと、 1ーァ ダマンタンアミンを燃焼除去し難くなることがあり、 800°Cより高いと、 DDR型ゼォライ ト膜に欠陥が生じやすくなることがある。加熱時の雰囲気は大気中が好ましい。加熱 装置としては、特に限定されないが、電気炉等を挙げることができる。
[0042] (他の実施形態)
図 4は、本発明の DDR型ゼオライト膜配設体の製造方法の他の実施形態により得 られた、 DDR型ゼオライト膜配設体 200の、中心軸に平行な平面で切断した断面を 示す模式図である。本実施形態の DDR型ゼオライト膜配設体の製造方法は、上記 本発明の DDR型ゼオライト膜配設体の製造方法の一の実施形態において、「ガラス ペーストの塗布」の方法が異なるものであり、他の工程は同じである。そして、本実施 形態の DDR型ゼオライト膜配設体の製造方法により得られる DDR型ゼオライト膜配 設体 200は、本実施形態の DDR型ゼオライト膜配設体の製造方法の場合と、上記 本発明の DDR型ゼオライト膜配設体の製造方法の一の実施形態の場合とで、「ガラ スぺ一ストの塗布」の方法が異なることにより、配設されるガラスシールの形状力 上 記本発明の DDR型ゼオライト膜配設体の製造方法の一の実施形態で得られる DD R型ゼオライト膜配設体とは異なるものである。 '
[0043] (ガラスペーストの塗布)
多孔質基体の表面に、 1ーァダマンタンアミンを含有する DDR型ゼオライト膜に接 触するようにガラスペーストを塗布するが、本実施形態においては、多孔質基体 (モノ リス形状基体) 1の両端面 4, 4と、側面 3の中の、多孔質基体の両端面 4, 4のそれぞ れから l〜50mmの範囲とに、 1—ァダマンタンアミンを含有する DDR型ゼオライト膜 に接触するようにガラスペーストを塗布し、更に、モノリス形状基体 1の両端面 4, 4と、 貫通孔 2の内壁面 5の中の、多孔質基体の両端面 4, 4のそれぞれから:!〜 50mmの 範囲とに、 1—ァダマンタンアミンを含有する DDR型ゼオライト膜に接触するようにガ ラスペ一ストを塗布する。これにより、図 4に示すように、得られる DDR型ゼオライト膜 配設体 200が、側面 3の中の、多孔質基体の両端面 4, 4のそれぞれから:!〜 50mm の範囲に側面シール部 22を有し、貫通孔 2の内壁面 5の中の、多孔質基体の両端 面 4, 4のそれぞれから l〜50mmの範囲に貫通孔内シ一ル部 23を有するガラスシ ール 21を備えるものとなる。従って、ガラスシール 21が、モノリス形状基体の端面 4に 配設されている部分と、端面 4に配設されている部分に一体的に形成された側面シ ール部 22及び貫通孔内シール部 23とを、有するものとなる。貫通孔内シール部 23 は、図 4に示すように、貫通孔内に配設された DDR型ゼオライト膜に積層されるよう に配設されることが好ましいため、ガラスペーストを貫通孔内に塗布するときも、 1—ァ ダマンタンアミンを含有する DDR型ゼオライト膜の表面に塗布することが好ましい。 尚、側面シール部 22と貫通孔内シール部 23とは、本実施形態のように両方設けられ ることが好ましレ、が、レ、ずれか一方であってもよレ、。
[0044] このように、ガラスシール 21が、側面シール部 22を有することより、モノリス形状基 体の端面部分のシール性をより向上させることができる。また、ガラスシール 21が、貫 通孔内シール部 23を有することより、 DDR型ゼオライト膜との接触部分のシール性 をより向上させることができる。
[0045] 側面シール部 22の中心軸方向長さ D1は、上記のように l〜50mmの範囲が好ま しぐ 5〜20mmの範囲が更に好ましい。側面シール部 22の中心軸方向長さ D1が 1 mmより短レ、(側面シール部 22が、側面 3の中の、多孔質基体の端面 4から lmmま での範囲より短い範囲に形成される)と、シール性を確保し難くなることがある。 50m mより長レ、と、モノリス形状基体の側面の面積が小さくなり流体の流通を妨げることが ある。また、貫通孔内シール部 23の中心軸方向長さ D2は、上記のように:!〜 50mm の範囲が好ましぐ:!〜 20mmの範囲が更に好ましい。貫通孔内シール部 23の中心 軸方向長さ D2が lmmより短い(貫通孔内シール部 23が、貫通孔 2の中の、多孔質 基体の端面 4から lmmまでの範囲より短い範囲に形成される)と、シール性を確保し 難くなることがある。 50mmより長いと、 DDR型ゼオライト膜の面積が小さくなり分離 効率が低下することがある。従って、ガラスペーストをモノリス形状基体の貫通孔内及 び側面に塗布するときは、上記側面シール部 22及び貫通孔内シール部 23が配設さ れる位置に、ガラスペーストを塗布することが好ましレ、。
[0046] ガラスペーストの塗布についての他の条件は、上記本発明の DDR型ゼオライト膜 配設体の製造方法の一実施形態における「ガラスペーストの塗布」における条件と同 様であることが好ましい。
[0047] (DDR型ゼオライト膜配設体)
本発明の DDR型ゼオライト膜配設体は、多孔質基体と、多孔質基体の表面に配設 された DDR型ゼオライト膜と、 DDR型ゼオライト膜の表面に一部が重なるようにして 多孔質基体の表面に配設されたガラスシールとを備えたものである。多孔質基体の 表面にゼォライト膜を形成している場合、ゼォライト膜は多孔質基体の表面のみでな く基体内部にも入り込んで形成される。その際、ゼォライト膜は多孔質基体を構成す る粒子を包み込むように形成されるため、ゼォライトと基体粒子との化学的な結合に よる密着強度以外に、ゼォライト膜と基体との間に物理的な密着強度が付与されるた め、ゼォライト膜と多孔質基体との密着強度は高くなり、剥がれ難いゼォライト膜とな る。一方、多孔質基体の表面の一部にガラスシール等が緻密に形成され、その緻密 な部分の表面にゼォライト膜を形成する場合、緻密な部分の表面に形成されたゼォ ライト膜はゼオライトと緻密な部分を構成する材料 (例えばガラス)との間の化学的な 結合による密着強度が支配的となり、ゼォライト膜と基体との間に物理的な密着強度 はほとんど生じなレ、。そのため、ガラスシール等が緻密に形成された部分の表面に形 成されたゼォライト膜は剥がれ易い。ガラスシールの表面からゼォライト膜が剥がれ た場合、多孔質基体の表面にゼォライト膜が形成されている部分においても一部が 一緒に剥がれることや、クラック等が発生することがあり、目標とする分離性能を確保 し難くなる。従って、多孔質基体の表面にガラスシールと DDR型ゼオライト膜とを、互 いの一部が重なるように配設する場合には、本発明の DDR型ゼオライト膜配設体の ように、 DDR型ゼオライト膜の上力 ガラスシールが重なるようにして、多孔質基体の 表面に DDR型ゼオライト膜とガラスシールとが配設される必要がある。これにより、 D DR型ゼオライト膜配設体の DDR型ゼオライト膜が、多孔質基体との密着強度の高 レ、、剥がれ難いものとなる。 [0048] 本発明の DDR型ゼオライト膜配設体は、上記本発明の DDR型ゼオライト膜配設体 の製造方法を用いて、 DDR型ゼオライト膜とガラスシールとが接触する部分を、 DD R型ゼオライト膜の表面にガラスシールの一部を重ねるように形成することにより、製 造することができる。従って、上記本発明の DDR型ゼオライト膜配設体の製造方法 の他の実施形態によって得られた DDR型ゼオライト膜配設体は、本発明の DDR型 ゼォライト膜配設体である。そして、本発明の DDR型ゼオライト膜配設体の各構成要 素、特性等は、上記本発明の DDR型ゼオライト膜配設体の製造方法によって得られ た DDR型ゼオライト膜配設体における「DDR型ゼオライト膜の表面にガラスシール の一部が重ねられるように形成された」態様と同じである。
実施例
[0049] 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定 されるものではない。
[0050] (DDR型ゼオライト粉末 (種結晶)分散液の製造)
「M. J. den Exter, J.し. Jansen, H. van Bekkum, studies in surface Science and Catalysis vol. 84, Ed. by J. Weitkamp et al. , Elsevier (1 994) 1159— 1166」に記載の DDR型ゼオライトを製造する方法に従って、 DDR型 ゼォライト粉末を製造し、これを微粉末に粉砕して種結晶として使用した。粉砕後の 種結晶を水に分散させた後、粗い粒子を除去し、種結晶分散液とした。
[0051] (実施例 1)
フッ素樹脂製のボトルに 6. 31gのエチレンジァミン (和光純薬工業社製)を入れた 後、 0. 993gの 1—ァダマンタンアミン(アルドリッチ社製)を加え、 1ーァダマンタンァ ミンの沈殿が残らなレ、ように溶解した。別のボトルに lOOgの水を入れ、 84. 12gの 30 質量。 /0シリカゾル (スノーテックス S :日産化学社製)を加えて軽く撹拌した後、これに エチレンジァミンと 1ーァダマンタンアミンを混合した溶液を加えて約 1時間攪拌混合 し、原料溶液とした。その後、原料溶液をフッ素樹脂製内筒付きステンレス製耐圧容 器に移した。
[0052] 上記種結晶分散液を、アルミナ製のモノリス形状基体(直径 30mm φ、長さ 160m m、貫通孔に面した最表層の平均細孔径 0. 1 μ m、直径 3mm φの貫通孔を 37孔 有するレンコン形状の多孔質基体)の貫通孔の内壁面に、ろ過コート法で塗布した。 種結晶が貫通孔に付着したモノリス形状基体を、原料溶液を入れた耐圧容器内に配 置した。モノリス形状基体は、端部にガラス等のシールを施していないものを使用した 。その後、 120°Cで 64時間、加熱処理 (水熱合成)を行った。水熱合成後、水洗、乾 燥し、モノリス形状基体の貫通孔の内壁面に形成された DDR型ゼオライト膜(1ーァ ダマンタンアミン含有)を得た。
[0053] 次に、モノリス形状基体の両端面と、当該両端面から 1. 5cmの範囲の側面部分に 、 DDR型ゼオライト膜(1—ァダマンタンアミン含有)に接触するようにガラスペースト を塗布した。ガラスペーストのガラス材料には GA—4 (日本電気硝子社製:軟化点が 625°C)を用いた。ガラスペーストは、粉末状のガラス材料を水と高分子の混合溶液 に分散させて作製した。
[0054] ガラスペ一ストを塗布した DDR型ゼオライト膜(1—ァダマンタンアミン含有)を、大 気中、 650°Cまで電気炉で加熱し、ガラスを溶融させると同時に DDR型ゼオライト細 孔内の 1ーァダマンタンアミンを燃焼除去し、 DDR型ゼオライト膜配設体を得た。
[0055] 得られた DDR型ゼオライト膜の結晶相を X線回折で調べることにより結晶相の評価 を行ったところ、 DDR型ゼオライト及び多孔質基体を構成するアルミナの回折ピーク のみが検出された。なお、 X線回折における「DDR型ゼオライトの回折ピーク」とは、 I nternational Center for Difiraction Data (ICDD) 「Powder Diffracti on File」(こ示される Deca— dodecasil 3Rに対応する No. 38— 651、又 {ま41— 5 71に記載される回折ピークである。
[0056] さらに、得られた DDR型ゼオライト膜のガラスシール界面付近を電子顕微鏡で観察 したところ、多結晶からなる DDR型ゼオライト膜 32とガラスシール 31aが密に接して レ、ることが確認できた。これにより、 DDR型ゼオライト膜 32の成膜を阻害することなく 、ガラスシール 31aのシール性が良好になることがわかる。図 5A及び図 5Bに電子顕 微鏡写真を示す。
[0057] (実施例 2)
端面にガラスシールを施したモノリス形状基体を水熱合成に用いて、実施例 1と同 様の操作を行い、 DDR型ゼオライト膜(1—ァダマンタンアミン含有)を得た。端面に 施したガラスシールの材料には、 SiO -Na O系ガラス(軟化点が 780°C)を用いた
2 2
。次に、モノリス形状基体の端面と、端面から 2cmまでの範囲の側面および貫通孔内 にガラスペーストを塗布した。その後、大気中、電気炉で 650°Cまで加熱し、 DDR型 ゼォライト細孔内の 1—ァダマンタンアミンを燃焼除去し、 DDR型ゼオライト膜配設体 を得た。ガラスペーストとしては、実施例 1で用いたガラスペーストと同じものを用いた
[0058] (比較例 1)
端面と、側面および貫通孔内にガラスシール 31bを予め施したモノリス支持体を水 熱合成に用いて、実施例 1と同様の操作を行レ、、 DDR型ゼオライト膜(1—ァダマン タンアミン含有)を得た。端面に施したガラスシールの材料には、 SiO— Na O系ガラ
2 2 ス(軟化点が 780°C)を用いた。その後、ガラスペーストを塗布せずに、大気中、 650 °Cまで電気炉で加熱し、 DDR型ゼオライト膜の細孔内の 1—ァダマンタンアミンを燃 焼除去し、 DDR型ゼオライト膜を得た。比較例 1で得られた DDR型ゼオライト膜配設 体について、実施例 1と同様に DDR型ゼオライト膜とガラスシールとの界面付近を電 子顕微鏡で観察したところ、多結晶からなる DDR型ゼオライト膜とガラスシールとは 接しておらず、ガラスシール近傍には、 DDR型ゼオライト結晶 33が疎らにしか存在 せずにモノリス形状基体 34の表面が露出してレ、る領域があった。これにより、 DDR 型ゼオライト膜の成膜が阻害され、ガラスシール 31b付近にシール不良が生じている ことがわかる。図 6A及び図 6Bに電子顕微鏡写真を示す。
[0059] 実施例 1で得られた DDR型ゼオライト膜配設体を用いて、エタノール 94質量%水 溶液についての、 70°Cにおける浸透気化試験を実施した。水 エタノール分離係数 は 45. 0を示した。実施例 1で作製した DDR型ゼオライト膜配設体は高い分離性能 を有していた。ここで、水 エタノール分離係数とは、 [膜を透過した液中の水濃度 膜を透過した液中のエタノール濃度)] Z [膜へ供給した液の水濃度 膜へ供給した 液のエタノール濃度)]をいう。また、浸透気化試験は、 DDR型ゼオライト膜配設体の 貫通孔内面(供給側)にエタノール 94質量%水溶液を接触させ、 DDR型ゼオライト 膜配設体の他方の面側 (透過側)を減圧して供給側と透過側とに圧力差を発生させ て、 DDR型ゼオライト膜配設体を透過した蒸気を冷却して液化し、得られた液体の 量および組成を評価して行った。実施例 2で得られた DDR型ゼオライト膜配設体を 用いて、実施例 1と同様に浸透気化試験を実施した。水 エタノール分離係数は 32 . 8を示した。実施例 2で作製した DDR型ゼオライト膜配設体は高い分離性能を有し ていた。比較例 1で得られた DDR型ゼオライト膜配設体を用いて、実施例 1と同様に 浸透気化試験を実施した。水ノエタノ一ル分離係数は 2. 9を示した。更に、比較例 1 で得られた DDR型ゼオライト膜配設体にっ 、て、ガラスシール付近のシール不良が 生じている部位にシリコーン樹脂を塗布した後、浸透気化試験を実施したところ、水 Zエタノール分離係数は 19. 8へと向上した。これにより、ガラスシール付近の欠陥 は、 DDR型ゼオライト膜配設体の分離性能を大きく低下させることがわかる。
産業上の利用可能性
ガス分離膜や浸透気化膜に用レ、ることができる DDR型ゼオライト膜配設体を、 DD R型ゼオライト膜の成膜を阻害せず、また、シール不良を生じさせずに、製造すること ができる。

Claims

請求の範囲
[1] 1ーァダマンタンァミン、シリカ及び水を含有する原料溶液に多孔質基体を浸漬し、 DDR型ゼオライト種結晶の存在下、 DDR型ゼオライトを水熱合成して前記多孔質基 体の表面に、 1—ァダマンタンアミンを含有する DDR型ゼオライト膜を形成し、 前記多孔質基体の表面に、前記 1 _ァダマンタンァミンを含有する DDR型ゼォライ ト膜に接触するようにガラスペーストを塗布し、
500〜800°Cでカロ熱することにより、前記 DDR型ゼオライト膜に含有される 1—ァダ マンタンァミンを燃焼除去するとともに、前記ガラスペーストを溶融して前記多孔質基 体の表面に DDR型ゼオライト膜に接した状態の膜状のガラスシールを形成して、 前記多孔質基体と、前記多孔質基体の表面に配設された DDR型ゼオライト膜と、 前記多孔質基体の表面に、前記 DDR型ゼオライト膜に接触するように配設された前 記ガラスシールとを備えた DDR型ゼオライト膜配設体を得る DDR型ゼオライト膜配 設体の製造方法。
[2] 前記多孔質基体を、中心軸方向に貫通する複数の貫通孔が形成された柱状のモ ノリス形状基体とし、
前記モノリス形状基体を、前記貫通孔の内壁面に前記 DDR型ゼオライト種結晶を 塗布した状態で、原料溶液に浸漬し、水熱合成して、前記モノリス形状基体の前記 貫通孔の内壁面に 1ーァダマンタンアミンを含有する DDR型ゼオライト膜を形成し、 前記モノリス形状基体の両端面に、前記 1ーァダマンタンアミンを含有する DDR型 ゼォライト膜に接触するようにガラスペーストを塗布し、
500〜800°Cでカロ熱することにより、
前記モノリス形状基体と、前記モノリス形状基体の前記貫通孔の内壁面に形成され た DDR型ゼオライト膜と、前記 DDR型ゼオライト膜に接触するように前記モノリス形 状基体の両端面に配設された前記ガラスシールとを備えた DDR型ゼオライト膜配設 体を得る請求項 1に記載の DDR型ゼオライト膜配設体の製造方法。
[3] 前記モノリス形状基体の両端面と、側面の中の、両端面のそれぞれから:!〜 50mm の範囲とに、前記 1—ァダマンタンアミンを含有する DDR型ゼオライト膜に接触する ようにガラスペーストを塗布する請求項 2に記載の DDR型ゼオライト膜配設体の製造 方法。
[4] 前記モノリス形状基体の两端面と、前記貫通孔の内壁面の中の、両端面のそれぞ れから l〜50mmの範囲とに、前記 1ーァダマンタンアミンを含有する DDR型ゼオラ イト膜に接触するようにガラスペーストを塗布する請求項 2又は 3に記載の DDR型ゼ オライト膜配設体の製造方法。
[5] 多孔質基体と、前記多孔質基体の表面に配設された DDR型ゼオライト膜と、前記 DDR型ゼオライト膜の表面に一部が重なるようにして前記多孔質基体の表面に配設 されたガラスシールとを備えた DDR型ゼオライト膜配設体。
PCT/JP2009/055219 2008-03-12 2009-03-11 Ddr型ゼオライト膜配設体の製造方法 WO2009113715A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010502912A JP5421899B2 (ja) 2008-03-12 2009-03-11 Ddr型ゼオライト膜配設体の製造方法
US12/846,128 US8263516B2 (en) 2008-03-12 2010-07-29 Method for manufacturing a structure provided with DDR zeolite membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-062868 2008-03-12
JP2008062868 2008-03-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/846,128 Continuation US8263516B2 (en) 2008-03-12 2010-07-29 Method for manufacturing a structure provided with DDR zeolite membrane

Publications (1)

Publication Number Publication Date
WO2009113715A1 true WO2009113715A1 (ja) 2009-09-17

Family

ID=41065366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055219 WO2009113715A1 (ja) 2008-03-12 2009-03-11 Ddr型ゼオライト膜配設体の製造方法

Country Status (3)

Country Link
US (1) US8263516B2 (ja)
JP (1) JP5421899B2 (ja)
WO (1) WO2009113715A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176367A (ja) * 2011-02-28 2012-09-13 Ngk Insulators Ltd セラミック多孔質膜
EP2540384A1 (en) * 2010-02-25 2013-01-02 NGK Insulators, Ltd. Zeolite film and process for producing zeolite film
WO2013147327A1 (ja) * 2012-03-30 2013-10-03 日本碍子株式会社 Ddr型ゼオライト種結晶及びその製造方法並びにddr型ゼオライト膜の製造方法
JP2014184362A (ja) * 2013-03-22 2014-10-02 Ngk Insulators Ltd セラミックフィルタを用いたろ過方法およびセラミックフィルタ
EP2511234A4 (en) * 2009-12-10 2015-08-05 Ngk Insulators Ltd PROCESS FOR THE PRODUCTION OF DDR ZEOLITE
EP2489636A4 (en) * 2009-10-16 2015-08-05 Ngk Insulators Ltd PROCESS FOR PRODUCING DER TYPE ZEOLITE
WO2015166656A1 (ja) * 2014-04-30 2015-11-05 日本特殊陶業株式会社 分離膜構造体、および分離膜構造体モジュール
WO2016051921A1 (ja) * 2014-09-30 2016-04-07 日本碍子株式会社 膜構造体及びその製造方法
WO2016093192A1 (ja) * 2014-12-09 2016-06-16 日本碍子株式会社 分離膜構造体及びその製造方法
JP2017056427A (ja) * 2015-09-18 2017-03-23 日本特殊陶業株式会社 分離膜構造体、および分離膜構造体モジュール
WO2019077862A1 (ja) * 2017-10-16 2019-04-25 日本碍子株式会社 ゼオライト膜複合体、および、ゼオライト膜複合体の製造方法
US10384170B2 (en) 2014-09-30 2019-08-20 Ngk Insulators, Ltd. Method of manufacture of separation membrane structure
WO2020027337A1 (ja) * 2018-08-02 2020-02-06 三菱ケミカル株式会社 接合体、それを有する分離膜モジュール及びアルコールの製造方法
JP2020023433A (ja) * 2018-08-02 2020-02-13 三菱ケミカル株式会社 接合体及びそれを有する分離膜モジュール
JP2020023432A (ja) * 2018-08-02 2020-02-13 三菱ケミカル株式会社 接合体及びそれを有する分離膜モジュール
JP2020037103A (ja) * 2018-09-03 2020-03-12 三菱ケミカル株式会社 接合体及びそれを有する分離膜モジュール

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054794A1 (ja) 2011-10-11 2013-04-18 日本碍子株式会社 セラミックフィルタ
JP6043337B2 (ja) * 2012-02-29 2016-12-14 日本碍子株式会社 セラミック分離膜及び脱水方法
JP6301313B2 (ja) 2013-03-29 2018-03-28 日本碍子株式会社 ゼオライト膜の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003024577A1 (fr) * 2001-09-17 2003-03-27 Ngk Insulators, Ltd. Procede de preparation de film zeolitique de type ddr, film zeolitique de type ddr, film composite zeolitique de type ddr et procede de preparation de ce dernier
JP2004243246A (ja) * 2003-02-14 2004-09-02 Ngk Insulators Ltd ガス分離膜構造、ガス分離膜組立体及びガス分離装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3441654B2 (ja) 1998-10-06 2003-09-02 株式会社ノリタケカンパニーリミテド ゼオライト膜用耐熱性樹脂シール材
JP4204270B2 (ja) 2001-09-17 2009-01-07 日本碍子株式会社 Ddr型ゼオライト膜の製造方法
JP5278933B2 (ja) 2005-08-16 2013-09-04 独立行政法人産業技術総合研究所 ゼオライト膜耐溶媒性封止構造
JP4912702B2 (ja) * 2006-03-10 2012-04-11 日本碍子株式会社 セラミックフィルタのシール方法
JP4875648B2 (ja) * 2008-03-12 2012-02-15 日本碍子株式会社 分離膜配設体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003024577A1 (fr) * 2001-09-17 2003-03-27 Ngk Insulators, Ltd. Procede de preparation de film zeolitique de type ddr, film zeolitique de type ddr, film composite zeolitique de type ddr et procede de preparation de ce dernier
JP2004243246A (ja) * 2003-02-14 2004-09-02 Ngk Insulators Ltd ガス分離膜構造、ガス分離膜組立体及びガス分離装置

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2489636A4 (en) * 2009-10-16 2015-08-05 Ngk Insulators Ltd PROCESS FOR PRODUCING DER TYPE ZEOLITE
EP2511234A4 (en) * 2009-12-10 2015-08-05 Ngk Insulators Ltd PROCESS FOR THE PRODUCTION OF DDR ZEOLITE
EP2540384A4 (en) * 2010-02-25 2013-11-06 Ngk Insulators Ltd ZEOLITE FILM AND METHOD FOR PRODUCING THE ZEOLITE FILM
US8778056B2 (en) 2010-02-25 2014-07-15 Ngk Insulators, Ltd. Zeolite membrane and process for producing zeolite membrane
EP2540384A1 (en) * 2010-02-25 2013-01-02 NGK Insulators, Ltd. Zeolite film and process for producing zeolite film
JP2012176367A (ja) * 2011-02-28 2012-09-13 Ngk Insulators Ltd セラミック多孔質膜
WO2013147327A1 (ja) * 2012-03-30 2013-10-03 日本碍子株式会社 Ddr型ゼオライト種結晶及びその製造方法並びにddr型ゼオライト膜の製造方法
JPWO2013147327A1 (ja) * 2012-03-30 2015-12-14 日本碍子株式会社 Ddr型ゼオライト種結晶及びその製造方法並びにddr型ゼオライト膜の製造方法
US9901882B2 (en) 2012-03-30 2018-02-27 Ngk Insulators, Ltd. DDR zeolite seed crystal, method for producing same, and method for producing DDR zeolite membrane
JP2014184362A (ja) * 2013-03-22 2014-10-02 Ngk Insulators Ltd セラミックフィルタを用いたろ過方法およびセラミックフィルタ
WO2015166656A1 (ja) * 2014-04-30 2015-11-05 日本特殊陶業株式会社 分離膜構造体、および分離膜構造体モジュール
JPWO2015166656A1 (ja) * 2014-04-30 2017-04-20 日本特殊陶業株式会社 分離膜構造体、および分離膜構造体モジュール
WO2016051921A1 (ja) * 2014-09-30 2016-04-07 日本碍子株式会社 膜構造体及びその製造方法
US10384170B2 (en) 2014-09-30 2019-08-20 Ngk Insulators, Ltd. Method of manufacture of separation membrane structure
JPWO2016051921A1 (ja) * 2014-09-30 2017-07-20 日本碍子株式会社 膜構造体及びその製造方法
JPWO2016093192A1 (ja) * 2014-12-09 2017-09-14 日本碍子株式会社 分離膜構造体及びその製造方法
WO2016093192A1 (ja) * 2014-12-09 2016-06-16 日本碍子株式会社 分離膜構造体及びその製造方法
US10213749B2 (en) 2014-12-09 2019-02-26 Ngk Insulators, Ltd. Separation membrane structure and method for manufacturing same
CN106999864A (zh) * 2014-12-09 2017-08-01 日本碍子株式会社 分离膜结构体及其制造方法
JP2017056427A (ja) * 2015-09-18 2017-03-23 日本特殊陶業株式会社 分離膜構造体、および分離膜構造体モジュール
JP7170825B2 (ja) 2017-10-16 2022-11-14 日本碍子株式会社 分離方法
CN111194296B (zh) * 2017-10-16 2023-05-09 日本碍子株式会社 沸石膜复合体和沸石膜复合体的制造方法
US11534725B2 (en) 2017-10-16 2022-12-27 Ngk Insulators, Ltd. Zeolite membrane complex and method of producing zeolite membrane complex
WO2019077862A1 (ja) * 2017-10-16 2019-04-25 日本碍子株式会社 ゼオライト膜複合体、および、ゼオライト膜複合体の製造方法
JP2022031788A (ja) * 2017-10-16 2022-02-22 日本碍子株式会社 分離方法
CN111194296A (zh) * 2017-10-16 2020-05-22 日本碍子株式会社 沸石膜复合体和沸石膜复合体的制造方法
JPWO2019077862A1 (ja) * 2017-10-16 2020-10-08 日本碍子株式会社 ゼオライト膜複合体、および、ゼオライト膜複合体の製造方法
JP2020023432A (ja) * 2018-08-02 2020-02-13 三菱ケミカル株式会社 接合体及びそれを有する分離膜モジュール
JP2020023433A (ja) * 2018-08-02 2020-02-13 三菱ケミカル株式会社 接合体及びそれを有する分離膜モジュール
WO2020027337A1 (ja) * 2018-08-02 2020-02-06 三菱ケミカル株式会社 接合体、それを有する分離膜モジュール及びアルコールの製造方法
JP7359590B2 (ja) 2018-08-02 2023-10-11 三菱ケミカル株式会社 接合体及びそれを有する分離膜モジュール
JP7403986B2 (ja) 2018-08-02 2023-12-25 三菱ケミカル株式会社 接合体及びそれを有する分離膜モジュール
JP2020037103A (ja) * 2018-09-03 2020-03-12 三菱ケミカル株式会社 接合体及びそれを有する分離膜モジュール
JP7403997B2 (ja) 2018-09-03 2023-12-25 三菱ケミカル株式会社 接合体及びそれを有する分離膜モジュール

Also Published As

Publication number Publication date
US8263516B2 (en) 2012-09-11
JP5421899B2 (ja) 2014-02-19
JPWO2009113715A1 (ja) 2011-07-21
US20100298115A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
WO2009113715A1 (ja) Ddr型ゼオライト膜配設体の製造方法
US9205417B2 (en) Zeolite membrane regeneration method
EP2540384B1 (en) Process for producing zeolite film
JP4875648B2 (ja) 分離膜配設体
JP5324067B2 (ja) ゼオライト膜の製造方法
JP5937569B2 (ja) ハニカム形状セラミック製分離膜構造体
JP2010158665A (ja) Ddr型ゼオライト膜配設体の製造方法
WO2011159389A1 (en) Zeolite membranes for separation of mixtures containing water, alcohols, or organics
EP1437172B1 (en) Method for preparing ddr type zeolite film, ddr type zeolite film, and composite ddr type zeolite film, and method for preparation thereof
JP5108525B2 (ja) ゼオライト膜の製造方法
WO2015021099A1 (en) Metal doped zeolite membrane for gas separation
JP2010532259A (ja) ゼオライト膜構造体及びゼオライト膜構造体の製造方法
Wang et al. High H2 permeable SAPO‐34 hollow fiber membrane for high temperature propane dehydrogenation application
EP2832429A1 (en) Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
JP6861273B2 (ja) ゼオライト膜複合体、および、ゼオライト膜複合体の製造方法
JPWO2007105407A1 (ja) Ddr型ゼオライト膜の製造方法
EP2404874B1 (en) Process for the production of ddr-type zeolite membranes
US20150008180A1 (en) Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
JP2007313390A (ja) フィリップサイト型ゼオライト複合膜及びその製造方法
JP2008018387A (ja) 多孔質基材への種結晶塗布方法
EP2484636B1 (en) Process for producing zeolite film
Welk et al. Defect-free zeolite thin film membranes for H2 purification and CO2 separation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718946

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010502912

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09718946

Country of ref document: EP

Kind code of ref document: A1