WO2020027337A1 - 接合体、それを有する分離膜モジュール及びアルコールの製造方法 - Google Patents

接合体、それを有する分離膜モジュール及びアルコールの製造方法 Download PDF

Info

Publication number
WO2020027337A1
WO2020027337A1 PCT/JP2019/030610 JP2019030610W WO2020027337A1 WO 2020027337 A1 WO2020027337 A1 WO 2020027337A1 JP 2019030610 W JP2019030610 W JP 2019030610W WO 2020027337 A1 WO2020027337 A1 WO 2020027337A1
Authority
WO
WIPO (PCT)
Prior art keywords
methanol
reactor
zeolite
alcohol
inorganic
Prior art date
Application number
PCT/JP2019/030610
Other languages
English (en)
French (fr)
Inventor
大貫 正道
坂本 尚之
出 堤内
遠藤 浩悦
藤田 直子
美沙 原
正博 久次米
虎谷 信雄
Original Assignee
三菱ケミカル株式会社
人工光合成化学プロセス技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社, 人工光合成化学プロセス技術研究組合 filed Critical 三菱ケミカル株式会社
Priority to EP19844683.3A priority Critical patent/EP3831470A4/en
Priority to AU2019313973A priority patent/AU2019313973A1/en
Priority to CN201980051371.3A priority patent/CN112512672A/zh
Publication of WO2020027337A1 publication Critical patent/WO2020027337A1/ja
Priority to US17/165,025 priority patent/US20210154623A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/145Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing embedded catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/003Membrane bonding or sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/04Supports for the filtering elements
    • B01D2201/0415Details of supporting structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Definitions

  • the present invention relates to a conjugate, a separation membrane module having the conjugate, and a method for producing alcohol, preferably methanol.
  • the membrane having gas separation ability is usually formed on an inorganic porous support, and then used by being bonded to a gas-impermeable dense member. At that time, it is necessary to join in a highly airtight state.
  • a membrane with gas separation capability is not installed in a reactor and used industrially for gas separation, but is used for the purpose of confirming the performance of gas separation experimentally. Since it is only necessary to be able to maintain the joining state, an instant adhesive or the like may be used for the joining. Glass has been used in some cases. Joining with glass can be easily removed by reheating when exchanging the separation membrane part, so joining with glass has been generally used industrially.
  • Patent Document 1 discloses a joined body in which a metal gas separation membrane and a metal member are joined with glass having a coefficient of thermal expansion of 50 ⁇ 10 ⁇ 7 / K to 80 ⁇ 10 ⁇ 7 / K.
  • Patent Document 2 discloses that a zeolite membrane and an alumina gas conduit can be joined using a separation membrane sealing composition comprising a specific glass containing predetermined amounts of B 2 O 3 and PbO and alumina. That is, in the past, in consideration of the coefficient of thermal expansion, it has been common practice to use a metal member in the case of a metal separation membrane and a dense ceramic member in the case of using a ceramic support.
  • Patent Document 3 discloses a structure in which a ceramic member and an Fe—Ni—Co alloy member are sealed with glass having a coefficient of thermal expansion of 55 ⁇ 10 ⁇ 7 / K to 65 ⁇ 10 ⁇ 7 / K. I have.
  • a zeolite membrane is used as the membrane having gas separation ability
  • treatment at a high temperature is not preferable because there is a concern about heat resistance of the zeolite membrane.
  • the treatment of joining at a high temperature of 900 ° C. or higher as disclosed in Patent Documents 1 and 3 may cause structural deterioration such as breakage of the zeolite membrane, and may lower the separation performance.
  • joining at a high temperature not only requires time for heating and cooling, but also damages the joint itself due to temperature changes, affecting the performance and life of separation as a joined body. Leads to a decrease in efficiency and an increase in cost in mass production of
  • the joined body obtained by joining the separation membranes has sufficient airtightness and can withstand a use temperature and a use pressure for a long time.
  • conventional joints were not satisfactory in these respects.
  • a joined body in which ceramics such as alumina as disclosed in Patent Document 2 is joined to a separation membrane has insufficient strength and durability.
  • lead glass as a joined body that has sufficient airtightness, is resistant to temperature change, can withstand reaction pressure, and can be used for a long time.
  • Patent Document 2 it is possible to reduce the firing temperature to 600 ° C. or lower by using glass containing PbO as a main component.
  • lead accumulates in the body and causes chronic poisoning, and its use has environmental problems, which goes against the trend of restricting lead use worldwide.
  • a swellable resin such as an epoxy resin
  • Patent Document 4 when exposed to an organic solvent under high-temperature and high-pressure conditions, deterioration proceeds as shown in a comparative example later. The joined body may be broken.
  • a method for producing methanol from a gas containing hydrogen and carbon monoxide has been known for a long time, and examples thereof include a method using a copper catalyst (copper-zinc catalyst, copper-chromium catalyst).
  • synthesis gas a gas containing hydrogen and carbon monoxide
  • examples thereof include a method using a copper catalyst (copper-zinc catalyst, copper-chromium catalyst).
  • copper catalyst copper-zinc catalyst, copper-chromium catalyst.
  • the reaction for producing methanol from synthesis gas is an equilibrium reaction, and the lower the temperature and the higher the pressure, the more advantageous. Since the reaction rate decreases when the temperature is lowered, a general methanol production process is performed under the severe conditions of 200 to 300 ° C. and 5 to 10 MPaG (or higher pressure). In addition, the process has many restrictions on equipment.
  • Patent Documents 5, 6, 7, and 8 a separation membrane is installed in a methanol synthesis reactor, and methanol and water are removed from the reaction system using the separation membrane, so that the conversion rate is equal to or higher than the equilibrium conversion rate. A method of raising has been proposed.
  • Non-Patent Document 1 reports a method of installing a separation membrane sealed with graphite packing in a high-temperature and high-pressure methanol reactor.
  • Non-Patent Documents 2 and 3 report the temperature dependence and pressure dependence of the reaction rates of a methanol synthesis reaction and a concomitant water gas shift reaction without using a separation membrane.
  • the present invention is to provide a joined body in which a composite of a zeolite and an inorganic porous support and a dense member are joined together, while suppressing the use of lead and giving consideration to the environment and realizing high airtightness. It is another object of the present invention to achieve excellent durability under high-temperature and high-pressure conditions (first problem).
  • the present invention aims at achieving excellent durability especially under high temperature and high pressure conditions (second problem).
  • An object of the present invention is to provide a device having excellent durability that can be used for a long time under and / or in the presence of a solvent or a gas, particularly an organic solvent or an organic gas (third problem).
  • Patent Literatures 5, 6, 7, and 8 In a method of installing a separation membrane in a methanol synthesis reactor as proposed in Patent Literatures 5, 6, 7, and 8, a gas supply side (high pressure) is connected to a gas at a high temperature and a high pressure and in the presence of methanol vapor. It is necessary to seal the permeation side (low pressure) for a long time, and a method of joining the separation membrane to other members is an issue.
  • Patent Literatures 5, 6, and 7 do not describe a specific joining method, and do not describe Examples under high-temperature and high-pressure conditions.
  • Patent Document 8 describes an example in which water is removed from a methanol synthesis reactor using a separation membrane under high-temperature and high-pressure conditions of 200 ° C. and 3 MPaG, but a specific bonding method is also described. No sealability and durability are unknown.
  • Non-Patent Document 1 The mechanical sealing method using graphite packing or the like described in Non-Patent Document 1 requires time and effort to tighten one by one when installing a membrane, requires a graphite packing casing, and has a large joint volume. Therefore, it is not suitable for industrial use. Further, the auxiliary agent used for molding graphite as a packing does not have durability against methanol vapor, and cannot be used for a long time.
  • an object of the present invention is to provide a method for efficiently producing methanol (fourth problem).
  • the produced alcohols are taken out of the reactor, thereby significantly improving the yield.
  • the reaction to obtain alcohol is a violently exothermic reaction, the calorific value increases as much as the alcohol reacts, resulting in an increase in the temperature in the reactor, which damages the zeolite and separates the alcohol. Efficiency was sometimes reduced.
  • the flow rate of the raw material is increased, the temperature in the reactor rises, and this equilibrium reaction moves to the raw material hydrogen and carbon monoxide and / or carbon dioxide due to the rise in temperature.
  • the reaction heat increases the temperature in the reactor, thereby moving the equilibrium to the raw material side and suppressing the alcohol generation reaction. Therefore, the temperature inside the reactor rises slowly, and the temperature inside the reactor peaks somewhere due to equilibrium constraints.
  • the present inventors improve the yield by removing the generated reaction heat from the reactor and using the heat for heating the raw material hydrogen and carbon monoxide and / or carbon dioxide, for example. It is another object of the present invention to provide a manufacturing apparatus and a method capable of reducing energy required for alcohol production (fifth problem).
  • the present inventors have intensively studied and developed a composite of zeolite and an inorganic porous support, and a dense member, in order to bond without excess or deficiency, an inorganic glass having a specific thermal expansion coefficient and a softening point. Alternatively, they have found that the above problem can be solved by joining with an inorganic adhesive, and have reached the invention. Further, the present inventors have found that when producing methanol from a raw material gas containing hydrogen and carbon monoxide and / or carbon dioxide, a methanol selective permeable membrane bonded to a dense member using a specific bonding material is reacted. The inventor has found that the above problem can be solved by installing the device in a vessel, and has completed the invention.
  • the first embodiment of the present invention includes the following.
  • [A1-1] A joined body in which a composite of zeolite and an inorganic porous support and a dense member are joined via a lead-free inorganic glass, and the lead-free inorganic glass has a thermal expansion coefficient of 30 ⁇ 10
  • a joined body having a temperature of ⁇ 7 / K or more and 90 ⁇ 10 ⁇ 7 / K or less and a softening point of 550 ° C. or less.
  • [A1-3] The joined body according to [A1-2], wherein the sealing film is a silica film.
  • [A1-4] The joined body according to any one of [A1-1] to [A1-3], wherein the lead-free inorganic glass contains SnO and / or B 2 O 3 .
  • [A1-5] The joined body according to any one of [A1-1] to [A1-4], wherein the dense member has a coefficient of thermal expansion of 30 ⁇ 10 ⁇ 7 / K or more and 200 ⁇ 10 ⁇ 7 / K or less. .
  • [A1-6] The conjugate according to any one of [A1-1] to [A1-5] is used under a high temperature condition of 100 ° C. to 500 ° C. and / or a high pressure condition of 0.5 to 10 MPa. How to use the conjugate.
  • [A1-7] A separation membrane module comprising the joined body according to any one of [A1-1] to [A1-6].
  • [A1-8] A reactor having the separation membrane module according to [A1-7].
  • [A1-9] A joining method for joining a composite of zeolite and an inorganic porous support and a dense member using a lead-free inorganic glass, wherein the lead-free inorganic glass has a coefficient of thermal expansion of 30 ⁇
  • the joining point is 10 ⁇ 7 / K or more and 90 ⁇ 10 ⁇ 7 / K or less and the softening point is 550 ° C. or less.
  • the second embodiment of the present invention includes the following.
  • A2-2 The joined body according to [A2-1], wherein a joint between the complex and the dense member is covered with a sealing film.
  • A2-3 The joined body according to [A2-2], wherein the sealing film is a silica film.
  • [A2-4] The joined body according to any one of [A2-1] to [A2-3], wherein the inorganic glass contains SnO and / or B 2 O 3 .
  • [A2-5] The bonding according to any one of [A2-1] to [A2-4], wherein the dense member has a coefficient of thermal expansion of 30 ⁇ 10 ⁇ 7 / K or more and 200 ⁇ 10 ⁇ 7 / K or less. body.
  • [A2-6] The conjugate according to any one of [A2-1] to [A2-5] is used under a high temperature condition of 100 ° C. to 500 ° C. and / or a high pressure condition of 0.5 to 10 MPa. How to use the conjugate.
  • [A2-7] A separation membrane module comprising the joined body according to any one of [A2-1] to [A2-5].
  • [A2-8] A reactor having the separation membrane module according to [A2-7].
  • [A2-9] A joining method for joining a composite of zeolite and an inorganic porous support and a dense member using an inorganic glass, wherein the dense member is a metal member and the heat of the inorganic glass is A joining method having an expansion coefficient of 30 ⁇ 10 ⁇ 7 / K or more and 90 ⁇ 10 ⁇ 7 / K or less and a softening point of 550 ° C. or less.
  • the third embodiment of the present invention includes the following.
  • [B1] A composite of zeolite and an inorganic porous support and a dense member were joined with an inorganic adhesive having a cured thermal expansion coefficient of 30 ⁇ 10 ⁇ 7 / K to 90 ⁇ 10 ⁇ 7 / K. Joint.
  • [B2] The composite of zeolite and the inorganic porous support and the dense member are joined with an inorganic adhesive, and the difference in the thermal expansion coefficient between the dense member and the cured inorganic adhesive is 50 ⁇ 10 ⁇ 7. / K joined with an inorganic adhesive.
  • [B3] The joined body according to [B1] or [B2], wherein the inorganic adhesive contains a metal alkoxide.
  • [B4] The joined body according to any one of [B1] to [B3], wherein a joint between the complex and the dense member is covered with a sealing film.
  • [B5] The joined body according to [B4], wherein the sealing film is a silica film.
  • [B6] The joined body according to any one of [B1] to [B5], wherein the dense member has a coefficient of thermal expansion of 30 ⁇ 10 ⁇ 7 / K to 200 ⁇ 10 ⁇ 7 / K.
  • a separation membrane module comprising the joined body according to any one of [B1] to [B6].
  • a reactor having the separation membrane module according to [B8].
  • [B10] Using an inorganic adhesive having a cured thermal expansion coefficient of 30 ⁇ 10 ⁇ 7 / K to 90 ⁇ 10 ⁇ 7 / K, a composite of zeolite and an inorganic porous support and a dense member are formed. Joining, joining method.
  • the fourth embodiment of the present invention includes the following.
  • [C1-1] A method for producing methanol, comprising reacting a raw material gas containing at least hydrogen, carbon monoxide and / or carbon dioxide in the presence of a catalyst in a reactor to obtain methanol, In the reactor for performing the above reaction, the dense member was joined with a joining material having an inorganic oxide as a main component and a linear expansion coefficient of 30 ⁇ 10 ⁇ 7 / K or more and 90 ⁇ 10 ⁇ 7 / K or less.
  • a method for producing methanol wherein a methanol permselective membrane is provided, and methanol produced by the reaction is extracted through the permselective membrane.
  • [C1-2] The method for producing methanol according to [C1-1], wherein the methanol permselective membrane is a zeolite membrane.
  • [C1-3] The method for producing methanol according to [C1-1] or [C1-2], wherein the dense member is a metal.
  • [C1-4] Any of [C1-1] to [C1-3], wherein the methanol partial pressure on the gas supply side of the methanol selective permeable membrane in the reactor is 0.1 MPa or more and 6 MPa or less.
  • [C1-5] The method for producing methanol according to any one of [C1-1] to [C1-4], wherein the temperature inside the reactor is 200 ° C. or more and 300 ° C. or less.
  • [C1-6] The production of methanol according to any one of [C1-1] to [C1-5], wherein the pressure on the gas supply side of the methanol selective permeable membrane in the reactor is 1 MPaG or more and 8 MPaG or less.
  • Method. [C1-7] The one according to any one of [C1-1] to [C1-6], wherein the linear expansion coefficient of the dense member is 30 ⁇ 10 ⁇ 7 / K or more and 200 ⁇ 10 ⁇ 7 / K or less.
  • [C1-8] The method for producing methanol according to any one of [C1-1] to [C1-7], wherein the dense member is Kovar.
  • [C1-9] The method for producing methanol according to any one of [C1-1] to [C1-8], wherein the inorganic oxide is an inorganic glass or an inorganic adhesive.
  • [C1-10] A methanol production apparatus used in a production method for producing methanol by reacting a raw material gas containing at least hydrogen, carbon monoxide and / or carbon dioxide in the presence of a catalyst in a reactor. And In the reactor for performing the above reaction, the dense member was joined with a joining material having an inorganic oxide as a main component and a linear expansion coefficient of 30 ⁇ 10 ⁇ 7 / K or more and 90 ⁇ 10 ⁇ 7 / K or less.
  • the fourth embodiment of the present invention further includes the following.
  • [C2-1] A method for producing methanol, comprising reacting a raw material gas containing at least hydrogen, carbon monoxide and / or carbon dioxide in the presence of a catalyst in a reactor to obtain methanol, A method for producing methanol, wherein a methanol permselective membrane is provided in a reactor for performing the reaction, and methanol produced by the reaction is extracted through the permselective membrane.
  • the fifth embodiment of the present invention includes the following.
  • An alcohol production apparatus which synthesizes an alcohol by reacting a raw material containing at least hydrogen, carbon monoxide and / or carbon dioxide in the presence of a catalyst
  • the production apparatus includes a reactor provided with an alcohol selective permeable membrane having zeolite, a heat recovery means for recovering at least a part of the reaction heat from the reactor, and a heat supply for supplying the heat recovered by the heat recovery means. Means for producing alcohol.
  • a reactor provided with an alcohol selective permeable membrane having zeolite
  • a heat recovery means for recovering at least a part of the reaction heat from the reactor
  • a heat supply for supplying the heat recovered by the heat recovery means.
  • Means for producing alcohol Means for producing alcohol.
  • [D4] The alcohol production apparatus according to any one of (D1) to (D3), wherein the methanol / hydrogen permeability coefficient ratio of the alcohol selective permeable membrane is 10 or more.
  • [D5] a synthesis step of reacting a raw material containing at least hydrogen, carbon monoxide and / or carbon dioxide in the presence of a catalyst to synthesize an alcohol, A separation and recovery step of separating and recovering the obtained alcohol using an alcohol selective permeable membrane having zeolite in a reactor, and a heat recovery step of recovering at least a part of the reaction heat generated in the synthesis step from the reactor, A method for producing alcohol, wherein the separation and recovery step and the heat recovery step are performed in parallel.
  • [D6] The method for producing an alcohol according to (D5), wherein in the synthesis step, the temperature in the reactor is controlled to 200 ° C. or more and 300 ° C. or less.
  • At least a part of the reaction heat recovered in the heat recovery step is supplied to heat at least one raw material selected from hydrogen, carbon monoxide and carbon dioxide before being introduced into the reactor.
  • the method for producing an alcohol according to (D5) or (D6) comprising a supplying step.
  • [D8] The production of the alcohol according to any one of (D5) to (D7), wherein the ratio of the area of the alcohol selective permeable membrane to the volume of the catalyst is 5 m 2 / m 3 or more and 150 m 2 / m 3 or less.
  • the first embodiment of the present invention when manufacturing a bonded body of a composite of zeolite as a separation membrane and an inorganic porous support and a dense member, consideration is given to the environment by bonding with a lead-free inorganic glass. In addition, it is possible to provide high airtightness and, more particularly, to provide a product having excellent durability under high temperature and high pressure conditions.
  • the dense member is made of a metal member,
  • a specific inorganic glass as the adhesive, it is possible to reduce damage to the zeolite at the time of bonding, and to provide a bonded body having high airtightness and sufficient durability under high-temperature and high-pressure conditions.
  • a simple high-temperature baking or the like is not required.
  • a separation membrane module having the same.
  • a method for efficiently producing methanol is provided by installing a separation membrane and extracting methanol generated by the reaction through the permselective membrane.
  • the temperature in the reactor is not too high, damage to the zeolite is small, and the separation ability of the zeolite membrane can be maintained for a long time.
  • the amount of alcohol produced decreases at a high temperature, so that the temperature in the reactor does not rise too much and the yield can be maintained.
  • FIG. 3 is a schematic cross-sectional view of a joined body in which a composite of zeolite and an inorganic porous support and a dense member are joined with an inorganic glass or an inorganic adhesive.
  • FIG. 3 is a schematic cross-sectional view of a joined body in which a composite of zeolite and an inorganic porous support and a dense member are joined with an inorganic glass or an inorganic adhesive.
  • FIG. 3 is a schematic cross-sectional view of a joined body in which a composite of zeolite and an inorganic porous support and a dense member are joined with an inorganic glass or an inorganic adhesive.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of a reactor.
  • FIG. 3 is a schematic cross-sectional view showing one embodiment in which a zeolite membrane and a flange of a pipe are joined by a joining material.
  • FIG. 3 is a schematic cross-sectional view showing one mode in which a zeolite membrane and a pipe are joined by a joining material.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment in which a zeolite membrane and a reactor are joined by a joining material.
  • 3 is a flowchart illustrating an outline of a manufacturing process according to an embodiment of the present invention. It is a cross section showing an embodiment of a reactor having a heat exchanger. 3 is a flowchart illustrating an outline of a manufacturing process according to an embodiment of the present invention.
  • 7 is a flowchart illustrating an outline of a manufacturing process according to a comparative example.
  • 7 is a flowchart illustrating an outline of a manufacturing process according to a comparative example.
  • 3 is a flowchart illustrating an outline of a manufacturing process according to an embodiment of the present invention.
  • the first embodiment of the present invention is a joined body in which a composite of zeolite and an inorganic porous support and a dense member are joined via a lead-free inorganic glass, and the thermal expansion coefficient of the lead-free inorganic glass is Is 30 ⁇ 10 ⁇ 7 / K or more and 90 ⁇ 10 ⁇ 7 / K or less and a softening point is 550 ° C. or less.
  • the lead-free inorganic glass means that the content of lead (Pb) is 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less, even more preferably 2% by mass or less in terms of PbO. Particularly preferred is 1% by mass or less, most preferably 0% by mass of inorganic glass.
  • the lead-free inorganic glass according to the present embodiment has a thermal expansion coefficient of usually 30 ⁇ 10 ⁇ 7 / K or more, preferably 40 ⁇ 10 ⁇ 7 / K or more, more preferably 45 ⁇ 10 ⁇ 7 / K or more, Further, it is usually at most 90 ⁇ 10 ⁇ 7 / K, preferably at most 80 ⁇ 10 ⁇ 7 / K, more preferably at most 75 ⁇ 10 ⁇ 7 / K.
  • the thermal expansion coefficient of the lead-free inorganic glass is usually 60% or more, preferably 70% or more, more preferably 80% or more of the thermal expansion coefficient of the dense member, and usually 200% or less, preferably Is at most 150%, more preferably at most 120%. Since the thermal expansion coefficient of the lead-free inorganic glass is equal to or less than the upper limit, when the temperature is decreased after joining at a temperature at which the lead-free inorganic glass is melted, tensile stress is not easily generated inside the joined portion, Cracks at the joint are suppressed.
  • the joined body thus obtained preferably has an air permeation amount after joining of preferably 10 sccm or less, more preferably 8 sccm or less, in the test method described in the section of the Examples of the present specification. Most preferably, it is 5 sccm or less.
  • the bonded body after bonding was added to an autoclave with 1/16 by volume of methanol and 1/16 of demineralized water with respect to the internal volume, and the temperature was raised to 280 ° C. in 1 hour. After maintaining for a period of time, the mixture is naturally cooled, dried at normal pressure at 120 ° C. for 4 hours, and even if the air permeation amount is measured again, the air permeation amount is preferably 10 sccm or less, more preferably 8 sccm or less. Most preferably, it is 5 sccm or less.
  • the separation module When the separation module having the joined body according to the present embodiment is used industrially, the separation module may be reciprocated many times between room temperature and the use temperature, and may be operated for a long time at the use temperature. is there. Therefore, the joint formed by the lead-free inorganic glass is required to prevent the separation target gas from leaking even under these high-temperature and high-pressure conditions, and the thermal expansion coefficient of the lead-free inorganic glass is set as described above. Thereby, leakage of the gas to be separated can be suppressed.
  • the lead-free inorganic glass according to this embodiment has a softening point of 550 ° C. or lower, preferably 530 ° C. or lower, more preferably 480 ° C. or lower.
  • glass frit of lead-free inorganic glass can be made to flow by baking at a temperature about 50 ° C. higher than the softening point. Therefore, by setting the softening point of the lead-free inorganic glass within the above range, zeolite and the lead-free inorganic glass can be chemically bonded at a relatively low temperature of about 600 ° C. or less, and the fineness of the composite can be reduced.
  • the lead-free inorganic glass enters the pores, and the composite and the dense member can be mechanically and strongly joined. Further, by setting the joining temperature to a relatively low temperature, it is possible to reduce the damage to the zeolite due to heating at the time of joining.
  • the lead-free inorganic glass is not particularly limited as long as it has the above-mentioned coefficient of thermal expansion and softening point.
  • the components contained in the lead-free inorganic glass for example, SiO 2 , Al 2 O 3 , ZnO, P 2 O 5 , Bi 2 O 3 , BaO, TiO 2 , TeO 2 , V 2 O 5 , B 2 O 3 , SnO and the like.
  • the lead-free inorganic glass preferably contains B 2 O 3 and / or SnO from the viewpoint of improving sealing properties.
  • the lead-free inorganic glass containing B 2 O 3 and / or SnO include SnO—P 2 O 5 glass, Bi 2 O 3 —ZnO glass, and Bi 2 O 3 —B 2 O 3 glass. Glass, Bi 2 O 3 —B 2 O 3 —SiO 2 based glass, Bi 2 O 3 —ZnO—B 2 O 3 based glass, and the like can be given.
  • glass frit of such lead-free inorganic glass includes “FP-74”, “KP312E”, “FP-67”, “BNL115BB”, “ASF-1094”, “ASF-1098”, “ASF -1109 “(both manufactured by AGC);” BF-0606 “and” BF-0901 "(both manufactured by NEC Corporation);
  • the lead-free inorganic glass contains SnO
  • its content is not particularly limited, but is usually 80% by mass or less, preferably 75% by mass or less, more preferably 70% by mass or less, and usually 10% by mass or less. , Preferably 20% by mass or more, more preferably 30% by mass or more.
  • SnO acts as a reducing agent, which modifies the oxide film on the surface of the dense member or increases the thickness of the oxide film during the bonding process. It is presumed that this leads to an improvement in sealing performance.
  • the lead-free inorganic glass contains B 2 O 3
  • the content is usually 25% by mass or less, preferably 20% by mass or less, more preferably 18% by mass or less, and further preferably 15% by mass or less. It is. Further, it is usually at most 1% by mass, preferably at least 2% by mass, more preferably at least 3% by mass.
  • B 2 O 3 By adding B 2 O 3 , the wettability with the dense member is improved, and the sealing property is easily improved.
  • the content of B 2 O 3 is large, the softening point tends to increase, and the degree of freedom of mixing other components is reduced in order to reduce the softening point to 550 ° C. or lower. Therefore, it is preferable to select from the above range. .
  • B 2 O 3 is soluble in water and alcohol, when there is a possibility of exposure to these substances under high-temperature or high-pressure conditions, it is preferable that the above-mentioned upper limit value or less be used.
  • the methods for quantifying the contents of SnO and B 2 O 3 include XRF (X-ray fluorescence analysis), ICP (Inductively Coupled Plasma Emission Spectroscopy), and the like.
  • the form of the lead-free inorganic glass is not particularly limited, and powdered glass frit, a tablet formed by molding a glass frit by tableting, a tablet obtained by sintering a glass frit, and a glass frit formed of an organic material are used.
  • a glass paste or the like uniformly dispersed in a solvent or a binder can be used.
  • a tablet or a paste is particularly preferable among these, because it leads to an improvement in production efficiency.
  • the main zeolite constituting the zeolite membrane preferably contains a zeolite having a pore structure of 12 or less oxygen ring and 6 or more oxygen ring, and a zeolite having a pore structure of 10 or less oxygen ring and 6 or more ring.
  • the value of n of the zeolite having an oxygen n-membered ring has the largest number of oxygen among the pores formed of oxygen forming the zeolite skeleton and T element (element other than oxygen forming the skeleton). Show things. For example, when there are pores having a 12-membered oxygen ring and an 8-membered ring as in a MOR-type zeolite, it is regarded as a zeolite having a 12-membered oxygen ring.
  • the zeolite having a pore structure of 12 or less oxygen rings and 6 or more oxygen rings is a code defined by International Zeolite Association (IZA), for example, AEI, AEL, AFI, AFG, ANA, ATO, BEA, BRE, CAS, CDO, CHA, CON, DDR, DOH, EAB, EPI, ERI, ESV, EUO, FAR, FAU, FER, FRA, HEU, GIS, GIU, GME, GOO, ITE, KFI, LEV, LIO, LOS, LTA, LTL, LTN, MAR, MEP, MER, MEL, MFI, MON, MOR, MSO, MTF, MTN, MTW, MWW, NON, NES, OFF, PAU, PHI, RHO, RTE, RTH, RUT, SGT, SOD, STI, STT, TOL, ON, TSC, UFI, VNI, WEI, such as YUG, and the like.
  • the conjugate according to the present invention is a simple molecular sieve, that is, a zeolite selectively adsorbs an object to be separated by a zeolite not for the purpose of permeating molecules as a sieve simply due to a difference in molecular size. More preferably, it can be used for the purpose of permeating the above molecules or separating molecules of the same size. That is, it is more preferable that the target substance is separated by selective adsorption on the surface of zeolite. If the use temperature of such a zeolite is too high, the selective adsorption ability is weakened. For example, under a temperature condition of about 500 ° C. or less, the effect of the present invention is more remarkably exhibited.
  • zeolite Since zeolite has poor plasticity, when it is formed into a film, it is produced while being supported on some substrate.
  • the support is porous, into which gas molecules can enter, and has, for example, a large number of fine pores continuous in a three-dimensional manner.
  • the material constituting the support is preferably chemically stable, in which the gas to be treated does not react, and excellent in mechanical strength, specifically, various types of alumina and silica.
  • oxide ceramics such as silica-alumina, mullite, cordierite, and zirconia
  • silicon carbide, carbon, and glass can be used.
  • the shape of the support varies depending on the use of the zeolite membrane. Particularly, the zeolite membrane on the cylindrical support has high strength against external pressure, and is used in a batch process, a distribution process (including a recycling process), and the like. It is suitable for simple use.
  • a cylindrical support is prepared, and first, zeolite microcrystals are supported in pores.
  • a dipping method, a rubbing method, a suction method, an impregnation method, or the like can be used as a supporting method.
  • the microcrystal serves as a nucleus when growing a crystal constituting the zeolite membrane, and is also referred to as a seed crystal.
  • hydrothermal synthesis can be used as in the case of zeolite synthesis.
  • the thickness of the zeolite membrane in the zeolite membrane composite is not particularly limited, but is usually 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and usually 50 ⁇ m or less, preferably 20 ⁇ m or less.
  • the film thickness is usually 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and usually 50 ⁇ m or less, preferably 20 ⁇ m or less.
  • the dense member is a member having denseness (confidentiality) to such an extent that a gas used for a reaction or a reacted gas does not leak from the member.
  • the member is not particularly limited as long as it is a member having such denseness, and typically, a metal is used. Examples of the metal mentioned here include SUS tubes made of stainless steel, ceramics such as alumina and zirconia, and alloys such as Kovar.
  • the thermal expansion coefficient of the dense member is usually 30 ⁇ 10 ⁇ 7 / K or more and 200 ⁇ 10 ⁇ 7 / K or less, and the lower limit is preferably 35 ⁇ 10 ⁇ 7 / K or more, and more preferably 40 ⁇ 10 ⁇ 7 / K or more.
  • the coefficient of thermal expansion refers to a coefficient of linear expansion, and indicates a rate of change in the length direction of a solid caused by a rise in temperature.
  • the coefficient of thermal expansion may be measured in a range where the length of thermal expansion changes in linear proportion to temperature. In this specification, the coefficient of thermal expansion is a value usually measured at 30 to 250 ° C. is there.
  • the bonding may be performed at both ends.
  • the outside of the cylindrical support having the zeolite membrane is filled with the mixed gas and pressure is applied, or evacuation of the inside is performed. Performs the separation. Therefore, one end may be sealed with a cap and a pipe may be connected to the other end, or a pipe may be connected to both ends.
  • a method of joining a composite having a zeolite membrane on its surface to a cap made of a dense member, or a pipe made of a dense member having a terminal structure similar to the cap can be joined with a lead-free inorganic glass between the composite and the cap.
  • Any method may be used as long as it is a method, for example, a lead-free inorganic glass is filled in a concave portion of a dense member, a composite having a zeolite membrane on its surface is placed thereon, and then a weight is placed on the upper portion of the composite.
  • a method of joining by firing under a load For example, a method of joining by firing under a load.
  • the firing temperature at the time of joining the composite and the dense member with the lead-free inorganic glass be equal to or higher than the softening point of the lead-free inorganic glass used. Therefore, the firing temperature is usually at least the softening point plus 10 ° C, preferably at least the softening point plus 30 ° C, and more preferably at least the softening point plus 50 ° C. In order to avoid thermal damage to the zeolite membrane, the temperature is usually 600 ° C. or lower, preferably 580 ° C. or lower, more preferably 560 ° C. or lower.
  • the firing time of the bonding is usually 5 minutes to 90 minutes after reaching the firing temperature, preferably 10 minutes or more, more preferably 20 minutes or more, and preferably 60 minutes or less, more preferably 40 minutes or less.
  • a composite of zeolite and an inorganic porous support and a dense member are joined via a lead-free inorganic glass.
  • FIGS. 1 an example in which a composite of zeolite and an inorganic porous support and a dense member are joined via a lead-free inorganic glass will be described with reference to FIGS.
  • the composite 1 of zeolite and the inorganic porous support and the flange 11 can be directly joined via the lead-free inorganic glass 4.
  • the flange 11 becomes a dense member.
  • FIG. 2 is a schematic cross-sectional view showing an example in which a composite 1 of zeolite and an inorganic porous support and a pipe 3 are joined via a lead-free inorganic glass 4.
  • the composite 1 of the zeolite and the inorganic porous support is joined to the pipe 3 via the lead-free inorganic glass 4.
  • the pipe 3 is joined so as to cover the composite 1 of zeolite and the inorganic porous support.
  • the "bonded body" of the present invention is a composite of a zeolite and an inorganic porous support, and a dense member are bonded, the performance of the composite is reduced, when replacing this Although it is a removable part, if it does not have such a removing mechanism, for example, if it is incorporated in a reactor such as a methanol synthesis reactor, it shall include the dense member inside the reactor.
  • the joint between the composite and the dense member is covered with a sealing film.
  • micro holes such as microcracks and pinholes may be formed on the surface of the joint portion due to firing for hardening the lead-free inorganic glass used for the joint. Therefore, it is preferable from the viewpoint of improving the sealing property to perform a sealing treatment on the joining portion to close these fine holes.
  • the joint portion is covered with the sealing film from the viewpoint that the sealing film formed by the sealing treatment can suppress deterioration of the joint portion and damage such as pinholes.
  • the sealing agent capable of forming the sealing film examples include those containing an inorganic material such as silica and various aluminas; organic polymers such as a silicone resin, an epoxy resin and a fluorine-based resin; and the like. And may be solventless. In the present embodiment, it is preferable to use an inorganic sealing agent, particularly silica, from the viewpoint of adhesion to a lead-free inorganic glass and gas barrier properties. In addition, a silicone resin is preferably used in that a dense film is formed. The amount of the sealing agent to be applied may be appropriately determined according to the desired thickness of the sealing film.
  • the viscosity is preferably 2 (mPa ⁇ s, 25 ° C.) or more, more preferably 5 (mPa ⁇ s, 25 ° C.) or more, and still more preferably 10 (mPa ⁇ s), from the viewpoint of handleability of the sealing agent, particularly prevention of dripping. s, 25 ° C) or higher. Further, from the viewpoint that the sealing agent easily penetrates into the pores, 200 (mPa ⁇ s, 25 ° C) or less, preferably 100 (mPa ⁇ s, 25 ° C) or less, more preferably 50 (mPa ⁇ s, 25 ° C). It is as follows. Within this range, the sealing property (airtightness) is improved, and the handling property is also excellent.
  • a sealing agent is applied to the joint portion, and is applied by spraying or the like to obtain a coating film.
  • the pressure may be reduced on the opposite side of the joint portion where the sealing agent is adhered.
  • the decompression may be performed before the sealing agent is adhered to the surface of the joined body, may be performed simultaneously with the adhesion, or may be performed after the adhesion. Due to such reduced pressure, the sealing agent can penetrate into the pores of the joint without any gap, thereby closing the pores on the surface of the joint.
  • the obtained coating film is cured to form a sealing film.
  • a curing method an appropriate method may be employed depending on the type of the sealing agent.
  • a solution of a polymer material or a suspension of inorganic fine particles is used as the sealing agent, it may be dried at 100 to 300 ° C. for 60 to 300 minutes, and the composition containing the polymer material and the crosslinking agent may be used.
  • heat curing, light curing and the like may be performed.
  • an organic or inorganic monomer or oligomer is used as the sealing agent, it may be cured by polymerizing them at 100 to 300 ° C. for 30 to 180 minutes.
  • a sealing treatment called a silicate oligomer treatment can be performed.
  • the silicate oligomer treatment is performed, for example, as follows. First, a sealing agent containing a silicate oligomer represented by an alkoxysilane compound is applied to the joint.
  • silicate oligomer Commercial products of such silicate oligomer include MKC silicate (registered trademark) MS-51, MS-56, MS-57, and MS-56S (all manufactured by Mitsubishi Chemical Corporation, methyl silicate oligomer), ethyl silicate 40, ethyl ethyl Examples thereof include silicate 48 (all manufactured by Colcoat, ethyl silicate oligomer), silicate 40, silicate 45 (Tama Chemical Industry), and EMS-485 (manufactured by Colcoat), which is a mixed oligomer of methyl silicate and ethyl silicate.
  • the obtained coating film is heated at 150 to 280 ° C. for 30 to 180 minutes, and hydrolysis and polycondensation are performed by a sol-gel method, whereby a silica coating film is obtained.
  • a sealing agent containing an alkoxyalkylsilane oligomer may be used.
  • sealing agents include Permeate HS-80, HS-90, HS-100, HS-200, HS-300, HS-330, HS-350, HS-360 and HS-820 (all And D Corp.).
  • the coating film obtained by applying these is heated at 150 to 280 ° C. for 30 to 180 minutes, and a hydrolysis and polycondensation reaction by a sol-gel method is performed to obtain a silica coating.
  • a separation membrane module includes a composite of zeolite and an inorganic porous support and a dense member, and may further include a container having an inlet and an outlet, a flange, a pipe, and the like.
  • the separation membrane module can separate gas and solvent by installing it in a high-pressure vessel and applying pressure, or by evacuating the permeate side. Further, the separation membrane module may be used in a form that separates simultaneously with the reaction.
  • the temperature is usually 100 to 450 ° C., preferably 200 to 350 ° C. It can be used under high temperature conditions of 150 ° C to 500 ° C.
  • the pressure is usually 0.5 to 8 MPa, preferably 2 to 6 MPa. It can be used under high pressure conditions of 0.5 to 10 MPa.
  • a second embodiment of the present invention is a joined body in which a composite of zeolite and an inorganic porous support and a dense member are joined via an inorganic glass, wherein the dense member is a metal member,
  • the joined body has a glass having a coefficient of thermal expansion of 30 ⁇ 10 ⁇ 7 / K or more and 90 ⁇ 10 ⁇ 7 / K or less and a softening point of 550 ° C. or less.
  • the inorganic glass according to the present embodiment has a thermal expansion coefficient of usually 30 ⁇ 10 ⁇ 7 / K or more, preferably 40 ⁇ 10 ⁇ 7 / K or more, more preferably 45 ⁇ 10 ⁇ 7 / K or more. It is usually at most 90 ⁇ 10 ⁇ 7 / K, preferably at most 80 ⁇ 10 ⁇ 7 / K, more preferably at most 75 ⁇ 10 ⁇ 7 / K.
  • the thermal expansion coefficient of the inorganic glass is usually 60% or more, preferably 70% or more, more preferably 80% or more of the thermal expansion coefficient of the dense member, and is usually 200% or less, preferably 150% or more. %, More preferably 120% or less.
  • the thermal expansion coefficient of the inorganic glass is equal to or less than the above upper limit, when the temperature is lowered after joining at a temperature at which the inorganic glass is melted, internal stress is hardly generated around the joined portion, and cracks at the joined portion are reduced. Be suppressed.
  • the bonded body thus obtained preferably has an air permeation amount after bonding of not more than 10 sccm, more preferably not more than 8 sccm in the test method described in the section of Examples of the present specification, Most preferably, it is 5 sccm or less.
  • the bonded body after bonding was added to an autoclave with 1/16 by volume of methanol and 1/16 of demineralized water with respect to the internal volume, and the temperature was raised to 280 ° C. in 1 hour. After maintaining for a period of time, the mixture is naturally cooled, dried at normal pressure at 120 ° C. for 4 hours, and even if the air permeation amount is measured again, the air permeation amount is preferably 10 sccm or less, more preferably 8 sccm or less. Most preferably, it is 5 sccm or less.
  • the separation module When the separation module having the joined body according to the present embodiment is used industrially, the separation module may be reciprocated many times between room temperature and the use temperature, and may be operated for a long time at the use temperature. is there. Therefore, it is required that the gas to be separated does not leak even under these high-temperature and high-pressure conditions at the joint formed by the inorganic glass.
  • the thermal expansion coefficient of the inorganic glass As described above, Leakage of the target gas can be suppressed.
  • the inorganic glass according to this embodiment has a softening point of 550 ° C. or lower, preferably 530 ° C. or lower, more preferably 480 ° C. or lower.
  • glass frit of inorganic glass can be made to flow by baking at a temperature about 50 ° C. higher than the softening point. Therefore, by setting the softening point of the inorganic glass within the above range, the zeolite and the inorganic glass can be chemically bonded at a relatively low temperature of about 600 ° C. or lower, and the inorganic The glass enters, and the composite and the dense member can be mechanically and strongly joined.
  • the joining temperature is set to a relatively low temperature, it is possible to reduce the damage to the zeolite due to heating during joining.
  • the bonding itself is possible to reduce damage at the time of cooling the bonded portion, and it is expected that the characteristics are improved and the life is extended.
  • the inorganic glass is not particularly limited as long as it has the above-mentioned coefficient of thermal expansion and softening point.
  • examples of components contained in the inorganic glass include SiO 2 , Al 2 O 3 , ZnO, P 2 O 5 , Bi 2 O 3 , BaO, TiO 2 , TeO 2 , V 2 O 5 , B 2 O 3 , and SnO. , PbO, and the like.
  • the inorganic glass containing B 2 O 3 and / or SnO include SnO—P 2 O 5 based glass, Bi 2 O 3 —ZnO based glass, Bi 2 O 3 —B 2 O 3 based glass, Bi 2 O 3 -B 2 O 3 -SiO 2 based glass, Bi 2 O 3 -ZnO-B 2 O 3 type glass, and the like.
  • Commercially available products of such inorganic glass frit include “FP-74”, “KP312E”, “FP-67”, “BNL115BB”, “ASF-1094”, “ASF-1098”, “ASF-1109”. (Manufactured by AGC); "BF-0606", “BF-0901” (manufactured by NEC Corporation);
  • the inorganic glass contains SnO
  • its content is not particularly limited, but is usually 80% by mass or less, preferably 75% by mass or less, more preferably 70% by mass or less, and usually 10% by mass or less, preferably Is at least 20% by mass, more preferably at least 30% by mass.
  • SnO content is usually 80% by mass or less, preferably 75% by mass or less, more preferably 70% by mass or less, and usually 10% by mass or less, preferably Is at least 20% by mass, more preferably at least 30% by mass.
  • the content is usually 25% by mass or less, preferably 20% by mass or less, more preferably 18% by mass or less, and further preferably 15% by mass or less. . Further, it is usually at most 1% by mass, preferably at least 2% by mass, more preferably at least 3% by mass.
  • B 2 O 3 wettability with a dense member is improved, and airtightness is easily improved.
  • the content of B 2 O 3 is large, the softening point tends to increase, and the degree of freedom of mixing other components is reduced in order to reduce the softening point to 550 ° C. or lower. Therefore, it is preferable to select from the above range. .
  • B 2 O 3 is soluble in water and alcohol, when there is a possibility of exposure to these substances under high-temperature or high-pressure conditions, it is preferable that the above-mentioned upper limit value or less be used.
  • the methods for quantifying the contents of SnO and B 2 O 3 include XRF (X-ray fluorescence analysis), ICP (Inductively Coupled Plasma Emission Spectroscopy), and the like.
  • the form of the inorganic glass, and powdered glass frit a tablet obtained by molding the glass frit by tableting, a tablet obtained by sintering the glass frit, an organic solvent or a glass frit.
  • a glass paste or the like uniformly dispersed in a binder can be used. When a large number of joined bodies are produced, a tablet or a paste is particularly preferable among these, because it leads to an improvement in production efficiency.
  • the inorganic glass preferably has a lead (Pb) content of 10% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, even more preferably 2% by mass in terms of PbO. %, Particularly preferably 1% by weight or less, most preferably 0% by weight of inorganic glass.
  • the lead content can also be measured by XRF (X-ray fluorescence analysis), ICP (Inductively Coupled Plasma Emission Spectroscopy), or the like.
  • the same zeolite, inorganic porous support, and composite of zeolite and inorganic porous support as those in the first embodiment are used.
  • the dense member is used for taking out the separated gas to the outside, for example, a tube, and has a density (confidentiality) of such a degree that the gas to be treated does not leak from the member.
  • a metal member is used.
  • SUS material made of stainless steel, nickel-molybdenum-iron alloy (for example, Hastelloy (registered trademark)), inconel (nickel-chromium-iron alloy) ), Copper, copper alloys (brass, copper, cupronickel), aluminum, aluminum alloys, titanium and the like, and particularly preferably Kovar (iron-cobalt-nickel alloy).
  • the thermal expansion coefficient of the dense member is usually 30 ⁇ 10 ⁇ 7 / K or more and 200 ⁇ 10 ⁇ 7 / K or less, and the lower limit is preferably 35 ⁇ 10 ⁇ 7 / K or more, and more preferably 40 ⁇ 10 ⁇ 7 / K or more. More preferably, it is more preferably 45 ⁇ 10 ⁇ 7 / K or more.
  • the upper limit is preferably 150 ⁇ 10 ⁇ 7 / K or less, more preferably 120 ⁇ 10 ⁇ 7 / K or less, and even more preferably 85 ⁇ 10 ⁇ 7 / K or less.
  • the coefficient of thermal expansion refers to a coefficient of linear expansion, and indicates a rate of change in the length direction of a solid caused by a rise in temperature. It is carried out according to the method described in JIS Z 2285 (metal material), JIS R 1618 (ceramics) and the like.
  • the coefficient of thermal expansion is usually measured in a range in which a change in length is proportional to a change in temperature. In this specification, the coefficient of thermal expansion is a value usually measured at 30 to 250 ° C.
  • the bonding may be performed at both ends.
  • the outside of the cylindrical support having the zeolite membrane is filled with the mixed gas and pressure is applied, or evacuation of the inside is performed. Performs the separation. Therefore, one end may be sealed with a cap and a pipe may be connected to the other end, or a pipe may be connected to both ends.
  • a method of joining a composite having a zeolite membrane on its surface and a cap made of a dense member, or a pipe made of a dense member having a terminal structure similar to the cap is a method that can join the composite and the cap with inorganic glass. Any method may be used, for example, filling the concave portion of the dense member with inorganic glass, placing the composite having a zeolite membrane on the surface thereon, and then placing a weight on the upper portion of the composite to apply a load. And a method of bonding by baking in a state of being heated.
  • the firing temperature is usually at least the softening point plus 10 ° C., preferably at least the softening point plus 30 ° C., more preferably at least the softening point plus 50 ° C.
  • the temperature is usually 600 ° C. or lower, preferably 580 ° C. or lower, more preferably 560 ° C. or lower.
  • the firing time of the bonding is usually 5 minutes to 90 minutes after reaching the firing temperature, preferably 10 minutes or more, more preferably 20 minutes or more, and preferably 60 minutes or less, more preferably 40 minutes or less.
  • FIG. 1 An example in which a composite of zeolite and an inorganic porous support and a dense member are joined via an inorganic glass will be described below with reference to FIGS.
  • the composite 1 of zeolite and the inorganic porous support and the flange 11 can be directly joined via the inorganic glass 4.
  • the flange 11 is a dense member made of a metal member.
  • the composite 1 of zeolite and the inorganic porous support and the pipe 3 may be simply joined via the inorganic glass 4.
  • FIG. 3 is a schematic cross-sectional view showing an example in which a composite 1 of zeolite and an inorganic porous support and a pipe 3 are joined via an inorganic glass 4.
  • the composite 1 of zeolite and the inorganic porous support is joined to the pipe 3 via the inorganic glass 4.
  • the pipe 3 is joined so as to cover the composite 1 of zeolite and the inorganic porous support.
  • the joint between the composite and the dense member is covered with a sealing film.
  • micro holes such as micro cracks and pinholes may be formed on the surface of the joint portion due to baking for curing the inorganic glass used for the joint. Therefore, it is preferable from the viewpoint of improving the airtightness that a sealing process is performed on the joint portion to close these fine holes.
  • the joint portion is covered with the sealing film from the viewpoint that the sealing film formed by the sealing treatment can suppress deterioration of the joint portion and damage such as pinholes.
  • the sealing agent capable of forming the sealing film examples include those containing an inorganic material such as silica and various aluminas; organic polymers such as a silicone resin, an epoxy resin and a fluorine-based resin; and the like. And may be solventless. In the present embodiment, it is preferable to use an inorganic sealing agent, particularly silica, from the viewpoint of adhesion to inorganic glass and gas barrier properties. The amount of the sealing agent to be applied may be appropriately determined according to the desired thickness of the sealing film.
  • the viscosity is preferably 2 (mPa ⁇ s, 25 ° C.) or more, more preferably 5 (mPa ⁇ s, 25 ° C.) or more, and still more preferably 10 (mPa ⁇ s), from the viewpoint of handleability of the sealing agent, particularly prevention of dripping. s, 25 ° C) or higher. Further, from the viewpoint that the sealing agent easily penetrates into the pores, 200 (mPa ⁇ s, 25 ° C) or less, preferably 100 (mPa ⁇ s, 25 ° C) or less, more preferably 50 (mPa ⁇ s, 25 ° C). It is as follows. By setting the content in this range, the airtightness is improved and the handleability is excellent.
  • a sealing agent is applied to the joint portion, and is applied by spraying or the like to obtain a coating film.
  • the pressure may be reduced on the opposite side of the joint portion where the sealing agent is adhered.
  • the decompression may be performed before the sealing agent is adhered to the surface of the joined body, may be performed simultaneously with the adhesion, or may be performed after the adhesion. Due to such reduced pressure, the sealing agent can penetrate into the pores of the joint without any gap, thereby closing the pores on the surface of the joint.
  • the obtained coating film is cured to form a sealing film.
  • a curing method an appropriate method may be employed depending on the type of the sealing agent.
  • a solution of a polymer material or a suspension of inorganic fine particles is used as the sealing agent, it may be dried at 100 to 300 ° C. for 60 to 300 minutes, and the composition containing the polymer material and the crosslinking agent may be used.
  • heat curing, light curing and the like may be performed.
  • an organic or inorganic monomer or oligomer is used as the sealing agent, it may be cured by polymerizing them at 100 to 300 ° C. for 30 to 180 minutes.
  • a sealing treatment called a silicate oligomer treatment can be performed.
  • the silicate oligomer treatment is performed, for example, as follows. First, a sealing agent containing a silicate oligomer represented by an alkoxysilane compound is applied to the joint.
  • silicate oligomer Commercial products of such silicate oligomer include MKC silicate (registered trademark) MS-51, MS-56, MS-57, and MS-56S (all manufactured by Mitsubishi Chemical Corporation, methyl silicate oligomer), ethyl silicate 40, ethyl ethyl Examples thereof include silicate 48 (all manufactured by Colcoat, ethyl silicate oligomer), silicate 40, silicate 45 (Tama Chemical Industry), and EMS-485 (manufactured by Colcoat), which is a mixed oligomer of methyl silicate and ethyl silicate.
  • the obtained coating film is heated at 150 to 280 ° C. for 30 to 180 minutes, and hydrolysis and polycondensation are performed by a sol-gel method, whereby a silica coating film is obtained.
  • a sealing agent containing an alkoxyalkylsilane oligomer may be used.
  • sealing agents include Permeate HS-80, HS-90, HS-100, HS-200, HS-300, HS-330, HS-350, HS-360 and HS-820 (all And D Corp.).
  • a silicone resin coating is obtained by heating the coating obtained by applying these at 100 to 250 ° C. for 30 to 180 minutes.
  • a separation membrane module includes a composite of zeolite and an inorganic porous support and a dense member, and may further include a container having an inlet and an outlet, a flange, a pipe, and the like.
  • the separation membrane module can separate gas and solvent by installing it in a high-pressure vessel and applying pressure, or by evacuating the permeate side. Further, the separation membrane module may be used in a form that separates simultaneously with the reaction.
  • ⁇ Reactor> By installing the separation membrane module of this embodiment in a reactor, a product and / or by-product is extracted from the reactor in a production method utilizing a reaction that may cause a reverse reaction, so that the product is collected.
  • the rate can be improved, the risk of breakage and the like is small, and it can be used for a long time.
  • the temperature is usually 100 to 450 ° C., preferably 200 to 350 ° C. It can be used under high temperature conditions of 150 ° C to 500 ° C.
  • the pressure is usually 0.5 to 8 MPa, preferably 2 to 6 MPa. It can be used under high pressure conditions of 0.5 to 10 MPa.
  • a composite of zeolite and an inorganic porous support and a dense member have a coefficient of thermal expansion after curing of 30 ⁇ 10 ⁇ 7 / K to 90 ⁇ 10 ⁇ 7 / K. It is a joined body joined with an inorganic adhesive.
  • the feature of the inorganic adhesive used in the present embodiment is that the main component is an inorganic substance, preferably an oxide or a nitride, so that even when used while being in contact with an organic solvent or an organic gas at a high temperature and a high pressure. , Maintain high airtightness and have excellent durability.
  • the inorganic adhesive in the present embodiment solidifies and adheres by a chemical reaction, and does not return to its original state even when heated.
  • the inorganic adhesive is preferable because it can be generally bonded at 200 ° C. or lower, so that the zeolite membrane is hardly damaged.
  • the inorganic adhesive those mainly containing alumina, zirconia, silica, magnesia, zircon, graphite, aluminum nitride, and a mixture thereof can be suitably used.
  • the thermal expansion coefficient of the inorganic adhesive generally depends on the thermal expansion coefficient of the main component, and can be adjusted by adding other additives. It is preferable to use the above-described main component because the coefficient of thermal expansion is easily set in the preferable range described below.
  • the coefficient of thermal expansion of the inorganic adhesive used in the present embodiment after curing is usually 30 ⁇ 10 ⁇ 7 / K to 90 ⁇ 10 ⁇ 7 / K, and the lower limit is preferably 35 ⁇ 10 ⁇ 7 / K or more, and more preferably 45 ⁇ 10 ⁇ 7 / K. 10 ⁇ 7 / K or more is more preferable, and 55 ⁇ 10 ⁇ 7 / K or more is more preferable.
  • the upper limit is preferably 88 ⁇ 10 ⁇ 7 / K, more preferably 85 ⁇ 10 ⁇ 7 / K or less, and even more preferably 82 ⁇ 10 ⁇ 7 / K or less.
  • the difference in thermal expansion coefficient between the inorganic adhesive and the dense member is preferably 50 ⁇ 10 ⁇ 7 / K or less, more preferably 40 ⁇ 10 ⁇ 7 / K or less, and 30 ⁇ 10 ⁇ 7 / K. / K or less, more preferably 15 ⁇ 10 ⁇ 7 / K or less.
  • the joined body obtained by joining the composite and the dense member with such an inorganic adhesive has an air permeation amount of 100 sccm or less in the test method described in the section of the present example. Is preferably 50 sccm or less, more preferably 20 sccm or less, and most preferably 10 sccm or less.
  • the conjugate was added with 1/16 by volume of methanol and 1/16 of demineralized water with respect to the internal volume in the autoclave, the temperature was raised to 280 ° C. in 1 hour, and this state was maintained for 48 hours. After that, the mixture is naturally cooled, dried at 120 ° C. for 4 hours under normal pressure, and even if the air permeation amount is measured again, the air permeation amount is preferably 100 sccm or less, more preferably 50 sccm or less, It is more preferably at most 20 sccm, most preferably at most 10 sccm.
  • the inorganic adhesive used in the present embodiment preferably contains a metal alkoxide. Although the details of the effect of adding the metal alkoxide are unknown, it is presumed that cracks and pinholes are unlikely to occur because the metal alkoxide reacts with the oxide layer on the surface of the dense member to increase the bonding strength.
  • metal alkoxide examples include lithium methoxide, lithium ethoxide, sodium methoxide, sodium ethoxide, potassium methoxide, alkali metal alkoxide such as potassium ethoxide, magnesium methoxide, magnesium ethoxide, calcium methoxide, Alkaline earth metal alkoxides such as calcium ethoxide, boron methoxide, boron ethoxide, aluminum methoxide, aluminum ethoxide, aluminum propoxide, aluminum butoxide, gallium methoxide, gallium ethoxide, etc.
  • alkoxides such as aluminum methoxide, aluminum ethoxide, aluminum propoxide and aluminum butoxide, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetra Silicon alkoxides such as butoxysilane, methyltrimethoxysilane and methyltriethoxysilane, titanium alkoxides such as titanium methoxide, titanium ethoxide, titanium propoxide and titanium butoxide, zirconium methoxide, zirconium ethoxide, zirconium propoxide and zirconium Zirconium alkoxides such as butoxide, and oligomers thereof are preferred.
  • the content of the metal alkoxide in the inorganic adhesive is usually 0.01 to 5% by mass, preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and 3% by mass or less. It is preferably at most 1% by mass.
  • the content is 0.01% by mass or more, remarkable improvement in physical properties is recognized.
  • the content is 5% by mass or less, an increase in specific gravity is suppressed, which is advantageous in terms of cost, and it is easy to maintain a high impact strength state.
  • “TB3732” manufactured by Three Bond Co., Ltd. is commercially available.
  • the same zeolite, inorganic porous support, and composite of zeolite and inorganic porous support as those in the first embodiment are used.
  • the dense member is a member having denseness (confidentiality) to such an extent that a gas used for a reaction or a reacted gas does not leak from the member.
  • the member is not particularly limited as long as it is a member having such denseness, and typically, a metal is used. Examples of the metal here include SUS material made of stainless steel, ceramics such as alumina and zirconia, and alloys such as Kovar.
  • the thermal expansion coefficient of the dense member is usually 30 ⁇ 10 ⁇ 7 / K to 200 ⁇ 10 ⁇ 7 / K, and the lower limit is preferably 35 ⁇ 10 ⁇ 7 / K or more, more preferably 40 ⁇ 10 ⁇ 7 / K or more.
  • the upper limit is preferably 150 ⁇ 10 ⁇ 7 / K or less, more preferably 120 ⁇ 10 ⁇ 7 / K or less, and even more preferably 85 ⁇ 10 ⁇ 7 / K or less.
  • the coefficient of thermal expansion is a coefficient of linear expansion, and indicates a rate of change in the length direction of a solid that occurs with a rise in temperature.
  • the coefficient of thermal expansion is an average value at 30 ° C. to 300 ° C.
  • the measurement of the coefficient of thermal expansion can be performed according to the method described in JISZ2285 (metallic material), JISR1618 (ceramics) and the like.
  • the bonding may be performed at both ends.
  • the bonding may be performed at both ends.
  • one end may be sealed with a cap and a pipe may be connected to the other end, or a pipe may be connected to both ends.
  • a method of joining a composite having a zeolite membrane on its surface and a cap made of a dense member, or a pipe made of a dense member having a terminal structure similar to the cap is a method that can join the composite and the cap with an inorganic adhesive. Any method may be used.For example, an inorganic adhesive is applied in advance to the side surface of the composite and a portion that comes into contact with the cap, and while the cap is rotated on the composite, the joining surface is For example, a method of joining while smoothing is exemplified.
  • the mixture After joining the composite and the dense member with an inorganic adhesive, if necessary, the mixture is allowed to stand at room temperature for usually 1 to 24 hours, and then fired to join.
  • the room temperature means 15 to 30 ° C.
  • the sintering temperature of the bonding is usually 80 to 200 ° C., preferably 90 ° C. or higher, more preferably 100 ° C. or higher, and preferably 180 ° C. or lower, more preferably 150 ° C. or lower.
  • the firing time for the bonding is usually 10 to 300 minutes, preferably 30 minutes or more, more preferably 60 minutes or more, and preferably 180 minutes or less, and more preferably 120 minutes or less.
  • FIG. 1 An example in which a composite of zeolite and an inorganic porous support and a dense member are joined via an inorganic adhesive will be described below with reference to FIGS.
  • the composite 1 of zeolite and the inorganic porous support and the flange 11 can be directly joined via the inorganic adhesive 4.
  • the flange 2 becomes a dense member.
  • the composite 1 of zeolite and the inorganic porous support and the pipe 3 may be simply joined via the inorganic adhesive 4.
  • FIG. 3 is a schematic cross-sectional view showing an example in which a composite 1 of zeolite and an inorganic porous support and a pipe 3 are joined via an inorganic adhesive 4.
  • the composite 1 of zeolite and the inorganic porous support is bonded to the pipe 3 via the inorganic adhesive 4.
  • the pipe 3 is joined so as to cover the composite 1 of zeolite and the inorganic porous support.
  • the "bonded body" of the present invention is a composite of a zeolite and an inorganic porous support, and a dense member are bonded, the performance of the composite is reduced, when replacing this Although it is a removable part, if it does not have such a removing mechanism, for example, if it is incorporated in a reactor such as a methanol synthesis reactor, it shall include the dense member inside the reactor.
  • the joint between the composite and the dense member is covered with a sealing film.
  • micro holes such as microcracks and pinholes are formed in the surface of the bonding portion due to baking for curing the inorganic adhesive used for bonding. Therefore, it is preferable from the viewpoint of improving the sealing property (airtightness) to perform a sealing treatment on the joint portion and close these fine holes.
  • the joint portion is covered with the sealing film from the viewpoint that the sealing film formed by the sealing treatment can suppress deterioration of the joint portion and damage such as pinholes.
  • the sealing agent capable of forming a sealing film examples include those containing an inorganic material such as silica and alumina; organic polymers such as a silicone resin, an epoxy resin and a fluorine-based resin; and the like. And no solvent may be used.
  • an inorganic sealing agent particularly silica, from the viewpoint of adhesion to an inorganic adhesive and gas barrier properties.
  • a silicone resin is preferably used in that a dense film is formed. The amount of the sealing agent to be applied may be appropriately determined according to the desired film thickness of the sealing film.
  • the viscosity is preferably 2 (mPa ⁇ s, 25 ° C.) or more, more preferably 5 (mPa ⁇ s, 25 ° C.) or more, and still more preferably 10 (mPa ⁇ s), from the viewpoint of the handleability of the sealing agent, and particularly the prevention of dripping. s, 25 ° C) or higher.
  • 200 (mPa ⁇ s, 25 ° C) or less preferably 100 (mPa ⁇ s, 25 ° C) or less, more preferably 50 (mPa ⁇ s, 25 ° C). It is as follows. Within this range, the sealing properties are improved and the handling properties are also excellent.
  • a sealing agent is applied to the joint portion, and is applied by spraying or the like to obtain a coating film.
  • the pressure may be reduced on the opposite side of the joint portion where the sealing agent is adhered.
  • the decompression may be performed before the sealing agent is adhered to the surface of the joined body, may be performed simultaneously with the adhesion, or may be performed after the adhesion. Due to such reduced pressure, the sealing agent can penetrate into the pores of the joint without any gap, thereby closing the pores on the surface of the joint.
  • the obtained coating film is cured to form a sealing film.
  • a curing method an appropriate method may be employed depending on the type of the sealing agent.
  • a solution of a polymer material or a suspension of inorganic fine particles is used as the sealing agent, it may be dried at 100 to 300 ° C. for 60 to 300 minutes, and the composition containing the polymer material and the crosslinking agent may be used.
  • heat curing, light curing and the like may be performed.
  • an organic or inorganic monomer or oligomer is used as the sealing agent, it may be cured by polymerizing them at 100 to 300 ° C. for 30 to 180 minutes.
  • a sealing treatment called a silicate oligomer treatment can be performed.
  • the silicate oligomer treatment is performed, for example, as follows. First, a sealing agent containing a silicate oligomer represented by an alkoxysilane compound is applied to the joint. Commercial products of such silicate oligomers include MKC silicate (registered trademark) MS-51, MS-56, MS-57, and MS-56S (all manufactured by Mitsubishi Chemical Corporation, methyl silicate oligomer), ethyl silicate 40, and ethyl silicate.
  • Examples thereof include silicate 48 (all manufactured by Colcoat, ethyl silicate oligomer), silicate 40, silicate 45 (Tama Chemical Industry), and EMS-485 (manufactured by Colcoat), which is a mixed oligomer of methyl silicate and ethyl silicate.
  • the obtained coating film is heated at 150 to 280 ° C. for 30 to 180 minutes, and hydrolysis and polycondensation are performed by a sol-gel method, whereby a silica coating film is obtained.
  • a sealing agent containing an alkoxyalkylsilane oligomer may be used.
  • sealing agents include Permeate HS-80, HS-90, HS-100, HS-200, HS-300, HS-330, HS-350, HS-360 and HS-820 (all And D Corp.).
  • a silicone resin coating is obtained by heating the coating obtained by applying these at 100 to 250 ° C. for 30 to 180 minutes.
  • a separation membrane module includes a composite of zeolite and an inorganic porous support and a dense member, and may further include a container having an inlet and an outlet, a flange, a pipe, and the like.
  • the separation membrane module can separate gas and solvent by installing it in a high-pressure vessel and applying pressure, or by evacuating the permeation side. Further, the separation membrane module may be used in a form that separates simultaneously with the reaction.
  • ⁇ Reactor> By installing the separation membrane module of this embodiment in a reactor, the original chemical equilibrium can always be moved in a direction advantageous for production in a production method utilizing a reaction in which a reverse reaction can occur, thereby improving the yield. It can be used for a long time with little risk of breakage.
  • the temperature is usually 100 to 450 ° C., preferably 200 to 350 ° C. It can be used under high temperature conditions of 100 ° C to 500 ° C.
  • the pressure is usually 0.5 to 8 MPa, preferably 2 to 6 MPa. It can be used under high pressure conditions of 0.5 to 10 MPa.
  • a fourth embodiment of the present invention is a method for producing methanol, in which a raw material gas containing at least hydrogen, carbon monoxide and / or carbon dioxide is reacted in a reactor in the presence of a catalyst to obtain methanol. is there.
  • the content ratio of hydrogen (H 2 ) and carbon monoxide and / or carbon dioxide (also collectively referred to as CO x ) contained in the source gas is not particularly limited, but usually H 2 : CO x is 4% by volume. : 6 to 9: 1, preferably 5: 5 to 8: 2.
  • the source gas may include a gas other than H 2 and CO x .
  • Gases other than H 2 and CO x include CH 4 , C 2 H 4 , C 2 H 6 , C 3 H 6 , C 3 H 8 , C 4 H 8 , C 4 H 10 , and H 2 O.
  • the content of gas other than H 2 and CO x is usually 50% by volume or less.
  • Known catalysts can be used as the catalyst used for producing methanol from the raw material gas, and examples thereof include copper-based catalysts (copper-zinc-based catalysts, copper-chromium-based catalysts), zinc-based catalysts, chromium-based catalysts, and aluminum-based catalysts. System catalyst, and the like.
  • the coefficient of linear expansion of the bonding material is a coefficient of linear expansion of the bonding material after bonding (after firing), and indicates a rate of change in the length direction of the solid with increasing temperature. . It can be carried out according to the method described in JIS Z 2285 (metal material), JIS R 1618 (ceramics) and the like. In the present specification, the coefficient of linear expansion is an average value at 30 ° C. to 300 ° C.
  • FIG. 4 is a schematic sectional view showing one embodiment of a reactor in which the present invention is carried out.
  • the reactor 10 has a raw material feed inlet a, a permeated gas outlet b, and a non-permeated gas outlet c, and is made of a material that can withstand such an environment because the methanol production reaction is performed at a high temperature and a high pressure.
  • a zeolite membrane composite 1 which is a methanol selective permeable membrane, is installed.
  • the type of the methanol permselective membrane is not particularly limited as long as it can selectively permeate methanol, but a zeolite membrane is typically used in many cases. Details of the zeolite membrane composite will be described later.
  • the zeolite membrane composite 1 becomes a composite by forming a zeolite membrane on a porous support.
  • the shape of the porous support is not limited to a tubular shape, and may be a column, a hollow column, or a hollow honeycomb.
  • One end of the zeolite membrane composite 1 is sealed by a cap 2. And another end is connected to the pipe 3.
  • the connection between the pipe 3 and the zeolite composite 1 and the connection between the cap 2 and the zeolite composite 1 are joined by a joining material described later.
  • the connection method of the zeolite membrane composite is not limited to the above, and for example, both ends may be connected to a pipe so that a gas can flow inside.
  • a catalyst 13 is disposed around the tubular zeolite membrane composite 1.
  • the raw material gas fed from the feed inlet a is brought into contact with the catalyst 13 to promote the production of methanol.
  • the generated methanol permeates through the zeolite membrane of the zeolite membrane composite 1, whereby higher purity methanol can be obtained.
  • methanol selectively permeates the zeolite composite 1, the concentration of methanol in the gas in contact with the catalyst 13 is reduced, and the production of methanol is promoted.
  • the other end of the pipe 3 is connected to the permeated gas outlet b of the reactor, and transfers the methanol permeated through the zeolite membrane of the zeolite membrane composite 1 to the permeated gas outlet b.
  • the zeolite membrane composite 1 may be directly connected to the permeated gas outlet b of the reactor without passing through the pipe 3.
  • the methanol permselective membrane is bonded to the dense member by a bonding material having an inorganic oxide as a main component and a linear expansion coefficient of 30 ⁇ 10 ⁇ 7 / K or more and 90 ⁇ 10 ⁇ 7 / K or less. Is done.
  • What can be used as an inorganic adhesive can be suitably selected as an inorganic oxide.
  • the inorganic adhesive is one that solidifies and adheres by a chemical reaction, and does not return to its original state even when heated.
  • the inorganic adhesive is preferable because it can be generally bonded at 200 ° C. or lower, so that the zeolite membrane is hardly damaged. Further, inorganic glass may be used.
  • Examples of the inorganic oxide include alumina, titania, zirconia, silica, and magnesia.
  • Examples of the inorganic glass include those containing, as components, SiO 2 , Al 2 O 3 , ZnO, P 2 O 5 , Bi 2 O 3 , BaO, TiO 2 , TeO 2 , V 2 O 5 , B 2 O 3 , and SnO. And a lead-free inorganic glass is preferable.
  • the main component means a component having the largest content (mass) of all components constituting the bonding material, and is usually 50% by mass or more of all components, and may be 70% by mass or more. It may be at least 90 mass%, and may be at least 90 mass%.
  • a more preferable condition is that the softening point temperature is 550 ° C. or lower. Joining by glass is performed by cooling after cooling to about 50 ° C. higher than the softening point temperature. Therefore, if the softening point temperature exceeds 550 ° C., zeolite is damaged, which is not preferable.
  • the separation membrane using the zeolite used in the present invention is a methanol permselective membrane that easily permeates large methanol as a molecular size and hardly permeates raw materials such as smaller carbon dioxide. When exposed to a temperature of 600 ° C. or more, the surface state of the zeolite changes, and the selectivity of methanol may be reduced.
  • the bonding material has a coefficient of linear expansion of 30 ⁇ 10 ⁇ 7 / K or more and 90 ⁇ 10 ⁇ 7 / K or less, so that the adhesion between the methanol selectively permeable membrane and the dense member is enhanced, and good sealing properties and durability are achieved. Properties can be imparted.
  • the linear expansion coefficient of the joining material is preferably 40 ⁇ 10 ⁇ 7 / K or more, and more preferably 80 ⁇ 10 ⁇ 7 / K or less.
  • the coefficient of linear expansion of the joining material generally depends on the coefficient of linear expansion of the main component, but can be adjusted by mixing other additives.
  • alumina, zirconia, silica, graphite, P 2 O 5 , Bi 2 O 3 , SnO or the like is mainly used. Good to use.
  • bonding materials may be used.
  • "FP-67”, “BNL115BB”, “ASF-1094”, “ASF-1098”, “ASF-1109”, “Ceramabond 552” manufactured by Alemco, and the like can be used.
  • the dense member to be joined to the methanol permselective membrane by the joining material is a member having denseness (confidentiality) to such an extent that a gas to be supplied to the reaction or a reacted gas does not leak from the member.
  • the member is not particularly limited as long as it is a member having such denseness, and a metal is typically used. Examples of the metal herein include SUS material made of stainless steel, ceramics such as alumina and zirconia, and alloys such as Kovar.
  • the dense member preferably has a coefficient of linear expansion of 30 ⁇ 10 ⁇ 7 / K or more and 200 ⁇ 10 ⁇ 7 / K or less.
  • the difference in the coefficient of linear expansion between the bonding material and the dense member is preferably 50 ⁇ 10 ⁇ 7 / K or less, more preferably 40 ⁇ 10 ⁇ 7 / K or less, and 30 ⁇ 10 ⁇ 7 / K. It is more preferably at most K.
  • the difference in the coefficient of linear expansion between the bonding material and the dense member is small, it is possible to suppress the bonding failure due to the contraction of the material when the bonding material is sintered.
  • FIGS. 5 to 7 show examples in which a zeolite membrane composite and a dense member are joined via a joining material as a methanol-permeable membrane.
  • FIG. 5 is a schematic cross-sectional view showing an example in which the zeolite membrane composite and the dense member are joined via a joining material.
  • the zeolite membrane composite 1 is joined to the pipe 3 via the joining material 4.
  • the pipe 3 is joined so as to cover the zeolite membrane composite 1.
  • the zeolite membrane composite 1 and the pipe 3 may be simply joined via a joining material. Since the bonding material of the present embodiment has high sealing properties and durability, such bonding is also possible.
  • the zeolite membrane composite 1 and the reactor 10 can be directly joined via the joining material 4.
  • the joining material 4 since no piping is used, it is possible to reduce the cost of the manufacturing apparatus and reduce the risk of gas leakage due to the deterioration over time of the connection between members.
  • the methanol permselective membrane of this embodiment is typically a zeolite membrane, but is not particularly limited as long as it can selectively permeate methanol. It can also be used.
  • the zeolite membrane is formed on a porous support member such as alumina and used as a zeolite membrane composite.
  • the main zeolite constituting the zeolite membrane preferably contains a zeolite having a pore structure of 12 or less oxygen rings and 6 or more oxygen rings.
  • the value of n of the zeolite having an oxygen n-membered ring has the largest number of oxygen among the pores formed of oxygen forming the zeolite skeleton and T element (element other than oxygen forming the skeleton). Show things. For example, when there are pores having a 12-membered oxygen ring and an 8-membered ring as in a MOR-type zeolite, it is regarded as a zeolite having a 12-membered oxygen ring.
  • the zeolite having a pore structure of 12 or less oxygen rings and 6 or more oxygen rings is a code defined by International Zeolite Association (IZA), for example, AEI, AEL, AFI, AFG, ANA, ATO, BEA, BRE, CAS, CDO, CHA, CON, DDR, DOH, EAB, EPI, ERI, ESV, EUO, FAR, FAU, FER, FRA, HEU, GIS, GIU, GME, GOO, ITE, KFI, LEV, LIO, LOS, LTA, LTL, LTN, MAR, MEP, MER, MEL, MFI, MON, MOR, MSO, MTF, MTN, MTW, MWW, NON, NES, OFF, PAU, PHI, RHO, RTE, RTH, RUT, SGT, OD, STI, STT, TOL, T N, TSC, UFI, VNI, WEI, such as YUG, and the like.
  • the present invention is particularly preferably used because a zeolite is selectively adsorbed, and is not a simple molecular sieve, that is, a molecule having a size difference. More preferably, it can be used for the purpose of allowing the larger molecule to permeate or separating those having the same size. That is, it is more preferable that the zeolite is separated by selective adsorption on the surface of the zeolite. In such a zeolite, the effect of the present invention is more remarkably exhibited because the selective adsorption ability is weakened as the temperature increases.
  • zeolite Since zeolite has poor flexibility, when it is formed into a film, it is formed while being supported on some substrate.
  • the support is porous so that gas molecules can enter, and has, for example, a large number of fine pores connected in three dimensions.
  • the material forming the support is preferably a chemically stable material that does not react with untreated gas and has excellent mechanical strength. Specifically, various types of alumina, silica, silica-alumina, mullite , Oxide ceramics such as cordierite and zirconia, silicon carbide, carbon and glass can be used.
  • the shape of the support varies depending on the use of the zeolite membrane. In particular, the zeolite membrane on a cylindrical support has high strength against external pressure, and is easily used in a batch process, a distribution process (recycle process), and the like. Is preferred.
  • a zeolite membrane composite having a zeolite membrane formed on a support can be used.
  • a cylindrical support is prepared, and first, microcrystals of zeolite are supported in pores.
  • a dipping method, a rubbing method, a suction method, an impregnation method, or the like can be used as a method for carrying the particles.
  • the microcrystal serves as a nucleus when growing a crystal constituting the zeolite membrane, and is also referred to as a seed crystal.
  • Hydrothermal synthesis can be used for the growth of zeolite, as in the case of zeolite synthesis.
  • the thickness of the zeolite membrane in the zeolite membrane composite is not particularly limited, but is usually 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and is usually 50 ⁇ m or less, preferably 20 ⁇ m or less.
  • the film thickness is a certain value or more, sufficient denseness is obtained, and the selectivity of the film is kept high. By setting the film thickness to a certain value or less, a sufficient gas permeation amount can be obtained.
  • a raw material gas containing at least hydrogen, carbon monoxide and / or carbon dioxide is reacted in a reactor in the presence of a catalyst to obtain methanol.
  • the reaction conditions are not particularly limited, but the reaction temperature is preferably 200 ° C. or more and 300 ° C. or less.
  • the reaction temperature means the temperature inside the reactor.
  • the reaction temperature By setting the reaction temperature to 200 ° C. or higher, the reaction rate increases, and the productivity increases.
  • the reaction temperature By setting the reaction temperature to 300 ° C. or lower, the chemical equilibrium of the reaction is advantageous for obtaining methanol, so that the conversion can be increased even if the performance of the membrane is somewhat inferior.
  • the allowable range of heat resistance required for the bonding material is expanded.
  • the methanol obtained by the above reaction permeates through the methanol permselective membrane in the reactor, and is recovered from the permeated gas outlet of the reactor.
  • the pressure in the reactor when the produced methanol is allowed to permeate through the methanol selective permeable membrane that is, the pressure (gauge pressure) on the gas supply side of the methanol selective permeable membrane in the reactor is preferably 1 MPaG or more, preferably 2 MPaG. It is more preferably at least 8 MPaG, more preferably at most 5 MPaG.
  • the methanol partial pressure (absolute pressure) on the gas supply side of the methanol selective permeable membrane is preferably 0.1 MPaA or more, more preferably 0.2 MPaA or more, and is 6 MPaA or less. And more preferably 5 MPaA or less.
  • the gauge pressure in the reactor can be measured from a pressure gauge provided in the reactor.
  • the absolute pressure of methanol in the reactor changes from upstream to downstream of the reactor.
  • the value calculated from the analysis result of the gas composition at the outlet of the reactor by gas chromatography and the gauge pressure is used as the value in the reactor. Methanol absolute pressure.
  • a fifth embodiment of the present invention is an alcohol production apparatus that synthesizes an alcohol by reacting a raw material containing at least hydrogen, carbon monoxide and / or carbon dioxide in the presence of a catalyst
  • the production apparatus includes a reactor provided with an alcohol selective permeable membrane having zeolite, a heat recovery means for recovering at least a part of the reaction heat from the reactor, and a heat supply for supplying the heat recovered by the heat recovery means.
  • Means for producing alcohol Means for producing alcohol.
  • a method for producing an alcohol the method comprising: reacting a raw material containing at least hydrogen, carbon monoxide and / or carbon dioxide in the presence of a catalyst to synthesize an alcohol.
  • Another form of the fifth embodiment of the present invention is a separation / recovery step of separating and recovering the obtained alcohol using an alcohol selective permeable membrane having zeolite in a reactor, and at least a part of the reaction heat generated in the synthesis step.
  • One embodiment of the present invention is an alcohol production apparatus that synthesizes an alcohol by reacting a raw material containing at least hydrogen, carbon monoxide and / or carbon dioxide in the presence of a catalyst, wherein the production apparatus is A reactor provided with an alcohol selective permeable membrane having zeolite, a heat recovery means for recovering at least a part of the reaction heat from the reactor, and a heat supply means for supplying the heat recovered by the heat recovery means, Have.
  • the content ratio of hydrogen (H 2 ) and carbon monoxide and / or carbon dioxide (also collectively referred to as CO x ) contained in the raw material gas is not particularly limited, but H 2 : CO x is usually 4 by volume ratio. : 6 to 9: 1, preferably 5: 5 to 8: 2.
  • the source gas may include a gas other than H 2 and CO x .
  • the gas other than H 2 and CO x CH 4, C 2 H 4, C 2 H 6, C 3 H 6, C 3 H 8, C 4 H 8, C 4 H 10, H 2 O and the like
  • the content of gases other than H 2 and CO x is usually 50% by volume or less.
  • the preheated raw material is introduced into a reactor, and is synthesized into alcohols by a catalyst installed in the reactor.
  • the alcohol may be a lower alcohol having 1 to 4 carbon atoms, preferably an alcohol having 1 to 3 carbon atoms, and most preferably methanol.
  • Known catalysts can be used as the catalyst used for producing alcohol from the raw material gas, and examples thereof include copper-based catalysts (copper-zinc-based catalysts, copper-chromium-based catalysts), zinc-based catalysts, chromium-based catalysts, and aluminum-based catalysts. System catalyst, and the like.
  • the alcohol methanol in the above formula
  • the alcohol selective permeable membrane having zeolite whereby the alcohol yield can be increased.
  • a means for recovering reaction heat is provided in the reactor for performing this reaction. This prevents an excessive temperature rise in the reactor and suppresses the reaction from moving in a direction in which alcohol is easily decomposed.
  • the temperature in the reactor is usually 200 ° C. or higher, preferably 210 ° C. or higher, more preferably 220 ° C. or higher, and is usually 300 ° C. or lower, preferably 290 ° C.
  • This temperature is the temperature of the gas in the reactor, and can be measured by measuring the temperature of the mixture of unreacted raw material gas and alcohol that comes out of the reactor.
  • Means for recovering the reaction heat is not particularly limited, but a heat exchanger, a steam generator, or the like can be used.
  • the alcohol is liquefied by lowering the temperature of the alcohol transmitted through the alcohol selective permeable membrane, and unreacted raw material hydrogen, Separate from carbon dioxide and / or carbon monoxide.
  • the reactor may be provided with a line that does not pass through the alcohol selective permeable membrane, and unreacted raw materials and alcohol come out of this line.
  • hydrogen, carbon dioxide and / or carbon monoxide This process is a gas-liquid separation, and the temperature of the gas-liquid separation varies depending on the alcohol to be obtained.
  • the unreacted raw material thus recovered is mixed with a new raw material, preheated again, and introduced into the reactor.
  • the means for preheating the raw material before introduction into the reactor is not particularly limited, but by preheating the raw material using the heat energy obtained by the heat recovery means for recovering the reaction heat, the heat energy can be efficiently used.
  • the recovered heat energy is used for heating for purification of the product, for heating the product to a temperature suitable for the next process, and generation of steam used in the process. And power generation using the generated steam.
  • heat supply means utilizing the energy obtained by the heat recovery means in the process in the form exemplified above is collectively referred to as heat supply means.
  • FIG. 9 is a schematic cross-sectional view illustrating an example of the reactor according to the present embodiment.
  • the reactor 10 has a raw material feed inlet a, a permeated gas outlet b, and a non-permeated gas outlet c. Since the alcohol production reaction is performed at a high temperature and a high pressure, the reactor 10 is made of a material that can withstand such an environment. There is only one inlet a, outlet b, and outlet c in the figure, but there may be more than one.
  • a zeolite membrane composite 1 which is an alcohol selective permeable membrane, is installed.
  • the type of the alcohol selective permeable membrane is not particularly limited as long as it can selectively permeate alcohol, but typically, a zeolite membrane is often used. Details of the zeolite membrane composite will be described later.
  • the zeolite membrane composite 1 becomes a composite by forming a zeolite membrane on a porous support.
  • the shape of the porous support is not limited to a tubular shape, and may be a column, a hollow column, or a hollow honeycomb.
  • One end of the zeolite membrane composite 1 is sealed by a cap 2. And another end is connected to the pipe 3.
  • the connection between the pipe 3 and the zeolite composite 1 and the connection between the cap 2 and the zeolite composite 1 are joined by a joining material described later.
  • the connection method of the zeolite membrane composite is not limited to the above, and for example, both ends may be connected to a pipe so that a gas can flow inside.
  • a catalyst 13 is disposed around the tubular zeolite membrane composite 1.
  • the raw material gas fed from the feed inlet a is contacted with the catalyst 13 to promote alcohol production.
  • the generated alcohol permeates through the zeolite membrane of the zeolite membrane composite 1, whereby a higher-purity alcohol can be obtained.
  • the alcohol concentration in the gas in contact with the catalyst 13 is reduced, and the production of alcohol is promoted.
  • a heat exchanger 101 which is a heat recovery means for recovering at least a part of the reaction heat from the reactor from the reactor 10 is provided.
  • a heat exchanger is typically used as the heat recovery means.
  • a plurality of heat recovery means may exist. The means for heat recovery may be provided inside the reactor 10 or may be provided adjacent to the reactor 10.
  • the alcohol selective permeable membrane is preferably bonded to the dense member by a bonding material containing an inorganic oxide as a main component and having a coefficient of linear expansion of 30 ⁇ 10 ⁇ 7 / K or more and 90 ⁇ 10 ⁇ 7 / K or less. .
  • an inorganic adhesive can be suitably selected as an inorganic oxide.
  • inorganic glass may be used.
  • the inorganic oxide include alumina, titania, zirconia, silica, and magnesia.
  • examples of the inorganic glass include those containing SiO 2 , Al 2 O 3 , ZnO, P 2 O 5 , Bi 2 O 3 , BaO, TiO 2 , TeO 2 , V 2 O 5 , B 2 O 3 , SnO, and the like as components.
  • a lead-free glass is preferable.
  • the main component means a component having the largest content (mass) of all components constituting the bonding material, and is usually 50% by mass or more of all components, and may be 70% by mass or more. It may be at least 90 mass%, and may be at least 90 mass%.
  • the bonding material has a linear expansion coefficient of usually 30 ⁇ 10 ⁇ 7 / K or more, preferably 40 ⁇ 10 ⁇ 7 / K or more, and usually 90 ⁇ 10 ⁇ 7 / K or less, preferably 80 ⁇ 10 ⁇ 7. / K or less.
  • a linear expansion coefficient of usually 30 ⁇ 10 ⁇ 7 / K or more, preferably 40 ⁇ 10 ⁇ 7 / K or more, and usually 90 ⁇ 10 ⁇ 7 / K or less, preferably 80 ⁇ 10 ⁇ 7. / K or less.
  • the coefficient of linear expansion of the joining material generally depends on the coefficient of linear expansion of the main component, but can be adjusted by mixing other additives.
  • alumina, zirconia, silica, graphite, P 2 O 5 , Bi 2 O 3 , SnO or the like is mainly used. Good to use.
  • bonding materials may be used.
  • "FP-67”, “BNL115BB”, “ASF-1094”, “ASF-1098”, “ASF-1109”, “Ceramabond 552” manufactured by Alemco, and the like can be used.
  • the dense member to be joined to the alcohol selective permeable membrane by the joining material is a member having such a denseness (confidentiality) that a gas to be supplied to the reaction or a reacted gas does not leak from the member, and an end of the tubular member.
  • the member is not particularly limited as long as it is a member having such denseness, and a metal is typically used. Examples of the metal herein include SUS material made of stainless steel, ceramics such as alumina and zirconia, and alloys such as Kovar.
  • the dense member preferably has a coefficient of linear expansion of 30 ⁇ 10 ⁇ 7 / K or more and 200 ⁇ 10 ⁇ 7 / K or less.
  • the linear expansion coefficient of the dense member is within the above range, the difference between the linear expansion coefficient and the linear expansion coefficient of the bonding material is small, and good airtightness and durability can be maintained.
  • the difference in the coefficient of linear expansion between the bonding material and the dense member is preferably 50 ⁇ 10 ⁇ 7 / K or less, more preferably 40 ⁇ 10 ⁇ 7 / K or less, and 30 ⁇ 10 ⁇ 7 / K. It is more preferably at most K. As described above, when the difference in the coefficient of linear expansion between the bonding material and the dense member is small, it is possible to suppress the bonding failure due to the contraction of the material when the bonding material is sintered.
  • the alcohol permselective membrane of the present embodiment is typically a zeolite membrane, but is not particularly limited as long as it can selectively permeate alcohol. It can also be used.
  • the zeolite membrane is formed on a porous support member such as alumina and used as a zeolite membrane composite.
  • the main zeolite constituting the zeolite membrane preferably contains a zeolite having a pore structure of 12 or less oxygen rings and 6 or more oxygen rings.
  • the value of n of the zeolite having an oxygen n-membered ring has the largest number of oxygen among the pores formed of oxygen forming the zeolite skeleton and T element (element other than oxygen forming the skeleton). Show things. For example, when there are pores having a 12-membered oxygen ring and an 8-membered ring as in a MOR-type zeolite, it is regarded as a zeolite having a 12-membered oxygen ring.
  • the zeolite having a pore structure of 12 or less oxygen rings and 6 or more oxygen rings is a code defined by International ⁇ Zeolite Association ⁇ (IZA), for example, AEI, AEL, AFI, AFG, ANA, ATO, BEA, BRE, CAS, CDO, CHA, CON, DDR, DOH, EAB, EPI, ERI, ESV, EUO, FAR, FAU, FER, FRA, HEU, GIS, GIU, GME, GOO, ITE, KFI, LEV, LIO, LOS, LTA, LTL, LTN, MAR, MEP, MER, MEL, MFI, MON, MOR, MSO, MTF, MTN, MTW, MWW, NON, NES, OFF, PAU, PHI, RHO, RTE, RTH, RUT, SGT, OD, STI, STT, TOL , TON, TSC, UFI, VNI, WEI, YUG and the
  • the zeolite particularly preferably used in the present embodiment is preferably one that selectively adsorbs alcohol.
  • selective adsorption of the zeolite it is not merely a molecular sieve, that is, the difference in the size of the molecules, but rather the permeation of the molecules as a sieve. More preferably, it can be used for the purpose of separating large ones. That is, it is more preferable that the zeolite be separated by selective adsorption on the surface of the zeolite. In such a zeolite, the effect of the present invention is more remarkably exhibited because the selective adsorption ability is weakened as the temperature increases.
  • the ease with which alcohol is adsorbed is strongly affected by the molar ratio of Si / Al in zeolite.
  • the molar ratio of Si / Al in the zeolite is usually 2 or more, and preferably 4 or more. Further, it is usually 100 or less, preferably 50 or less.
  • the molar ratio of Si / Al is small, the stability of the crystal decreases, and the synthesis becomes difficult.
  • the molar ratio of Si / Al is large, it becomes difficult to adsorb the alcohol, and the separation performance is not sufficiently exhibited.
  • the measurement of the molar ratio of Si / Al in the zeolite can be performed by a commonly known analytical method.
  • a method of dissolving and measuring by ICP inductively coupled plasma emission spectroscopy
  • a method of measuring solid by EDX energy dispersive X-ray spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • a suitable method can be selected depending on the shape of the film and the material of the support.
  • zeolite Since zeolite has poor flexibility, when it is formed into a film, it is made to be supported on some substrate.
  • the support is porous so that gas molecules can enter, and has, for example, a large number of fine pores connected in three dimensions.
  • the material constituting the support is preferably a chemically stable material that does not react with untreated gas and has excellent mechanical strength.
  • various types of alumina, silica, silica-alumina, mullite , Oxide ceramics such as cordierite and zirconia, silicon carbide, carbon and glass can be used.
  • the shape of the support varies depending on the use of the zeolite membrane.
  • the zeolite membrane on a cylindrical support has high strength against external pressure, and is easily used in a batch process, a distribution process (recycle process), and the like. Is preferred.
  • a zeolite membrane composite having a zeolite membrane formed on a support can be used.
  • a cylindrical support is prepared, and first, microcrystals of zeolite are supported in pores.
  • a dipping method, a rubbing method, a suction method, an impregnation method, or the like can be used as a method for carrying the particles.
  • the microcrystal serves as a nucleus when growing a crystal constituting the zeolite membrane, and is also referred to as a seed crystal.
  • Hydrothermal synthesis can be used for the growth of zeolite, as in the case of zeolite synthesis.
  • the thickness of the zeolite membrane in the zeolite membrane composite is not particularly limited, but is usually 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and is usually 50 ⁇ m or less, preferably 20 ⁇ m or less.
  • the film thickness is a certain value or more, sufficient denseness is obtained, and the selectivity of the film is kept high. By setting the film thickness to a certain value or less, a sufficient gas permeation amount can be obtained.
  • a heat recovery means and an alcohol selective permeable membrane may be provided in the entire region from the upstream to the downstream along the flow of the raw material gas. Further, only the heat recovery means may be provided in the upstream part, and the alcohol selective permeable membrane and the heat recovery means may be provided in the downstream part.
  • the reaction chamber in the reactor may be one or may be divided into two or more. When dividing into two or more, a heat recovery means and an alcohol selective permeable membrane may be installed in all the reaction chambers. Further, the alcohol selective permeable membrane may not be provided in the upstream reaction chamber, but may be provided only in the downstream reaction chamber. When the reaction chamber is divided into two or more, the heat recovery means may not be provided in a reaction chamber in which the amount of generated heat is small.
  • the non-condensed raw material is recycled upstream of the reactor. Is also good.
  • the installation area of the alcohol permselective membrane in the reactor is represented by using A / V (m 2 / m 3 ), which is the ratio of the membrane area (A) per unit catalyst volume (V).
  • the catalyst volume is the volume (m 3 ) of the catalyst charged in the reactor, and is a value obtained by dividing the weight (kg) of the catalyst by the bulk density (kg / m 3 ).
  • the membrane area (m 2 ) is the macroscopic apparent area of the alcohol permselective membrane installed in the reactor.
  • the alcohol-selective permeable membrane is approximated as a rectangular parallelepiped, and the area (length ⁇ width) of the surface having the alcohol-selective permeable membrane in the approximated rectangular parallelepiped is defined as the membrane area.
  • the alcohol-selective permeable membrane is approximated to a cylinder, and the side area of the cylinder (diameter x pi x height) is defined as the membrane area.
  • the catalyst volume and membrane area shall be the sum of the values of all reactors.
  • the membrane area A / V per unit catalyst volume is usually 5 or more, preferably 10 or more, and is usually 150 or less, preferably 120 or less. If the membrane area A / V per unit catalyst volume is too small, the effect of improving the conversion by the alcohol selectively permeable membrane cannot be sufficiently obtained, and if it is too large, the equipment cost increases.
  • the separation selectivity of the alcohol permselective membrane is represented by the ratio of the permeation coefficient between the separation target and the non-separation target.
  • the permeation coefficient is a permeation substance amount (mol) per unit membrane area (m 2 ), unit differential pressure (Pa), and unit time (s).
  • the differential pressure (Pa) is the difference between the partial pressure on the non-permeate side and the partial pressure on the permeate side of a film of a certain substance.
  • the transmission coefficient ratio is a value obtained by dividing the transmission coefficient of the separation target measured at the same temperature as the process by the transmission coefficient of the non-separation target measured at the same temperature as the process.
  • the alcohol / hydrogen permeability coefficient ratio (alcohol / hydrogen permeability coefficient ratio) is usually 10 or more, preferably 20 or more, and more preferably 50 or more. If the transmission coefficient ratio between alcohol and hydrogen is too small, the loss of the raw material to the permeation side increases, the amount of recycled gas increases, and the energy consumption increases.
  • Another embodiment of the present invention is a method for producing an alcohol, comprising a step of reacting a raw material containing at least hydrogen, carbon monoxide and / or carbon dioxide in the presence of a catalyst to synthesize an alcohol.
  • a method for producing alcohol wherein the step of separating and recovering and the step of recovering heat are performed in parallel.
  • the raw materials, the catalyst, the alcohol selective permeable membrane, the reactor, and the like may be those described above.
  • a raw material gas containing at least hydrogen, carbon monoxide and / or carbon dioxide is reacted in a reactor in the presence of a catalyst to obtain an alcohol.
  • the reaction conditions are not particularly limited, but the reaction temperature is usually 200 ° C. or higher, preferably 210 ° C. or higher, more preferably 220 ° C. or higher, and is usually 300 ° C. or lower, preferably 290 ° C. or lower, more preferably 270 ° C. It is as follows. These upper and lower limits may be any combination.
  • the reaction temperature means the temperature of the gas inside the reactor.
  • the reaction temperature By setting the reaction temperature to be equal to or higher than the above lower limit, the reaction rate is increased, and the productivity is increased.
  • the reaction temperature By setting the reaction temperature at or below the above-mentioned upper limit, the chemical equilibrium of the reaction is advantageous for obtaining alcohol, so that the conversion can be increased even if the performance of the membrane is somewhat inferior.
  • the allowable range of heat resistance required for the bonding material is expanded.
  • the alcohol obtained by the above reaction permeates through the alcohol selective permeable membrane in the reactor and is recovered from the permeated gas outlet of the reactor in the separation and recovery step.
  • a heat recovery step of recovering at least a part of the reaction heat generated in the alcohol synthesis from the reactor is performed.
  • the pressure in the reactor when allowing the generated alcohol to pass through the alcohol selective permeable membrane is preferably 1 MPaG or more, and preferably 2 MPaG. It is more preferably at least 8 MPaG, more preferably at most 5 MPaG.
  • the alcohol partial pressure (absolute pressure) on the gas supply side of the alcohol selective permeable membrane is preferably 0.1 MPaA or more, more preferably 0.2 MPaA or more, and 6 MPaA or less. And more preferably 5 MPaA or less.
  • the alcohol partial pressure in this range, a sufficient amount of alcohol permeating through the membrane can be obtained, and the effect of the membrane is sufficiently exhibited.
  • the joining can be performed easily and in a large amount without increasing the durability and airtightness required for the joining portion more than necessary.
  • the gauge pressure in the reactor can be measured from a pressure gauge provided in the reactor.
  • the absolute pressure of the alcohol in the reactor varies from upstream to downstream of the reactor.
  • the value calculated from the analysis result of the gas composition at the outlet of the reactor by gas chromatography and the gauge pressure is used as the value in the reactor. Absolute alcohol pressure.
  • ⁇ Coefficient of thermal expansion of inorganic glass and dense member As for the thermal expansion coefficient (linear expansion coefficient) of the glass frit and the dense member of the inorganic glass at 30 to 250 ° C., a cylindrical test piece having a diameter of about 5 mm and a length of about 10 to 20 mm was prepared from a sample, and the test was conducted in the above temperature range. The amount of expansion of the piece is measured with a differential thermal dilatometer (TMA8310, manufactured by Rigaku Corporation), and the average linear expansion coefficient is calculated. In this example, catalog values or values from the manufacturer's report were used.
  • TMA8310 differential thermal dilatometer
  • ⁇ Softening point of inorganic glass> The softening point is measured with a differential thermal analyzer (TG8120, manufactured by Rigaku Corporation). The glass frit crushed in a mortar is heated at a rate of 10 ° C./min, and the second inflection point of the obtained DTA curve is defined as a softening point.
  • TG8120 manufactured by Rigaku Corporation
  • the glass frit crushed in a mortar is heated at a rate of 10 ° C./min, and the second inflection point of the obtained DTA curve is defined as a softening point.
  • the value of this Example described the value of a catalog or the value of a maker report.
  • Example A1> Preparation of composite of zeolite and porous alumina support
  • Teflon registered trademark
  • the mixture After elapse of a predetermined time, the mixture is allowed to cool to room temperature, and then the porous support-zeolite composite is taken out of the reaction mixture, washed, and dried at 120 ° C. for 4 hours or more. I got a body.
  • AGC-made glass frit “FP-74” thermo) with a Kovar cap (coefficient of thermal expansion 52 ⁇ 10 ⁇ 7 / K, outer diameter 14.0 mm, inner diameter 12.2 mm, height 4 mm) as a lead-free inorganic glass 0.3 g of an expansion coefficient of 63 ⁇ 10 ⁇ 7 / K, a softening point of 355 ° C., and an SnO content of 42%) were charged, and the composite of the MFI zeolite and the alumina porous support was placed thereon. Next, a 560 g weight was placed on the upper part of the composite and placed in a muffle furnace with a load applied thereto. The temperature was raised to 480 ° C. over 100 minutes, and then the 480 ° C. state was maintained for 30 minutes and fired. After that, the heating was stopped and the product was naturally cooled to obtain a joined body.
  • the air permeability of the joined body before the durability test was 0.1 sccm or less.
  • the air permeation amount of the joined body after the durability test was 0.1 sccm or less, which was the same before and after the test, indicating that good durability was exhibited.
  • Example A2 AGC glass frit “KP312E” (coefficient of thermal expansion 71 ⁇ 10 ⁇ 7 / K, softening point 344 ° C., SnO content 52%) manufactured by AGC was used as the inorganic glass, and the firing temperature in the muffle furnace was 430 ° C. A joined body was obtained in the same manner as in Example A1.
  • the air permeability of the joined body before the durability test was 0.1 sccm or less.
  • the air permeation amount of the joined body after the durability test was 0.1 sccm or less, which was the same before and after the test, indicating that good durability was exhibited.
  • Example A3> Joining was performed in the same manner as in Example A1, except that AGC Glass Frit “FP-67” (thermal expansion coefficient 79 ⁇ 10 ⁇ 7 / K, softening point 357 ° C., SnO content 50%) was used as the inorganic glass. I got a body.
  • AGC Glass Frit “FP-67” thermo expansion coefficient 79 ⁇ 10 ⁇ 7 / K, softening point 357 ° C., SnO content 50%
  • Example A4 AGC glass frit “BNL115BB” (thermal expansion coefficient 74 ⁇ 10 ⁇ 7 / K, softening point 397 ° C., B 2 O 3 content 5.0%) manufactured by AGC was used as the inorganic glass, and the firing temperature in the muffle furnace was 500.
  • a joined body was obtained in the same manner as in Example A1, except that the temperature was changed to ° C.
  • Example A5 A sealing treatment was performed on the joined body of Example A4. Specifically, a methyl silicate oligomer “MKC Silicate (registered trademark) MS-56” manufactured by Mitsubishi Chemical Corporation is applied to the joint between the cap and the composite of the MFI zeolite and the alumina porous support while reducing the pressure inside. did. After leaving it at room temperature for 1 hour, it was heated at 250 ° C. for 30 minutes to complete the sealing treatment.
  • MKC Silicate registered trademark
  • the air permeation amount of the joined body before the durability test was 0.1 sccm or less, and it was found that the hermeticity was improved by the sealing treatment.
  • the air permeation amount of the joined body after the durability test was 0.1 sccm or less, which was the same before and after the test, indicating that good durability was exhibited.
  • Example A6 A glass frit “BF-0606” (manufactured by NEC Corporation) (thermal expansion coefficient: 72 ⁇ 10 ⁇ 7 / K, softening point: 450 ° C., B 2 O 3 content: 6.4%) was used as an inorganic glass in a muffle furnace. A joined body was obtained in the same manner as in Example A1, except that the firing temperature was 485 ° C.
  • the air permeation amount of the joined body before the durability test was 0.2 sccm.
  • the air permeability of the joined body after the durability test was 0.2 sccm, and there was no change in the airtightness.
  • Example A7 A glass frit “BF-0901” manufactured by NEC Corporation (thermal expansion coefficient: 48 ⁇ 10 ⁇ 7 / K, softening point: 528 ° C., B 2 O 3 content: 9.7%) was used as an inorganic glass in a muffle furnace. A joined body was obtained in the same manner as in Example A1, except that the firing temperature was 560 ° C.
  • the air permeability of the joined body before the durability test was 0.1 sccm or less.
  • the air permeation amount of the joined body after the durability test was 0.1 sccm or less, which was the same before and after the test, indicating that good durability was exhibited.
  • Example A8 AGC glass frit “ASF-1094” (thermal expansion coefficient 79 ⁇ 10 ⁇ 7 / K, softening point 533 ° C., B 2 O 3 content 15%) manufactured by AGC was used as the inorganic glass, and the firing temperature in the muffle furnace was 550.
  • a joined body was obtained in the same manner as in Example A1, except that the temperature was changed to ° C.
  • Example A9 The glass frit “ASF-1098” manufactured by AGC (thermal expansion coefficient: 54 ⁇ 10 ⁇ 7 / K, softening point: 515 ° C., B 2 O 3 content: 16%) was used as the inorganic glass, and the firing temperature in the muffle furnace was set to 560. A joined body was obtained in the same manner as in Example A1, except that the temperature was changed to ° C.
  • Example A10 AGC glass frit “ASF-1109” (coefficient of thermal expansion 65 ⁇ 10 ⁇ 7 / K, softening point 545 ° C., B 2 O 3 content 19%) manufactured by AGC was used as the inorganic glass, and the firing temperature in the muffle furnace was 560.
  • a joined body was obtained in the same manner as in Example A1, except that the temperature was changed to ° C.
  • Example B1 Preparation of composite of zeolite and alumina porous support
  • An alumina porous support (outer diameter: 12 mm, inner diameter: 9 mm, total length: 40 mm) to which seed crystals had been attached in advance was mixed with an aqueous reaction mixture having a composition of 100 SiO 2 : 27.8 Na 2 O: 0.021 Al 2 O 3 : 4000H 2 O. It was immersed in a Teflon (registered trademark) inner cylinder in the vertical direction, the autoclave was sealed, and hydrothermal synthesis was performed at 180 ° C. for 12 hours.
  • Teflon registered trademark
  • the mixture After elapse of a predetermined time, the mixture is allowed to cool to room temperature, the porous support / zeolite composite is taken out of the reaction mixture, washed, and dried at 120 ° C. for 4 hours or more to obtain a composite of the MFI zeolite and the alumina porous support. I got
  • Example B2 A sealing treatment was performed on the joined body of Example 1. Specifically, a methyl silicate oligomer “MKC Silicate (registered trademark) MS-56” manufactured by Mitsubishi Chemical Corporation is applied to the joint between the cap and the composite of the MFI zeolite and the alumina porous support while reducing the pressure inside. did. After leaving at room temperature for 1 hour, a heat treatment was performed at 250 ° C. for 30 minutes to form a sealing film. When the air permeation amount was measured, it was 0.1 sccm or less, and the sealing property was improved by the sealing film.
  • MKC Silicate registered trademark
  • Example B3 0.6 g of "Aron Ceramic D” (alumina, having a coefficient of thermal expansion after curing of 80 ⁇ 10 -7 / K, containing no metal alkoxide) manufactured by Toa Gosei Co., Ltd.
  • the composite of zeolite and alumina porous support was loaded. Then, a 560 g weight was placed on the top of the composite to apply a load, and left at room temperature for 20 hours. Then, the mixture was heated at 90 ° C. for 1 hour, further heated at 150 ° C. for 1 hour, and then naturally cooled to obtain a joined body.
  • the measured air permeation amount was 14 sccm.
  • Example B4 A joined body subjected to sealing treatment was obtained in the same manner as in Example 2 except that the joined body of Example B3 was used. When the air permeation amount was measured, it was 0.1 sccm or less, and the sealing property was improved by the sealing treatment.
  • Example B5 Same as Example B3 except that "Aron Ceramic E” manufactured by Toagosei Co., Ltd. (zirconia-silica, thermal expansion coefficient after curing is 40 ⁇ 10 ⁇ 7 / K, containing no metal alkoxide) was used as the inorganic adhesive. A joined body was obtained by the technique. The measured amount of air permeation was 18 sccm.
  • Example B6 Except for using the joined body of Example B5, a joined body subjected to sealing treatment was obtained in the same manner as in Example B2. When the air permeation amount was measured, it was 0.1 sccm or less, and the sealing property was improved by the sealing film.
  • Example B7 Sealing treatment was performed in the same manner as in Example 2 except that “Permeate HS-90” manufactured by D & D Company was used instead of “MKC Silicate (registered trademark) MS-56” manufactured by Mitsubishi Chemical Corporation. Was obtained. When the air permeation amount was measured, it was 0.1 sccm or less, and the sealing property was improved by the sealing film.
  • Example B1 A method similar to that of Example B3 was used except that "Aron Ceramic C” manufactured by Toagosei Co., Ltd. (silica-based, thermal expansion coefficient after curing was 130 ⁇ 10 ⁇ 7 / K, containing no metal alkoxide) was used as the inorganic adhesive. A conjugate was obtained. It was 103 sccm when the air permeation amount was measured. Table 2 shows the results of Examples B1 to B7 and Comparative Example B1.
  • Example B8 (Durability test) The conjugate of Example B1 was placed in a SUS-316 autoclave having an inner volume of 80 ml, and 5 ml of methanol and 5 ml of demineralized water were further added. Thereafter, the container was closed under atmospheric pressure and set in an electric furnace. The temperature was increased by heating for 1 hour. Forty-eight hours after the temperature reached 280 ° C. (at this time, the pressure was 3.2 MPaG), heating was terminated, and the autoclave was taken out of the electric furnace and allowed to cool naturally. After cooling for 2 hours or more, the autoclave was opened and the joined body was taken out. After drying at 120 ° C. for 4 hours under normal pressure, the air permeation amount was measured. As a result, it was found that there was no change before and after the test at 0.3 sccm, indicating good durability.
  • Example B9 A durability test was performed by the same method as that of Example B8 except that the joined body of Example B2 was used. The amount of air permeation was 0.1 sccm or less.
  • Example B10 A durability test was performed by the same method as that of Example B8 except that the joined body of Example B7 was used. The amount of air permeation was 0.2 sccm.
  • Comparative Example B2 A durability test was performed by the same method as that of Example B8 except that the joined body of Comparative Example B1 was used.
  • the air permeation amount was 300 sccm or more (measurement range exceeded).
  • Example B3 The same as Example B1 except that “TB1208B” (manufactured by ThreeBond, containing no metal alkoxide) was used as an adhesive other than the inorganic adhesive and heated at 120 ° C. for 1 hour instead of heating at 100 ° C. for 30 minutes. A joined body was obtained by the technique. The measured amount of air permeation was 0.1 sccm or less. Then, when a durability test was performed using this bonded body in the same manner as in Example B7, the bonded portion was broken, and the composite of the MFI zeolite and the alumina porous support and the cap were split. Was. Table 3 shows the results of Examples B8 to B10 and Comparative Examples B2 to B3.
  • Example C1 The porous alumina support to which the seed crystal has been attached in advance is placed in a Teflon (registered trademark) inner cylinder containing an aqueous reaction mixture having a composition of 100SiO 2 : 27.8Na 2 O: 0.021Al 2 O 3 : 4000H 2 O. It was immersed in the vertical direction, the autoclave was closed, and hydrothermal synthesis was performed at 180 ° C. for 12 hours. After elapse of a predetermined time, the mixture is allowed to cool to room temperature, the porous support-zeolite composite is taken out of the reaction mixture, washed, and dried at 120 ° C. for 4 hours or more to obtain a composite of the MFI zeolite and the porous alumina support. (Hereinafter, referred to as a membrane composite). The membrane complex was cut and used as needed.
  • a Kovar cap (linear expansion coefficient 52 ⁇ 10 7 / K), a Kovar connection pipe (linear expansion coefficient 52 ⁇ 10 7 / K), and a membrane composite are combined with a glass frit “BNL115BB (a linear expansion coefficient after firing) manufactured by AGC. 74 ⁇ 10 7 / K), and baked in a muffle furnace at 500 ° C. for 30 minutes to join the membrane composite with the cap and the connection tube.
  • the effective membrane length of the membrane composite after bonding was 34 mm.
  • a reaction with membrane separation was carried out at a temperature of 3 ° C. and a pressure inside the reactor of 3 MPaG. Note that the partial pressure of methanol in the reactor was 0.55 MPaA.
  • Example C2 was performed in the same manner as in Example C1 except that the pressure in the reactor was changed to 1.5 MPaG.
  • the methanol partial pressure in the reactor was 0.33 MPaA.
  • Example C3 was carried out in the same manner as in Example C1, except that the temperature in the reactor was 230 ° C. and the flow rate of the raw material gas was 83 mL / min. The methanol partial pressure in the reactor was 0.87 MPaA.
  • Example C4> Using a membrane lot of another lot synthesized under the same conditions as in Example C1, a glass frit “FP-74 (linear expansion coefficient after firing 63 ⁇ 10 7 / K after firing) was used for joining with a Kovar cap and a connecting pipe. )), The firing temperature was changed to 480 ° C., and the membrane composite, the cap, and the connection tube were joined in the same manner as in Example C1. The effective membrane length of the membrane composite after bonding was 38 mm.
  • Example C4 was performed in the same manner as Example C1.
  • the partial pressure of methanol in the reactor was 0.71 MPaA.
  • the partial pressure of methanol in the reactor was 0.22 MPaA.
  • Example C6 Using a membrane composite of a different lot synthesized under the same conditions as in Example C1, an inorganic adhesive “Ceramabond 552 (linear expansion coefficient after firing: 77 ⁇ 10 7 / K) ", and baked at 93 ° C. for 2 hours, and further baked at 260 ° C. for 2 hours to perform bonding.
  • the effective membrane length of the membrane composite after bonding was 28 mm.
  • the production of methanol was performed in the same manner as in Example C1 except that the amount of the catalyst was set to 30 g and the flow rate of the flowing raw material gas was set to 321 mL / min. The methanol partial pressure in the reactor was 0.32 MPaA.
  • ⁇ Reference example C1> As a joining material, a durability test of an O-ring that is often used for a mechanical seal was performed. As the O-ring, Kalrez (R) 6375, 7075, 0090, 7090 was used. The durability test was performed by encapsulating 5 mL of methanol and 5 mL of water and a bonding material in a 70-mL high-pressure container made of SUS316 or Hastelloy, replacing the inside of the container with N 2 , and then heating at 250 ° C. for a predetermined time. After the test, the durability of Kalrez (R) was evaluated by a hardness test (JIS K6253: 2012).
  • Kalrez (R) 6375 and 0090 decreased over time, it was determined that it could not be used at high temperature, high pressure and in the presence of methanol vapor. Kalrez (R) 7075 and 7090 were significantly deformed during the test, making it impossible to carry out a hardness test. Similarly, it was judged that they could not be used under high temperature, high pressure and in the presence of methanol vapor.
  • ⁇ Reference example C2> As a bonding material, a durability test of a graphite packing often used for a mechanical seal was performed. As the graphite packing, TOMBO No. 2200-P, 2250 manufactured by Nichias was used. The durability test was performed in the same manner as in Reference Example C1. After the test, it was determined that the graphite could not be used at high temperature, high pressure and in the presence of methanol vapor, since the separation of graphite was observed. ⁇ Reference example C3> A durability test was conducted on Alemco Bond 631, which is an epoxy adhesive for high vacuum, as a bonding material.
  • the bonding method shown in Reference Example was determined to be unusable under high temperature, high pressure and in the presence of methanol vapor, and thus could not be used for the production of methanol.
  • Example D1> A simulation of the process whose schematic flow is shown in FIG. 8 was performed using a process of synthesizing methanol from a mixed gas of hydrogen, carbon monoxide, and carbon dioxide as an example.
  • ASPEN Tech ASPEN Plus V8.4 and ASPEN Custom Modeler V8.4 were used for the simulation. The following were assumed as process conditions.
  • Raw material gas temperature 40 ° C Temperature after preheating of raw material gas: 230 ° C Reaction temperature: 250 ° C Pressure (non-permeate side): 5MPaG Pressure (permeation side): 0.1 MPaG
  • Catalyst amount 2000kg Film area per unit catalyst volume: 37.5 m 2 / m 3
  • Example D2> As shown in FIG. 10, except that only the reaction and heat recovery were performed in the first reactor, and the reaction, membrane separation and heat recovery were performed in parallel in the second reactor. The conversion and the recovered heat were determined by the same simulation as in Example D1. The total amount of the catalyst was equal to that in Example 1, and the catalyst was equally divided into two reactors. The membrane area was the same as that of Example D1 based on the total catalyst volume.
  • Example D4> The conversion was determined by the same simulation as in Example D3 except that the transmission coefficients of components other than MeOH and H 2 O were set to 5.0 ⁇ 10 ⁇ 8 mol / m 2 s Pa.
  • Example D5> The conversion was determined by the same simulation as in Example D3 except that the transmission coefficients of components other than MeOH and H 2 O were set to 1.0 ⁇ 10 ⁇ 7 mol / m 2 s Pa.
  • Example D7 The conversion was determined by the same simulation as in Example D6 except that the reaction temperature was 210 ° C.
  • Example D8> The conversion was determined by the same simulation as in Example D6 except that the reaction temperature was 230 ° C.
  • Example D9> The conversion was determined by the same simulation as in Example D6 except that the reaction temperature was 270 ° C.
  • Example D10> The conversion was determined by the same simulation as in Example D6 except that the reaction temperature was 290 ° C.
  • Example D11> The conversion was determined by the same simulation as in Example D6 except that the membrane area per unit catalyst volume was set to 5 m 2 / m 3 .
  • Example D12> The conversion was determined by the same simulation as in Example D6, except that the membrane area per unit catalyst volume was 10 m 2 / m 3 .
  • Example D13 The conversion was determined by the same simulation as in Example D6 except that the membrane area per unit catalyst volume was 50 m 2 / m 3 and the amount of the catalyst was 1000 kg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

気密性が高く、さらには高温高圧条件下での耐久性に優れた接合体を提供することを課題とし、ゼオライトと無機多孔質支持体との複合体と、緻密部材とを無機ガラス又は無機接着剤で接合した接合体であって、該無機ガラス又は無機接着剤の熱膨張係数が30×10-7/K以上90×10-7/K以下、かつ無機ガラスの場合には軟化点が550℃以下である、接合体により課題を解決する。また、高温・高圧、かつアルコール蒸気の存在下において、良好なシール性と耐久性を有する接合法により、アルコール合成反応器内に分離膜を設置することで、効率よくアルコールを製造する方法を提供することを課題とし、少なくとも水素と、一酸化炭素及び/または二酸化炭素と、を含む原料ガスを、反応器内において触媒の存在下、反応させてアルコールを得る、アルコールの製造方法であって、前記反応を行う反応器は、緻密部材と接合されたアルコール選択透過膜が設置され、反応により生じたアルコールが選択透過膜を透過して取り出される、アルコールの製造方法により課題を解決する。

Description

接合体、それを有する分離膜モジュール及びアルコールの製造方法
 本発明は、接合体及びそれを有する分離膜モジュール並びにアルコール、好ましくはメタノールの製造方法に関する。
 ガス分離能を有する膜は通常、無機多孔質支持体上に形成された上で、ガスの透過しない緻密部材と接合して使用する。その際に気密性が高い状態で接合することが必要である。ガス分離能を有する膜は、反応器に設置して工業的にガス分離に使用するのではなく、実験的にガス分離を行う場合の性能等を確認する目的で行われる場合には、短時間接合状態を保つことができればよいため、接合には瞬間接着剤等を用いればよいが、実際に反応器に設置して長時間にわたって安定してガス分離に使用する場合の接合には、多くの場合ガラスが用いられてきた。ガラスでの接合は、分離膜部分を交換する際に、再加熱することで簡単に外すことができるため、工業的にはガラスでの接合が一般的に使われてきた。特許文献1では金属製のガス分離膜と金属部材とが熱膨張係数50×10-7/K~80×10-7/Kのガラスで接合された接合体が開示されている。また、特許文献2ではB及びPbOを所定量含有した特定のガラスとアルミナからなる分離膜シール用組成物を用いてゼオライト膜とアルミナのガス導管とを接合できることが開示されている。つまり、これまでは、熱膨張係数を考え、金属の分離膜の場合には金属部材、セラミックスの支持体を用いる場合にはセラミックスの緻密部材を用いることが一般的に行われていた。また、特許文献3ではセラミックス部材とFe-Ni-Co系合金部材とを熱膨張係数が55×10-7/K~65×10-7/Kのガラスで封止した構造体が開示されている。
 ここで、ガス分離能を有する膜としてゼオライト膜を用いる場合、ゼオライト膜の耐熱性に懸念があるため高温での処理は好ましくない。特許文献1及び3に開示されるような900℃以上の高温により接合する処理はゼオライト膜に破損等の構造上の劣化をもたらし、分離性能の低下を招く虞がある。また高温での接合は加熱及び冷却に時間を要することとなるのみならず、温度変化により接合部自体にもダメージが入り、接合体としての分離の性能や寿命に影響を与え、さらには接合体を大量に生産する上で効率低下及びコストアップにつながる。
 一方、分離膜を接合した接合体は、十分な気密性を持つと同時に、使用温度、使用圧力に耐えて長時間使用できることが必要である。しかしながら、これらの点で従来の接合体は満足できるものではなかった。例えば、特許文献2に開示されているようなアルミナ等のセラミックスを分離膜と接合させた接合体は、強度や耐久性が十分でなかった。特に高温高圧下で長期間使用すると、流体との接触により生じる振動等の要因が重なってヒビ割れが生じ、さらには破損する場合すらあった。
 また、十分な気密性を持つと同時に、温度変化に強く、反応圧力に耐えて長時間使用できる接合体として、鉛ガラスを使用することが提案されている。例えば、特許文献2に開示されるようにPbOを主成分としたガラスを用いることで焼成温度を600℃以下にすることは可能である。しかしながら、鉛は体内に蓄積されると慢性中毒を引き起こすことが知られており、その使用は環境上問題があり、世界各国で行われている鉛の使用を規制する流れに逆行する。
 また特許文献4に開示されているように接合剤としてエポキシ樹脂等の膨潤性樹脂を用いた場合、高温高圧条件下で有機溶媒に曝されると、後に比較例で示すように劣化が進行し接合体が破断に至る場合がある。
 水素と一酸化炭素を含むガス(以下、合成ガス)からメタノールを製造する方法は古くから知られており、例えば銅系触媒(銅-亜鉛系触媒、銅-クロム系触媒)を用いる方法が挙げられる。
 合成ガスからメタノールを製造する反応は平衡反応であり、低温・高圧ほど有利である。低温にすると反応速度が低下するため、一般的なメタノール製造プロセスは200~300℃、5~10MPaG(もしくはそれ以上の圧力)という過酷な条件で実施されるため、メタノール製造時に多大なエネルギーを消費する上に、設備上の制約が多いプロセスである。
 メタノールを効率的に製造する方法として、反応系内からメタノールを取り除くことにより、反応器内のガス組成を平衡組成からずらし、平衡転化率を超える転化率で反応を実施する方法が複数提案されている。
 また、特許文献5、6、7、8にはメタノール合成反応器に分離膜を設置し、反応系内から分離膜を用いてメタノールや水を除去することで、平衡転化率以上に転化率を上げる方法が提案されている。
 さらに、非特許文献1には、高温・高圧のメタノール反応器に、グラファイトパッキンでシールした分離膜を設置する方法が報告されている。
 非特許文献2、3には分離膜を用いないメタノール合成反応及び併発する水性ガスシフト反応の反応速度の温度依存性や圧力依存性について報告されている。
特開平7-163827号公報 特開平10-180060号公報 特開2013-203602号公報 特開2007-50322号公報 特表平9-511509号公報 特開2016-117726号公報 特開2016-174996号公報 特開2007-55970号公報
Chem. Eng. Process. 43 (2004), 1029 Szarawara, J. Reychman,K. 1980. Inz Chem Proc., 1:331 Vanden Bussche K.M., Froment G.F.,1996. J. Catal., 161, 1-10
 本発明は、ゼオライトと無機多孔質支持体との複合体と、緻密部材とを接合した接合体を提供するにあたり、鉛の使用を抑制して環境に配慮するとともに、高い気密性を実現させること、さらには特に高温高圧条件下での耐久性に優れたものとすることを目的としている(第1の課題)。
 また、ゼオライトと無機多孔質支持体との複合体と、緻密部材とを接合した接合体を提供するにあたり、高い気密性を実現させること、接合時のゼオライトのダメージを実質的に解消させること、さらには特に高温高圧条件下での耐久性に優れたものとすることを目的としている(第2の課題)。
 また、ゼオライト及び無機多孔質支持体の複合体と、緻密部材とを接合した接合体を提供するにあたり、高温焼成等を必要としない簡便な手法により高い気密性を実現させること、特に高温高圧条件下及び/又は溶媒やガス、特に有機溶媒や有機ガスの存在下で長時間使用できる耐久性に優れたものとすることを目的としている(第3の課題)。
 特許文献5、6、7、8で提案されているような、メタノール合成反応器に分離膜を設置する方法では、高温・高圧、かつメタノール蒸気の存在下において、ガス供給側(高圧)とガス透過側(低圧)とを長時間シールする必要があり、分離膜とその他の部材との接合法が課題である。しかし、特許文献5、6、7には具体的な接合法が記載されておらず、高温・高圧条件の実施例の記載もない。
 特許文献8には、200℃, 3MPaGという高温・高圧条件において、メタノール合成反応器から分離膜を用いて水を除去する実施例が記載されているが、同じく具体的な接合法は記載されておらず、シール性や耐久性は不明である。
 非特許文献1に記載のグラファイトパッキン等を用いた機械的なシール法は、膜を設置する際に1つずつ締め込む手間がかかる点、グラファイトパッキンのケーシングが必要であり接合部の体積が大きくなる点から工業的に使用するには適していない。また、グラファイトをパッキンとして成型するのに用いている助剤が、メタノール蒸気への耐久性を有しておらず、長時間の使用には不可能である。
 本発明は、このような状況下なされたものであり、高温・高圧、かつメタノール蒸気の存在下において、良好なシール性と耐久性を有する接合法により、メタノール合成反応器内に分離膜を設置することで、効率よくメタノールを製造する方法を提供することを目的とする(第4の課題)。
 そして本発明は、上述の通り、ゼオライトなどを分離膜として用いることで、生成したアルコール類を反応器内から取り出すことにより、収率を著しく向上させることができた。しかしながら、アルコール類を得る反応は激しい発熱反応であることから、アルコールが反応生成する分だけ発熱量が増え、その結果反応器内の温度が上昇し、これによりゼオライトがダメージを受け、アルコールの分離の効率が低下することがあった。また、原料の流量を増やすと反応器内の温度が上昇し、さらにこの平衡反応は、温度が上昇することで原料である水素並びに一酸化炭素及び/又は二酸化炭素側に動いてしまい、この点も、より効率よくアルコール類を得るためには課題であった。
 また、生成したアルコール類を反応器内から取り出すことなく触媒反応のみを行う場合、反応熱により反応器内の温度が上昇することで、平衡が原料側に動いてアルコールの生成反応が抑制されるため、反応器内の温度の上昇は緩やかになり、平衡制約によって反応器内温度はどこかで頭打ちする。一方、触媒反応と分離膜を組み合わせた場合、生成物が系外に抜き出されるため、平衡による制約が弱くなり、反応温度が大幅に上昇しやすいという新しい課題も生じていた。
 そこで本発明者では、この発生した反応熱を反応器から除熱し、その熱を、例えば、原料である水素と、一酸化炭素及び/又は二酸化炭素との加熱に用いることにより、収率を向上させることに加え、アルコールの製造に必要とされるエネルギーを減らすことができる製造装置及び方法を提供とすることも目的とする(第5の課題)。
 本発明者らは、鋭意研究を進め、ゼオライトと無機多孔質支持体との複合体と、緻密部材とが、過不足なく接合するためには、特定の熱膨張係数及び軟化点を有する無機ガラス又は無機接着剤により接合されることにより、上記課題を解決できることを見出し、発明に到達した。
 また、本発明者らは、水素と一酸化炭素及び/又は二酸化炭素と、を含む原料ガスからメタノールを製造する際に、特定の接合材を用いて緻密部材と接合したメタノール選択透過膜を反応器内に設置することで、上記課題を解決できることを見出し、発明を完成するに至った。
 本発明の第1実施形態は、以下のものを含む。
[A1-1]ゼオライトと無機多孔質支持体との複合体と、緻密部材とを鉛フリー無機ガラスを介して接合した接合体であって、該鉛フリー無機ガラスの熱膨張係数が30×10-7/K以上90×10-7/K以下、かつ軟化点が550℃以下である、接合体。
[A1-2]前記複合体と緻密部材との接合部分が、封孔被膜により覆われている、[A1-1]に記載の接合体。
[A1-3]前記封孔被膜が、シリカ被膜である、[A1-2]に記載の接合体。
[A1-4]鉛フリー無機ガラスがSnO及び/又はBを含有している、[A1-1]~[A1-3]の何れかに記載の接合体。
[A1-5]緻密部材の熱膨張係数が30×10-7/K以上200×10-7/K以下である、[A1-1]~[A1-4]の何れかに記載の接合体。
[A1-6]100℃~500℃の高温条件下及び/又は0.5~10MPaの高圧条件下で[A1-1]~[A1-5]の何れかに記載の接合体を使用する、接合体の使用方法。
[A1-7][A1-1]~[A1-6]の何れかに記載の接合体を有する、分離膜モジュール。
[A1-8][A1-7]に記載の分離膜モジュールを有する、反応器。
[A1-9]鉛フリー無機ガラスを用いた、ゼオライトと無機多孔質支持体との複合体と、緻密部材とを接合する接合方法であって、該鉛フリー無機ガラスの熱膨張係数が30×10-7/K以上90×10-7/K以下、かつ軟化点が550℃以下である、接合方法。
 本発明の第2実施形態は、以下のものを含む。
[A2-1]ゼオライトと無機多孔質支持体との複合体と、緻密部材とを無機ガラスを介して接合した接合体であって、該緻密部材が金属部材であり、該無機ガラスの熱膨張係数が30×10-7/K以上90×10-7/K以下、かつ軟化点が550℃以下である、接合体。
[A2-2]前記複合体と緻密部材との接合部分が、封孔被膜により覆われている、[A2-1]に記載の接合体。
[A2-3]前記封孔被膜が、シリカ被膜である、[A2-2]に記載の接合体。
[A2-4]前記無機ガラスがSnO及び/又はBを含有している、[A2-1]~[A2-3]の何れかに記載の接合体。
[A2-5]前記緻密部材の熱膨張係数が30×10-7/K以上200×10-7/K以下である、[A2-1]~[A2-4]の何れかに記載の接合体。
[A2-6]100℃~500℃の高温条件下及び/又は0.5~10MPaの高圧条件下で[A2-1]~[A2-5]の何れかに記載の接合体を使用する、接合体の使用方法。
[A2-7][A2-1]~[A2-5]の何れかに記載の接合体を有する、分離膜モジュール。
[A2-8][A2-7]に記載の分離膜モジュールを有する、反応器。
[A2-9]無機ガラスを用いた、ゼオライトと無機多孔質支持体との複合体と、緻密部材とを接合する接合方法であって、該緻密部材が金属部材であり、該無機ガラスの熱膨張係数が30×10-7/K以上90×10-7/K以下、かつ軟化点が550℃以下である、接合方法。
 本発明の第3実施形態は、以下のものを含む。
[B1]ゼオライト及び無機多孔質支持体の複合体と、緻密部材とを、硬化後の熱膨張係数が30×10-7/K~90×10-7/Kである無機接着剤で接合した接合体。
[B2]ゼオライト及び無機多孔質支持体の複合体と、緻密部材とが、無機接着剤にて接合され、前記緻密部材と硬化後の無機接着剤の熱膨張係数の差が50×10-7/Kである無機接着剤で接合した接合体。
[B3]前記無機接着剤が金属アルコキシドを含有している[B1]または[B2]に記載の接合体。
[B4]前記複合体と緻密部材との接合部分が封孔被膜で覆われている[B1]~[B3]のいずれかに記載の接合体。
[B5]前記封孔被膜がシリカ被膜である[B4]に記載の接合体。
[B6]前記緻密部材の熱膨張係数が30×10-7/K~200×10-7/Kである[B1]~[B5]のいずれかに記載の接合体。
[B7][B1]~[B6]のいずれかに記載の接合体を100℃~500℃の高温条件下及び/または0.5~10MPaの高圧条件下で使用する、接合体の使用方法。
[B8][B1]~[B6]のいずれかに記載の接合体を有する分離膜モジュール。
[B9][B8]に記載の分離膜モジュールを有する反応器。
[B10]硬化後の熱膨張係数が30×10-7/K~90×10-7/Kである無機接着剤を用いて、ゼオライト及び無機多孔質支持体の複合体と、緻密部材とを接合する、接合方法。
 本発明の第4実施形態は、以下のものを含む。
[C1-1]少なくとも水素と、一酸化炭素及び/または二酸化炭素と、を含む原料ガスを、反応器内において触媒の存在下、反応させてメタノールを得る、メタノールの製造方法であって、
 前記反応を行う反応器には、無機酸化物を主成分とし、線膨張率が30×10-7/K以上、90×10-7/K以下である接合材によって、緻密部材と接合されたメタノール選択透過膜が設置され、反応により生じたメタノールが選択透過膜を透過して取り出される、メタノールの製造方法。
[C1-2]前記メタノール選択透過膜がゼオライト膜である、[C1-1]に記載のメタノールの製造方法。
[C1-3]前記緻密部材は金属である、[C1-1]または[C1-2]に記載のメタノールの製造方法。
[C1-4]前記反応器内において、前記メタノール選択透過膜のガス供給側のメタノール分圧が0.1MPa以上、6MPa以下である、[C1-1]から[C1-3]のいずれかに記載のメタノールの製造方法。
[C1-5]前記反応器内部の温度が200℃以上、300℃以下である、[C1-1]から[C1-4]のいずれかに記載のメタノールの製造方法。
[C1-6]前記反応器内において、前記メタノール選択透過膜のガス供給側の圧力が1MPaG以上、8MPaG以下である[C1-1]から[C1-5]のいずれかに記載のメタノールの製造方法。 
[C1-7]前記緻密部材の線膨張率が30×10-7/K以上、200×10-7/K以下である、[C1-1]から[C1-6]のいずれかに記載のメタノールの製造方法。 
[C1-8]前記緻密部材がコバールである、[C1-1]から[C1-7]のいずれかに記載のメタノールの製造方法。 
[C1-9]前記無機酸化物が無機ガラス又は無機接着剤である、[C1-1]から[C1-8]のいずれかに記載のメタノールの製造方法。
[C1-10]少なくとも水素と、一酸化炭素及び/または二酸化炭素と、を含む原料ガスを、反応器内において触媒の存在下、反応させてメタノールを得る製造方法に用いられる、メタノールの製造装置であって、
 前記反応を行う反応器には、無機酸化物を主成分とし、線膨張率が30×10-7/K以上、90×10-7/K以下である接合材によって、緻密部材と接合されたメタノール選択透過膜が設置され、反応により生じたメタノールが選択透過膜を透過して取り出される構造を有するメタノールの製造装置。
 本発明の第4実施形態は、さらに以下のものを含む。
[C2-1]少なくとも水素と、一酸化炭素及び/または二酸化炭素と、を含む原料ガスを、反応器内において触媒の存在下、反応させてメタノールを得る、メタノールの製造方法であって、
 前記反応を行う反応器には、メタノール選択透過膜が設置され、反応により生じたメタノールが選択透過膜を透過して取り出される、メタノールの製造方法。
[C2-2]前記触媒が、メタノール選択透過膜に隣接して存在する[C2-1]に記載のメタノールの製造方法。
[C2-3]少なくとも水素と、一酸化炭素及び/または二酸化炭素と、を含む原料ガスを、反応器内において触媒の存在下、反応させてメタノールを得る製造方法に用いられる、メタノールの製造装置であって、
 前記反応を行う反応器には、メタノール選択透過膜が設置され、反応により生じたメタノールが選択透過膜を透過して取り出される構造を有するメタノールの製造装置。
[C2-4]前記触媒が、メタノール選択透過膜に隣接して存在する[C2-3]に記載のメタノールの製造装置。
 本発明の第5実施形態は、以下のものを含む。
[D1]少なくとも水素と、一酸化炭素及び/又は二酸化炭素と、を含む原料を触媒の存在下で反応させてアルコールを合成するアルコールの製造装置であって、
 該製造装置は、ゼオライトを有するアルコール選択透過膜を備えた反応器と、反応熱の少なくとも一部を該反応器から回収する熱回収手段と、該熱回収手段で回収した熱を供給する熱供給手段と、を有するアルコールの製造装置。
[D2]前記熱回収手段が熱交換器であり、該熱交換器は、前記反応器内に又は前記反応器に隣接して備えられる、(D1)に記載のアルコールの製造装置。
[D3]前記熱供給手段が熱交換器である、(D1)又は(D2)に記載のアルコールの製造装置。
[D4]前記アルコール選択透過膜のメタノール/水素の透過係数比が10以上である、(D1)~(D3)のいずれかに記載のアルコール製造装置。
[D5]少なくとも水素と、一酸化炭素及び/又は二酸化炭素と、を含む原料を触媒の存在下で反応させてアルコールを合成する合成ステップ、を有するアルコールの製造方法であって、
 得られたアルコールを反応器内においてゼオライトを有するアルコール選択透過膜を用いて分離回収する分離回収ステップ、及び合成ステップで生じる反応熱の少なくとも一部を反応器から回収する熱回収ステップ、を含み、
 該分離回収ステップと熱回収ステップとが並行して行われる、アルコールの製造方法。
[D6]前記合成ステップにおいて、反応器内の温度を200℃以上300℃以下に制御する、(D5)に記載のアルコールの製造方法。
[D7]前記熱回収ステップで回収された反応熱の少なくとも一部を、反応器内に導入する前の水素、一酸化炭素及び二酸化炭素から選ばれる1種以上の原料を加熱するために供給する供給ステップ、を有する、(D5)又は(D6)に記載のアルコールの製造方法。
[D8]前記触媒の体積に対する、アルコール選択透過膜の面積の比が、5m/m以上150m/m以下である、(D5)~(D7)のいずれかに記載のアルコールの製造方法。
 本発明の第1実施形態によれば、分離膜であるゼオライトと無機多孔質支持体との複合体と、緻密部材とを接合体を製造するに際し、鉛フリー無機ガラスで接合して環境に配慮するとともに、高い気密性を実現させること、さらには特に高温高圧条件下での耐久性に優れたものを提供することができる。
 また、本発明の第2実施形態によれば、分離膜であるゼオライトと無機多孔質支持体との複合体と、緻密部材とを接合体を製造するに際し、緻密部材を金属部材とし、ガラス系接着剤として特定の無機ガラスを使用することにより、接着時にゼオライトが受けるダメージを低減し、高い気密性及び高温高圧条件下での十分な耐久性有する接合体を提供することができる。
 また、本発明の第3実施形態によれば、分離膜であるゼオライトと無機多孔質支持体との複合体と、緻密部材とを接合体を製造するに際し、高温焼成等を必要としない簡便な手法により、高い気密性を有し、高温高圧条件下及び/又は溶媒やガス、特に有機溶媒や有機ガスの存在下で長時間使用できる、ゼオライト及び無機多孔質支持体の複合体と緻密部材との接合体、及びそれを有する分離膜モジュールを提供することができる。
 また、本発明の第4実施形態によれば、メタノールを製造するに際し、高温・高圧、かつメタノール蒸気の存在下において、良好なシール性と耐久性を有する接合法により、メタノール合成反応器内に分離膜を設置し、反応により生じたメタノールが選択透過膜を透過して取り出されることで、効率よくメタノールを製造する方法が提供される。
 そして本発明の第5実施形態によれば、反応器内の温度が上がりすぎないので、ゼオライトへのダメージが少なく、ゼオライト膜の分離能力が長時間維持できる。また、この平衡反応は高温でアルコール生成量が減るので、反応器内の温度が上がりすぎず、収率を維持することができる。また、原料である水素と一酸化炭素及び/又は二酸化炭素は、触媒に供給される前にある程度加熱する必要があり、好ましい形態により原料に回収した熱を供給することで、系全体のエネルギー効率を向上させることができるアルコールの製造装置及び方法を提供できる。
ゼオライトと無機多孔質支持体との複合体と、緻密部材とを無機ガラス又は無機接着剤で接合した接合体の断面模式図である。 ゼオライトと無機多孔質支持体との複合体と、緻密部材とを無機ガラス又は無機接着剤で接合した接合体の断面模式図である。 ゼオライトと無機多孔質支持体との複合体と、緻密部材とを無機ガラス又は無機接着剤で接合した接合体の断面模式図である。 反応器の一形態を示す断面模式図である。 ゼオライト膜と配管のフランジが接合材により接合された一形態を示す断面模式図である。 ゼオライト膜と配管が接合材により接合された一形態を示す断面模式図である。 ゼオライト膜と反応器が接合材により接合された一形態を示す断面模式図である。 本発明の一実施形態に係る製造プロセスの概略を示すフローチャートである。 熱交換器を有する反応器の一形態を示す断面模式図である。 本発明の一実施形態に係る製造プロセスの概略を示すフローチャートである。 比較例の形態に係る製造プロセスの概略を示すフローチャートである。 比較例の形態に係る製造プロセスの概略を示すフローチャートである。 本発明の一実施形態に係る製造プロセスの概略を示すフローチャートである。
 以下、本発明について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明はこれらの内容に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
≪第1実施形態≫
 本発明の第1実施形態は、ゼオライトと無機多孔質支持体との複合体と、緻密部材とを鉛フリー無機ガラスを介して接合した接合体であって、該鉛フリー無機ガラスの熱膨張係数が30×10-7/K以上90×10-7/K以下、かつ軟化点が550℃以下である、接合体である。
<鉛フリー無機ガラス>
 本実施形態において鉛フリー無機ガラスとは、鉛(Pb)の含有量がPbO換算で10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、特に好ましくは1質量%以下、最も好ましくは0質量%の無機ガラスである。
 本実施形態に係る鉛フリー無機ガラスは、熱膨張係数が通常30×10-7/K以上、好ましくは40×10-7/K以上、より好ましくは45×10-7/K以上であり、また、通常90×10-7/K以下、好ましくは80×10-7/K以下、より好ましくは75×10-7/K以下である。
 本実施形態では、鉛フリー無機ガラスの熱膨張係数は、通常緻密部材の熱膨張係数の60%以上、好ましくは70%以上、より好ましくは80%以上であり、また、通常200%以下、好ましくは150%以下、より好ましくは120%以下である。鉛フリー無機ガラスの熱膨張係数が上記上限値以下であることにより、鉛フリー無機ガラスが溶融する温度で接合をしてから温度を降下するときに、接合部分の内部に引張り応力が生じにくく、接合部分のクラックが抑制される。一方、ガラスの熱膨張係数が上記下限値以上であることにより、接合体の使用温度範囲で、複合体と緻密部材との間に隙間が生じにくく、分離対象ガスがその隙間から精製ガス側に漏洩することを抑制できる。
 この様にして得られた接合体は、好ましくは接合後の空気透過量が、本明細書実施例の欄に記載された試験方法において、10sccm以下であることが好ましく、より好ましくは8sccm以下、最も好ましくは5sccm以下であることである。
 また、接合後の接合体は、オートクレーブ中に内容積に対し、体積にして1/16のメタノールと、1/16の脱塩水を加え、1時間で280℃まで昇温し、この状態で48時間維持した後、自然冷却し、これを常圧で120℃4時間乾燥した後、再び空気透過量測定を行っても、空気透過量が10sccm以下、より好ましくは8sccm以下であることが好ましく、最も好ましくは5sccm以下であるものである。熱膨張率の条件に加え、このような条件を満たすことにより、より長時間にわたってメタノールの生産を行っても、接合部に問題を生じるようなことが無いため、より好ましい。
 本実施形態に係る接合体を有する分離モジュールを工業的に使用する場合、室温と使用温度との間を何回も往復させることがあり、また、使用温度で、長時間、運転されることもある。そのため、鉛フリー無機ガラスにより形成される接合部分には、これらの高温高圧条件下においても分離対象ガスが漏洩しないことが求められるところ、鉛フリー無機ガラスの熱膨張係数を上述のように設定することにより、分離対象ガスの漏洩を抑制できる。
 本実施形態に係る鉛フリー無機ガラスは、軟化点が550℃以下、好ましくは530℃以下、より好ましくは480℃以下である。一般的に、鉛フリー無機ガラスのガラスフリットは、軟化点よりも50℃程度高い温度で焼成することにより、該ガラスフリットを流動させることができる。従って、鉛フリー無機ガラスの軟化点を上記範囲内とすることにより、600℃程度以下の比較的低温でゼオライトと鉛フリー無機ガラスとを化学的に結合させることができ、かつ、複合体の細孔内に鉛フリー無機ガラスが入り込み、複合体と緻密部材とが機械的に強固に接合され得る。また、接合温度を比較的低温とすることによって、ゼオライトが接合時の加熱により受けるダメージを低減できる。
 前記鉛フリー無機ガラスとしては、上記熱膨張係数及び軟化点を有する限り特に制限されない。鉛フリー無機ガラスに含まれる成分としては、例えば、SiO、Al、ZnO、P、Bi、BaO、TiO、TeO、V、B、SnO等が挙げられる。これらの中でも、鉛フリー無機ガラスは、シール性向上の観点から、特にB23及び/又はSnOを含有することが好ましい。B及び/又はSnOを含有する鉛フリー無機ガラスとしては、具体的にはSnO-P系ガラス、Bi-ZnO系ガラス、Bi-B系ガラス、Bi-B-SiO系ガラス、Bi-ZnO-B系ガラス、等が挙げられる。このような鉛フリー無機ガラスのガラスフリットの市販品としては、「FP-74」、「KP312E」、「FP-67」、「BNL115BB」、「ASF-1094」、「ASF-1098」、「ASF-1109」(以上、AGC社製);「BF-0606」、「BF-0901」(以上、日本電気硝子社製);等が挙げられる。
 鉛フリー無機ガラスがSnOを含有する場合、その含有量は特に制限されないが、通常80質量%以下、好ましくは75質量%以下、より好ましくは70質量%以下であり、また、通常10質量%以下、好ましくは20質量%以上、より好ましくは30質量%以上である。
 SnOの含有量をこの範囲にすることでガラスの流動性が十分に保たれ、十分なシール性能が得られやすい。SnOの添加効果については、詳細は不明であるが、SnOは還元剤として働くことが知られており、緻密部材の表面の酸化被膜を改質したり、接合処理中に酸化被膜の厚みが増加するのを抑制してシール性向上につながっていると推察している。
 一方、鉛フリー無機ガラスがBを含有する場合、その含有量は通常25質量%以下、好ましくは20質量%以下、より好ましくは18質量%以下であり、さらに好ましくは15質量%以下である。また、通常1質量%以下、好ましくは2質量%以上、より好ましくは3質量%以上である。
 Bを添加することにより、緻密部材との濡れ性が良くなり、シール性が向上しやすい。一方Bの含有量が多いと軟化点が上昇しやすく、軟化点を550℃以下にするために他の成分の配合の自由度が減るため、上述の範囲内から選択することが好ましい。またBは水、アルコールに可溶であるから、高温または高圧条件下でこれらの物質に曝される可能性がある場合には、上述の上限値以下とすることが好ましい。
 なお、SnO及びBの含有量の定量方法については、XRF(蛍光X線分析)法、ICP(誘導結合プラズマ発光分光分析)法等が挙げられる。
 鉛フリー無機ガラスの形態については、特に制限はなく、粉末のガラスフリット、ガラスフリットを打錠成形などの方法で成形したタブレット、ガラスフリットを焼結させた成形品であるタブレット、ガラスフリットを有機溶媒やバインダ中に均一に分散させたガラスペースト等が使用可能である。接合体を大量に生産する際には、これらの中でも特にタブレットやペースト状のものが生産効率の向上につながるために好ましい。
<ゼオライト>
 ゼオライト膜を構成する主たるゼオライトは、酸素12員環以下、酸素6員環以上の細孔構造を有するゼオライトを含むものが好ましく、酸素10員環以下、6員環以上の細孔構造を有するゼオライトを含むものがより好ましい。
 ここでいう酸素n員環を有するゼオライトのnの値は、ゼオライト骨格を形成する酸素とT元素(骨格を構成する酸素以外の元素)で構成される細孔の中で最も酸素の数が大きいものを示す。例えば、MOR型ゼオライトのように酸素12員環と8員環の細孔が存在する場合は、酸素12員環のゼオライトとみなす。
 酸素12員環以下、酸素6員環以上の細孔構造を有するゼオライトとしては、International Zeolite Association (IZA)が定めるコードで、例えば、AEI、AEL、AFI、AFG、ANA、ATO、BEA、BRE、CAS、CDO、CHA、CON、DDR、DOH、EAB、EPI、ERI、ESV、EUO、FAR、FAU、FER、FRA、HEU、GIS、GIU、GME、GOO、ITE、KFI、LEV、LIO、LOS、LTA、LTL、LTN、MAR、MEP、MER、MEL、MFI、MON、MOR、MSO、MTF、MTN、MTW、MWW、NON、NES、OFF、PAU、PHI、RHO、RTE、RTH、RUT、SGT、SOD、STI、STT、TOL、TON、TSC、UFI、VNI、WEI、YUGなどがあげられる。これらの中から選ばれるいずれかであるのが好ましい。
 また、本発明に係る接合体は、単なる分子篩、つまり単に分子のサイズの差により、篩として分子を透過させる目的ではなく、ゼオライトが分離の目的物を選択吸着することにより、例えばサイズが大きい方の分子を透過させたり、あるいは同程度の大きさの分子同士を分離したりする目的で使用できるものであることがより好ましい。つまり、ゼオライトの表面への選択吸着により、目的物を分離するものであることがより好ましい。このようなゼオライトは、使用温度が高すぎると、その選択吸着能力が弱まってしまうところ、例えば500℃以下程度の温度条件下であれば、本発明の効果がより顕著に発揮される。
<無機多孔質支持体>
 ゼオライトは可塑性に乏しいため、膜化する場合は、何らかの基板上に支持される形で作製される。支持体は、ガス分子が侵入できる多孔性であり、例えば、3次元状に連続した多数の微細な小孔を有する。
 本実施形態において、支持体を構成する材質としては、処理対象のガスが反応しない化学的に安定で、かつ機械的強度に優れたものであることが好ましく、具体的には、各種アルミナ、シリカ、シリカ-アルミナ、ムライト、コージェライト、ジルコニアといった酸化物セラミックスのほか、シリコンカーバイド、カーボン、ガラスなどを用いることができる。
 また、支持体の形状は、ゼオライト膜の用途により異なるが、特に円筒形の支持体上のゼオライト膜は、外側からの圧力に対する強度が強く、バッチプロセスや流通プロセス(リサイクルプロセスを含む)等で簡便に用いる上で好適である。
<ゼオライトと無機多孔質支持体との複合体>
 本実施形態では、例えば、円筒形の支持体を準備し、まずゼオライトの微結晶を細孔内に担持する。担持する方法は、ディップ法、ラビング法、吸引法、含浸法等を用いることができる。該微結晶は、ゼオライト膜を構成する結晶を成長させるときの核の役割を果たし、種結晶ともいう。ゼオライトの成長工程には、ゼオライト合成時と同様、水熱合成を用いることができる。
ゼオライト膜複合体におけるゼオライト膜の膜厚は特段限定されないが、通常0.1μm以上、好ましくは0.5μm以上であり、また通常50μm以下、好ましくは20μm以下である。膜厚を適当な厚さにすることで、緻密性を保ち、膜の選択性を高く維持できる。また圧力を必要以上に上げることなく取り出したいガスを十分に透過させることができる。
 また、基体が管形状を有するとき、ゼオライトが被覆する面は、管の外側でも、内側でも、この両者でもよい。
 支持体へのゼオライト結晶成長までの工程では、支持体の両末端は開放したままバッチプロセスで行うことができる。
<緻密部材>
 緻密部材は、反応に供するガスや反応したガスが、部材から漏れることが無い程度の緻密性(機密性)を有する部材である。このような緻密性を有する部材であれば特に限定されず、典型的には金属が用いられる。ここでいう金属の例としては、ステンレス鋼からなるSUS管、アルミナ、ジルコニアなどのセラミックス、コバールなどの合金、などが含まれる。
 緻密部材の熱膨張係数は通常30×10-7/K以上、200×10-7/K以下であり、下限は35×10-7/K以上が好ましく、40×10-7/K以上がより好ましく、45×10-7/K以上が更に好ましい。上限は150×10-7/K以下が好ましく、120×10-7/K以下がより好ましく、85×10-7/K以下がさらに好ましい。緻密部材の熱膨張係数が上記範囲であることで、鉛フリー無機ガラスの熱膨張係数との差が小さく、良好なシール性と耐久性を保つことができる。
 なお、本発明において熱膨張係数とは線膨張係数のことであり、温度上昇に伴って生じる固体の長さ方向の変化割合を示したものである。JIS Z 2285(金属材料)、JIS R 1618(セラミックス)等に記載の方法に従って実施する。熱膨張係数は、熱膨張の長さが温度に対してリニアに比例して変化する範囲で測定すればよく、本明細書において、熱膨張係数は、通常30~250℃で測定される値である。
<ゼオライト及び無機多孔質支持体の複合体と緻密部材との接合体>
 本実施形態において接合は、複合体が円筒形支持体の場合はその両末端について行ってもよい。例えば、複合体が円筒形であるゼオライト膜を用いて混合ガス分離プロセスを行う場合、ゼオライト膜を有する円筒型支持体の外部を混合ガスで満たし、圧力をかけることで、あるいは内部の真空排気を行うことで分離を遂行する。したがって、一方の末端はキャップにより封止し、もう一方の末端に配管を接続してもよく、両末端に配管を接続してもよい。
 ゼオライト膜を表面に持つ複合体と緻密部材からなるキャップ、あるいはキャップに類似した末端構造を持つ緻密部材からなる配管との接合方法は、複合体とキャップとの間を鉛フリー無機ガラスで接合できる方法であればどのような方法でもよいが、例えば、緻密部材の凹部に鉛フリー無機ガラスを充填し、その上にゼオライト膜を表面に持つ複合体を載せ、ついで複合体の上部に重りを載せて荷重をかけた状態で焼成して接合する方法などが例示される。
 複合体と緻密部材とを鉛フリー無機ガラスにて接合する際の焼成温度については、使用する鉛フリー無機ガラスの軟化点以上にすることが必須である。したがって、焼成温度は通常、軟化点プラス10℃以上、好ましくは軟化点プラス30℃以上、さらに好ましくは軟化点プラス50℃以上である。また、ゼオライト膜への熱的ダメージを避けるために、通常は600℃以下であり、好ましくは580℃以下、さらに好ましくは560℃以下である。また、接合の焼成時間は焼成温度到達後通常5分~90分であり、好ましくは10分以上、さらに好ましくは20分以上、また、好ましくは60分以下、さらに好ましくは40分以下である。
 以下に、ゼオライトと無機多孔質支持体との複合体と緻密部材とが鉛フリー無機ガラスを介して接合された例を図1~図3を用いて説明する。
 図1に示すように、ゼオライトと無機多孔質支持体との複合体1とフランジ11とを、鉛フリー無機ガラス4を介して直接接合することもできる。このような形態では、部材間の接続の経時的劣化に伴うガス漏れなどのリスクを低減することができる。この場合フランジ11が、緻密部材になる。
 一方、図2に示すように、ゼオライトと無機多孔質支持体との複合体1と配管3とが、単に鉛フリー無機ガラス4を介して接合していてもよい。本実施形態の鉛フリー無機ガラスは、高い気密性と耐久性を有することから、このような接合も可能である。この場合は配管3が緻密部材になる。
 図3は、ゼオライトと無機多孔質支持体との複合体1と配管3とが鉛フリー無機ガラス4を介して接合された一例を示す断面模式図である。ゼオライトと無機多孔質支持体との複合体1は鉛フリー無機ガラス4を介して、配管3と接合する。配管3はゼオライトと無機多孔質支持体との複合体1を覆うように接合されている。
 尚、本発明の「接合体」とは、ゼオライト及び無機多孔質支持体の複合体と、緻密部材とが接合されているものであり、複合体の性能が低下し、これを交換する際に取り外しが可能な部品であるが、そのような取り外し機構を持たない場合、例えばメタノール合成反応器等の反応器に組み込まれている場合には、反応器の内部にある緻密部材までを含むものとする。
<封孔被膜>
 本実施形態において、複合体と緻密部材との接合部分は、封孔被膜により覆われていることが好ましい。接合部分は接合に用いた鉛フリー無機ガラスを硬化するための焼成に起因して、接合部分の表面にマイクロクラック、ピンホール等の微細孔が形成されている場合がある。よって、接合部分に封孔処理を施し、これらの微細孔を塞ぐことがシール性を向上させる観点から好ましい。また、封孔処理によって形成される封孔被膜が、接合部分の劣化、ピンホール等の損傷を抑制し得る点でも接合部分を封孔被膜で覆うことが望ましい。
 封孔被膜を形成し得る封孔剤としては、シリカ、各種アルミナ等の無機材料;シリコーン樹脂、エポキシ樹脂、フッ素系樹脂等の有機系高分子;などを含むものが挙げられ、溶剤を含んでいてもよく、無溶剤でもよい。本実施形態においては、鉛フリー無機ガラスとの密着性及びガスバリア性の観点から、無機系の封孔剤、特にシリカを使用することが好ましい。また緻密な被膜を形成する点で、シリコーン樹脂も好適に用いられる。封孔剤の付着量は、所望の封孔被膜の膜厚に応じて適宜決めればよい。
 封孔剤の取り扱い性、特に垂れを防ぐ観点から粘度としては2(mPa・s,25℃)以上が好ましく、より好ましくは5(mPa・s,25℃)以上、さらに好ましくは10(mPa・s,25℃)以上である。また、孔内に封孔剤が浸透易い点から、200(mPa・s,25℃)以下、好ましくは100(mPa・s,25℃)以下、さらに好ましくは50(mPa・s,25℃)以下である。この範囲とすることでシール性(気密性)が向上し、かつ取り扱い性にも優れる。
 具体的な封孔処理の方法としては、まず、接合部分に対し、封孔剤を塗布、噴霧等により付着させ、塗膜を得る。このとき、シール性(気密性)を向上させる目的で接合部分の封孔剤を付着させる逆側を減圧させてもよい。減圧は、封孔剤を接合体表面に付着させるに先立って行ってもよく、付着と同時に行ってもよく、付着後に行ってもよい。このような減圧により、封孔剤を接合部分の細孔内に隙間なく浸透させ、接合部分表面の細孔を塞ぎ得る。
 次いで、得られた塗膜を硬化し、封孔被膜を形成する。硬化方法としては、封孔剤の種類に応じて適切な方法を採用すればよい。封孔剤として、高分子材料の溶液や無機微粒子の懸濁液を使用する場合には、100~300℃で60~300分乾燥すればよく、高分子材料と架橋剤とを含む組成物を使用した場合には、熱硬化、光硬化等を行ってもよい。また、封孔剤として有機系又は無機系のモノマーやオリゴマーを使用する場合には、これらを100~300℃で30~180分重合することにより硬化してもよい。
 封孔被膜としてシリカ被膜を使用する場合、シリケートオリゴマー処理と称される封孔処理を行うことができる。シリケートオリゴマー処理は、例えば以下のようにして行われる。まず、アルコキシシラン化合物に代表されるシリケートオリゴマーを含む封孔剤を、接合部分に塗布する。このようなシリケートオリゴマーの市販品としては、MKCシリケート(登録商標)MS-51、MS-56、MS-57,MS-56S(いずれも三菱ケミカル社製、メチルシリケートオリゴマー)、エチルシリケート40、エチルシリケート48(いずれもコルコート社製、エチルシリケートオリゴマー)、シリケート40、シリケート45(多摩化学工業)、メチルシリケートとエチルシリケートの混合オリゴマーであるEMS-485(コルコート社製)等が挙げられる。次いで、得られた塗膜を150~280℃で30~180分加熱し、ゾルゲル法による加水分解及び重縮合反応を行うことにより、シリカ被膜が得られる。
 封孔被膜としてシリコーン樹脂を使用する場合は、アルコキシアルキルシランのオリゴマーを含有した封孔剤を用いればよい。このような封孔剤としては、パーミエイトHS-80、HS-90、HS-100、HS-200、HS-300、HS-330、HS-350、HS-360,HS-820(いずれもディ・アンド・ディ社製)等が挙げられる。これらを塗布して得られた塗膜を150~280℃で30~180分加熱し、ゾルゲル法による加水分解及び重縮合反応を行うことにより、シリカ被膜が得られる。
<分離膜モジュール>
 別の実施形態である分離膜モジュールはゼオライト及び無機多孔質支持体の複合体と緻密部材を有し、その他、導入、排出口を備えた容器、フランジ、配管等を含むことができる。
 分離膜モジュールは高圧容器内に設置して圧力をかけることで、あるいは透過側の真空排気を行うことでガスや溶媒を分離できる。また分離膜モジュールは、反応と同時に分離する形態で用いても良い。
<反応器>
 この実施形態の分離膜モジュールを反応器中に設置することにより、逆反応の起こり得る反応を利用したものの製造方法において、本来の化学平衡を常に生産に有利な方向に動かせるため、収率が向上し、かつ破損等の恐れも少なく、長時間にわたって使用することができる。
<使用条件>
 本実施形態の接合体を有機化学反応プロセスで用いる場合、温度は通常100~450℃であり、200~350℃が好ましい。150℃~500℃の高温条件でも使用可能である。また、圧力は通常0.5~8MPaであり、2~6MPaが好ましい。0.5~10MPaの高圧条件でも使用可能である。
≪第2実施形態≫
 本発明の第2実施形態は、ゼオライトと無機多孔質支持体との複合体と、緻密部材とを無機ガラスを介して接合した接合体であって、該緻密部材が金属部材であり、該無機ガラスの熱膨張係数が30×10-7/K以上90×10-7/K以下、かつ軟化点が550℃以下である、接合体である。
<無機ガラス>
 本実施形態に係る無機ガラスは、熱膨張係数が通常30×10-7/K以上、好ましくは40×10-7/K以上、より好ましくは45×10-7/K以上であり、また、通常90×10-7/K以下、好ましくは80×10-7/K以下、より好ましくは75×10-7/K以下である。
 本実施形態では、無機ガラスの熱膨張係数は、通常緻密部材の熱膨張係数の60%以上、好ましくは70%以上、より好ましくは80%以上であり、また、通常200%以下、好ましくは150%以下、より好ましくは120%以下である。無機ガラスの熱膨張係数が上記上限値以下であることにより、無機ガラスが溶融する温度で接合をしてから温度を降下するときに、接合部分周辺に内部応力が生じにくく、接合部分のクラックが抑制される。一方、ガラスの熱膨張係数が上記下限値以上であることにより、接合体の使用温度範囲で、複合体と緻密部材との間に隙間が生じにくく、分離対象ガスがその隙間から精製ガス側に漏洩することを抑制できる。
 この様にして得られた接合体は、好ましくは接合後の空気透過量が、本明細書実施例の欄に記載された試験方法において、10sccm以下、より好ましくは8sccm以下であることが好ましく、最も好ましくは5sccm以下であることである。
 また、接合後の接合体は、オートクレーブ中に内容積に対し、体積にして1/16のメタノールと、1/16の脱塩水を加え、1時間で280℃まで昇温し、この状態で48時間維持した後、自然冷却し、これを常圧で120℃4時間乾燥した後、再び空気透過量測定を行っても、空気透過量が10sccm以下、より好ましくは8sccm以下であることが好ましく、最も好ましくは5sccm以下であるものである。熱膨張率の条件に加え、このような条件を満たすことにより、より長時間にわたってメタノールの生産を行っても、接合部に問題を生じるようなことが無いため、より好ましい。
 本実施形態に係る接合体を有する分離モジュールを工業的に使用する場合、室温と使用温度との間を何回も往復させることがあり、また、使用温度で、長時間、運転されることもある。そのため、無機ガラスにより形成される接合部分には、これらの高温高圧条件下においても分離対象ガスが漏洩しないことが求められるところ、無機ガラスの熱膨張係数を上述のように設定することにより、分離対象ガスの漏洩を抑制できる。
 本実施形態に係る無機ガラスは、軟化点が550℃以下、好ましくは530℃以下、より好ましくは480℃以下である。一般的に、無機ガラスのガラスフリットは、軟化点よりも50℃程度高い温度で焼成することにより、該ガラスフリットを流動させることができる。従って、無機ガラスの軟化点を上記範囲内とすることにより、600℃程度以下の比較的低温でゼオライトと無機ガラスとを化学的に結合させることができ、かつ、複合体の細孔内に無機ガラスが入り込み、複合体と緻密部材とが機械的に強固に接合され得る。また、接合温度を比較的低温とすることによって、ゼオライトが接合時の加熱により受けるダメージを低減できる。また、接合自体を低温で行うことにより接合部の冷却時のダメージを減らし、特性の向上や長寿命化も期待できる。
 前記無機ガラスとしては、上記熱膨張係数及び軟化点を有する限り特に制限されない。無機ガラスに含まれる成分としては、例えば、SiO、Al、ZnO、P、Bi、BaO、TiO、TeO、V、B、SnO、PbO等が挙げられる。これらの中でも、気密性向上の観点から、特にB及び/又はSnOを含有することが好ましい。B及び/又はSnOを含有する無機ガラスとしては、具体的にはSnO-P系ガラス、Bi-ZnO系ガラス、Bi-B系ガラス、Bi-B-SiO系ガラス、Bi-ZnO-B系ガラス、等が挙げられる。このような無機ガラスのガラスフリットの市販品としては、「FP-74」、「KP312E」、「FP-67」、「BNL115BB」、「ASF-1094」、「ASF-1098」、「ASF-1109」(以上、AGC社製);「BF-0606」、「BF-0901」(以上、日本電気硝子社製);等が挙げられる。
 無機ガラスがSnOを含有する場合、その含有量は特に制限されないが、通常80質量%以下、好ましくは75質量%以下、より好ましくは70質量%以下であり、また、通常10質量%以下、好ましくは20質量%以上、より好ましくは30質量%以上である。
 SnOの含有量をこの範囲にすることでガラスの流動性が十分に保たれ、十分な気密性能が得られやすい。SnOの添加効果については、詳細は不明であるが、SnOは還元剤として働くことが知られており、緻密部材の表面の酸化被膜を改質したり、接合処理中に酸化被膜の厚みが増加するのを抑制して気密性向上につながっていると推察している。
 一方、無機ガラスがBを含有する場合、その含有量は通常25質量%以下、好ましくは20質量%以下、より好ましくは18質量%以下であり、さらに好ましくは15質量%以下である。また、通常1質量%以下、好ましくは2質量%以上、より好ましくは3質量%以上である。
 Bを添加することにより、緻密部材との濡れ性が良くなり、気密性が向上しやすい。一方Bの含有量が多いと軟化点が上昇しやすく、軟化点を550℃以下にするために他の成分の配合の自由度が減るため、上述の範囲内から選択することが好ましい。またBは水、アルコールに可溶であるから、高温または高圧条件下でこれらの物質に曝される可能性がある場合には、上述の上限値以下とすることが好ましい。
 なお、SnO及びBの含有量の定量方法については、XRF(蛍光X線分析)法、ICP(誘導結合プラズマ発光分光分析)法等が挙げられる。
 無機ガラスの形態については、特に制限はなく、粉末のガラスフリット、ガラスフリットを打錠成形などの方法で成形したタブレット、ガラスフリットを焼結させた成形品であるタブレット、ガラスフリットを有機溶媒やバインダ中に均一に分散させたガラスペースト等が使用可能である。接合体を大量に生産する際には、これらの中でも特にタブレットやペースト状のものが生産効率の向上につながるために好ましい。
 また、本実施形態において無機ガラスは、好ましくは鉛(Pb)の含有量がPbO換算で10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下、さらにより好ましくは2質量%以下、特に好ましくは1質量%以下、最も好ましくは0質量%の無機ガラスである。
 鉛の含有量もXRF(蛍光X線分析)法、ICP(誘導結合プラズマ発光分光分析)法等により測定することができる。
 本実施形態において、ゼオライト、無機多孔質支持体、及びゼオライトと無機多孔質支持体との複合体は、第1実施形態と同じものを用いる。
<緻密部材>
 緻密部材は、分離されたガスを外部に取り出すために使用されるもの、例えば管であり、処理対象のガスが、部材から漏れることが無い程度の緻密性(機密性)を有しており、本発明では金属部材が用いられる。ここでいう金属の例としては、耐熱性と耐食性を併せ持つものが好ましく、ステンレス鋼からなるSUS材や、ニッケル-モリブデン-鉄合金(たとえばハステロイ(登録商標))、インコネル(ニッケル-クロム-鉄合金)、銅、銅合金(黄銅、丹銅、キュプロニッケル)、アルミニウム、アルミニウム合金、チタンなどであり、そして特に好ましくはコバール(鉄-コバルトーニッケル合金)である。
 緻密部材の熱膨張係数は通常30×10-7/K以上、200×10-7/K以下であり、下限は35×10-7/K以上が好ましく、40×10-7/K以上がより好ましく、45×10-7/K以上が更に好ましい。上限は150×10-7/K以下が好ましく、120×10-7/K以下がより好ましく、85×10-7/K以下がさらに好ましい。緻密部材の熱膨張係数が上記範囲であることで、無機ガラスの熱膨張係数との差がより小さく、良好な気密性と耐久性を保つことができる。
 なお、本発明において熱膨張係数とは線膨張係数のことであり、温度上昇に伴って生じる固体の長さ方向の変化割合を示したものである。JIS Z 2285(金属材料)、JIS R 1618(セラミックス)等に記載の方法に従って実施する。熱膨張係数は、通常、温度変化に対して長さの変化が比例する範囲で測定し、本明細書において、熱膨張係数は、通常30~250℃で測定される値である。
<ゼオライトと無機多孔質支持体との複合体と緻密部材との接合体>
 本実施形態において接合は、複合体が円筒形支持体の場合はその両末端について行ってもよい。例えば、複合体が円筒形であるゼオライト膜を用いて混合ガス分離プロセスを行う場合、ゼオライト膜を有する円筒型支持体の外部を混合ガスで満たし、圧力をかけることで、あるいは内部の真空排気を行うことで分離を遂行する。したがって、一方の末端はキャップにより封止し、もう一方の末端に配管を接続してもよく、両末端に配管を接続してもよい。
 ゼオライト膜を表面に持つ複合体と緻密部材からなるキャップ、あるいはキャップに類似した末端構造を持つ緻密部材からなる配管との接合方法は、複合体とキャップとの間を無機ガラスで接合できる方法であればどのような方法でもよいが、例えば、緻密部材の凹部に無機ガラスを充填し、その上にゼオライト膜を表面に持つ複合体を載せ、ついで複合体の上部に重りを載せて荷重をかけた状態で焼成して接合する方法などが例示される。
 複合体と緻密部材とを無機ガラスにて接合する際の焼成温度については、使用する無機ガラスの軟化点以上にすることが必須である。したがって、焼成温度は通常、軟化点プラス10℃以上、好ましくは軟化点プラス30℃以上、さらに好ましくは軟化点プラス50℃以上である。また、ゼオライト膜への熱的ダメージを避けるために、通常は600℃以下であり、好ましくは580℃以下、さらに好ましくは560℃以下である。また、接合の焼成時間は焼成温度到達後通常5分~90分であり、好ましくは10分以上、さらに好ましくは20分以上、また、好ましくは60分以下、さらに好ましくは40分以下である。
 以下に、ゼオライトと無機多孔質支持体との複合体と緻密部材とが無機ガラスを介して接合された例を図1~図3を用いて説明する。
 図1に示すように、ゼオライトと無機多孔質支持体との複合体1とフランジ11とを、無機ガラス4を介して直接接合することもできる。このような形態では、部材間の接続の経時的劣化に伴うガス漏れなどのリスクを低減することができる。この場合フランジ11が、金属部材からなる緻密部材になる。
 一方、図2に示すように、ゼオライトと無機多孔質支持体との複合体1と配管3とが、単に無機ガラス4を介して接合していてもよい。本実施形態の無機ガラスは、高い気密性と耐久性を有することから、このような接合も可能である。この場合は配管3が金属部材からなる緻密部材になる。
 図3は、ゼオライトと無機多孔質支持体との複合体1と配管3とが無機ガラス4を介して接合された一例を示す断面模式図である。ゼオライトと無機多孔質支持体との複合体1は無機ガラス4を介して、配管3と接合する。配管3はゼオライトと無機多孔質支持体との複合体1を覆うように接合されている。
<封孔被膜>
 本実施形態において、複合体と緻密部材との接合部分は、封孔被膜により覆われていることが好ましい。接合部分は接合に用いた無機ガラスを硬化するための焼成に起因して、接合部分の表面にマイクロクラック、ピンホール等の微細孔が形成されている場合がある。よって、接合部分に封孔処理を施し、これらの微細孔を塞ぐことが気密性を向上させる観点から好ましい。また、封孔処理によって形成される封孔被膜が、接合部分の劣化、ピンホール等の損傷を抑制し得る点でも接合部分を封孔被膜で覆うことが望ましい。
 封孔被膜を形成し得る封孔剤としては、シリカ、各種アルミナ等の無機材料;シリコーン樹脂、エポキシ樹脂、フッ素系樹脂等の有機系高分子;などを含むものが挙げられ、溶剤を含んでいてもよく、無溶剤でもよい。本実施形態においては、無機ガラスとの密着性及びガスバリア性の観点から、無機系の封孔剤、特にシリカを使用することが好ましい。封孔剤の付着量は、所望の封孔被膜の膜厚に応じて適宜決めればよい。
 封孔剤の取り扱い性、特に垂れを防ぐ観点から粘度としては2(mPa・s,25℃)以上が好ましく、より好ましくは5(mPa・s,25℃)以上、さらに好ましくは10(mPa・s,25℃)以上である。また、孔内に封孔剤が浸透易い点から、200(mPa・s,25℃)以下、好ましくは100(mPa・s,25℃)以下、さらに好ましくは50(mPa・s,25℃)以下である。この範囲とすることで気密性が向上し、かつ取り扱い性にも優れる。
 具体的な封孔処理の方法としては、まず、接合部分に対し、封孔剤を塗布、噴霧等により付着させ、塗膜を得る。このとき、気密性を向上させる目的で接合部分の封孔剤を付着させる逆側を減圧させてもよい。減圧は、封孔剤を接合体表面に付着させるに先立って行ってもよく、付着と同時に行ってもよく、付着後に行ってもよい。このような減圧により、封孔剤を接合部分の細孔内に隙間なく浸透させ、接合部分表面の細孔を塞ぎ得る。
 次いで、得られた塗膜を硬化し、封孔被膜を形成する。硬化方法としては、封孔剤の種類に応じて適切な方法を採用すればよい。封孔剤として、高分子材料の溶液や無機微粒子の懸濁液を使用する場合には、100~300℃で60~300分乾燥すればよく、高分子材料と架橋剤とを含む組成物を使用した場合には、熱硬化、光硬化等を行ってもよい。また、封孔剤として有機系又は無機系のモノマーやオリゴマーを使用する場合には、これらを100~300℃で30~180分重合することにより硬化してもよい。
 封孔被膜としてシリカ被膜を使用する場合、シリケートオリゴマー処理と称される封孔処理を行うことができる。シリケートオリゴマー処理は、例えば以下のようにして行われる。まず、アルコキシシラン化合物に代表されるシリケートオリゴマーを含む封孔剤を、接合部分に塗布する。このようなシリケートオリゴマーの市販品としては、MKCシリケート(登録商標)MS-51、MS-56、MS-57,MS-56S(いずれも三菱ケミカル社製、メチルシリケートオリゴマー)、エチルシリケート40、エチルシリケート48(いずれもコルコート社製、エチルシリケートオリゴマー)、シリケート40、シリケート45(多摩化学工業)、メチルシリケートとエチルシリケートの混合オリゴマーであるEMS-485(コルコート社製)等が挙げられる。次いで、得られた塗膜を150~280℃で30~180分加熱し、ゾルゲル法による加水分解及び重縮合反応を行うことにより、シリカ被膜が得られる。
 封孔被膜としてシリコーン樹脂を使用する場合は、アルコキシアルキルシランのオリゴマーを含有した封孔剤を用いればよい。このような封孔剤としては、パーミエイトHS-80、HS-90、HS-100、HS-200、HS-300、HS-330、HS-350、HS-360,HS-820(いずれもディ・アンド・ディ社製)等が挙げられる。これらを塗布して得られた塗膜を100℃~250℃で30分から180分加熱することでシリコーン樹脂被膜が得られる。
<分離膜モジュール>
 別の実施形態である分離膜モジュールはゼオライトと無機多孔質支持体との複合体と緻密部材を有し、その他、導入、排出口を備えた容器、フランジ、配管等を含むことができる。
 分離膜モジュールは高圧容器内に設置して圧力をかけることで、あるいは透過側の真空排気を行うことでガスや溶媒を分離できる。また分離膜モジュールは、反応と同時に分離する形態で用いてもよい。
<反応器>
 この実施形態の分離膜モジュールを反応器中に設置することにより、逆反応の起こり得る反応を利用したものの製造方法において、生成物及び/または副生物を反応器から抜き出すことで、生成物の収率が向上し、かつ破損等の恐れも少なく、長時間にわたって使用することができる。
<使用条件>
 本実施形態の接合体を化学反応プロセスで用いる場合、温度は通常100~450℃であり、200~350℃が好ましい。150℃~500℃の高温条件でも使用可能である。また、圧力は通常0.5~8MPaであり、2~6MPaが好ましい。0.5~10MPaの高圧条件でも使用可能である。
≪第3実施形態≫
 本発明の第3実施形態は、ゼオライト及び無機多孔質支持体の複合体と、緻密部材とを、硬化後の熱膨張係数が30×10-7/K~90×10-7/Kである無機接着剤で接合した接合体である。
<無機接着剤>
 本実施形態で使用する無機接着剤の特徴は、その主成分が無機物、好ましくは酸化物や窒化物であるため、高温高圧でさらに有機溶媒または有機ガスに接触しつつ使用している場合においても、高い気密性を維持し、耐久性に優れることにある。
 なお、本実施形態における無機接着剤は、化学反応により固化し、接着するものであり、加熱した場合でも元の状態に戻らないものである。無機接着剤は通常200℃以下で接合することができるため、ゼオライト膜にダメージをほぼ与えないため、好ましい。
 無機接着剤としては、アルミナ、ジルコニア、シリカ、マグネシア、ジルコン、グラファイト、窒化アルミニウムおよびこれらの混合物を主成分としたものを好適に用いることができる。無機接着剤の熱膨張係数は、概ね主成分の熱膨張係数に依存し、他の添加物を加えることで調整をすることができる。上述の主成分を使用すると、熱膨張係数を以下に述べる好ましい範囲にしやすいため好ましい。
 本実施形態に用いる無機接着剤の硬化後の熱膨張係数は通常30×10-7/K~90×10-7/Kであり、下限は35×10-7/K以上が好ましく、45×10-7/K以上がより好ましく、55×10-7/K以上が更に好ましい。上限は88×10-7/Kが好ましく、85×10-7/K以下がより好ましく、82×10-7/K以下が更に好ましい。
 なお、無機接着剤と緻密部材との熱膨張係数の差は、50×10-7/K以下であることが好ましく、40×10-7/K以下であることが好ましく、30×10-7/K以下であることが好ましく、15×10-7/K以下であることが更に好ましい。
 複合体と緻密部材とを、このような無機接着剤により接合して得られた接合体は、空気透過量が、本明細書実施例の欄に記載された試験方法において、100sccm以下であることが好ましく、50sccm以下であることがより好ましく、20sccm以下であることが更に好ましく、10sccm以下であることが最も好ましい。
 また、接合体は、オートクレーブ中に内容積に対し、体積にして1/16のメタノールと、1/16の脱塩水を加え、1時間で280℃まで昇温し、この状態で48時間維持した後、自然冷却し、これを常圧で120℃4時間乾燥した後、再び空気透過量測定を行っても、空気透過量が100sccm以下であることが好ましく、50sccm以下であることがより好ましく、20sccm以下であることが更に好ましく、10sccm以下であることが最も好ましい。熱膨張率の条件に加え、このような条件を満たすことにより、接合体を有する分離膜モジュールをメタノール合成反応器に設置した場合に、より長時間にわたってメタノールの生産を行っても、接合部に問題を生じるようなことが無いため、より好ましい。
 また、本実施形態に用いる無機接着剤は金属アルコキシドを含むことが好ましい。
 金属アルコキシドの添加効果については、詳細は不明であるが、緻密部材表面の酸化物層と反応し、接合強度を高めるため、クラック、ピンホールが発生しにくくなると推定している。
 上記の金属アルコキシドの例としては、リチウムメトキシド、リチウムエトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシドなどのアルカリ金属アルコキシド、マグネシウムメトキシド、マグネシウムエトキシド、カルシウムメトキシド、カルシウムエトキシドなどのアルカリ土類金属アルコキシド、ボロンメトキシド、ボロンエトキシド、アルミニウムメトキシド、アルミニウムエトキシド、アルミニウムプロポキシド、アルミニウムブトキシド、ガリウムメトキシド、ガリウムエトキシドなどの13族元素のアルコキシド、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ゲルマニウムメトキシド、ゲルマニウムエトキシド、スズメトキシド、スズエトキシドなどの14族元素のアルコキシド、チタンメトキシド、チタンエトキシド、チタンプロポキシド、チタンブトキシド、ジルコニウムメトキシド、ジルコニウムエトキシド、ジルコニウムプロポキシド、ジルコニウムブトキシド、ハフニウムメトキシド、ハフニウムエトキシドなどの4族元素のアルコキシド、バナジウムメトキシド、バナジウムエトキシド、ニオブメトキシド、ニオブエトキシド、タンタルメトキシド、タンタルエトキシドなどの5族元素のアルコキシドなどが挙げられる。さらには以上に挙げたアルコキシド類のオリゴマーが挙げられる。これらの中でも架橋構造を作りやすく、さらに入手がしやすい点から、アルミニウムメトキシド、アルミニウムエトキシド、アルミニウムプロポキシド、アルミニウムブトキシドなどのアルミニウムアルコキシド類、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシランなどのシリコンアルコキシド、チタンメトキシド、チタンエトキシド、チタンプロポキシド、チタンブトキシドなどのチタンアルコキシド類、ジルコニウムメトキシド、ジルコニウムエトキシド、ジルコニウムプロポキシド、ジルコニウムブトキシドなどのジルコニウムアルコキシド類、およびこれらのオリゴマーが好ましく、中でもアルミニウムメトキシド、アルミニウムエトキシド、アルミニウムプロポキシド、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、チタンエトキシド、チタンプロポキシド、チタンブトキシド、ジルコニウムエトキシド、ジルコニウムプロポキシド、ジルコニウムブトキシドおよびこれらのオリゴマーがより好適である。
 また、無機接着剤における金属アルコキシドの含有量は、通常0.01~5質量%であり、0.1質量%以上が好ましく、0.3質量%以上がより好ましく、また、3質量%以下が好ましく、1質量%以下がより好ましい。0.01質量%以上であると物性の向上が顕著に認められる。一方、5質量%以下とすることで、比重の増加が抑えられコスト面でも有利となり、また衝撃強度が高い状態を維持しやすい。
 本実施形態に好適に用いることができる無機接着剤は、例えば、スリーボンド社製「TB3732」が市販されている。
 本実施形態において、ゼオライト、無機多孔質支持体、及びゼオライトと無機多孔質支持体との複合体は、第1実施形態と同じものを用いる。
<緻密部材>
 緻密部材は、反応に供するガスや反応したガスが、部材から漏れることが無い程度の緻密性(機密性)を有する部材である。このような緻密性を有する部材であれば特に限定されず、典型的には金属が用いられる。ここでいう金属の例としては、ステンレス鋼からなるSUS材、アルミナ、ジルコニアなどのセラミックス、コバールなどの合金、などが含まれる。
 緻密部材の熱膨張係数は通常30×10-7/K~200×10-7/Kであり、下限は35×10-7/K以上が好ましく、40×10-7/K以上がより好ましく、45×10-7/K以上が更に好ましい。上限は150×10-7/K以下が好ましく、120×10-7/K以下がより好ましく、85×10-7/K以下がさらに好ましい。緻密部材の熱膨張係数が上記範囲であることで、無機接着剤の熱膨張係数との差が、例えば50×10-7/K以下と小さくなり、良好なシール性(気密性)と耐久性を保つことができる。
 なお、本実施形態において熱膨張係数とは線膨張係数のことであり、温度上昇に伴って生じる固体の長さ方向の変化割合を示したものである。本明細書において、熱膨張係数は30℃~300℃での平均値である。熱膨張係数の測定は、JISZ2285(金属材料)、JISR1618(セラミックス)等に記載の方法に従って実施することができる。
<ゼオライト及び無機多孔質支持体の複合体と緻密部材との接合体>
 本実施形態において接合は、複合体が円筒形支持体の場合はその両末端について行ってもよい。例えば、複合体が円筒形であるゼオライト膜を用いて混合ガス分離プロセスを行う場合、ゼオライト膜を有する円筒型支持体の外部を混合ガスで満たし、圧力をかけることで、あるいは真空排気を行うことで分離を遂行する。したがって、一方の末端はキャップにより封止し、もう一方の末端に配管を接続してもよく、両末端に配管を接続してもよい。
 ゼオライト膜を表面に持つ複合体と緻密部材からなるキャップ、あるいはキャップに類似した末端構造を持つ緻密部材からなる配管との接合方法は、複合体とキャップとの間を無機接着剤で接合できる方法であればどのような方法でもよいが、例えば、複合体の側面部分であり、かつキャップと接触する部分にあらかじめ無機接着剤を塗布しておき、該複合体にキャップを回転させながら、接合面をならしつつ接合する方法などが例示される。
 複合体と緻密部材とを無機接着剤にて接合した後、必要に応じて室温にて通常1~24時間放置した後、焼成して接合を行う。なお、本実施形態において室温とは15~30℃をいう。
 接合の焼成温度は通常80~200℃であり、好ましくは90℃以上、更に好ましくは100℃以上、また、好ましくは180℃以下、更に好ましくは150℃以下である。接合の焼成時間は通常10~300分であり、好ましくは30分以上、更に好ましくは60分以上、また、好ましくは180分以下、更に好ましくは120分以下である。
 以下に、ゼオライトと無機多孔質支持体との複合体と緻密部材とが無機接着剤を介して接合された例を図1~図3を用いて説明する。
 図1に示すように、ゼオライトと無機多孔質支持体との複合体1とフランジ11とを、無機接着剤4を介して直接接合することもできる。このような形態では、部材間の接続の経時的劣化に伴うガス漏れなどのリスクを低減することができる。この場合フランジ2が、緻密部材になる。
 一方、図2に示すように、ゼオライトと無機多孔質支持体との複合体1と配管3とが、単に無機接着剤4を介して接合していてもよい。本実施形態の無機接着剤は、高い気密性と耐久性を有することから、このような接合も可能である。この場合は配管3が緻密部材になる。
 図3は、ゼオライトと無機多孔質支持体との複合体1と配管3とが無機接着剤4を介して接合された一例を示す断面模式図である。ゼオライトと無機多孔質支持体との複合体1は無機接着剤4を介して、配管3と接合する。配管3はゼオライトと無機多孔質支持体との複合体1を覆うように接合されている。
 尚、本発明の「接合体」とは、ゼオライト及び無機多孔質支持体の複合体と、緻密部材とが接合されているものであり、複合体の性能が低下し、これを交換する際に取り外しが可能な部品であるが、そのような取り外し機構を持たない場合、例えばメタノール合成反応器等の反応器に組み込まれている場合には、反応器の内部にある緻密部材までを含むものとする。
<封孔被膜>
 本実施形態において、複合体と緻密部材との接合部分は、封孔被膜により覆われていることが好ましい。接合部分は接合に用いた無機接着剤を硬化するための焼成に起因して、接合部分の表面にマイクロクラック、ピンホール等の微細孔が形成されている場合がある。よって、接合部分に封孔処理を施し、これらの微細孔を塞ぐことがシール性(気密性)を向上させる観点から好ましい。また、封孔処理によって形成される封孔被膜が、接合部分の劣化、ピンホール等の損傷を抑制し得る点でも接合部分を封孔被膜で覆うことが望ましい。
 封孔被膜を形成し得る封孔剤としては、シリカ、アルミナ等の無機材料;シリコーン樹脂、エポキシ樹脂、フッ素系樹脂等の有機系高分子;などを含むものが挙げられ、溶剤を含んでいてもよく、無溶剤でもよい。本実施形態においては、無機接着剤との密着性及びガスバリア性の観点から、無機系の封孔剤、特にシリカを使用することが好ましい。また緻密な被膜を形成する点で、シリコーン樹脂も好適に用いられる。封孔剤の付着量は、所望の封孔被膜の膜厚に応じて適宜決めればよい。封孔剤の取り扱い性、特に垂れを防ぐ観点から粘度としては2(mPa・s,25℃)以上が好ましく、より好ましくは5(mPa・s,25℃)以上、さらに好ましくは10(mPa・s,25℃)以上である。また、孔内に封孔剤が浸透易い点から、200(mPa・s,25℃)以下、好ましくは100(mPa・s,25℃)以下、さらに好ましくは50(mPa・s,25℃)以下である。この範囲とすることでシール性が向上し、かつ取り扱い性にも優れる。
 具体的な封孔処理の方法としては、まず、接合部分に対し、封孔剤を塗布、噴霧等により付着させ、塗膜を得る。このとき、シール性(気密性)を向上する目的で接合部分の封孔剤を付着させる逆側を減圧させてもよい。減圧は、封孔剤を接合体表面に付着させるに先立って行ってもよく、付着と同時に行ってもよく、付着後に行ってもよい。このような減圧により、封孔剤を接合部分の細孔内に隙間なく浸透させ、接合部分表面の細孔を塞ぎ得る。
 次いで、得られた塗膜を硬化し、封孔被膜を形成する。硬化方法としては、封孔剤の種類に応じて適切な方法を採用すればよい。封孔剤として、高分子材料の溶液や無機微粒子の懸濁液を使用する場合には、100~300℃で60~300分乾燥すればよく、高分子材料と架橋剤とを含む組成物を使用した場合には、熱硬化、光硬化等を行ってもよい。また、封孔剤として有機系又は無機系のモノマーやオリゴマーを使用する場合には、これらを100~300℃で30~180分重合することにより硬化してもよい。
 封孔被膜としてシリカ被膜を使用する場合、シリケートオリゴマー処理と称される封孔処理を行うことができる。シリケートオリゴマー処理は、例えば以下のようにして行われる。まず、アルコキシシラン化合物に代表されるシリケートオリゴマーを含む封孔剤を、接合部分に塗布する。このようなシリケートオリゴマーの市販品としては、MKCシリケート(登録商標)MS-51、MS-56、MS-57、MS-56S(いずれも三菱ケミカル社製、メチルシリケートオリゴマー)、エチルシリケート40、エチルシリケート48(いずれもコルコート社製、エチルシリケートオリゴマー)、シリケート40、シリケート45(多摩化学工業)、メチルシリケートとエチルシリケートの混合オリゴマーであるEMS-485(コルコート社製)等が挙げられる。次いで、得られた塗膜を150~280℃で30~180分加熱し、ゾルゲル法による加水分解及び重縮合反応を行うことにより、シリカ被膜が得られる。
 封孔被膜としてシリコーン樹脂を使用する場合は、アルコキシアルキルシランのオリゴマーを含有した封孔剤を用いればよい。このような封孔剤としては、パーミエイトHS-80、HS-90、HS-100、HS-200、HS-300、HS-330、HS-350、HS-360,HS-820(いずれもディ・アンド・ディ社製)等が挙げられる。これらを塗布して得られた塗膜を100℃~250℃で30分から180分加熱することでシリコーン樹脂被膜が得られる。
<分離膜モジュール>
 別の実施形態である分離膜モジュールはゼオライト及び無機多孔質支持体の複合体と緻密部材を有し、その他、導入、排出口を備えた容器、フランジ、配管等を含むことができる。
 分離膜モジュールは高圧容器内に設置して圧力をかけることで、あるいは透過側において真空排気を行うことでガスや溶媒を分離できる。
 また分離膜モジュールは、反応と同時に分離する形態で用いてもよい。
<反応器>
 この実施形態の分離膜モジュールを反応器中に設置することにより、逆反応の起こり得る反応を利用したものの製造方法において、本来の化学平衡を常に生産に有利な方向に動かせるため、収率が向上し、かつ破損等の恐れも少なく、長時間にわたって使用することができる。
<使用条件>
 本実施形態の接合体を反応プロセスで使用する方法としては、温度は通常100~450℃であり、200~350℃が好ましい。100℃~500℃の高温条件でも使用可能である。また、圧力は通常0.5~8MPaであり、2~6MPaが好ましい。0.5~10MPaの高圧条件でも使用可能である。
≪第4実施形態≫
 本発明の第4実施形態は、少なくとも水素と、一酸化炭素及び/又は二酸化炭素と、を含む原料ガスを、反応器内において触媒の存在下、反応させてメタノールを得る、メタノールの製造方法である。
 原料ガスに含まれる水素(H)と、一酸化炭素及び/又は二酸化炭素(併せてCOとも称する。)との含有割合は特段限定されないが、通常H:COが体積比で4:6~9:1であり、好ましくは5:5~8:2である。
 原料ガスには、HとCO以外のガスを含んでいてもよい。HとCO以外のガスとしては、CH、C、C、C、C、C、C10、HOなどがあげられるが、HとCO以外のガスの含有量は通常50体積%以下である。
 原料ガスからメタノールを製造する際に用いられる触媒は、既知の触媒を用いることができ、例えば銅系触媒(銅-亜鉛系触媒、銅-クロム系触媒)、亜鉛系触媒、クロム系触媒、アルミニウム系触媒、などが挙げられる。
 本実施形態では、上記メタノールを得る反応器内には、無機酸化物を主成分とし、線膨張率が30×10-7/K以上、90×10-7/K以下である接合材によって、緻密部材と接合されたメタノール選択透過膜が設置されている。このことについて、図を用いて説明する。なお、本明細書において接合材の線膨張率は、接合後(焼成後)における接合材の線膨張率であり、温度上昇に伴って生じる固体の長さ方向の変化割合を示したものである。JIS Z 2285(金属材料)、JIS R 1618(セラミックス)等に記載の方法に従って実施することができる。本明細書において、線膨張率は30℃~300℃での平均値である。
 図4は、本発明が実施される反応器の一形態を示す断面模式図である。
 反応器10は、原料フィード入口a、透過ガス出口b、非透過ガス出口cを有しており、メタノール生成反応が高温高圧で行われるため、そのような環境に耐え得る材料からなる。入口a、出口b及び出口cは図中1つのみ存在するが、複数存在してもよい。
 反応器10内には、メタノール選択透過膜であるゼオライト膜複合体1が設置される。メタノール選択透過膜は、メタノールを選択的に透過できれば特段その種類は限定されないが、典型的にはゼオライト膜が用いられることが多い。ゼオライト膜複合体については、詳細を後述する。
 ゼオライト膜複合体1は、多孔質支持体上にゼオライト膜が形成されることで複合体となる。多孔質支持体の形状は管状のみに限定されず、柱状、中空の柱状であってもよく、中空のハニカム形状であってもよい。ゼオライト膜複合体1の一端はキャップ2により密封される。そして別の一端は配管3と接続される。配管3とゼオライト複合体1との接続、及びキャップ2とゼオライト複合体1との接続は、後述する接合材により接合される。ゼオライト膜複合体の接続法は上記に限定されず、例えば両端を配管と接続し、内側にガスを流通できるようにしてもよい。
 管状であるゼオライト膜複合体1の周囲には、触媒13が配置される。フィード入口aからフィードされた原料ガスは、触媒13との接触によりメタノール生成が促進される。そして生成されたメタノールがゼオライト膜複合体1のゼオライト膜を透過することで、より純度の高いメタノールを得ることができる。さらに、メタノールがゼオライト複合体1を選択的に透過することで、触媒13と接触するガス中のメタノール濃度が低下し、メタノールの生成が促進される。
 配管3の別の端部は、反応器の透過ガス出口bに接続され、ゼオライト膜複合体1のゼオライト膜を透過したメタノールを透過ガス出口bへと移送する。なお、ゼオライト膜複合体1は、配管3を介さずに、直接反応器の透過ガス出口bと接続してもよい。
 本実施形態では、メタノール選択透過膜が、無機酸化物を主成分とし、線膨張率が30×10-7/K以上、90×10-7/K以下である接合材によって、緻密部材と接合される。
 無機酸化物としては、無機接着剤として使用できるものを適宜選択することができる。
 ここでいう無機接着剤とは、化学反応により固化し、接着するものであり、加熱した場合でも元の状態に戻らないものである。無機接着剤は通常200℃以下で接合することができるため、ゼオライト膜にダメージをほぼ与えないため、好ましい。また、無機ガラスであってもよい。無機酸化物としては、アルミナ、チタニア、ジルコニア、シリカ、マグネシア、などが挙げられる。無機ガラスとしては、SiO、Al、ZnO、P、Bi、BaO、TiO、TeO、V、B、SnOなどを成分として含むものが挙げられ、鉛フリー無機ガラスであることが好ましい。
 なお、主成分とは、接合材を構成する全成分のうち最も含有量(質量)が多い成分を意味し、通常全成分中50質量%以上であり、70質量%以上であってよく、80質量%以上であってよく、90質量%以上であってよい。そしてさらに好ましい条件としては、軟化点温度が550℃以下であることである。ガラスによる接合は、軟化点温度より50℃程度高い温度にした後、冷却することにより接合される。このため軟化点温度が550℃を超えるようなものであると、ゼオライトにダメージが及ぶため、好ましくない。このような現象は、本発明に用いられるゼオライトを用いた分離膜が、分子のサイズとして大きいメタノールを透過させやすく、より小さい二酸化炭素等の原料を透過させにくい、メタノール選択透過膜であるため、600℃以上の温度にさらされると、ゼオライトの表面状態が変化し、メタノールの選択能力が低下してしまう恐れがあるためである。
 接合材は、線膨張率が30×10-7/K以上、90×10-7/K以下であることで、メタノール選択透過膜と緻密部材との密着性を高め、良好なシール性と耐久性を付与することができる。接合材の線膨張率は、40×10-7/K以上であることが好ましく、また、80×10-7/K以下であることが好ましい。
 接合材の線膨張率は、概ね主成分の線膨張率に依存するが、他の添加物を混在させることで調整が可能である。線膨張率を30×10-7/K以上、90×10-7/K以下にするには、主成分としてアルミナ、ジルコニア、シリカ、グラファイト、P、Bi、SnO等を用いるとよい。
 接合材は市販品を使用してもよく、例えばスリーボンド社製「TB3732」、東亜合成社製「アロンセラミックD」、「アロンセラミックE」、AGC社製「FP-74」、「KP312E」、「FP-67」、「BNL115BB」、「ASF-1094」、「ASF-1098」、「ASF-1109」、アレムコ社製「セラマボンド552」などが使用できる。
 接合材によりメタノール選択透過膜と接合される緻密部材は、反応に供するガスや反応したガスが、部材から漏れることが無い程度の緻密性(機密性)を有する部材であり、管状の部材の端部を封止するキャップ、管状の部材の端部と接続する配管、などがあげられる。このような緻密性を有する部材であれば特に限定されず、典型的には金属が用いられる。ここでいう金属の例としては、ステンレス鋼からなるSUS材、アルミナ、ジルコニアなどのセラミックス、コバールなどの合金、などが含まれる。
 本実施形態において緻密部材は、線膨張率が30×10-7/K以上200×10-7/K以下であることが好ましい。緻密部材の線膨張率が上記範囲であることで、接合材の線膨張率との差が小さく、良好なシール性と耐久性を保つことができる。
 なお、接合材と緻密部材との線膨張率の差は、50×10-7/K以下であることが好ましく、40×10-7/K以下であることが好ましく、30×10-7/K以下であることがより好ましい。このように接合材と緻密部材との線膨張率の差が小さい場合、接合材の焼結時に、材料の収縮による接合の不具合を抑制できる。
 以下に、メタノール透過膜としてゼオライト膜複合体と緻密部材とが接合材を介して接合された例を図5~図7に示す。
 図5は、ゼオライト膜複合体と緻密部材とが接合材を介して接合された一例を示す断面模式図である。ゼオライト膜複合体1は接合材4を介して、配管3と接合する。配管3はゼオライト膜複合体1を覆うように接合されている。
 一方図6に示すように、ゼオライト膜複合体1と配管3とが、単に接合材を介して接合していてもよい。本実施形態の接合材は、高いシール性と耐久性を有することから、このような接合も可能である。
 また、図7に示すように、ゼオライト膜複合体1と反応器10とを、接合材4を介して直接接合することもできる。このような形態では、配管を介さないことから、製造装置のコストダウン、また部材間の接続の経時的劣化に伴うガス漏れなどのリスクを低減することができる。
 本実施形態のメタノール選択透過膜は、典型的にはゼオライト膜であるが、メタノールを選択的に透過できるものであれば特段限定されず、各種多孔質膜、各種MOF(Metal Organic Framework)などを用いることもできる。
 ゼオライト膜は、一形態では、アルミナなどの多孔質支持部材上に形成され、ゼオライト膜複合体として用いられる。
 ゼオライト膜を構成する主たるゼオライトは、酸素12員環以下、酸素6員環以上の細孔構造を有するゼオライトを含むものが好ましい。
 ここでいう酸素n員環を有するゼオライトのnの値は、ゼオライト骨格を形成する酸素とT元素(骨格を構成する酸素以外の元素)で構成される細孔の中で最も酸素の数が大きいものを示す。例えば、MOR型ゼオライトのように酸素12員環と8員環の細孔が存在する場合は、酸素12員環のゼオライトとみなす。
 酸素12員環以下、酸素6員環以上の細孔構造を有するゼオライトとしては、International Zeolite Association (IZA)が定めるコードで、例えば、AEI、AEL、AFI、AFG、ANA、ATO、BEA、BRE、CAS、CDO、CHA、CON、DDR、DOH、EAB、EPI、ERI、ESV、EUO、FAR、FAU、FER、FRA、HEU、GIS、GIU、GME、GOO、ITE、KFI、LEV、LIO、LOS、LTA、LTL、LTN、MAR、MEP、MER、MEL、MFI、MON、MOR、MSO、MTF、MTN、MTW、MWW、NON、NES、OFF、PAU、PHI、RHO、RTE、RTH、RUT、SGT、OD、STI、STT、TOL、TON、TSC、UFI、VNI、WEI、YUGなどがあげられる。これらの中から選ばれるいずれかであるのが好ましい。
 また、本発明が特に好適に用いられるのは、ゼオライトが選択吸着することにより、単なる分子篩、つまり単に分子のサイズの差により、篩として分子を透過させるのではなく、選択吸着により、例えばサイズが大きい方の分子を透過させたり、あるいは同程度の大きさのものを分離したりする目的で使用できるものであることがより好ましい。つまりゼオライトの表面への選択吸着により、分離するものであることがより好ましい。このようなゼオライトは、温度が高くなるとその選択吸着能力が弱まってしまうため、本発明の効果がより顕著に発揮される。
 ゼオライトは可撓性に乏しいため、膜化する場合は、何らかの基板上に支持される形で作成される。支持体は、ガス分子が侵入できる多孔性であり、例えば3次元上に連絡した多数の微細な小孔を有する。
 支持体を構成する材質としては、未処理ガスが反応しない化学的に安定で、かつ機械的強度に優れたものであることが好ましく、具体的には、各種アルミナ、シリカ、シリカ-アルミナ、ムライト、コージェライト、ジルコニアといった酸化物セラミックス、シリコンカーバイド、カーボンやガラスを用いることができる。
 支持体の形状は、ゼオライト膜の用途により異なるが、特に円筒形の支持体上のゼオライト膜は、外側からの圧力に対する強度が高く、バッチプロセスや流通プロセス(リサイクルプロセス)等で簡便に用いる上で好適である。
 本実施形態では、ゼオライト膜が支持体上に形成されたゼオライト膜複合体を用いることができる。ゼオライト膜複合体は、例えば円筒形の支持体を準備し、まずゼオライトの微結晶を細孔内に担持する。担持する方法は、ディップ法、ラビング法、吸引法、含浸法等を用いることができる。微結晶は、ゼオライト膜を構成する結晶を成長させるときの核の役割を果たし、種結晶ともいう。ゼオライトの成長には、ゼオライト合成時と同様に、水熱合成を用いることができる。
 ゼオライト膜複合体におけるゼオライト膜の膜厚は特段限定されないが、通常0.1μm以上、好ましくは0.5μm以上であり、また通常50μm以下、好ましくは20μm以下である。膜厚が一定値以上であることにより、十分な緻密性が得られ、膜の選択性が高く保たれる。また膜厚を一定値以下にすることにより、十分なガスの透過量が得られる。
 本実施形態では、少なくとも水素と、一酸化炭素及び/または二酸化炭素と、を含む原料ガスを、反応器内において触媒の存在下、反応させ、メタノールを得る。その反応条件は特段限定されないが、反応温度は200℃以上、300℃以下であることが好ましい。なお、反応温度は反応器内部の温度を意味する。反応温度を200℃以上とすることにより反応速度が高まり、生産性が上がる。反応温度を300℃以下にすることにより、反応の化学平衡が、メタノールを得るために有利になるため、膜の性能が多少劣っても転化率を高くすることができる。また、接合材に要求される耐熱性の許容範囲も広がる。
 上記反応により得られたメタノールは、反応器内のメタノール選択透過膜を透過し、反応器の透過ガス出口からメタノールは回収される。
 生成したメタノールを、メタノール選択透過膜に透過させる際の反応器内の圧力、即ち反応器内におけるメタノール選択透過膜のガス供給側の圧力(ゲージ圧)は、1MPaG以上であることが好ましく、2MPaG以上であることがより好ましく、8MPaG以下であることが好ましく、5MPaG以下であることがより好ましい。圧力を適当な範囲にすることで、反応の平衡制約が減り、また反応速度も向上してより高い生産性を達成しやすい。また圧力が高すぎることによる反応器の製造コストや原料ガスの昇圧コスト上昇を抑えられる。
 また、反応容器内において、メタノール選択透過膜のガス供給側におけるメタノール分圧(絶対圧)は、0.1MPaA以上であることが好ましく、0.2MPaA以上であることがより好ましく、6MPaA以下であることが好ましく、5MPaA以下であることがより好ましい。メタノール分圧をこの範囲にすることにより、膜を透過するメタノール量が十分得られ、膜の効果が良く発揮される。一方、この範囲であれば、接合部に要求される耐久性やシール性が必要以上に高くなることなく、簡便かつ大量に接合することができる。
 上記反応器内のゲージ圧は、反応器に備えた圧力計から測定できる。また、上記反応器内のメタノールの絶対圧は、反応器の上流から下流にかけて変化するが、ここではガスクロマトグラフィーによる反応器出口ガス組成の分析結果及びゲージ圧から計算した値を反応器内のメタノール絶対圧とする。
≪第5実施形態≫
 本発明の第5実施形態は、少なくとも水素と、一酸化炭素及び/又は二酸化炭素と、を含む原料を触媒の存在下で反応させてアルコールを合成するアルコールの製造装置であって、
 該製造装置は、ゼオライトを有するアルコール選択透過膜を備えた反応器と、反応熱の少なくとも一部を該反応器から回収する熱回収手段と、該熱回収手段で回収した熱を供給する熱供給手段と、を有するアルコールの製造装置。であり、またアルコールの製造方法として、少なくとも水素と、一酸化炭素及び/又は二酸化炭素と、を含む原料を触媒の存在下で反応させてアルコールを合成する合成ステップ、を有するアルコールの製造方法であって、
 本発明の第5実施形態の別の形態は、得られたアルコールを反応器内においてゼオライトを有するアルコール選択透過膜を用いて分離回収する分離回収ステップ、及び合成ステップで生じる反応熱の少なくとも一部を反応器から回収する熱回収ステップ、を含み、
 該分離回収ステップと熱回収ステップとが並行して行われる、アルコールの製造方法、である。
 以下に第5の実施形態を実施するための代表的な態様を具体的に説明するが、本発明は、その要旨を超えない限り、以下の態様に限定されるものではなく、種々変形して実施することができる。
 本発明の一実施形態は、少なくとも水素と、一酸化炭素及び/又は二酸化炭素と、を含む原料を触媒の存在下で反応させてアルコールを合成するアルコールの製造装置であって、該製造装置は、ゼオライトを有するアルコール選択透過膜を備えた反応器と、反応熱の少なくとも一部を該反応器から回収する熱回収手段と、該熱回収手段で回収した熱を供給する熱供給手段と、を有する。
 原料ガスに含まれる水素(H)と、一酸化炭素及び/又は二酸化炭素(併せてCOとも称する。)との含有割合は特段限定されないが、H:COが体積比で通常4:6~9:1であり、好ましくは5:5~8:2である。
 原料ガスには、HとCO以外のガスを含んでいてもよい。HとCO以外のガスとしては、CH、C、C、C、C、C、C10、HOなどが挙げられるが、HとCO以外のガスの含有量は通常50体積%以下である。
 予熱された原料は反応器に導入され、反応器中に設置された触媒により、アルコール類に合成される。アルコール類は炭素数1~4の低級アルコールであってよく、好ましくは炭素数1~3のアルコールであり、最も好ましくはメタノールである。
 原料ガスからアルコールを製造する際に用いられる触媒は、既知の触媒を用いることができ、例えば銅系触媒(銅-亜鉛系触媒、銅-クロム系触媒)、亜鉛系触媒、クロム系触媒、アルミニウム系触媒、などが挙げられる。
 触媒によるアルコールの合成は、平衡反応である。この平衡反応では主に次の3つの反応が生じ、アルコール(メタノール)が生成する。
  3H+CO → CHOH+HO   ・・・式1
  2H+CO → CHOH       ・・・式2
  CO+H → CO+ HO     ・・・式3
 アルコールを合成する反応中に、ゼオライトを有するアルコール選択透過膜を用いてアルコール(上記式ではメタノール)を取り出すことにより、アルコールの収率を挙げることができる。
 更に本発明では、この反応を行う反応器に、反応熱を回収する手段(熱回収手段)を設ける。これにより、反応器内の過剰な温度上昇を防ぎ、アルコールが分解しやすい方向に反応が動くことを抑制する。このためには反応器内の温度を制御することが好ましい。反応器内の温度は、通常200℃以上、好ましくは210℃以上、より好ましくは220℃以上であり、また、通常300℃以下、好ましくは290℃以下、より好ましくは270℃以下である。これらの上限と下限はいずれの組み合わせでもよい。この温度は、反応器内のガスの温度であり、反応器から出てくる、未反応の原料ガスとアルコールの混合気の温度を測定することにより、測定することができる。
 反応熱を回収する手段は、特に限定されないが、熱交換器、スチーム発生器等を使用することができる。
 アルコール選択透過膜を透過して分離されたアルコール中には、原料がどうしても混じってしまうため、アルコール選択透過膜を透過したアルコールの温度を下げてアルコールを液化させ、未反応の原料である水素、二酸化炭素及び/又は一酸化炭素と分離させる。また、反応器には、アルコール選択透過膜を通過しないラインを設けてもよく、このラインにも未反応原料とアルコールが出てくるため、アルコール選択透過膜を通過したガス同様に、温度を下げてアルコールを液化させ、未反応の原料である水素、二酸化炭素及び/又は一酸化炭素と分離させる。このプロセスは気液分離になり、気液分離の温度は、得られるアルコールにより異なるが、メタノールの場合、通常60℃以下、好ましくは50℃以下、より好ましくは40℃以下である。
 こうして回収された未反応原料は、新たな原料と混合され、再び予熱されて反応器に導入される。反応器内に導入する前の原料の予熱手段は特段限定されないが、前記反応熱を回収する熱回収手段で得た熱エネルギーを用いて原料を予熱することにより、効率的に熱エネルギーを利用できる。
 また、回収した熱エネルギーの用途としては、原料の予熱の他に、生成物の精製のための加熱、生成物を次のプロセスに適した温度にするための加熱、プロセスで使用するスチームの発生、発生させたスチームを用いた発電などが挙げられる。
 本発明においては、熱回収手段で得たエネルギーを、上に例示したような形でプロセスに利用することをまとめて熱供給手段と呼ぶ。
(装置の説明)
 本実施形態の装置の一例を、図9を用いて説明する。
 図9は、本実施形態における反応器の一例を示す断面模式図である。
 反応器10は、原料フィード入口a、透過ガス出口b、非透過ガス出口cを有しており、アルコール生成反応が高温高圧で行われるため、そのような環境に耐え得る材料からなる。入口a、出口b及び出口cは図中1つのみ存在するが、複数存在してもよい。
 反応器10内には、アルコール選択透過膜であるゼオライト膜複合体1が設置される。アルコール選択透過膜は、アルコールを選択的に透過できれば特段その種類は限定されないが、典型的にはゼオライト膜が用いられることが多い。ゼオライト膜複合体については、詳細を後述する。
 ゼオライト膜複合体1は、多孔質支持体上にゼオライト膜が形成されることで複合体となる。多孔質支持体の形状は管状のみに限定されず、柱状、中空の柱状であってもよく、中空のハニカム形状であってもよい。ゼオライト膜複合体1の一端はキャップ2により密封される。そして別の一端は配管3と接続される。配管3とゼオライト複合体1との接続、及びキャップ2とゼオライト複合体1との接続は、後述する接合材により接合される。ゼオライト膜複合体の接続法は上記に限定されず、例えば両端を配管と接続し、内側にガスを流通できるようにしてもよい。
 管状であるゼオライト膜複合体1の周囲には、触媒13が配置される。フィード入口aからフィードされた原料ガスは、触媒13との接触によりアルコール生成が促進される。そして生成されたアルコールがゼオライト膜複合体1のゼオライト膜を透過することで、より純度の高いアルコールを得ることができる。さらに、アルコールがゼオライト複合体1を選択的に透過することで、触媒13と接触するガス中のアルコール濃度が低下し、アルコールの生成が促進される。
 配管3の別の端部は、反応器の透過ガス出口bに接続され、ゼオライト膜複合体1のゼオライト膜を透過したアルコールを透過ガス出口bへと移送する。なお、ゼオライト膜複合体1は、配管3を介さずに、直接反応器の透過ガス出口bと接続してもよい。
 本実施形態においては、この反応器10より、反応熱の少なくとも一部を反応器内から回収する熱回収手段である熱交換器101が設けられている。熱回収手段は典型的には熱交換器が用いられる。熱回収手段は複数存在していてもよい。熱回収する手段は、反応器10の内部に設けてもよく、反応器10と隣接して設けてもよい。
 アルコール選択透過膜は、無機酸化物を主成分とし、線膨張率が30×10-7/K以上、90×10-7/K以下である接合材によって、緻密部材と接合されることが好ましい。
 無機酸化物としては、無機接着剤として使用できるものを適宜選択することができる。また、無機ガラスであってもよい。無機酸化物としては、アルミナ、チタニア、ジルコニア、シリカ、マグネシア、などが挙げられる。無機ガラスとしては、SiO、Al、ZnO、P、Bi、BaO、TiO、TeO、V、B、SnOなどを成分として含むものが挙げられ、鉛フリーガラスであることが好ましい。
 なお、主成分とは、接合材を構成する全成分のうち最も含有量(質量)が多い成分を意味し、通常全成分中50質量%以上であり、70質量%以上であってよく、80質量%以上であってよく、90質量%以上であってよい。
 接合材は、線膨張率が通常30×10-7/K以上、好ましくは40×10-7/K以上であり、また、通常90×10-7/K以下、好ましくは80×10-7/K以下である。上記範囲内であれば、アルコール選択透過膜と緻密部材との密着性を高め、良好なシール性(気密性)と耐久性を付与することができる。
 接合材の線膨張率は、概ね主成分の線膨張率に依存するが、他の添加物を混在させることで調整が可能である。線膨張率を30×10-7/K以上、90×10-7/K以下にするには、主成分としてアルミナ、ジルコニア、シリカ、グラファイト、P、Bi、SnO等を用いるとよい。
 接合材は市販品を使用してもよく、例えばスリーボンド社製「TB3732」、東亜合成社製「アロンセラミックD」、「アロンセラミックE」、AGC社製「FP-74」、「KP312E」、「FP-67」、「BNL115BB」、「ASF-1094」、「ASF-1098」、「ASF-1109」、アレムコ社製「セラマボンド552」などが使用できる。
 接合材によりアルコール選択透過膜と接合される緻密部材は、反応に供するガスや反応したガスが、部材から漏れることが無い程度の緻密性(機密性)を有する部材であり、管状の部材の端部を封止するキャップ、管状の部材の端部と接続する配管、などがあげられる。このような緻密性を有する部材であれば特に限定されず、典型的には金属が用いられる。ここでいう金属の例としては、ステンレス鋼からなるSUS材、アルミナ、ジルコニアなどのセラミックス、コバールなどの合金、などが含まれる。
 本実施形態において緻密部材は、線膨張率が30×10-7/K以上200×10-7/K以下であることが好ましい。緻密部材の線膨張率が上記範囲であることで、接合材の線膨張率との差が小さく、良好な気密性と耐久性を保つことができる。
 なお、接合材と緻密部材との線膨張率の差は、50×10-7/K以下であることが好ましく、40×10-7/K以下であることが好ましく、30×10-7/K以下であることがより好ましい。このように接合材と緻密部材との線膨張率の差が小さい場合、接合材の焼結時に、材料の収縮による接合の不具合を抑制できる。
 本実施形態のアルコール選択透過膜は、典型的にはゼオライト膜であるが、アルコールを選択的に透過できるものであれば特段限定されず、各種多孔質膜、各種MOF(Metal Organic Framework)などを用いることもできる。
 ゼオライト膜は、一形態では、アルミナなどの多孔質支持部材上に形成され、ゼオライト膜複合体として用いられる。
 ゼオライト膜を構成する主たるゼオライトは、酸素12員環以下、酸素6員環以上の細孔構造を有するゼオライトを含むものが好ましい。
 ここでいう酸素n員環を有するゼオライトのnの値は、ゼオライト骨格を形成する酸素とT元素(骨格を構成する酸素以外の元素)で構成される細孔の中で最も酸素の数が大きいものを示す。例えば、MOR型ゼオライトのように酸素12員環と8員環の細孔が存在する場合は、酸素12員環のゼオライトとみなす。
 酸素12員環以下、酸素6員環以上の細孔構造を有するゼオライトとしては、International Zeolite Association (IZA)が定めるコードで、例えば、AEI、AEL、AFI、AFG、ANA、ATO、BEA、BRE、CAS、CDO、CHA、CON、DDR、DOH、EAB、EPI、ERI、ESV、EUO、FAR、FAU、FER、FRA、HEU、GIS、GIU、GME、GOO、ITE、KFI、LEV、LIO、LOS、LTA、LTL、LTN、MAR、MEP、MER、MEL、MFI、MON、MOR、MSO、MTF、MTN、MTW、MWW、NON、NES、OFF、PAU、PHI、RHO、RTE、RTH、RUT、SGT、OD、STI、STT、TOL、TON、TSC、UFI、VNI、WEI、YUGなどがあげられる。これらの中から選ばれるいずれかであるのが好ましい。
 また、本実施形態で特に好適に用いられるゼオライトは、アルコールを選択的に吸着するものが好ましい。ゼオライトが選択吸着することにより、単なる分子篩、つまり単に分子のサイズの差により、篩として分子を透過させるのではなく、選択吸着により、例えばサイズが大きい方の分子を透過させたり、あるいは同程度の大きさのものを分離したりする目的で使用できるものであることがより好ましい。つまりゼオライトの表面への選択吸着により、分離するものであることがより好ましい。このようなゼオライトは、温度が高くなるとその選択吸着能力が弱まってしまうため、本発明の効果がより顕著に発揮される。
 アルコールの吸着しやすさは、ゼオライト中のSi/Alのmol比の影響を強く受ける。ゼオライト中のSi/Alのmol比は、通常2以上であり、好ましくは4以上である。また、通常100以下であり、好ましくは50以下である。Si/Alのmol比が小さいと、結晶の安定性が低下し、合成が困難になる。また、Si/Alのmol比が大きいと、アルコールが吸着しにくくなり、分離性能が十分に発揮されない。
 ゼオライト中のSi/Alのmol比の測定は、通常知られる分析方法によって可能である。例えば溶解させてICP(誘導結合プラズマ発光分光分析)で測定する方法、固体のままEDX(エネルギー分散型X線分光法)で測定する方法、イオンビームスパッタと組み合わせてXPS(X線光電子分光法)で測定する方法などがあり、膜の形状や支持体の材質によって適した方法を選択することができる。
 ゼオライトは可撓性に乏しいため、膜化する場合は、何らかの基板上に支持される形で作成される。支持体は、ガス分子が侵入できる多孔性であり、例えば3次元上に連絡した多数の微細な小孔を有する。
 支持体を構成する材質としては、未処理ガスが反応しない化学的に安定で、かつ機械的強度に優れたものであることが好ましく、具体的には、各種アルミナ、シリカ、シリカ-アルミナ、ムライト、コージェライト、ジルコニアといった酸化物セラミックス、シリコンカーバイド、カーボンやガラスを用いることができる。
 支持体の形状は、ゼオライト膜の用途により異なるが、特に円筒形の支持体上のゼオライト膜は、外側からの圧力に対する強度が高く、バッチプロセスや流通プロセス(リサイクルプロセス)等で簡便に用いる上で好適である。
 本実施形態では、ゼオライト膜が支持体上に形成されたゼオライト膜複合体を用いることができる。ゼオライト膜複合体は、例えば円筒形の支持体を準備し、まずゼオライトの微結晶を細孔内に担持する。担持する方法は、ディップ法、ラビング法、吸引法、含浸法等を用いることができる。微結晶は、ゼオライト膜を構成する結晶を成長させるときの核の役割を果たし、種結晶ともいう。ゼオライトの成長には、ゼオライト合成時と同様に、水熱合成を用いることができる。
 ゼオライト膜複合体におけるゼオライト膜の膜厚は特段限定されないが、通常0.1μm以上、好ましくは0.5μm以上であり、また通常50μm以下、好ましくは20μm以下である。膜厚が一定値以上であることにより、十分な緻密性が得られ、膜の選択性が高く保たれる。また膜厚を一定値以下にすることにより、十分なガスの透過量が得られる。
 反応器内の触媒層において、原料ガスの流れに沿って上流から下流まで全領域に熱回収手段とアルコール選択透過膜を設置することもできる。また、上流部は熱回収手段のみを設置し、下流部はアルコール選択透過膜と熱回収手段を設置することもできる。
 反応器において反応室は1つでもよく、2つ以上に分割してもよい。2つ以上に分割する場合、全ての反応室に熱回収手段とアルコール選択透過膜を設置してもよい。また、上流側の反応室にはアルコール選択透過膜を設置せず、下流側の反応室にのみアルコール選択透過膜を設置してもよい。反応室を2つ以上に分割する場合、発生する熱量が小さい反応室においては、熱回収手段を設置しなくてもよい。
 熱回収手段で回収した熱を、プロセスの熱源として使用する方法としては、非透過側及び/または透過側の出口ガスから凝縮成分を回収した後、非凝縮原料を反応器の上流にリサイクルしてもよい。
 反応器内のアルコール選択透過膜の設置面積は、単位触媒体積(V)あたりの膜面積(A)の比である、A/V(m/m)を用いて表される。
 触媒体積とは、反応器内に充填する触媒の充填体積(m)のことであり、触媒重量(kg)を嵩密度(kg/m)で除した値である。
 膜面積(m)とは、反応器内に設置するアルコール選択透過膜のマクロな見かけ上の面積である。例えば、四角い平板型のアルコール選択透過膜であれば、アルコール選択透過膜を直方体に近似し、近似した直方体のうち、アルコール選択透過膜を有する面の面積(縦×横)を膜面積とする。また、例えば円筒形のアルコール選択透過膜であれば、アルコール選択透過膜を円柱に近似し、円柱の側面積(直径×円周率×高さ)を膜面積とする。
 反応器を複数に分割する場合、触媒体積及び膜面積は全反応器の値を合算した値とする。単位触媒体積あたりの膜面積A/Vは通常5以上、好ましくは10以上であり、また、通常150以下、好ましくは120以下である。単位触媒体積あたりの膜面積A/Vが小さすぎるとアルコール選択透過膜による転化率の向上効果が十分に得られず、大きすぎると装置コストが増大する。
 アルコール選択透過膜の分離選択性は、分離対象物と非分離対象物の透過係数の比で表される。透過係数とは単位膜面積(m)、単位差圧(Pa)、単位時間(s)あたりの透過物質量(mol)である。なお、ここでいう差圧(Pa)は、ある物質の膜の非透過側の分圧と透過側の分圧の差である。
 本明細書において透過係数比は、プロセスと同じ温度において測定した分離対象物の透過係数を、プロセスと同じ温度において測定した非分離対象物の透過係数で除した値のことである。
 アルコールと水素の透過係数比(アルコール/水素の透過係数比)は通常10以上、好ましくは20以上、より好ましくは50以上である。アルコールと水素の透過係数比が小さすぎると、透過側への原料のロスが増加し、リサイクルガス量が増加し、消費エネルギーが増大する。
(製造方法の説明)
 本発明の別の実施形態は、少なくとも水素と、一酸化炭素及び/又は二酸化炭素と、を含む原料を触媒の存在下で反応させてアルコールを合成する合成ステップ、を含むアルコールの製造方法であって、得られたアルコールを反応器内においてゼオライトを有するアルコール選択透過膜を用いて分離回収する分離回収ステップ、及び合成ステップで生じる反応熱の少なくとも一部を反応器から回収する熱回収ステップ、を含み、該分離回収ステップと熱回収ステップとが並行して行われる、アルコールの製造方法である。
 本実施形態では、原料、触媒、アルコール選択透過膜、反応器等は前述のものを用いてよい。本実施形態では、少なくとも水素と、一酸化炭素及び/または二酸化炭素と、を含む原料ガスを、反応器内において触媒の存在下、反応させ、アルコールを得る。その反応条件は特段限定されないが、反応温度は通常200℃以上、好ましくは210℃以上、より好ましくは220℃以上であり、また、通常300℃以下、好ましくは290℃以下、より好ましくは270℃以下である。これらの上限と下限はいずれの組み合わせでもよい。なお、反応温度は反応器内部のガスの温度を意味する。反応温度を上述の下限以上とすることにより反応速度が高まり、生産性が上がる。反応温度を上述の上限以下にすることにより、反応の化学平衡が、アルコールを得るために有利になるため、膜の性能が多少劣っても転化率を高くすることができる。また、接合材に要求される耐熱性の許容範囲も広がる。
 上記反応により得られたアルコールは、分離回収ステップにより、反応器内のアルコール選択透過膜を透過し、反応器の透過ガス出口から回収される。また、分離回収ステップと並行して、アルコール合成で生じる反応熱の少なくとも一部を反応器から回収する熱回収ステップを行う。
 該熱回収ステップで回収された反応熱の少なくとも一部を、反応器内に導入する前の水素、一酸化炭素及び二酸化炭素から選ばれる1種以上の原料を加熱するために供給する供給ステップ、を有してもよい。なお、回収された反応熱は、別の用途に用いてもよい。
 生成したアルコールを、アルコール選択透過膜に透過させる際の反応器内の圧力、即ち反応器内におけるアルコール選択透過膜のガス供給側の圧力(ゲージ圧)は、1MPaG以上であることが好ましく、2MPaG以上であることがより好ましく、8MPaG以下であることが好ましく、5MPaG以下であることがより好ましい。圧力を適当な範囲にすることで、反応の平衡制約が減り、また反応速度も向上してより高い生産性を達成しやすい。また圧力が高すぎることによる反応器の製造コストや原料ガスの昇圧コスト上昇を抑えられる。
 また、反応容器内において、アルコール選択透過膜のガス供給側におけるアルコール分圧(絶対圧)は、0.1MPaA以上であることが好ましく、0.2MPaA以上であることがより好ましく、6MPaA以下であることが好ましく、5MPaA以下であることがより好ましい。アルコール分圧をこの範囲にすることにより、膜を透過するアルコール量が十分得られ、膜の効果が良く発揮される。一方、この範囲であれば、接合部に要求される耐久性や気密性が必要以上に高くなることなく、簡便かつ大量に接合することができる。
 上記反応器内のゲージ圧は、反応器に備えた圧力計から測定できる。また、上記反応器内のアルコールの絶対圧は、反応器の上流から下流にかけて変化するが、ここではガスクロマトグラフィーによる反応器出口ガス組成の分析結果及びゲージ圧から計算した値を反応器内のアルコール絶対圧とする。
 以下、実施例に基づいて本発明を更に具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。なお、実施例における各種測定及び評価は、以下のように行った。
<無機ガラス及び緻密部材の熱膨張係数>
 無機ガラスのガラスフリットおよび緻密部材の30~250℃における熱膨張係数(線膨張係数)は、試料から直径約5mm長さ約10~20mmの円柱状の試験片を用意し、上記温度範囲における試験片の膨張量を示差熱膨張計((株)リガク製、TMA8310)で測定し、平均線膨張係数を算出する。なお、本実施例ではカタログ値又はメーカー成績書の値を使用した。
<無機ガラスの軟化点>
 示差熱分析装置(リガク社製TG8120)により軟化点を測定する。乳鉢で粉砕したガラスフリットを10℃/minで昇温し、得られるDTA曲線の第二変曲点を軟化点とする。
 尚、本実施例の値は、カタログ値又はメーカー成績書の値を記載した。
<空気透過量測定>
 大気圧下で接合体の端(キャップが接合していない方)を、気密性を保持した状態で5kPaの真空ラインに接続して、真空ラインと接合体の間に設置したマスフローメーターでゼオライト膜複合体を透過した空気の流量を測定した。なお、sccmとは0℃、1気圧換算のcc/minを表す。マスフローメーターとしては、ブルックスインスツルメント社製GF40(最大流量20sccm)を用いた。
<耐久性試験>
 上記内容積80mlのSUS-316製オートクレーブに実施例及び比較例で得られた接合体を入れ、さらにメタノール5ml及び脱塩水5mlを加えた後、密閉させて電気炉にセットし、電気炉を280℃まで1時間で加熱昇温した。このとき、オートクレーブ内の圧力は、3.5MPaであった。280℃に到達してから48時間後に加熱を終了し電気炉からオートクレーブを取り出して、自然冷却させた。2時間以上冷却した後にオートクレーブを開放し接合体を取り出した。これを常圧にて120℃で4時間乾燥させた後に、上記空気透過量測定を実施した。
 初めに第1及び第2実施形態についての具体例を説明する。
<実施例A1>
(ゼオライトとアルミナ多孔質支持体との複合体の作製)
 予め種結晶を付着させた円筒状のアルミナ多孔質支持体(外径12mm、内径9mm、全長40mm)を、組成(モル比)SiO:NaO:Al:HO=100:27.8:0.021:4000の水性反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬して、オートクレーブを密閉し、180℃で12時間水熱合成を行った。所定時間経過後、常温まで放冷した後、多孔質支持体-ゼオライト複合体を反応混合物から取り出し、洗浄後、120℃で4時間以上乾燥させ、MFI型ゼオライトとアルミナ多孔質支持体との複合体を得た。
(接合体の作製)
 コバール製キャップ(熱膨張係数52×10-7/K、外径14.0mm、内径12.2mm、高さ4mm)の凹部に鉛フリー無機ガラスとしてAGC社製ガラスフリット「FP-74」(熱膨張係数63×10-7/K、軟化点355℃、SnO含有量42%)を0.3g充填し、その上に上記MFI型ゼオライトとアルミナ多孔質支持体との複合体を載せた。ついで複合体の上部に560gの重りを載せて荷重をかけた状態でマッフル炉に入れて、480℃まで100分かけて昇温した後、480℃の状態を30分保持して焼成した。その後加熱を停止し、自然冷却を行い、接合体を得た。
 得られた接合体について、空気透過量測定及び耐久性試験行った。その結果、耐久性試験前の接合体の空気透過量は0.1sccm以下であった。また、耐久性試験後の接合体の空気透過量は0.1sccm以下と試験前後で変化がなく、良好な耐久性を示すことがわかった。
<実施例A2>
 無機ガラスとしてAGC社製ガラスフリット「KP312E」(熱膨張係数71×10-7/K、軟化点344℃、SnO含有量52%)を用い、マッフル炉での焼成温度を430℃とした以外は実施例A1と同様の方法により接合体を得た。
 得られた接合体について、空気透過量測定及び耐久性試験行った。その結果、耐久性試験前の接合体の空気透過量は0.1sccm以下であった。また、耐久性試験後の接合体の空気透過量は0.1sccm以下と試験前後で変化がなく、良好な耐久性を示すことがわかった。
<実施例A3>
 無機ガラスとしてAGC社製ガラスフリット「FP-67」(熱膨張係数79×10-7/K、軟化点357℃、SnO含有量50%)を用いた以外は実施例A1と同様の方法により接合体を得た。
 得られた接合体について、空気透過量測定を行った。その結果、接合体の空気透過量は0.1sccm以下であった。
<実施例A4>
 無機ガラスとしてAGC社製ガラスフリット「BNL115BB」(熱膨張係数74×10-7/K、軟化点397℃、B含有量5.0%)を用い、マッフル炉での焼成温度を500℃とした以外は実施例A1と同様の方法により接合体を得た。
 得られた接合体について、空気透過量測定及び耐久性試験行った。その結果、耐久性試験前の接合体の空気透過量は0.4sccmであった。また、耐久性試験後の接合体の空気透過量は0.4sccmであり、気密性に変化はなかった。
<実施例A5>
 実施例A4の接合体に封孔処理を実施した。具体的にはMFI型ゼオライトとアルミナ多孔質支持体との複合体とキャップとの接合部分に、内部を減圧にしつつ三菱ケミカル社製メチルシリケートオリゴマー「MKCシリケート(登録商標)MS-56」を塗布した。1時間室温に放置した後に、250℃で30分加熱処理して封孔処理を完了した。
 得られた接合体について、空気透過量測定及び耐久性試験行った。その結果、耐久性試験前の接合体の空気透過量は0.1sccm以下となり封孔処理により気密性が向上することがわかった。また、耐久性試験後の接合体の空気透過量は0.1sccm以下と試験前後で変化がなく、良好な耐久性を示すことがわかった。
<実施例A6>
 無機ガラスとして日本電気硝子社製ガラスフリット「BF-0606」(熱膨張係数72×10-7/K、軟化点450℃、B含有量6.4%)を用い、マッフル炉での焼成温度を485℃とした以外は実施例A1と同様の方法により接合体を得た。
 得られた接合体について、空気透過量測定及び耐久性試験行った。その結果、耐久性試験前の接合体の空気透過量は0.2sccmであった。また、耐久性試験後の接合体の空気透過量は0.2sccmであり、気密性に変化はなかった。
<実施例A7>
 無機ガラスとして日本電気硝子社製ガラスフリット「BF-0901」(熱膨張係数48×10-7/K、軟化点528℃、B含有量9.7%)を用い、マッフル炉での焼成温度を560℃とした以外は実施例A1と同様の方法により接合体を得た。
 得られた接合体について、空気透過量測定及び耐久性試験行った。その結果、耐久性試験前の接合体の空気透過量は0.1sccm以下であった。また、耐久性試験後の接合体の空気透過量は0.1sccm以下と試験前後で変化がなく、良好な耐久性を示すことがわかった。
<実施例A8>
 無機ガラスとしてAGC社製ガラスフリット「ASF-1094」(熱膨張係数79×10-7/K、軟化点533℃、B含有量15%)を用い、マッフル炉での焼成温度を550℃とした以外は実施例A1と同様の方法により接合体を得た。
 得られた接合体について、空気透過量測定及び耐久性試験行った。その結果、耐久性試験前の接合体の空気透過量は0.3sccmであった。また、耐久性試験後の接合体の空気透過量は0.3sccmであり、気密性に変化はなかった。
<実施例A9>
 無機ガラスとしてAGC社製ガラスフリット「ASF-1098」(熱膨張係数54×10-7/K、軟化点515℃、B含有量16%)を用い、マッフル炉での焼成温度を560℃とした以外は実施例A1と同様の方法により接合体を得た。
 得られた接合体について、空気透過量測定を行った。その結果、接合体の空気透過量は0.7sccm以下であった。
<実施例A10>
 無機ガラスとしてAGC社製ガラスフリット「ASF-1109」(熱膨張係数65×10-7/K、軟化点545℃、B含有量19%)を用い、マッフル炉での焼成温度を560℃とした以外は実施例A1と同様の方法により接合体を得た。
 得られた接合体について、空気透過量測定を行った。その結果、接合体の空気透過量は1.2sccm以下であった。
<比較例A1>
 無機ガラスとしてAGC社製ガラスフリット「SK-231-300」(熱膨張係数84×10-7/K、軟化点559℃、B含有量13%)を用い、マッフル炉での焼成温度を580℃とした以外は実施例A1と同様の方法により接合体を得た。
 得られた接合体について、空気透過量測定を行った。その結果、接合体の空気透過量は5.5sccm以下であった。
<比較例A2>
 無機ガラスとしてAGC社製ガラスフリット「KF9173」(熱膨張係数98×10-7/K、軟化点462℃、B含有量11%)を用い、マッフル炉での焼成温度を520℃とした以外は実施例A1と同様の方法により接合体を得た。
 得られた接合体について、空気透過量測定及び耐久性試験行った。その結果、耐久性試験前の接合体の空気透過量は7.3sccmであった。また、耐久性試験後の接合体の空気透過量は20sccm以上(測定レンジオーバー)であり、気密性が悪化した。
Figure JPOXMLDOC01-appb-T000001
 
 次に接合材として無機接着剤を用いる第3実施形態について具体例を示す。
(実施例B1)
(ゼオライト及びアルミナ多孔質支持体の複合体の作製)
 予め種結晶を付着させたアルミナ多孔質支持体(外径12mm、内径9mm、全長40mm)を、組成100SiO:27.8NaO:0.021Al:4000HOの水性反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬して、オートクレーブを密閉し、180℃で12時間水熱合成を行った。所定時間経過後、常温まで放冷した後、多孔質支持体-ゼオライト複合体を反応混合物から取り出し、洗浄後、120℃で4時間以上乾燥させ、MFI型ゼオライトとアルミナ多孔質支持体の複合体を得た。
(接合体の作製)
 コバール製キャップ(外径14.0mm、内径12.2mm、高さ4mm、熱膨張係数52×10-7/K)の凹部に無機接着剤としてスリーボンド社製「TB3732」(アルミナ系、硬化後の熱膨張係数80×10-7/K、金属アルコキシド含有)を0.6g充填し、その上に上記MFI型ゼオライトとアルミナ多孔質支持体との複合体を載せた。ついで複合体の上部に560gの重りを載せて荷重をかけ、室温で1時間放置した。ついで100℃で30分加熱した後、自然冷却を行い接合体を得た。
(実施例B2)
 実施例1の接合体に封孔処理を実施した。具体的にはMFI型ゼオライトとアルミナ多孔質支持体との複合体とキャップとの接合部分に、内部を減圧にしつつ三菱ケミカル社製メチルシリケートオリゴマー「MKCシリケート(登録商標)MS-56」を塗布した。1時間室温に放置した後に、250℃で30分加熱処理して封孔被膜を形成した。空気透過量を測定したところ、0.1sccm以下となり封孔被膜によりシール性が向上した。
(実施例B3)
 無機接着剤として東亜合成社製「アロンセラミックD」(アルミナ系、硬化後の熱膨張係数80×10-7/K、金属アルコキシド含有せず)を0.6g充填し、その上に上記MFI型ゼオライトとアルミナ多孔質支持体との複合体を載せた。ついで複合体の上部に560gの重りを載せて荷重をかけ、室温で20時間放置した。ついで90℃で1時間加熱し、さらに150℃で1時間加熱した後、自然冷却を行い接合体を得た。空気透過量を測定したところ、14sccmであった。
(実施例B4)
 実施例B3の接合体を用いた以外は実施例2と同様の手法により封孔処理を施した接合体を得た。空気透過量を測定したところ、0.1sccm以下となり封孔処理によりシール性が向上した。
(実施例B5)
 無機接着剤として東亜合成社製「アロンセラミックE」(ジルコニア・シリカ系、硬化後の熱膨張係数40×10-7/K、金属アルコキシド含有せず)を用いた以外は実施例B3と同様の手法により接合体を得た。空気透過量を測定したところ、18sccmであった。
(実施例B6)
 実施例B5の接合体を用いた以外は実施例B2と同様の手法により封孔処理を施した接合体を得た。空気透過量を測定したところ、0.1sccm以下となり封孔被膜によりシール性が向上した。
(実施例B7)
 三菱ケミカル社製メチルシリケートオリゴマー「MKCシリケート(登録商標)MS-56」の代わりにディ・アンド・ディ社製「パーミエイトHS-90」を用いた以外は実施例2と同様の手法により封孔処理を施した接合体を得た。空気透過量を測定したところ、0.1sccm以下となり封孔被膜によりシール性が向上した。
(比較例B1)
 無機接着剤として東亜合成社製「アロンセラミックC」(シリカ系、硬化後の熱膨張係数130×10-7/K、金属アルコキシド含有せず)を用いた以外は実施例B3と同様の手法により接合体を得た。空気透過量を測定したところ、103sccmであった。
 実施例B1~7及び比較例B1の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(実施例B8)
(耐久性試験)
 内容積80mlのSUS-316製オートクレーブに実施例B1の接合体を入れ、さらにメタノール5ml及び脱塩水5mlを加えた後、大気圧下で密閉させて電気炉にセットし、電気炉を280℃まで1時間で加熱昇温した。280℃に到達(この時の圧力は3.2MPaGであった)してから48時間後に加熱を終了し電気炉からオートクレーブを取り出して、自然冷却させた。2時間以上冷却した後にオートクレーブを開放し接合体を取り出した。これを常圧にて120℃で4時間乾燥させた後に、空気透過量測定を実施したところ、0.3sccmと試験前後で変化がなく、良好な耐久性を示すことがわかった。
(実施例B9)
 実施例B2の接合体を用いた以外は実施例B8と同様の手法により耐久性試験を実施した。空気透過量は0.1sccm以下であった。
(実施例B10)
 実施例B7の接合体を用いた以外は実施例B8と同様の手法により耐久性試験を実施した。空気透過量は0.2sccmであった。
(比較例B2)
 比較例B1の接合体を用いた以外は実施例B8と同様の手法により耐久性試験を実施した。空気透過量は300sccm以上(測定レンジオーバー)であった。
(比較例B3)
 無機接着剤ではない接着剤としてスリーボンド製「TB1208B」(シリコーン系、金属アルコキシド含有せず)を用い、100℃で30分加熱した代わりに120℃で1時間加熱した以外は実施例B1と同様の手法により接合体を得た。空気透過量を測定したところ、0.1sccm以下であった。ついでこの接合体を用いて実施例B7と同様の手法により耐久性試験を実施したところ、接合部が破断しており、MFI型ゼオライトとアルミナ多孔質支持体の複合体とキャップとが分裂していた。
 実施例B8~10及び比較例B2~3の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 次に本発明の第4実施形態についての具体例を示す。
<実施例C1>
 予め種結晶を付着させた多孔質アルミナ支持体を、組成100SiO : 27.8NaO : 0.021Al : 4000HOの水性反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬して、オートクレーブを密閉し、180℃で12時間水熱合成を行った。所定時間経過後、常温まで放冷した後、多孔質支持体-ゼオライト複合体を反応混合物から取り出し、洗浄後、120℃で4時間以上乾燥させ、MFI型ゼオライトと多孔質アルミナ支持体の複合体(以下、膜複合体と表記)を得た。膜複合体は必要に応じて切断して用いた。
 コバール製キャップ(線膨張率52×10/K)及びコバール製接続管(線膨張率52×10/K)と膜複合体とをAGC社製ガラスフリット「BNL115BB(焼成後の線膨張率74×10/K)」を用い、マッフル炉で500℃、30分焼成して、膜複合体とキャップ及び接続管とを接合した。接合後の膜複合体の有効膜長さは34mmであった。
<メタノールの製造>
 メタノールの製造はSUS316L製の固定床反応器(内容積120mL)を用いて実施した。反応器に、膜複合体を接合したコバール製接続管をSwagelok(R)のユニオンを用いて接続した。膜複合体の周りに日揮触媒化成社製Cu-Zn系複合酸化物触媒F07J(CuO 49重量%、ZnO 45重量%、Al 5.6重量%含有)を75g充填し、反応器を密閉した。
 反応前に、Nで希釈したH(H/N=25/75、モル濃度)を100mL/minで反応器内に流通し、300℃、常圧で6時間、触媒を還元した。
 触媒の還元終了後、反応器を放冷した後、上記流通ガスを合成ガス(原料ガス:H/CO=66.9/33.1、モル比)332mL/minに切り替え、反応器温度250℃、反応器内圧力3MPaGで膜分離有りの反応を実施した。なお、反応器内のメタノール分圧は0.55MPaAであった。
 気体生成物は、膜非透過成分、膜透過成分ともにNを内標準物質として用いて、オンラインガスクロマトグラフィーで分析した。分析結果が安定したところで、下記の式4によりCO転化率を計算した。
式4:CO転化率=1-(非透過ガス出口CO流量+非透過ガス出口CO流量+透過ガス出口CO流量+透過ガス出口CO流量)/(原料フィード入口CO流量+原料フィード入口CO流量)
 さらに、式1、2で示したメタノール合成の反応式の平衡から平衡CO転化率を求め、平衡転化率からの転化率の増大率を示す指標として、CO転化率/平衡CO転化率を求めた。
式1:3H + CO ←→ CHOH + H
式2:2H + CO ←→ CHOH
<実施例C2>
 反応器内圧力を1.5MPaGにした以外は実施例C1と同様に行い、実施例C2とした。なお、反応器内のメタノール分圧は0.33MPaAであった。
<実施例C3>
 反応器内の温度を230℃にし、原料ガス流量を83mL/minにした以外は実施例C1と同様に行い、実施例C3とした。なお、反応器内のメタノール分圧は0.87MPaAであった。
<実施例C4>
 実施例C1と同条件で合成した別ロットの膜複合体を用い、コバール製キャップ及び接続管との接合にAGC社製ガラスフリット「FP-74(焼成後の線膨張率63×10/K)」を用い、焼成温度を480℃に変更し、実施例C1と同様に膜複合体とキャップ及び接続管と接合を行った。接合後の膜複合体の有効膜長さは38mmであった。
 メタノールの製造は触媒量を75gにし、流通する原料ガスをCOを含む合成ガス(H/CO/CO=69.5/23.2/7.3、モル比)147mL/minにした以外は実施例C1と同様に行い、実施例C4とした。なお、反応器内のメタノール分圧は0.71MPaAであった。
<実施例C5>
 流通するガスの組成をH/CO=75/25(モル比)とし、流量を131mL/minにした以外は実施例C4と同様に行い、実施例C5とした。なお、反応器内のメタノール分圧は0.22MPaAであった。
<実施例C6>
 実施例C1と同条件で合成した別ロットの膜複合体を用い、コバール製キャップ及び接続管との接合にアレムコ社製の無機接着剤「セラマボンド552(焼成後の線膨張率77×10/K)」を用い、93℃で2時間焼成した後、さらに260℃で2時間焼成して接合を行った。接合後の膜複合体の有効膜長さは28mmであった。
 メタノールの製造は触媒量を30gにし、流通する原料ガス流量を321mL/minにした以外は実施例C1と同様に行い、実施例C6とした。なお、反応器内のメタノール分圧は0.32MPaAであった。
Figure JPOXMLDOC01-appb-T000004
 表4において、いずれの実施例CもCO転化率/平衡CO転化率が1を超えており、メタノール合成反応が平衡以上に進行していることがわかる。すなわち、本発明により平衡転化率を超える転化率で効率的にメタノールを製造できる。
<参考例C1>
 接合材として、機械的シールによく用いられるOリングの耐久性試験を実施した。Oリングとしてはカルレッツ(R)の6375、7075、0090、7090を用いた。耐久性試験は、SUS316製もしくはハステロイ製の70mL高圧容器にメタノール5mL、水5mLと接合材を封入し、容器内をNで置換した後、250℃で所定時間加熱することで実施した。
 試験後、硬さ試験(JIS K6253-2:2012)によりカルレッツ(R)の耐久性を評価した。カルレッツ(R)6375、0090は経時的な硬さの低下が見られたことから、高温・高圧、メタノール蒸気存在下では使用不可と判断した。また、カルレッツ(R)7075、7090は試験中に変形が著しく、硬さ試験の実施が不可能であり、同じく高温・高圧、メタノール蒸気存在下では使用不可と判断した。
<参考例C2>
 接合材として、機械的シールによく用いられるグラファイトパッキンの耐久性試験を実施した。グラファイトパッキンはニチアス製のTOMBO No2200-P、2250を用いた。耐久性試験は、参考例C1と同様の方法で実施した。
 試験後、グラファイト同士の剥離が見られたことから高温・高圧、メタノール蒸気存在下では使用不可と判断した。
<参考例C3>
 接合材として、高真空用エポキシ接着剤であるアレムコボンド631の耐久性試験を実施した。アルミナ板と多孔質アルミナをアレムコボンド631で接着したサンプルを用い、参考例C1と同様の方法で実施した。
 試験後、接着したアルミナ板と多孔質アルミナが外れていたことから、高温・高圧、メタノール蒸気存在下では使用不可と判断した。
 以上のように、参考例に示した接合法については、高温・高圧、メタノール蒸気存在下では使用不可と判断されたため、メタノールの製造に用いる事が出来なかった。
 以下本発明の第5の実施形態をさらに具体的に説明するが、本発明の範囲が、以下の実施例で示す態様に限定されないことは言うまでもない。
<実施例D1>
 水素、一酸化炭素、二酸化炭素の混合ガスからメタノールを合成するプロセスを例に、図8に概略フローを示したプロセスのシミュレーションを実施した。シミュレーションにはASPEN Tech社 ASPEN Plus V8.4、ASPEN Custom Modeler V8.4を使用した。プロセス条件としては下記を想定した。
  原料ガス温度:40℃
  原料ガス予熱後温度:230℃
  反応温度:250℃
  圧力(非透過側):5MPaG
  圧力(透過側):0.1MPaG
  原料ガス:H、COの混合ガス、100kmol/hr、組成はリサイクルガスと合流後にメタノール合成反応の量論から「H流量=2×CO流量+3×CO流量」の関係を満たす組成
  触媒量:2000kg
  単位触媒体積あたりの膜面積:37.5m/m
反応器内で起こりうる反応としては下記の3つの平衡反応を想定した。
  3H+CO → CHOH+HO   ・・・式1
  2H+CO → CHOH       ・・・式2
  CO+H → CO+ HO     ・・・式3
 それぞれの反応速度式は非特許文献1、2を参考に下記に示した式を用いた。
Figure JPOXMLDOC01-appb-M000005
 分離膜の性能は下記の値を用いた。
 MeOH及びHOの透過係数:1.0 × 10-6 mol/m2 s Pa
 MeOH及びHO以外の成分の透過係数:1.0 × 10-8 mol/m2 s Pa
 プロセスシミュレーションにより、ワンパスでの転化率、回収熱量を求めた。転化率は反応器の入口と出口(非透過側と透過側の合算)のCO及びCO2のmol流量を用いて、式5により計算した。回収熱量は反応器温度を250℃に保つために必要な除熱量とした。
 転化率(%)=100-(出口CO mol流量+出口COmol流量)/(入口CO mol流量+入口COmol流量)×100・・・式5
<実施例D2>
 図10に示したように、1つめの反応器内で反応と熱回収のみを行い、2つ目の反応器内でと反応と膜分離と熱回収を並行して行うプロセスとした以外は、実施例D1と同様のシミュレーションにより転化率と回収熱量を求めた。なお、触媒は合計量を実施例1と等しくし、2つの反応器に等分した。また、膜面積は合計の触媒体積を基準とし、実施例D1と同一の面積とした。
<比較例D1>
 図11に示したように、反応器内で反応と熱回収のみを行う(単位触媒体積あたりの膜面積が0m/mである)プロセスとし、透過側のフローをなくした以外は、実施例D1と同様のシミュレーションにより転化率と回収熱量を求めた。
<比較例D2>
 図12に示したように、1つめの反応器内で反応と熱回収を行い、2つ目の反応器内で膜分離のみを行い、3つ目の反応器で反応と熱回収のみを行うプロセスとした以外は、実施例D1と同様のシミュレーションにより転化率と回収熱量を求めた。なお、触媒は合計量を実施例D1と等しくし1つ目と3つ目の反応器に等分した。また、膜面積は合計の触媒体積を基準とし、実施例D1と同一の面積を2つ目の反応器に設置することとした。
 表D1に示したように反応と膜分離と熱回収を並行して行うプロセスにおいて、転化率が高く、回収できる熱量も大きい結果となった。
Figure JPOXMLDOC01-appb-T000006
<参考例D1>
 図8において、熱回収を行わない以外は実施例と同一のプロセスを想定し、反応熱が触媒層の温度上昇に使用されると想定し、反応器温度を試算した。しかし、膜の耐熱温度を超えても反応器温度が収束しなかった。
<実施例D3>
 圧力(非透過側)を3 MPaG、原料ガス組成をH2/CO=2/1, 原料ガス流量を 75 kmol/hrとした以外は実施例D1と同様のシミュレーションにより転化率を求めた。
<実施例D4>
 MeOH及びHO以外の成分の透過係数を5.0 × 10-8 mol/m2 s Paとした以外は実施例D3と同様のシミュレーションにより転化率を求めた。
<実施例D5>
 MeOH及びHO以外の成分の透過係数を1.0 × 10-7 mol/m2 s Paとした以外は実施例D3と同様のシミュレーションにより転化率を求めた。
<比較例D3>
 分離膜を用いないプロセスを想定し、単位触媒体積あたりの膜面積を0m/mとした以外は実施例D3と同様のシミュレーションにより転化率を求めた。
 表D2に示したように、透過係数の比によらず、分離膜を用いた場合において、分離膜を用いない場合と比べて高い転化率を示す結果となった。
Figure JPOXMLDOC01-appb-T000007
<実施例D6>
 図13に概略フローを示した、リサイクルを含まないプロセスのシミュレーションを実施した。プロセス条件としては下記を想定した。
  反応温度:250℃
  圧力(非透過側):5 MPaG
  圧力(透過側):0.1 MPaG
  原料ガス:H2/CO2=3/1、流量100kmol/hr
  触媒量:2000 kg
  単位触媒体積あたりの膜面積:20 m2/m3
 想定する反応及び反応速度式、分離膜の性能は実施例D1と同じ値を用い、シミュレーションにより転化率を求めた。
<実施例D7>
 反応温度を210℃とした以外は、実施例D6と同様のシミュレーションにより転化率を求めた。
<実施例D8>
 反応温度を230℃とした以外は、実施例D6と同様のシミュレーションにより転化率を求めた。
<実施例D9>
 反応温度を270℃とした以外は、実施例D6と同様のシミュレーションにより転化率を求めた。
<実施例D10>
 反応温度を290℃とした以外は、実施例D6と同様のシミュレーションにより転化率を求めた。
<比較例D4>
 分離膜を用いないプロセスを想定し、単位触媒体積あたりの膜面積を0m/mとした以外は実施例D6と同様のシミュレーションにより転化率を求めた。
<比較例D5>
 分離膜を用いないプロセスを想定し、単位触媒体積あたりの膜面積を0m/mとした以外は実施例D7と同様のシミュレーションにより転化率を求めた。
<比較例D6>
 分離膜を用いないプロセスを想定し、単位触媒体積あたりの膜面積を0m/mとした以外は実施例D8と同様のシミュレーションにより転化率を求めた。
<比較例D7>
 分離膜を用いないプロセスを想定し、単位触媒体積あたりの膜面積を0m/mとした以外は実施例D9と同様のシミュレーションにより転化率を求めた。
<比較例D8>
 分離膜を用いないプロセスを想定し、単位触媒体積あたりの膜面積を0m/mとした以外は実施例D10と同様のシミュレーションにより転化率を求めた。
 表D3に示したように、いずれの温度においても分離膜を用いた場合において、分離膜を用いない場合と比べて高い転化率を示す結果となった。
Figure JPOXMLDOC01-appb-T000008
<実施例D11>
 単位触媒体積あたりの膜面積を5m/mとした以外は、実施例D6と同様のシミュレーションにより転化率を求めた。
<実施例D12>
 単位触媒体積あたりの膜面積を10m/mとした以外は、実施例D6と同様のシミュレーションにより転化率を求めた。
<実施例D13>
 単位触媒体積あたりの膜面積を50m/mと、触媒量を1000kgとした以外は、実施例D6と同様のシミュレーションにより転化率を求めた。
 表D4に示したように、単位触媒体積あたりの膜面積によらず、分離膜を用いた場合において、分離膜を用いない場合と比べて高い転化率を示す結果となった。
Figure JPOXMLDOC01-appb-T000009
1   ゼオライトと無機多孔質支持体との複合体
2   キャップ
3   緻密部材(配管)
4   接合材
10  反応器
11  緻密部材からなるフランジ
13  触媒
101 熱交換器

Claims (37)

  1.  ゼオライトと無機多孔質支持体との複合体と、緻密部材とを鉛フリー無機ガラスを介して接合した接合体であって、該鉛フリー無機ガラスの熱膨張係数が30×10-7/K以上90×10-7/K以下、かつ軟化点が550℃以下である、接合体。
  2.  ゼオライトと無機多孔質支持体との複合体と、緻密部材とを無機ガラスを介して接合した接合体であって、該緻密部材が金属部材であり、該無機ガラスの熱膨張係数が30×10-7/K以上90×10-7/K以下、かつ軟化点が550℃以下である、接合体。
  3.  前記無機ガラスがSnO及び/又はBを含有している、請求項1または2に記載の接合体。
  4.  ゼオライト及び無機多孔質支持体の複合体と、緻密部材とを、硬化後の熱膨張係数が30×10-7/K~90×10-7/Kである無機接着剤で接合した接合体。
  5.  ゼオライト及び無機多孔質支持体の複合体と、緻密部材とが、無機接着剤にて接合され、前記緻密部材と硬化後の無機接着剤の熱膨張係数の差が50×10-7/Kである無機接着剤で接合した接合体。
  6.  前記無機接着剤が金属アルコキシドを含有している請求項4または5に記載の接合体。
  7.  前記複合体と緻密部材との接合部分が、封孔被膜により覆われている、請求項1~6の何れか1項に記載の接合体。
  8.  前記封孔被膜が、シリカ被膜である、請求項7に記載の接合体。
  9.  緻密部材の熱膨張係数が30×10-7/K以上200×10-7/K以下である、請求項1~8の何れか1項に記載の接合体。
  10.  100℃~500℃の高温条件下及び/又は0.5~10MPaの高圧条件下で請求項1~9の何れか1項に記載の接合体を使用する、接合体の使用方法。
  11.  請求項1~9の何れか1項に記載の接合体を有する、分離膜モジュール。
  12.  請求項11に記載の分離膜モジュールを有する、反応器。
  13.  鉛フリー無機ガラスを用いた、ゼオライトと無機多孔質支持体との複合体と、緻密部材とを接合する接合方法であって、該鉛フリー無機ガラスの熱膨張係数が30×10-7/K以上90×10-7/K以下、かつ軟化点が550℃以下である、接合方法。
  14.  硬化後の熱膨張係数が30×10-7/K~90×10-7/Kである無機接着剤を用いて、ゼオライト及び無機多孔質支持体の複合体と、緻密部材とを接合する、接合方法。
  15.  無機ガラスを用いた、ゼオライトと無機多孔質支持体との複合体と、緻密部材とを接合する接合方法であって、該緻密部材が金属部材であり、該無機ガラスの熱膨張係数が30×10-7/K以上90×10-7/K以下、かつ軟化点が550℃以下である、接合方法。
  16.  少なくとも水素と、一酸化炭素及び/または二酸化炭素と、を含む原料ガスを、反応器内において触媒の存在下、反応させてメタノールを得る、メタノールの製造方法であって、
     前記反応を行う反応器には、無機酸化物を主成分とし、線膨張率が30×10-7/K以上、90×10-7/K以下である接合材によって、緻密部材と接合されたメタノール選択透過膜が設置され、反応により生じたメタノールが選択透過膜を透過して取り出される、メタノールの製造方法。
  17.  前記メタノール選択透過膜がゼオライト膜である、請求項16に記載のメタノールの製造方法。
  18.  前記緻密部材は金属である、請求項16または17に記載のメタノールの製造方法。
  19.  前記反応器内において、前記メタノール選択透過膜のガス供給側のメタノール分圧が0.1MPa以上、6MPa以下である、請求項16~18の何れか1項に記載のメタノールの製造方法。
  20.  前記反応器内部の温度が200℃以上、300℃以下である、請求項16~19の何れか1項に記載のメタノールの製造方法。
  21.  前記反応器内において、前記メタノール選択透過膜のガス供給側の圧力が1MPaG以上、8MPaG以下である請求項16~20の何れか1項に記載のメタノールの製造方法。 
  22.  前記緻密部材の線膨張率が30×10-7/K以上、200×10-7/K以下である、請求項16~21の何れか1項に記載のメタノールの製造方法。 
  23.  前記緻密部材がコバールである、請求項16~22の何れか1項に記載のメタノールの製造方法。 
  24.  前記無機酸化物が無機ガラス又は無機接着剤である、請求項16~23の何れか1項に記載のメタノールの製造方法。
  25.  少なくとも水素と、一酸化炭素及び/または二酸化炭素と、を含む原料ガスを、反応器内において触媒の存在下、反応させてメタノールを得る製造方法に用いられる、メタノールの製造装置であって、
     前記反応を行う反応器には、無機酸化物を主成分とし、線膨張率が30×10-7/K以上、90×10-7/K以下である接合材によって、緻密部材と接合されたメタノール選択透過膜が設置され、反応により生じたメタノールが選択透過膜を透過して取り出される構造を有するメタノールの製造装置。
  26.  少なくとも水素と、一酸化炭素及び/または二酸化炭素と、を含む原料ガスを、反応器内において触媒の存在下、反応させてメタノールを得る、メタノールの製造方法であって、
     前記反応を行う反応器には、メタノール選択透過膜が設置され、反応により生じたメタノールが選択透過膜を透過して取り出される、メタノールの製造方法。
  27.  前記触媒が、メタノール選択透過膜に隣接して存在する請求項26に記載のメタノールの製造方法。
  28.  少なくとも水素と、一酸化炭素及び/または二酸化炭素と、を含む原料ガスを、反応器内において触媒の存在下、反応させてメタノールを得る製造方法に用いられる、メタノールの製造装置であって、
     前記反応を行う反応器には、メタノール選択透過膜が設置され、反応により生じたメタノールが選択透過膜を透過して取り出される構造を有するメタノールの製造装置。
  29.  前記触媒が、メタノール選択透過膜に隣接して存在する請求項28に記載のメタノールの製造装置。
  30.  少なくとも水素と、一酸化炭素及び/又は二酸化炭素と、を含む原料を触媒の存在下で反応させてアルコールを合成するアルコールの製造装置であって、
     該製造装置は、ゼオライトを有するアルコール選択透過膜を備えた反応器と、反応熱の少なくとも一部を該反応器から回収する熱回収手段と、該熱回収手段で回収した熱を供給する熱供給手段と、を有するアルコールの製造装置。
  31.  前記熱回収手段が熱交換器であり、該熱交換器は、前記反応器内に又は前記反応器に隣接して備えられる、請求項30に記載のアルコールの製造装置。
  32.  前記熱供給手段が熱交換器である、請求項30又は31に記載のアルコールの製造装置。
  33.  前記アルコール選択透過膜のメタノール/水素の透過係数比が10以上である、請求項30~32のいずれか1項に記載のアルコール製造装置。
  34.  少なくとも水素と、一酸化炭素及び/又は二酸化炭素と、を含む原料を触媒の存在下で反応させてアルコールを合成する合成ステップ、を有するアルコールの製造方法であって、
     得られたアルコールを反応器内においてゼオライトを有するアルコール選択透過膜を用いて分離回収する分離回収ステップ、及び合成ステップで生じる反応熱の少なくとも一部を反応器から回収する熱回収ステップ、を含み、
     該分離回収ステップと熱回収ステップとが並行して行われる、アルコールの製造方法。
  35.  前記合成ステップにおいて、反応器内の温度を200℃以上300℃以下に制御する、請求項34に記載のアルコールの製造方法。
  36.  前記熱回収ステップで回収された反応熱の少なくとも一部を、反応器内に導入する前の水素、一酸化炭素及び二酸化炭素から選ばれる1種以上の原料を加熱するために供給する供給ステップ、を有する、請求項34又は35に記載のアルコールの製造方法。
  37.  前記触媒の体積に対する、アルコール選択透過膜の面積の比が、5m/m以上150m/m以下である、請求項34~36のいずれか1項に記載のアルコールの製造方法。
PCT/JP2019/030610 2018-08-02 2019-08-02 接合体、それを有する分離膜モジュール及びアルコールの製造方法 WO2020027337A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19844683.3A EP3831470A4 (en) 2018-08-02 2019-08-02 CONNECTED BODY, SEPARATING MEMBRANE MODULE EQUIPPED WITH IT, AND METHOD FOR MANUFACTURING ALCOHOL
AU2019313973A AU2019313973A1 (en) 2018-08-02 2019-08-02 Bonded body, separation membrane module equipped with same, and method for producing alcohol
CN201980051371.3A CN112512672A (zh) 2018-08-02 2019-08-02 接合体、具备该接合体的分离膜组件及醇制造方法
US17/165,025 US20210154623A1 (en) 2018-08-02 2021-02-02 Bonded body, separation membrane module equipped with same, and method for producing alcohol

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018-146305 2018-08-02
JP2018146338 2018-08-02
JP2018-146331 2018-08-02
JP2018146331 2018-08-02
JP2018146305 2018-08-02
JP2018-146338 2018-08-02
JP2018164260 2018-09-03
JP2018-164260 2018-09-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/165,025 Continuation US20210154623A1 (en) 2018-08-02 2021-02-02 Bonded body, separation membrane module equipped with same, and method for producing alcohol

Publications (1)

Publication Number Publication Date
WO2020027337A1 true WO2020027337A1 (ja) 2020-02-06

Family

ID=69232208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030610 WO2020027337A1 (ja) 2018-08-02 2019-08-02 接合体、それを有する分離膜モジュール及びアルコールの製造方法

Country Status (5)

Country Link
US (1) US20210154623A1 (ja)
EP (1) EP3831470A4 (ja)
CN (1) CN112512672A (ja)
AU (1) AU2019313973A1 (ja)
WO (1) WO2020027337A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048637A1 (ja) * 2022-09-02 2024-03-07 日本碍子株式会社 液体燃料製造システムおよび液体燃料の製造方法
WO2024048636A1 (ja) * 2022-09-02 2024-03-07 日本碍子株式会社 液体燃料製造システムおよび液体燃料の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210803A1 (en) * 2022-04-28 2023-11-02 Ngk Insulators, Ltd. Separation membrane module
WO2023210804A1 (en) * 2022-04-28 2023-11-02 Ngk Insulators, Ltd. Membrane assembly and separation membrane module

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163827A (ja) 1993-10-18 1995-06-27 Ngk Insulators Ltd ガス分離体と金属との接合体および水素ガス分離装置
JPH09511509A (ja) 1994-04-08 1997-11-18 メサノール カサーレ ソシエテ アノニーム メタノールの製造方法
JPH10180060A (ja) 1996-12-25 1998-07-07 Noritake Co Ltd 無機分離膜シール用組成物
JP2000109690A (ja) * 1998-10-06 2000-04-18 Noritake Co Ltd ゼオライト膜用耐熱性樹脂シール材
JP2004243246A (ja) * 2003-02-14 2004-09-02 Ngk Insulators Ltd ガス分離膜構造、ガス分離膜組立体及びガス分離装置
JP2007050322A (ja) 2005-08-16 2007-03-01 National Institute Of Advanced Industrial & Technology ゼオライト膜耐溶媒性封止構造
JP2007055970A (ja) 2005-08-26 2007-03-08 Mitsui Eng & Shipbuild Co Ltd メタノール製造用反応器及びメタノール製造方法
JP2009066528A (ja) * 2007-09-13 2009-04-02 Hitachi Zosen Corp ゼオライト分離膜、その製造方法および接合剤
WO2009113715A1 (ja) * 2008-03-12 2009-09-17 日本碍子株式会社 Ddr型ゼオライト膜配設体の製造方法
JP2013043170A (ja) * 2011-08-24 2013-03-04 Hiroshi Suzuki ゼオライト支持多孔質体、その製造方法および選択分離及び反応分離装置
JP2013203602A (ja) 2012-03-28 2013-10-07 Noritake Co Ltd 高温で気密性を保つセラミックス−金属のガラスシール構造体
JP2016052959A (ja) * 2014-09-02 2016-04-14 株式会社ノリタケカンパニーリミテド ガラス被覆アルミナ構造物、分離膜エレメント、およびガラス接合剤
JP2016117726A (ja) 2014-12-17 2016-06-30 ミュウ スクリーンテック フィルター− ウント プレツィジオンステヒニク アウス メタル ゲーエムベーハー 選択透過膜を使用した化学平衡反応の実施方法
JP2016174996A (ja) 2015-03-18 2016-10-06 学校法人早稲田大学 ゼオライト分離膜および分離モジュール
WO2017175760A1 (ja) * 2016-04-07 2017-10-12 三菱瓦斯化学株式会社 メタノール製造方法及びメタノール製造装置
JP2018024206A (ja) * 2016-08-12 2018-02-15 日東電工株式会社 粘着性構造体
JP2018056509A (ja) * 2016-09-30 2018-04-05 日東電工株式会社 水素透過部材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2343115A4 (en) * 2008-10-01 2013-04-17 Hitachi Shipbuilding Eng Co ZEOLITE SEPARATION MEMBRANE, PROCESS FOR PRODUCING THE SAME AND BINDER
EP3235788B1 (en) * 2015-09-10 2019-10-09 LG Chem, Ltd. Blanket comprising silica aerogel and manufacturing method therefor

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163827A (ja) 1993-10-18 1995-06-27 Ngk Insulators Ltd ガス分離体と金属との接合体および水素ガス分離装置
JPH09511509A (ja) 1994-04-08 1997-11-18 メサノール カサーレ ソシエテ アノニーム メタノールの製造方法
JPH10180060A (ja) 1996-12-25 1998-07-07 Noritake Co Ltd 無機分離膜シール用組成物
JP2000109690A (ja) * 1998-10-06 2000-04-18 Noritake Co Ltd ゼオライト膜用耐熱性樹脂シール材
JP2004243246A (ja) * 2003-02-14 2004-09-02 Ngk Insulators Ltd ガス分離膜構造、ガス分離膜組立体及びガス分離装置
JP2007050322A (ja) 2005-08-16 2007-03-01 National Institute Of Advanced Industrial & Technology ゼオライト膜耐溶媒性封止構造
JP2007055970A (ja) 2005-08-26 2007-03-08 Mitsui Eng & Shipbuild Co Ltd メタノール製造用反応器及びメタノール製造方法
JP2009066528A (ja) * 2007-09-13 2009-04-02 Hitachi Zosen Corp ゼオライト分離膜、その製造方法および接合剤
WO2009113715A1 (ja) * 2008-03-12 2009-09-17 日本碍子株式会社 Ddr型ゼオライト膜配設体の製造方法
JP2013043170A (ja) * 2011-08-24 2013-03-04 Hiroshi Suzuki ゼオライト支持多孔質体、その製造方法および選択分離及び反応分離装置
JP2013203602A (ja) 2012-03-28 2013-10-07 Noritake Co Ltd 高温で気密性を保つセラミックス−金属のガラスシール構造体
JP2016052959A (ja) * 2014-09-02 2016-04-14 株式会社ノリタケカンパニーリミテド ガラス被覆アルミナ構造物、分離膜エレメント、およびガラス接合剤
JP2016117726A (ja) 2014-12-17 2016-06-30 ミュウ スクリーンテック フィルター− ウント プレツィジオンステヒニク アウス メタル ゲーエムベーハー 選択透過膜を使用した化学平衡反応の実施方法
JP2016174996A (ja) 2015-03-18 2016-10-06 学校法人早稲田大学 ゼオライト分離膜および分離モジュール
WO2017175760A1 (ja) * 2016-04-07 2017-10-12 三菱瓦斯化学株式会社 メタノール製造方法及びメタノール製造装置
JP2018024206A (ja) * 2016-08-12 2018-02-15 日東電工株式会社 粘着性構造体
JP2018056509A (ja) * 2016-09-30 2018-04-05 日東電工株式会社 水素透過部材

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEM. ENG. PROCESS., vol. 43, 2004, pages 1029
SZARAWARA, J.REYCHMAN, K., INZ CHEM PROC., vol. 1, 1980, pages 331
VANDEN BUSSCHE K.M.FROMENT G.F., J. CATAL., vol. 161, 1996, pages 1 - 10

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048637A1 (ja) * 2022-09-02 2024-03-07 日本碍子株式会社 液体燃料製造システムおよび液体燃料の製造方法
WO2024048636A1 (ja) * 2022-09-02 2024-03-07 日本碍子株式会社 液体燃料製造システムおよび液体燃料の製造方法

Also Published As

Publication number Publication date
EP3831470A1 (en) 2021-06-09
CN112512672A (zh) 2021-03-16
AU2019313973A1 (en) 2021-02-25
EP3831470A4 (en) 2021-12-01
US20210154623A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2020027337A1 (ja) 接合体、それを有する分離膜モジュール及びアルコールの製造方法
Mehla et al. Recent advances in preparation methods for catalytic thin films and coatings
US8709369B2 (en) Process for preparing higher hydridosilanes
JP5569901B2 (ja) ゼオライト膜、分離膜モジュール及びその製造方法
JP7444560B2 (ja) アルコールの製造方法及び製造装置
JP7430498B2 (ja) メタノールの製造方法
JP7404482B2 (ja) 水素分離装置と水素分離方法
JP4736031B2 (ja) 表面保護加工されたゼオライト膜ならびにゼオライト膜を用いた脱水装置
JP2024016125A (ja) アンモニアの分離方法及びゼオライト
JP2010532259A (ja) ゼオライト膜構造体及びゼオライト膜構造体の製造方法
EP3528945B1 (en) Process for producing oxidative dehydrogenation catalysts using hydrothermal treatment and peroxide treatment
JP6918064B2 (ja) 水素分離装置及び水素分離方法
EP3473332A1 (en) Method for producing separation membrane using mfi-type zeolite (silicalite)
JP2000288842A (ja) 交換器の製造方法および交換器
KR20210038540A (ko) 촉매 반응기
CA2806810A1 (en) Use of a reactor having an integrated heat exchanger in a method for hydrodechlorinating silicon tetrachloride
JP2002128512A (ja) セラミック材、セラミック膜およびその利用
ES2956674T3 (es) Procedimiento de producción de una composición catalítica que comprende al menos un metal noble y al menos un óxido mixto de Si-Zr
JP7359590B2 (ja) 接合体及びそれを有する分離膜モジュール
WO2018079484A1 (ja) オリゴシランの製造方法及びオリゴシランの製造装置
CN107497473A (zh) 一种以堇青石为载体的y分子筛催化剂制备方法
JP5278933B2 (ja) ゼオライト膜耐溶媒性封止構造
JP7403986B2 (ja) 接合体及びそれを有する分離膜モジュール
JP7403997B2 (ja) 接合体及びそれを有する分離膜モジュール
US6541066B1 (en) Thin ceramic coatings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019313973

Country of ref document: AU

Date of ref document: 20190802

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019844683

Country of ref document: EP

Effective date: 20210302

WWE Wipo information: entry into national phase

Ref document number: 523442407

Country of ref document: SA