WO2009113367A1 - コンバータの制御方法及び制御装置 - Google Patents

コンバータの制御方法及び制御装置 Download PDF

Info

Publication number
WO2009113367A1
WO2009113367A1 PCT/JP2009/052695 JP2009052695W WO2009113367A1 WO 2009113367 A1 WO2009113367 A1 WO 2009113367A1 JP 2009052695 W JP2009052695 W JP 2009052695W WO 2009113367 A1 WO2009113367 A1 WO 2009113367A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
phase
potential
component
voltage
Prior art date
Application number
PCT/JP2009/052695
Other languages
English (en)
French (fr)
Inventor
憲一 榊原
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US12/922,362 priority Critical patent/US8395918B2/en
Priority to KR1020107019923A priority patent/KR101139645B1/ko
Priority to EP09720296.4A priority patent/EP2254232B1/en
Priority to AU2009222727A priority patent/AU2009222727B2/en
Priority to CN200980108970.0A priority patent/CN101971476B/zh
Publication of WO2009113367A1 publication Critical patent/WO2009113367A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2173Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a biphase or polyphase circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2176Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • This invention relates to a technique for controlling a converter, and more particularly to a control technique for a three-level converter.
  • a so-called three-level converter that obtains a three-level DC potential from a three-phase rectifier circuit has been proposed.
  • the three-level converter is exemplified in the following Patent Documents 1 to 3 and Non-Patent Documents 1 and 2, for example.
  • FIG. 16 is a circuit diagram of the three-level converter introduced in FIG. 4 of Patent Document 1.
  • a three-phase voltage is connected to one end of each of the inductors 8, 9, 10 that are reactors of the three-width pair.
  • the other ends of the inductors 8, 9, and 10 are connected to terminals 14, 15, and 16 through feeder lines 11, 12, and 13, respectively.
  • the terminals 14, 15, and 16 function as input terminals of the power supply three-phase diode bridge 17 constituted by the diodes 18, 19, 20, 24, 25, and 26. , 27 to the capacitors 6 and 7.
  • Terminals 14, 15, and 16 are connected to a neutral point 33 through bidirectional switches 30, 31, and 32, respectively.
  • the switching element 61 has a collector 77 and an emitter 78.
  • the switching element 61 has a collector 79 and an emitter 80.
  • the switching element 61 is a collector. 81 and an emitter 82.
  • FIG. 17 is a circuit diagram of the three-level converter introduced in FIG. A similar circuit is also introduced in FIG. In the circuit, three-phase currents Ia, Ib, Ic flow from the three-phase voltages Va, Vb, Vc side.
  • the current Ia becomes the current In flowing to the neutral point n through the diode D12 and the switch S11 or through the diode D13 and the switch S12. Alternatively, the current Ia flows to the capacitor via the diodes D11 and D12 or via the diodes D13 and D14.
  • the current Ib becomes the current In through the diode D22 and the switch S21, or through the diode D23 and the switch S22. Alternatively, the current Ib flows to the capacitor via the diodes D21 and D22 or via the diodes D23 and D24.
  • the current Ic becomes the current In through the diode D32 and the switch S31 or through the diode D33 and the switch S32. Alternatively, the current Ic flows to the capacitor via the diodes D31 and D32 or via the diodes D33 and D34.
  • the switches S11, S22, and S31 and the switches S12, S22, and S32 separately bear the withstand voltages during the period when the phase potential is positive and the period when the phase potential is negative. Charge to 2.
  • the withstand voltage of the switches S12 to S32 is almost half as compared with the switching element 61 of the circuit shown in FIG.
  • the number of switching elements in the circuit shown in FIG. 17 is doubled compared to the circuit shown in FIG.
  • FIG. 18 is a circuit diagram of the three-level converter introduced in FIG.
  • a power supply line 48 is connected to the output terminals 23 and 29 via power supply lines 37 and 38, and is given to the control unit 40 together with a power supply line 47 connected to the intermediate point 35, so that a measured value of the output voltage is supplied to the control unit 40.
  • the phase voltage of the three-phase power source 5 (phase power source 2, 3, 4) is applied to the control unit 40 from the feeder lines 45 to 46 (coupled as the three-phase feeder line 42).
  • An external control signal 41 is also given to the control unit 40 separately.
  • Patent Documents 4 and 5 and Non-Patent Documents 3, 4, and 5 are listed as other documents related to the present application.
  • Non-Patent Document 1 In order to control switching with respect to the configuration shown in FIG. 16 or FIG. 18, simple control using a hysteresis comparator has been proposed as introduced in Non-Patent Document 1. However, such control requires controlling the current individually for each of the three phases. In addition, it is necessary to detect the sign of the flowing current.
  • the invention according to the present application provides a control technique for a three-level converter that does not require detection of the power supply voltage or the polarity of the current flowing through the converter.
  • the converter control method includes a rectifier circuit that outputs a low potential (VL), a high potential (VH) higher than the low potential, and an intermediate potential (VQ) between the low potential and the high potential.
  • VL low potential
  • VH high potential
  • VQ intermediate potential
  • the first capacitor (205; 7) to which the low potential and the intermediate potential are supplied, and the first capacitor at a connection point (35; n), and the high potential and the intermediate potential are A method of controlling a converter with a second capacitor (204; 6) supplied.
  • the rectifier circuit includes first to third potentials at respective other ends of the three-width pair reactors (202; 8, 9, 10) to which three-phase voltages (Vu, Vv, Vw) are applied to the respective one ends.
  • a three-phase diode bridge (18, 19, 20, 24, 25, 26; D11, D21, D31, D14, D24, D34) that rectifies (Vr, Vs, Vt) and outputs the low potential and the high potential.
  • a switch group (30, 31, 32; S11, S21, S31, S12, S22, S32) that selectively connects the three other ends of the reactor to the connection point.
  • the first to third command values (Vr * , Vs * , Vt * ), which are command values for the first to third potentials, are respectively set.
  • the switch group When in the predetermined range, the switch group connects the other end corresponding to each command value to the connection point, and the predetermined range is centered on the command value (0) of the intermediate potential.
  • a range having a predetermined potential width is adopted for the AC waveform (VK).
  • a second aspect of the converter control method according to the present invention is the first aspect, wherein both the amplitude of the AC waveform and the predetermined potential width are changed from the high potential (VH) to the low potential. It is half of the command value (Vdc * ) of the output voltage (Vdc), which is the voltage minus (VL).
  • a third aspect of the converter control method is the second aspect, wherein the three-phase current (Iu, Iv, Iw) flowing through the reactor is three-phase / two-phase converted, and the three A first component (Id) whose phase is orthogonal to the phase voltage (Vu, Vv, Vw) and a second component (Iq) in phase with the three-phase voltage are obtained, and a fourth command value is obtained based on the first component.
  • (Vid * ) is obtained, and a second component command value (Iq * ) as a command value of the second component is obtained based on a difference between the output voltage (Vdc) and the command value (Vdc * ) of the output voltage.
  • a fifth command value (Viq * ) is obtained based on a difference between the second component and the command value of the second component, and the fourth command value and the fifth command value are subjected to two-phase / three-phase conversion.
  • the first to third command values (Vr * , Vs * , Vt * ) are obtained.
  • a fourth aspect of the converter control method according to the present invention is the third aspect, wherein the first component in a frequency band of three times or more the frequency of the three-phase voltages (Vu, Vv, Vw).
  • the fourth command value and the fifth command value are obtained from (Id), the second component (Iq), and the second component command value (Iq * ).
  • a fifth aspect of the converter control method according to the present invention is the fourth aspect, wherein the frequency of the AC waveform (VK) is three times the frequency of the three-phase voltage (Vu, Vv, Vw). That's it.
  • a sixth aspect of the converter control method according to the present invention is the fifth aspect thereof, and when the fourth command value (Vid * ) is obtained, the one component (Id) is the three-phase voltage (Vu). , Vv, Vw) is corrected by the first harmonic (cos3 ⁇ t) having a frequency three times the frequency of the second frequency (Vq * ), the two components (Iq) are the same as the first harmonic. It is corrected by the second harmonic (sin 3 ⁇ t) whose phase is orthogonal.
  • the converter control device includes a rectifier circuit that outputs a low potential (VL), a high potential (VH) higher than the low potential, and an intermediate potential (VQ) between the low potential and the high potential.
  • VL low potential
  • VH high potential
  • VQ intermediate potential
  • the first capacitor (205; 7) to which the low potential and the intermediate potential are supplied, and the first capacitor at a connection point (35; n), and the high potential and the intermediate potential are
  • a device for controlling a converter comprising a second capacitor (204; 6) supplied.
  • the rectifier circuit includes first to third potentials at respective other ends of the three-width pair reactors (202; 8, 9, 10) to which three-phase voltages (Vu, Vv, Vw) are applied to the respective one ends.
  • a three-phase diode bridge (18, 19, 20, 24, 25, 26; D11, D21, D31, D14, D24, D34) that rectifies (Vr, Vs, Vt) and outputs the low potential and the high potential.
  • a switch group (30, 31, 32; S11, S21, S31, S12, S22, S32) that selectively connects the three other ends of the reactor to the connection point.
  • the first to third command values (Vr * , Vs * , Vt * ), which are command values for the first to third potentials, are obtained.
  • a voltage command value generation unit (101; 122, 104) generated from a three-phase voltage, and each of the first to third command values has an alternating waveform (VK) centered on the command value (0) of the intermediate potential.
  • a switching signal (Srp, Srn, Ssp, Ssn, Stp) that causes the switch group to connect the other end corresponding to each command value to the connection point when it is within a range having a predetermined potential width. , Stn; and a pulse width modulator (102) for generating Sr, Ss, St).
  • a second aspect of the converter control device is the first aspect, wherein both the amplitude of the AC waveform and the predetermined potential width are from the high potential (VH) to the low potential. It is half of the command value (Vdc * ) of the output voltage (Vdc), which is the voltage minus (VL).
  • a third aspect of the converter control device is the second aspect, in which the three-phase voltage (Vu, Vv, Vw) is derived from the three-phase current (Iu, Iv, Iw) flowing through the reactor. ) And a three-phase / two-phase converter (103) for obtaining a first component (Id) whose phase is orthogonal and a second component (Iq) in phase with the three-phase voltage, and a first component based on the first component. 4 based on the difference between the first command value generation unit (108, 110, 113) for obtaining the command value (Vid * ) and the output voltage (Vdc) and the command value (Vdc * ) of the output voltage.
  • a second component command value (Iq * ) that is a command value of the second component is obtained, and a fifth command value (Viq * ) is obtained based on the difference between the second component and the command value of the second component.
  • Command value generator (105, 106, 107, 109, 112) and the fourth finger Value and the first to third command values from said fifth command value (Vr *, Vs *, Vt *) further comprises a two-phase / three-phase converter seeking and (104).
  • a fourth aspect of the converter control device is the third aspect, and has a frequency band of three times or more the frequency of the three-phase voltages (Vu, Vv, Vw).
  • a fifth aspect of the control device for the converter according to the present invention is the fourth aspect, wherein the frequency of the AC waveform (VK) is three times the frequency of the three-phase voltage (Vu, Vv, Vw). That's it.
  • a sixth aspect of the converter control device is the fifth aspect thereof, wherein the first command value generation unit converts the first component (Id) into the three-phase voltage (Vu, Vv). , Vw) having a first correction unit (115, 116, 117, 118, 120) that corrects by the first harmonic (cos3 ⁇ t) having a frequency that is three times the frequency of the frequency of Vw), the second command value generation unit includes: A second correction unit (114, 116, 117, 119, 121) that corrects the two components (Iq) with a second harmonic (sin3 ⁇ t) whose phase is orthogonal to the first harmonic is included.
  • the pulse width modulation is performed with a larger duty in which the other end of the corresponding reactor is connected to the connection point. Therefore, the potential at the connection point can be set to an intermediate potential.
  • the predetermined range to be compared with the first to third command values has a predetermined potential width with respect to the AC waveform centered on the intermediate potential command value. Therefore, in such pulse width modulation, it is not necessary to detect the power supply voltage or the polarity of the current flowing through the converter.
  • the power factor can be improved by performing the control to make the reactive power zero.
  • the second harmonic of the current flowing through the reactor increases as the capacitance ratio of the first capacitor and the second capacitor deviates from one.
  • the second harmonic appears as a third harmonic in the first component and the second component. Therefore, by adopting a band for obtaining the fourth command value and the fifth command value at least three times the frequency of the three-phase voltage, it is possible to reduce the second harmonic of the current flowing through the reactor.
  • the third harmonic of the first component and the second component is canceled when the fourth command value and the fifth command value are obtained. . Therefore, it is possible to further reduce the second harmonic of the current flowing through the reactor.
  • FIG. 1 is a circuit diagram showing a configuration of a three-level converter to which the present invention is applied and its periphery.
  • FIG. It is a circuit diagram which illustrates the composition of a PWM modulation part. It is a graph which shows operation
  • FIG. 1 is a circuit diagram showing a configuration of a three-level converter 200 to which the present invention is applied and its periphery.
  • Three-level converter 200 is connected to a three-phase power source 201 through a reactor group 202.
  • Three-phase voltages exhibiting potentials Vu, Vv, and Vw are output from the three-phase power source 201, and three-phase currents Iu, Iv, and Iw flow in the reactor group 202 corresponding to each.
  • Three-level converter 200 receives currents Iu, Iv, and Iw, and generates input potentials Vr, Vs, and Vt corresponding to the currents.
  • the reactor group 202 corresponds to the inductors 8, 9, and 10 shown in FIGS. 16 and 18, and the coils (not shown) through which the currents Ia, Ib, and Ic flow in FIG.
  • the three-level converter 200 includes a rectifier circuit 203 on the input side and capacitors 204 and 205 on the output side.
  • the rectifier circuit 203 applies a high potential VH and an intermediate potential VQ to the capacitor 204, and applies a low potential VL and an intermediate potential VQ to the capacitor 205, respectively.
  • the capacitors 204 and 205 correspond to the capacitors 6 and 7 shown in FIGS. 16 and 18 and the capacitor (not shown) charged with the voltage Vd / 2 in FIG.
  • the reactor group 202 corresponds to the inductors 8, 9, and 10 shown in FIGS. 16 and 18, and the coils (not indicated) through which the currents Ia, Ib, and Ic flow in FIG.
  • the rectifier circuit 203 has a three-phase diode bridge and a switch group.
  • the three-phase diode bridge rectifies the potentials Vr, Vs, and Vt and outputs a low potential VL and a high potential VH.
  • the switch group includes three ends of the power reactor group 202 on the side opposite to the three-phase power supply 201 (the end of the reactor group 202 on the three-phase power supply 201 side) with respect to the connection point N that connects the capacitors 204 and 205 to each other. The other end when grasped as one end) is selectively connected.
  • Examples of the three-phase diode bridge include a set of diodes 18, 19, 20, 24, 25, and 26 shown in FIGS. 16 and 18, and diodes D11, D21, D31, D14, D24, shown in FIG. A set of D34 can be employed.
  • the bidirectional switches 30, 31, 32 shown in FIGS. 16 and 18 and the switches S11, S21, S31, S12, S22, S32 shown in FIG. 17 can be adopted.
  • the switching signal generation unit 100 includes a voltage command value generation unit 101 and a PWM modulation unit 102.
  • the voltage command value generation unit 101 inputs measured values of the potentials Vu, Vv, and Vw, and calculates command values of the input potentials Vr, Vs, and Vt. Since the measurement of the potentials Vu, Vv, and Vw is a well-known technique, in FIG. 1, for simplicity, the potentials Vu, Vv, and Vw are drawn using arrows as if they were being input to the voltage command value generation unit 101. . Other arrows input to the block have the same meaning.
  • the PWM modulation unit 102 generates switching signals Sr, Ss, St or switching signals Srp, Ssp, Stp, Srn, Ssn, Stn based on the command values Vr * , Vs * , Vt * of the three-phase voltage.
  • the switching signals Sr, Ss, St can be used as the respective gate signals to the bidirectional switches 30, 31, 32 shown in FIGS.
  • the switching signals Srp, Ssp, Stp, Srn, Ssn, Stn can be employed as the respective gate signals to the switches S11, S21, S21, S22, S31, S32 shown in FIG.
  • the switch group of the rectifier circuit 203 uses the other end side of the reactor group 202 corresponding to each command value as a connection point. Connect to connection point N.
  • the switching signal Sr conducts the bidirectional switch 30 and is a terminal connected to the inductor 8. 14 is connected to an intermediate point 35 through a neutral point 33 and a feeder line 34.
  • the switching signal Ss causes the bidirectional switch 31 to conduct and connects the terminal 15 to the intermediate point 35.
  • the switching signal St causes the bidirectional switch 32 to conduct and connects the terminal 16 to the intermediate point 35.
  • switching signals Srp and Srn cause switches S11 and S12 to conduct, respectively, and the end of the U-phase coil opposite to the power source. (Point marked with “U” in the figure: diodes D12 and D13 are connected here) is connected to neutral point n.
  • the current Ia flows through one of the switches S11 and S12 according to the comparison result between the potential at the end of the coil and the potential at the neutral point n by the function of the diodes D12 and D13.
  • the switching signals Ssp and Ssn cause the switches S21 and S22 to conduct, respectively, and the end of the V-phase coil on the opposite side of the power supply (reference symbol “V” in the figure).
  • the points marked “" are connected here to the diodes D22 and D23) to the neutral point n.
  • the current Ib flows through one of the switches S21 and S22 according to the comparison result of the potential of the end of the coil and the potential of the neutral point n by the function of the diodes D22 and D23.
  • the switching signals Stp and Stn cause the switches S31 and S32 to conduct, respectively, and the end of the W-phase coil on the opposite side of the power supply (indicated by the symbol “W” in the figure)
  • the diodes D32 and D33 are connected here) to the neutral point n.
  • the current Ic flows through one of the switches S31 and S32 according to the comparison result between the potential of the end of the coil and the potential of the neutral point n by the function of the diodes D32 and D33.
  • FIG. 2 is a circuit diagram illustrating the configuration of the PWM modulation unit 102.
  • FIG. 3 is a graph showing the operation of the PWM modulation unit 102.
  • the intermediate potential VQ is set to 0 for the sake of simplicity. However, the present embodiment and the present invention does not limit the intermediate potential to this value.
  • the potential VN is an alternating current that takes a minimum value ( ⁇ Vdc * / 2) and a maximum value Vdc * / 2, and is generated by the signal source 102a.
  • the voltage Vdc * / 2 is a command value of the voltage charged in the capacitors 204 and 205.
  • the potential VP is set higher than the potential VN by the voltage Vdc * / 2.
  • the voltage Vdc * / 2 can be generated by the DC voltage source 102b, for example.
  • the predetermined range a range not more than the potential VP and not less than the potential VN is adopted.
  • the predetermined range described above is a range having a potential width Vdc * / 4 with respect to the AC waveform VK.
  • command value Vr * is greater than potential VP is compared in comparator 102rp, and whether or not it is greater than potential VN is compared in comparator 102rn.
  • the command value Vs * is compared in the comparator 102sp to determine whether it is greater than the potential VP, and in the comparator 102sn, it is compared whether it is greater than the potential VN. It is compared whether or not the command value Vt * is greater than the potential VP in the comparator 102tp, and whether or not it is greater than the potential VN in the comparator 102tn.
  • Each comparator outputs a logical value “1” if the determination result is affirmative, and outputs a logical value “0” if the determination result is negative.
  • the logical values output from the comparators 102rp, 102sp, and 102tp are inverted and output by the inverters 102ri, 102si, and 102ti, respectively.
  • the logical values output from the comparators 102rn, 102sn, and 102tn and the logical values output from the inverters 102ri, 102si, and 102ti are the switching signals Srn, Ssn, Stn, Srp, Ssp, and Stp, respectively.
  • the switches S12, S22, S32, S11, S21, S31 see FIG. 17
  • the PWM modulator 102 may further include AND gates 102rg, 102sg, and 102tg that output the switching signals Sr, Ss, and St, respectively. This is because it is suitable for controlling the bidirectional switches 30, 31, 32 (see FIG. 16 or FIG. 18). Specifically, the AND gate 102rg takes the logical product of the switching signals Srn and Srp to generate the switching signal Sr. Similarly, the AND gate 102sg takes the logical product of the switching signals Ssn and Ssp to generate the switching signal Ss, and the AND gate 102tg takes the logical product of the switching signals Stn and Stp to generate the switching signal St.
  • the switching signal Srn has a logical value “1” (high in the graph) corresponding to each of the command value Vr * being “larger” / “smaller” than the potential VN. Potential) / logical value “0” (low potential in the graph).
  • the switching signal Srp has a logical value “1” corresponding to each of the command value Vr * being “smaller” / “larger” than the potential VP. / Take "0".
  • the pulse width modulation is performed in which the other end is connected to the connection point N. Therefore, the potential at the connection point N can be set to the command value of the intermediate potential VQ.
  • the pulse width modulation is performed since the predetermined range compared with the command values Vr * , Vs * , Vt * has a predetermined potential width with respect to the AC waveform VK centered on the command value of the intermediate potential VQ, the pulse width modulation is performed.
  • both the amplitude (peak-to-peak) and the predetermined potential width of the AC waveform VK are half Vdc * / 2 of the command value Vdc * of the output voltage Vdc, which is a voltage obtained by subtracting the low potential VL from the high potential VH. It is desirable. This is because it is easy to obtain waveforms of potentials VP and VN that define the upper and lower limits of the predetermined range.
  • FIG. 4 is a graph showing a first example of the operation in the present embodiment.
  • Deviation when a disturbance of 20 V is forcibly applied to the deviation ⁇ VQ of the intermediate potential VQ (here, the command value of the intermediate potential VQ is considered to be 0, and thus becomes a value obtained by multiplying the intermediate potential VQ by ( ⁇ 1)).
  • the behavior of ⁇ VQ and current Iu is shown.
  • FIG. 5 is a block diagram illustrating another configuration of the switching signal generation unit 100 and its periphery. Since a technique for obtaining a voltage command based on a current command is known from, for example, Patent Document 5, a description thereof will be kept simple.
  • the current detector 206 detects currents Iu, Iv, and Iw flowing from the three-phase power source 201 to the reactor group 202.
  • the phase detector 122 detects the phase ⁇ t ( ⁇ : angular frequency, t: time) of the potentials Vu, Vv, Vw output from the three-phase power source 201.
  • the three-phase / two-phase converter 103 performs three-phase / two-phase conversion of the currents Iu, Iv, Iw into the d-axis and the q-axis, respectively, and the d-axis current Id as the first component and the q-axis current Iq as the second component, respectively. Ask for.
  • the q-axis and the d-axis are orthogonal coordinate axes in a rotating coordinate system that rotates in synchronization with the phases of the potentials Vu, Vv, and Vw, and the q-axis is advanced by 90 degrees relative to the d-axis.
  • the q axis is selected to be in phase with the three-phase voltage.
  • the adder / subtractor 105 outputs a deviation between the DC voltage Vdc and its command value Vdc * . Based on the deviation, the voltage control unit 106 obtains a q-axis current command value Iq * . The adder / subtractor 107 outputs a deviation between the q-axis current Iq and the command value Iq * . Based on the deviation, the current control unit 109 obtains a q-axis voltage command value Vq * .
  • the adder / subtractor 108 outputs a deviation between the d-axis current Id and the command value Id * .
  • the current control unit 110 obtains a d-axis voltage command value Vd * based on the deviation.
  • the command value Id * is selected to be zero. This is desirable in that the power factor is improved by controlling the reactive power to zero.
  • the command values Vq * and Vd * are corrected to command values Viq * and Vid * , respectively, by subtracting the interference terms by the adders / subtractors 112 and 113, respectively.
  • Two-phase / three-phase converter 104 command value Viq *, Vid * a two-phase / three-phase conversion to the command value Vr *, Vs *, to generate a Vt *.
  • FIG. 6 is a block diagram illustrating the configuration of the interference term generation unit 111 that generates an interference term.
  • the interference term generator 111 multiplies the d-axis current Id by ⁇ L (L: a value obtained by two-phase conversion of the inductance of the reactor group 202) and outputs the result to the adder / subtractor 112, and the q-axis current Iq is ( ⁇ L ) And output to the adder / subtractor 113.
  • Similar generation of interference terms and compensation of interference terms are also introduced in Non-Patent Document 4, for example.
  • the adders / subtracters 108 and 113 and the current control unit 110 can be grasped as a first command value generation unit that calculates the command value Vid * based on the d-axis current Id.
  • the adders / subtracters 105, 107 and 112 the voltage controller 106 and the current controller 109 obtain the command value Iq * based on the difference between the voltage Vdc and the command value Vdc *, and the difference between this and the q-axis current is obtained. Based on this, it can be grasped as a second command value generation unit for obtaining the command value Viq * .
  • FIG. 7 is a graph showing a second example of the operation in the present embodiment.
  • the configuration shown in FIG. 5 is adopted as the switching signal generation unit 100.
  • the graph it is shown in the graph that the recovery from the disturbance is remarkably accelerated by adopting the rotating coordinate system. That is, although the deviation ⁇ VQ is reduced to about 5 V and stabilized, only about 0.1 seconds have passed since the disturbance was applied.
  • the pulsating current is superimposed on the d-axis current Id and the q-axis current Iq. This is because the intermediate potential VQ is non-equilibrium.
  • a technique for reducing the pulsating flow will be described.
  • FIG. 8 is a graph showing waveforms of currents Iu, Iv, and Iw when the intermediate potential VQ approaches the low potential PL side and becomes unbalanced, and the horizontal axis indicates the phase angle of the power source. All of these include secondary harmonics.
  • FIG. 8 illustrates the second harmonic Iu2 of the current Iu. At the position where the current Iu exhibits a peak, the second harmonic Iu2 also exhibits a peak.
  • FIG. 9 is a graph showing normalized currents Id and Iq obtained by three-phase / two-phase coordinate conversion of the currents Iu, Iv and Iw shown in FIG. 8, and the horizontal axis indicates the phase angle of the power source. did.
  • a pulsating current is superimposed on the currents Id and Iq, specifically, a third harmonic is superimposed.
  • the current obtained by converting the three-phase current to the three-phase / two-phase coordinate conversion includes the third-order harmonic. 3.
  • FIG. 10 is a graph showing waveforms of currents Iu, Iv, and Iw when the intermediate potential VQ approaches the high potential PH side and becomes unbalanced, and the phase angle of the power source is adopted on the horizontal axis. All of these include secondary harmonics.
  • FIG. 10 illustrates the second harmonic Iu2 of the current Iu. At the position where the current Iu exhibits a peak, the second harmonic Iu2 also exhibits a peak.
  • FIG. 11 is a graph showing normalized currents Id and Iq obtained by three-phase / two-phase coordinate conversion of the currents Iu, Iv and Iw shown in FIG. 10, and the horizontal axis indicates the phase angle of the power source. did. Third-order harmonics are superimposed on the currents Id and Iq.
  • FIG. 12 is a graph showing a waveform when the intermediate potential VQ approaches the low potential PL side and becomes non-equilibrium.
  • Vrr is a potential on the input side of the rectifier circuit 203 while being subjected to pulse width modulation, and a filtered version thereof corresponds to the potential Vr.
  • the current Iu is more distorted on the increasing slope than the decreasing slope.
  • the d-axis current Id includes a third harmonic as shown in FIG. 9, and the q-axis current Iq is the same.
  • FIG. 13 is a graph showing a waveform when the intermediate potential VQ approaches the high potential PH side and becomes non-equilibrium.
  • the balanced intermediate potential VQ was set to 350V.
  • the current Iu is distorted on the decreasing side with a steeper slope than on the increasing side.
  • the d-axis current Id includes a third harmonic as shown in FIG. 11, and the q-axis current Iq is the same.
  • FIG. 14 illustrates the configuration of the improved switching signal generation unit 100 and its periphery in a block diagram.
  • the configuration shown in FIG. 14 includes adders / subtractors 114, 115, 116, a voltage control unit 117, multipliers 118, 119, and compensation term calculation units 120, 121. It has become the composition.
  • the adder / subtractor 116 subtracts the intermediate potential VQ from the intermediate potential command value VQ * (0 V in the example of FIG. 3 and 350 V in the examples of FIGS. 12 and 13) to obtain the deviation ⁇ VQ.
  • the voltage control unit 117 outputs a correction command value I0 * . This indicates an absolute value of a value for correcting the current command values Iq * and Id * .
  • Both the compensation term calculation units 120 and 121 receive the phase ⁇ t and generate the compensation terms cos (3 ⁇ t) and sin (3 ⁇ t), respectively. These are all third-order harmonic components of a sine wave having an angular frequency ⁇ , and the latter is advanced in phase by 90 degrees compared to the former.
  • the correction command value I0 * is multiplied by cos (3 ⁇ t) by the multiplier 118 to generate a correction value ⁇ d.
  • the correction command value I0 * is multiplied by sin (3 ⁇ t) by the multiplier 119 to generate a correction value ⁇ q.
  • the correction using such third-order harmonics as a compensation term is effective when the band for obtaining the command values Vid * and Viq * is set to three times or more the frequency of the three-phase voltage as described above. Further, since the third harmonics of the two-phase currents Id and Iq are canceled when the command values Vid * and Viq * are obtained, the second harmonics of the three-phase currents Iu, Iv and Iw flowing through the reactor group are further reduced. be able to.
  • FIG. 15 is a graph showing a third example of the operation in the present embodiment.
  • the configuration shown in FIG. 14 is adopted as the switching signal generation unit 100.
  • the pulsation of the two-phase currents Id and Iq is reduced although the disturbance is more serious immediately after the occurrence of the disturbance.

Abstract

 電源と3レベルコンバータとの間に介在するリアクトル群のいずれを、中間電位を出力する中間点に接続するか、をスイッチングにて制御する。当該スイッチングにおいて、コンバータの入力電位の指令値(Vr*,Vs*,Vt*)が中間電位の指令値(0)に近いほど、それぞれに相当するリアクトルが中間点に接続されるデューティが大きなパルス幅変調が行われる。よって中間点の電位を中間電位の指令値へと設定することができる。しかも指令値(Vr*,Vs*,Vt*)と比較される所定の範囲は中間電位の指令値(0)を中心とする交流波形(VK)に対して所定の電位幅を有しているので、かかるパルス幅変調においては電源電圧やコンバータに流れる電流の極性を検出する必要がない。

Description

コンバータの制御方法及び制御装置
 この発明はコンバータを制御する技術に関し、特に3レベルコンバータの制御技術に関する。
 三相整流回路から3レベルの直流電位を得るいわゆる3レベルコンバータが提案されている。3レベルコンバータは例えば下記特許文献1乃至3、非特許文献1,2に例示されている。
 図16は特許文献1のFig.4において紹介されている3レベルコンバータの回路図である。三幅対のリアクトルたるインダクタ8,9,10のそれぞれの一端に三相電圧が接続される。インダクタ8,9,10の他端は、それぞれ、給電線11,12,13を介して端子14,15,16に接続される。端子14,15,16は、ダイオード18,19,20,24,25,26で構成される電源三相ダイオードブリッジ17の入力端として機能し、電源三相ダイオードブリッジ17の出力側は給電線21,27を経由してコンデンサ6,7に接続される。
 端子14,15,16はそれぞれ双方向スイッチ30,31,32を介して中性点33に接続される。双方向スイッチ30でスイッチング素子61はコレクタ77及びエミッタ78を有しており、双方向スイッチ31でスイッチング素子61はコレクタ79及びエミッタ80を有しており、双方向スイッチ32でスイッチング素子61はコレクタ81及びエミッタ82を有している。
 これらのスイッチング素子61のいずれかが導通することにより、給電線34を介して、コンデンサ6,7の直列接続の中間点35に端子14,15,16のいずれかの電位が引加される。三相ダイオードブリッジ17の機能により出力端23,29に直流電圧が発生する。
 図17は非特許文献2のFig.1において紹介されている3レベルコンバータの回路図である。同様の回路は特許文献3の図4にも紹介されている。当該回路において三相電圧Va,Vb,Vc側から三相電流Ia,Ib,Icが流れる。
 電流IaはダイオードD12及びスイッチS11を介して、若しくはダイオードD13及びスイッチS12を介して、中性点nへと流れる電流Inとなる。又は電流IaはダイオードD11,D12を介して、若しくはダイオードD13,D14を介してコンデンサへ流れる。電流IbはダイオードD22及びスイッチS21を介して、若しくはダイオードD23及びスイッチS22を介して電流Inとなる。又は電流IbはダイオードD21,D22を介して、若しくはダイオードD23,D24を介してコンデンサへ流れる。電流IcはダイオードD32及びスイッチS31を介して、若しくはダイオードD33及びスイッチS32を介して電流Inとなる。又は電流IcはダイオードD31,D32を介して、若しくはダイオードD33,D34を介してコンデンサへ流れる。
 このようにしてスイッチS11,S22,S31と、スイッチS12,S22,S32とは、相電位が正となる期間及び負となる期間の耐圧を別個に担いつつ、二つのコンデンサをいずれも電圧Vd/2へと充電する。
 よってスイッチS12~S32の耐圧は、図16に示された回路のスイッチング素子61と比較して、ほぼ半分で足りる。しかし図17に示された回路は、図16に示された回路と比較してスイッチング素子の個数が倍増している。
 図18は特許文献2のFig.1において紹介されている3レベルコンバータの回路図である。出力端23,29には給電線37,38を介して給電線48が接続され、中間点35に接続された給電線47と共に制御ユニット40に与えられることにより、出力電圧の測定値が制御ユニットに与えられる。三相電源5(相電源2,3,4)の相電圧は給電線45~46(三相給電線42として結合している)から制御ユニット40へと与えられる。制御ユニット40には別途に外部制御信号41も与えられる。
 同様の回路は非特許文献1のFig.1(a)、特許文献2の図2にも紹介されている。この回路では図16に示された回路と比較してスイッチング素子に要求される耐圧はほぼ半分で足り、かつその個数が増加することもない。
 なお、本願に関連する他の文献として特許文献4,5及び非特許文献3,4,5を挙げておく。
欧州特許出願公開第0660498号明細書 特開平9-182441号公報 特開2002-142458号公報 特許第2754519号公報 特開2006-115609号公報 J.W.Kolar,U.Drofenik,F.C.Zach, "DC link voltage balancing of a three-phase / switch / level PWM(VIENNA) rectifier by modified hysteresis input current control", Proc. of Power Conversion Conference 1995, 1995, pp.443-465 Zhao, Y., Y. Li, T.A. Lipo, "Force Commutated Three-Level Boost Type Rectifier", IEEE-IAS Conference Record, Oct.1993, vol.II, 1993, pp.771-777 市川文俊、他5名、「電力品質維持用総合補償装置の制御方法」、電気学会半導体電力研究会資料SPC-96-127 酒井慶次郎、他3名、「電圧形コンバータの平滑コンデンサ容量低減及び瞬停再始動制御法」電気学会論文誌D、112巻1号、平成4年 電気学会・半導体電力変換システム調査専門委員会編、「パワーエレクトロニクス回路」オーム社、P176~177、平成12年11月
 図16や図18に示された構成に対してスイッチングを制御するためには、非特許文献1で紹介されているように、ヒステリシスコンパレータによる簡易な制御も提案されている。しかしながらかかる制御は三相毎に個別に電流を制御する必要がある。しかも流れる電流の正負を検出する必要もあった。
 図17に示された構成に対してスイッチングを制御するためには、特許文献3で紹介されているように、キャリアとの比較を行う制御方式も提案されている。しかしながら電流を制御する回路を電源電圧の極性に依存して切り替える必要があり、三相電源に対応する場合には電流制御ループが6組必要となる。また電流制御ループには直流電圧の中間電位を平衡させる制御回路も必要となる。
 そこで、本願にかかる発明では、電源電圧やコンバータに流れる電流の極性を検出する必要がない、3レベルコンバータの制御技術を提供する。
 この発明にかかるコンバータの制御方法は、低電位(VL)、前記低電位よりも高い高電位(VH)、及び前記低電位と前記高電位との間の中間電位(VQ)を出力する整流回路(203)と、前記低電位及び前記中間電位が供給される第1コンデンサ(205;7)と、接続点(35;n)において前記第1コンデンサと接続され、前記高電位及び前記中間電位が供給される第2コンデンサ(204;6)とを備えるコンバータを制御する方法である。当該コンバータにおいて前記整流回路は三相電圧(Vu,Vv,Vw)がそれぞれの一端に印加される三幅対のリアクトル(202;8,9,10)のそれぞれの他端における第1乃至第3の電位(Vr,Vs,Vt)を整流して前記低電位及び前記高電位を出力する三相ダイオードブリッジ(18,19,20,24,25,26;D11,D21,D31,D14,D24,D34)と、前記接続点に、前記リアクトルの三つの前記他端を選択的に接続するスイッチ群(30,31,32;S11,S21,S31,S12,S22,S32)とを有する。
 この発明にかかるコンバータの制御方法の第1の態様は、前記第1乃至第3の電位のそれぞれについての指令値である第1乃至第3指令値(Vr*,Vs*,Vt*)がそれぞれ所定の範囲内にあるときに、前記スイッチ群はそれぞれの指令値に対応する前記他端を前記接続点に接続し、前記所定の範囲には前記中間電位の指令値(0)を中心とする交流波形(VK)に対して所定の電位幅を有する範囲を採用する。
 この発明にかかるコンバータの制御方法の第2の態様は、その第1の態様であって、前記交流波形の振幅及び前記所定の電位幅のいずれもが、前記高電位(VH)から前記低電位(VL)を引いた電圧たる出力電圧(Vdc)の指令値(Vdc*)の半分である。
 この発明にかかるコンバータの制御方法の第3の態様は、その第2の態様であって、前記リアクトルに流れる三相電流(Iu,Iv,Iw)を三相/二相変換して、前記三相電圧(Vu,Vv,Vw)と位相が直交する第1成分(Id)と、前記三相電圧と同相の第2成分(Iq)とを求め、前記第1成分に基づいて第4指令値(Vid*)を求め、前記出力電圧(Vdc)と前記出力電圧の前記指令値(Vdc*)との差に基づいて前記第2成分の指令値たる第2成分指令値(Iq*)を求め、前記第2成分と前記第2成分の前記指令値との差に基づいて第5指令値(Viq*)を求め、前記第4指令値及び前記第5指令値を二相/三相変換して前記第1乃至第3指令値(Vr*,Vs*,Vt*)を求める。
 この発明にかかるコンバータの制御方法の第4の態様は、その第3の態様であって、前記三相電圧(Vu,Vv,Vw)の周波数の三倍以上の周波数帯域において、前記第1成分(Id)、前記第2成分(Iq)、前記第2成分指令値(Iq*)から前記第4指令値及び前記第5指令値が求められる。
 この発明にかかるコンバータの制御方法の第5の態様は、その第4の態様であって、前記交流波形(VK)の周波数は、前記三相電圧(Vu,Vv,Vw)の周波数の三倍以上である。
 この発明にかかるコンバータの制御方法の第6の態様は、その第5の態様であって、前記第4指令値(Vid*)を求めるときに前記1成分(Id)は前記三相電圧(Vu,Vv,Vw)の周波数の三倍の周波数の第1高調波(cos3ωt)によって補正され、前記第5指令値(Viq*)を求めるときに前記2成分(Iq)は前記第1高調波と位相が直交する第2高調波(sin3ωt)によって補正される。
 この発明にかかるコンバータの制御装置は、低電位(VL)、前記低電位よりも高い高電位(VH)、及び前記低電位と前記高電位との間の中間電位(VQ)を出力する整流回路(203)と、前記低電位及び前記中間電位が供給される第1コンデンサ(205;7)と、接続点(35;n)において前記第1コンデンサと接続され、前記高電位及び前記中間電位が供給される第2コンデンサ(204;6)とを備えるコンバータを制御する装置である。当該コンバータにおいて前記整流回路は三相電圧(Vu,Vv,Vw)がそれぞれの一端に印加される三幅対のリアクトル(202;8,9,10)のそれぞれの他端における第1乃至第3の電位(Vr,Vs,Vt)を整流して前記低電位及び前記高電位を出力する三相ダイオードブリッジ(18,19,20,24,25,26;D11,D21,D31,D14,D24,D34)と、前記接続点に、前記リアクトルの三つの前記他端を選択的に接続するスイッチ群(30,31,32;S11,S21,S31,S12,S22,S32)とを有する。
 この発明にかかるコンバータの制御装置の第1の態様は、前記第1乃至第3の電位のそれぞれについての指令値である第1乃至第3指令値(Vr*,Vs*,Vt*)を前記三相電圧から生成する電圧指令値生成部(101;122,104)と、前記第1乃至第3指令値のそれぞれが前記中間電位の指令値(0)を中心とする交流波形(VK)に対して所定の電位幅を有する範囲内にあるときに、前記スイッチ群をしてそれぞれの指令値に対応する前記他端を前記接続点に接続せしめるスイッチング信号(Srp,Srn,Ssp,Ssn,Stp,Stn;Sr,Ss,St)を生成するパルス幅変調器(102)とを備える。
 この発明にかかるコンバータの制御装置の第2の態様は、その第1の態様であって、前記交流波形の振幅及び前記所定の電位幅のいずれもが、前記高電位(VH)から前記低電位(VL)を引いた電圧たる出力電圧(Vdc)の指令値(Vdc*)の半分である。
 この発明にかかるコンバータの制御装置の第3の態様は、その第2の態様であって、前記リアクトルに流れる三相電流(Iu,Iv,Iw)から、前記三相電圧(Vu,Vv,Vw)と位相が直交する第1成分(Id)と、前記三相電圧と同相の第2成分(Iq)とを求める三相/二相変換器(103)と、前記第1成分に基づいて第4指令値(Vid*)を求める第1の指令値生成部(108,110,113)と、前記出力電圧(Vdc)と前記出力電圧の前記指令値(Vdc*)との差に基づいて前記第2成分の指令値たる第2成分指令値(Iq*)を求め、前記第2成分と前記第2成分の前記指令値との差に基づいて第5指令値(Viq*)を求める第2の指令値生成部(105,106,107,109,112)と、前記第4指令値及び前記第5指令値から前記第1乃至第3指令値(Vr*,Vs*,Vt*)を求める二相/三相変換器(104)とを更に備える。
 この発明にかかるコンバータの制御装置の第4の態様は、その第3の態様であって、前記三相電圧(Vu,Vv,Vw)の周波数の三倍以上の周波数帯域を有する。
 この発明にかかるコンバータの制御装置の第5の態様は、その第4の態様であって、前記交流波形(VK)の周波数は、前記三相電圧(Vu,Vv,Vw)の周波数の三倍以上である。
 この発明にかかるコンバータの制御装置の第6の態様は、その第5の態様であって、前記第1の指令値生成部は、前記第1成分(Id)を前記三相電圧(Vu,Vv,Vw)の周波数の三倍の周波数の第1高調波(cos3ωt)によって補正する第1補正部(115,116,117,118,120)を有し、前記第2の指令値生成部は、前記2成分(Iq)を前記第1高調波と位相が直交する第2高調波(sin3ωt)によって補正する第2補正部(114,116,117,119,121)を有する。
 この発明にかかるコンバータの制御方法及び制御装置の第1の態様によれば、リアクトルの3つの他端のいずれを接続点に接続するかを制御するスイッチングにおいて、第1乃至第3指令値の値が中間電位の指令値に近いほど、それぞれに相当するリアクトルの他端が接続点に接続されるデューティが大きなパルス幅変調が行われる。よって接続点の電位を中間電位へと設定することができる。しかも第1乃至第3指令値と比較される所定の範囲は中間電位の指令値を中心とする交流波形に対して所定の電位幅を有している。よってかかるパルス幅変調においては電源電圧やコンバータに流れる電流の極性を検出する必要がない。
 この発明にかかるコンバータの制御方法及び制御装置の第2の態様によれば、所定の範囲の上限と下限とを規定する波形が得やすい。
 この発明にかかるコンバータの制御方法及び制御装置の第3の態様によれば、無効電力を零とする制御を行って力率を改善することができる。
 この発明にかかるコンバータの制御方法及び制御装置の第4の態様によれば、第1コンデンサと第2コンデンサの容量比が1からずれるほど、リアクトルに流れる電流の2次調波が大きくなる。当該2次調波は第1成分及び第2成分において3次調波として現れる。よって第4指令値及び第5指令値を求める帯域を、三相電圧の周波数の三倍以上に採ることにより、リアクトルに流れる電流の2次調波を低減することができる。
 この発明にかかるコンバータの制御方法及び制御装置の第5の態様によれば、リアクトルに流れる電流の2次調波を低減することができる。
 この発明にかかるコンバータの制御方法及び制御装置の第6の態様によれば、第4指令値及び第5指令値を求めるときに、第1成分及び第2成分の3次調波がキャンセルされる。よってリアクトルに流れる電流の2次調波をより低減することができる。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
この発明が適用される3レベルコンバータ及びその周辺の構成を示す回路図である。 PWM変調部の構成を例示する回路図である。 PWM変調部の動作を示すグラフである。 本実施の形態における動作の第1例を示すグラフである。 スイッチング信号生成部の他の構成及びその周辺を例示するブロック図である。 干渉項生成部の構成を例示するブロック図である。 本実施の形態における動作の第2例を示すグラフである。 中間電位が低電位側に近づいて非平衡となった場合の三相電流の波形を示すグラフである。 中間電位が低電位側に近づいて非平衡となった場合の二相電流の波形を示すグラフである。 中間電位が高電位側に近づいて非平衡となった場合の三相電流の波形を示すグラフである。 中間電位が高電位側に近づいて非平衡となった場合の二相電流の波形を示すグラフである。 中間電位が低電位側に近づいて非平衡となった場合の波形を示すグラフである。 中間電位が低電位側に近づいて非平衡となった場合の波形を示すグラフである。 改良したスイッチング信号生成部の構成及びその周辺を例示するブロック図である。 本実施の形態における動作の第3例を示すグラフである。 従来の3レベルコンバータの回路図である。 従来の他の3レベルコンバータの回路図である。 従来の更に他の3レベルコンバータの回路図である。
 図1はこの発明が適用される3レベルコンバータ200及びその周辺の構成を示す回路図である。3レベルコンバータ200はリアクタ群202を介して三相電源201と接続される。
 三相電源201からは電位Vu,Vv,Vwを呈する三相電圧が出力され、それぞれに対応してリアクタ群202には三相の電流Iu,Iv,Iwが流れる。3レベルコンバータ200は電流Iu,Iv,Iwを入力し、それぞれに対応して入力電位Vr,Vs,Vtが発生する。リアクタ群202は図16及び図18に示されたインダクタ8,9,10や、図17において電流Ia,Ib,Icが流れるコイル(符号なし)に相当する。
 3レベルコンバータ200は入力側に整流回路203を、出力側にコンデンサ204,205をそれぞれ備えている。整流回路203は、コンデンサ204に高電位VHと中間電位VQとを、コンデンサ205に低電位VLと中間電位VQとを、それぞれ印加する。コンデンサ204,205は図16及び図18に示されたコンデンサ6,7や、図17において電圧Vd/2で充電されるコンデンサ(符号なし)に相当する。
 リアクタ群202は図16及び図18に示されたインダクタ8,9,10や、図17において電流Ia,Ib,Icが流れるコイル(符号なし)に相当する。
 整流回路203は三相ダイオードブリッジと、スイッチ群とを有している。三相ダイオードブリッジは電位Vr,Vs,Vtを整流して低電位VL及び高電位VHを出力する。スイッチ群は、コンデンサ204,205を相互に接続する接続点Nに対して、三相電源201とは反対側における電源リアクトル群202の三つの端(三相電源201側のリアクトル群202の端を一端として把握した場合の他端)を選択的に接続する。
 当該三相ダイオードブリッジとしては、図16及び図18に示されたダイオード18,19,20,24,25,26の集合や、図17に示されたダイオードD11,D21,D31,D14,D24,D34の集合を採用することができる。
 当該スイッチ群としては、図16及び図18に示された双方向スイッチ30,31,32や、図17に示されたスイッチS11,S21,S31,S12,S22,S32を採用することができる。
 スイッチング信号生成部100は電圧指令値生成部101と、PWM変調部102とを有している。電圧指令値生成部101は電位Vu,Vv,Vwの測定値を入力し、入力電位Vr,Vs,Vtの指令値を計算する。電位Vu,Vv,Vwの測定は周知技術であるので、図1では簡単のため、単に電位Vu,Vv,Vwを電圧指令値生成部101に入力しているかの如く矢印を用いて描いている。ブロックに入力する他の矢印も同様の意味を示している。
 PWM変調部102は三相電圧の指令値Vr*,Vs*,Vt*に基づいてスイッチング信号Sr,Ss,St、あるいはスイッチング信号Srp,Ssp,Stp,Srn,Ssn,Stnを生成する。スイッチング信号Sr,Ss,Stは図16及び図18に示された双方向スイッチ30,31,32へのそれぞれのゲート信号として採用できる。スイッチング信号Srp,Ssp,Stp,Srn,Ssn,Stnは、図17に示されたスイッチS11,S21,S21,S22,S31,S32へのそれぞれのゲート信号として採用できる。
 そして指令値Vr*,Vs*,Vt*がそれぞれ後述する所定の範囲内にあるときに、整流回路203のスイッチ群は、それぞれの指令値に対応するリアクトル群202の他端側を接続点に接続点Nへと接続する。
 より具体的には図16又は図18を参照して、指令値Vr*が後述する所定の範囲内にあるときに、スイッチング信号Srは双方向スイッチ30を導通させ、インダクタ8に接続された端子14を中性点33、給電線34を介して中間点35へと接続する。同様にして、指令値Vs*が後述する所定の範囲内にあるときに、スイッチング信号Ssは双方向スイッチ31を導通させて端子15を中間点35へと接続する。指令値Vt*が後述する所定の範囲内にあるときに、スイッチング信号Stは双方向スイッチ32を導通させて端子16を中間点35へと接続する。
 また図17を参照して、指令値Vr*が後述する所定の範囲内にあるときに、スイッチング信号Srp,SrnはそれぞれスイッチS11,S12を導通させ、電源と反対側のU相のコイルの端(図中で符号“U”と付記した点:ここにおいてダイオードD12,D13同士が接続される)を中性点nに接続する。但し電流Iaは、ダイオードD12,D13の機能により、上記コイルの上記の端の電位と中性点nの電位との比較結果に応じて、スイッチS11,S12のいずれか一方を流れる。同様にして指令値Vs*が所定の範囲内にあるときに、スイッチング信号Ssp,SsnはそれぞれスイッチS21,S22を導通させ、電源と反対側のV相のコイルの端(図中で符号“V”と付記した点:ここにおいてダイオードD22,D23同士が接続される)を中性点nに接続する。但し電流Ibは、ダイオードD22,D23の機能により、上記コイルの上記の端の電位と中性点nとの電位の比較結果に応じて、スイッチS21,S22のいずれか一方を流れる。指令値Vt*が所定の範囲内にあるときに、スイッチング信号Stp,StnはそれぞれスイッチS31,S32を導通させ、電源と反対側のW相のコイルの端(図中で符号“W”と付記した点:ここにおいてダイオードD32,D33同士が接続される)を中性点nに接続する。但し電流Icは、ダイオードD32,D33の機能により、上記コイルの上記の端の電位と中性点nの電位との比較結果に応じて、スイッチS31,S32のいずれか一方を流れる。
 図2はPWM変調部102の構成を例示する回路図である。図3はPWM変調部102の動作を示すグラフである。なお、以降の説明では簡単のために中間電位VQを0とするが、本実施の形態ひいては本発明は中間電位をこの値に限定するものではない。
 電位VNは最小値(-Vdc*/2)及び最大値Vdc*/2を採る交流であり、信号源102aによって生成される。ここで電圧Vdc*/2は、コンデンサ204,205に充電される電圧の指令値となる。電位VPは電位VNよりも電圧Vdc*/2高く設定される。電圧Vdc*/2は例えば直流電圧源102bによって発生できる。
 上述の所定の範囲として電位VP以下で電位VN以上の範囲を採用する。なお、中間電位VQ(=0)を中心とし、振幅がVdc*/4の交流波形VKを導入する。これにより、上述の所定の範囲は、交流波形VKに対して電位幅Vdc*/4を有する範囲であると把握できる。
 指令値Vr*はコンパレータ102rpにおいて電位VPよりも大きいか否かが比較され、コンパレータ102rnにおいて電位VNよりも大きいか否かが比較される。指令値Vs*はコンパレータ102spにおいて電位VPよりも大きいか否かが比較され、コンパレータ102snにおいて電位VNよりも大きいか否かが比較される。指令値Vt*はコンパレータ102tpにおいて電位VPよりも大きいか否かが比較され、コンパレータ102tnにおいて電位VNよりも大きいか否かが比較される。それぞれのコンパレータは、それぞれの判断結果が肯定的であれば論理値“1”を出力し、否定的であれば論理値“0”を出力する。
 コンパレータ102rp,102sp,102tpが出力する論理値は、それぞれインバータ102ri,102si,102tiで反転されて出力される。そしてコンパレータ102rn,102sn,102tnの出力する論理値、インバータ102ri,102si,102tiの出力する論理値が、それぞれスイッチング信号Srn,Ssn,Stn,Srp,Ssp,Stpとなる。但しスイッチング信号Srn,Ssn,Stn,Srp,Ssp,Stpの論理値が“1”のときこれらが入力されるスイッチS12,S22,S32,S11,S21,S31(図17参照)は導通し、論理値“0”のときには非導通となる。
 PWM変調部102は更に、それぞれスイッチング信号Sr,Ss,Stを出力するアンドゲート102rg,102sg,102tgを有していても良い。双方向スイッチ30,31,32(図16又は図18参照)を制御するのに適しているからである。具体的にはアンドゲート102rgはスイッチング信号Srn,Srpの論理積を採ってスイッチング信号Srを生成する。同様にして、アンドゲート102sgはスイッチング信号Ssn,Sspの論理積を採ってスイッチング信号Ssを生成し、アンドゲート102tgはスイッチング信号Stn,Stpの論理積を採ってスイッチング信号Stを生成する。
 コンパレータ102rnの動作及び図3のグラフから明確なように、指令値Vr*が電位VNよりも「大きい」/「小さい」のそれぞれに対応してスイッチング信号Srnは論理値“1”(グラフでは高電位)/論理値“0”(グラフでは低電位)を採る。またコンパレータ102rp及びインバータ102riの動作並びに図3のグラフから明確なように、指令値Vr*が電位VPよりも「小さい」/「大きい」のそれぞれに対応してスイッチング信号Srpは論理値“1”/“0”を採る。
 つまり指令値Vr*が上述の所定範囲にあれば電源と反対側のリアクトルの端(図16及び図18の端子14;図17の点U)が接続点Nに接続されることになる。指令値Vs*,Vt*についても同様である。
 リアクトル群202の3つの端のいずれを接続点Nに接続するかを制御するスイッチングにおいて、指令値Vr*,Vs*,Vt*が中間電位VQの指令値に近いほど、それぞれに相当するリアクトルの他端が接続点に接続されるデューティが大きなパルス幅変調が行われる。よって接続点Nの電位を中間電位VQの指令値へと設定することができる。しかも指令値Vr*,Vs*,Vt*と比較される所定の範囲は中間電位VQの指令値を中心とする交流波形VKに対して所定の電位幅を有しているので、かかるパルス幅変調においては電源電圧やコンバータに流れる電流の極性を検出する必要がない。なお、このような二つの電位VP,VNをキャリアとして指令値と比較してパルス幅変調を行う技術自体はユニポーラ変調として公知であり、例えば特許文献4や非特許文献5に紹介される。
 なお、交流波形VKの振幅(ピークトゥピーク)及び所定の電位幅のいずれもが、高電位VHから低電位VLを引いた電圧たる出力電圧Vdcの指令値Vdc*の半分Vdc*/2であることが望ましい。所定の範囲の上限と下限とを規定する電位VP,VNの波形が得やすいからである。
 図4は本実施の形態における動作の第1例を示すグラフである。中間電位VQの偏差ΔVQ(ここでは中間電位VQの指令値を0と考えるので、中間電位VQに(-1)を乗じた値となる)に強制的に20Vの外乱を与えた場合の、偏差ΔVQと電流Iuとの振る舞いが示されている。
 図4は電圧指令値生成部101が指令値Vr*,Vs*,Vt*を三相のアナログ処理によって生成した場合を例示している。具体的には電圧Vr,Vs,Vtと同位相の三相波形と、直流電圧Vdc(=VH-VL)と、電流Iu,Iv,Iwとに基づいて(いずれも実測値)アナログ演算した結果を用いて指令値Vr*,Vs*,Vt*が生成される。
 図4に示されるグラフから、外乱を印加してほぼ1秒後には偏差ΔVQが5V程度に低下して安定することがわかる。
 図5はスイッチング信号生成部100の他の構成及びその周辺を例示するブロック図である。電流指令に基づいて電圧指令を求める手法は、例えば特許文献5で公知であるので、説明は簡易に留める。
 電流検出器206は三相電源201からリアクトル群202に流れる電流Iu,Iv,Iwを検出する。位相検出器122は三相電源201が出力する電位Vu,Vv,Vwの位相ωt(ω:角周波数、t:時間)を検出する。三相/二相変換器103は電流Iu,Iv,Iwをd軸及びq軸へと三相/二相変換して、それぞれ第1成分たるd軸電流Id及び第2成分たるq軸電流Iqを求める。ここでq軸及びd軸は電位Vu,Vv,Vwの位相と同期して回転する回転座標系における直交座標軸であり、q軸はd軸よりも90度進相である。本実施の形態ではq軸が三相電圧と同相に選定される。
 加減算器105は、直流電圧Vdcとその指令値Vdc*との偏差を出力する。当該偏差に基づき、電圧制御部106はq軸電流の指令値Iq*を求める。加減算器107は、q軸電流Iqと、指令値Iq*との偏差を出力する。当該偏差に基づき、電流制御部109はq軸電圧の指令値Vq*を求める。
 加減算器108は、d軸電流Idと、その指令値Id*との偏差を出力する。電流制御部110は当該偏差に基づきd軸電圧の指令値Vd*を求める。ここではd軸電流が無効電力に対応しているため、その指令値Id*は0に選定されている。これは無効電力を零とする制御を行って力率を改善する点で望ましい。
 指令値Vq*,Vd*はそれぞれ加減算器112,113によって干渉項が差し引かれ、それぞれ指令値Viq*,Vid*へと修正される。二相/三相変換器104は指令値Viq*,Vid*を二相/三相変換して指令値Vr*,Vs*,Vt*を生成する。
 図6は干渉項を生成する干渉項生成部111の構成を例示するブロック図である。干渉項生成部111はd軸電流IdにωL(L:リアクトル群202のインダクタンスを二相変換して得られた値)を乗じて加減算器112へと出力し、q軸電流Iqに(-ωL)を乗じて加減算器113へと出力する。これに類似した干渉項の生成及び干渉項の補償は、例えば非特許文献4にも紹介されている。
 加減算器108,113及び電流制御部110は、d軸電流Idに基づいて指令値Vid*を求める第1の指令値生成部として把握することができる。
 また加減算器105,107,112並びに電圧制御部106及び電流制御部109は、電圧Vdcとその指令値Vdc*との差に基づいて指令値Iq*を求め、これとq軸電流との差に基づいて指令値Viq*を求める第2の指令値生成部として把握することができる。
 図7は本実施の形態における動作の第2例を示すグラフである。但しスイッチング信号生成部100としては図5に示された構成が採用されている。第1例と比較して、回転座標系を採用したことにより、外乱からの回復が顕著に早まったことがグラフに現れている。即ち、偏差ΔVQが5V程度に低下して安定するのに、外乱を印加してほぼ0.1秒程度しか経過していない。
 但し、d軸電流Id及びq軸電流Iqに脈流が重畳している。これは中間電位VQが非平衡であることに起因している。以下、当該脈流を低減する技術について説明する。
 図8は中間電位VQが低電位PL側に近づいて非平衡となった場合の電流Iu,Iv,Iwの波形を示すグラフであり、横軸には電源の位相角を採用した。これらにはいずれも二次調波が含まれている。図8には電流Iuの二次調波Iu2を例示した。電流Iuがピークを呈する位置では、二次調波Iu2もほぼピークを呈している。
 図9は図8に示された電流Iu,Iv,Iwを三相/二相座標変換して得られる電流Id,Iqを正規化して示すグラフであり、横軸には電源の位相角を採用した。電流Id,Iqには脈流が重畳し、具体的には三次調波が重畳している。このように三相電流に二次調波が含まれているとき、当該三相電流を三相/二相座標変換して得られる電流には三次調波が含まれることは、例えば非特許文献3に示されている。
 図10は中間電位VQが高電位PH側に近づいて非平衡となった場合の電流Iu,Iv,Iwの波形を示すグラフであり、横軸には電源の位相角を採用した。これらにはいずれも二次調波が含まれている。図10には電流Iuの二次調波Iu2を例示した。電流Iuがピークを呈する位置では、二次調波Iu2もほぼピークを呈している。
 図11は図10に示された電流Iu,Iv,Iwを三相/二相座標変換して得られる電流Id,Iqを正規化して示すグラフであり、横軸には電源の位相角を採用した。電流Id,Iqには三次調波が重畳している。
 図12は中間電位VQが低電位PL側に近づいて非平衡となった場合の波形を示すグラフである。但し、PL=0,Vdc=700Vに設定したことにより、平衡な中間電位VQは350Vである。電位Vrrはパルス幅変調されたままでの整流回路203の入力側の電位であり、これをフィルタリングしたものが電位Vrに相当する。電流Iuは増大する側の傾斜の方が、減少する側の傾斜よりも急峻となって歪んでいる。またd軸電流Idは図9に示されるように三次調波を含んでおり、q軸電流Iqも同様である。
 図13は中間電位VQが高電位PH側に近づいて非平衡となった場合の波形を示すグラフである。但し図12と同様に平衡な中間電位VQは350Vとした。電流Iuは減少する側の傾斜の方が、増大する側の傾斜よりも急峻となって歪んでいる。またd軸電流Idは図11に示されるように三次調波を含んでおり、q軸電流Iqも同様である。
 コンデンサ204,205の容量比が1からずれるほど、リアクトル群202に流れる三相電流Iu,Iv,Iwは、上述のように二次調波が大きくなる。そしてこの二次調波は二相電流Id,Iqにおいて三次調波として現れる。
 よって指令値Vid*,Viq*を求める帯域を、三相電圧の周波数の三倍以上に採ることにより、リアクトル群202に流れる三相電流Id,Iqの二次調波を低減することができる可能性がある。
 上記の知見に基づき、図14には改良したスイッチング信号生成部100の構成及びその周辺をブロック図で例示した。
 図14に示された構成は、図5に示された構成と比較して、加減算器114,115,116及び電圧制御部117、乗算器118,119、並びに補償項演算部120,121を追加した構成となっている。
 加減算器116では、中間電位VQを中間電位の指令値VQ*(図3の例示では0V、図12や図13の例示では350V)から差し引いて偏差ΔVQを求める。偏差ΔVQは電圧制御部117によって補正指令値I0*が出力される。これは電流指令値Iq*,Id*を補正する値の絶対値を示している。
 補償項演算部120,121はいずれも位相ωtを入力し、それぞれ補償項cos(3ωt),sin(3ωt)を生成する。これらはいずれも角周波数ωの正弦波の三次の高調波成分であり、後者は前者よりも位相が90度進相となる。
 補正指令値I0*は乗算器118によってcos(3ωt)が乗じられ、補正値Δdが生成される。また補正指令値I0*は乗算器119によってsin(3ωt)が乗じられ、補正値Δqが生成される。このようにして得られた補正値Δq(=I0*sin(3ωt))を加減算器114において指令値Iq*から差し引くことでq軸電流の指令値が補正される。また補正値Δq(=I0*cos(3ωt))を加減算器115において指令値Id*から差し引くことでd軸電流の指令値が補正される。
 このような三次調波を補償項として用いた補正は、上述のように指令値Vid*,Viq*を求める帯域を、三相電圧の周波数の三倍以上に採ることで実効的となる。また指令値Vid*,Viq*を求めるときに、二相電流Id,Iqの三次調波がキャンセルされるので、リアクトル群に流れる三相電流Iu,Iv,Iwの2次調波をより低減することができる。
 図15は本実施の形態における動作の第3例を示すグラフである。但しスイッチング信号生成部100としては図14に示された構成が採用されている。第2例(図7)と比較して、外乱が発生した直後ではより大きく乱れるものの、二相電流Id,Iqの脈動が低減される。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。

Claims (12)

  1.  低電位(VL)、前記低電位よりも高い高電位(VH)、及び前記低電位と前記高電位との間の中間電位(VQ)を出力する整流回路(203)と、
     前記低電位及び前記中間電位が供給される第1コンデンサ(205;7)と、
     接続点(35;n)において前記第1コンデンサと接続され、前記高電位及び前記中間電位が供給される第2コンデンサ(204;6)と
    を備え、
     前記整流回路は
     三相電圧(Vu,Vv,Vw)がそれぞれの一端に印加される三幅対のリアクトル(202;8,9,10)のそれぞれの他端における第1乃至第3の電位(Vr,Vs,Vt)を整流して前記低電位及び前記高電位を出力する三相ダイオードブリッジ(18,19,20,24,25,26;D11,D21,D31,D14,D24,D34)と、
     前記接続点に、前記リアクトルの三つの前記他端を選択的に接続するスイッチ群(30,31,32;S11,S21,S31,S12,S22,S32)と
    を有するコンバータを制御する方法であって、
     前記第1乃至第3の電位のそれぞれについての指令値である第1乃至第3指令値(Vr*,Vs*,Vt*)がそれぞれ所定の範囲内にあるときに、前記スイッチ群はそれぞれの指令値に対応する前記他端を前記接続点に接続し、
     前記所定の範囲には前記中間電位の指令値(0)を中心とする交流波形(VK)に対して所定の電位幅を有する範囲を採用する、コンバータの制御方法。
  2.  前記交流波形の振幅及び前記所定の電位幅のいずれもが、前記高電位(VH)から前記低電位(VL)を引いた電圧たる出力電圧(Vdc)の指令値(Vdc*)の半分である、請求項1記載のコンバータの制御方法。
  3.  前記リアクトルに流れる三相電流(Iu,Iv,Iw)を三相/二相変換して、前記三相電圧(Vu,Vv,Vw)と位相が直交する第1成分(Id)と、前記三相電圧と同相の第2成分(Iq)とを求め、
     前記第1成分に基づいて第4指令値(Vid*)を求め、
     前記出力電圧(Vdc)と前記出力電圧の前記指令値(Vdc*)との差に基づいて前記第2成分の指令値たる第2成分指令値(Iq*)を求め、
     前記第2成分と前記第2成分の前記指令値との差に基づいて第5指令値(Viq*)を求め、
     前記第4指令値及び前記第5指令値を二相/三相変換して前記第1乃至第3指令値(Vr*,Vs*,Vt*)を求める、請求項2記載のコンバータの制御方法。
  4.  前記三相電圧(Vu,Vv,Vw)の周波数の三倍以上の周波数帯域において、前記第1成分(Id)、前記第2成分(Iq)、前記第2成分指令値(Iq*)から前記第4指令値及び前記第5指令値が求められる、請求項3記載のコンバータの制御方法。
  5.  前記交流波形(VK)の周波数は、前記三相電圧(Vu,Vv,Vw)の周波数の三倍以上である、請求項4記載のコンバータの制御方法。
  6.  前記第4指令値(Vid*)を求めるときに前記1成分(Id)は前記三相電圧(Vu,Vv,Vw)の周波数の三倍の周波数の第1高調波(cos3ωt)によって補正され、
     前記第5指令値(Viq*)を求めるときに前記2成分(Iq)は前記第1高調波と位相が直交する第2高調波(sin3ωt)によって補正される、請求項5記載のコンバータの制御方法。
  7.  低電位(VL)、前記低電位よりも高い高電位(VH)、及び前記低電位と前記高電位との間の中間電位(VQ)を出力する整流回路(203)と、
     前記低電位及び前記中間電位が供給される第1コンデンサ(205;7)と、
     接続点(35;n)において前記第1コンデンサと接続され、前記高電位及び前記中間電位が供給される第2コンデンサ(204;6)と
    を備え、
     前記整流回路は
     三相電圧(Vu,Vv,Vw)がそれぞれの一端に印加される三幅対のリアクトル(202;8,9,10)のそれぞれの他端における第1乃至第3の電位(Vr,Vs,Vt)を整流して前記低電位及び前記高電位を出力する三相ダイオードブリッジ(18,19,20,24,25,26;D11,D21,D31,D14,D24,D34)と、
     前記接続点に、前記リアクトルの三つの前記他端を選択的に接続するスイッチ群(30,31,32;S11,S21,S31,S12,S22,S32)と
    を有するコンバータを制御する装置(100)であって、
     前記第1乃至第3の電位のそれぞれについての指令値である第1乃至第3指令値(Vr*,Vs*,Vt*)を前記三相電圧から生成する電圧指令値生成部(101;122,104)と、
     前記第1乃至第3指令値のそれぞれが前記中間電位の指令値(0)を中心とする交流波形(VK)に対して所定の電位幅を有する範囲内にあるときに、前記スイッチ群をしてそれぞれの指令値に対応する前記他端を前記接続点に接続せしめるスイッチング信号(Srp,Srn,Ssp,Ssn,Stp,Stn;Sr,Ss,St)を生成するパルス幅変調器(102)と
    を備える、コンバータの制御装置。
  8.  前記交流波形の振幅及び前記所定の電位幅のいずれもが、前記高電位(VH)から前記低電位(VL)を引いた電圧たる出力電圧(Vdc)の指令値(Vdc*)の半分である、請求項7記載のコンバータの制御装置。
  9.  前記リアクトルに流れる三相電流(Iu,Iv,Iw)から、前記三相電圧(Vu,Vv,Vw)と位相が直交する第1成分(Id)と、前記三相電圧と同相の第2成分(Iq)とを求める三相/二相変換器(103)と、
     前記第1成分に基づいて第4指令値(Vid*)を求める第1の指令値生成部(108,110,113)と、
     前記出力電圧(Vdc)と前記出力電圧の前記指令値(Vdc*)との差に基づいて前記第2成分の指令値たる第2成分指令値(Iq*)を求め、前記第2成分と前記第2成分の前記指令値との差に基づいて第5指令値(Viq*)を求める第2の指令値生成部(105,106,107,109,112)と、
     前記第4指令値及び前記第5指令値から前記第1乃至第3指令値(Vr*,Vs*,Vt*)を求める二相/三相変換器(104)と
    を更に備える、請求項8記載のコンバータの制御装置。
  10.  前記三相電圧(Vu,Vv,Vw)の周波数の三倍以上の周波数帯域を有する、請求項9記載のコンバータの制御装置。
  11.  前記交流波形(VK)の周波数は、前記三相電圧(Vu,Vv,Vw)の周波数の三倍以上である、請求項10記載のコンバータの制御装置。
  12.  前記第1の指令値生成部は、前記第1成分(Id)を前記三相電圧(Vu,Vv,Vw)の周波数の三倍の周波数の第1高調波(cos3ωt)によって補正する第1補正部(115,116,117,118,120)を有し、
     前記第2の指令値生成部は、前記2成分(Iq)を前記第1高調波と位相が直交する第2高調波(sin3ωt)によって補正する第2補正部(114,116,117,119,121)を有する、請求項11記載のコンバータの制御装置。
PCT/JP2009/052695 2008-03-14 2009-02-17 コンバータの制御方法及び制御装置 WO2009113367A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/922,362 US8395918B2 (en) 2008-03-14 2009-02-17 Method of and apparatus for controlling three-level converter using command values
KR1020107019923A KR101139645B1 (ko) 2008-03-14 2009-02-17 컨버터의 제어 방법 및 제어 장치
EP09720296.4A EP2254232B1 (en) 2008-03-14 2009-02-17 Converter control method and control apparatus
AU2009222727A AU2009222727B2 (en) 2008-03-14 2009-02-17 Method of and apparatus for controlling converter
CN200980108970.0A CN101971476B (zh) 2008-03-14 2009-02-17 变流器的控制方法以及控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008065888A JP5167884B2 (ja) 2008-03-14 2008-03-14 コンバータの制御方法及び制御装置
JP2008-065888 2008-03-14

Publications (1)

Publication Number Publication Date
WO2009113367A1 true WO2009113367A1 (ja) 2009-09-17

Family

ID=41065039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052695 WO2009113367A1 (ja) 2008-03-14 2009-02-17 コンバータの制御方法及び制御装置

Country Status (7)

Country Link
US (1) US8395918B2 (ja)
EP (1) EP2254232B1 (ja)
JP (1) JP5167884B2 (ja)
KR (1) KR101139645B1 (ja)
CN (1) CN101971476B (ja)
AU (1) AU2009222727B2 (ja)
WO (1) WO2009113367A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254876B2 (ja) * 2007-03-30 2009-04-15 ダイキン工業株式会社 電源供給回路及びそのpam制御方法
IN2014DN08834A (ja) 2012-03-30 2015-05-22 Toshiba Mitsubishi Elec Inc
CN103630857B (zh) * 2012-08-27 2016-03-02 上海联影医疗科技有限公司 Pin二极管的控制装置和核磁共振设备
EP2893628B1 (en) * 2012-09-05 2020-03-04 ABB Schweiz AG Interleaved 12-pulse rectifier
KR101512188B1 (ko) * 2014-02-11 2015-04-22 한국전기연구원 모듈형 멀티레벨 컨버터의 구동방법 및 구동장치
JP6952245B2 (ja) * 2016-09-30 2021-10-20 パナソニックIpマネジメント株式会社 電力変換システム
WO2019064361A1 (ja) * 2017-09-27 2019-04-04 東芝三菱電機産業システム株式会社 電源装置
WO2020255338A1 (ja) * 2019-06-20 2020-12-24 東芝三菱電機産業システム株式会社 電力変換装置
CN110855164B (zh) * 2019-11-29 2021-04-06 深圳市科华恒盛科技有限公司 控制方法、系统及终端设备
JPWO2022138038A1 (ja) * 2020-12-22 2022-06-30

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233537A (ja) * 1993-02-01 1994-08-19 Toshiba Corp 中性点クランプ式コンバータの制御装置
JPH09182441A (ja) * 1995-12-28 1997-07-11 Toshiba Corp 三相整流装置
JPH09238478A (ja) * 1996-03-04 1997-09-09 Hitachi Ltd 多重電力変換器およびその制御方法
JP2003174779A (ja) * 2001-09-28 2003-06-20 Daikin Ind Ltd 電力変換装置
JP2004104909A (ja) * 2002-09-09 2004-04-02 Sanken Electric Co Ltd 三相スイッチング整流装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754519B2 (ja) 1993-12-13 1998-05-20 東洋電機製造株式会社 3レベルインバータ装置
AT406434B (de) 1993-12-23 2000-05-25 Ixys Semiconductor Gmbh Vorrichtung zur umformung eines dreiphasigen spannungssystems in eine vorgebbare, einen verbraucher speisende gleichspannung
JP3166525B2 (ja) * 1994-12-28 2001-05-14 三菱電機株式会社 誘導電動機のベクトル制御装置
US6031738A (en) * 1998-06-16 2000-02-29 Wisconsin Alumni Research Foundation DC bus voltage balancing and control in multilevel inverters
US6545887B2 (en) * 1999-08-06 2003-04-08 The Regents Of The University Of California Unified constant-frequency integration control of three-phase power factor corrected rectifiers, active power filters and grid-connected inverters
BR9907351A (pt) * 1999-12-22 2001-08-07 Ericsson Telecomunicacoees S A Método e circuito de controle para retificador do tipo elevador trifásico de três nìveis
JP4051875B2 (ja) 2000-10-31 2008-02-27 富士電機ホールディングス株式会社 整流回路及びその制御方法
WO2005043742A2 (en) * 2003-10-30 2005-05-12 The Regents Of The University Of California Universal three phase controllers for power converters
JP4649940B2 (ja) 2004-10-14 2011-03-16 ダイキン工業株式会社 コンバータの制御方法及びコンバータの制御装置
US7196919B2 (en) * 2005-03-25 2007-03-27 Tyco Electronics Power Systems, Inc. Neutral point controller, method of controlling and rectifier system employing the controller and the method
JP4770639B2 (ja) * 2006-08-17 2011-09-14 アイシン・エィ・ダブリュ株式会社 電気モータ駆動制御方法および装置
US20090040800A1 (en) * 2007-08-10 2009-02-12 Maximiliano Sonnaillon Three phase rectifier and rectification method
US7986538B2 (en) * 2008-06-03 2011-07-26 Hamilton Sundstrand Corporation Midpoint current and voltage regulation of a multi-level converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233537A (ja) * 1993-02-01 1994-08-19 Toshiba Corp 中性点クランプ式コンバータの制御装置
JPH09182441A (ja) * 1995-12-28 1997-07-11 Toshiba Corp 三相整流装置
JPH09238478A (ja) * 1996-03-04 1997-09-09 Hitachi Ltd 多重電力変換器およびその制御方法
JP2003174779A (ja) * 2001-09-28 2003-06-20 Daikin Ind Ltd 電力変換装置
JP2004104909A (ja) * 2002-09-09 2004-04-02 Sanken Electric Co Ltd 三相スイッチング整流装置

Also Published As

Publication number Publication date
US8395918B2 (en) 2013-03-12
EP2254232A4 (en) 2018-01-03
JP5167884B2 (ja) 2013-03-21
CN101971476B (zh) 2015-10-21
AU2009222727B2 (en) 2012-10-18
KR20100107076A (ko) 2010-10-04
AU2009222727A1 (en) 2009-09-17
JP2009225525A (ja) 2009-10-01
KR101139645B1 (ko) 2012-05-15
US20110085361A1 (en) 2011-04-14
EP2254232A1 (en) 2010-11-24
CN101971476A (zh) 2011-02-09
EP2254232B1 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
JP5167884B2 (ja) コンバータの制御方法及び制御装置
KR101072647B1 (ko) 전력 변환 장치
CN109874384B (zh) 直接型电力转换器用的控制装置
AU2009222340B2 (en) State quantity detection method in power converting apparatus and power converting apparatus
JP5907294B2 (ja) 電力変換装置
TW201330479A (zh) 電力轉換裝置
US11218107B2 (en) Control device for power converter
JP4703251B2 (ja) 電源装置の運転方法及び電源装置
WO2017047489A1 (ja) インバータ基板、接続順序の判断方法、欠相判断方法
JP5888074B2 (ja) 電力変換装置
JP2012044830A (ja) 電力変換装置
JP6492031B2 (ja) 電圧補償装置
JP5953881B2 (ja) 3レベル整流器の制御装置
JP4924587B2 (ja) 直接形交流電力変換装置の制御方法
JP2968027B2 (ja) 電流形インバータの制御装置
JP2019054569A (ja) 3レベル電力変換器
JPH01298959A (ja) Pwmコンバータ装置
JP6337688B2 (ja) 電力変換装置、発電システムおよび電力変換方法
JP6201386B2 (ja) 電流推定装置
JP2022066920A (ja) 電力変換システム
JP2012085405A (ja) 電力変換装置,電力変換方法及び電動機駆動システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108970.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107019923

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12922362

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009720296

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009222727

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009222727

Country of ref document: AU

Date of ref document: 20090217

Kind code of ref document: A