JP6492031B2 - 電圧補償装置 - Google Patents

電圧補償装置 Download PDF

Info

Publication number
JP6492031B2
JP6492031B2 JP2016110437A JP2016110437A JP6492031B2 JP 6492031 B2 JP6492031 B2 JP 6492031B2 JP 2016110437 A JP2016110437 A JP 2016110437A JP 2016110437 A JP2016110437 A JP 2016110437A JP 6492031 B2 JP6492031 B2 JP 6492031B2
Authority
JP
Japan
Prior art keywords
phase
output
voltage
filter
limiter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016110437A
Other languages
English (en)
Other versions
JP2017216841A (ja
Inventor
俊介 玉田
俊介 玉田
渡邊 裕治
裕治 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2016110437A priority Critical patent/JP6492031B2/ja
Priority to PCT/JP2017/020274 priority patent/WO2017209183A1/ja
Publication of JP2017216841A publication Critical patent/JP2017216841A/ja
Application granted granted Critical
Publication of JP6492031B2 publication Critical patent/JP6492031B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Description

本発明の実施形態は、電圧補償装置に関する。
電力系統では、変電所からの距離に応じて電力線インピーダンスが増加することから、末端では、その電圧降下により受電電圧が低下する場合がある。電力系統では、変電所からの距離によらず一定の電圧が利用できるようにする必要がある。
佐々木 裕治、吉田 隆彦、関 長隆、渡辺 敏之、齊藤 裕治 著、「高速応答を可能にしたTVRとその実証試験」、電気学会論文誌B,Vol.123(2003)
実施形態は、高速かつ連続的に電力系統の電圧を適正値に補償する電圧補償装置を提供する。
実施形態に係る電圧補償装置は、自己消弧形のスイッチング素子を有するインバータ回路を含む電力変換器と、三相交流の第1相、第2相および第3相にそれぞれ直列に接続された一次巻線と前記電力変換器の出力に接続された二次巻線とを含む第1変圧器、第2変圧器および第3変圧器と、前記第1変圧器の上流側と前記第2変圧器の上流側との間の線間の電圧を表す第1電圧データおよび前記第2変圧器の上流側と前記第3変圧器の上流側との間の線間の電圧を表す第2電圧データにもとづいて、前記スイッチング素子を駆動する駆動信号を出力する制御部と、を備える。前記制御部は、前記第1電圧データおよび前記第2電圧データを入力して前記第1相、前記第2相、および前記第3相の相電圧を生成する相電圧生成回路と、前記三相交流の正相成分を回転座標変換して互いに直交するベクトル成分である第1出力および第2出力を生成する第1座標変換回路と、前記第1出力から直流成分を抽出する第1フィルタと、前記第2出力から直流成分を抽出する第2フィルタと、前記三相交流の逆相成分を回転座標変換して互いに直交する第3出力および第4出力を生成する第2座標変換回路と、前記第3出力から直流成分を抽出する第3フィルタと、前記第4出力から直流成分を抽出する第4フィルタと、を含み、前記第1フィルタ〜前記第4フィルタの出力にもとづいて前記駆動信号を生成する。

第1の実施形態に係る電圧補償装置を例示するブロック図である。 第1の実施形態の電圧補償装置の一部を例示するブロック図である。 比較例に係る電圧補償装置を例示するブロック図である。 第1の実施形態の変形例に係る電圧補償装置の一部を例示するブロック図である。 第1の実施形態の他の変形例に係る電圧補償装置を例示するブロック図である。 第2の実施形態に係る電圧補償装置の一部を例示するブロック図である。 第2の実施形態の電圧補償装置の動作を説明するための概念図である。 第3の実施形態に係る電圧補償装置の一部を例示するブロック図である。 第3の実施形態の電圧補償装置の動作を説明するための概念図である。
以下、図面を参照しつつ、本発明の実施形態について説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して詳細な説明を適宜省略する。
(第1の実施形態)
図1は、本実施形態に係る電圧補償装置を例示するブロック図である。
図2は、本実施形態の電圧補償装置の一部である制御部を例示するブロック図である。
本実施形態の電圧補償装置1の構成について説明する。
図1に示すように、本実施形態の電圧補償装置1は、電圧補償部10と、制御部80と、を備える。電圧補償部10は、直列変圧器11,13,15と、第1電力変換器20と、第2電力変換器30と、並列変圧器41,42と、インダクタ51,52と、電流検出器61,62と、交流電圧検出器71,72と、直流電圧検出器75と、を含む。電圧補償装置1は、電圧補償部10によって電力系統に直列に接続される。電力系統は、U相、V相およびW相からなる三相交流の配電系統である。以下では、電力系統に直列に接続された電圧補償装置1から見て、変電所側を上流、需要者側を下流と呼ぶこととする。電圧補償装置1は、U相の上流6aと入力端子2aで接続され、U相の下流7aと出力端子3aで接続されている。電圧補償装置1は、V相の上流6bと入力端子2bで接続され、V相の下流7bと出力端子3bで接続されている。電圧補償装置1は、W相の上流6cと入力端子2cで接続され、W相の下流7cと出力端子3cで接続されている。電圧補償装置1は、電力系統の上流6a〜6cおよび下流7a〜7cの電圧の上昇あるいは低下を検出して、目標値の範囲内となるように電力系統の電圧を補償する。
直列変圧器11,13,15は、一次巻線11p,13p,15pと、二次巻線11s,13s,15sと、をそれぞれ含む。直列変圧器11の一次巻線11pは、入力端子2aと出力端子3aとの間に接続されており、電力系統のU相に直列に接続されている。直列変圧器13の一次巻線13pは、入力端子2bと出力端子3bとの間に接続されており、電力系統のV相に直列に接続されている。直列変圧器15の一次巻線15pは、入力端子2cと出力端子3cとの間に接続されており、電力系統のW相に直列に接続されている。つまり、3つの直列変圧器11,13,15の一次巻線11p,13p,15pは、電力系統の各相に直列に接続されている。
直列変圧器11,13,15の二次巻線11s,13s,15sは、それぞれ一方の端子12a,14a,16aで互いに接続され、それぞれの他方の端子12b,14b,16bは、第1電力変換器20の各交流出力端子22a,22b,22cに接続されている。つまり、直列変圧器11,13,15の二次巻線11s,13s,15sは、スター結線されて、第1電力変換器20の出力に接続されている。
第1電力変換器20は、高圧直流入力端子21aと低圧直流入力端子21bとの間に接続されている。高圧直流入力端子21aおよび低圧直流入力端子21bには、直流リンク24用のコンデンサを介して直流電圧が供給される。第1電力変換器20は、三相交流電圧を出力する交流出力端子22a,22b,22cを含む。交流出力端子22a,22b,22cは、フィルタ26を介して直列変圧器11,13,15の二次巻線11s,13s,15sに接続されている。第1電力変換器20は、高圧直流入力端子21aと低圧直流入力端子21bとの間に印加された直流電圧を三相交流電圧に変換するインバータ装置である。第1電力変換器20は、たとえば、6つのスイッチング素子23a〜23fを含んでいる。スイッチング素子23a〜23fは、自己消弧形のスイッチング素子であり、たとえばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)等である。スイッチング素子は、ハイサイドスイッチおよびローサイドスイッチとして直列に接続される。直列に接続されたアームは、3つ並列に接続されてインバータ回路を構成する。第1電力変換器20のインバータ回路は、直流電圧を電力系統の周波数よりも高い周波数の交流電圧に変換することができれば、この回路構成に限定されない。インバータ回路は、たとえばマルチレベルインバータ回路やその変形等であってもよい。
第1電力変換器20と直列変圧器11,13,15の二次巻線11s,13s,15sとの間には、フィルタ26が接続されている。フィルタ26は、この例では、各相に直列に接続されたインダクタLu,Lv,Lwと、各線間に接続されたコンデンサCa,Cb,Ccとを含む。フィルタ26は、第1電力変換器20が出力する数kHz〜数100kHz程度の高周波スイッチング波形を電力系統の周波数に変換するローパスフィルタである。フィルタ26は、第1電力変換器20の出力の周波数や、変調方式等にしたがって適切な回路を用いることができる。
直流リンク24は、第1電力変換器20に直流電力を供給するコンデンサを含む。この直流リンク24は、第2電力変換器30から供給される有効電力を第1電力変換器20に供給する。なお、後述するように、直流リンク24は、第2電力変換器30を介して電力系統側と無効電流のやり取りをすることができる。
第2電力変換器(電力変換器2)30は、高圧直流端子31aと、低圧直流端子31bとを含んでいる。高圧直流端子31aおよび低圧直流端子31bは、直流リンク24に接続されている。第2電力変換器30は、交流端子32a,32b,32cを含む。交流端子32a,32b,32cのいずれか1つ、この例では、交流端子32aには、インダクタ51の一端が接続されている。交流端子32b,32cの他の1つ、この例では、交流端子32cには、インダクタ52の一端が接続されている。つまり、第2電力変換器30は、交流端子32a,32b,32cに入力される交流電力を直流に変換して、直流リンク24に供給するコンバータ装置、より具体的にはアクティブ平滑フィルタとして動作し、直流リンク24に有効電力を供給する。第2電力変換器30は、第1電力変換器20と同じ回路構成のインバータ回路であってもよい。第2電力変換器30は、第1電力変換器20と同様に、6つの自己消弧形のスイッチング素子33a〜33fを含んでいる。スイッチング素子33a〜33fは、ハイサイドスイッチおよびローサイドスイッチとして直列に接続される。直列接続されたアームは、3つ並列に接続されてインバータ回路を構成する。第2電力変換器30のインバータ回路は、直流電圧と、電力系統の周波数よりも高い周波数の交流電圧とを相互に変換することができれば、この構成に限定されない。なお、この例では、第2電力変換器30のインバータ回路の構成は、第1電力変換器20のインバータ回路の構成と同一であるが、異なる構成であってもよい。
並列変圧器41の一次巻線41pは、U相およびV相の下流7a,7b側の線間に接続されている。並列変圧器42の一次巻線42pは、V相およびW相の下流7b,7c側の線間に接続されている。並列変圧器41の二次巻線41sの一方は、インダクタ51の他端に接続され、他方は、第2電力変換器30の交流端子32bに接続されている。並列変圧器42の二次巻線42sは、インダクタ52の他端に接続され、他方は、第2電力変換器30の交流端子32bに接続されている。つまり、並列変圧器41,42の二次巻線41s,42sは、インダクタ51,52を介して第2電力変換器30の交流端子32a〜32cとV結線されている。
電流検出器61は、第2電力変換器30の交流端子32aと並列変圧器41の二次巻線41sとの間に直列に接続されている。電流検出器62は、第2電力変換器30の交流端子32cと並列変圧器42の二次巻線42sとの間に直列に接続されている。つまり、電流検出器61,62は、インダクタ51,52に流れるそれぞれの交流電流を検出して、電流データIL1,IL2を出力する。
交流電圧検出器71,72は、電力系統の上流6a〜6c側に接続されている。交流電圧検出器71は、U相とV相との線間に接続され、UV間の線間電圧を検出する。交流電圧検出器72は、V相とW相との線間に接続され、VW間の線間電圧を検出する。交流電圧検出器71,72は、たとえば計器用変圧器と計器用変圧器の出力を適切な電圧レベルに変換するトランスデューサとを含んでいる。交流電圧検出器71,72は、直列変圧器11,13,15の一次巻線11p,13p,15pの両端の電圧を検出して、計器用変圧器で降圧し、トランスデューサによって制御部80に入力可能な信号である交流電圧データVAC1,VAC2に変換して出力する。
直流電圧検出器75は、直流リンク24の両端の直流電圧を検出して、直流電圧データVDCを出力する。
なお、本実施形態の電圧補償装置1では、第2電力変換器30は、第1電力変換器20に直流電圧および有効電力を供給することができれば、他の構成であってもかまわない。
図2に示すように、制御部80は、第1制御回路81と、第2制御回路82と、を含む。第1制御回路81は、第1電力変換器20の動作を制御するためのゲート駆動信号を第1電力変換器20に供給する。第2制御回路82は、第2電力変換器30の動作を制御するためのゲート駆動信号を第2電力変換器30に供給する。
第1制御回路81は、三相電圧検出回路91と、abc−dq変換回路92,102と、ローパスフィルタ93,94,103,104と、dq−abc変換回路97,107と、ゲート駆動信号生成回路111と、PLL112と、を含む。
第1制御回路81は、交流電圧データVAC1,VAC2を入力して、相電圧ごとの補償電圧に対応する補償量を生成して、生成された補償量にもとづいてゲート駆動信号を生成する。第1制御回路81は、電力系統の各相の電圧を正相成分および逆相成分に分離して、回転座標変換を行う。第1制御回路81は、各相電圧の正相成分および逆相成分のそれぞれに対して目標値との差分を演算することによって補償量を生成する。
三相電圧検出回路91は、交流電圧データVAC1,VAC2を入力して、三相交流の相電圧に変換して出力する。三相電圧検出回路91の出力は、abc−dq変換回路92,102に供給される。
abc−dq変換回路92,102は、三相交流の3つの相電圧を入力して回転座標変換(dq変換)する。dq変換は、式(1)によって相電圧をdq変換する。式(1)のωは、三相交流の角周波数であり、たとえば2π×50[rad/s]あるいは2π×60[rad/s]である。
一方のabc−dq変換回路92は、相電圧の正相成分についてdq変換する。この例では、式(1)の(a,b,c)にR相、S相、およびT相の相電圧をそれぞれ入力してdq変換する。
他方のabc−dq変換回路102は、相電圧の逆相成分についてdq変換する。この例では、式(1)の(a,b,c)にR相、T相、およびS相の相電圧をそれぞれ入力してdq変換する。
以上のようにして、一方のabc−dq変換回路92は、各相電圧の正相成分の検出値を出力する。検出値は、d軸成分およびq軸成分について出力される。d軸成分およびq軸成分は、互いに直交するベクトルである。同様に他方のabc−dq変換回路102は、相電圧の逆相電圧の検出値を出力する。これらの検出値も、互いに直行するd軸成分およびq軸成分の2つが出力される。
ローパスフィルタ(LPF)93は、abc−dq変換回路92のd軸成分の出力に接続されている。ローパスフィルタ(LPF)94は、abc−dq変換回路92のq軸成分の出力に接続されている。
ローパスフィルタ(LPF)103は、abc−dq変換回路102のd軸成分の出力に接続されている。ローパスフィルタ(LPF)104は、abc−dq変換回路102のq軸成分の出力に接続されている。
三相交流の正相成分にdq変換を施した場合には、系統正相電圧d軸成分および系統正相電圧q軸成分は、直流の正相成分に、2倍の周波数の逆相成分が重畳された信号としてそれぞれ出力される。三相交流の逆相成分にdq変換を施した場合には、系統逆相電圧d軸成分および系統逆相電圧q軸成分は、直流の逆相成分に、2倍の周波数の正相成分が重畳された信号として出力される。
したがって、abc−dq変換回路92,102からの出力から2倍の周波数成分をローパスフィルタ93,94,103,104によって除去することによって、直流信号として、正相成分および逆相成分が抽出される。一方のabc−dq変換回路92によって得られる正相成分は、d軸成分およびq軸成分からなる。他方のabc−dq変換回路102によって得られる逆相成分は、d軸成分およびq軸成分からなる。
抽出された正相成分のd軸成分は、加減算器95によって、系統正相電圧d軸目標値に対する偏差として、dq−abc変換回路97に入力される。抽出された正相成分のq軸成分は、加減算器96によって、系統正相電圧q軸目標値に対する偏差として、dq−abc変換回路97に入力される。
抽出された逆相成分のd軸成分は、加減算器105によって、系統逆相電圧d軸目標値に対する偏差として、dq−abc変換回路107に入力される。抽出された逆相成分のq軸成分は、加減算器106によって、系統逆相電圧q軸目標値に対する偏差として、dq−abc変換回路107に入力される。
これらの偏差は、電力系統の相電圧に対する補償電圧に対応しており、以下では、補償量と呼ぶこととする。dq−abc変換回路97,107は、式(2)によってd軸の補償量およびq軸の補償量をそれぞれ入力して、逆dq変換して各相電圧の正相成分および逆相成分を含む補償量を生成して出力する。
正相成分側のdq−abc変換回路97の出力U,V,Wは、加算器108〜110によって、逆相成分側のdq−abc変換回路107の出力U,V,Wとそれぞれ加算される。これらの補償量に対応する出力信号は、ゲート駆動信号生成回路111に供給され、必要な補償電圧に対応するように、ゲート駆動信号生成回路に入力されてゲート駆動信号に変換される。
PLL112は、正相成分側の直流信号、すなわち電力系統の電圧q軸成分を入力して、q軸成分がゼロになるように同期信号θを生成して出力する。PLL112の出力は、abc−dq変換回路92,102およびdq−abc変換回路97,107に供給される。つまり、abc−dq変換回路92,102およびdq−abc変換回路97,107は、PLL112によって、電力系統の位相(電源角度)に同期して動作する。
電力系統では、一般に、三相交流電圧は、零相電圧と、正相電圧と、逆電圧との和からなっている。三相三線式の場合には、零相電圧は常にゼロであり、零相電圧を考慮することが不要であるため、三相の相電圧の総和はかならずゼロになる。不平衡電圧は、平衡正相電圧と平衡逆相電圧との2つの成分からなっている。したがって、上述のように、三相交流を正相成分と逆相成分とに分離することによって、それぞれ補償量を生成するための処理を行うことができる。そして、補償量の正相成分と逆相成分とを加算することによって、容易に各相電圧に応じた補償電圧に応じたゲート駆動信号のパターンを生成することができる。
第2制御回路82は、たとえば交流電流制御回路等120を含む。交流電流制御回路等120は、この例では、インダクタ51,52を介して供給される交流電流のデータである電流データIL1,IL2および直流電圧検出器75によって取得される直流電圧データVDCを入力して、第1電力変換器20に供給する有効電力および直流電圧を制御する。
本実施形態の電圧補償装置1の動作について説明する。
本実施形態の電圧補償装置1は、電力系統の上流側の各相電圧にもとづいて、所定の相電圧になるように相ごとに電圧を補償する。下流側の相電圧が所定の値よりも低い場合には、所定の値になるように補償電圧を加算する。下流側の相電圧が所定の値以上の場合には、所定の値になるように補償電圧を減算する。
相電圧の補償は、二次巻線11s,13s,15sに発生させる電圧および位相を設定することによって実行される。たとえば、U相の相電圧の所定の値がX[V]の場合に、実際のU相の相電圧がX[V]−Δx[V]のときには、電圧補償装置1は、二次巻線11sに電力系統と同相で、Δx[V]を出力する。直列変圧器11によって下流側の相電圧は、X[V]となる。実際のU相の相電圧がX[V]+Δx[V]の場合には、電圧補償装置1は、二次巻線11sに電力系統とは180°異なる位相で、Δx[V]を出力する。直列変圧器11によって下流側の相電圧は、X[V]となる。
上述したように、本実施形態の電圧補償装置1では、正相成分および逆相成分に分離してdq変換することによって、相ごとの相電圧の補償値を得ることができる。そのため、平衡電圧の電圧補償に加えて、上流側に発生している不平衡状態に対しても電圧補償して下流に平衡電圧を供給することができる。
本実施形態の電圧補償装置1の効果について、比較例の電圧補償装置200と比較しつつ説明する。
図3は、比較例の電圧補償装置を例示するブロック図である。
図3に示すように、比較例の電圧補償装置200は、直列変圧器211,213,215と、タップ切替回路220a,220bと、並列変圧器241,242と、交流電圧検出器271〜274と、制御部280とを有する。比較例の電圧補償装置200では、直列変圧器211,213,215の一次巻線は、電力系統の各相に直列に接続されている。直列変圧器211,213,215の各二次巻線の一端は、互いに接続されている。直列変圧器211の二次巻線の他端は、タップ切替回路(タップ切替回路1)220aの一方の端子に接続されている。直列変圧器213の二次巻線の他端は、タップ切替回路220aの他方の端子に接続されている。直列変圧器213の二次巻線の他端は、また、タップ切替回路(タップ切替回路2)220bの一方の端子にも接続されている。直列変圧器215の二次巻線の他端は、タップ切替回路220bの他方の端子に接続されている。
タップ切替回路220aは、並列変圧器241の二次側のタップの数に応じたスイッチ回路222a〜222fを含んでいる。スイッチ回路222a〜222fは、サイリスタが逆並列に接続された双方向スイッチ回路が直列に接続され、直列に接続された双方向スイッチ回路の数は、並列変圧器241の二次側のタップの数に等しい。タップ切替回路220bは、タップ切替回路220aと同じ回路構成を有している。スイッチ回路222g〜222mは、サイリスタが逆並列に接続された双方向スイッチ回路が直列に接続され、直列に接続された双方向スイッチ回路の数は、並列変圧器242の二次側のタップの数に等しい。
並列変圧器241の一次巻線は、U相の下流(u相)とV相の下流(v相)との間に接続されている。並列変圧器242の一次巻線は、V相の下流(v相)とW相の下流(w相)との間に接続されている。並列変圧器241,242のそれぞれの二次巻線の各タップは、双方向スイッチの直列接続ノードに接続されている。
交流電圧検出器271〜274は、本実施形態の電圧補償装置1の交流電圧検出器71〜74と同様に接続されている。
制御部280は、電力系統の電圧の目標電圧の上限値および下限値を有している。交流電圧検出器271〜274の検出結果と目標電圧の上限値および下限値とを比較して、サイリスタのゲートを点弧する信号を生成する。
接触器291,292は、タップ切替回路220a,220bの両端に接続されている。接触器291,292は、タップ切替回路220a,220bのサイリスタを強制的にターンオフさせる場合に動作する。
比較例の電圧補償装置200では、直列変圧器211,213,215の二次巻線と、並列変圧器241,242の二次巻線とが、サイリスタによる双方向スイッチ222a〜222mによって接続されている。制御部280は、交流電圧検出器271〜274の検出結果と、あらかじめ設定されている目標電圧の上限値および下限値とを比較する。そして、制御部280は、各相の電圧が目標値の下限値よりも低いときには、直列変圧器の一次巻線の電圧が高くなるように、より高い電圧を出力するタップに接続するように双方向スイッチを制御する。たとえば、U相の下流の電圧が低いときには、制御部280は、双方向スイッチ222c,222dをオンさせるようにゲート駆動信号を生成する。双方向スイッチ222c,220dは、並列変圧器241のタップのうちもっとも高い電圧を発生するタップに接続されている。U相の下流の電圧が高いときには、制御部280は、双方向スイッチ222a,222fをオンさせるようにゲート駆動信号を生成する。双方向スイッチ222a,222fは、並列変圧器241のタップのうちもっとも高い電圧を生成するタップに接続し、接続されたタップの電圧は、U相の電圧とは逆位相で印加される。
このように、比較例の電圧補償装置200では、並列変圧器241,242に設けられたタップを切り替えることによって直列変圧器211,213,215の電圧を補償するので、補償電圧の設定値は、タップの数に依存した離散値となる。比較例の電圧補償装置200では、補償電圧が離散的であるために、電力系統の下流にさらに無効電力補償装置等の追加的設備が必要となり、システムが複雑になり、費用も増大する。
また、比較例の電圧補償装置200では、補償電圧を離散的にしか設定することができないので、相ごとに電圧設定して、不平衡電圧を補償することが困難である。したがって、電力系統の下流に不平衡負荷が接続された場合等には、電力系統の上流にも不平衡負荷の影響がおよぶおそれがある。
さらに、比較例の電圧補償装置200では、サイリスタによる双方向スイッチでは、並列変圧器241,242のタップを切り替える際に、電力系統の各相の電圧の1/2周期分の時間を要する。そのため、電圧補償装置200の応答時間は、電力系統の周期によって制約される。
このような比較例の電圧補償装置200に対して、本実施形態の電圧補償装置1では、第1電力変換器20は、第1制御回路81内では、検出される電圧データや補償量は、ほぼ連続的なデータとして生成される。たとえば、交流電圧データVAC1,VAC2の値は、アナログディジタル変換器(AD変換器)で読み取られるので、これらのデータは、AD変換器の分解能により決定される程度まで精度が高められる。したがって、ほぼ連続的な値を有する補償電圧を設定することができる。本実施形態の電圧補償装置1を用いた電力系統システムでは、補償電圧の精度を高める装置やシステムを必要としないので、系統のシステム全体を簡素にすることができ、費用を抑制することができる。
また、上述のとおり、本実施形態の電圧補償装置1では、相ごとに独立して補償電圧を設定することができるので、不平衡電圧の補償も行うことができる。したがって、上流の不平衡状態を下流に及ぼすことを効果的に防止することができる。
さらに、本実施形態の電圧補償装置1では、自己消弧形のスイッチング素子を用いた電力変換器によって電圧補償を行うので、電力系統の周期にかかわらず、高速に電圧補償動作を行うことができる。
従来より、変電所からの距離に応じて電力系統の電圧の低下等が予想される箇所には、電圧を補償する工夫がなされていた。たとえば柱上変圧器の電圧低下が予想される系統末端では、あらかじめタップ位置を高い電圧に設定する等である。また系統インピーダンスに対し、進み無効電力を注入することで電圧をサポートする進相コンデンサも用いられる。しかし、これらの対策は各需要家が電力を消費することを前提とした対策であり、夜間のように電力需要低下した際には、不必要に系統電圧を上昇させてしまう問題がある。
これらの問題に対処するため、比較例の電圧補償装置200のようなTVR(Thyristor Voltage Regulator)が、提案されている。上述したように、TVRは、系統電圧に応じて補償電圧を可変する機能を持つため、電力需要の大きい昼間の電力低下に対応することができ、夜間の電圧上昇にも対応できるとされている。
しかしながらTVRは、サイリスタで並列変圧器タップを切り替えて直列変圧器への印加電圧を操作し電圧補償動作するため、応答時間が遅く、また補償電圧が変圧器タップに依存するため不連続な電圧補償動作であり、家庭用太陽光発電の普及に伴い、逆潮流が増加した昨今の電力系統において電圧異常を補償しきれない状況が生じている。
本実施形態の電圧補償装置1では、連続的な電圧補償を可能とするのみならず、各相独立した電圧補償を可能とすることによって、近年の複雑化された電力系統の電圧補償を高速かつ効果的に行うことができる。
(第1の実施形態の変形例)
図4は、本変形例に係る電圧補償装置の一部を例示するブロック図である。
上述した実施形態の電圧補償装置1の第1制御回路81では、abc−dq変換回路92,102に入力される相電圧データの相順を互いに逆方向に接続することによって、電力系統の電圧の正相成分および逆相成分を分離する。そして、PLL112によって、すべてのabc−dq変換回路92,102およびdq−abc変換回路97,107を電源角度に同期させて動作させる。正相成分および逆相成分を分離する方法は、これに限らない。本変形例では、正相成分および逆相成分を他の方法によって分離する。
本変形例では、制御回路81aは、係数器113を含む。係数器113は、係数(−1)を有する。係数器113は、入力されるデータに(−1)を乗じて出力する。係数器113は、PLL112の出力に接続され、同期信号θに(−1)を乗じて出力する。つまり、係数器113は、同期信号θとは180°異なる位相のデータを有する同期信号(−)θを出力する。
この変形例では、正相成分側および逆相成分側のabc−dq変換回路92,102は、同じ相順で相電圧が入力されている。
PLL112の出力は、正相成分側のabc−dq変換回路92およびdq−abc変換回路97に接続されている。PLL112の出力は、係数器113を介して、abc−dq変換回路102およびdq−abc変換回路107に接続されている。つまり、正相成分側のabc−dq変換回路92およびdq−abc変換回路97は、電力系統と同じ位相で同期している。逆相成分側のabc−dq変換回路102およびdq−abc変換回路107は、電力系統の位相とは180°異なる位相に同期して動作する。回転座標変換を、電力系統の位相に同期させ、さらに逆位相に同期させることによっても正相成分と逆相成分とを分離することができる。
(第1の実施形態の変形例2)
図5は、本変形例の電圧補償装置1aを例示するブロック図である。
直列変圧器11,13,15の二次巻線11s,13s,15sは、スター結線されている。二次巻線11s,13s,15sは、スター結線に限らず、デルタ結線とすることもできる。
本変形例の電圧補償装置1aでは、直列変圧器11,13,15の二次巻線11s,13s,15sの結線以外は、第1の実施形態の電圧補償装置1と同一であり、同一の構成要素には、同一の符号を付して詳細な説明を省略する。
図5に示すように、本変形例の電圧補償装置1aでは、電圧補償部10aの直列変圧器11の二次巻線11sは、端子12a,12bを含む。直列変圧器13の二次巻線13sは、端子14a,14bを含む。直列変圧器15の二次巻線15sは、端子16a,16bを含む。それぞれの二次巻線11s,13s,15sの一方の端子12a,14a,16aは、巻き始めであり、他方の端子12b,14b,16bは、巻き終わりである。一方の端子12aは、他方の端子14bと接続され、一方の端子14aは、他方の端子16bと接続され、一方の端子16aは、他方の端子12bと接続されている。端子12a,14bの接続ノードは、第1電力変換器20の交流出力端子22bに接続されている。端子14a,16bの接続ノードは、第1電力変換器20の交流出力端子22cに接続されている。端子16a,12bの接続ノードは、第1電力変換器20の交流出力端子22aに接続されている。つまり、直列変圧器11,13,15の二次巻線11s,13s,15sは、デルタ結線されて、第1電力変換器20の各交流出力端子22a,22b,22cに接続されている。
本変形例の電圧補償装置1aは、第1の実施形態の電圧補償装置1と同様に動作する。すなわち、直列変圧器の両端の電圧が目標電圧の下限よりも小さいときには、一次巻線と同相の不足電圧分に相当する電圧を二次巻線に発生させて磁気結合を介して一次巻線の電圧に加算する。直列変圧器の両端の電圧が目標電圧の上限よりも大きいときには、一次巻線と逆相の不足電圧分に相当する電圧を二次巻線に発生させて磁気結合を介して一次巻線に加算(すなわち減算)する。
本実施形態の電圧補償装置1aの作用および効果について説明する。
第1電力変換器20の出力にスター結線の直列変圧器を接続した場合には、二次巻線の一方の端子を第1電力変換器20の出力に接続するので、結線作業が容易になるとの利点がある。その一方で、スター結線では、二次巻線の他方の端子を互いに接続して中性点とするが、中性点が他に接続されず、変圧器の非線形性等により電圧歪が発生したときに、電流を他に流すことができないため、電圧歪現象が解消されにくいとの問題を生ずることがある。
第1電力変換器20の出力にデルタ結線の直列変圧器を接続した場合には、各相の二次巻線を互いに接続する等して結線作業が煩雑になる反面、二次巻線内に還流電流を流すことができる。そのため、電圧補償装置1aは、電圧歪みを発生しにくく、高品質の電力を電力系統に対して連系することができる。
本実施形態の電圧補償装置1aでは、第1電力変換器20の出力に接続された直列変圧器11,13,15の二次巻線11s,13s,15sがデルタ結線されているので、電圧歪の少ない高品質の電力の連系が可能になる。
直列変圧器11,13,15の二次巻線11s,13s,15sは、以下説明する他の実施形態においても、スター結線またはデルタ結線のいずれかを適用することができる。
(第2の実施形態)
図6は、本実施形態の電圧補償装置の一部を例示するブロック図である。
図6には、第1制御回路81bの一部が示されている。図に示されていないdq−abc変換回路97,107の出力以降は、上述した第1の実施形態等の場合と同じである。
上述したとおり、電力系統の不平衡電圧は、平衡正相電圧と平衡逆相電圧とに分離することができる。分離された正相成分と逆相成分とは偏差演算処理後に再度加算される。dq変換された出力は互いに直交するベクトルであり、平衡正相電圧のベクトルと平衡逆相電圧のベクトルとの加算されたものが不平衡電圧である。したがって、補償量の大きさは、ベクトルの和の大きさに等しい。なお、上述したとおり、各補償量は、方向および大きさを有するベクトルであるが、補償量の大きさという場合に、単に補償量ということがある。
一方で、第1電力変換器20が出力することができる最大電圧は、第1電力変換器20の回路構成等によってあらかじめ決まっており、無限の出力を取り出せるわけではない。補償電圧の大きさが、第1電力変換器20の最大電圧を超える場合には、補償のための電圧波形のピーク付近が第1電力変換器20の最大電圧で抑えられて、電力系統に歪んだ補償電圧を供給する。
そこで、本実施形態の電圧補償装置では、系統電圧の正相成分を逆相成分よりも優先して補償量に割り当てることによって、補償された電圧が第1電力変換器20の最大電圧以下となるように設定する。
図6に示すように、本実施形態の電圧補償装置の第1制御回路81bは、リミッタ131,133,135,136,138,140と、演算回路132,134,137,139と、比較器141と、スイッチ142a,142bと、を含む。
リミッタ131は、正相成分側の加減算器95とdq−abc変換回路97との間に設けられている。リミッタ131は、入力された信号を±Vcomp_maxの範囲内に制限する。リミッタ131に入力された信号の振幅が±Vcomp_max範囲内の場合には、入力された信号がそのまま出力される。リミッタ131に入力された信号の振幅が±Vcomp_maxを超えた場合には、リミッタ131は、±Vcomp_maxを出力する。リミッタ131から出力された信号は、正相d軸成分補償量Vcomp_Dn_refとして、dq−abc変換回路97に入力される。
なお、すべてのリミッタには、正負のリミット値が設けられている。図においても煩雑さを避けるため、図示しないが、負側のリミット値も設けられている。以下では、特に断らない限り、リミッタのリミット値という場合には、負側のリミット値が設けられており、正負のリミット値は、絶対値が等しいものとする。入力された信号は、正負のリミット値の範囲内の場合には、そのまま出力され、正負のリミット値を超える場合には、そのリミット値で制限されるものとする。ただし、リミット値は、絶対値が等しい正負の値を有する場合に限らず、任意の設定としてもよい。
リミッタ133は、正相成分側の加減算器96とdq−abc変換回路97との間に設けられている。リミッタ133のリミット値は、正相q軸成分補償量リミット値Vcomp_Qn_maxに設定される。正相q軸成分補償量リミット値Vcomp_Qn_maxについては、後に詳述するが、最大補償量Vcomp_maxおよび正相d軸成分補償量Vcomp_Dn_refに応じて変化する。正相q軸成分補償量リミット値Vcomp_Qn_maxの値は、演算回路132によって計算されて設定される。最大補償量Vcomp_maxは、第1電力変換器20の最大電圧にもとづいてあらかじめ設定されている。
リミッタ135は、逆相成分側の加減算器105とdq−abc変換回路107との間に設けられている。リミッタ135のリミット値は、逆相補償量リミット値Vcomp_DQr_maxに設定される。逆相補償量リミット値Vcomp_DQr_maxは、後に詳述するが、最大補償量Vcomp_max、正相d軸補償量Vcomp_Dn_refおよび正相q軸補償量Vcomp_Qn_refに応じて変化する。逆相補償量リミット値Vcomp_DQr_maxの値は、演算回路134によって計算されて設定される。
リミッタ136は、逆相成分側の加減算器106とdq−abc変換回路107との間に設けられている。リミッタ136のリミット値は、逆相補償量リミット値Vcomp_DQr_maxに設定される。
リミッタ138は、逆相成分側の加減算器106とdq−abc変換回路107との間に設けられている。リミッタ138のリミット値は、逆相q軸補償量リミット値Vcomp_Qr_maxに設定される。逆相q軸補償量リミット値Vcomp_Qr_maxは、後に詳述するが、逆相補償量リミット値Vcomp_DQr_maxおよび逆相d軸補償量Vcomp_Dr_refに応じて変化する。逆相q軸補償量リミット値Vcomp_Qr_maxの値は、演算回路137によって計算されて設定される。
リミッタ140は、正相成分側の加減算器105とdq−abc変換回路107との間に設けられている。リミッタ140のリミット値は、逆相d軸補償量リミット値Vcomp_Dr_maxに設定される。逆相d軸補償量リミット値Vcomp_Dr_maxは、後に詳述するように、逆相補償量リミット値Vcomp_DQr_maxおよび逆相q軸補償量Vcomp_Qr_refに応じて変化する。逆相d軸補償量リミット値Vcomp_Dr_maxの値は、演算回路139によって計算されて設定される。
比較器141は、逆相成分側の加減算器105,106の出力の大きさの大小関係を比較する。つまり、比較器141は、加減算器105から出力される逆相d軸出力Vcomp_Drおよび加減算器106から出力される逆相q軸出力Vcomp_Qrの大きさを比較する。比較器141は、たとえば、Vcomp_Dr≧Vcomp_Qrの場合には、論理値1を出力する。Vcomp_Dr<Vcomp_Qrの場合には、論理値0を出力する。
スイッチ142aは、リミッタ135,140とdq−abc変換回路107との間に接続されている。スイッチ142aは、リミッタ135の出力か、リミッタ140の出力を切り替えてdq−abc変換回路107に入力する。スイッチ142aは、論理値の入力によって接続先が切り替えられ、たとえば論理値1の場合に、リミッタ135の出力が選択され、リミッタ135の出力がdq−abc変換回路107に供給される。スイッチ142aは、論理値0が入力された場合には、リミッタ140の出力が選択され、リミッタ136の出力がdq−abc変換回路107に供給される。
スイッチ142bは、リミッタ138,136とdq−abc変換回路107との間に接続されている。スイッチ142bは、リミッタ138の出力か、リミッタ138の出力を切り替えてdq−abc変換回路107に入力する。スイッチ142bは、論理値の入力によって接続先が切り替えられ、たとえば論理値1の場合に、リミッタ138の出力が選択され、リミッタ138の出力がdq−abc変換回路107に供給される。スイッチ142bは、論理値0が入力された場合には、リミッタ136の出力が選択され、リミッタ136の出力がdq−abc変換回路107に供給される。
つまり、Vcomp_Dr≧Vcomp_Qrの場合には、リミッタ135から出力される逆相d軸補償量Vcomp_Dr_refおよびリミッタ138から出力される逆相q軸補償量Vcomp_Qr_refがそれぞれdq−abc変換回路107に入力される。Vcomp_Dr<Vcomp_Qrの場合には、リミッタ140から出力される逆相d軸補償量Vcomp_Dr_refおよびリミッタ136から出力される逆相q軸補償量Vcomp_Qr_refが、それぞれdq−abc変換回路107に入力される。
本実施形態の電圧補償装置の動作について説明する。
図7は、本実施形態の電圧補償装置の動作を説明するための概念図である。
この実施形態の電圧補償装置では、最大補償量Vcomp_maxのうち、正相成分に優先的に出力を割り当てる。この実施形態では、割り当てられた正相成分の大きさが、最大補償量Vcomp_maxよりも小さい場合には、余剰分を逆相成分に割り当てる。
図7(a)に示すように、補償量の正相成分は、D軸と、D軸に直行するQ軸との2次元平面上にベクトルで表される。円Cnの半径は、最大補償量Vcomp_maxを表す。つまり、円Cnの半径は、第1電力変換器20の最大電圧に対応する最大補償量Vcomp_maxである。D軸に平行なベクトルは、正相d軸補償量Vcom_Dn_refを表す。Q軸に平行なベクトルは、正相q軸補償量Vcomp_Qn_refを表す。
補償量の正相成分に優先的に出力を割り当てた場合に、最大補償量Vcomp_maxは、正相d軸補償量Vcom_Dn_refに等しくなる。正相q軸補償量Vcom_Qn_refとのベクトル和である。補償量Vcomp_invは、ピタゴラスの定理により、以下の式(3)によって求められる。ここで、Vcomp_Dn,Vcomp_Qnは、それぞれローパスフィルタ93,94の出力であり、正相d軸出力値および正相q軸出力値と呼ぶ。
本実施形態では、正相d軸出力値は、その最大値である正相d軸補償量リミット値Vcomp_Dn_maxまで出力されることが可能である。このときのVcomp_Dn_maxは、最大補償量Vcomp_maxに等しい。正相d軸補償量Vcomp_Dn_refが、Vcomp_maxよりも小さい場合には、その余剰分は、正相q軸出力Vcomp_Qnに割り当てられる。そのときの正相q軸補償量リミット値Vcomp_Qn_maxは、補償量Vcomp_invを最大補償量Vcomp_maxに置き換えて、式(4)によって求められる。式(4)の演算は、演算回路132によって実行される。
つまり、正相q軸補償量Vcomp_Qn_maxは、最大補償量Vcomp_maxおよび正相d軸補償量Vcomp_Dn_refによって設定される。
図7(b)には、補償量の正相成分の大きさが最大補償量Vcomp_maxよりも小さく、補償量の余剰が生じた場合には、その余剰分を逆相成分に割り当てる場合が示されている。円Cnの内側の円Crは、逆相成分のベクトルの軌跡を模式的に表している。逆相成分は、円Cr内を角速度ωで正相成分とは逆方向に回転するベクトルである。正相成分の補償量は、式(3)の補償量Vcomp_invである。逆相成分に割り当てることが可能なのは、最大補償量Vcomp_maxと正相成分の補償量Vcomp_invの差であり、式(5)によって求められる。式(5)の演算は、演算回路134によって実行される。
逆相補償量リミット値Vcomp_DQr_maxは、逆相d軸補償量Vcomp_Dr_refおよび逆相q軸補償量Vcomp_Qr_refのベクトル和の大きさで表される。本実施形態では、逆相d軸補償量Vcomp_Dr_refおよび逆相q軸補償量Vcomp_Qr_refのいずれを優先するかを、リミッタ入力前の逆相d軸出力Vcomp_Drと逆相q軸出力Vcomp_Qrの大小関係によって決定する。Vcomp_DrとVcomp_Qrの大小関係は、比較器141によって比較される。比較器141の出力に応じて、スイッチ142a,142bの接続が切り替えられる。
comp_Dr≧Vcomp_Qrの場合には、d軸出力を優先する。そのため逆相q軸補償量リミット値Vcomp_Qr_maxは、逆相d軸補償量Vcomp_Dr_refに応じて変化する。逆相q軸補償量リミット値Vcomp_Qr_maxは、式(6)によって求められる。式(6)の演算は、演算回路137によって実行される。
comp_Dr<Vcomp_Qrの場合には、q軸出力を優先する。そのため逆相d軸補償量リミット値Vcomp_Dr_maxは、逆相q軸補償量Vcomp_Qr_refに応じて変化する。逆相d軸補償量リミット値Vcomp_Dr_maxは、式(6’)によって求められる。式(6’)の演算は、演算回路139によって実行される。
本実施形態の電圧補償装置の効果について説明する。
本実施形態の電圧補償装置では、第1制御回路81bにおいて、第1電力変換器20の最大電圧を超えないように、補償量を制限する。補償量の制限は、正相成分および逆相成分のうち正相成分を優先的に出力できるように設定される。そのため、abc−dq変換回路92,102によって大きな補償量が出力された場合であっても、逆相成分の補償量はより制限されて、最大補償量以下に制限される。そのため、歪みのない補償電圧を出力することができる。
逆相成分の補償量は、d軸成分およびq軸成分のうち大きさが大きい方を選択して優先して出力することができるので、不平衡電圧に影響の大きい方の寄与を高めることができる。
(第3の実施形態)
第2の実施形態の場合には、最大補償量Vcomp_maxに対して、正相成分の補償量の割り当てを優先して正相成分の寄与を大きくした。本実施形態の場合には、逆相成分の補償量の割り当てを優先する。
図8は、本実施形態の電圧補償装置の一部を例示するブロック図である。
図8に示すように、本実施形態の電圧補償装置の第1制御回路81cは、リミッタ151,152,154,156,160,162と、演算回路153,155,159,161と、比較器157と、スイッチ158a,158bと、を含む。
リミッタ151は、逆相側の加減算器105とdq−abc変換回路107との間に設けられている。リミッタ151のリミット値は、最大補償量Vcomp_maxに設定されている。
リミッタ152は、逆相側の加減算器106とdq−abc変換回路107との間に設けられている。リミッタ152のリミット値は、最大補償量Vcomp_maxに設定されている。
リミッタ154は、加減算器106とdq−abc変換回路107との間に設けられている。リミッタ154のリミット値は、逆相q軸補償量リミット値Vcomp_Qr_maxに設定される。逆相q軸補償量リミット値Vcomp_Qr_maxは、後に詳述するように、演算回路153によって計算された値に設定される。
リミッタ156は、加減算器105とdq−abc変換回路107との間に設けられている。リミッタ156のリミット値は、逆相d軸補償量リミット値Vcomp_Dr_maxに設定される。逆相d軸補償量リミット値Vcomp_Dr_maxは、後に詳述するように、演算回路155によって計算された値に設定される。
比較器157は、逆相成分側の加減算器105,106の出力の大小関係を比較する。つまり、比較器157は、加減算器105から出力される逆相d軸出力Vcomp_Drおよび加減算器106から出力される逆相q軸出力Vcomp_Qrの大きさを比較する。比較器157は、たとえば、Vcomp_Dr≧Vcomp_Qrの場合には、論理値1を出力する。Vcomp_Dr<Vcomp_Qrの場合には、論理値0を出力する。
スイッチ158aは、リミッタ151,156とdq−abc変換回路107との間に接続されている。スイッチ158aは、リミッタ151の出力か、リミッタ156の出力化を切り替えてdq−abc変換回路107に入力する。スイッチ158aは、論理値の入力によって接続先が切り替えられ、たとえば論理値1の場合に、リミッタ151の出力が選択され、リミッタ151の出力がdq−abc変換回路107に供給される。スイッチ158aは、論理値0が入力された場合には、リミッタ156の出力が選択され、リミッタ156の出力がdq−abc変換回路107に供給される。
スイッチ158bは、リミッタ154,152とdq−abc変換回路107との間に接続されている。スイッチ158bは、リミッタ154の出力か、リミッタ152の出力化を切り替えてdq−abc変換回路107に入力する。スイッチ158bは、論理値の入力によって接続先が切り替えられ、たとえば論理値1の場合に、リミッタ154の出力が選択され、リミッタ154の出力がdq−abc変換回路107に供給される。スイッチ158bは、論理値0が入力された場合には、リミッタ152の出力が選択され、リミッタ152の出力がdq−abc変換回路107に供給される。
つまり、Vcomp_Dr≧Vcomp_Qrの場合には、リミッタ151から出力される逆相d軸補償量Vcomp_Dr_refおよびリミッタ154から出力される逆相q軸補償量がそれぞれdq−abc変換回路107に入力される。Vcomp_Dr<Vcomp_Qrの場合には、リミッタ156から出力される逆相d軸補償量およびリミッタ152から出力される逆相q軸補償量Vcomp_Qr_refがそれぞれdq−abc変換回路107に入力される。
本実施形態の電圧補償装置の動作について説明する。
図9は、本実施形態の電圧補償装置の動作を説明するための概念図である。
本実施形態の場合には、逆相成分を正相成分よりも優先的に最大補償量に割り当てるので、逆相成分のうち、d軸成分の補償量およびq軸成分の補償量の大きい方を優先的に割り当てることとする。
図9(a)には、逆相成分のベクトル図が示されている。逆相成分の補償量は、最大補償量Vcomp_maxまで出力することが可能である。半径Crは、最大補償量Vcomp_maxを表す。D軸に平行なベクトルは、逆相d軸補償量Vcomp_Dr_refを表す。Q軸に平行なベクトルは、逆相q軸補償量Vcomp_Qr_refを表す。
本実施形態では、式(3)と同様に、補償量Vcomp_invは、ピタゴラスの定理(逆相d軸出力Vcomp_Dr_refおよび逆相q軸出力Vcomp_Qr_refの2乗和の平方根)により求めることができる。補償量の最大値は、第1電力変換器20の最大電圧に対応し、最大補償量Vcomp_maxとなる。ここで、本実施形態の場合には、加減算器105,106から出力される逆相d軸出力Vcomp_Drおよび逆相q軸出力Vcomp_Qrのうちの大きい方を優先的に出力できるように割り当てる。
comp_DrおよびVcomp_Qrは、比較器157によって大小関係を比較される。比較器157は、比較結果にしたがって、スイッチ158a,158bを切り替える。
comp_Dr≧Vcomp_Qrの場合には、逆相q軸補償量リミット値Vcomp_Qr_maxは、式(7)にしたがって、演算回路153によって決定される。スイッチ158aは、リミッタ151から出力される逆相d軸補償量Vcomp_Dr_refをdq−abc変換回路107に供給する。
comp_Dr<Vcomp_Qrの場合には、逆相d軸補償量リミット値Vcomp_Dr_maxは、式(7’)にしたがって、演算回路155によって決定される。スイッチ158bは、リミッタ154から出力される逆相q軸補償量リミット値Vcomp_Qr_maxで制限された逆相q軸補償量Vcomp_Qr_refをdq−abc変換回路107に供給する。
補償量の逆相成分のベクトル和が、最大補償量Vcomp_maxよりも小さい場合には、その余剰分は、補償量の正相成分に割り当てられる。本実施形態では、補償量の正相成分について、補償量のd軸成分に補償量の余剰分を優先的に割り当てるようにする。
図9(b)に示すように、円Cr内側の円Cnは、補償量の正相成分のベクトルの軌跡を模式的に表している。円Cnの半径は、以下の式(8)の右辺の第2項で表される。つまり、正相d軸補償量の最大値Vcomp_Dn_maxは、円Crの半径と円Cnの半径の差で表される。演算回路159によって、式(8)のVcomp_Dn_maxを計算し、リミッタ160のリミット値とする。
正相d軸補償量Vcomp_Dn_refに余剰分が生じた場合には、その余剰分は、逆相q軸補償量に割り当てられる。したがって、その最大値Vcomp_Qn_maxは、演算回路161によって、式(9)のVcomp_Qn_maxを計算する。
このようにして、本実施形態の電圧補償装置では、最大補償量のうち、補償量の逆相成分に優先的に割り当てる。補償量に余剰分が生じた場合に、補償量の正相成分を割り当てる。
本実施形態の電圧補償装置の効果について説明する。
本実施形態の電圧補償装置では、第1制御回路81において、第1電力変換器20の最大電圧を超えないように補償量を制限する。補償量の制限については、逆相成分から優先的に割り当てるので、逆相成分の補償量を相対的に大きく設定することができる。そのため、上流側で生じた不平衡状態を優先的解消することができる。
上述の複数の実施形態において、補償量の正相成分か逆相成分かのうちどちらを優先的に割り当てるか、そして、正相成分および逆相成分のd軸成分かq軸成分かのうちどちらを優先的に割り当てるか、にもとづいて制御回路の構成を設定した。いかなる成分を優先的に補償量として確保するかは、上述に限られず、任意に設定することができる。
以上説明した実施形態によれば、高速かつ連続的に電力系統の電圧を適正値に補償する電圧補償装置を実現することができる。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他のさまざまな形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明およびその等価物の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
1,1a 電圧補償装置、2a〜2c 入力端子、3a〜3c 出力端子、6a〜6c 上流、7a〜7c 下流、10 電圧補償部、11,13,15 直列変圧器、12a,12b,14a,14b,16a,16b 端子、20 第1電力変換器、21a 高圧直流入力端子、21b 低圧直流入力端子、22a〜22c 交流出力端子、23a〜23f スイッチング素子、24 直流リンク、26 フィルタ、30 第2電力変換器、31a 高圧直流端子、31b 低圧直流端子、32a〜32c 交流端子、33a〜33f スイッチング素子、41,42 並列変圧器、51,52 インダクタ、61,62 電流検出器、71,72 交流電圧検出器、75 直流電圧検出器、80 制御部、81 第1制御回路、82 第2制御回路、91 三相電圧検出回路、92,102 abc−dq変換回路、93,94,103,104 ローパスフィルタ、95,96,105,106 加減算器、97,107 dq−abc変換回路、108〜110 加算器、111 ゲート駆動信号生成回路、112 PLL、113 係数器、131,133,135,136,138,140,151,152,154,156,160,162 リミッタ、132,134,137,139、153,155,159,161 演算回路、141,157 比較器、142a,142b,158a.158b スイッチ

Claims (10)

  1. 自己消弧形のスイッチング素子を有するインバータ回路を含む電力変換器と、
    三相交流の第1相、第2相および第3相にそれぞれ直列に接続された一次巻線と前記電力変換器の出力に接続された二次巻線とを含む第1変圧器、第2変圧器および第3変圧器と、
    前記第1変圧器の上流側と前記第2変圧器の上流側との間の線間の電圧を表す第1電圧データおよび前記第2変圧器の上流側と前記第3変圧器の上流側との間の線間の電圧を表す第2電圧データにもとづいて、前記スイッチング素子を駆動する駆動信号を出力する制御部と、
    を備え、
    前記制御部は、
    前記第1電圧データおよび前記第2電圧データを入力して前記第1相、前記第2相、および前記第3相の相電圧を生成する相電圧生成回路と、
    前記三相交流の正相成分を回転座標変換して互いに直交するベクトル成分である第1出力および第2出力を生成する第1座標変換回路と、
    前記第1出力から直流成分を抽出する第1フィルタと、
    前記第2出力から直流成分を抽出する第2フィルタと、
    前記三相交流の逆相成分を回転座標変換して互いに直交する第3出力および第4出力を生成する第2座標変換回路と、
    前記第3出力から直流成分を抽出する第3フィルタと、
    前記第4出力から直流成分を抽出する第4フィルタと、
    を含み、
    前記第1フィルタ〜前記第4フィルタの出力にもとづいて前記駆動信号を生成する電圧補償装置。
  2. 前記制御部は、
    前記第1フィルタの出力に設けられた第1リミッタと、
    前記第2フィルタの出力に設けられた第2リミッタと、
    前記第3フィルタの出力に設けられた第3リミッタと、
    前記第4フィルタの出力に設けられた第4リミッタと、
    を含み、
    前記第1リミッタ〜前記第4リミッタのそれぞれの制限値は、
    前記第1フィルタの出力〜前記第4フィルタの出力のベクトル和の大きさが前記電力変換器が出力する最大値に対応する最大補償量以下となるよう設定される請求項1記載の電圧補償装置。
  3. 前記第1フィルタの出力および前記第2フィルタの出力のベクトル和が前記最大補償量以下の場合には、
    前記第2リミッタの制限値は、前記最大補償量および前記第1フィルタの出力にもとづいて設定される請求項2記載の電圧補償装置。
  4. 前記第3リミッタの制限値および前記第4リミッタの制限値のベクトル和の大きさは、前記最大補償量、前記第1リミッタの出力の大きさおよび前記第2リミッタの出力の大きさにもとづいて設定される請求項3記載の電圧補償装置。
  5. 前記第3フィルタの出力の大きさが前記第4フィルタの出力の大きさ以上のときには、
    前記第4リミッタの制限値は、前記第3フィルタの出力の大きさにもとづいて設定され、
    前記第4フィルタの出力が前記第3フィルタの出力よりも大きいときには、
    前記第3リミッタの制限値は、前記第4フィルタの出力の大きさにもとづいて設定される請求項4記載の電圧補償装置。
  6. 前記第3フィルタの出力および前記4フィルタの出力のベクトル和が前記最大補償量以下の場合であって、
    前記第3フィルタの出力の大きさが前記第4フィルタの出力の大きさ以上のときには、
    前記第4リミッタの制限値は、前記最大補償量および前記第3フィルタの出力の大きさにもとづいて設定され、
    前記第3フィルタの出力の大きさが前記第4フィルタの出力の大きさよりも小さいときには、
    前記第4リミッタの制限値は、前記最大補償量および前記第3フィルタの出力の大きさにもとづいて設定され請求項2記載の電圧補償装置。
  7. 前記第1リミッタの制限値および前記第2リミッタの制限値は、前記最大補償量、前記第3リミッタの出力の大きさおよび前記第4リミッタの出力の大きさにもとづいて設定される請求項6記載の電圧補償装置。
  8. 前記第1座標変換回路は、前記三相交流を、前記第1相、前記第2相、および前記第3相の相順で入力し、
    前記第2座標変換回路は、前記三相交流を、前記第1相、前記第3相、および前記第2相の相順で入力し、
    前記第1座標変換回路および前記第2座標変換回路は、同一位相で同期される請求項1〜7のいずれか1つに記載の電圧補償装置。
  9. 前記第1座標変換回路および前記第2座標変換回路は、前記三相交流を、同一の相順で入力し、
    前記第1座標変換回路は、前記三相交流の正相成分の位相に同期し、
    前記第2座標変換回路は、前記正相成分の位相の逆位相に同期する請求項1〜7のいずれか1つに記載の電圧補償装置。
  10. 前記第1変圧器の二次巻き線、前記第2変圧器の二次巻き線、および前記第3変圧器の二次巻き線は、スター結線またはデルタ結線のいずれかである請求項1〜9のいずれか1つに記載の電圧補償装置。
JP2016110437A 2016-06-01 2016-06-01 電圧補償装置 Active JP6492031B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016110437A JP6492031B2 (ja) 2016-06-01 2016-06-01 電圧補償装置
PCT/JP2017/020274 WO2017209183A1 (ja) 2016-06-01 2017-05-31 電圧補償装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016110437A JP6492031B2 (ja) 2016-06-01 2016-06-01 電圧補償装置

Publications (2)

Publication Number Publication Date
JP2017216841A JP2017216841A (ja) 2017-12-07
JP6492031B2 true JP6492031B2 (ja) 2019-03-27

Family

ID=60477521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016110437A Active JP6492031B2 (ja) 2016-06-01 2016-06-01 電圧補償装置

Country Status (2)

Country Link
JP (1) JP6492031B2 (ja)
WO (1) WO2017209183A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211876B2 (en) 2017-11-30 2021-12-28 Kabushiki Kaisha Toshiba Voltage compensation device
WO2022074715A1 (ja) * 2020-10-05 2022-04-14 東芝三菱電機産業システム株式会社 電力変換装置の制御装置
WO2022085101A1 (ja) * 2020-10-21 2022-04-28 三菱電機株式会社 無効電力補償装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3585730B2 (ja) * 1998-05-07 2004-11-04 芝府エンジニアリング株式会社 電力供給システム
JP2004088929A (ja) * 2002-08-27 2004-03-18 Toshiba Corp 電圧不平衡低減装置

Also Published As

Publication number Publication date
WO2017209183A1 (ja) 2017-12-07
JP2017216841A (ja) 2017-12-07

Similar Documents

Publication Publication Date Title
JP5664588B2 (ja) 電源回生装置および電力変換装置
JP5993675B2 (ja) 電力変換装置,電力変換システム及び電力変換装置の制御方法
US9401656B2 (en) Method of controlling power conversion apparatus
JP5167884B2 (ja) コンバータの制御方法及び制御装置
US9735698B2 (en) Method of controlling power conversion apparatus
TWI554005B (zh) 不斷電電源裝置
JP6492031B2 (ja) 電圧補償装置
JP2014124069A (ja) マトリクスコンバータ
JP6730946B2 (ja) 電力変換器の制御装置
JP6909867B2 (ja) 電圧補償装置
JP5888074B2 (ja) 電力変換装置
JP6517676B2 (ja) 電圧補償装置
JP2009153297A (ja) 自励式変換器の制御装置
JP6574742B2 (ja) 電圧補償装置
JP3611235B2 (ja) アクティブフィルタ制御方法
JP6337688B2 (ja) 電力変換装置、発電システムおよび電力変換方法
JP6729249B2 (ja) 電力変換器の制御装置
JP2009195059A (ja) 電力変換方法および電力変換装置
KR101357777B1 (ko) 무정전전원장치의 입력역율 제어 방법
JP5534052B1 (ja) マトリクスコンバータ
CN113039696A (zh) 电力变换装置
JP2011172387A (ja) 電力変換制御装置、コンバータ制御回路、電力変換制御方法、電力変換制御用プログラム及び記録媒体
JP2018110467A (ja) アクティブフィルタ、制御方法及びプログラム
JP2018046654A (ja) 電力変換器の制御装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R150 Certificate of patent or registration of utility model

Ref document number: 6492031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150