WO2009107295A1 - ターボ冷凍機および熱源システムならびにこれらの制御方法 - Google Patents

ターボ冷凍機および熱源システムならびにこれらの制御方法 Download PDF

Info

Publication number
WO2009107295A1
WO2009107295A1 PCT/JP2008/071314 JP2008071314W WO2009107295A1 WO 2009107295 A1 WO2009107295 A1 WO 2009107295A1 JP 2008071314 W JP2008071314 W JP 2008071314W WO 2009107295 A1 WO2009107295 A1 WO 2009107295A1
Authority
WO
WIPO (PCT)
Prior art keywords
coefficient
turbo
refrigeration capacity
range
appropriate
Prior art date
Application number
PCT/JP2008/071314
Other languages
English (en)
French (fr)
Inventor
上田 憲治
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP08872971.0A priority Critical patent/EP2246648A4/en
Priority to US12/441,363 priority patent/US8132421B2/en
Priority to CN200880108830.9A priority patent/CN102741623B/zh
Publication of WO2009107295A1 publication Critical patent/WO2009107295A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0261Surge control by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a turbo refrigerator, a heat source system, and control methods thereof.
  • Patent Document 1 obtains the relationship between the coefficient of performance of an inverter-driven turbo chiller determined by the temperature of the cooling water supplied to the condenser and the load factor, and controls the inverter so that the coefficient of performance is equal to or greater than a predetermined value.
  • Patent Document 1 it is necessary to obtain a relationship between the coefficient of performance and the load factor in advance according to the cooling water temperature, and an appropriate operation is performed at the cooling water temperature at which this relationship is not obtained. Since the point is unknown, high efficiency operation cannot be performed. In order to avoid this, it is necessary to obtain the relationship between the coefficient of performance and the load factor for all possible cooling water temperatures, but the amount of data becomes enormous, which is not realistic.
  • the present invention has been made in view of such circumstances, and is provided with a turbo chiller and a heat source that can be operated with high efficiency within an appropriate refrigeration capacity range even when the coolant temperature (head) changes during operation.
  • An object is to provide a system and a control method thereof.
  • a turbo refrigerator includes an inverter-driven turbo compressor having a variable speed, a condenser that condenses the refrigerant compressed by the turbo compressor, and an expansion valve that expands the condensed refrigerant.
  • an evaporator that evaporates the expanded refrigerant and cools the cold water, and is operated in a predetermined appropriate refrigeration capacity range, wherein the appropriate refrigeration capacity range is specified by the turbo compressor From the calculation formula showing the relationship between the head and the refrigeration capacity using the flow coefficient and the pressure coefficient at the operating point and the predetermined coefficient, the refrigeration capacity that can obtain the substantially maximum coefficient of performance in the same head is used.
  • a coefficient is obtained as an optimum coefficient, an appropriate operation coefficient range including a predetermined range including the optimum coefficient is calculated, and obtained from the calculation formula using the appropriate operation coefficient range and a head during operation. And features.
  • the present inventors strongly reflected the equipment characteristics of the centrifugal compressor, which is a centrifugal compressor, in the coefficient of performance of the centrifugal chiller equipped with the inverter-driven turbo compressor whose rotation speed is variable. I found out. Therefore, by using the flow coefficient and pressure coefficient at a specific operating point of the turbo compressor and a predetermined coefficient, the knowledge indicating that an arithmetic expression indicating the relationship between the refrigeration capacity and the head can be obtained, and this arithmetic expression is converted to the turbo expression. It was used for operation control of the refrigerator.
  • the coefficient used in this arithmetic expression is determined by using a refrigerating capacity that can take a substantially maximum coefficient of performance in the same head (for example, the same chilled water temperature and the same chilled water temperature).
  • the coefficient thus determined is set as an optimum coefficient, and a predetermined range including the optimum coefficient is set as an appropriate operation coefficient range.
  • an appropriate refrigeration capacity range can be obtained by giving a predetermined head to the arithmetic expression (since the flow coefficient and pressure coefficient are fixed values given at specific operating points).
  • the appropriate refrigeration capacity range obtained in this way is obtained from the above equation using the appropriate operation coefficient range by giving a head during operation, so that it can flexibly cope with changes in the operation state (head). it can.
  • the turbo chiller can be operated within an appropriate refrigeration capacity range with respect to an arbitrary operation state, the turbo chiller can be operated in a range where the coefficient of performance is good.
  • the refrigeration capacity used in the arithmetic expression only needs to be a parameter that reflects the refrigeration capacity.
  • the intake air volume of a turbo compressor can be used.
  • the characteristic formula is calculated from the physical properties in advance using the temperature difference between the cold water and the cooling water and the pressure difference between the evaporator and the condenser as parameters, On top of that, it can be obtained from the temperature difference between the outlet temperature from the condenser of the cooling water cooling the condenser and the outlet temperature from the evaporator of the cold water cooled by the evaporator, or the condenser pressure and evaporation It can be obtained from the pressure difference of the vessel pressure.
  • the heat source system of the present invention includes a plurality of the above-described turbo chillers, and the total refrigeration capacity output from the turbo chillers operated in the appropriate refrigeration capacity range satisfies the required refrigeration capacity required by an external load. Thus, it is good also as a structure which controls the starting number of the said turbo refrigerator.
  • the number of turbo chillers to be started is determined so as to satisfy the required refrigeration capacity required by the external load. Since the number of the activated centrifugal chillers is controlled so as to operate within the appropriate refrigeration capacity range, a plurality of turbo chillers can be operated with a high coefficient of performance, and an operation with a high energy saving effect is realized.
  • the method for controlling a centrifugal chiller includes an inverter-driven turbo compressor having a variable rotation speed, a condenser that condenses the refrigerant compressed by the turbo compressor, and an expansion valve that expands the condensed refrigerant.
  • an evaporator that evaporates the expanded refrigerant and cools the cold water and is a turbo chiller control method that is operated in a predetermined appropriate refrigeration capacity range, wherein the appropriate refrigeration capacity range is the turbo compression
  • the refrigeration capacity that can obtain the maximum performance coefficient in the same head To obtain the coefficient as an optimum coefficient, calculate an appropriate operating coefficient range within a predetermined range including the optimum coefficient, and obtain the optimum operating coefficient range from the calculation formula using the appropriate operating coefficient range and the head during operation. It is characterized in.
  • the present inventors strongly reflected the equipment characteristics of the centrifugal compressor, which is a centrifugal compressor, in the coefficient of performance of the centrifugal chiller equipped with the inverter-driven turbo compressor whose rotation speed is variable. I found out. Therefore, by using the flow coefficient and pressure coefficient at a specific operating point of the turbo compressor and a predetermined coefficient, the knowledge indicating that an arithmetic expression indicating the relationship between the refrigeration capacity and the head can be obtained, and this arithmetic expression is converted to the turbo expression. It was used for operation control of the refrigerator.
  • the coefficient used in this arithmetic expression is determined by using a refrigerating capacity that can take a substantially maximum coefficient of performance in the same head (for example, the same chilled water temperature and the same chilled water temperature).
  • the coefficient thus determined is set as an optimum coefficient, and a predetermined range including the optimum coefficient is set as an appropriate operation coefficient range.
  • an appropriate refrigeration capacity range can be obtained by giving a predetermined head to the arithmetic expression (since the flow coefficient and pressure coefficient are fixed values given at specific operating points).
  • the appropriate refrigeration capacity range obtained in this way is obtained from the above equation using the appropriate operation coefficient range by giving a head during operation, so that it can flexibly cope with changes in the operation state (head). it can.
  • the turbo chiller can be operated within an appropriate refrigeration capacity range with respect to an arbitrary operation state, the turbo chiller can be operated in a range where the coefficient of performance is good.
  • the refrigeration capacity used in the arithmetic expression only needs to be a parameter that reflects the refrigeration capacity.
  • the suction air volume of the turbo compressor can be used, and the head used in the arithmetic expression differs depending on the physical properties of the refrigerant used.
  • the characteristic equation is calculated from the physical properties using the temperature difference between the cold water and the cooling water and the pressure difference between the evaporator and the condenser as parameters, and then the outlet of the cooling water that cools the condenser from the condenser It can be obtained from the temperature difference between the temperature and the outlet temperature from the evaporator of cold water cooled by the evaporator, or it can be obtained from the pressure difference between the condenser pressure and the evaporator pressure.
  • the heat source system control method of the heat source system of the present invention comprises a plurality of the above-described turbo chillers, and the total refrigeration capacity output from the turbo chillers operated in the appropriate refrigeration capacity range requires an external load. It is good also as a structure which controls the start-up number of the said turbo refrigerator so that required refrigerating capacity may be satisfied.
  • the number of turbo chillers to be started is determined so as to satisfy the required refrigeration capacity required by the external load. Since the number of the activated centrifugal chillers is controlled so as to operate within the appropriate refrigeration capacity range, a plurality of turbo chillers can be operated with a high coefficient of performance, and an operation with a high energy saving effect is realized.
  • FIG. 1 is a schematic configuration diagram showing a heat source system according to an embodiment of the present invention. It is the figure which showed the turbo refrigerator used for the heat-source system of FIG. It is the figure which showed the outline of the unit control operation
  • FIG. 1 shows an overall configuration of a heat source system according to an embodiment.
  • the heat source system 1 is installed in a building or factory facility.
  • the heat source system 1 includes three first to third turbo refrigerators 11, 12, and 13 that give cold heat to cold water supplied to an external load 3 such as an air conditioner or a fan coil. These first to third turbo refrigerators 11, 12, and 13 are installed in parallel to the external load 3.
  • or 3rd cold water pumps 21, 22, and 23 which pump cold water are installed in the upstream of each turbo refrigerator 11,12,13 seen from the cold water flow, respectively.
  • the cold water from the return header 32 is sent to the turbo refrigerators 11, 12, and 13 by these cold water pumps 21, 22, and 23.
  • Each of the chilled water pumps 21, 22, and 23 is driven by an inverter motor, and thereby the variable flow rate is controlled by changing the rotation speed.
  • cold water obtained in each of the turbo chillers 11, 12, and 13 is collected.
  • the cold water collected in the supply header 31 is supplied to the external load 3.
  • the cold water that has been subjected to air conditioning or the like by the external load 3 and raised in temperature is sent to the return header 32.
  • the cold water is branched at the return header 32 and sent to the turbo chillers 11, 12, and 13.
  • a first cold water flow meter 24 for measuring the flow rate flowing out of the first cold water pump 21 is provided on the downstream side of the first cold water pump 21.
  • the output of the first cold water flow meter 24 is sent to the control unit of the heat source system 1.
  • a chilled water pipe upstream of the first turbo chiller 11 is provided with a first chilled water inlet temperature sensor 29 for measuring the temperature of the chilled water flowing into the first turbo chiller 11.
  • the output of the first cold water inlet temperature sensor 29 is sent to the control unit. If the bypass valve 34 of the bypass pipe 33 is fully closed, a temperature sensor 29b provided in the chilled water pipe on the upstream side of the return header 32 may be used instead of the first chilled water inlet temperature sensor.
  • the second turbo chiller 12 and the third turbo chiller 13 are also provided with a chilled water flow meter and a chilled water inlet temperature sensor.
  • these configurations are shown only for the first turbo refrigerator 11 for easy understanding.
  • FIG. 2 shows details of the turbo refrigerators 11, 12, and 13.
  • the turbo refrigerator 11 is configured to realize a two-stage compression and two-stage expansion subcool cycle.
  • the turbo chiller 11 includes a turbo compressor 60 that compresses refrigerant, a condenser 62 that condenses the high-temperature and high-pressure gas refrigerant compressed by the turbo compressor 60, and liquid refrigerant condensed by the condenser 62.
  • a subcooler 63 that provides supercooling, a high-pressure expansion valve 64 that expands the liquid refrigerant from the subcooler 63, and an intermediate stage that is connected to the high-pressure expansion valve 64 and connected to the intermediate stage of the turbo compressor 60 and the low-pressure expansion valve 65.
  • a cooler 67 and an evaporator 66 for evaporating the liquid refrigerant expanded by the low-pressure expansion valve 65 are provided.
  • the turbo compressor 60 is a centrifugal two-stage compressor, and is driven by an electric motor 72 whose rotational speed is controlled by an inverter 70.
  • the output of the inverter 70 is controlled by the control panel 74.
  • An inlet guide vane (hereinafter referred to as “IGV”) 76 for controlling the flow rate of the intake refrigerant is provided at the refrigerant inlet of the turbo compressor 60, and the capacity control of the turbo refrigerator 11 can be performed.
  • the condenser 62 is provided with a condensed refrigerant pressure sensor Pc for measuring the condensed refrigerant pressure.
  • the output of the sensor Pc is transmitted to the control unit.
  • the subcooler 63 is provided on the downstream side of the refrigerant flow of the condenser 62 so as to supercool the condensed refrigerant.
  • a temperature sensor Ts for measuring the refrigerant temperature after supercooling is provided.
  • the condenser 62 and the subcooler 63 are inserted with a cooling heat transfer tube 80 for cooling them.
  • the cooling water flow rate is measured by a flow meter F2
  • the cooling water outlet temperature is measured by a temperature sensor Tcout
  • the cooling water inlet temperature is measured by a temperature sensor Tcin.
  • the cooling water is exhausted to the outside in a cooling tower (not shown), and then led to the condenser 62 and the subcooler 63 again.
  • a hot gas bypass valve 78 for controlling the flow rate of the refrigerant flowing in the hot gas bypass pipe 76 is provided. By adjusting the hot gas bypass flow rate with the hot gas bypass valve 78, it is possible to control the capacity of a very small region that is not sufficiently controlled by the IGV 76.
  • FIG. 3 shows the concept of controlling the number of turbo chillers in the heat source system 1.
  • the appropriate refrigeration capacity range in a predetermined head is shown. That is, if the head changes (generally, the chilled water outlet temperature is constant, the chilled water temperature changes), the map shows different appropriate refrigeration capacity ranges.
  • the heat source system 1 controls the number of activated turbo chillers so as to meet the refrigeration capacity required from the external load 3.
  • the number of units is controlled so that each of the centrifugal chillers 11, 12, and 13 can be operated within an appropriate refrigeration capacity range.
  • each of the centrifugal chillers 11 (TR-1), 12 (TR-2), and 13 (TR-3) an appropriate refrigeration capacity range for the head during operation is calculated based on an arithmetic expression described later.
  • the It is preferable to operate with the refrigerating capacity indicating the highest COP (hereinafter referred to as the coefficient of performance) having the highest efficiency of each centrifugal chiller.
  • the load point of the highest COP position indicated by an arrow in the figure
  • the load factor (operating point) of each refrigerator is the same. Therefore, as shown in FIG.
  • the appropriate refrigeration capacity ranges of the respective refrigerators are different, so the appropriate range when all three units are operated is the maximum range obtained from the maximum value and the minimum value of each appropriate capacity range.
  • the aa ′ region is taken, or the minimum range where all the appropriate refrigeration capacity ranges are overlapped is the bb ′ region. It is preferable to control so that it can be operated at least in the aa ′ region which is the maximum range.
  • one turbo chiller is operated to check whether the operation is within the proper refrigeration capacity range.
  • the second turbo chiller is activated.
  • the appropriate refrigeration capacity range may exceed 100%.
  • the number of units is controlled in the same way.
  • the refrigeration capacity of the turbo chiller when the refrigeration capacity required from the external load is reduced and three units are started is out of the lower limit of the aa ′ region, one of the three units is Stop.
  • the appropriate refrigeration capacity range may be lower than the minimum load 20% (for example) of the centrifugal chiller. In this case, it is preferable to provide a standard lower limit. (Eg 30%)
  • the map shown in FIG. 3 can be obtained flexibly for any head from an arithmetic expression described later even if the head (for example, cooling water temperature) changes.
  • a turbo compressor which is a centrifugal compressor, has a unique design point at which the internal gas flow is optimized.
  • the design points are the flow coefficient ⁇ and the pressure coefficient ⁇ ad shown in equations (1) and (2). Can be represented by two dimensionless numbers.
  • Q st is the compressor suction air volume [m 3 / s]
  • H ad is the compressor heat insulation head [m]
  • D is the impeller outer diameter [m]
  • u is the impeller peripheral speed [m / s]
  • g Indicates gravitational acceleration [m / s 2 ].
  • the inverter turbo chiller controls the compressor speed in proportion to the 0.5th power of the heat insulation head change due to the difference between the cooling water outlet temperature and the cooling water outlet temperature from the equation (2). (4), or the compressor speed can be controlled in proportion to the change in the compressor intake air volume associated with the refrigerating capacity (equation (5)).
  • the impeller rotational speed N of the turbo compressor is an internal control variable of the turbo refrigerator, and cannot be directly controlled from the heat source system 1 side. Therefore, it is appropriate to arrange the refrigerating capacity and the cooling water temperature that can be directly grasped and controlled by the heat source system 1 as variables. For this reason, the following formula is obtained by eliminating the impeller rotational speed N from the formulas (1) and (2).
  • the air volume Qst is a parameter proportional to the refrigerating capacity because it is the flow rate of the refrigerant sucked by the compressor. Therefore, if the flow coefficient ⁇ , the pressure coefficient ⁇ ad, the head Had, and the air volume Qst corresponding to this refrigeration capacity at a specific refrigeration capacity (specific operating point) are substituted into the equation (6), the coefficient k ′ for the refrigeration capacity is obtained. It is determined.
  • the relationship between the air volume Qst and the head Had at a specific refrigeration capacity can be obtained from the following equation (8).
  • Had k ′ ⁇ Qst 2 (8)
  • the coefficient k ′ corresponding to each refrigeration capacity is obtained, and a map as shown in FIG. 4 is obtained from each k ′.
  • the refrigeration capacity with the highest COP is selected from the test data of the actual machine, and the coefficient k ′ at that time is set as the optimum coefficient kopt.
  • the minimum coefficient kmin and the maximum coefficient kmax are determined as the appropriate operation coefficient range so that the optimum coefficient kopt is included and preferably the optimum coefficient is centered.
  • the air volume Qst is obtained from the head H during operation so as to be within the optimum operation coefficient range, and the operation of the turbo chiller is controlled so as to be within this air volume range.
  • FIG. 5 shows the turbo refrigerator 100 and the cooling tower 102 used in the verification test.
  • the turbo chiller 100 is also configured to realize a two-stage compression and two-stage expansion subcool cycle as in the above-described embodiment.
  • the refrigeration capacity of the turbo chiller 100 is 400 Rt.
  • the turbo compressor 101 is driven by an inverter-driven electric motor 103 at a variable speed.
  • the condenser 104 is supplied with cooling water guided from the cooling tower 102 via the cooling water pump 106, and the cooled cooling water is returned to the cooling tower 102 and sprinkled from the sprinkler.
  • a turbo refrigerator 108 having a refrigeration capacity of 600 Rt is connected to the cooling water system.
  • the cooling water inlet temperature is measured by the temperature sensor T1
  • the cooling water outlet temperature is measured by the temperature sensor T2.
  • the coolant flow rate is measured by the flow meter F2.
  • the evaporator 110 is supplied with cold water from a cold water pump 112, and the cold water cooled by the evaporator 110 is supplied to an external load (not shown).
  • the cold water inlet temperature is measured by a temperature sensor T3, and the cold water outlet temperature is measured by a temperature sensor T4.
  • the cold water flow rate is measured by the flow meter F1.
  • the following table shows the test results using the turbo chiller 100 described above.
  • COPs calculated from the measured values obtained are arranged using the refrigeration capacity and the cooling water inlet temperature as parameters.
  • FIG. 6 is a plot of the data shown in the above table on a graph.
  • the horizontal axis represents the refrigeration capacity in 100%
  • the vertical axis represents COP.
  • the refrigeration capacity of 100% corresponds to 1406.5kW.
  • an error bar corresponding to the range of uncertainty of the measurement value caused by a sensor or the like is shown.
  • Each value of chilled water temperature, cooling water temperature, chilled water flow rate, and cooling water flow rate must be consistent with the previous and subsequent load measurement points, and the heat balance should be stable at a value less than the specified uncertainty. Since it was confirmed, it can be said that the measured COP shows the characteristic performance characteristics of the inverter turbo chiller.
  • Equation (8) is obtained as follows. First, for example, assuming that the cooling water inlet temperature is 32 ° C. and the refrigeration capacity is 100% as the proper operating point of the turbo compressor, the head Had and air volume Qst at this operating point, and the flow coefficient ⁇ and pressure coefficient at this operating point By substituting ⁇ ad into equation (6), a coefficient k100 (corresponding to k ′ in equation (8)) when the refrigerating capacity is 100% is obtained.
  • the air volume Qst is obtained from the head Had at the measurement point indicating the maximum COP at each cooling water inlet temperature in Table 1, and further, by a predetermined arithmetic expression, The refrigeration capacity corresponding to this air volume Qst was determined.
  • k80 and k70 were determined for the refrigeration capacities 80% and 70%, and the refrigeration capacities were determined from the head Had at the measurement point showing the maximum COP at the same cooling water inlet temperature.
  • FIG. 7 shows a plot of the refrigeration capacity at each cooling water inlet temperature determined from k100, k80, and k70 against each maximum COP.
  • Curves smoothly connected for k100, k80, and k70 are shown as a 100% reference line, an 80% reference line, and a 70% reference line, respectively.
  • the calculated refrigeration capacity is shown numerically in parentheses at each plot point.
  • the maximum COP at each coolant inlet temperature is transcribed from Table 1 and shown with an underline.
  • FIG. 7 also shows a COP curve for each cooling water inlet temperature shown in FIG.
  • each reference line matches the tendency of the COP curve for each cooling water inlet temperature shown in FIG. Specifically, at the 80% reference line, it almost coincides with the peak value of COP at each cooling water inlet temperature.
  • the 100% reference line and the 70% reference line pass the COP value that is reduced by a predetermined value from the 80% reference line.
  • the COP characteristic of the inverter turbo chiller strongly reflects the characteristic of the centrifugal compressor that is a centrifugal compressor.
  • the coefficient k ′ (see equation (8)) obtained based on the flow coefficient ⁇ , the pressure coefficient ⁇ ad, the cooling water temperature (head), and the refrigeration capacity at a specific operating point (for example, a design point) that is a fixed value is used.
  • the peak point of COP and its vicinity can be easily estimated from the calculated equation.
  • the following operational effects can be achieved.
  • arithmetic expressions ((6) to (8) indicating the relationship between the refrigerating capacity and the head. ) Formula).
  • the optimum coefficient kopt is determined by using a refrigerating capacity that can take a substantially maximum COP in the same head (cooling water temperature in the present embodiment).
  • the appropriate operating coefficient range is determined for the predetermined range including this optimum coefficient kopt, and the appropriate refrigeration capacity range can be grasped by giving the head during operation to the arithmetic expression so that it becomes this appropriate operating coefficient range .
  • the appropriate refrigeration capacity range can be obtained from the arithmetic expression by giving an arbitrary head during operation, so that it can flexibly cope with changes in the operating state (for example, the cooling water temperature that affects the head). Can do. Therefore, since the turbo chiller can be operated within the appropriate refrigeration capacity range for any operating state, the turbo chiller can be operated in a range where the COP is good, and a significant energy saving operation compared to the conventional case. It becomes possible.
  • the turbo chiller When determining the number of turbo chillers 11, 12, and 13 to be activated so as to satisfy the required refrigeration capacity required by the external load 3, the turbo chiller is operated within an appropriate refrigeration capacity range obtained by an arithmetic expression. Since the number of units is controlled, a plurality of centrifugal chillers can be operated at a high COP, and an operation with a high energy saving effect is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

 冷却水温度が運転時に変化しても適正な冷凍能力範囲で高効率に運転することができるターボ冷凍機を提供する。適正冷凍能力範囲は、ターボ圧縮機の特定の運転点における流量係数および圧力係数と、所定の係数(k)とを用いてヘッド(Had)および冷凍能力との関係を示した演算式から、同一のヘッドにおいて略最大の成績係数をとりえる冷凍能力を用いて前記係数を最適係数(kopt)として得て、最適係数(kopt)を含む所定範囲の適正運転係数範囲を演算し、適正運転係数範囲と運転時のヘッドとを用いて前記演算式から得られる。

Description

ターボ冷凍機および熱源システムならびにこれらの制御方法
 本発明は、ターボ冷凍機および熱源システムならびにこれらの制御方法に関するものである。
 ターボ冷凍機を複数台用いた熱源システムが知られている。この熱源システムは、外部負荷が要求する要求熱量に応じてターボ冷凍機の起動台数を制御する。この台数制御を行う際に、起動されたターボ冷凍機を高効率で運転させることにより、省エネルギー効果を得ることが求められる。
 特許文献1には、凝縮器に供給される冷却水温度によって決まるインバータ駆動ターボ冷凍機の成績係数と負荷率との関係を得ておき、成績係数が所定値以上となるようにインバータを制御する技術が開示されている。
特開2005-114295号公報
 しかし、特許文献1に記載された公知技術では、冷却水温度に応じて予め成績係数と負荷率との関係を得ておく必要があり、この関係が得られていない冷却水温度では適正な運転点が分からないため高効率での運転を行うことができない。これを回避するためには、想定される冷却水温度の全てについて成績係数と負荷率との関係を得ておく必要があるが、そのデータ量は膨大なものとなるため現実的でない。
 本発明は、このような事情に鑑みてなされたものであって、冷却水温度(ヘッド)が運転時に変化しても適正な冷凍能力範囲で高効率に運転することができるターボ冷凍機および熱源システムならびにこれらの制御方法を提供することを目的とする。
 上記課題を解決するために、本発明のターボ冷凍機および熱源システムならびにこれらの制御方法は以下の手段を採用する。
 すなわち、本発明にかかるターボ冷凍機は、回転数可変とされたインバータ駆動のターボ圧縮機と、該ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、凝縮された冷媒を膨張させる膨張弁と、膨張された冷媒を蒸発させ、冷水を冷却する蒸発器とを備え、所定の適正冷凍能力範囲で運転されるターボ冷凍機であって、前記適正冷凍能力範囲は、前記ターボ圧縮機の特定の運転点における流量係数および圧力係数と、所定の係数とを用いてヘッドおよび冷凍能力との関係を示した演算式から、同一のヘッドにおいて略最大の成績係数をとりえる冷凍能力を用いて前記係数を最適係数として得て、該最適係数を含む所定範囲の適正運転係数範囲を演算し、該適正運転係数範囲と運転時のヘッドとを用いて前記演算式から得られることを特徴とする。
 本発明者等は、鋭意検討した結果、回転数可変とされたインバータ駆動のターボ圧縮機を備えたターボ冷凍機の成績係数には、遠心圧縮機であるターボ圧縮機の機器特性が強く反映されることを見出した。
 そこで、ターボ圧縮機の特定の運転点における流量係数および圧力係数と、所定の係数を用いれば、冷凍能力とヘッドとの関係を示す演算式が得られるという知見を得て、この演算式をターボ冷凍機の運転制御に用いることとした。この演算式に用いられる係数は、同一のヘッド(例えば、同一の冷水温度および同一の冷却水温度)において略最大の成績係数を取り得る冷凍能力を用いて決定する。このように決定された係数を最適係数とし、この最適係数を含む所定範囲を適正運転係数範囲とする。この適正運転係数範囲を用いれば、演算式に所定のヘッドを与えることにより(流量係数および圧力係数は特定の運転点で与えられた固定値なので)、適正な冷凍能力範囲を得ることができる。このように得られる適正冷凍能力範囲は、運転時におけるヘッドを与えることにより適正運転係数範囲を用いて前記演算式から得られるので、運転状態(ヘッド)が変化しても柔軟に対応することができる。したがって、任意の運転状態に対して適正冷凍能力範囲内でターボ冷凍機を運転させることができるので、ターボ冷凍機を成績係数が良い範囲で運転させることができる。
 なお、演算式に用いる冷凍能力は、冷凍能力を反映するパラメータであれば良く、例えばターボ圧縮機の吸込風量を用いることができる。また、演算式に用いるヘッドは、使用する冷媒の物性により異なるため、あらかじめ冷水と冷却水の温度差や、蒸発器と凝縮器の圧力差をパラメータにして物性から特性式を算定しておき、その上で、凝縮器を冷却する冷却水の凝縮器からの出口温度と蒸発器によって冷却される冷水の蒸発器からの出口温度との温度差から得ることができ、あるいは、凝縮器圧力と蒸発器圧力の圧力差から得ることができる。
 本発明の熱源システムは、上記のターボ冷凍機を複数台備え、前記適正冷凍能力範囲で運転される前記ターボ冷凍機が出力する冷凍能力の合計が、外部負荷が要求する要求冷凍能力を満足するように、前記ターボ冷凍機の起動台数を制御する構成としてもよい。
 この構成によれば、外部負荷が要求する要求冷凍能力を満足するようにターボ冷凍機の起動台数が決定される。起動されたターボ冷凍機が適正冷凍能力範囲で運転されるように台数制御されるので、高い成績係数で複数のターボ冷凍機を運転させることができ、省エネルギー効果が高い運転が実現される。
 本発明のターボ冷凍機の制御方法は、回転数可変とされたインバータ駆動のターボ圧縮機と、該ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、凝縮された冷媒を膨張させる膨張弁と、膨張された冷媒を蒸発させ、冷水を冷却する蒸発器とを備え、所定の適正冷凍能力範囲で運転されるターボ冷凍機の制御方法であって、前記適正冷凍能力範囲は、前記ターボ圧縮機の特定の運転点における流量係数および圧力係数と、所定の係数とを用いてヘッドおよび冷凍能力との関係を示した演算式から、同一のヘッドにおいて略最大の成績係数をとりえる冷凍能力を用いて前記係数を最適係数として得て、該最適係数を含む所定範囲の適正運転係数範囲を演算し、該適正運転係数範囲と運転時のヘッドとを用いて前記演算式から得られることを特徴とする。
 本発明者等は、鋭意検討した結果、回転数可変とされたインバータ駆動のターボ圧縮機を備えたターボ冷凍機の成績係数には、遠心圧縮機であるターボ圧縮機の機器特性が強く反映されることを見出した。
 そこで、ターボ圧縮機の特定の運転点における流量係数および圧力係数と、所定の係数を用いれば、冷凍能力とヘッドとの関係を示す演算式が得られるという知見を得て、この演算式をターボ冷凍機の運転制御に用いることとした。この演算式に用いられる係数は、同一のヘッド(例えば、同一の冷水温度および同一の冷却水温度)において略最大の成績係数を取り得る冷凍能力を用いて決定する。このように決定された係数を最適係数とし、この最適係数を含む所定範囲を適正運転係数範囲とする。この適正運転係数範囲を用いれば、演算式に所定のヘッドを与えることにより(流量係数および圧力係数は特定の運転点で与えられた固定値なので)、適正な冷凍能力範囲を得ることができる。このように得られる適正冷凍能力範囲は、運転時におけるヘッドを与えることにより適正運転係数範囲を用いて前記演算式から得られるので、運転状態(ヘッド)が変化しても柔軟に対応することができる。したがって、任意の運転状態に対して適正冷凍能力範囲内でターボ冷凍機を運転させることができるので、ターボ冷凍機を成績係数が良い範囲で運転させることができる。
 なお、演算式に用いる冷凍能力は、冷凍能力を反映するパラメータであれば良く、例えばターボ圧縮機の吸込風量を用いることができるまた、演算式に用いるヘッドは、使用する冷媒の物性により異なるため、あらかじめ冷水と冷却水の温度差や、蒸発器と凝縮器の圧力差をパラメータにして物性から特性式を算定しておき、その上で、凝縮器を冷却する冷却水の凝縮器からの出口温度と蒸発器によって冷却される冷水の蒸発器からの出口温度との温度差から得ることができ、あるいは、凝縮器圧力と蒸発器圧力の圧力差から得ることができる。
 本発明の熱源システムの熱源システムの制御方法は、上記のターボ冷凍機を複数台備え、前記適正冷凍能力範囲で運転される前記ターボ冷凍機が出力する冷凍能力の合計が、外部負荷が要求する要求冷凍能力を満足するように、前記ターボ冷凍機の起動台数を制御する構成としてもよい。
 この構成によれば、外部負荷が要求する要求冷凍能力を満足するようにターボ冷凍機の起動台数が決定される。起動されたターボ冷凍機が適正冷凍能力範囲で運転されるように台数制御されるので、高い成績係数で複数のターボ冷凍機を運転させることができ、省エネルギー効果が高い運転が実現される。
 本発明によれば、運転時のヘッドから演算式を用いて成績係数が高い適正冷凍能力範囲を得ることができるので、省エネルギー運転を実現することができる。
本発明の一実施形態にかかる熱源システムを示した概略構成図である。 図1の熱源システムに用いられるターボ冷凍機を示した図である。 熱源システムの台数制御運転の概略を示した図である。 所定のヘッドに対する適正風量範囲(適正冷凍能力範囲)を示したグラフである。 検証試験に用いたターボ冷凍機および冷却水設備を示した概略図である。 検証試験結果を示し、冷却水入口温度ごとに、冷凍能力に対してCOPをプロットしたグラフである。 それぞれの係数に対して得られたCOPを、冷凍能力に対して示したグラフである。
符号の説明
1 熱源システム
3 外部負荷
11,12,13 ターボ冷凍機
21,22,23 冷水ポンプ
Had ヘッド
Qst 風量
kopt 最適係数
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
 図1には、一実施形態にかかる熱源システムの全体構成が示されている。
 熱源システム1は、ビルや工場設備に設置される。この熱源システム1は、空調機やファンコイル等の外部負荷3に供給する冷水に対して冷熱を与える第1乃至第3のターボ冷凍機11,12,13を3台備えている。これら第1乃至第3ターボ冷凍機11,12,13は、外部負荷3に対して並列に設置されている。
 冷水流れからみた各ターボ冷凍機11,12,13の上流側には、それぞれ、冷水を圧送する第1乃至第3の冷水ポンプ21,22,23が設置されている。これら冷水ポンプ21,22,23によって、リターンヘッダ32からの冷水が各ターボ冷凍機11,12,13へと送られる。各冷水ポンプ21,22,23は、インバータモータによって駆動されるようになっており、これにより、回転数を可変とすることで可変流量制御される。
 サプライヘッダ31には、各ターボ冷凍機11,12,13において得られた冷水が集められるようになっている。
 サプライヘッダ31に集められた冷水は、外部負荷3に供給される。
 外部負荷3にて空調等に供されて昇温した冷水は、リターンヘッダ32に送られる。冷水は、リターンヘッダ32において分岐され、各ターボ冷凍機11,12,13に送られる。
 第1冷水ポンプ21の下流側には、第1冷水ポンプ21から流出する流量を計測する第1冷水流量計24が設けられている。この第1冷水流量計24の出力は、熱源システム1の制御部へと送られる。
 第1ターボ冷凍機11の上流側の冷水配管には、第1ターボ冷凍機11へと流入する冷水温度を計測するための第1冷水入口温度センサ29が設けられている。この第1冷水入口温度センサ29の出力は、制御部へと送られる。なお、バイパス配管33のバイパス弁34が全閉であれば、第1冷水入口温度センサに代えて、リターンヘッダ32の上流側の冷水配管に設けた温度センサ29bを用いても良い。
 第2ターボ冷凍機12及び第3ターボ冷凍機13についても、第1ターボ冷凍機11と同様に、冷水流量計や冷水入口温度センサが設けられている。ただし、図1では、理解の容易のために第1ターボ冷凍機11に対してのみこれらの構成が示されている。
 図2には、ターボ冷凍機11,12,13の詳細が示されている。同図では、理解の容易のため、3台並列に設けられたターボ冷凍機のうちの一つの第1ターボ冷凍機11のみが示されている。
 ターボ冷凍機11は、2段圧縮2段膨張サブクールサイクルを実現する構成となっている。このターボ冷凍機11は、冷媒を圧縮するターボ圧縮機60と、ターボ圧縮機60によって圧縮された高温高圧のガス冷媒を凝縮する凝縮器62と、凝縮器62にて凝縮された液冷媒に対して過冷却を与えるサブクーラ63と、サブクーラ63からの液冷媒を膨張させる高圧膨張弁64と、高圧膨張弁64に接続されるとともにターボ圧縮機60の中間段および低圧膨張弁65に接続される中間冷却器67と、低圧膨張弁65によって膨張させられた液冷媒を蒸発させる蒸発器66とを備えている。
 ターボ圧縮機60は、遠心式の2段圧縮機であり、インバータ70によって回転数制御された電動モータ72によって駆動されている。インバータ70は、制御盤74によってその出力が制御されている。ターボ圧縮機60の冷媒吸入口には、吸入冷媒流量を制御するインレットガイドベーン(以下「IGV」という。)76が設けられており、ターボ冷凍機11の容量制御が可能となっている。
 凝縮器62には、凝縮冷媒圧力を計測するための凝縮冷媒圧力センサPcが設けられている。センサPcの出力は、制御部に送信される。
 サブクーラ63は、凝縮器62の冷媒流れ下流側に、凝縮された冷媒に対して過冷却を与えるように設けられている。サブクーラ63の冷媒流れ下流側直後には、過冷却後の冷媒温度を計測する温度センサTsが設けられている。
 凝縮器62及びサブクーラ63には、これらを冷却するための冷却伝熱管80が挿通されている。冷却水流量は流量計F2により、冷却水出口温度は温度センサTcoutにより、冷却水入口温度は温度センサTcinにより計測されるようになっている。冷却水は、図示しない冷却塔において外部へと排熱された後に、再び凝縮器62及びサブクーラ63へと導かれるようになっている。
 中間冷却器67には、中間圧力を計測するための圧力センサPMが設けられている。
 蒸発器66には、蒸発圧力を計測するための圧力センサPEが設けられている。蒸発器66において吸熱されることによって定格温度(例えば7℃)の冷水が得られる。蒸発器には、外部負荷へ供給される冷水を冷却するための冷水伝熱管82が挿通されている。冷水流量は流量計F1により、冷水出口温度は温度センサToutにより、冷水入口温度はTinにより計測されるようになっている。
 凝縮器62の気相部と蒸発器66の気相部との間には、ホットガスバイパス管76が設けられている。そして、ホットガスバイパス管76内を流れる冷媒の流量を制御するためのホットガスバイパス弁78が設けられている。ホットガスバイパス弁78によってホットガスバイパス流量を調整することにより、IGV76では制御が十分でない非常に小さな領域の容量制御が可能となっている。
 次に、上記構成の熱源システム1の動作について説明する。
 図3には、熱源システム1におけるターボ冷凍機の台数制御の考え方が示されている。同図には、所定のヘッドにおける適正冷凍能力範囲が示されている。つまり、ヘッドが変われば(一般には冷水出口温度は一定とされるので、冷却水温度が変われば)、異なる適正冷凍能力範囲を示すマップとなる。
 熱源システム1は、外部負荷3から要求される冷凍能力に見合うようにターボ冷凍機の起動台数を制御する。本実施形態では、図3に示したように、各ターボ冷凍機11,12,13が適正冷凍能力範囲で運転できるように台数制御される。各ターボ冷凍機11(TR-1),12(TR-2),13(TR-3)には、後述する演算式に基づいて、運転時におけるヘッドに対して適正な冷凍能力範囲が演算される。各ターボ冷凍機の最も効率が良い最高COP(以下、成績係数を「COP」という。)を示す冷凍能力で運転するのが好ましい。しかし、最も効率が良い最高COP(図中に矢印で示した位置)の負荷点はターボ冷凍機ごとに異なる。一方、冷水流量が一定である一般的な仕様の場合、各冷凍機の負荷率(運転点)は同じとなる。したがって、図3に示すように各冷凍機の適正冷凍能力範囲は異なるため、3台全てが運転される場合の適正範囲は、各適正能力範囲の最大値と最小値とから得られる最大範囲をとってa-a’域とするか、全ての適正冷凍能力範囲が重複する最小範囲をとってb-b’域となる。少なくとも、最大範囲となるa-a’域で運転できるように制御することが好ましい。
 外部負荷から要求される要求冷凍能力が増加していく増段運転の場合には、先ず1台のターボ冷凍機を運転し適正冷凍能力範囲で運転となるかを確認する。そして、要求冷凍能力が増大して起動中のターボ冷凍機の適正冷凍能力範囲の上限を外れる場合には、2台目のターボ冷凍機を起動する。
ただし、図3に示すように適正冷凍能力範囲が100%を超える場合がある、この場合は標準的な上限を設けておくことが良い。(例えば80%)このように、それぞれのターボ冷凍機が適正冷凍能力を出力し、かつ、可能な限り最高COPを示す冷凍能力にて運転するように制御する。
 要求冷凍能力が減少する減段運転の場合にも同様の考えで台数制御を行う。すなわち、外部負荷から要求される冷凍能力が減少して3台起動していた場合のターボ冷凍機の冷凍能力がa-a’域の下限から外れる場合には、3台の内の1台を停止させる。ただし、適正冷凍能力範囲がターボ冷凍機の最小負荷20%(例えば)を下回る場合がある、この場合は標準的な下限を設けておくことが良い。(例えば30%)
 また、図3に示したマップは、ヘッド(例えば冷却水温度)が変化しても、後述の演算式から任意のヘッドに対して即座に得ることができるので、柔軟に対応することができる。
 次に、各ヘッドに対して適正冷凍能力範囲を求める演算式について説明する。
 遠心圧縮機であるターボ圧縮機は、内部のガス流れが最適となる固有の設計点を有しており、その設計点は(1)式及び(2)式に示す流量係数φ及び圧力係数μadの2つの無次元数で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Qstは圧縮機吸込風量[m3/s]、Hadは圧縮機断熱ヘッド[m]、Dは羽根車外径[m]、uは羽根車周速[m/s]、gは重力加速度[m/s2]を示す。
 遠心圧縮機の機器特性に着目すれば、インバータターボ冷凍機は、(2)式より冷却水出口温度と冷水出口温度の差に伴う断熱ヘッド変化の0.5乗に比例して圧縮機回転数を制御すること((4)式)ができ、または(1)式より冷凍能力に伴う圧縮機吸込風量の変化に比例して圧縮機回転数を制御すること((5)式)ができるので、少なくとも一方の無次元数を最適な設計点に維持制御する運転が可能となる。
 しかし、ターボ圧縮機の羽根車回転数Nは、ターボ冷凍機の内部制御変数となっており、熱源システム1側から直接制御することができない。そこで、熱源システム1によって直接把握できて制御可能な冷凍能力と冷却水温度を変数として整理することが適切である。このため、(1)式及び(2)式から、羽根車回転数Nを消去して、下式を得る。
Figure JPOXMLDOC01-appb-M000002
 (6)式から分かるように、流量係数φ、圧力係数μad及び係数kを固定値として与えれば、風量QstとヘッドHadとの関係式(演算式)を導くことができる。ここで、風量Qstは、圧縮機が吸い込む冷媒の流量なので、冷凍能力に比例するパラメータである。
 したがって、特定の冷凍能力(特定の運転点)における流量係数φ、圧力係数μad、ヘッドHad及びこの冷凍能力に対応する風量Qstを(6)式へ代入すれば、その冷凍能力に対する係数k’が決定される。この係数k’を用いれば、下式(8)により、特定の冷凍能力における風量QstとヘッドHadとの関係が得られる。
 Had=k’×Qst  (8)
 このように、各冷凍能力に対応した係数k’を求め、それぞれのk’から図4のようなマップが得られる。そして、実機の試験データから各冷凍能力のうちで最もCOPが高くなる冷凍能力を選定し、そのときの係数k’を最適係数koptとする。この最適係数koptを含むように、好ましくは最適係数が中心となるように、適正運転係数範囲として最小係数kminと最大係数kmaxを定める。
 実際の運転時には、運転時のヘッドHから、最適運転係数範囲に入るように、風量Qstを求め、この風量範囲に入るように、ターボ冷凍機の運転を制御する。
 次に、上述の演算式に基づく制御の妥当性について検証した検証試験について説明する。
 図5には、検証試験に用いたターボ冷凍機100および冷却塔102が示されている。同図ではサブクーラや中間冷却器が省略されているが、このターボ冷凍機100も、上述の実施形態と同様に2段圧縮2段膨張サブクールサイクルを実現する構成となっている。
 ターボ冷凍機100の冷凍能力は400Rtとされている。ターボ圧縮機101は、インバータ駆動の電動モータ103によって回転数可変にて駆動される。
 凝縮器104には、冷却塔102から冷却水ポンプ106を介して導かれる冷却水が供給されるようになっており、冷却後の冷却水は冷却塔102へと返送され、散水部から散水されることによって冷却される。なお、低温度域や低熱量域において冷却水温度を安定させるために、冷凍能力600Rtのターボ冷凍機108を冷却水系統に接続してある。これにより、夏期であっても10℃の冷却水入口温度が実現される。冷却水入口温度は温度センサT1によって、冷却水出口温度は温度センサT2によって計測される。冷却水流量は流量計F2によって計測される。
 蒸発器110には、冷水ポンプ112から冷水が供給されるようになっており、蒸発器110で冷やされた冷水は外部負荷(図示せず)へと供給されるようになっている。冷水入口温度は温度センサT3によって、冷水出口温度は温度センサT4によって計測される。冷水流量は流量計F1によって計測される。
 次表には、上記のターボ冷凍機100を用いた試験結果が示されている。同表には、得られた計測値から算出したCOPが、冷凍能力および冷却水入口温度をパラメータとして整理されている。なお、冷却水入口温度が12℃、冷凍能力80%、70%及び60%の場合については、安定した計測データが得られなかったので示されていない。
Figure JPOXMLDOC01-appb-T000003
 上表に示されたデータをグラフにプロットしたものが図6である。同図において、横軸は冷凍能力を100分率表示したものであり、縦軸はCOPである。なお、冷凍能力100%は、1406.5kWに相当する。同グラフにおける各点については、センサ等に起因する計測値の不確かさの幅に相当するエラーバーが示されている。
 同図から、各冷却水入口温度一定条件で比較すると、冷凍能力80%~40%の範囲にCOPのピークが存在することが分かる。例えば、冷却水32℃ラインでは80%付近、20℃ラインでは60%付近、13℃ラインでは40%付近である.なお、冷水温度、冷却水温度、冷水流量及び冷却水流量の各値は、前後の負荷計測点と連続で整合性があり、ヒートバランスが所定の不確かさ以下の値で安定していることが確認されたので、計測したCOPはインバータターボ冷凍機の特徴的な性能特性を示しているといえる。
 これらの結果を用いて、以下のように(8)式を得る。
 まず、例えば、冷却水入口温度32℃,冷凍能力100%の点をターボ圧縮機の適正運転点と仮定し、この運転点におけるヘッドHad及び風量Qstと、この運転点における流量係数Φ及び圧力係数μadとを(6)式に代入し冷凍能力100%時の係数k100((8)式のk’の相当)を求める。そして、この係数k100を(8)式のk’に代入して、表1の各冷却水入口温度における最高COPを示す計測点のヘッドHadから風量Qstを求め、さらに、所定の演算式により、この風量Qstに相当する冷凍能力を求めた。冷凍能力80%,70%についても同様にk80及びk70を求め、それぞれに対して同一の冷却水入口温度における最高COPを示す計測点のヘッドHadから冷凍能力を求めた。図7には、k100、k80、k70から求めたそれぞれの冷却水入口温度における冷凍能力を、それぞれの最高COPに対してプロットしたものが示されている。k100、k80、k70のそれぞれについて滑らかに結んだ曲線が、100%基準線、80%基準線および70%基準線として示されている。算定された冷凍能力はそれぞれのプロット点のカッコ内に数値として示されている。各冷却水入口温度における最高COPは表1から転記され、下線とともに示されている。
 また、図7には、図3に示された各冷却水入口温度に対するCOPの曲線が併せて示されている。
 図7から、それぞれの基準線が、図3に示した各冷却水入口温度ごとのCOP曲線の傾向に合致していることが分かる。具体的には、80%基準線では、各冷却水入口温度におけるCOPのピーク値にほぼ一致している。100%基準線および70%基準線では、80%基準線から所定値だけ減少したCOPの値を通過するようになっている。
 このように、インバータターボ冷凍機のCOP特性は、遠心圧縮機であるターボ圧縮機の特性を強く反映したものといえる。したがって、固定値とした特定の運転点(例えば設計点)における流量係数Φ、圧力係数μad、冷却水温度(ヘッド)及び冷凍能力を基準として得られる係数k’((8)式参照)を用いた演算式から、COPのピーク点およびその近傍を簡便に推定することができる。
 以上の通り、本実施形態の熱源システムによれば、以下の作用効果を奏することができる。
 ターボ圧縮機11,12,13の特定の運転点における流量係数Φおよび圧力係数μadと、所定の係数kを用いて、冷凍能力とヘッドとの関係を示す演算式((6)式乃至(8)式)を得ることとした。そして、同一のヘッド(本実施形態では冷却水温度)において略最大のCOPを取り得る冷凍能力を用いて、最適係数koptを決定する。この最適係数koptを含む所定範囲を適正運転係数範囲を決定し、この適正運転係数範囲となるように、運転時のヘッドを演算式に与えることにより、適正な冷凍能力範囲を把握できるようにした。このように、適正冷凍能力範囲は、運転時における任意のヘッドを与えることにより演算式から得られるので、運転状態(例えばヘッドに影響を及ぼす冷却水温度)が変化しても柔軟に対応することができる。したがって、任意の運転状態に対して適正冷凍能力範囲内でターボ冷凍機を運転させることができるので、ターボ冷凍機をCOPが良い範囲で運転させることができ、従来に比べて大幅な省エネルギー運転が可能となる。
 外部負荷3が要求する要求冷凍能力を満足するようにターボ冷凍機11,12,13の起動台数が決定する際に、演算式によって得られた適正冷凍能力範囲でターボ冷凍機が運転するように台数制御することとしたので、高いCOPで複数のターボ冷凍機を運転させることができ、省エネルギー効果が高い運転が実現される。

Claims (4)

  1.  回転数可変とされたインバータ駆動のターボ圧縮機と、該ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、凝縮された冷媒を膨張させる膨張弁と、膨張された冷媒を蒸発させ、冷水を冷却する蒸発器とを備え、所定の適正冷凍能力範囲で運転されるターボ冷凍機であって、
     前記適正冷凍能力範囲は、前記ターボ圧縮機の特定の運転点における流量係数および圧力係数と、所定の係数とを用いてヘッドおよび冷凍能力との関係を示した演算式から、同一のヘッドにおいて略最大の成績係数をとりえる冷凍能力を用いて前記係数を最適係数として得て、該最適係数を含む所定範囲の適正運転係数範囲を演算し、該適正運転係数範囲と運転時のヘッドとを用いて前記演算式から得られることを特徴とするターボ冷凍機。
  2.  請求項1に記載されたターボ冷凍機を複数台備え、
     前記適正冷凍能力範囲で運転される前記ターボ冷凍機が出力する冷凍能力の合計が、外部負荷が要求する要求冷凍能力を満足するように、前記ターボ冷凍機の起動台数を制御することを特徴とする熱源システム。
  3.  回転数可変とされたインバータ駆動のターボ圧縮機と、該ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、凝縮された冷媒を膨張させる膨張弁と、膨張された冷媒を蒸発させ、冷水を冷却する蒸発器とを備え、所定の適正冷凍能力範囲で運転されるターボ冷凍機の制御方法であって、
     前記適正冷凍能力範囲は、前記ターボ圧縮機の特定の運転点における流量係数および圧力係数と、所定の係数とを用いてヘッドおよび冷凍能力との関係を示した演算式から、同一のヘッドにおいて略最大の成績係数をとりえる冷凍能力を用いて前記係数を最適係数として得て、該最適係数を含む所定範囲の適正運転係数範囲を演算し、該適正運転係数範囲と運転時のヘッドとを用いて前記演算式から得られることを特徴とするターボ冷凍機の制御方法。
  4.  請求項1に記載されたターボ冷凍機を複数台備え、
     前記適正冷凍能力範囲で運転される前記ターボ冷凍機が出力する冷凍能力の合計が、外部負荷が要求する要求冷凍能力を満足するように、前記ターボ冷凍機の起動台数を制御することを特徴とする熱源システムの制御方法。
PCT/JP2008/071314 2008-02-28 2008-11-25 ターボ冷凍機および熱源システムならびにこれらの制御方法 WO2009107295A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08872971.0A EP2246648A4 (en) 2008-02-28 2008-11-25 TURBO COOLING MACHINE AND HEAT SOURCE SYSTEM AND CONTROL PROCESS THEREFOR
US12/441,363 US8132421B2 (en) 2008-02-28 2008-11-25 Turbo chiller, heat source system, and methods for controlling them
CN200880108830.9A CN102741623B (zh) 2008-02-28 2008-11-25 涡轮制冷机和热源系统以及它们的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008048797A JP5244420B2 (ja) 2008-02-28 2008-02-28 ターボ冷凍機および熱源システムならびにこれらの制御方法
JP2008-048797 2008-02-28

Publications (1)

Publication Number Publication Date
WO2009107295A1 true WO2009107295A1 (ja) 2009-09-03

Family

ID=41015702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071314 WO2009107295A1 (ja) 2008-02-28 2008-11-25 ターボ冷凍機および熱源システムならびにこれらの制御方法

Country Status (5)

Country Link
US (1) US8132421B2 (ja)
EP (1) EP2246648A4 (ja)
JP (1) JP5244420B2 (ja)
CN (1) CN102741623B (ja)
WO (1) WO2009107295A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094903A (ja) * 2009-10-30 2011-05-12 Sanyo Electric Co Ltd 冷凍装置
CN102121766A (zh) * 2010-01-08 2011-07-13 三菱重工业株式会社 热泵以及热泵的热介质流量运算方法
CN102345950A (zh) * 2010-07-29 2012-02-08 三菱重工业株式会社 涡轮制冷机的性能评价装置
US9115921B2 (en) 2009-11-20 2015-08-25 Mitsubishi Heavy Industries, Ltd. Performance evaluation device for variable-speed centrifugal chiller

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495499B2 (ja) * 2008-02-27 2014-05-21 三菱重工業株式会社 ターボ冷凍機および冷凍システムならびにこれらの制御方法
JP5404132B2 (ja) 2009-03-30 2014-01-29 三菱重工業株式会社 熱源システムおよびその制御方法
JP5404333B2 (ja) * 2009-11-13 2014-01-29 三菱重工業株式会社 熱源システム
JP5517667B2 (ja) * 2010-02-19 2014-06-11 三菱重工業株式会社 熱源システムおよびその制御方法
JP5532482B2 (ja) * 2010-07-26 2014-06-25 株式会社大気社 熱源設備制御システム
JP5642448B2 (ja) * 2010-08-02 2014-12-17 三菱重工業株式会社 流量推定装置、熱源機、及び流量推定方法
JP5511578B2 (ja) * 2010-08-06 2014-06-04 三菱重工業株式会社 冷凍機制御装置
JP5761960B2 (ja) 2010-10-29 2015-08-12 三菱重工業株式会社 熱源装置
JP2012141098A (ja) * 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd 熱源システムおよびその制御方法
JP5558400B2 (ja) * 2011-03-30 2014-07-23 三菱重工業株式会社 熱源システム及び熱源システムの台数制御方法
JP5738116B2 (ja) * 2011-08-04 2015-06-17 三菱重工業株式会社 ターボ冷凍機の性能評価装置およびその方法
JP2013160441A (ja) * 2012-02-06 2013-08-19 Hitachi Appliances Inc 冷凍機
JP5836156B2 (ja) 2012-02-28 2015-12-24 三菱重工業株式会社 熱源システム及びその熱媒流量制御方法
JP6056270B2 (ja) * 2012-08-28 2017-01-11 ダイキン工業株式会社 ターボ圧縮機及びターボ冷凍機
JP5931774B2 (ja) * 2013-02-25 2016-06-08 三菱重工業株式会社 ターボ冷凍機の最大負荷率算出装置及びその方法並びに熱源システム及びその台数制御方法
JP6219160B2 (ja) * 2013-12-24 2017-10-25 三菱重工サーマルシステムズ株式会社 ターボ冷凍機の最大負荷率算出装置及びその方法並びに熱源システム及びその台数制御方法
JP2017506307A (ja) * 2014-02-20 2017-03-02 ダンフォス・エイ/エス 遠心圧縮機用の制御システム及び方法
US10041314B2 (en) * 2014-07-08 2018-08-07 National Oilwell Varco, L.P. Closed loop drilling mud cooling system for land-based drilling operations
JP6301784B2 (ja) * 2014-08-28 2018-03-28 荏原冷熱システム株式会社 熱源システムに使用される制御装置、および該制御装置を備えた熱源システム
JP6361074B2 (ja) * 2015-05-13 2018-07-25 三菱重工サーマルシステムズ株式会社 台数制御装置、エネルギー供給システム、台数制御方法及びプログラム
CN106225362B (zh) * 2016-08-02 2019-06-14 顿汉布什(中国)工业有限公司 一种双机头离心式冷水机组的控制方法和系统
JP6890021B2 (ja) * 2017-02-28 2021-06-18 三菱重工サーマルシステムズ株式会社 ターボ冷凍機、及びターボ冷凍機の運転方法
JP6987598B2 (ja) * 2017-10-20 2022-01-05 三菱重工サーマルシステムズ株式会社 冷凍サイクルの制御装置、熱源装置、及びその制御方法
CN112856722B (zh) * 2021-01-07 2022-07-12 丁一 冷源系统控制方法、控制器、系统、存储介质及程序产品
JP6889343B1 (ja) * 2021-01-29 2021-06-18 東京瓦斯株式会社 熱源システム
CN113432268A (zh) * 2021-06-28 2021-09-24 广东美的白色家电技术创新中心有限公司 模块机组的控制方法及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200094A (ja) * 1988-02-02 1989-08-11 Kobe Steel Ltd 遠心圧縮機の制御方法
JPH0593550A (ja) * 1991-04-11 1993-04-16 Ebara Corp 冷凍システム
JPH109695A (ja) * 1996-06-25 1998-01-16 Hitachi Ltd ターボ冷凍機
JP2005114295A (ja) * 2003-10-09 2005-04-28 Takasago Thermal Eng Co Ltd 熱源システム及び制御装置
JP2005180267A (ja) * 2003-12-18 2005-07-07 Mitsubishi Heavy Ind Ltd ターボ冷凍機およびその圧縮機ならびにその制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546618A (en) * 1984-09-20 1985-10-15 Borg-Warner Corporation Capacity control systems for inverter-driven centrifugal compressor based water chillers
JP2006292329A (ja) * 2005-04-14 2006-10-26 Mitsubishi Heavy Ind Ltd 熱源システムおよびその制御装置ならびにその制御方法
JP4934349B2 (ja) * 2006-05-12 2012-05-16 東洋熱工業株式会社 氷蓄熱システムの運転制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200094A (ja) * 1988-02-02 1989-08-11 Kobe Steel Ltd 遠心圧縮機の制御方法
JPH0593550A (ja) * 1991-04-11 1993-04-16 Ebara Corp 冷凍システム
JPH109695A (ja) * 1996-06-25 1998-01-16 Hitachi Ltd ターボ冷凍機
JP2005114295A (ja) * 2003-10-09 2005-04-28 Takasago Thermal Eng Co Ltd 熱源システム及び制御装置
JP2005180267A (ja) * 2003-12-18 2005-07-07 Mitsubishi Heavy Ind Ltd ターボ冷凍機およびその圧縮機ならびにその制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094903A (ja) * 2009-10-30 2011-05-12 Sanyo Electric Co Ltd 冷凍装置
US9115921B2 (en) 2009-11-20 2015-08-25 Mitsubishi Heavy Industries, Ltd. Performance evaluation device for variable-speed centrifugal chiller
CN102121766A (zh) * 2010-01-08 2011-07-13 三菱重工业株式会社 热泵以及热泵的热介质流量运算方法
CN102345950A (zh) * 2010-07-29 2012-02-08 三菱重工业株式会社 涡轮制冷机的性能评价装置
CN102345950B (zh) * 2010-07-29 2014-03-12 三菱重工业株式会社 涡轮制冷机的性能评价装置
US8812263B2 (en) 2010-07-29 2014-08-19 Mitsubishi Heavy Industries, Ltd. Centrifugal chiller performance evaluation system

Also Published As

Publication number Publication date
JP2009204262A (ja) 2009-09-10
CN102741623B (zh) 2015-04-22
JP5244420B2 (ja) 2013-07-24
EP2246648A4 (en) 2014-10-29
CN102741623A (zh) 2012-10-17
EP2246648A1 (en) 2010-11-03
US20100170274A1 (en) 2010-07-08
US8132421B2 (en) 2012-03-13

Similar Documents

Publication Publication Date Title
JP5244420B2 (ja) ターボ冷凍機および熱源システムならびにこれらの制御方法
JP5427563B2 (ja) インバータターボ冷凍機の性能評価装置
JP5984703B2 (ja) 熱源システム及び冷却水供給装置の制御装置並びに制御方法
JP5558400B2 (ja) 熱源システム及び熱源システムの台数制御方法
JP5669402B2 (ja) ヒートポンプ及びヒートポンプの熱媒流量演算方法
JP5812653B2 (ja) 熱媒流量推定装置、熱源機、及び熱媒流量推定方法
JP5523972B2 (ja) ターボ冷凍機の性能評価装置
EP2693136A1 (en) Expansion valve control device, heat source machine, and expansion valve control method
JP5554277B2 (ja) 熱媒流量推定装置、熱源機、及び熱媒流量推定方法
WO2013129464A1 (ja) 熱源システムの台数制御装置及びその方法並びに熱源システム
JP5981180B2 (ja) ターボ冷凍機及びその制御方法
US8336324B2 (en) Turbo chiller and control method therefor
CN104896780A (zh) 涡轮制冷机
JP2007225140A (ja) ターボ冷凍機およびその制御装置ならびにターボ冷凍機の制御方法
JP6987598B2 (ja) 冷凍サイクルの制御装置、熱源装置、及びその制御方法
JP5931774B2 (ja) ターボ冷凍機の最大負荷率算出装置及びその方法並びに熱源システム及びその台数制御方法
JP6698312B2 (ja) 制御装置、制御方法、及び熱源システム
JP6219160B2 (ja) ターボ冷凍機の最大負荷率算出装置及びその方法並びに熱源システム及びその台数制御方法
JP2012149835A (ja) 冷凍機およびその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880108830.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12441363

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008872971

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE