WO2009107201A1 - 有機elパネル及びその製造方法 - Google Patents

有機elパネル及びその製造方法 Download PDF

Info

Publication number
WO2009107201A1
WO2009107201A1 PCT/JP2008/053293 JP2008053293W WO2009107201A1 WO 2009107201 A1 WO2009107201 A1 WO 2009107201A1 JP 2008053293 W JP2008053293 W JP 2008053293W WO 2009107201 A1 WO2009107201 A1 WO 2009107201A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
sealing
coating film
layer
light emitting
Prior art date
Application number
PCT/JP2008/053293
Other languages
English (en)
French (fr)
Inventor
雄司 齋藤
真慈 中嶋
結城 敏尚
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2010500477A priority Critical patent/JP5174145B2/ja
Priority to PCT/JP2008/053293 priority patent/WO2009107201A1/ja
Priority to US12/919,599 priority patent/US8362698B2/en
Publication of WO2009107201A1 publication Critical patent/WO2009107201A1/ja
Priority to US13/718,368 priority patent/US8736164B2/en
Priority to US14/247,269 priority patent/US8957586B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/874Passivation; Containers; Encapsulations including getter material or desiccant
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present invention relates to an organic EL panel and a manufacturing method thereof.
  • An organic EL (electroluminescence) panel includes an organic EL element as a light-emitting element.
  • an organic EL element as a light-emitting element.
  • various display devices used for lighting panels, etc. as various light sources used in scanners, printers, etc., as illumination devices used in general illumination, backlights of liquid crystal display devices, etc., or optical communication utilizing a photoelectric conversion function
  • the organic EL element Since the organic EL element has a property that the light emission characteristic deteriorates when exposed to moisture in the atmosphere, the organic EL element is sealed to block the organic EL element from the atmosphere in order to operate the organic EL panel stably for a long time.
  • Structure is indispensable.
  • a sealing structure of an organic EL panel a metal or glass sealing member and a substrate on which an organic EL element is formed are bonded together to form a sealing space surrounding the organic EL element, and the sealing space
  • studies on a solid sealing structure in which an organic EL element on a substrate is directly covered with a sealing material without a space are also being studied.
  • Patent Document 1 The prior art described in Patent Document 1 is formed on the surface of a first substrate having an organic EL element on the surface, a second substrate bonded to the first substrate, and the surface of the second substrate. And the surface of the desiccant layer is covered with a stress buffer layer made of a resin layer.
  • the presence of the sealing space greatly affects the thickness of the panel. Must be reduced.
  • the desiccant layer provided on the inner surface of the sealing member or the inner surface of the sealing member may come into contact with the organic EL element on the substrate due to deformation of the substrate or the sealing member.
  • the desiccant layer a material containing a binder resin and a dry component of an inorganic material is used. Since the dry component of the inorganic material is granular or granular, fine irregularities are formed on the surface of the desiccant layer. However, when the surface comes into contact with the organic EL element, the organic EL element is mechanically damaged, and this causes a defect such as leakage that causes a light emission failure. In the above-described prior art (Patent Document 1), in order to solve this problem, the desiccant layer is covered with a stress buffer layer made of a resin layer, and the unevenness on the surface of the desiccant layer is in direct contact with the organic EL element. I try not to.
  • the substrate (first substrate) on which the organic EL element is formed is transferred from the film formation chamber to the sealing treatment chamber, but the desiccant layer and the stress buffer layer covering it are not provided. Since the sealing member (second substrate) to be formed is transported to the sealing processing chamber via an atmosphere different from that of the film forming chamber described above, the stress buffer layer is formed during the transporting process. In some cases, dust or the like may adhere to the surface, and even if a stress buffer layer is provided, if the surface comes into contact with the surface of the organic EL element, the organic EL element may be damaged by the attached dust or the like.
  • the desiccant layer is covered with a stress buffer layer made of a resin layer, so that moisture that has entered the sealed space cannot be adsorbed to the desiccant layer unless the resin layer is interposed. There arises a problem that the original function of the desiccant layer that adsorbs moisture entering the sealed space is deteriorated.
  • the sealing adhesive layer comes into contact with the surface of the organic EL element.
  • sealing adhesion In some cases, aggregates such as fillers may be mixed in the agent. In this case, the surface unevenness due to the presence of the aggregate hits the surface of the organic EL element, which also causes mechanical damage to the organic EL element. Arise.
  • the present invention has been proposed in order to cope with such a situation, and in achieving thinning of the panel, the organic EL element is prevented from being mechanically damaged, and the panel itself is machined. It is an object of the present invention to increase the overall strength, and more specifically, in an organic EL panel in which a substrate on which an organic EL element is formed and a sealing member are bonded together, the panel is made thinner. At the same time, the contact between the desiccant provided on the inner surface of the sealing member and the surface of the organic EL element is avoided, and the sufficient light adsorption function by the desiccant is maintained, thereby maintaining the good light emission characteristics of the organic EL panel. This is the object of the present invention.
  • the organic EL panel and the manufacturing method thereof according to the present invention include at least the configurations according to the following independent claims.
  • An organic EL panel comprising a light emitting part having a plurality of or a single organic EL element on a substrate and a sealing structure for sealing the light emitting part, wherein the organic EL element comprises a light emitting layer An organic layer formed on the first electrode formed directly or via another layer on the substrate, and a second electrode formed on the organic layer, and on the substrate A coating film that is formed by directly forming a film on at least the second electrode and covers the light emitting portion, and the coating film is made of an amorphous organic material, and the surface of the coating film An organic EL panel having a film thickness that absorbs surface irregularities of a contact target that comes into contact with the substrate.
  • a method of manufacturing an organic EL panel comprising a light emitting part having a plurality of or a single organic EL element on a substrate, and a sealing structure for sealing the light emitting part.
  • an element region defining step of forming a first electrode through another layer and defining an element region on the first electrode, and a light emitting layer on the first electrode in which the element region is defined in a vacuum atmosphere A film forming step of forming a second electrode on the organic layer, and forming a coating film made of an amorphous organic material and covering the light emitting portion on the substrate.
  • a coating film forming process and a sealing process for sealing the light-emitting portion wherein the coating film forming process is a vacuum consistent from the film forming process, and the coating film is An organic EL panel characterized in that a film is formed to a thickness that absorbs surface irregularities of a contact target that contacts the surface of Manufacturing method.
  • (A) is sectional drawing of organic EL panel 10C which concerns on 3rd Embodiment of this invention
  • (B) is sectional drawing of organic EL panel 10D which concerns on 4th Embodiment of this invention. It is a flowchart explaining the manufacturing method of the organic electroluminescent panel which concerns on one Embodiment of this invention. It is explanatory drawing explaining the manufacturing apparatus which concerns on one Embodiment of an organic electroluminescent panel. It is explanatory drawing explaining the organic EL element which concerns on one Example of this invention. It is explanatory drawing for demonstrating the effect of the organic electroluminescent panel which concerns on this invention.
  • An organic EL panel is an organic EL panel including a light emitting unit having a plurality of or a single organic EL element on a substrate and a sealing structure for sealing the light emitting unit,
  • the organic EL element includes a light emitting layer, and includes an organic layer formed on a first electrode formed directly on the substrate or via another layer, and a second electrode formed on the organic layer.
  • a coating film that is formed by directly forming a film on the substrate at least on the second electrode and that covers the light emitting portion, and the coating film is made of an amorphous organic material, It has a film-forming thickness that absorbs surface irregularities of a contact target that contacts the surface of the film.
  • the coating film is formed by forming a film directly on at least the second electrode, and covers the light emitting portion.
  • the coating film is made of an amorphous organic material, and the coating film Since it has a film thickness that absorbs the surface irregularities of the contact target that contacts the surface of the film, mechanical damage to the organic EL element due to the surface irregularities of the contact target that contacts the surface of the coating film can be reduced.
  • the coating film made of an amorphous organic material functions as a buffer layer that disperses stress caused by a contact target (for example, a desiccant), thereby reducing mechanical damage to the organic EL element. it can.
  • the coating film made of the amorphous organic material is an organic EL element. Since it is formed above, mechanical damage to the organic EL element can be reduced.
  • the buffer layer preferably has a higher elastic modulus.
  • the organic EL panel according to an embodiment of the present invention has a relatively high strength because the coating film is formed.
  • substrate with which the said organic EL element was formed, and the sealing member has the said coating film while achieving thickness reduction of a panel, it arrange
  • the manufacturing method of the organic electroluminescent panel which concerns on one Embodiment of this invention is equipped with the light emission part which has a several or single organic EL element on the board
  • a method for manufacturing a panel wherein a first electrode is formed on a substrate directly or via another layer, and a device region defining step for defining a device region on the first electrode; Forming an organic layer including a light emitting layer on the first electrode, and forming a second electrode on the organic layer; and a light emitting portion made of an amorphous organic material on the substrate.
  • a coating film forming process for forming a coating film for coating the light emitting part, and the coating film forming process is a vacuum consistent from the film forming process.
  • the film is formed to a thickness that absorbs the surface irregularities of the contact target that contacts the surface of the coating film.
  • the organic material according to the prior art formed by covering the desiccant layer provided on the sealing member side with a stress buffer layer made of a resin layer so that the unevenness of the surface of the resin layer does not directly contact the organic EL element
  • the sealing member may adhere dust or the like to the surface of the stress buffer layer during the manufacturing process, and even if the stress buffer layer is provided, the surface contacts the surface of the organic EL element. Then, the organic EL element may be damaged due to attached dust or the like.
  • the method for producing an organic EL panel according to the present invention comprises a coating film forming step for forming a coating film made of an amorphous organic material and covering a light emitting part, and a sealing for sealing the light emitting part.
  • the coating film forming process is a vacuum consistent from the film forming process, and the coating film is formed to a thickness that absorbs the surface irregularities of the contact target that contacts the surface of the coating film. Therefore, during the manufacturing process, adhesion of dust or the like between the coating film and the organic EL element can be reduced, and mechanical damage to the organic EL element can be reduced.
  • FIG. 1 is an explanatory view illustrating an organic EL panel according to an embodiment of the present invention.
  • FIG. 1A is a cross-sectional view of an organic EL panel 10 according to the first embodiment of the present invention.
  • B) is a cross-sectional view of an organic EL panel 10A according to a second embodiment of the present invention.
  • 2A is an enlarged cross-sectional view of the main part of the organic EL panel 10 shown in FIG. 1A
  • FIG. 2B is the main part of the organic EL panel 10A shown in FIG. It is an expanded sectional view.
  • an organic EL panel 10 As shown in FIGS. 1A and 2A, an organic EL panel 10 according to the first embodiment of the present invention includes a substrate 1, a first electrode (lower electrode) 2, an insulating film 3, and an organic layer 5.
  • the second electrode (upper electrode) 6, the light emitting unit 50, the coating film 7, the sealing member 80, the desiccant 81, and the adhesive layer 90 are provided as basic components.
  • the coating film 7 corresponds to one embodiment of the coating film according to the present invention
  • the light emitting unit 50 corresponds to one embodiment of the light emitting unit according to the present invention.
  • the substrate 1 can be formed of glass or the like.
  • the transparent member is required. Need not be.
  • the first electrode (lower electrode) 2 is formed, for example, in parallel (in a stripe pattern) on the substrate 1.
  • a transparent material such as ITO (Indium Tin Oxide) is used.
  • ITO Indium Tin Oxide
  • another metal electrode having a high reflectance is used.
  • the insulating film 3 electrically insulates the plurality of first electrodes 2 by exposing a part of the light emitting portion 50 on the first electrode 2 and covering the other part.
  • the light emitting part 50 is formed in a shape, the left and right side parts of the first electrode 2 are partly covered and partly on the substrate 1 so that the exposed part on the first electrode 2 is partitioned in a lattice pattern.
  • a part is formed on the first electrode 2.
  • the organic layer 5 is a layer of an organic EL medium including the light emitting layer 5C, and is formed on at least the first electrode not covered with the insulating film 3.
  • Various light emitting layers and various functional layers for supplying electrons / holes to the light emitting layer for example, electron injection / transport layer, hole injection / transport layer, hole / electron block layer, hole / electron buffer layer, etc.).
  • the second electrode 6 is formed in parallel on the organic layer 5 so as to intersect the first electrode 2, and is composed of an organic EL element with the organic layer 5 sandwiched at the intersection with the first electrode 2.
  • the light emitting unit 50 is formed.
  • a transparent electrode such as ITO or a thin metal electrode is used.
  • another metal electrode having high reflectivity is used. It is done.
  • a sealing member 80 is formed by being bonded to the substrate 1 with an adhesive layer 90 surrounding the light emitting portion 50 interposed therebetween.
  • the sealing member 80 is formed of a glass material, a metal material, or the like, and is formed in a plate shape.
  • the adhesive layer 90 is formed of an inorganic material such as resin or glass frit.
  • the contact target according to one embodiment of the present invention is a sheet-like shape disposed on the inner surface of the sealing member 80.
  • the desiccant 81 is formed in a sheet shape, for example.
  • the desiccant 81 has a structure including a binder resin and a dry component.
  • the binder resin is a material necessary for forming into a sheet shape, and a resin material having a chain-like molecular structure is used.
  • a dry component can be comprised with the inorganic material which has the property to adsorb
  • the binder resin is preferably one that does not interfere with the moisture adsorbing action of the dry component, and for example, a relatively gas-permeable material (gas-permeable resin) is used.
  • a relatively gas-permeable material gas-permeable resin
  • a polymer material such as polyolefin, polyacrylic, polyacrylonitrile, polyamide, polyester, epoxy, or polycarbonate can be used.
  • a polyolefin gas-permeable resin having relatively high expected permeability is preferable.
  • examples of the binder resin include polyethylene, polypropylene, polybutadiene, polyisoprene, copolymers thereof, and the like.
  • the dry component is preferably a compound having a moisture adsorption function, and particularly a compound that chemically adsorbs moisture and maintains a solid state even after adsorption.
  • the dry component may be a metal oxide, a metal inorganic acid salt, an organic acid salt, or the like.
  • at least one of an alkaline earth metal oxide and a sulfate is particularly used.
  • the alkaline earth metal oxide include calcium oxide (CaO), barium oxide (BaO), magnesium oxide (MgO), and the like.
  • sulfate examples include lithium sulfate (Li 2 SO 4 ), sodium sulfate (Na 2 SO 4 ), potassium sulfate (CaSO 4 ), magnesium sulfate (MgSO 4 ), cobalt sulfate (CoSO 4 ), and gallium sulfate (Ga). 2 (SO 4 ) 3 ), titanium sulfate (Ti (SO 4 ) 2 ), nickel sulfate (NiSO 4 ), and the like. In addition, a hygroscopic organic material can also be used.
  • the coating film 7 is formed by directly forming a film on the substrate 1 at least on the second electrode 6 and covers the light emitting unit 50.
  • the coating film 7 according to this embodiment covers the first electrode 2, the organic layer 5, and the second electrode 6 including one surface of the substrate 1.
  • This coating film 7 functions as a buffer layer for the contact target.
  • the coating film 7 is made of an amorphous organic material, and has a film thickness (D7) that absorbs surface irregularities of a contact target that contacts the surface of the coating film 7.
  • the amorphous organic material is an organic material that can be formed by vapor deposition that does not damage the organic layer 5 and the second electrode 6 during film formation.
  • the organic material may be any material that becomes amorphous at the time of film formation, such as N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzine (NPB), aluminum.
  • NBP N′-diphenyl-benzine
  • a quinolinol complex (Alq 3 ) or the like can be used.
  • the coating film 7 may contain a moisture absorption component in an amorphous organic material. By including a hygroscopic component in the coating film 7, it is possible to reduce problems such as deterioration of the light emission characteristics of the organic EL element due to an external gas.
  • the influence of the outgas released from the partition wall can be reduced by the moisture absorption component of the coating film 7.
  • the moisture-absorbing component (adsorbent) in the coating film 7 in detail, alkali metal or alkaline earth metal (sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), etc.)
  • Anhydrous anhydrides, chlorides, sulfides, oxides, and the like can be used.
  • anhydrous magnesium sulfate, anhydrous sodium sulfate, calcium chloride, lithium chloride, calcium oxide, vanadium oxide, strontium oxide, and the like can be used.
  • the sealing structure As the sealing structure, a hollow sealing for sealing the organic EL element covered with the coating film 7 with the sealing space M and a sealing space for the organic EL element covered with the coating film 7 are provided. There is a solid sealing that seals without any problems.
  • the organic EL panel 10 according to the first embodiment shown in FIG. 1 (A) and FIG. 2 (A) is an example of hollow sealing, and the contact target according to the embodiment of the present invention of the coating film 7 is as follows. It is a desiccant 81.
  • the thickness 7D (thickness along the vertical direction of the substrate 1) of the coating film 7 is, for example, the particle size of the desiccant that is a drying component of the desiccant 81, or the unevenness length (convex portion) of the surface of the desiccant 81 811), preferably about 1.5 times or more thicker.
  • the thickness 7D of the coating film 7 is about 1.5 of the particle size of the desiccant 81 or the unevenness length of the surface of the desiccant 81 (the length of the convex portion 811). It is preferably ⁇ 4 times, optimally about 3 times.
  • the thickness 7D (thickness along the vertical direction of the substrate 1) of the coating film 7 is, for example, the length from the surface of the coating film 7 to the light emitting portion 50, specifically, the second electrode from the surface of the coating film 7 It is the length to 6 upper part.
  • the thickness 7D of the coating film 7 increases in accordance with the vapor deposition time. For this reason, using the data (deposition time / thickness conversion table) in which the deposition time measured in advance and the thickness 7D are associated, the thickness 7D of the coating film 7 absorbs the surface irregularities of the contact target, for example.
  • the coating film 7 according to the present invention is formed by performing deposition with a prescribed deposition time so as to have a thickness.
  • the coating film 7 has the surface irregularity of the desiccant 81 Therefore, contact between the desiccant 81 and the surface of the organic EL element can be avoided. Moreover, it can suppress that a mechanical damage is added to an organic EL element.
  • the sheet-like desiccant 81 includes a dry component of a binder resin and an inorganic material, and the dry component comes into contact with the coating film 7, and the inorganic material is in the form of a sheet.
  • the convex portion 811 is formed on the surface of the desiccant 81, and the surface of the coating film 7 forms a concave portion due to the convex portion, so that contact between the desiccant 81 and the surface of the organic EL element can be avoided.
  • the organic EL panel 10A according to the second embodiment shown in FIG. 1 (B) and FIG. 2 (B) is an example of solid sealing, and the contact target according to the embodiment of the present invention of the coating film 7 is as follows. It is a sealing adhesive 82.
  • the sealing adhesive 82 according to the second embodiment corresponds to the sheet-like desiccant of the first embodiment, and is formed of a resin or the like.
  • a foreign substance or the like adhering to the surface of the sealing adhesive 82 forms a convex portion 811, and a concave portion 701 is formed on the surface so that the coating film 7 has a shape corresponding to the convex portion 821 of the sealing adhesive 82.
  • the convex portion 821 and the concave portion 701 are fitted.
  • the sealing adhesive 82 includes a binder resin and an inorganic filler or a dry component made of an inorganic material, and the dry component is in contact with the coating film 7.
  • grains of the inorganic filler and the inorganic material of a dry component is formed in the surface of the sealing desiccant 82, and the coating film 7 respond
  • a concave portion 701 is formed on the surface so as to have a shape, and the convex portion 821 and the concave portion 701 are fitted. Such a fitting structure between the convex portion 821 and the concave portion 701 can be relatively easily produced by a vapor deposition manufacturing method.
  • the organic EL panel 10A can be formed thin as much as there is no sealing space M. Has a relatively high strength. Further, even when the sealing member 80 is distorted into a concave shape due to an external force or the like, the coating film 7 has a film thickness 7D that absorbs the surface irregularities of the desiccant 81. Therefore, the desiccant 81 and the surface of the organic EL element Can be avoided, internal stress can be dispersed in the coating film 7, and mechanical damage to the organic EL element can be suppressed.
  • FIG. 3A is a cross-sectional view of an organic EL panel 10C according to the third embodiment of the present invention.
  • the same number is attached
  • the partition 4 is formed on the insulating film 3.
  • a plurality of the partition walls 4 are formed in parallel on the insulating film 3 so as to intersect the first electrode 2 (in the illustrated example, in the form of stripes along the direction perpendicular to the paper surface). It has a cross section.
  • the substantially trapezoidal shape only needs to be in a state where the width of the upper surface of the partition wall 4 is larger than the width of the lower surface on the insulating film 3, and includes a T-shaped one.
  • the side surface of the partition wall 4 may be a flat surface, a slightly curved surface, or a surface refracted to form a T shape.
  • the coating film 7 is formed to have a thickness that covers the partition walls 4.
  • the thickness from the upper part of the coating film 7 to the 2nd electrode 6 should just be thicker than the length of the convex-shaped part 811 of the desiccant 81.
  • the thickness from the upper part of the coating film 7 to the upper part of the partition wall 4 should be larger than the length of the convex part 811 of the desiccant 81.
  • the covering film 7 is approximately 3 ⁇ m, which is substantially the same thickness as the partition wall 4 so as to function as a buffer layer. It may be formed to a film thickness of about or more.
  • the sealing member 80 is distorted into a concave shape due to an external force or the like, contact between the desiccant 81 and the surface of the organic EL element can be avoided, and internal stress is applied to the coating film 7. And mechanical damage to the organic EL element can be suppressed.
  • FIG. 3B is a cross-sectional view of an organic EL panel 10D according to the fourth embodiment of the present invention.
  • the same number is attached
  • the organic EL panels according to the first to third embodiments are passive matrix type, but the present invention may be applied to an active matrix type organic EL panel as shown in FIG. 3B.
  • a thin film transistor 9 (TFT: Thin Film Transistor) is formed in a matrix for each pixel on the substrate 1, and a planarization insulating layer 301 is formed on the TFT 9.
  • TFT Thin Film Transistor
  • the first electrode 2 electrically connected to the TFT 9 is formed thereon.
  • An organic layer 5 is formed on the first electrode 2, and a second electrode 6 is formed thereon.
  • a coating film 7 is formed on the second electrode 6 with a specified thickness. Since other configurations are substantially the same as those of the passive organic EL panel according to the third embodiment, description thereof is omitted.
  • the organic EL panel 10D having the above configuration, even when the sealing member 80 is distorted into a concave shape due to an external force or the like, contact between the sealing adhesive 82 and the surface of the organic EL element can be avoided, and internal stress is applied to the coating film. 7 can be dispersed and mechanical damage to the organic EL element can be suppressed.
  • FIG. 4 is a flowchart illustrating a method for manufacturing an organic EL panel according to an embodiment of the present invention.
  • FIG. 5 is an explanatory view illustrating a manufacturing apparatus according to an embodiment of the organic EL panel.
  • the manufacturing method of the organic EL panel according to the present embodiment includes an element region defining step (S1), a film forming step (S5), a coating film forming step (S8), and a sealing step (S9).
  • the first electrode 2 is formed on the substrate 1 directly or via another layer, and the element region is defined on the first electrode 2.
  • the 1st electrode formation process (S3) which forms the 1st electrode 2 is performed.
  • the first electrode forming step (S3) is performed by depositing the electrode material of the first electrode 2 on the substrate by a thin film forming technique such as vapor deposition or sputtering, and then forming a stripe shape by a pattern forming technique such as photolithography. A pattern is formed. After pattern formation, cleaning and drying processes are performed as necessary.
  • an organic insulating material such as polyimide or an inorganic insulating material such as SiO 2 or SiN is used to form a film on one surface of the substrate 1 on which the first electrode 2 is formed.
  • Pattern formation is performed. Specifically, when an organic insulating material such as polyimide is used, a film having a predetermined thickness is formed on the substrate 1 on which the first electrode 2 is formed by a spin coating method or the like to form a light emitting portion. An exposure process is performed using an exposure mask having an opening pattern, and then a development process is performed to form the insulating film 3 having the lattice pattern described above.
  • the film is formed by vapor deposition, sputtering, or the like, and the above-described lattice pattern is obtained by a pattern formation technique such as photolithography.
  • the partition walls are formed in stripes on the insulating film 3 by the partition formation process.
  • the shape and pattern of the partition 4 can be formed by photolithography. That is, after applying a photosensitive resin to a predetermined thickness, light is irradiated through a photomask having a striped pattern opening intersecting the first electrode 2, and the difference in exposure amount in the thickness direction of the film A partition wall 4 having a substantially inverted trapezoidal cross section is formed by utilizing the difference in the developing speed generated.
  • the organic layer 5 including the light emitting layer is formed on the first electrode 2 in which the element region is defined in a vacuum atmosphere, and the second electrode 6 is formed on the organic layer 5.
  • the organic layer forming step (S6) after forming the first electrode 2, the insulating film 3 and the like on the substrate 1, each layer of the organic layer is formed on the substrate 1 on which these are formed.
  • the organic layer 5 is formed on at least the exposed portion of the first electrode 2.
  • Each layer of the organic layer 5 can be formed by vacuum deposition. Each layer of the organic layer 5 may be formed by coating.
  • the electrode material of the second electrode 6 is formed thereon.
  • the partition 4 functions as a shadow mask, and the second electrode 6 having a stripe pattern is formed between the partitions 4.
  • a coating film 7 that covers the light emitting portion is formed by a film forming process such as vapor deposition using a film forming material composed of a hygroscopic agent and an amorphous organic material.
  • the coating film 7 is brought into contact with the surface of the coating film in the manufacturing apparatus 300 in a consistent vacuum from the film forming step.
  • the film is formed to a thickness that absorbs the surface irregularities of the contact target.
  • the manufacturing apparatus 300 for example, as illustrated in FIG.
  • a vacuum transfer path 302 is formed between the carry-in unit 301 and the carry-out unit 303, and the pretreatment chamber 310 and the film formation are formed in the vacuum transfer path 302.
  • the chamber 1 (311), the film forming chamber 2 (312),..., The film forming chamber N (31N), and the coating film forming chamber 320 are connected to each other.
  • the substrate 1 on which the first electrode 2 and the insulating film 3 are formed by the element region defining step S1 is carried from the carry-in section 301 of the manufacturing apparatus 300, and the pretreatment chamber 310 and the film formation chamber 1 are passed through the vacuum transfer path 302.
  • the coating film forming step (S8) as described above, the data (deposition time / thickness conversion table) in which the deposition time measured in advance and the thickness 7D are associated in the coating film forming chamber 320 are obtained.
  • the coating film 7 according to the present invention is formed by performing deposition with a prescribed deposition time so that the thickness 7D of the coating film 7 becomes, for example, a film thickness that absorbs the surface unevenness of the contact target.
  • sealing step (S9) for sealing the light emitting part hollow sealing for sealing the organic EL element covered with the coating film 7 with the sealing space M, or the coating film 7 Solid sealing for sealing the organic EL element covered with is performed without providing a sealing space.
  • a sealing member in which a sheet-like desiccant is disposed on the inner surface may be bonded to the substrate 1 via an adhesive layer surrounding the light emitting unit.
  • a sealing process (S9) may cover a board
  • the coating film is consistent with the vacuum from the film forming step in the manufacturing apparatus 300. 7 is formed to a thickness that absorbs the surface irregularities of the contact target that contacts the surface of the coating film, so that adhesion of dust and the like between the coating film and the organic EL element is reduced during the manufacturing process. be able to. For this reason, mechanical damage to the organic EL element due to adhesion of dust or the like during the manufacturing process can be prevented.
  • FIG. 6 is an explanatory view illustrating an organic EL element 500E according to an embodiment of the present invention.
  • An organic EL element 500E according to an embodiment of the present invention has an element structure as shown in FIG.
  • a first electrode 2 is formed by forming a thin film of ITO on a glass substrate 1 by a deposition method such as vapor deposition or sputtering, and patterning by photolithography or the like.
  • the organic layer 5 formed on the first electrode 2 includes 30 nm of CuPc as the hole injection layer 5A and N, N′-di (naphthalen-1-yl) -N, N′— as the hole transport layer 5B.
  • the light emitting layer 5C 30 nm Alq 3 is that coumarin to 0.6 wt% doped as, 30 nm and Alq 3 as an electron transport layer 5D, 1 nm to Li 2 O as an electron injection layer 5E, these Each is formed by vacuum evaporation.
  • the second electrode 6 is formed with a predetermined thickness by depositing Al.
  • the substrate 1 is a plastic substrate
  • the first electrode 2 is a conductive material containing IZO, poly (3,4) -ethylenedioxythiophene (PE-DOT) and polystyrene sulfonate (PSS)
  • PE-DOT: PSS polystyrene sulfonate
  • the hole injection layer 5A is PE-DOT: PSS
  • the hole transport layer 5B is tetraphenyldiaminodiphenyl (TPD), diphenylnaphthyldiamine ( ⁇ -NPD), poly (p-phenylene vinylene) ( PPV)
  • the light-emitting layer 5C is doped with perylene, tetraphenylbutadiene (TPB)
  • the electron transport layer 5D is (4-biphenyl) (4-t-butylphenyl) oxydiazole (PDB), 1, 2, 4 -Triazole derivative (TAZ)
  • LiF can be used
  • the organic EL element is not limited to the above-described embodiments, and these materials may be appropriately changed. Further, the present invention is not limited to the above-described embodiment. Further, the sealing structure is not limited to the above-described embodiment.
  • organic EL element organic EL panel
  • Example 1 An organic EL panel 10 in which an organic EL element 500E having the element structure shown in FIG. 6 was formed as a light emitting element on a glass substrate 1 having a thickness of 0.4 mm was produced. On the organic EL element, an aluminum quinolyl complex (Alq 3 ) doped with calcium oxide (CaO) was co-evaporated at a ratio of 80:20 to form a coating film 7 having a thickness of 6 ⁇ m. The formed coating film 7 includes Alq 3 as an amorphous organic material and CaO as a moisture absorption component. At this time, the organic EL element and the coating film 7 are formed in a consistent vacuum.
  • Alq 3 aluminum quinolyl complex
  • CaO calcium oxide
  • a sealing member 80 made of stainless steel having a thickness of 0.2 mm is sealed and bonded to the substrate 1 with an adhesive 90 made of UV curable epoxy resin.
  • a sheet desiccant 81 formed with calcium oxide (CaO) having a particle size of 1.5 to 4 ⁇ m as a dry component and PTFE (polytetrafluoroethylene) as a binder resin is formed in the sealed space M. CaO contained in the sheet desiccant 81 protrudes from the surface to form a convex portion 811.
  • This organic EL panel was determined as Example 1.
  • Example 1 corresponds to an example of the organic EL panel shown in FIGS. 1 (A) and 2 (A).
  • the coating layer 7 of Example 1 having a thickness of 1 ⁇ m was designated as Comparative Example 1, and the coating layer 7 having no coating layer 7 was designated as Comparative Example 2.
  • the test was conducted in three stages of 25N, 50N, and 100N with the load of the push rod 92.
  • the test results are shown in Table 1. In the case of normal light emission, the evaluation was good (indicated by a circle), and in the case of abnormal light emission, the evaluation was not good (indicated by a x mark).
  • the particle size of CaO in the sheet desiccant 81 is 1.5 to 4 ⁇ m.
  • an organic EL panel that normally emitted light even when a load of 100 N was applied was obtained.
  • Example 2 In Example 2, the organic EL panel was similarly produced until the coating layer 6 was formed in a consistent vacuum as in Example 1 above. Next, the glass sealing member 80A having a thickness of 0.7 mm and the substrate 1 are sealed and bonded with a sealing adhesive 82 containing silicon oxide (SiO 2 ) having a particle size of 2 to 6 ⁇ m as an inorganic filler in a resin binder. To do. The SiO 2 ) contained in the sealing adhesive 82 becomes a convex portion 821 and has a shape that fits with the concave portion 701 of the coating layer 7.
  • SiO 2 silicon oxide
  • Example 2 since the mechanical strength of the organic EL panel is higher than that in Example 1 of space sealing, normal light emission is obtained in the surface pressing test, but the organic EL element and the resin binder are in contact with each other. Therefore, light emission defects such as leaks are likely to occur.
  • the film thickness of the coating layer 6 was set to 1, 3, 6 ⁇ m, and compared with an organic EL panel without the coating layer 6 as a comparative example.
  • Example 2 corresponds to an example of the organic EL panel shown in FIGS. 1B and 2B. Table 2 shows the results of observing the presence or absence of leakage after sealing. When no leak occurred, the evaluation was good (marked with a circle), and when the leak occurred, the evaluation was not good (marked with an x mark).
  • the organic EL panel according to the present invention is an organic EL panel including a light emitting unit having a plurality of or a single organic EL element on a substrate and a sealing structure for sealing the light emitting unit.
  • the organic EL element includes a light emitting layer, and includes an organic layer 5 formed on the first electrode 2 formed directly on the substrate 1 or via another layer, and the organic layer 5 formed on the organic layer 5.
  • a coating film 7 that is formed on the substrate 1 by forming a film directly on at least the second electrode 6 and covers the light emitting portion.
  • the coating film 7 is made of an amorphous organic material and has a film thickness (7D) that absorbs the surface irregularities of the contact target that contacts the surface of the coating film 7.
  • Organic EL element due to surface irregularities of the contact object (drying agent 81, sealing adhesive 82) that contacts the surface of 7 It is possible to reduce the mechanical damage to the. That is, the coating film 7 functions as a stress buffer layer. For example, even a relatively thin organic EL panel can reduce mechanical damage to the EL element. Furthermore, when the coating film 7 includes a moisture absorbing component and the desiccant 81 is selected as the object, both the organic EL element and the object on the sealing substrate side include the moisture absorbing component, and the organic EL panel It is possible to maintain good light emission characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 パネルの薄型化を達成するに際して、有機EL素子に機械的なダメージが加わらないようにすること、パネル自体の機械的な強度を高めるために、有機ELパネルは、基板上に複数又は単数の有機EL素子を有する発光部を備え、該発光部を封止する封止構造を備えた有機ELパネルであって、有機EL素子は、発光層を含み、基板1上に直接又は他の層を介して形成された第1電極2上に成膜された有機層5と、該有機層5上に成膜された第2電極6とを備え、基板1上に、少なくとも第2電極6上に直接成膜することによって形成され、発光部を被覆する被覆膜7を備え、この被覆膜7は、アモルファス状の有機材料からなり、該被覆膜7の表面に接触する接触対象(乾燥剤81,封止接着剤82)の表面凹凸を吸収する成膜厚さ(7D)に形成されている。

Description

有機ELパネル及びその製造方法
 本発明は、有機ELパネル及びその製造方法に関するものである。
 有機EL(electroluminescence)パネルは、有機EL素子を発光素子として備えるもので、例えば携帯電話の表示画面,車載用或いは家庭用電子機器のモニタ画面,パーソナルコンピュータやテレビジョン受像装置の情報表示画面,宣伝用点灯パネル等に用いられる各種表示装置として、スキャナやプリンタ等に用いられる各種光源として、一般照明や液晶表示装置のバックライト等に用いられる照明装置として、或いは、光電変換機能を利用した光通信用デバイスとして、各種用途に利用可能な自発光パネルである。
 有機EL素子は大気に含まれる水分等に触れると発光特性が劣化する性質があるので、有機ELパネルを長時間安定的に作動させるためには、有機EL素子を大気から遮断するための封止構造が必要不可欠になっている。有機ELパネルの封止構造としては、金属製又はガラス製の封止部材と有機EL素子が形成された基板とを貼り合わせて、有機EL素子を囲う封止空間を形成し、その封止空間内に乾燥剤を配備する構造(中空封止構造)が一般に採用されている。また、パネルの更なる薄型化や強度向上等を考慮して、基板上の有機EL素子を空間無く直接封止材料で被覆する固体封止構造の検討も進められている。
 特許文献1に記載された従来技術は、表面に有機EL素子を備えた第1の基板と、この第1の基板と貼り合わせられた第2の基板と、この第2の基板の表面に形成された乾燥剤層とを具備し、この乾燥剤層の表面が樹脂層からなる応力緩衝層で被覆されている。
特開2003-317936号公報
 前述した中空封止構造を採用した有機ELパネルでは、封止空間の存在がパネルの厚さに大きく影響することになるので、パネルの薄型化のためには、必然的に封止空間の間隙を小さくせざるを得ない。その場合には、基板や封止部材の変形によって封止部材の内面や封止部材の内面に配備した乾燥剤層が基板上の有機EL素子に接触することがある。
 乾燥剤層としては、バインダ樹脂と無機材料の乾燥成分とを含むものが用いられており、無機材料の乾燥成分は粒状又は顆粒状をなすので、乾燥剤層の表面には微細な凹凸が形成されているが、この表面が有機EL素子に接触すると、有機EL素子に機械的なダメージを与えることになり、これによってリーク等の発光不良を招く不具合が生じる。前述した従来技術(特許文献1)では、この不具合を解消するために、乾燥剤層を樹脂層からなる応力緩衝層で被覆しており、乾燥剤層の表面の凹凸が直接有機EL素子に接触しないようにしている。
 しかしながら、この従来技術では、有機EL素子が表面に形成される基板(第1の基板)は成膜室から封止処理室に搬送されるが、乾燥剤層及びそれを被覆する応力緩衝層が形成される封止部材(第2の基板)は、前述した成膜室とは別の雰囲気中を経由して封止処理室に搬送されることになるので、その搬送過程で応力緩衝層の表面に塵等が付着することがあり、応力緩衝層を設けていたとしてもその表面が有機EL素子の表面に接触すると、付着した塵などで有機EL素子にダメージが与えられる不具合が生じる。
 また、前述した従来技術では、乾燥剤層を樹脂層からなる応力緩衝層で被覆してしまうので、封止空間内に侵入した水分は樹脂層を介さないと乾燥剤層に吸着されないことになり、封止空間内に侵入する水分を吸着する乾燥剤層本来の機能が低下する問題が生じる。
 一方、前述した固体封止構造を採用する場合には、有機EL素子の表面に封止接着層が接触することになるが、接着力の強化やパネル全体の強度を高めるために、封止接着剤内にフィラーなどの骨材を混合させることがあり、この場合には、その骨材の存在による表面の凹凸が有機EL素子の表面に当たり、やはり有機EL素子に機械的なダメージを与える不具合が生じる。
 本発明は、このような事情に対処するために提案されたものであって、パネルの薄型化を達成するに際して、有機EL素子に機械的なダメージが加わらないようにすること、パネル自体の機械的な強度を高めること等が本発明の目的であり、より具体的には、有機EL素子が形成された基板と封止部材とを貼り合わせた有機ELパネルにおいて、パネルの薄型化を達成すると共に、封止部材の内面に配備した乾燥剤と有機EL素子表面との接触を避け、また、乾燥剤による十分な水分吸着機能を維持することで、有機ELパネルの良好な発光特性を維持すること、等が本発明の目的である。
 このような目的を達成するために、本発明による有機ELパネル及びその製造方法は、以下の各独立請求項に係る構成を少なくとも具備するものである。
 [請求項1]基板上に複数又は単数の有機EL素子を有する発光部を備え、該発光部を封止する封止構造を備えた有機ELパネルであって、前記有機EL素子は、発光層を含み、前記基板上に直接又は他の層を介して形成された第1電極上に成膜された有機層と、該有機層上に成膜された第2電極とを備え、前記基板上に、少なくとも前記第2電極上に直接成膜することによって形成され、前記発光部を被覆する被覆膜を備え、該被覆膜は、アモルファス状の有機材料からなり、該被覆膜の表面に接触する接触対象の表面凹凸を吸収する成膜厚さを有することを特徴とする有機ELパネル。
 [請求項6]基板上に複数又は単数の有機EL素子を有する発光部を備え、該発光部を封止する封止構造を備えた有機ELパネルの製造方法であって、前記基板上に直接又は他の層を介して第1電極を形成し、該第1電極上に素子領域を画定する素子領域画定工程と、真空雰囲気内で、素子領域が画定された前記第1電極上に発光層を含む有機層を成膜し、該有機層上に第2電極を成膜する成膜工程と、前記基板上に、アモルファス状の有機材料からなり前記発光部を被覆する被覆膜を形成する被覆膜形成工程と、前記発光部を封止する封止工程とを有し、前記被覆膜形成工程は、前記成膜工程からの真空一貫で、前記被覆膜を、当該被覆膜の表面に接触する接触対象の表面凹凸を吸収する厚さに成膜することを特徴とする有機ELパネルの製造方法。
本発明の一実施形態に係る有機ELパネルを説明する説明図であり、(A)は本発明の第1実施形態に係る有機ELパネル10の断面図であり、(B)は本発明の第2実施形態に係る有機ELパネル10Aの断面図である。 (A)は図1(A)に示した有機ELパネル10の要部の拡大断面図であり、(B)は図1(B)に示した有機ELパネル10Aの要部の拡大断面図である。 (A)は本発明の第3実施形態に係る有機ELパネル10Cの断面図であり、(B)は本発明の第4実施形態に係る有機ELパネル10Dの断面図である。 本発明の一実施形態に係る有機ELパネルの製造方法を説明するフローチャートである。 有機ELパネルの一実施形態に係る製造装置を説明する説明図である。 本発明の一実施例に係る有機EL素子を説明する説明図である。 本発明に係る有機ELパネルの効果を説明するための説明図である。
 本発明の一実施形態に係る有機ELパネルは、基板上に複数又は単数の有機EL素子を有する発光部を備え、該発光部を封止する封止構造を備えた有機ELパネルであって、有機EL素子は、発光層を含み、基板上に直接又は他の層を介して形成された第1電極上に成膜された有機層と、該有機層上に成膜された第2電極とを備え、基板上に、少なくとも第2電極上に直接成膜することによって形成され、発光部を被覆する被覆膜を備え、該被覆膜は、アモルファス状の有機材料からなり、該被覆膜の表面に接触する接触対象の表面凹凸を吸収する成膜厚さを有することを特徴とする。
 上記有機ELパネルでは、被覆膜が、少なくとも第2電極上に直接成膜することによって形成され、発光部を被覆しており、この被覆膜がアモルファス状の有機材料からなり、該被覆膜の表面に接触する接触対象の表面凹凸を吸収する成膜厚さを有するので、被覆膜の表面に接触する接触対象の表面凹凸による有機EL素子に対する機械的なダメージを低減することができる。
 詳細には、アモルファス状の有機材料からなる被覆膜が、接触対象(例えば乾燥剤等)による応力を分散する緩衝層として機能することで、有機EL素子に対する機械的なダメージを低減することができる。
 特に、比較的薄型の有機ELパネルにおいて、例えば乾燥剤等の接触対象と有機EL素子との間隔が比較的小さい場合であっても、上記アモルファス状の有機材料からなる被覆膜が有機EL素子上に形成されているので、有機EL素子に対する機械的なダメージを低減することができる。緩衝層は弾性率が高い方が好ましい。
 また、本発明の一実施形態に係る有機ELパネルは、上記被覆膜が形成されているので、パネル自体が比較的高い強度を有する。
 また、上記有機EL素子が形成された基板と封止部材とを貼り合わせた有機ELパネルは、上記被覆膜を有するので、パネルの薄型化を達成すると共に、封止部材の内面に配備した乾燥剤と有機EL素子表面との接触を避けることができる。
 また、有機ELパネルにおいて、有機EL素子上に被覆膜が形成され、その被覆膜上に封止接着剤を介して封止部材で覆う封止構造を備えることで、更に、パネルの薄型化を達成すると共に、有機EL素子に機械的なダメージが加わらないようにすることができる。
 また、乾燥剤による十分な水分吸着機能を維持することで、有機ELパネルの良好な発光特性を維持することができる。
 また、本発明の一実施形態に係る有機ELパネルの製造方法は、基板上に複数又は単数の有機EL素子を有する発光部を備え、該発光部を封止する封止構造を備えた有機ELパネルの製造方法であって、基板上に直接又は他の層を介して第1電極を形成し、該第1電極上に素子領域を画定する素子領域画定工程と、真空雰囲気内で、素子領域が画定された第1電極上に発光層を含む有機層を成膜し、該有機層上に第2電極を成膜する成膜工程と、基板上に、アモルファス状の有機材料からなり発光部を被覆する被覆膜を形成する被覆膜形成工程と、発光部を封止する封止工程とを有し、被覆膜形成工程は、成膜工程からの真空一貫で、被覆膜を、当該被覆膜の表面に接触する接触対象の表面凹凸を吸収する厚さに成膜することを特徴とする。
 例えば、封止部材側に備えられた乾燥剤層を樹脂層からなる応力緩衝層で被覆して、樹脂層の表面の凹凸が直接有機EL素子に接触しないように形成された従来技術に係る有機ELパネルでは、上述したように封止部材は、製造過程で応力緩衝層の表面に塵等が付着することがあり、応力緩衝層を設けていたとしてもその表面が有機EL素子の表面に接触すると、付着した塵などで有機EL素子にダメージが与えられる不具合が生じる場合がある。
 一方、本発明に係る有機ELパネルの製造方法は、基板上に、アモルファス状の有機材料からなり発光部を被覆する被覆膜を形成する被覆膜形成工程と、発光部を封止する封止工程とを有し、被覆膜形成工程は、成膜工程からの真空一貫で、被覆膜を、当該被覆膜の表面に接触する接触対象の表面凹凸を吸収する厚さに成膜するので、製造工程中、被覆膜と有機EL素子との間に塵等の付着を低減することができ、有機EL素子に対する機械的なダメージを低減することができる。
 以下、本発明の実施形態を図面を参照して説明する。図1は本発明の一実施形態に係る有機ELパネルを説明する説明図であり、図1(A)は本発明の第1実施形態に係る有機ELパネル10の断面図であり、図1(B)は本発明の第2実施形態に係る有機ELパネル10Aの断面図である。図2(A)は図1(A)に示した有機ELパネル10の要部の拡大断面図であり、図2(B)は図1(B)に示した有機ELパネル10Aの要部の拡大断面図である。
 本発明の第1実施形態に係る有機ELパネル10は、図1(A),図2(A)に示すように、基板1、第1電極(下部電極)2、絶縁膜3、有機層5、第2電極(上部電極)6、発光部50、被覆膜7、封止部材80、乾燥剤81、および接着剤層90を基本構成として備えるものである。
 被覆膜7は本発明に係る被覆膜の一実施形態に相当し、発光部50は本発明に係る発光部の一実施形態に相当する。
 基板1は、ガラス等で形成することができる。発光部50による光を基板1を介して取り出す場合(ボトムエミッション)には、透明部材であることが必要になるが、基板1と逆側に光を取り出す場合(トップエミッション)には、透明部材である必要はない。
 第1電極(下部電極)2は、例えば基板1上に並列して(ストライプ状に)形成されるもので、基板1を介して光を取り出す場合には、ITO(Indium Tin Oxide)等の透明電極が用いられ、基板1と逆側に光を取り出す場合には反射率の高いその他の金属電極が用いられる。
 絶縁膜3は、第1電極2上の発光部50を形成する一部を露出させて他の部分を覆うことで複数の第1電極2間を電気的に絶縁するものであり、例えばドットマトリクス状に発光部50を形成する場合には、第1電極2上の露出部分が格子状に区画されるように、第1電極2の左右両側部を一部覆って一部は基板1上に一部は第1電極2上に形成される。
 有機層5は、発光層5Cを含む有機EL媒体の層であって、少なくとも絶縁膜3で覆われていない第1電極上に形成されている。前述した発光層と発光層に電子・正孔を供給するための各種機能層(例えば、電子注入・輸送層、正孔注入・輸送層、正孔・電子ブロック層、正孔・電子バッファ層等)を含むものである。
 第2電極6は、有機層5上に第1電極2と交差するように並列して形成されており、第1電極2との交差部で有機層5を狭持して有機EL素子からなる発光部50を形成するものである。基板1と逆側に光を取り出す場合にはITO等の透明電極もしくは金属電極を薄く形成したものが用いられ、基板1を介して光を取り出す場合には反射率の高いその他の金属電極が用いられる。
 封止構造としては、例えば図1(A),2(B)に示すように、封止部材80が、発光部50を囲む接着剤層90を介して、基板1に貼り合わせて形成されている。この封止部材80は、ガラス材料、金属材料等などで形成されており、板形状に形成されている。接着剤層90は、樹脂やガラスフリットなどの無機材料で形成されている。
 図1(A),図2(A)に示した第1実施形態に係る有機ELパネル10において、本発明の一実施形態に係る接触対象は、封止部材80の内面に配備されるシート状の乾燥剤81である。
 乾燥剤81は、例えばシート状に形成されている。この乾燥剤81は、バインダ樹脂と乾燥成分を含む構造を有する。バインダ樹脂は、シート状に成形するために必要な材であって、鎖状の分子構造を有する樹脂材料が用いられる。乾燥成分は、水分を吸着する性質を有する無機材料によって構成することができ、粒子状をなしてバインダ樹脂内に分散されている。
 バインダ樹脂としては、乾燥成分の水分吸着作用を妨げないものであることが好ましく、例えば比較的気体透過性の高い材料(気体透過性樹脂)を用いる。バインダ樹脂としては、詳細には、ポリオレフィン系、ポリアクリル系、ポリアクリロニトリル系、ポリアミド系、ポリエステル系、エポキシ系、ポリカーボネート系等の高分子材料を用いることができる。この中でも、バインダ樹脂としては、比較的高期待透過性のポリオレフィン系の気体透過性樹脂が好ましい。具体的には、バインダ樹脂としては、ポリエチレン,ポリプロピレン,ポリブタジエン,ポリイソプレン,これらの共重合体などを挙げることができ、好ましくは、PTFE(ポリテトラフルオロエチレン)を用いることができる。
 乾燥成分としては、水分吸着機能を有し、特に、化学的に水分を吸着すると共に吸着した後でも固体状態を維持する化合物が好ましい。例えば、この乾燥成分は、金属酸化物、金属の無機酸塩・有機酸塩等が挙げられるが、本実施形態としては、特にアルカリ土類金属酸化物、および硫酸塩の少なくとも一種を用いることが好ましい。アルカリ土類金属酸化物としては、例えば酸化カルシウム(CaO),酸化バリウム(BaO),酸化マグネシウム(MgO)等を挙げることができる。硫酸塩としては、例えば、硫酸リチウム(Li2 SO4 ),硫酸ナトリウム(Na2 SO4 ),硫酸カリウム(CaSO4 ),硫酸マグネシウム(MgSO4 ),硫酸コバルト(CoSO4 ),硫酸ガリウム(Ga2 (SO4 )3 ),硫酸チタン(Ti(SO4 )2 ),硫酸ニッケル(NiSO4 )等を挙げることができる。その他にも、吸湿性を有する有機材料を用いることもできる。
 被覆膜7は、基板1上に、少なくとも第2電極6上に直接成膜することによって形成され、発光部50を被覆する。本実施形態に係る被覆膜7は、基板1の一面を含めて、第1電極2、有機層5、および第2電極6を被覆する。この被覆膜7は、接触対象に対する緩衝層として機能する。
 被覆膜7は、詳細には、アモルファス状の有機材料からなり、その被覆膜7の表面に接触する接触対象の表面凹凸を吸収する成膜厚さ(D7)を有する。
 アモルファス状の有機物としては、成膜時に有機層5や第2電極6にダメージを与えない蒸着による成膜可能な有機材料である。また、この有機物としては、成膜時にアモルファス状になるようになるものであればよく、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジン(NPB),アルミキノリノール錯体(Alq3 )等を用いることができる。
 また、被覆膜7は、アモルファス状の有機材料に吸湿成分を含んでもよい。被覆膜7に吸湿成分を含むことで、外部からのガスによる有機EL素子の発光特性の劣化などの不具合を低減することができる。また、例えば後述するように隔壁が設けられた有機ELパネルの場合には、この隔壁から放出されるアウトガスの影響を、被覆膜7の吸湿成分により低減することができる。
 被覆膜7中の吸湿成分(吸着剤)としては、詳細には、アルカリ金属、又はアルカリ土類金属(ナトリウム(Na),カリウム(K),カルシウム(Ca),マグネシウム(Mg)などの塩の無水物,塩化物,硫化物,酸化物等を用いることができ、例えば無水硫酸マグネシウム,無水硫酸ナトリウム,塩化カルシウム,塩化リチウム,酸化カルシウム,酸化バナジウム,酸化ストロンチウム等を用いることができる。
 封止構造としては、被覆膜7で被覆された有機EL素子を封止空間内Mで封止する中空封止と、被覆膜7で被覆された有機EL素子を封止空間を設けることなく封止する固体封止がある。
 図1(A),図2(A)に示した第1実施形態に係る有機ELパネル10は中空封止の例であり、被覆膜7の本発明の一実施形態に係る接触対象としては乾燥剤81である。この被覆膜7の厚み7D(基板1の垂直方向に沿った厚み)としては、例えば乾燥剤81の乾燥成分である乾燥剤の粒径、または乾燥剤81の表面の凹凸長(凸状部811の長さ)より厚く、好ましくは約1.5倍以上厚く形成されている。特に薄型の有機ELパネルの場合には、被覆膜7の厚み7Dが、乾燥剤81の粒径、または乾燥剤81の表面の凹凸長(凸状部811の長さ)の約1.5~4倍であることが好ましく、最適には約3倍である。
 被覆膜7の厚み7D(基板1の垂直方向に沿った厚み)は、例えば被覆膜7の表面から発光部50までの長さ、詳細には、被覆膜7の表面から第2電極6上部までの長さである。
 この被覆膜7の厚み7Dは、例えば、被覆膜7を蒸着法により製造する場合には、蒸着時間に応じて厚くなる。このため、予め測定された蒸着時間と厚み7Dとが関連付けられたデータ(蒸着時間・厚み変換テーブル)を用いて、被覆膜7の厚み7Dが、例えば接触対象の表面凹凸を吸収する成膜厚さとなるように規定の蒸着時間で蒸着を行い、本発明に係る被覆膜7を形成する。
 上記構成の有機ELパネル10では、例えば封止部材80が外力などにより凹形状に歪み、シート状乾燥剤81が被覆膜7に接触した場合でも、被覆膜7が乾燥剤81の表面凹凸を吸収する成膜厚さ7Dを有するので、乾燥剤81と有機EL素子表面との接触を避けることができる。また、有機EL素子に機械的なダメージが加わることを抑止することができる。
 詳細には、例えば図2(A)に示すように、シート状乾燥剤81は、バインダ樹脂と無機材料による乾燥成分を含み、乾燥成分が被覆膜7と接触し、該無機材料がシート状乾燥剤81の表面に凸状部811を形成し、被覆膜7の表面が凸状部による凹部を形成して、乾燥剤81と有機EL素子表面との接触を避けることができる。
 図1(B),図2(B)に示した第2実施形態に係る有機ELパネル10Aは固体封止の例であり、被覆膜7の本発明の一実施形態に係る接触対象としては封止接着剤82である。
 第2実施形態に係る封止接着剤82は、第1実施形態のシート状乾燥剤に相当し、樹脂等で形成されている。封止接着剤82表面に付着する異物等が凸状部811を形成され、被覆膜7には封止接着剤82の凸状部821に応じた形状になるように、表面に凹部701が形成されていて、凸状部821と凹部701とが嵌合している。また、他の例として封止接着剤82にバインダ樹脂と無機材料による無機フィラーや乾燥成分を含み、その乾燥成分が被覆膜7と接触している。詳細には、封止乾燥剤82の表面に無機フィラーや乾燥成分の無機材料の粒子による凸状部821が形成され、被覆膜7は、封止乾燥剤82の凸状部821に応じた形状となるように、表面に凹部701が形成されており、凸状部821と凹部701とが嵌合している。このような凸状部821と凹部701との嵌合構造は、蒸着製造法により比較的簡単に作製することができる。
 上述したように、第2実施形態に係る有機ELパネル10Aでは、例えば第1実施形態に係る有機ELパネル10と比べて、封止空間Mがない分だけ薄型に形成することができ、更に、比較的高い強度を有する。
 また、封止部材80が外力などにより凹形状に歪んだ場合でも、被覆膜7が乾燥剤81の表面凹凸を吸収する成膜厚さ7Dを有するので、乾燥剤81と有機EL素子表面との接触を避けることができ、内部応力を被覆膜7内に分散することができ、有機EL素子に機械的なダメージが加わることを抑止することができる。
 図3(A)は本発明の第3実施形態に係る有機ELパネル10Cの断面図である。なお、第1及び第2実施形態と同一の部分には、同一の番号を付して重複した説明は省略する。
 本発明の第3実施形態に係る有機ELパネル10Cは、絶縁膜3上に隔壁4が形成されている。
 この隔壁4は、絶縁膜3上に第1電極2と交差するように、複数並列して(図示の例では紙面に対して直交方向に沿ったストライプ状に)形成され、略逆台形状の断面を有する。略台形状というのは、隔壁4の上面の幅が絶縁膜3上の下面の幅より大きい状態であればよく、T字形状のものも含む。隔壁4の側面は平面であっても、若干湾曲した曲面であっても、T型を形成するために屈折した面であってもよい。
 被覆膜7は、図3(A)に示すように、隔壁4を覆うような厚みに形成されている。被覆膜7の上部から第2電極6までの厚みが、乾燥剤81の凸状部811の長さよりも厚ければよい。また、好ましくは、被覆膜7の上部から隔壁4の上部までの厚みが、乾燥剤81の凸状部811の長さよりも厚ければよい。
 具体的には、例えば、隔壁4の厚みが約3μm程度の厚みで形成されている場合、被覆膜7は緩衝層として機能するように、隔壁4と面一となる略同一厚みの約3μm程度、又はそれ以上の膜厚に形成されていればよい。
 上記構成の有機ELパネル10Cでは、封止部材80が外力などにより凹形状に歪んだ場合でも、乾燥剤81と有機EL素子表面との接触を避けることができ、内部応力を被覆膜7内に分散することができ、有機EL素子に機械的なダメージが加わることを抑止することができる。
 図3(B)は本発明の第4実施形態に係る有機ELパネル10Dの断面図である。なお、第1及び第2実施形態と同一の部分には、同一の番号を付して重複した説明は省略する。
 第1~第3実施形態に係る有機ELパネルは、パッシブマトリクス型であったが、図3(B)に示すように、アクティブマトリクス型有機ELパネルに本発明を適用してもよい。
 詳細には、第4実施形態に係る有機ELパネル10Dは、基板1上に薄膜トランジスタ9(TFT:Thin Film Transistor)がマトリクス状に画素毎に形成され、TFT9上に平坦化絶縁層301が形成され、その上にTFT9に電気的に接続された第1電極2が形成されている。第1電極2上には有機層5が形成され、その上には第2電極6が形成されている。この第2電極6上には、被覆膜7が規定の厚みに形成されている。その他の構成は第3実施形態に係るパッシブ型有機ELパネルと略同様の構成となっているので、説明を省略する。
 上記構成の有機ELパネル10Dでは、封止部材80が外力などにより凹形状に歪んだ場合でも、封止接着剤82と有機EL素子表面との接触を避けることができ、内部応力を被覆膜7内に分散することができ、有機EL素子に機械的なダメージが加わることを抑止することができる。
 図4は本発明の一実施形態に係る有機ELパネルの製造方法を説明するフローチャートである。図5は有機ELパネルの一実施形態に係る製造装置を説明する説明図である。
 本実施形態に係る有機ELパネルの製造方法は、素子領域画定工程(S1)と、成膜工程(S5)と、被覆膜形成工程(S8)と、封止工程(S9)とを有する。
 素子領域画定工程(S1)は、基板1上に直接又は他の層を介して第1電極2を形成し、該第1電極2上に素子領域を画定する。詳細には、基板の研磨,洗浄等を含む基板準備工程S2を行った後、第1電極2を形成する第1電極形成工程(S3)を行う。第1電極形成工程(S3)は、詳細には、基板上に第1電極2の電極材料を蒸着,スパッタリング等の薄膜形成技術によって成膜し、その後、フォトリソグラフィ等のパターン形成技術によってストライプ状にパターン形成する。パターン形成後は、必要に応じて、洗浄、乾燥工程を行う。
 絶縁膜等形成工程(S4)では、ポリイミド等の有機絶縁材料、或いはSiO2 ,SiN等の無機絶縁材料を用いて、第1電極2が形成された基板1の一面上に成膜した後、パターン形成を行う。具体的には、ポリイミド等の有機絶縁材料を用いる場合には、第1電極2が形成された基板1上にスピンコート法等により所定厚さの膜を形成し、発光部を形成するための開口パターンを有する露光マスクを用いて露光処理を行い、その後現像処理を施すことによって前述した格子状パターンの絶縁膜3を形成する。無機材料によって絶縁膜を形成する場合には、蒸着,スパッタリング等によって成膜を行い、フォトリソグラフィ等のパターン形成技術によって前述した格子状パターンを得る。
 また、隔壁が形成されている場合には、隔壁形成工程により、絶縁膜3上にストライプ状に隔壁4を形成する。隔壁4の形状とパターンは、フォトリソグラフィによって形成することができる。すなわち、感光性樹脂を所定の厚さに塗布した後、第1電極2と交差するストライプ状パターンの開口を有するフォトマスクを介して光を照射し、膜の厚さ方向の露光量の違いから生じる現像速度の差を利用して、断面が略逆台形状の隔壁4を形成する。
 成膜工程(S5)は、真空雰囲気内で、素子領域が画定された第1電極2上に発光層を含む有機層5を成膜し、該有機層5上に第2電極6を成膜する。詳細には、有機層形成工程(S6)では、基板1上に第1電極2,絶縁膜3等を形成した後、これらが形成された基板1上に有機層の各層を成膜することで、少なくとも第1電極2の露出部分上に有機層5を形成する。カラー化のために発光層及び他の機能層で色毎の塗り分けを行う場合には、同一色の発光部形成箇所に対応した開口を有するマスクを用い、マスクを交換するか或いは位置をずらしながら、色毎に成膜する。有機層5の各層の成膜は真空蒸着によって行うことができる。また、有機層5の各層は塗布により成膜を行っても良い。
 次に、第2電極形成工程(S7)では、有機層5を成膜した後に、その上に第2電極6の電極材料を成膜する。この際、隔壁4がシャドーマスクとして機能し、隔壁4の間にストライプ状パターンの第2電極6が形成される。
 被覆膜形成工程(S8)は、吸湿剤とアモルファス状の有機材料とからなる成膜材料を用い、蒸着等の成膜工程により発光部を被覆する被覆膜7を形成する。この際、被覆膜形成工程(S8)は、図5に示すように、製造装置300内で、成膜工程からの真空一貫で、被覆膜7を、当該被覆膜の表面に接触する接触対象の表面凹凸を吸収する厚さに成膜する。
 詳細には、製造装置300は、例えば図5に示すように、搬入部301と搬出部303の間に真空搬送路302が形成されており、真空搬送路302には前処理室310、成膜室1(311),成膜室2(312),・・・,成膜室N(31N),被覆膜形成室320が連結されて形成されている。
 製造装置300の搬入部301から、素子領域画定工程S1により第1電極2および絶縁膜3が形成された基板1が搬入され、真空搬送路302を経由して前処理室310、成膜室1(311),成膜室2(312),・・・,成膜室N(31N),被覆膜形成室320と順に搬送されながら、有機層5、第2電極6、被覆膜7が真空一貫で形成された後、搬出部303から搬出されて、封止工程(S9)が施される。
 また、被覆膜形成工程(S8)では、上述したように、被覆膜形成室320内で、予め測定された蒸着時間と厚み7Dとが関連付けられたデータ(蒸着時間・厚み変換テーブル)を用いて、被覆膜7の厚み7Dが、例えば接触対象の表面凹凸を吸収する成膜厚さとなるように規定の蒸着時間で蒸着を行い、本発明に係る被覆膜7を形成する。
 発光部を封止する封止工程(S9)としては、上述したように、被覆膜7で被覆された有機EL素子を封止空間内Mで封止する中空封止や、被覆膜7で被覆された有機EL素子を封止空間を設けることなく封止する固体封止などを行う。詳細には、封止工程(S9)は、基板1に発光部を囲む接着剤層を介して内面にシート状乾燥剤が配備された封止部材を貼り合わせてもよい。また、封止工程(S9)は、発光部を覆う封止接着剤を介して基板を封止部材で覆ってもよい。
 以上説明したように、本発明の一実施形態に係る有機ELパネルの製造方法では、被覆膜形成工程(S8)において、製造装置300内で、成膜工程からの真空一貫で、被覆膜7を、当該被覆膜の表面に接触する接触対象の表面凹凸を吸収する厚さに成膜するので、製造工程中、被覆膜と有機EL素子との間に塵等の付着を低減することができる。このため製造工程中の塵等の付着による有機EL素子に対する機械的なダメージを防止することができる。
 図6は本発明の一実施例に係る有機EL素子500Eを説明する説明図である。
 本発明の一実施例に係る有機EL素子500Eは、図6に示すような素子構造を備える。ガラス製の基板1上にITOを蒸着,スパッタリング等の成膜方法で薄膜形成し、フォトリソグラフィ等によってパターン形成して第1電極2を形成する。第1電極2上に形成される有機層5としては、正孔注入層5AとしてCuPcを30nm、正孔輸送層5BとしてN,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(NPB)を30nm、発光層5Cとしてクマリンを0.6重量%ドープしたAlq3 を30nm、電子輸送層5DとしてAlq3 を30nm、電子注入層5EとしてLiOを1nm、これらをそれぞれ真空蒸着法によって形成する。第2電極6としてはAlを蒸着によって所定厚さ形成する。
 前述した構成材料に換えて、基板1はプラスチック基板、第1電極2はIZO,ポリ(3,4)-エチレンジオキシチオフェン(PE-DOT)とポリスチレンスルホネート(PSS)とを含む導電性材料(PE-DOT:PSS),正孔注入層5AはPE-DOT:PSS、正孔輸送層5Bはテトラフェニルジアミノジフェニル(TPD),ジフェニルナフチルジアミン(α-NPD),ポリ(p-フェニレンビニレン)(PPV)、発光層5Cのドープ材はペリレン,テトラフェニルブタジェン(TPB)、電子輸送層5Dは(4-ビフェニル)(4-t-ブチルフェニル)オキシジアゾール(PDB),1,2,4-トリアゾール誘導体(TAZ)、電子注入層5EはLiF、第2電極はMgAg,AlLi、等を用いることができる。
 有機EL素子は、上述した実施例に限られるものではなく、これらの材料を適宜変更してもよい。また、本発明は、上述した実施形態に限られるものではない。また、封止構造は、上述した実施形態に限られるものではない。
 次に、本発明の具体的な実施例に係る有機EL素子(有機ELパネル)を説明する。
 <実施例1>
 厚さ0.4mmのガラス製の基板1上に、図6に示す素子構造の有機EL素子500Eを発光素子として形成した有機ELパネル10を作成した。有機EL素子上にアルミキノリール錯体(Alq3)に酸化カルシウム(CaO)をドープしたものを80:20の比率で共蒸着し、6μmの膜厚で被覆膜7を形成した。形成された被覆膜7は、アモルファス状の有機材料としてAlq3、吸湿成分としてCaOが含まれる構成となっている。このとき有機EL素子と被覆膜7は真空一貫で形成する。厚さ0.2mmのステンレス製の封止部材80をUV硬化型エポキシ樹脂製の接着剤90により基板1と封止接合する。粒径が1.5~4μmの酸化カルシウム(CaO)を乾燥成分、PTFE(ポリテトラフルオロエチレン)をバインダ樹脂として形成したシート乾燥剤81を封止空間内Mに形成する。シート乾燥剤81に含まれるCaOが表面に突出して凸状部811を形成している。この有機ELパネルを実施例1とした。実施例1は、図1(A)、図2(A)に示した有機ELパネルの一実施例に相当する。
 実施例1の被覆層7の膜厚を1μmとしたものを比較例1、被覆層7がないものを比較例2とした。
 次に、例えば図7に示すように、実施例1、比較例1,2に係る有機ELパネルに対して面押し強度試験を行った。詳細には、先端に曲面部R(=曲率半径10mm)が形成された押し棒92を、台座91上に配置された有機ELパネルの裏面側中心に押圧して発光状態を観測した。図7においてパネルの下側が表示面下側(BB)に相当する。押し棒92の荷重を25N、50N、100Nの3段階で試験を行った。試験の結果を表1に示す。正常発光の場合は評価:良好(○印表記)、異常発光の場合は評価:良好でない(×印表記)とした。
Figure JPOXMLDOC01-appb-T000001
 シート乾燥剤81中のCaOの粒径は1.5~4μmである。シート乾燥剤81表面に形成する凸状部811の1.5倍以上の被覆膜6を形成する実施例では、荷重100Nを加えても正常に発光する有機ELパネルを得られた。
 <実施例2>
 実施例2では、上記実施例1と同様に真空一貫で被覆層6を形成するまで同様に有機ELパネルを作製した。次に樹脂バインダに粒径が2~6μmの酸化珪素(SiO )を無機フィラーとして含有する封止接着剤82により厚さ0.7mmのガラス製の封止部材80Aと基板1を封止接合する。封止接着剤82に含まれるSiO )が凸状部821となって被覆層7の凹部701とが嵌合する形状となる。実施例2では空間封止の実施例1よりも有機ELパネルの機械的強度がアップしているので、面押し試験で正常発光となるが、有機EL素子と樹脂バインダが接触するように形成されているので、リーク等の発光不良が生じやすくなる。実施例2では被覆層6の膜厚を1,3,6μmと設定し、比較例として被覆層6無しの有機ELパネルと比較した。実施例2は、図1(B)、図2(B)に示した有機ELパネルの一実施例に相当する。表2に、封止後にリーク発生の有無を観測した結果を示す。リークが発生していない場合は評価:良好(○印表記)、リークが発生している場合は評価:良好でない(×印表記)とした。
Figure JPOXMLDOC01-appb-T000002
 以上、説明したように、本発明に係る有機ELパネルは、基板上に複数又は単数の有機EL素子を有する発光部を備え、該発光部を封止する封止構造を備えた有機ELパネルであって、有機EL素子は、発光層を含み、基板1上に直接又は他の層を介して形成された第1電極2上に成膜された有機層5と、該有機層5上に成膜された第2電極6とを備え、基板1上に、少なくとも第2電極6上に直接成膜することによって形成され、発光部を被覆する被覆膜7を備え、この被覆膜7は、アモルファス状の有機材料からなり、該被覆膜7の表面に接触する接触対象の表面凹凸を吸収する成膜厚さ(7D)に形成されているので、被覆膜7により、被覆膜7の表面に接触する接触対象(乾燥剤81,封止接着剤82)の表面凹凸による有機EL素子に対する機械的なダメージを低減することができる。つまり、被覆膜7は応力緩衝層として機能する。また、例えば比較的薄型の有機ELパネルであっても、上記EL素子に対する機械的なダメージを低減することができる。更に、被覆膜7に吸湿成分を含み、対象物として乾燥剤81を選択する場合は、有機EL素子上と封止基板側の対象物の両方に吸湿成分を含むことになり、有機ELパネルの良好な発光特性を維持することができる。
 また、固体封止構造といった接着剤と有機EL素子が直接コンタクトするようなパネル構造であっても、乾燥剤による十分な水分吸着機能を維持することができる。固体封止構造の場合も被覆膜7に吸湿成分を含み対象物の封止接着剤82に乾燥成分を含有する場合は、有機EL素子と封止基板側の対象物の両方に吸湿成分を含むことになり、有機ELパネルの良好な発光特性を維持することができる。

Claims (9)

  1.  基板上に複数又は単数の有機EL素子を有する発光部を備え、該発光部を封止する封止構造を備えた有機ELパネルであって、
     前記有機EL素子は、発光層を含み、前記基板上に直接又は他の層を介して形成された第1電極上に成膜された有機層と、該有機層上に成膜された第2電極とを備え、
     前記基板上に、少なくとも前記第2電極上に直接成膜することによって形成され、前記発光部を被覆する被覆膜を備え、
     該被覆膜は、アモルファス状の有機材料からなり、該被覆膜の表面に接触する接触対象の表面凹凸を吸収する成膜厚さを有することを特徴とする有機ELパネル。
  2.  前記封止構造は、前記発光部を囲む接着剤層を介して、前記基板に封止部材を封止空間を形成して貼り合わせて形成され、
     前記接触対象は、前記封止部材の内面に配備されるシート状乾燥剤であり、
     前記シート状乾燥剤は、バインダ樹脂と無機材料による乾燥成分を含み、該乾燥成分が前記被覆膜と接触し、該無機材料がシート状乾燥剤の表面に凸状部を形成し、該被覆膜の表面が前記凸状部による凹部を形成していることを特徴とする請求項1に記載の有機ELパネル。
  3.  前記封止構造は、前記発光部を覆う封止接着剤を介して、前記基板を封止部材で覆って封止空間を形成せずに形成され、
     前記接触対象は、前記封止接着剤であることを特徴とする請求項1に記載の有機ELパネル。
  4.  前記封止接着剤は、バインダ樹脂と無機材料による無機フィラーもしくは乾燥成分を含み、該無機材料が前記被覆層と接触し、該封止接着剤の表面に該無機材料による凸状部を形成し、該被覆層の表面が前記凸状部による凹部を形成していることを特徴とする請求項3に記載の有機ELパネル。
  5. 前記被覆層は、前記凸状部の長さよりも膜厚を厚く成膜したことを特徴とする請求項2又は請求項4に記載の有機ELパネル。
  6.  前記被覆膜は、前記アモルファス状の有機材料に吸湿成分を含むことを特徴とする請求項1~4のいずれかに記載の有機ELパネル。
  7.  基板上に複数又は単数の有機EL素子を有する発光部を備え、該発光部を封止する封止構造を備えた有機ELパネルの製造方法であって、
     前記基板上に直接又は他の層を介して第1電極を形成し、該第1電極上に素子領域を画定する素子領域画定工程と、
     真空雰囲気内で、素子領域が画定された前記第1電極上に発光層を含む有機層を成膜し、該有機層上に第2電極を成膜する成膜工程と、
     前記基板上に、アモルファス状の有機材料からなり前記発光部を被覆する被覆膜を形成する被覆膜形成工程と、
     前記発光部を封止する封止工程とを有し、
     前記被覆膜形成工程は、前記成膜工程からの真空一貫で、前記被覆膜を、当該被覆膜の表面に接触する接触対象の表面凹凸を吸収する厚さに成膜することを特徴とする有機ELパネルの製造方法。
  8.  前記封止工程は、前記基板に前記発光部を囲む接着剤層を介して内面にシート状乾燥剤が配備された封止部材を貼り合わせることを特徴とする請求項7に記載された有機ELパネルの製造方法。
  9.  前記封止工程は、前記発光部を覆う封止接着剤を介して前記基板を封止部材で覆うことを特徴とする請求項7に記載された有機ELパネルの製造方法。
PCT/JP2008/053293 2008-02-26 2008-02-26 有機elパネル及びその製造方法 WO2009107201A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010500477A JP5174145B2 (ja) 2008-02-26 2008-02-26 有機elパネル及びその製造方法
PCT/JP2008/053293 WO2009107201A1 (ja) 2008-02-26 2008-02-26 有機elパネル及びその製造方法
US12/919,599 US8362698B2 (en) 2008-02-26 2008-02-26 Organic EL panel and its manufacturing method
US13/718,368 US8736164B2 (en) 2008-02-26 2012-12-18 Organic EL panel comprising a light-emitting part and a sealing structure sealing the light-emitting part and method for manufacturing the same
US14/247,269 US8957586B2 (en) 2008-02-26 2014-04-08 Organic EL panel comprising a light-emitting part and a seal structure sealing the light-emitting part and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053293 WO2009107201A1 (ja) 2008-02-26 2008-02-26 有機elパネル及びその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/919,599 A-371-Of-International US8362698B2 (en) 2008-02-26 2008-02-26 Organic EL panel and its manufacturing method
US13/718,368 Continuation US8736164B2 (en) 2008-02-26 2012-12-18 Organic EL panel comprising a light-emitting part and a sealing structure sealing the light-emitting part and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2009107201A1 true WO2009107201A1 (ja) 2009-09-03

Family

ID=41015615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053293 WO2009107201A1 (ja) 2008-02-26 2008-02-26 有機elパネル及びその製造方法

Country Status (3)

Country Link
US (3) US8362698B2 (ja)
JP (1) JP5174145B2 (ja)
WO (1) WO2009107201A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010084939A1 (ja) * 2009-01-23 2012-07-19 味の素株式会社 樹脂組成物
WO2012114619A1 (ja) * 2011-02-21 2012-08-30 パナソニック株式会社 有機elデバイス
JP2013080721A (ja) * 2012-12-27 2013-05-02 Pioneer Electronic Corp 有機elパネル
KR20150125817A (ko) * 2014-04-30 2015-11-10 삼성디스플레이 주식회사 유기전계발광 표시장치
US9385334B2 (en) 2011-08-05 2016-07-05 Mitsubishi Chemical Corporation Organic electroluminescence light-emitting device and production method thereof
CN108832028A (zh) * 2018-06-11 2018-11-16 武汉华星光电半导体显示技术有限公司 一种oled显示面板的制备方法及oled显示面板、显示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326448B (zh) * 2010-03-01 2015-03-25 松下电器产业株式会社 有机el装置及其制造方法
WO2013031509A1 (en) * 2011-08-26 2013-03-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, electronic device, lighting device, and method for manufacturing the light-emitting device
JP2013122903A (ja) * 2011-11-10 2013-06-20 Nitto Denko Corp 有機elデバイス、および、有機elデバイスの製造方法
US20130248827A1 (en) * 2012-03-26 2013-09-26 Canon Kabushiki Kaisha Organic electroluminescence display device
CN103354276A (zh) * 2013-06-28 2013-10-16 京东方科技集团股份有限公司 封装基板、oled显示面板及其制造方法和显示装置
US10388707B2 (en) * 2017-09-05 2019-08-20 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and manufacturing process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223265A (ja) * 1999-02-02 2000-08-11 Toray Ind Inc 発光素子
JP2002324666A (ja) * 2001-02-22 2002-11-08 Semiconductor Energy Lab Co Ltd 表示装置及びその作製方法
JP2004119259A (ja) * 2002-09-27 2004-04-15 Stanley Electric Co Ltd 有機el表示素子
JP2004146353A (ja) * 2002-10-24 2004-05-20 Toppoly Optoelectronics Corp 有機エレクトロルミネッセンス表示装置の吸湿性パッシベーション構造

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357557A (en) * 1979-03-16 1982-11-02 Sharp Kabushiki Kaisha Glass sealed thin-film electroluminescent display panel free of moisture and the fabrication method thereof
JP3392672B2 (ja) * 1996-11-29 2003-03-31 三洋電機株式会社 表示装置
JP2000294369A (ja) * 1999-04-05 2000-10-20 Chisso Corp 有機el素子
JP2001035659A (ja) * 1999-07-15 2001-02-09 Nec Corp 有機エレクトロルミネセント素子およびその製造方法
EP1242849B1 (en) * 1999-12-17 2007-02-21 Osram Opto Semiconductors GmbH Improved encapsulation for organic led device
JP3409764B2 (ja) * 1999-12-28 2003-05-26 日本電気株式会社 有機el表示パネルの製造方法
JP4526682B2 (ja) * 2000-03-28 2010-08-18 日東電工株式会社 エレクトロルミネッセンス素子
US6992439B2 (en) * 2001-02-22 2006-01-31 Semiconductor Energy Laboratory Co., Ltd. Display device with sealing structure for protecting organic light emitting element
TWI299632B (ja) * 2001-09-28 2008-08-01 Sanyo Electric Co
JP3977669B2 (ja) * 2002-03-07 2007-09-19 双葉電子工業株式会社 有機el素子
TW584822B (en) * 2002-03-28 2004-04-21 Sanyo Electric Co Organic electroluminescence panel
JP2003317936A (ja) * 2002-04-24 2003-11-07 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置
JP2003320215A (ja) * 2002-04-26 2003-11-11 Japan Gore Tex Inc 吸着材成形体、および吸着材ユニット
JP2004186048A (ja) * 2002-12-04 2004-07-02 Sanyo Electric Co Ltd 表示装置および乾燥剤
JP2004296202A (ja) * 2003-03-26 2004-10-21 Tohoku Pioneer Corp 有機elパネル及びその製造方法
KR100552973B1 (ko) * 2003-11-17 2006-02-15 삼성에스디아이 주식회사 유기 전계 발광 표시 장치
KR20050068794A (ko) * 2003-12-30 2005-07-05 엘지.필립스 엘시디 주식회사 유기전계 발광소자와 그 제조방법
JP2005340020A (ja) * 2004-05-27 2005-12-08 Hitachi Displays Ltd 有機エレクトロルミネッセンス表示装置およびその製造方法
JP2006172837A (ja) * 2004-12-14 2006-06-29 Tohoku Pioneer Corp 封止部材、自発光パネルおよび自発光パネルの製造方法
JP2006351299A (ja) * 2005-06-14 2006-12-28 Tohoku Pioneer Corp 自発光パネル、自発光パネル用の封止部材、および自発光パネルの製造方法
JP2007035322A (ja) 2005-07-22 2007-02-08 Optrex Corp 有機ledディスプレイの製造方法および有機ledディスプレイ
TWI307611B (en) * 2006-06-05 2009-03-11 Au Optronics Corp Organic electroluminescence device and organic electroluminescence panel using the same
TWI336211B (en) * 2006-07-12 2011-01-11 Au Optronics Corp Double-sided display appratus
KR100826011B1 (ko) * 2006-10-24 2008-04-29 엘지디스플레이 주식회사 디스플레이 소자
KR20080088750A (ko) * 2007-03-30 2008-10-06 삼성전자주식회사 유기발광장치 및 그 제조방법
JP4916973B2 (ja) * 2007-08-02 2012-04-18 株式会社 日立ディスプレイズ 有機エレクトロルミネッセンス表示装置
KR101351409B1 (ko) * 2009-06-03 2014-01-14 엘지디스플레이 주식회사 유기전계발광표시장치 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223265A (ja) * 1999-02-02 2000-08-11 Toray Ind Inc 発光素子
JP2002324666A (ja) * 2001-02-22 2002-11-08 Semiconductor Energy Lab Co Ltd 表示装置及びその作製方法
JP2004119259A (ja) * 2002-09-27 2004-04-15 Stanley Electric Co Ltd 有機el表示素子
JP2004146353A (ja) * 2002-10-24 2004-05-20 Toppoly Optoelectronics Corp 有機エレクトロルミネッセンス表示装置の吸湿性パッシベーション構造

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010084939A1 (ja) * 2009-01-23 2012-07-19 味の素株式会社 樹脂組成物
JP5601202B2 (ja) * 2009-01-23 2014-10-08 味の素株式会社 樹脂組成物
WO2012114619A1 (ja) * 2011-02-21 2012-08-30 パナソニック株式会社 有機elデバイス
JP2012174472A (ja) * 2011-02-21 2012-09-10 Panasonic Corp 有機elデバイス
US9461264B2 (en) 2011-02-21 2016-10-04 Panasonic Intellectual Property Management Co., Ltd. Organic EL device and method of manufacturing organic EL device
US9385334B2 (en) 2011-08-05 2016-07-05 Mitsubishi Chemical Corporation Organic electroluminescence light-emitting device and production method thereof
JP2013080721A (ja) * 2012-12-27 2013-05-02 Pioneer Electronic Corp 有機elパネル
KR20150125817A (ko) * 2014-04-30 2015-11-10 삼성디스플레이 주식회사 유기전계발광 표시장치
KR102167315B1 (ko) * 2014-04-30 2020-10-20 삼성디스플레이 주식회사 유기전계발광 표시장치
CN108832028A (zh) * 2018-06-11 2018-11-16 武汉华星光电半导体显示技术有限公司 一种oled显示面板的制备方法及oled显示面板、显示装置
CN108832028B (zh) * 2018-06-11 2020-08-04 武汉华星光电半导体显示技术有限公司 一种oled显示面板的制备方法及oled显示面板、显示装置

Also Published As

Publication number Publication date
JPWO2009107201A1 (ja) 2011-06-30
US8957586B2 (en) 2015-02-17
US20100327275A1 (en) 2010-12-30
US8736164B2 (en) 2014-05-27
JP5174145B2 (ja) 2013-04-03
US20140252334A1 (en) 2014-09-11
US8362698B2 (en) 2013-01-29
US20130105783A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP5174145B2 (ja) 有機elパネル及びその製造方法
US10516139B2 (en) Organic light emitting display
KR100656324B1 (ko) 표시 장치
US7777415B2 (en) Sealed, flexible flat panel display
US20060192487A1 (en) Display device and fabricating method thereof
JP2003223992A (ja) 有機elカラー表示装置
US20070029928A1 (en) Organic light-emitting device and method of manufacturing the same
JP2004296202A (ja) 有機elパネル及びその製造方法
US7847478B2 (en) Organic light emitting display panel with absorbing members and method of fabricating the same
US7355344B2 (en) Flat panel display and method of manufacturing the same
JP4854783B2 (ja) 有機elパネル及びその製造方法
JP5798105B2 (ja) 有機elパネル
JP2007250251A (ja) 光デバイス、および光デバイスの製造方法
JP6367920B2 (ja) 有機el装置の設計方法及び有機el装置の製造方法
CN112072001B (zh) 显示基板及显示装置
KR100637181B1 (ko) 평판 표시장치 및 그 제조방법
US9799850B2 (en) Organic EL device
JP2006202610A (ja) 自発光パネル及びその製造方法
KR20080055717A (ko) 유기발광장치 및 그 제조방법
WO2014041615A1 (ja) 有機el装置
JP2004319245A (ja) 有機elパネル及びその製造方法
JP2013218872A (ja) 電界発光表示装置
JP2007213950A (ja) 電気光学装置の製造方法及び電子機器

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08720879

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010500477

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12919599

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08720879

Country of ref document: EP

Kind code of ref document: A1