WO2009104614A1 - 半導体ウェーハ外周端部の研削方法及び研削装置 - Google Patents

半導体ウェーハ外周端部の研削方法及び研削装置 Download PDF

Info

Publication number
WO2009104614A1
WO2009104614A1 PCT/JP2009/052717 JP2009052717W WO2009104614A1 WO 2009104614 A1 WO2009104614 A1 WO 2009104614A1 JP 2009052717 W JP2009052717 W JP 2009052717W WO 2009104614 A1 WO2009104614 A1 WO 2009104614A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
semiconductor wafer
outer peripheral
tape
peripheral edge
Prior art date
Application number
PCT/JP2009/052717
Other languages
English (en)
French (fr)
Inventor
山口 直宏
松本 康男
加藤 健二
崇 平賀
Original Assignee
日本ミクロコーティング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ミクロコーティング株式会社 filed Critical 日本ミクロコーティング株式会社
Priority to US12/532,385 priority Critical patent/US20100112909A1/en
Priority to JP2009526832A priority patent/JP4463326B2/ja
Publication of WO2009104614A1 publication Critical patent/WO2009104614A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/065Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of thin, brittle parts, e.g. semiconductors, wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B21/00Machines or devices using grinding or polishing belts; Accessories therefor
    • B24B21/002Machines or devices using grinding or polishing belts; Accessories therefor for grinding edges or bevels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02021Edge treatment, chamfering

Definitions

  • the present invention relates to a method and apparatus for grinding a semiconductor wafer outer peripheral edge, and in particular, it is performed before a back grinding process for grinding a back surface of a semiconductor wafer having a semiconductor element or electronic component formed on its surface to reduce its thickness.
  • the present invention relates to a method and apparatus for grinding the outer peripheral edge of a semiconductor wafer.
  • Semiconductor wafers go through various processes such as various film forming processes, surface processing processes, and cleaning processes in the manufacturing process for forming semiconductor elements, electronic components, and the like. At that time, in order to prevent cracks and chips from occurring, the outer peripheral edge of the semiconductor wafer is chamfered.
  • FIG. 6 showing a back grinding process of a semiconductor wafer in a conventional semiconductor processing process
  • chamfering processing of an outer peripheral end portion of the semiconductor wafer will be described.
  • FIG. 6A which is a plan view of the semiconductor wafer
  • FIG. 6B which is an enlarged view of the BB cross section of FIG. 6A
  • the outer peripheral end 13 of the semiconductor wafer 11 is arcuate ( R shape). This is because chamfering is performed to make the outer peripheral end portion 13 into an arc shape.
  • an abrasive tape was used for finishing after arc-shaped chamfering with a grindstone.
  • the abrasive tape used is a normal coating type abrasive tape.
  • a semiconductor wafer having a semiconductor element or electronic component formed on the surface is divided into individual chips in a dicing process after electrical inspection.
  • the thickness of the chip be extremely thin, such as 100 ⁇ m or less, or 50 ⁇ m or less. Therefore, before a semiconductor wafer having semiconductor elements or electronic components formed on the surface is divided into individual chips in a dicing process, a back grinding process is performed in which the back surface 14 of the semiconductor wafer is ground to reduce the thickness of the semiconductor wafer. Came to be.
  • the semiconductor wafer 11 is placed on a semiconductor wafer holder (not shown) with the surface 15 side of the semiconductor wafer on which semiconductor elements, electronic components, and the like are formed facing down. And the back surface 14 of the semiconductor wafer is ground. At that time, in order to prevent contamination and damage of the semiconductor elements and electronic components formed on the surface 15, the protective sheet 12 is attached to the surface 15 side of the semiconductor wafer 11 and then fixed to the semiconductor wafer holder. Yes.
  • a semiconductor wafer having a very thin final thickness must be ground at least half of the original thickness.
  • a semiconductor wafer having a thickness of 1 mm to 0.7 mm is ground to a thickness of 100 ⁇ m to 50 ⁇ m).
  • FIG. 6C is a cross-sectional view of the semiconductor wafer after the back grinding process
  • the end portion on the back surface 14 side of the semiconductor wafer 11 gradually starts from the R shape. It will change to the acute angle shape 13 '.
  • Such sharpening as a knife edge becomes more prominent as the semiconductor wafer becomes thinner.
  • the thickness of the semiconductor wafer is reduced, the bending strength of the semiconductor wafer itself is also reduced. For this reason, if a load due to back grinding or an impact in the subsequent process is applied even slightly to the position of the acute angle shape 13 'at the end, end chipping easily occurs, and the chipping or chipping becomes the starting point. There has been a problem that the semiconductor wafer is easily broken.
  • the R-shaped part of the outer peripheral edge of the semiconductor wafer to which the protective sheet is attached prior to the back grinding process is removed so that the edge does not become a knife edge by grinding with a grindstone. The way to be done.
  • the protective sheet when the protective sheet is cut in the vicinity of the outer periphery of the semiconductor wafer, when the outer peripheral end portion of the semiconductor wafer is ground to remove the chamfered portion, the protective sheet is also ground. . If the protective sheet, which is a resin material, adheres to the abrasive grains of the grinding wheel and clogs the grinding wheel, it degrades the processing performance, lowers the processing efficiency and processing quality, and also causes damage to the semiconductor wafer. Come.
  • Japanese Patent Laid-Open No. 06-104228 Japanese Patent Application Laid-Open No. 07-205001 JP 2002-025952 A Japanese Patent Laid-Open No. 2005-007518 JP 2003-273053 A JP 2005-093882 A JP 2007-042811 A
  • the grinding method proposed in the above-mentioned patent document requires complicated steps such as the adhesion accuracy of the protective sheet and the detection and adjustment of the end portion, and the processing efficiency is lowered.
  • grinding with a grindstone requires frequent dressing of the grindstone because processing quality deteriorates due to clogging of the grindstone even if the processing of the protective sheet is not included.
  • the mechanical accuracy, rigidity and structure of the grinding apparatus are complicated, the maintainability is poor, and incidental facilities are required.
  • the present invention prevents the peripheral edge of the semiconductor wafer from becoming a knife edge in the back grinding process, which is the problem described above, and is free from clogging problems that occur when grinding together with the protective sheet regardless of the position of the protective sheet.
  • Another object of the present invention is to provide a method and apparatus for grinding an outer peripheral edge of a semiconductor wafer capable of continuously forming a grinding surface substantially vertically at the outer peripheral edge.
  • the present invention proposes a method for grinding an outer peripheral end of a semiconductor wafer having a surface on which a semiconductor element is formed adhered by a protective sheet, Semiconductor wafer holding process for holding the surface in a horizontal direction, and peripheral edge grinding for grinding by pressing the grinding tape of a grinding head equipped with a traveling grinding tape and pressing it against the outer peripheral edge of the semiconductor wafer
  • the grinding tape is a method for grinding an outer peripheral edge of a semiconductor wafer, characterized in that the grinding tape has abrasive grains attached thereto by electrostatic spraying.
  • the grinding tape that is running is always supplied with a new grinding tape, there is no problem of clogging of the grinding tape even if it is processed together with the protective sheet, and the grinding can be efficiently and stably performed.
  • electrostatic spraying is to disperse the abrasive grains, which are granular members, in a charged state. Since the abrasive grains of the granular member dispersed by the electrostatic sprayer are dispersed while repelling each other electrostatically, a lump due to a plurality of granular members is not generated, and the dispersion uniformity is improved. Will improve.
  • the grinding tape is pressed against the outer peripheral edge of the semiconductor wafer and can run in the vertical direction or the horizontal direction.
  • the surface of the grinding tape incorporated in the polishing head is inclined against the semiconductor wafer at an angle of 10 degrees or less from the vertical direction and ground.
  • the inclination within 10 degrees from the vertical direction includes both the case where the upper part of the polishing head is inclined forward and the case where it is inclined backward. This is an effective means for grinding the upper and lower portions of the outer peripheral edge of the semiconductor wafer. As a result, the tip of the outer peripheral end of the semiconductor wafer can be effectively ground.
  • the grinding tape surface built in the grinding head is tilted forward with an angle of 10 degrees or less from the vertical direction with respect to the upper surface side of the semiconductor wafer and the end is ground, Since the end portion becomes an obtuse angle and an obtuse angle, chipping of the end portion is difficult to occur.
  • the inclination angle is 10 degrees or more, the end becomes a sharp knife-edge shape, and chipping or cracks are likely to occur during grinding or in the subsequent process. Therefore, the inclination is preferably 10 degrees or less. In any case of the forward tilt and the backward tilt of the grinding head, the tilt angle is preferably within 10 degrees from the vertical direction.
  • the abrasive grain size of the grinding tape used is preferably in the range of # 600 to # 3000. Below # 600, an increase in chipping is observed. Moreover, when it is more than # 3000, the grinding speed is lowered and the processing efficiency is poor.
  • the pad attached to the tip of the outer peripheral end portion pressing guide is preferably made of an elastic body having a Shore-A hardness of 20 to 50 °.
  • the mechanical vibration can be absorbed, so that chipping hardly occurs. Further, the grinding shape of the end face of the semiconductor wafer is not impaired, the shape is stable, and the occurrence of chipping is small.
  • At least the tip pressing surface of the pad is formed of a lubricating material having lubricity.
  • the back surface of the traveling grinding tape is pressed with a pad, it is preferable to use a pad material having lubricity for the purpose of smooth running of the grinding tape.
  • the present invention further proposes an apparatus for grinding an outer peripheral end portion of a semiconductor wafer having a surface on which a semiconductor element is formed adhered by a protective sheet, the surface of the semiconductor wafer being horizontally oriented.
  • the outer peripheral end of the semiconductor wafer polished in an arc shape and R shape can be ground substantially vertically, so that the outer peripheral end portion does not become a knife edge shape, It is possible to prevent breakage, cracking, and chipping even if the semiconductor wafer is then ground back.
  • the outer peripheral edge of the semiconductor wafer while running the grinding tape, unlike the conventional grinding wheel grinding (fixed dimension cutting), there is no influence of the semiconductor wafer rotation axis (centering accuracy) and the rotation of the semiconductor wafer. Since it is easy to follow the touch and deformation of the semiconductor wafer itself, chipping and chipping of the outer peripheral edge of the semiconductor wafer can be prevented. Furthermore, the structure of the apparatus is simplified because it is not easily affected by the mechanical accuracy, rigidity, and structure required for the apparatus.
  • the grinding tape is used with the abrasive grains attached by electrostatic spraying, there is less unnecessary resin layer on the abrasive grain surface and the abrasive cutting edge is sharper than the normal application type tape. Processing is possible. Further, since the sharpness is good, there is an advantage that the chipping of the end face of the semiconductor wafer is small.
  • the grinding head is rotatably provided so that the grinding tape is in contact with the outer peripheral end of the semiconductor wafer and travels in the vertical direction or the horizontal direction. If the grinding tape runs vertically or horizontally, the outer edge of the semiconductor wafer can be ground almost vertically, and new tape is always supplied to the grinding surface, so there is no clogging problem and efficient grinding is possible. Done.
  • the grinding head includes a pressing guide that presses a grinding tape against the outer peripheral end portion, and a pressurizing mechanism that pressurizes the pressing guide.
  • the grinding head is further provided with a pressing position adjusting mechanism for rotating the pressing guide toward the radial direction of the semiconductor wafer, and the pressing position adjusting mechanism is mounted with the pressing guide and rotated.
  • a rotating arm that moves, a shaft connected to the rotating arm, and a drive device connected to the shaft to transmit the torque of the rotation, and controlling the torque by the drive device, It is preferable that the position of the grinding tape pressed by the pressing guide to be pressed against the outer edge of the semiconductor wafer is adjusted.
  • the rotation position of the rotation arm with the pressing guide inserted By adjusting the rotation position of the rotation arm with the pressing guide inserted, the rotation position of the grinding tape pressed by the pressing guide is also adjusted. Since the contact position, contact angle and pressing pressure can be adjusted, the grinding accuracy can be improved.
  • new grinding tape is always supplied for processing by running the grinding tape, so even if grinding with a protective sheet, the grinding tape is not clogged and accurate grinding can be maintained.
  • the abrasive tape is attached by electrostatic spraying, the abrasive tape has fewer unnecessary resin layers on the surface of the abrasive grain compared to normal coating tape, and the abrasive cutting edge is sharp, enabling high-speed processing. is there. Moreover, since the dressing process of the grindstone can be omitted, the processing process can be efficiently performed in a short time and stable processing can be performed.
  • the construction of the equipment is simple, and there is no abnormal chipping over the entire circumference of the processed semiconductor wafer, enabling smooth grinding. There is an effect.
  • FIG. 1 is a front view of a conceptual diagram showing the positional relationship between a semiconductor wafer and a grinding head in a first embodiment of a semiconductor wafer outer peripheral edge grinding apparatus of the present invention.
  • FIG. 2 is a conceptual front view showing the positional relationship between the semiconductor wafer and the grinding head in the second embodiment of the semiconductor wafer outer peripheral edge grinding apparatus of the present invention.
  • FIG. 3A to FIG. 3D are explanatory views showing respective procedures of the semiconductor wafer outer peripheral end portion grinding method according to the embodiment of the present invention.
  • FIG. 4 is a front view of the semiconductor wafer outer peripheral edge grinding apparatus according to the embodiment of the present invention.
  • FIG. 5 is an explanatory diagram of the pressure adjusting unit of the pressing guide 46 shown in FIG.
  • FIG. 6A to FIG. 6C are explanatory views showing a back grinding process of a semiconductor wafer.
  • FIG. 7 is a schematic front view of the pressing position adjusting mechanism.
  • FIG. 8A and 8B are schematic side views of the position adjusting mechanism, in which FIG. 8A is a state before the grinding tape is pressed against the outer peripheral edge of the semiconductor wafer by the position adjusting mechanism, and FIG. 8B is the outer peripheral edge of the semiconductor wafer by the position adjusting mechanism. It is the figure which showed the state which pressed the grinding tape to.
  • the grinding method of the semiconductor outer peripheral edge of the present invention is a processing method performed as a pre-process of back grinding of a semiconductor wafer (referred to as a “back grinding process”).
  • FIG. 1 is a front view of a conceptual diagram showing the positional relationship between a semiconductor wafer and a grinding head in a first embodiment of a semiconductor wafer outer peripheral edge grinding apparatus of the present invention
  • FIG. 2 is a semiconductor wafer outer peripheral edge grinding apparatus of the present invention.
  • the top view of the conceptual diagram which shows the positional relationship of the semiconductor wafer and grinding head in 2nd Embodiment of this
  • FIG. 3 (a)-(d) is the semiconductor wafer outer periphery edge part grinding method which concerns on embodiment of this invention.
  • FIG. 4 is a front view of a semiconductor wafer outer peripheral end grinding apparatus according to an embodiment of the present invention
  • FIG. 5 is an explanatory view of a pressure adjusting unit of the pressing guide 46 shown in FIG. .
  • the semiconductor wafer outer peripheral edge grinding apparatus mainly has a semiconductor wafer mounting rotation mechanism 21 that is horizontally mounted with the back surface (back grind surface) of the semiconductor wafer 11 as the upper surface. And a grinding head 40 for grinding the outer peripheral edge of the semiconductor wafer.
  • the disk-shaped semiconductor wafer 11 is placed horizontally on the semiconductor wafer holder 23.
  • the semiconductor wafer holder 23 is supported by a rotating shaft 27 pivotally mounted on a stage 24, and can be rotated by a motor (not shown).
  • the grinding head 40 is arranged so that the grinding tape 20 travels in a direction perpendicular to the surface of the semiconductor wafer 11 placed horizontally, that is, in the vertical direction, and the grinding tape 20 is substantially disposed on the end surface of the semiconductor wafer 11. Pressed vertically.
  • the grinding tape 20 incorporated in the grinding head 40 is wound around a delivery reel 42.
  • the grinding tape 20 passes through the auxiliary roller 45a, the lower roller 44a, and the upper roller 44b, passes through the auxiliary roller 45b, and is wound around the take-up reel 43.
  • the grinding tape 20 runs in the vertical direction and is disposed at the tip of the pressing guide 46 with respect to the outer peripheral end of the semiconductor wafer 11 placed horizontally. Grinding is performed by pressing the grinding tape 20 against the outer peripheral end so that the grinding tape 20 is orthogonal to the pad 47.
  • the pressing guide 46 presses the grinding tape 20 against the outer peripheral end portion of the semiconductor wafer 11 by adjusting the pressure in the direction of the arrow 51 with an air cylinder or the like, for example.
  • a nozzle 52 for spraying the grinding fluid is provided so that the grinding fluid can be sprayed to a position where the grinding tape 20 is pressed against the outer peripheral edge of the semiconductor wafer 11. Process while spraying.
  • the protective sheet 12 (not shown) attached to the semiconductor wafer 11 is pressed against the wafer side. Since it can be ground in the direction, it has the effect of preventing the protective sheet from peeling off.
  • FIG. 2 is a front view showing a second embodiment of a grinding apparatus for the outer peripheral edge of a semiconductor wafer according to the present invention.
  • description of a common part with 1st Embodiment is abbreviate
  • symbol of a grinding device uses the same code
  • the grinding head 40 of the present embodiment is arranged so that the grinding tape 20 traveling between the lower roller 44a and the upper roller 44b travels in the circumferential direction of the semiconductor wafer 11 placed in the horizontal direction. . That is, the grinding tape 20 traveling between the lower roller 44a and the upper roller 44b travels in the horizontal direction.
  • the rotation direction of the semiconductor wafer 11 and the traveling direction of the grinding tape 20 are opposite to each other at the position where the grinding tape 20 is pressed against the outer peripheral end of the semiconductor wafer 11.
  • the second embodiment can reduce the required width of the grinding tape 20 as compared with the first embodiment, and can also affect the mechanical influence such as the amplitude in the vertical direction of wafer rotation during grinding. There is an advantage that it is difficult to receive.
  • the difference is whether the traveling direction of the grinding tape 20 traveling between the lower roller 44a and the upper roller 44b is a vertical direction or a horizontal direction. Therefore, the grinding head 40 can be rotated so that the grinding tape 20 running between the lower roller 44a and the upper roller 44b can run in the vertical direction or the horizontal direction. be able to.
  • the semiconductor wafer outer peripheral end grinding method according to the embodiment of the present invention will be described.
  • a protective sheet is attached to the surface of the semiconductor wafer on which semiconductor elements, electronic components, etc. are formed, It mounts on the semiconductor wafer holding stand 23 of the grinding apparatus of the outer periphery edge part of the semiconductor wafer shown in FIG.
  • FIG. 3 is an explanatory view showing the procedure of an embodiment of the method for grinding the outer peripheral edge of a semiconductor wafer according to the present invention (from the step of attaching a protective sheet to the wafer surface to the back grinding step).
  • the semiconductor device 11 or the electronic component of the semiconductor wafer 11 is previously formed on the surface 15 side of the semiconductor wafer 11.
  • a step of attaching the protective sheet 12 is performed.
  • the protective sheet 12 may be prepared by cutting the protective sheet 12 into dimensions that match the area to be protected with respect to the outer shape of the semiconductor wafer 11 in advance, and may be attached to the semiconductor wafer surface 15 side. You may cut
  • the semiconductor wafer 11 with the protective sheet 12 attached to the surface 15 is placed with the protective sheet attached side down, and the outer peripheral edge of the semiconductor wafer shown in FIG. 1 or FIG. It is placed and fixed on the semiconductor wafer holder 23 of the partial grinding apparatus.
  • the semiconductor wafer 11 is rotated and the grinding tape 20 incorporated in the grinding head 40 is moved to the outer peripheral end side of the semiconductor wafer 11 and pushed to the outer peripheral end portion of the semiconductor wafer 11 while the grinding tape 20 is running. Hit and grind.
  • the grinding tape 20 is pressed by being pressed from the back surface by the pressing guide 46.
  • the outer peripheral end of the semiconductor wafer 11 is ground by the set processing amount, and the process ends at the final cutting position.
  • FIG. 3C shows a cross-sectional shape of the outer peripheral edge of the semiconductor wafer at the end of grinding.
  • the semiconductor wafer 11 whose outer peripheral end has been ground is then ground on the back surface by a cup-type grindstone or the like that rotates at a high speed in the back grinding process, and is processed to a final thickness as shown in FIG. As shown in FIG. 3D, since the knife edge is not formed at the outer peripheral edge of the semiconductor wafer after the back grinding process, the semiconductor wafer is not easily cracked or chipped.
  • ⁇ Grinding tape> As the grinding tape 20 of the present invention, a tape having high grindability rather than polishing is used.
  • a plastic film such as polyethylene terephthalate (PET), polyester, polyolefin, EVA resin, polyvinyl carbonate (PVC), or polyethylene is used.
  • PET polyethylene terephthalate
  • PVC polyvinyl carbonate
  • the grinding tape 20 suitable for the present invention a grinding tape 20 manufactured by spraying abrasive grains on the surface of the binder resin applied to the surface of the film substrate is used.
  • binder resin examples include polyester resin, epoxy resin, acrylic resin, urethane resin, and silicone resin.
  • ⁇ Abrasive grains that are attached using a charge spraying method are used. That is, as compared with a conventional coating type polishing tape, the orientation of the abrasive grains can be given an orientation, and the cutting edges of the abrasive grains can be aligned on the surface of the grinding tape, so that the grinding efficiency is improved. In addition, since the surface of the abrasive grains covered with a thin binder resin can be formed, there is no problem of abrasive grains falling, and the grinding efficiency is improved.
  • abrasive particles are ionized (charged) in an electric field charging method, a corona discharge method, or a friction charging method, and then dispersed on the binder resin surface. Thereafter, the binder resin is cured. The binder resin is cured by heating or UV curing.
  • the abrasive grain size used is preferably in the range of # 600 to # 3000 (average grain size of 30 ⁇ m to 5 ⁇ m). If it is # 600 or less, the occurrence of chipping becomes a problem. If it is # 3000 or more, the processing efficiency is reduced.
  • Such a grinding tape has a modest grain orientation on the surface of the film substrate and a grinding tape with excellent grinding power compared to a conventional tape coated with a mixture of abrasive grains and a binder. It is done.
  • the grinding tape 20 patterned so that the surface may become a pointed shape by roll transfer can be used, for example.
  • the pad 47 used at the tip of the pressing guide 46 for pressing the grinding tape 20 is made of an elastic material having a Shore-A hardness in the range of 20 to 50 °.
  • a resin or a rubber material is suitable.
  • a material having a small frictional resistance with respect to running of the grinding tape is preferable.
  • Shore-A hardness is a standard for measuring the hardness of general rubber.
  • a durometer spring type rubber that measures the amount of deformation (indentation depth) by pressing the indenter into the surface of the object to be measured and deforms it.
  • JIS K6253, Type A Source: “Rubber Physics Test Method, New JIS Guide” August 31, 1996 (published by Japan Rubber Association, etc., published by Taiseisha Co., Ltd.) 30.
  • As a measuring device INSTRON Corporation, Shore Durometer Type-A, ASTM D2240 can be used.
  • the feeding of the grinding tape 20 becomes smooth.
  • FIG. 4 shows the details of the semiconductor wafer outer peripheral edge grinding apparatus used in the examples of the present invention.
  • the semiconductor wafer outer peripheral edge polishing apparatus is mounted in a horizontal state mainly with the back surface (grinding surface) of the semiconductor wafer 11 provided on the stage 24 as the upper surface.
  • the semiconductor wafer holding table 23 has a porous dish shape for mounting and holding the disk-shaped semiconductor wafer 11 in the horizontal direction.
  • the semiconductor wafer 11 placed on the semiconductor wafer holding table 23 is held on the semiconductor wafer holding table 23 by suction using a suction tube 28 connected to the semiconductor wafer holding table 23.
  • the suction pipe 28 communicates with a suction pump (not shown) disposed outside.
  • the position adjustment of the semiconductor wafer on the holding table 23 is such that the outer periphery of the semiconductor wafer 11 can be detected by an outer diameter sensor (laser type soot transmission amount detecting sensor) and the soot rotation center can be adjusted.
  • an outer diameter sensor laser type soot transmission amount detecting sensor
  • the grinding head 40 is arranged substantially perpendicular to the surface of the semiconductor wafer 11, and the grinding tape is inclined with respect to the upper surface side of the semiconductor wafer 11 so that the upper part of the grinding head 40 is tilted forward within 10 degrees from the vertical direction. It can be pressed. That is, when the upper part of the grinding head 40 is inclined toward the semiconductor wafer 11 side, the inclination is preferably within 10 °. This is because when the outer peripheral end is ground with the inclination within 10 degrees, the outer peripheral end of the semiconductor wafer becomes an obtuse angle and an obtuse angle when the backside grinding is performed thereafter, so that the chipping of the end becomes difficult to occur. The same applies when the upper part of the grinding head 40 is inclined backward.
  • the surface of the semiconductor wafer 11 (the surface on which the semiconductor device was formed) covered with a protective sheet 12 was used.
  • the semiconductor wafer mounting rotation mechanism unit 21 is provided with a semiconductor wafer holder 23 that can rotate and a motor 32 for rotating the semiconductor wafer holder 23.
  • the semiconductor wafer holder 23 includes a vacuum chuck 22 for sucking and holding the semiconductor wafer 11. After the semiconductor wafer 11 to be ground is placed on the semiconductor wafer holder 23, the semiconductor wafer 11 is sucked and held by suction through the suction pipe 28.
  • the semiconductor wafer holder 23 is freely rotatable by a bearing holder 25 fixed to the stage 24 through a rotating shaft 27. Further, in order to suck the semiconductor wafer 11, the semiconductor wafer mounting rotation mechanism portion 21 passes the suction pipe 28 through the rotation shaft 27 and further communicates with an external suction pump through a rotary joint.
  • the rotation of the semiconductor wafer 11 is performed by connecting a belt pulley 26 a fixed to the rotation shaft 27 of the semiconductor wafer holder 23 and a belt pulley 26 b fixed to the motor shaft 33 of the motor 32 by a belt 34.
  • the motor 32 is fixed to the stage 24 by a motor holding shaft 31.
  • the grinding head 40 is a box made of a plate 41.
  • the grinding tape 20 is built in the plate 41.
  • the grinding head 40 has a structure in which the grinding tape 20 wound around the delivery reel 42 passes through the auxiliary roller 45a, the lower roller 44a, and the upper roller 44b, passes through the auxiliary roller 45b, and is wound around the take-up reel 43. ing.
  • the grinding tape 20 is pressed against the outer peripheral end of the semiconductor wafer 11 by the pressing guide 46 between the lower roller 44a and the upper roller 44 in the middle of the path of the grinding tape 20, and grinding is performed.
  • the lower roller 44a and the upper roller 44b are configured to smoothly feed the grinding tape 20 toward the upper surface side of the semiconductor wafer 11 so as to have an inclination angle within 10 degrees from the vertical direction.
  • the inclination of the grinding head 40 includes both a case where the upper portion of the grinding head 40 is inclined forward and a case where it is inclined backward, and the grinding head 40 is appropriately selected according to the most distal position of the outer peripheral end portion of the semiconductor wafer 11 for grinding.
  • both inclinations are set to an inclination of 10 degrees or less for the reason described above.
  • a tape tension adjusting roller and an auxiliary roller can be added as appropriate.
  • the pressing of the grinding tape 20 is performed by a pad 47 at the tip of the pressing guide 46 and connected to the pressure adjusting cylinder 48 through the pressing guide 46 so that the pressing pressure is adjusted.
  • the adjustment of the pressing pressure of the pressing guide 46 is performed by, for example, the apparatus configuration shown in FIG.
  • the air sent to the air insertion pipe 62 is adjusted to a predetermined pressure by the regulator 61, and the pressing guide 46 is moved by the pressure adjusting cylinder 48 (air cylinder).
  • a pad 47 for pressing the back surface of the grinding tape 20 is attached to the tip of the pressing guide 46, and grinding is performed by pressing against the wafer outer peripheral edge together with the grinding tape 20.
  • the material used for the pad 47 is preferably an elastic body having a Shore-A hardness of 20 to 50 °.
  • a material having a low frictional resistance for example, a fluororesin ⁇ polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), etc. ⁇ is preferable with respect to the back surface of the traveling grinding tape.
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • the polishing apparatus for the outer peripheral edge of the semiconductor wafer having such a configuration rotates the semiconductor wafer 11 arranged on the semiconductor wafer holding table 23 at a predetermined speed, and the grinding tape 20 arranged on the polishing head 40 to the semiconductor wafer 11
  • the grinding surface is formed by inclining the top of the grinding head toward the semiconductor wafer 11 with respect to the upper surface side of the head 11 at an angle within 10 degrees from the vertical direction.
  • the grinding tape 20 is processed while being fed at a predetermined speed.
  • the pressing position adjusting mechanism shown in FIGS. 7 and 8 the pressing position of the grinding tape 20 with respect to the outer peripheral end portion of the semiconductor wafer 11 can be adjusted.
  • the outline and operation of the pressing position adjusting mechanism will be described below with reference to FIGS.
  • FIG. 7 is a schematic front view of the pressing position adjusting mechanism
  • FIG. 8 is a schematic side view of the position adjusting mechanism
  • (a) is a state before pressing to the outer peripheral edge of the semiconductor wafer, and (b) is pressed. It is the figure which showed the state.
  • the pressing position adjusting mechanism 69 has a swing function for rotating the pressing guide 46 and is provided inside the grinding head 40.
  • the pressing position adjusting mechanism 69 penetrates the rotating arm 70 that sandwiches the pressing guide 46 with the pad 47 mounted at the tip between the two plate-like members 71a and 71b, and the plate-like members 71a and 71b.
  • the plate-like members 71a and 71b of the rotating arm 70 further sandwich the lower roller 44a, the upper roller 44b and the auxiliary roller 45a so as to be rotatable.
  • a shaft 72 penetrating the plate-like members 71 a and 71 b is a cylindrical rod-like member and is connected to a motor 74 via a gear head 73. When the shaft 72 is rotated by driving the motor 74, the rotation arm 70 is rotated around the shaft 72.
  • the gear head 73 controls the torque by changing the rotation speed of the motor 74, and controls the rotation position of the rotation arm 70, that is, the swing position.
  • the motor 74 for example, a stepping motor or a servo motor is used.
  • the pressing guide 46 is placed at a predetermined position of the rotating arm 70 where the grinding tape 20 pressed by the pad 47 can press the outer peripheral end of the semiconductor wafer 11 to be ground, and is held between the plate-like members 71a and 71b. .
  • a pressure adjusting cylinder 48 for sliding the pressing guide 46 is provided on the back surface of the pressing guide 46.
  • the pressing guide 46 and the grinding that is pressed by the pressing guide at a position facing the outer peripheral end portion of the semiconductor wafer 11 placed on the semiconductor wafer holding table (not shown). Tape 20 is placed.
  • the motor 74 is driven, the torque is controlled by the gear head, and the shaft 72 is rotated.
  • the rotation of the shaft 72 causes the rotation arm 70 to rotate about the shaft 72, and the grinding tape 20 pressed by the pressing guide 46 contacts the outer periphery of the semiconductor wafer 11 by a predetermined angle contact. It will be pressed against the edge and will be ground.
  • the grinding position of the outer peripheral end of the semiconductor wafer 11 can be adjusted by the pressing position adjusting mechanism 69, so that the grinding accuracy can be improved by adjusting the angle of the pressing position of the grinding tape 20 and adjusting the pressing pressure. Can be improved.
  • Example 1 A protective sheet of approximately 8 inches (for example, Lintec's adhesive tape thermosetting type thermosetting type P7180) is applied to the surface of the 8-inch semiconductor wafer on which the semiconductor device is formed, and ground with the protective sheet side down. After adjusting the position of the holding table of the apparatus, it was arranged by suction.
  • a protective sheet of approximately 8 inches for example, Lintec's adhesive tape thermosetting type thermosetting type P7180
  • the grinding tape 20 used was one in which an epoxy resin was applied as a binder resin to the surface of the PET film, and # 600 carborundum (SiC) abrasive was sprayed by an electrostatic spraying method and heated and cured to adhere. This was attached to the polishing head 40 for processing.
  • a silicon sponge having a Shore-A hardness of 30 ° was used, and a pad with Teflon (registered trademark) attached to the surface as a lubricant was used.
  • Example 2 As the grinding tape, # 1000 electrostatic coating tape was used. Other conditions were processed in the same manner as in Example 1.
  • Example 3 As the grinding tape, a # 2000 electrostatic coating tape was used. Other conditions were processed in the same manner as in Example 1.
  • Example 1 As the grinding tape, a tape obtained by mixing # 320 carborundum (silicon carbide) and binder resin (polyester) on the surface of the PET base film, and applying and drying with a reverse roll coater was used. Other conditions were processed in the same manner as in Example 1.
  • Comparative Example 2 As the grinding tape, a # 600 carborundum (silicon carbide) and a binder resin (polyester) were mixed on the surface of the PET base film, applied with a reverse roll coater, and dried. Other conditions were processed in the same manner as in Example 1. (Comparative Example 3) A grinding wheel was used instead of the grinding tape. As a grinding wheel, a diamond wheel having resin-bonded # 1200 diamond abrasive grains was used.
  • a wafer edge grinding apparatus type W-GM-4200 manufactured by Tokyo Seimitsu Co., Ltd. was used.
  • ⁇ Evaluation method> The processing speed was measured with a digital vernier caliper CD-45C manufactured by MITUTOYO Co., Ltd. for measuring the change in diameter of the wafer during the unit grinding time. Chipping observation and measurement were performed with KIR-2700 / MX-1060Z manufactured by HIROX.
  • the processing speed was higher than that of the conventional diamond wheel grinding iron, the chipping depth was 7-5 ⁇ m, and tape clogging was not observed.
  • the grinding method of the outer peripheral edge of the semiconductor wafer has been described above, but it can also be applied to the outer peripheral edge grinding of a disk-shaped crystal material (for example, silicon carbide, sapphire, gallium nitride).
  • a disk-shaped crystal material for example, silicon carbide, sapphire, gallium nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

バックグラインド工程における半導体ウェーハ外周端部のナイフエッジ化を防止し、また保護シートの貼り付け位置に左右されず、保護シートと共に研削する際に生じる目詰まり問題がなく、連続して外周端部を略垂直に研削面を形成することが可能な半導体ウェーハ外周端部の研削方法及び装置を提供する。半導体素子が形成された表面を保護シートにより貼着された半導体ウェーハ11の外周端部を研削する方法であって、半導体ウェーハ11の表面を水平方向に保持する半導体ウェーハ保持工程と、走行可能な研削テープ20が内装された研削ヘッド40の研削テープ20を走行させて、半導体ウェーハ11の外周端部に押し当てて研削する外周端部研削工程とを備えてなり、研削テープ20は、砥粒を静電散布により付着されたものであることを特徴とする。

Description

半導体ウェーハ外周端部の研削方法及び研削装置
 本発明は、半導体ウェーハ外周端部の研削方法及び研削装置に関し、特に表面に半導体素子や電子部品等が形成された半導体ウェーハの裏面を研削してその厚みを薄くするバックグラインド工程の前に行う、半導体ウェーハ外周端部の研削の方法及び装置に関するものである。
 半導体ウェーハは、半導体素子や電子部品等を形成する製造工程において、種々の成膜工程、表面加工工程、洗浄工程等の各工程を経由している。その際、割れや欠けが生じるのを防止するために、半導体ウェーハはその外周端部が面取り加工されている。
 従来の半導体加工プロセスにおける半導体ウェーハのバックグラインド工程を示す図6を参照して、半導体ウェーハの外周端部の面取り加工を説明する。半導体ウェーハの平面図である図6(a)、及び図6(a)のB-B断面拡大図である図6(b)に示すように、半導体ウェーハ11の外周端部13は円弧状(R形状)となっている。これは外周端部13を円弧状にするための面取り加工がなされているからである。
 そして、さらに各工程によって成膜された膜が外周端部にまで形成された後に、この外周端部に形成された膜の一部と、さらに各工程上において付着した付着物とを砥石や研磨テープで除去し、さらにクリーニングをしながら半導体ウェーハの製造工程が進められている(例えば、特許文献1~4参照)。
 上記工程では、砥石で円弧状の面取りを行った後、仕上げ加工に研磨テープが使用されていた。この時に、使用される研磨テープは、通常の塗布型研磨テープである。
 そして上記の半導体ウェーハの製造工程において、表面に半導体素子や電子部品等が形成された半導体ウェーハは、電気的検査が行われた後、ダイシング工程で個々のチップに分割されている。
 近年、電子機器の小型化、軽量化のニーズに対応して、チップの厚みが100μm以下、或いは50μm以下というように、極めて薄く形成されることが求められている。そのため表面に半導体素子や電子部品等が形成された半導体ウェーハをダイシング工程で個々のチップに分割される前に、半導体ウェーハの裏面14を研削して半導体ウェーハの厚みを薄くするバックグラインド工程が行われるようになった。
 例えば、このバックグラインド工程では図6(b)に示すように、半導体素子や電子部品等が形成された半導体ウェーハの表面15側を下に向けて、半導体ウェーハ11を半導体ウェーハ保持台(図示せず)に水平に固定し、半導体ウェーハの裏面14を研削加工する。そのとき、表面15に形成されている半導体素子及び電子部品等の汚染や損傷を防止する目的で、半導体ウェーハ11の表面15側に保護シート12を貼り付けてから半導体ウェーハ保持台に固定している。
 これを半導体ウェーハの裏面14から研削砥石(例えば、カップ型砥石)で所定の厚さまで加工するが、最終厚みが極めて薄い半導体ウェーハでは、元の厚みの半分以上も研削加工しなければならないことになる(例えば、厚さ1mm~0.7mmの半導体ウェーハが100μm~50μmの厚さに研削加工される)。
 かかる半導体ウェーハ11の裏面14を研削すると、バックグラインド工程後の半導体ウェーハの断面図である図6(c)に示すように、半導体ウェーハ11の裏面14側の端部が、R形状から徐々に鋭角形状13’に変化してしまうことになる。このようなナイフエッジとなる鋭角化は、半導体ウェーハが薄くなるにつれて、より顕著になる。さらに、半導体ウェーハの厚みが薄くなると、半導体ウェーハ自体の抗折強度も低下する。このため、かかる端部の鋭角形状13’の箇所に、裏面研削による負荷や後工程での衝撃がわずかにでも加わると、簡単に端部チッピングが発生してしまい、かかる欠けやチッピングが起点となり半導体ウェーハが割れやすいという問題が生じていた。
 そこで、この問題を解決するために、バックグラインド工程に先立って保護シートが貼り付けられた半導体ウェーハの外周端部のR形状部を、砥石による研削加工で端部がナイフエッジにならないように除去する方法が行われている。
 ところで、前述のような方法では、半導体ウェーハの外周付近で保護シートを切断した場合、半導体ウェーハの外周端部を研削して面取り部分を除去しようとした時に、保護シートまでも研削することになる。樹脂材料である保護シートが研削砥石の砥粒に付着し、砥石に目詰まりを起こせば、加工性能を劣化させ、加工能率の低下や加工品質の低下を来たすとともに、半導体ウェーハを破損させる要因ともなってくる。
 そこで、保護シートの研削砥石への付着により生じる上記問題を解決するために、ウェーハ外周端部の新たな研削方法が提案されている(例えば、特許文献5~7参照)。
 上記特許文献で提案された研削方法として、例えば、保護シートを半導体ウェーハの直径よりも小さいもの(外周加工領域内)を貼り付けた後に、半導体ウェーハの外周端部を研削する方法が開示されている。
先行技術文献
特開平06-104228号公報 特開平07-205001号公報 特開2002-025952号公報 特開2005-007518号公報 特開2003-273053号公報 特開2005-093882号公報 特開2007-042811号公報
 しかしながら、上記特許文献で提案された研削方法では、保護シートの貼り付け精度や端部の検出調整など、複雑な工程を必要とし、加工能率が低下する。また、砥石による研削は、保護シートの加工が含まれなくとも、砥石の目詰まりによる加工品質の低下が発生するため、砥石のドレッシングを頻繁に行う必要がある。さらに、研削装置の機械的精度、剛性及び構造も複雑になり、メンテナンス性も悪く、付帯設備も必要となる。
 本発明は、上記課題であるバックグラインド工程における半導体ウェーハ外周端部のナイフエッジ化を防止し、また保護シートの貼り付け位置に左右されず、保護シートと共に研削する際に生じる目詰まり問題がなく、連続して外周端部を略垂直に研削面を形成することが可能な半導体ウェーハ外周端部の研削方法及び装置を提供することを目的とする。
 前記課題を解決するために、本発明が提案するものは、半導体素子が形成された表面を保護シートにより貼着された半導体ウェーハの外周端部を研削する方法であって、前記半導体ウェーハの前記表面を水平方向に保持する半導体ウェーハ保持工程と、走行可能な研削テープが内装された研削ヘッドの前記研削テープを走行させて、前記半導体ウェーハの外周端部に押し当てて研削する外周端部研削工程とを備えてなり、前記研削テープは、砥粒を静電散布により付着されたものであることを特徴とする半導体ウェーハ外周端部の研削方法である。
 このように研削テープを走行しながら半導体ウェーハの外周端部を研削することによって、従来の砥石研削(定寸法切り込み加工)と異なり、半導体ウェーハ回転軸の影響(センタリング精度)が無く、半導体ウェーハの回転振れ、及び半導体ウェーハ自体の変形に追従加工が容易となるため、半導体ウェーハ外周端部のチッピングや欠けを防止することが可能となる。また、装置に必要な機械的精度、剛性、構造の影響を受け難いので装置の構造が簡単となる。
 また、走行する研削テープによれば、常時新し研削テープが供給されるので、保護シートと共に加工しても研削テープの目詰まりの問題がなく、能率良く安定に研削することができる。
 したがって、半導体ウェーハ外周端部研削において、保護シートと共に研削することができる。
 研削テープは、砥粒を静電散布により付着されたものが使用される。砥粒をバインダー樹脂層の上に静電散布により付着したテープは、通常の塗布型テープと比較して砥粒表面に不要な樹脂層が少なく、砥粒の切り刃が鋭いため高速加工が可能である。また、切れ味が良いので半導体ウェーハ端面の欠けが少ないメリットがある。
 ここで「静電散布」とは、粒状部材である砥粒に電荷を付与した状態にして分散することである。このような静電散布 によって分散された粒状部材の砥粒は、それらが互いに静電的に反発し合いながら分散されるので、複数の粒状部材による塊が発生することがなくなり、分散均一性が向上することになる。
 前記研削テープは、前記半導体ウェーハの外周端部に押し当てられて、垂直方向または水平方向に走行することができる。
 また前記研磨ヘッドに内装された研削テープの面を半導体ウェーハに対し、鉛直方向から10度以内の角度に傾斜させて押し当て、研削させる。
 鉛直方向から10度以内の傾斜には、研磨ヘッドの上部を半導体ウェーハ側に前傾させる場合と、あるいは後傾させる場合の双方を含むものである。半導体ウェーハの外周端部の上部、下部の研削を行う場合に有効な手段となる。これにより半導体ウェーハの外周端部の最先端を有効に研削することができる。
 たとえば、研削ヘッドに内装された研削テープ面を半導体ウェーハの上面側に対し、鉛直方向から10度以内の角度に前傾傾斜させて端部を研削加工すると、裏面研削をするときに半導体ウェーハ外周端部が鈍角及び鈍角に近くなるので、端部の欠けが発生し難くなる。なお、傾斜角度が10度以上になると、端部が鋭利なナイフエッジ状になり、研削中またはその後の工程で搬送中に欠けやクラックが生じやすくなるので、傾斜は10度以下が好ましい。研削ヘッドの前傾、後傾のいずれの傾斜の場合も鉛直方向から10度以内の傾斜角度とすることが好ましい。
 使用される研削テープの砥粒径は、#600~#3000の範囲にあることが好ましい。#600以下では、チッピングの増加が見られる。また、#3000以上では、研削速度が低下し加工能率が悪い。
 なお、加工時には、研削液を供給しながら研削することが好ましい。
 一方、外周端部押し当てガイドの先端に装着されたパッドは、shore-A硬度が20~50°の弾性体からなることが好ましい。
 すなわち、20~50°の範囲の弾性体を使用することによって、機械的な振動を吸収できるため欠けが生じ難くなる。また、半導体ウェーハ端面の研削形状を損ねず、形状が安定し、かつチッピングの発生も少ないからである。
 また、パッドの少なくとも先端押し当て面が、潤滑性を有する潤滑性材料で形成されてなることが好ましい。
 走行する研削テープの裏面をパッドで押し圧するため、研削テープの走行をスムーズにする目的で、潤滑性のあるパッド材料を使用するのが好ましい。
 また、本発明がさらに提案するものは、半導体素子が形成された表面を保護シートにより貼着された半導体ウェーハの外周端部を研削する装置であって、前記半導体ウェーハの前記表面を水平方向に保持する半導体ウェーハ保持手段と、該半導体ウェーハ保持手段により保持された半導体ウェーハの外周端部を研削するための走行可能な研削テープを内装した研削ヘッドとを備え、前記研削テープは、砥粒を静電散布により付着されたものであることを特徴とする半導体ウェーハ外周端部の研削装置である。
 この半導体ウェーハ外周端部の研削装置によれば、円弧状、R状に研磨加工されている半導体ウェーハの外周端部を、略垂直に研削できるので、外周端部がナイフエッジ状とならず、その後半導体ウェーハの裏面研削加工を行っても破損、割れ、欠けを防止することが可能である。
 また、研削テープを走行しながら半導体ウェーハの外周端部を研削することによって、従来の砥石研削(定寸法切り込み加工)と異なり、半導体ウェーハ回転軸の影響(センタリング精度)が無く、半導体ウェーハの回転触れ、及び半導体ウェーハ自体の変形に追従加工が容易であるため、半導体ウェーハ外周端部のチッピングや欠けを防止することができる。さらに、装置に必要な機械的精度、剛性、構造の影響を受け難いので装置の構造が簡単となる。
 研削テープは、砥粒を静電散布により付着されたものが使用されるので、通常の塗布型テープと比較して砥粒表面に不要な樹脂層が少なく、砥粒の切り刃が鋭いため高速加工が可能である。また、切れ味が良いので半導体ウェーハ端面の欠けが少ないメリットがある。
 また、半導体ウェーハ外周端部研削において、保護シートと共に研削することができる。このような場合でも、常時新し研削テープが供給されるので、保護シートや接着剤による研削テープの目詰まりの問題がなく、能率良く安定に研削することができる。
 また前記研削テープが、前記半導体ウェーハの外周端部に当接されて、垂直方向又は水平方向に走行するように研削ヘッドが回動可能設けられていることが好ましい。研削テープが垂直方向又は水平方向に走行すれば、半導体ウェーハ外周端部が略垂直に研削でき、さらに常に新しいテープが研削面に供給されるので、目詰まりの問題もなく、効率の良い研削が行われる。
 また前記研削ヘッドは、前記外周端部に研削テープを押し当てる押し当てガイドと、該押し当てガイドを加圧する加圧機構と、を有するものとする。
 これによって、研削テープも押し圧力が調整できるので、研削が効率よく均一に行えるようになる。
 前記研削ヘッドは、前記半導体ウェーハの径方向に向けて前記押し当てガイドを回動させる押し当て位置調整機構を更に設けてなり、該押し当て位置調整機構は、前記押し当てガイドを装着して回動する回動アームと、該回動アームに連結されたシャフトと、該シャフトに連結して前記回動のトルクを伝達する駆動装置とを有し、該駆動装置によるトルクを制御して、前記押し当てガイドにより押し当てられた前記研削テープの前記半導体ウェーハ外周端部に押し当てる位置を回動調整することが好ましい。
 押し当てガイドを挿着した回動アームの回動位置を調整することにより、押し当てガイドにより押し当てられる研削テープの回動位置も調整されることになり、半導体ウェーハ外周端部と研削テープとの接触位置、接触角度及び押し当て圧力の調整ができるので、研削精度を向上させることができる。
 本発明によれば、半導体ウェーハの裏面研削工程において、外周端部から発生する欠け、亀裂又は破損、及び裏面加工後の欠け亀裂又は破損を抑える効果がある。
 更に、研削砥石による研削と異なり、研削テープ走行による加工は常時新しい研削テープが供給されるため、保護シートと共に研削しても研削テープに目詰りが無く、精度の良い研削を維持できる。
 研削テープは、砥粒を静電散布により付着されているので、通常の塗布型テープと比較して砥粒表面に不要な樹脂層が少なく、砥粒の切り刃が鋭いため高速加工が可能である。
また、砥石のドレッシング工程が省けるので加工工程が短時間に効率よく、安定な加工ができる。
 さらにまた、装置精度や、半導体ウェーハに起因する、半導体ウェーハ回転振れの影響を受けないため、装置構造も簡単で、加工後の半導体ウェーハ全周に渡って異常なチッピングが無く、平滑に研削できる効果を奏する。
図1は、本発明の半導体ウェーハ外周端部研削装置の第1の実施形態における半導体ウェーハと研削ヘッドとの位置関係を示す概念図の正面図である。
図2は、本発明の半導体ウェーハ外周端部研削装置の第2の実施形態における半導体ウェーハと研削ヘッドとの位置関係を示す概念図の正面図である。
図3(a)~図3(d)は、本発明の実施の形態に係る半導体ウェーハ外周端部研削方法の各手順を示す説明図である。
図4は、本発明の実施例に係る半導体ウェーハ外周端部研削装置の正面図である。
図5は、図4に示す押し当てガイド46の圧力調整部の説明図である。
図6(a)~図6(c)は、半導体ウェーハのバックグラインド工程を示す説明図である。
図7は押し当て位置調整機構の概略正面図である。
図8は位置調整機構の概略側面図であり、(a)は位置調整機構による半導体ウェーハ外周端部への研削テープの押し当て前の状態、(b)は位置調整機構による半導体ウェーハ外周端部への研削テープを押し当てた状態を示した図である。
 本発明の半導体外周端部の研削方法は、半導体ウェーハの裏面研削(「バックグラインド工程」と称する)の前工程として行われる加工方法である。
 以下添付図面を参照して、本発明に係る半導体ウェーハ外周端部の研削方法及び半導体ウェーハ外周端部研削装置の好ましい実施の形態について説明する。なお、各図において同一部材及び同一部品には同一の番号又は記号を付してある。
 最初に、本発明の実施の形態に係る半導体ウェーハ外周端部研削装置について説明する。
 図1は本発明の半導体ウェーハ外周端部研削装置の第1の実施形態における半導体ウェーハと研削ヘッドとの位置関係を示す概念図の正面図、図2は本発明の半導体ウェーハ外周端部研削装置の第2の実施形態における半導体ウェーハと研削ヘッドとの位置関係を示す概念図の平面図、図3(a)~(d)は本発明の実施の形態に係る半導体ウェーハ外周端部研削方法の各手順を示す説明図で、図4は本発明の実施例に係る半導体ウェーハ外周端部研削装置の正面図、図5は、図4に示す押し当てガイド46の圧力調整部の説明図である。
 図1に示すように、第1の実施形態である半導体ウェーハ外周端部研削装置は、主として、半導体ウェーハ11の裏面(バックグラインド面)を上面にして水平に載置する半導体ウェーハ装着回転機構21と、半導体ウェーハ外周端部を研削するための研削ヘッド40を備えたものである。
 円盤状の半導体ウェーハ11は半導体ウェーハ保持台23に水平に載置されている。この半導体ウェーハ保持台23は、ステージ24上に枢着された回転軸27に支持され、さらにモータ(図示せず)によって回転可能になっている。
 一方、水平に載置された半導体ウェーハ11の表面に対し研削テープ20が直行する方向、すなわち垂直方向に走行するように、研削ヘッド40が配置され、研削テープ20が半導体ウェーハ11の端面に略垂直に押し当てられる。
 研削ヘッド40に内装された研削テープ20は、送り出しリール42に巻かれている。この研削テープ20が補助ローラ45aと下側ローラ44a、上側ローラ44bを通り、補助ローラ45bを通って、巻き取りリール43に巻き取られる構造となっている。
 下側ローラ44aと上側ローラ44bとの間で、研削テープ20は垂直方向に走行し、水平に載置されている半導体ウェーハ11の外周端部に対して、押し当てガイド46の先端に配置されたパッド47により研削テープ20が直交するように外周端部に押し当てることによって研削が行われる。押し当てガイド46は、例えばエアーシリンダなどで矢示51の方向に加圧調整して研削テープ20を半導体ウェーハ11の外周端部に押し当てられる。
 また、研削液を散布するノズル52が、半導体ウェーハ11の外周端部に研削テープ20が押し当てられる位置に研削液を散布できるように設けられており、研削の際は、ノズル52から研削液を散布しながら加工する。
 上記、第1の実施形態によれば、研削テープ20が下から上に向けて垂直に走行するので、半導体ウェーハ11に貼り付けられた保護シート12(図示せず)をウェーハ側に押し付けるような方向で研削できるので、保護シートの剥離防止効果がある。
 次に図2を参照して、本発明の半導体ウェーハ外周端部の研削装置の第2の実施形態を説明する。
 図2は本発明に係る半導体ウェーハ外周端部の研削装置の第2の実施形態を示す正面図である。なお、第1の実施形態と共通部分の説明を略し、異なる部分を説明する。また、研削装置の符号は第1の実施と同一の符号を用いるものである。
 本実施形態の研削ヘッド40は、下側ローラ44aと上側ローラ44bとの間を走行する研削テープ20が、水平方向に載置された半導体ウェーハ11の周方向に走行するように配置されている。すなわち下側ローラ44aと上側ローラ44bとの間を走行する研削テープ20が、水平方向に走行することである。なお、半導体ウェーハ11の外周端部に研削テープ20が押し付けられた位置で、半導体ウェーハ11の回転方向と研削テープ20の走行方向とは、逆方向にするのが好ましい。
 第2の実施形態は、第1の実施形態と比較して、研削テープ20の必要幅を小さく抑えることが可能であり、また、研削加工時のウェーハ回転上下方向の振幅等の機械的影響を受けにくいという利点がある。
 上記した第1の実施形態及び第2の実施形態では、下側ローラ44aと上側ローラ44bとの間を走行する研削テープ20の走行方向が、垂直方向または水平方向であるかの違いである。したがって、下側ローラ44aと上側ローラ44bとの間を走行する研削テープ20を垂直方向または水平方向に走行可能となるように研削ヘッド40を回動可能に設けることで、両方の実施形態を兼ねることができる。
 次に、本発明の実施の形態に係る半導体ウェーハ外周端部研削方法について説明する。本発明の半導体ウェーハ外周端部の研削方法は、半導体素子や電子部品等が形成された半導体ウェーハの表面に保護シートを貼り付けた後、表面を下に裏面を上に向けて、図1又は図2に示した半導体ウェーハ外周端部の研削装置の半導体ウェーハ保持台23に載置する。
 図3は、本発明の半導体ウェーハ外周端部の研削方法の実施の形態(ウェーハ表面に保護シートを貼り付ける工程からバックグラインド工程まで)の手順を示す説明図である。
 本発明の半導体ウェーハ外周端部の研削方法による研削に先立って、図3(a)に示すように、予め半導体ウェーハ11の半導体装置や電子部品等が形成された半導体ウェーハ11の表面15側に保護シート12を貼り付ける工程が行われる。
 保護シート12は、予め半導体ウェーハ11の外形に対して保護すべき領域に合わせた寸法に切断したものを用意して半導体ウェーハ表面15側に貼り付けてもよく、また、半導体ウェーハ表面15側に貼り付けた後に外周に沿って切断してもよい。
 次に、図3(b)に示すように、表面15に保護シート12が貼り付けられた半導体ウェーハ11を保護シート貼り付け側を下にして、図1又は図2に示した半導体ウェーハ外周端部研削装置の半導体ウェーハ保持台23に載置し固定する。
 次に、半導体ウェーハ11を回転させるとともに、研削ヘッド40に内装された研削テープ20を半導体ウェーハ11の外周端部側に移動させ、研削テープ20を走行させながら半導体ウェーハ11の外周端部に押し当てて研削する。研削テープ20の押し当ては、押し当てガイド46による裏面からの押し当てを受けて行われる。これにより半導体ウェーハ11の外周端部を設定された加工量だけ研削し、最終切り込み位置で終了する。
 図3(c)は、研削終了時の半導体ウェーハ外周端部の断面形状を示すものである。本発明によれば、研削テープ20を走行しながら加工できるため、砥石を使用したときに生じる目詰まりの問題がなく、半導体ウェーハ外周端部13と共に保護シート12も同時に研削することができる。
 外周端部が研削された半導体ウェーハ11は、この後、バックグラインド工程において高速回転するカップ型砥石などによって裏面が研削され、図3(d)に示すように最終の厚さまで薄く加工される。図3(d)に示すように、バックグラインド工程を経た後、半導体ウェーハ外周端部にはナイフエッジは形成されないので、半導体ウェーハは、割れや欠けが生じにくいものとなる。
 次に、本発明に好適な、研削テープ20及び押し当てパッド47の実施形態について説明する。
 <研削テープ>
 本発明の研削テープ20としては、研磨というよりは研削性の高いテープが使用される。基材シートとして、ポリエチレンテレフタレート(PET)、ポリエステル、ポリオレフィン、EVA樹脂、ポリビニールカーボネート(PVC)、ポリエチレン等のプラスチックフィルムが使用される。この基材シートの表面に、カーボランダム、ダイヤモンド、酸化アルミニウム、シリカ、酸化セリュウム等の微粒子から選択される1種又は2種以上の砥粒を固定した砥粒層が形成された研削テープを使用することができる。
 特に、本発明に適した研削テープ20としては、フィルム基材の表面に塗布されたバインダー樹脂の表面に、砥粒を散布することによって製造されるものが使用される。
 バインダー樹脂としては、ポリエステル樹脂、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、シリコーン樹脂等が挙げられる。
 砥粒は、帯電散布法を用いて付着されたものが使用される。すなわち、従来の塗布型研磨テープと比較して、砥粒の配置に配向性を持たせることができ、研削テープ表面に砥粒の切り刃を揃えることができるため、研削効率が向上する。また、薄いバインダー樹脂に覆われた砥粒表面が形成できるため、砥粒の脱落の問題がなく、研削効率も向上する。
 このような研削テープ20は、フィルム基材の表面にバインダー樹脂を塗布した後、電界中帯電方式、コロナ放電方式又は摩擦帯電方式において砥粒をイオン化(帯電)し、前記バインダー樹脂面に散布した後、バインダー樹脂を硬化させて製造される。バインダー樹脂の硬化は、加熱或いはUV硬化により行われる。
 使用される砥粒径は、#600~#3000(平均粒径が30μm~5μm)の範囲が好ましい。#600以下では、チッピングの発生が問題となり、#3000以上では、加工効率が低減する。
 このような研削テープは、従来の砥粒とバインダーを混合して塗布したテープと比較して、フィルム基材の表面における砥粒の配向性が適度に生じ、研削力に優れた研削テープが得られる。
 その他、砥粒とバインダー樹脂を混合したものでは、例えば、ロール転写により、表面が尖った形状となるようにパターンニングされた研削テープ20が使用できる。
<押し当てパッド>
 一方、研削テープ20を押し圧するための押し当てガイド46の先端部に使用されるパッド47は、材質としてshore-A硬度で20~50°の範囲にある弾性体が使用される。例えば、樹脂やゴム材が好適である。なお、研削テープの走行に対して摩擦抵抗の小さい材質が好ましい。
 shore-A硬度とは、一般ゴムの硬さを測定する規格で、被測定物の表面に圧子を押し込み変形させ、その変形量(押し込み深さ)を測定し、数値化するデュロメータ(スプリング式ゴム硬度計)を用いたものである(JIS K6253,タイプA)(出典:「ゴム物理試験方法 新JISガイド」1996年8月31日(社)日本ゴム協会他編、(株)大成社発行、30頁)。測定装置としては、INSTRON社製、Shore Durometer Type-A、ASTM D2240が使用可能である。
 また、パッド47の表面(テープを押し圧する押し当て面)に、例えば、テフロン(登録商標)等の潤滑層を形成することによって、研削テープ20の送りがスムーズになる。
 shore-A硬度が20°以下であると、研削テープ20の撓みが大きくなり所定の形状が得られなくなり、また、50°以上になると端部のチッピング量が増加してしまうからである。
<加工方法>
 本発明の好適な加工条件を以下に示す。
           半導体ウェーハ回転速度 :500~2000rpm
             研削テープ送り速度 :50~200mm/min
             パッドの加圧    :5~20N
             研削液量      :200~1000ml/min
 外周研削された半導体ウェーハ11は、この後図3に示すように、バックグライド工程に投入され、半導体ウェーハの裏面を高速回転するカップ型砥石によって研削され、最終の厚みまで加工される。
 次に、実施例及び比較例をあげて、本発明の半導体ウェーハ外周端部の研削方法を具体的に説明する。研削装置は、図4に示す装置を使用した。
 本発明の実施例に使用した半導体ウェーハ外周端部研削装置の詳細を図4に示す。
 図4に示すように、第1の実施形態である半導体ウェーハ外周端部研磨装置は、主として、ステージ24に設けられた、半導体ウェーハ11の裏面(研削面)を上面にして水平状態に載置する半導体ウェーハ保持台23と、この半導体ウェーハ11を回転させるためにモータ32に連結された半導体ウェーハ装着回転機構部21と、半導体ウェーハ外周端部を研削するための研削ヘッド40とを備えたものである。
 半導体ウェーハ保持台23は、円盤状の半導体ウェーハ11を水平方向に載置して保持するポーラスな皿形状のものである。半導体ウェーハ保持台23に載置された半導体ウェーハ11は、半導体ウェーハ保持台23に連結した吸引管28による吸引によって半導体ウェーハ保持台23に保持されている。吸引管28は外部に配置された吸引ポンプ(図示せず)に連通している。
 なお、半導体ウェーハの保持台23上での位置調整は、半導体ウェーハ11の外周を外径センサー(レーザー式 透過量検出センサー)で検出して 回転中心を調整可能としてある。
 半導体ウェーハ11の表面に対して、研削ヘッド40は略垂直に配置され、研削テープが半導体ウェーハ11の上面側に対し、研削ヘッド40の上部を鉛直方向から10度以内に前傾した傾斜状態で押し当てられるようになっている。すなわち研削ヘッド40の上部を半導体ウェーハ11側に向けた傾斜をさせる場合、その傾斜は10°以内とすることが好ましい。傾斜を10度以内にして外周端部を研削すると、その後裏面研削をしたときに半導体ウェーハ外周端部が鈍角及び鈍角近くになるので、端部の欠けが発生し難くなるからである。研削ヘッド40の上部を後傾に傾斜させたときも同様である。
 半導体ウェーハは、図3(a)に示すように、半導体ウェーハ11の表面(半導体装置形成面)に保護シート12で覆ったものを使用した。
 半導体ウェーハ装着回転機構部21は、回転できる半導体ウェーハ保持台23と、これを回転するためのモータ32が配置されている。半導体ウェーハ保持台23は、半導体ウェーハ11を吸引保持するための真空チャック22を具備している。研削加工するための半導体ウェーハ11を半導体ウェーハ保持台23に載置した後、吸引管28を通して吸引して半導体ウェーハ11を吸着保持する。半導体ウェーハ保持台23は、回転軸27を通して、ステージ24に固定されたベアリングホルダ25によって回転自由になっている。また、半導体ウェーハ11の吸着を行うために、半導体ウェーハ装着回転機構部21は、回転軸27の中に吸引管28を通し、さらにロータリジョイントで外部の吸引ポンプに連通している。半導体ウェーハ11の回転は、半導体ウェーハ保持台23の回転軸27に固定されたベルトプーリ26aとモータ32のモータシャフト33に固定されたベルトプーリ26bとをベルト34で連結して行われる。モータ32はモータ保持シャフト31によりステージ24に固定されている。
 一方、研削ヘッド40は、プレート41からなる箱体である。研削テープ20は、このプレート41に内装されている。研削ヘッド40は、送り出しリール42に巻かれている研削テープ20が補助ローラ45aと下側ローラ44a、上側ローラ44bを通り、補助ローラ45bを通って、巻き取りリール43に巻き取られる構造となっている。この研削テープ20の径路途中である下側ローラ44aと上側ローラ44との間で、研削テープ20が半導体ウェーハ11の外周端部に押し当てガイド46によって押し当てられて、研削加工がなされる。ここで、下側ローラ44aと上側ローラ44bは、研削テープ20を半導体ウェーハ11上面側に向けて、鉛直方向から10度以内の傾斜角度になるように合わせてスムーズに送り込むようにしてある。なお研削ヘッド40の傾斜は、研削ヘッド40の上部が前傾斜する場合と後傾斜する場合の双方があり、半導体ウェーハ11の外周端部の最先端位置に応じて適宜選択して研削する。なおいずれの傾斜も上記した理由から10度以内の傾斜にする。
 なお、研削テープ20の走行系において、テープテンション調整ローラ、補助ローラを適宜追加することができる。
 研削テープ20の押し当ては、押し当てガイド46の先端にあるパッド47によって行われ、押し当てガイド46を通して圧力調整シリンダ48に接続され、押し当て圧力が調整されるようになっている。
 上記押し当てガイド46の押し当て圧力の調整は、例えば図5の装置構成によるものによって行われる。エアー挿入管62に送られたエアーをレギュレータ61によって所定の圧力に調整し、圧力調整シリンダ48(エアーシリンダ)によって押し当てガイド46が移動する。押し当てガイド46の先端には研削テープ20の裏面を押すためのパッド47取り付けられ、研削テープ20と共にウェーハ外周端部に押し当てて研削が行われる。
 なお、パッド47に使用される材質は、shore-A硬度で20~50°の弾性体を使用するのが好ましい。なお、走行する研削テープ裏面に対して、摩擦抵抗の小さい材質、例えば、フッ素系樹脂{ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)等}が好ましい。
さらに、パッド47の先端面(研削テープ接触面)63に潤滑剤をコーティング又は塗布しておくことも可能である。このようにすれば、押し圧接触部の振動緩和およびテープ走行をスムーズできるため半導体ウェーハにチッピングや欠けの発生を防止することになる。
 このような構成からなる半導体ウェーハ外周端部の研磨装置は、半導体ウェーハ保持台23に配置された半導体ウェーハ11を所定速度で回転し、これに研磨ヘッド40に配置された研削テープ20を半導体ウェーハ11の上面側に対し、研削ヘッドの上部を半導体ウェーハ11に向けた傾きを、鉛直方向から10度以内の角度に傾斜させ研削面を形成する。なお、研削テープ20は、所定の速度で送りながら加工を行う。
 また図7及び図8に示す押し当て位置調整機構を更に設けることで、半導体ウェーハ11の外周端部に対する研削テープ20の押し当て位置の調整を行うことができる。以下に押し当て位置調整機構の概要とその動作を図7及び図8を参照して説明する。
 図7は押し当て位置調整機構の概略正面図、図8は位置調整機構の概略側面図であり、(a)は半導体ウェーハ外周端部への押し当て前の状態、(b)は押し当てた状態を示した図である。
 図7及び図8に示すように、押し当て位置調整機構69は、押し当てガイド46を回動させる、スイング機能を有するものであり、研削ヘッド40のの内部に設けられる。押し当て位置調整機構69は、先端にパッド47を装着した押し当てガイド46を2枚の板状部材71a、71bで挟持してなる回動アーム70と、板状部材71a、71bに貫設して連結されたシャフト72と、シャフト72に連結して回動アーム70を回動させるトルクを発生するモータ74と、シャフト72とモータ74の間に設けられたギヤヘッド73と、を有してなるものである。
 回動アーム70の板状部材71a、71bは、さらに下側ローラ44a、上側ローラ44b及び補助ローラ45aを回動可能に挟持している。板状部材71a、71bを貫設しているシャフト72は、円柱状の棒状部材であり、ギヤヘッド73を介してモータ74に連結している。モータ74の駆動によりシャフト72が回動すると、回動アーム70は、シャフト72を中心に回動することになる。
 ギヤヘッド73はモータ74の回転数を変えてトルクを制御するものであり、回動アーム70の回動位置、すなわちスイング位置を制御する。モータ74は例えばステッピングモータ、サーボモータが使用される。
 押し当てガイド46は、パッド47により押し当てられる研削テープ20が半導体ウェーハ11の外周端部を押し当てて研削できる回動アーム70の所定位置に置かれ、板状部材71a、71bによって挟持される。なお押し当てガイド46をスライドさせる圧力調整シリンダ48は、押し当てガイド46の背面に設けられている。
 図7(a)に示すように、半導体ウェーハ保持台(図示せず)に載置された半導体ウェーハ11の外周端部に対向した位置に、押し当てガイド46及び押し当てガイドにより押し当てられる研削テープ20が配置される。
 次に図7(b)に示すように、モータ74を駆動させ、さらにギヤヘッドによりトルクを制御し、シャフト72を回動させる。シャフト72の回動は、回動アーム70をシャフト72を中心にして回動させることになり、押し当てガイド46により押し当てられている研削テープ20が、所定角度の接触により半導体ウェーハ11の外周端部に押し当てられて、研削を行うことになる。
 このように、押し当て位置調整機構69により半導体ウェーハ11の外周端部の研削対象位置を調整することができるので、研削テープ20の押し当て位置の角度調整、押し当て圧力の加減により研削精度を向上させることができる。
 以下に本発明の加工方法を実施例によって説明する。実施例及び比較例において使用した研削方法と加工条件は以下の通りである。
(実施例1)
 半導体装置が形成された8インチの半導体ウェーハ表面に、ほぼ8インチの保護シート(例えば、リンテック社製 半導体表面保護用粘着テープ 熱硬化型 形式P7180)を貼り付け、保護シート側を下にして研削装置の保持テーブルに位置調整を行った後、吸着配置した。
 研削テープ20は、PETフィルムの表面にバインダー樹脂として エポキシ樹脂 を塗布し、#600のカーボランダム(SiC)砥粒を静電散布法によって散布し加熱硬化して付着されたものを用いた。これを研磨ヘッド40に装着して加工に供した。押し圧パッドとしては、shore-A硬度が30°のシリコンスポンジ、潤滑材として表面に テフロン(登録商標)を貼り付けたものを使用した。
 加工条件を以下に示す。
            ウェーハ回転速度:1000rpm
           研削テープ送り速度:100mm/min
             パッドの加圧力:10N
             研削液量(純水):500ml/min
 上記条件で半導体ウェーハ外周端部を保護シートと共に研削した。
 (実施例2)
 研削テープとして、#1000の静電塗布テープを使用した。その他の条件は、実施例1と同様にして加工を行った。
 (実施例3)
 研削テープとして、#2000の静電塗布テープを使用した。その他の条件は、実施例1と同様にして加工を行った。
 (比較例1)
 研削テープとして、PET基材フィルムの表面に#320のカーボランダム(炭化珪素)とバインダー樹脂(ポリエステル)とを混合し、リバースロールコータで塗布、乾燥したテープを使用した。その他の条件は、実施例1と同様にして加工を行った。
(比較例2)
 研削テープとして、PET基材フィルムの表面に#600のカーボランダム(炭化珪素)とバインダー樹脂(ポリエステル)とを混合し、リバースロールコータで塗布、乾燥したテープを使用した。その他の条件は、実施例1と同様にして加工をおこなった。
(比較例3)
 研削テープの変わりに、研削砥石を使用した。研削砥石として、#1200のダイヤモンド砥粒を 樹脂結合した ダイヤモンドホイール を用いた。
 加工装置としては、東京精密社製のウェーハエッジグラインディング装置 形式:W-GM-4200を使用した。
 加工条件を以下に示す。
       ウェーハ回転速度  : 200rpm
       砥石回転数     : 5000rpm
       切り込み深さ    : 50μm/min(φ100μm/min)
       研削液量      : 3L/min
 <評価方法>
加工速度は、単位研削時間におけるウェーハの直径の変化を
直径寸法測定をMITUTOYO社製 デジタルノギス CD-45Cで測定した。
チッピング観察及び計測を HIROX社製 KP-2700/MX-1060Zで実施した。
 研削面形状評価を、雄飛電子社製 EPRO212-ENで測定、評価した。
 <評価結果>
以下に上記加工方法による評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
(評価結果の説明)
 加工した半導体ウェーハについて、加工速度、チッピング深さ、目詰まり状況について評価した結果、以下の結果をえた。
 実施例1の方法においては、加工速度は従来の ダイヤモンドホイール研削 以上の加工速度が得られ、チッピング深さは7~5μmと良好であり、テープ目詰りは観察されなかった。
 また、実施例2及び3においては、加工速度は若干低下したが、チッピング深さは
3~5μm、3μm以下であり、テープの目詰まりも観察されなかった。
 一方、比較例1及び2に用いた塗布型テープでは、加工速度が低く、逆にチッピング深さが大きく増加していた。これはテープの目詰まりにより研削性が悪くなっているためと考えられる。
 また、比較例3に用いた ダイヤモンドホイール研削 では、最初は研削性が良いが、次第に目詰まりが起こり、それに伴ってチッピングも増加した。
 以上、半導体ウェーハの外周端部の研削方法について述べたが、円盤状の結晶材料(例えば、炭化珪素、サファイヤ、窒素化ガリウムなど)の外周端部研削にも適用できる。
符号の説明
 11 半導体ウェーハ
 12 保護フィルム
 13 半導体ウェーハ外周端部
 14 半導体ウェーハ裏面
 15 半導体ウェーハ表面
 20 研削テープ
 21 半導体ウェーハ装着回転機構
 22 真空チャック
 23 ウェーハ保持台
 24 ステージ
 25 ベアリングホルダ
 26a、26b ベルトプーリ
 27 回転軸
 28 吸引管
 31 モータ保持シャフト
 32 モータ
 33 モータシャフト 
 34 ベルト
 35 半導体ウェーハ外形センサー
 40 研削ヘッド
 41 プレート
 42 送り出しリール
 43 巻き取りリール
 44a 下側ローラ
 44b 上側Vローラ
 45a、45b 補助ローラ
 46 押し当てガイド
 47 パッド
 48 圧力調整シリンダ
 49 送り出しリールシャフト
 50 巻き取りリールシャフト
 52 ノズル
 61 レギュレータ
 62 エアー挿入管
 63 パッド先端面
 69 押し当て位置調整機構
 70 回動アーム

Claims (16)

  1.  半導体素子が形成された表面を保護シートにより貼着された半導体ウェーハの外周端部を研削する方法であって、
     前記半導体ウェーハの前記表面を水平方向に保持する半導体ウェーハ保持工程と、
     走行可能な研削テープが内装された研削ヘッドの前記研削テープを走行させて、前記半導体ウェーハの外周端部に押し当てて研削する外周端部研削工程とを備えてなり、
     前記研削テープは、砥粒を静電散布により付着されたものであることを特徴とする半導体ウェーハ外周端部の研削方法。
  2.  前記保持工程では、保護シートが貼着された表面側を下にして前記半導体ウェーハを保持し、前記外周端部研削工程では前記保護シートと共に前記半導体ウェーハの外周端部を研削することを特徴とする請求項1に記載の半導体ウェーハ外周端部の研削方法。
  3.  前記研削テープは、前記半導体ウェーハの外周端部に押し当てられて、垂直方向または水平方向に走行することを特徴とする請求項1または2に記載の半導体ウェーハ外周端部の研削方法。
  4.  前記研削ヘッドに内装された研削テープの面を半導体ウェーハに対し、鉛直方向から10度以内の角度に傾斜させて押し当て、研削することを特徴とする請求項1ないし3のいずれか一項に記載の半導体ウェーハ外周端部の研削方法。
  5.  前記砥粒の径が、#600(30μm)~#3000(5μm)の範囲にあることを特徴とする請求項1ないし4のいずれか一項に記載の半導体ウェーハ外周端部の研削方法。
  6.  前記研削ヘッドには、先端にパッドを装着した押し当てガイドが内装され、該押し当てガイドのスライド移動により前記パッドを介して前記研削テープを半導体ウェーハの外周端部に押し当てて研削することを特徴とする請求項1ないし5のいずれか一項に記載の半導体ウェーハ外周端部の研削方法。
  7.  前記パッドは、shore-A硬度が20~50°の弾性体からなることを特徴とする請求項6に記載の半導体ウェーハ外周端部の研削方法。
  8.  前記パッドの少なくとも先端押し当て面が、潤滑性材料で形成されてなることを特徴とする請求項7に記載の半導体ウェーハ外周端部の研削方法。
  9.  半導体素子が形成された表面を保護シートにより貼着された半導体ウェーハの外周端部を研削する装置であって、
     前記半導体ウェーハの前記表面を水平方向に保持する半導体ウェーハ保持手段と、
     該半導体ウェーハ保持手段により保持された半導体ウェーハの外周端部を研削するための走行可能な研削テープを内装した研削ヘッドとを備え、
     前記研削テープは、砥粒を静電散布により付着されたものであることを特徴とする半導体ウェーハ外周端部の研削装置。
  10.  前記研削テープが前記半導体ウェーハの外周端部に押し当てられて、垂直方向または水平方向に走行可能となるように、前記研削ヘッドが回動可能に設けられていることを特徴とする請求項9に記載の半導体ウェーハ外周端部の研削装置。
  11.  前記研削テープが、前記半導体ウェーハに対し、鉛直方向から10度以内の角度に傾斜させて押し当て走行可能となるように、前記研削ヘッドが回動可能に設けられていることを特徴とする請求項9または10に記載の半導体ウェーハ外周端部の研削装置。
  12.  前記砥粒の径が、#600(30μm)~#3000(5μm)の範囲にあることを特徴とする請求項9ないし11のいずれか一項に記載の半導体ウェーハ外周端部の研削装置。
  13.  前記研削ヘッドには、先端にパッドを装着した押し当てガイドが内装され、該押し当てガイドのスライド移動により前記パッドを介して前記研削テープを半導体ウェーハの外周端部に押し当てて研削することを特徴とする請求項9ないし12のいずれか一項に記載の半導体ウェーハ外周端部の研削装置。
  14.  前記パッドは、shore-A硬度が20~50°の弾性体からなることを特徴とする請求項13に記載の半導体ウェーハ外周端部の研削装置。
  15.  前記パッドの少なくとも先端押し当て面が、潤滑性材料で形成されてなることを特徴とする請求項14に記載の半導体ウェーハ外周端部の研削装置。
  16.  前記研削ヘッドは、前記半導体ウェーハの径方向に向けて前記押し当てガイドを回動させる押し当て位置調整機構を更に設けてなり、
     該押し当て位置調整機構は、前記押し当てガイドを装着して回動する回動アームと、該回動アームに連結されたシャフトと、該シャフトに連結して前記回動のトルクを伝達する駆動装置とを有し、
     該駆動装置によるトルクを制御して、前記押し当てガイドにより押し当てられた前記研削テープの前記半導体ウェーハ外周端部に押し当てる位置を回動調整することを特徴とする請求項13又は14に記載の半導体ウェーハ外周端部の研削装置。
PCT/JP2009/052717 2008-02-22 2009-02-17 半導体ウェーハ外周端部の研削方法及び研削装置 WO2009104614A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/532,385 US20100112909A1 (en) 2008-02-22 2009-02-17 Method of and apparatus for abrading outer peripheral parts of a semiconductor wafer
JP2009526832A JP4463326B2 (ja) 2008-02-22 2009-02-17 半導体ウェーハ外周端部の研削方法及び研削装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-042174 2008-02-22
JP2008042174 2008-02-22

Publications (1)

Publication Number Publication Date
WO2009104614A1 true WO2009104614A1 (ja) 2009-08-27

Family

ID=40985493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052717 WO2009104614A1 (ja) 2008-02-22 2009-02-17 半導体ウェーハ外周端部の研削方法及び研削装置

Country Status (5)

Country Link
US (1) US20100112909A1 (ja)
JP (1) JP4463326B2 (ja)
KR (1) KR101578956B1 (ja)
TW (1) TW201001515A (ja)
WO (1) WO2009104614A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239134A (ja) * 2013-06-07 2014-12-18 株式会社ディスコ ウェーハの加工方法
JP2015013346A (ja) * 2013-07-05 2015-01-22 リンテック株式会社 シート研削装置および研削方法
KR101542872B1 (ko) * 2014-01-07 2015-08-07 조원구 피니싱 장치
JP2018049973A (ja) * 2016-09-23 2018-03-29 株式会社岡本工作機械製作所 半導体装置の製造方法及び半導体製造装置
CN109623554A (zh) * 2019-01-08 2019-04-16 天津中环领先材料技术有限公司 一种降低硅片边缘粗糙度的边抛工艺
JP2019204940A (ja) * 2018-05-25 2019-11-28 力成科技股▲分▼有限公司 フルエッジトリミングを用いたウェハ処理方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT507504B1 (de) * 2008-10-29 2012-01-15 Josef Fischer Verstellbares bandschleifwerkzeug
JP5464497B2 (ja) * 2010-08-19 2014-04-09 株式会社サンシン 基板研磨方法及びその装置
JP5649417B2 (ja) * 2010-11-26 2015-01-07 株式会社荏原製作所 固定砥粒を有する研磨テープを用いた基板の研磨方法
US8540551B2 (en) * 2010-12-15 2013-09-24 Corning Incorporated Glass edge finish system, belt assembly, and method for using same
TWI663018B (zh) * 2012-09-24 2019-06-21 日商荏原製作所股份有限公司 研磨方法及研磨裝置
JP6100541B2 (ja) * 2013-01-30 2017-03-22 株式会社荏原製作所 研磨方法
US9931726B2 (en) * 2013-01-31 2018-04-03 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer edge trimming tool using abrasive tape
JP6071611B2 (ja) 2013-02-13 2017-02-01 Mipox株式会社 オリエンテーションフラット等切り欠き部を有する、結晶材料から成るウエハの周縁を、研磨テープを使用して研磨することにより円形ウエハを製造する方法
CN109434687B (zh) * 2018-11-21 2023-04-14 湖南大合新材料有限公司 一种用于锑化镓单晶片夹装设备中的伸缩压紧模块
DE102019119333A1 (de) * 2019-07-17 2021-01-21 Rud. Starcke Gmbh & Co. Kg Schleifvorrichtung
CN110634772A (zh) * 2019-08-26 2019-12-31 泉州洛江同满机械设计有限公司 一种薄型晶圆前端处理设备
TWI739361B (zh) * 2020-03-26 2021-09-11 南茂科技股份有限公司 清潔裝置及捲帶自動接合封裝結構的製造設備
CN111546136B (zh) * 2020-04-30 2021-12-14 济南晶正电子科技有限公司 一种无解理面晶片端面抛光方法
CN111653498A (zh) * 2020-06-12 2020-09-11 长江存储科技有限责任公司 一种半导体结构及其研磨方法
CN112936013B (zh) * 2021-02-20 2023-05-09 新尚品科技实业有限公司 一种pvc塑料线槽制造成型加工系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172563A (ja) * 2000-11-24 2002-06-18 Three M Innovative Properties Co 研磨テープ
JP2004338064A (ja) * 2003-05-19 2004-12-02 Sony Corp 研磨ベルト、研磨装置及び研磨方法
JP2005305586A (ja) * 2004-04-20 2005-11-04 Nihon Micro Coating Co Ltd 研磨装置
WO2006041196A1 (en) * 2004-10-15 2006-04-20 Kabushiki Kaisha Toshiba Polishing apparatus and polishing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205549A (ja) * 2000-01-25 2001-07-31 Speedfam Co Ltd 基板エッジ部の片面研磨方法およびその装置
US6629875B2 (en) * 2000-01-28 2003-10-07 Accretech Usa, Inc. Machine for grinding-polishing of a water edge
JP2002025952A (ja) * 2000-07-07 2002-01-25 Disco Abrasive Syst Ltd 半導体ウエーハの処理方法
JP4156200B2 (ja) * 2001-01-09 2008-09-24 株式会社荏原製作所 研磨装置及び研磨方法
JP2002219642A (ja) * 2001-01-24 2002-08-06 Fuji Electric Co Ltd 磁気記録媒体用ガラス基板およびその製造方法、並びに該基板を用いた磁気記録媒体
JP4090247B2 (ja) * 2002-02-12 2008-05-28 株式会社荏原製作所 基板処理装置
JP2003273053A (ja) * 2002-03-14 2003-09-26 Disco Abrasive Syst Ltd 平面研削方法
JP4077439B2 (ja) * 2004-10-15 2008-04-16 株式会社東芝 基板処理方法及び基板処理装置
JP2006142388A (ja) 2004-11-16 2006-06-08 Nihon Micro Coating Co Ltd 研磨テープ及び方法
JP4752384B2 (ja) * 2005-08-02 2011-08-17 株式会社東京精密 ウェーハ外周研削方法及びウェーハ外周研削装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172563A (ja) * 2000-11-24 2002-06-18 Three M Innovative Properties Co 研磨テープ
JP2004338064A (ja) * 2003-05-19 2004-12-02 Sony Corp 研磨ベルト、研磨装置及び研磨方法
JP2005305586A (ja) * 2004-04-20 2005-11-04 Nihon Micro Coating Co Ltd 研磨装置
WO2006041196A1 (en) * 2004-10-15 2006-04-20 Kabushiki Kaisha Toshiba Polishing apparatus and polishing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239134A (ja) * 2013-06-07 2014-12-18 株式会社ディスコ ウェーハの加工方法
JP2015013346A (ja) * 2013-07-05 2015-01-22 リンテック株式会社 シート研削装置および研削方法
KR101542872B1 (ko) * 2014-01-07 2015-08-07 조원구 피니싱 장치
JP2018049973A (ja) * 2016-09-23 2018-03-29 株式会社岡本工作機械製作所 半導体装置の製造方法及び半導体製造装置
JP2019204940A (ja) * 2018-05-25 2019-11-28 力成科技股▲分▼有限公司 フルエッジトリミングを用いたウェハ処理方法
CN109623554A (zh) * 2019-01-08 2019-04-16 天津中环领先材料技术有限公司 一种降低硅片边缘粗糙度的边抛工艺

Also Published As

Publication number Publication date
KR101578956B1 (ko) 2015-12-18
KR20100123682A (ko) 2010-11-24
US20100112909A1 (en) 2010-05-06
TW201001515A (en) 2010-01-01
JPWO2009104614A1 (ja) 2011-06-23
JP4463326B2 (ja) 2010-05-19

Similar Documents

Publication Publication Date Title
JP4463326B2 (ja) 半導体ウェーハ外周端部の研削方法及び研削装置
US8535117B2 (en) Method and apparatus for polishing a substrate having a grinded back surface
JP4090247B2 (ja) 基板処理装置
JP5827976B2 (ja) 研磨装置
KR20020032532A (ko) 마이크로 전자 기판 조립체를 평탄화하기 위한 장치 및 방법
US7452814B2 (en) Method of polishing GaN substrate
TW201139057A (en) Polishing apparatus, polishing method, and pressing member for pressing polishing tool
TW201429629A (zh) 研磨裝置及研磨方法
JPH08339979A (ja) 被研磨基板の保持装置及び基板の研磨方法
JP2008042220A (ja) 基板処理方法及び装置
JP2014233797A (ja) ガラス板の製造方法、および、ガラス板の製造装置
JP2006080329A (ja) 化学的機械的研磨装置
JP2014213419A (ja) ガラス板端面加工方法、および、ガラス板端面加工装置
US9492910B2 (en) Polishing method
JP2009050943A (ja) リテーナリング、キャリアヘッド、および化学機械研磨装置
JP7254412B2 (ja) 被加工物の加工方法および樹脂シートユニット
JP2022139255A (ja) 半導体装置の製造方法及び製造装置
JP6843554B2 (ja) ウェハの表面処理装置
JPH11333677A (ja) 基板の研磨装置
JP2008124338A (ja) 半導体ウェハの研磨方法及び半導体ウェハの研磨装置
JP7166728B2 (ja) 被加工物の加工方法
WO2021044735A1 (ja) 研磨装置
JP4289764B2 (ja) テープ研磨装置
TW559580B (en) Polishing device
JP7171139B2 (ja) 被加工物の加工方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2009526832

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12532385

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107016475

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09712754

Country of ref document: EP

Kind code of ref document: A1