US20100112909A1 - Method of and apparatus for abrading outer peripheral parts of a semiconductor wafer - Google Patents

Method of and apparatus for abrading outer peripheral parts of a semiconductor wafer Download PDF

Info

Publication number
US20100112909A1
US20100112909A1 US12/532,385 US53238509A US2010112909A1 US 20100112909 A1 US20100112909 A1 US 20100112909A1 US 53238509 A US53238509 A US 53238509A US 2010112909 A1 US2010112909 A1 US 2010112909A1
Authority
US
United States
Prior art keywords
abrading
semiconductor wafer
tape
outer peripheral
peripheral part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/532,385
Other languages
English (en)
Inventor
Naohiro Yamaguchi
Yasuo Matsumoto
Kenji Katoh
Takashi Hiraga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Micro Coating Co Ltd
Original Assignee
Nihon Micro Coating Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Micro Coating Co Ltd filed Critical Nihon Micro Coating Co Ltd
Assigned to NIHON MICRO COATING CO., LTD. reassignment NIHON MICRO COATING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KATOH, KENJI, MATSUMOTO, YASUO, HIRAGA, TAKASHI, YAMAGUCHI, NAOHIRO
Publication of US20100112909A1 publication Critical patent/US20100112909A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/065Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of thin, brittle parts, e.g. semiconductors, wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B21/00Machines or devices using grinding or polishing belts; Accessories therefor
    • B24B21/002Machines or devices using grinding or polishing belts; Accessories therefor for grinding edges or bevels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02021Edge treatment, chamfering

Definitions

  • This invention relates to a method of abrading outer peripheral parts of a semiconductor wafer and an apparatus therefor, and more particularly to a method of abrading outer peripheral parts of a semiconductor wafer to be carried out prior to the so-called back-grinding process in which the front surface of a semiconductor wafer having semiconductor elements and electronic components formed on its front surface is abraded for reducing its thickness and an apparatus therefor.
  • Semiconductor wafers go through each of many processes such as the film forming process, the surface fabricating process and the washing process during their production process for forming semiconductor elements and electronic components. During this process, outer peripheral parts of the semiconductor wafers are subjected to a chamfering process in order to prevent them from becoming cracked or chipped.
  • FIG. 6A which is a plan view of a semiconductor wafer 11
  • FIG. 6B which is an enlarged sectional view taken along line 6 B- 6 B indicated in FIG. 6A
  • the semiconductor wafer 11 has an external peripheral part 13 which is of the shape of an arc (or R-shape) because a chamfering process has been carried for making the peripheral part 13 in an arcuate shape.
  • a abrading tape was conventionally used for the finishing process after a chamfering process is completed with a grindstone into an arcuate shape.
  • the abrading tape used for this purpose is usually of a type generally produced by coating.
  • the semiconductor wafers having semiconductor elements and electronic components thus formed on their surfaces in the production process described above are divided into individual chips by a dicing process after an electric inspection is carried out.
  • chips are now required to be formed with an extremely small thickness such as 100 ⁇ m or less and even 50 ⁇ m or less. It is for this reason that the back-grinding process has come to be carried out for reducing the thickness of semiconductor wafers by abrading its back surface 14 before the dicing process is carried out to divide the semiconductor wafers with semiconductor elements and electronic components formed on their surfaces to divide them into individual chips.
  • a semiconductor wafer 11 having semiconductor elements and electronic components formed thereon is horizontally fastened to a holder (not shown) with its front surface 15 facing downward as its back surface 14 is subjected to an abrading process.
  • the semiconductor wafer 11 is fastened to the holder after a protective sheet 12 is attached to the front surface 15 of the semiconductor wafer 11 in order to prevent the semiconductor elements and the electronic components formed on this front surface 15 from becoming contaminated or damaged.
  • the semiconductor wafer 11 is worked upon on its back surface 14 with an abrading grindstone (such as a cup-shaped grindstone) to a specified thickness.
  • an abrading grindstone such as a cup-shaped grindstone
  • the semiconductor wafer may have to be abraded such that more than a half of its original thickness will be removed.
  • a semiconductor wafer may have to be abraded from the original thickness of 1 mm-0.7 mm down to the final thickness of 100 ⁇ m-50 ⁇ m.
  • the back surface 14 of the semiconductor wafer 11 as shown in FIG. 6B is abraded, its originally R-shaped peripheral part 13 gradually becomes an acute angular shape 13 ′, as shown in FIG. 6C after the back-grinding process.
  • Such a change into a knife-edge shape becomes more prominent as the semiconductor wafer is made thinner.
  • the thickness of the semiconductor wafer is further reduced, its strength against breakage also becomes reduced.
  • the acute angular edge part 13 ′ of the semiconductor wafer is easily chipped by the load of the back-grinding process or an impulse applied at a later process thereupon. Such defects and chipping may tend to serve as a trigger to make the semiconductor wafer easily breakable.
  • the protective sheet becomes abraded as outer peripheral parts of the semiconductor wafer are abraded to remove the chamfered parts if the protective sheet is cut near the outer periphery of the semiconductor wafer. If the resin material of the protective sheet becomes attached to the abrading particles of the grindstone and the grindstone becomes clogged, the work efficiency and the quality of the product are adversely affected and the semiconductor wafer may become damaged.
  • the present invention provides a method of abrading outer peripheral parts of a semiconductor wafer having a front surface on which semiconductor elements are formed and a protective sheet is adhesively attached, the method comprising the steps of holding the semiconductor wafer such that its front surface is horizontal and causing an abrading tape mounted inside an abrading head to run and pressing the abrading tape against and thereby abrading an outer peripheral part of the semiconductor wafer, wherein the abrading tape has abrading particles attached thereto by electrostatic spraying.
  • the abrading tape is produced by having abrading particles attached by electrostatic spraying. Tapes having abrading particles attached on a binder resin layer by electrostatic spraying have less unwanted resin layer on the surface of the abrading particles. Since the cutting edges of the abrading particles are sharp, high-speed processing is possible. Since these cutting edges cut well, the end surface of the processed semiconductor wafer tends to chip less.
  • electrostatic spraying means spreading abrading particles by electrostatically charging them. Since the abrading particles thus spread by electrostatic spraying are scattered while being mutually repelled electrostatically, they do not form any agglomerations and can be spread out uniformly.
  • the abrading tape is caused to run horizontally or vertically while being pressed against an outer peripheral part of the semiconductor wafer.
  • the abrading tape mounted inside the abrading head is pressed against and caused to abrade the semiconductor wafer while the tape surface is sloped by an angle of 10° or less from the vertical direction.
  • the sloping may be either forward or backward and is an effective method when the upper portion or a lower portion of an outer peripheral part of the semiconductor wafer is abraded. In this way, the tip end portion of the outer peripheral part of the semiconductor wafer can be abraded effectively.
  • the tip end portion is abraded by forwardly sloping the abrading surface of the abrading tape inside the abrading head with respect to the front surface of the semiconductor wafer by an angle of 10° or less from the vertical direction, for example, the outer peripheral part of the semiconductor wafer becomes an obtuse angle or a nearly obtuse angle at the time of back-grinding, chipping becomes unlikely to take place on the tip end portion.
  • the slope angle is made greater than 10°, the tip end portion becomes like a sharp knife edge and it becomes easier to form defects and cracks while it is being transported during the abrading process or during a later process. This is why it is preferable to make the angle of the slope equal to or less than 10°.
  • the angle of the slope should be 10° or less, whether the abrading head is inclined forward or backward from the vertical direction.
  • the diameter of the abrading particles on the abrading tape should preferably be in the range of #600 or 30 ⁇ m to #3000 or 5 ⁇ m. If it is less than #600, chipping will be increased. If it is over #3000, the speed of processing is reduced and the process efficiency is adversely affected.
  • the abrading process is preferably carried out while an abrading liquid is supplied.
  • the pad at the tip of the holding guide is preferably comprised of an elastic material having shore-A hardness in the range of 20-50°.
  • an elastic material is capable of absorbing mechanical vibrations, prevents generation of detects and serves to stabilize the shape of the abraded surface of the semiconductor wafer and to reduce the generation of chipping.
  • a lubricating material with lubricity it is also preferable to form at least the contact surface of the pad at the tip with a lubricating material with lubricity. It is preferable to use a pad material with lubricity in order to allow the abrading tape to run smoothly since the back surface of the abrading tape is pressed by the pad.
  • the invention also relates to an abrading apparatus for abrading outer peripheral parts of a semiconductor wafer having a front surface on which semiconductor elements are formed and a protective sheet is adhesively attached, comprising holding means for holding the semiconductor wafer such that its front surface is horizontal and an abrading head containing therein an abrading tape which is adapted to run and to abrade an outer peripheral part of the semiconductor wafer being held by the holding means, wherein the abrading tape has abrading particles attached thereto by electrostatic spraying.
  • the outer peripheral parts of a semiconductor wafer fabricated in the shape of an arc (or R-shape) can be abraded nearly perpendicularly and hence the outer peripheral parts do not take on the shape of a knife edge.
  • a back-grinding process is carried out thereafter, it is possible to prevent the generation of breakage, cracks and defects.
  • an abrading apparatus With an abrading apparatus according to this invention, outer peripheral parts of a semiconductor wafer can be abraded together with the protective sheet thereon. Since the abrading tape is constantly being run, a fresh abrading part is always being supplied and hence there is no problem of clogging although the protective sheet is abraded at the same time, and the abrasion can be effected dependably and with a high efficiency.
  • the abrading tape is preferably arranged to travel vertically or horizontally as it contacts the outer peripheral part of the semiconductor wafer. If the abrading tape is thus arranged to travel vertically or horizontally, the outer peripheral parts of the semiconductor wafer can be abraded approximately perpendicularly and since a new portion is being supplied constantly, the abrading process can be executed with a high efficiency without the problem of clogging.
  • the abrading head comprises a holding guide for pressing the abrading tape against the outer peripheral part and a compressing mechanism for pressing this holding guide. Since the abrading tape, too, can thus adjust the compressive force, the abrading process can be carried out efficiently and uniformly.
  • the abrading head further comprises a pressing position adjusting mechanism that rotates the holding guide in a radial direction of the semiconductor wafer, the pressing position adjusting mechanism comprising a rotary arm that undergoes a rotary motion with the holding guide mounted thereto, a shaft that is connected to the rotary arm and a driving device that is connected to and transmits a torque for the rotary motion to the shaft and the abrading head preferably serving to control the torque by the driving device to adjust the rotary position where the abrading tape is pressed by the holding guide onto the outer peripheral part of the semiconductor wafer.
  • a pressing position adjusting mechanism that rotates the holding guide in a radial direction of the semiconductor wafer
  • the pressing position adjusting mechanism comprising a rotary arm that undergoes a rotary motion with the holding guide mounted thereto, a shaft that is connected to the rotary arm and a driving device that is connected to and transmits a torque for the rotary motion to the shaft and the abrading head preferably serving to control the torque by the driving device
  • the contact position, the angle of contact and the pressure between the outer peripheral part of the semiconductor wafer and the abrading tape can be corrected and hence the accuracy of the abrading process can be improved.
  • the present invention makes it possible to reduce damages and cracks generated on the outer peripheral parts in the back-grinding process on a semiconductor wafer, as well as damages and cracks after the working on the back surface.
  • the present invention makes it possible to carry out an abrading process with a high level of accuracy because a fresh abrading past is constantly being supplied and hence there is no clogging although the protective sheet is abraded at the same time.
  • the abrading particles are attached to the abrading tape by electrostatic spraying, there are less unwanted resin layers on the surface of the abrading particles than in the case of an ordinary tape of the type produced by coating, and high-speed processing is made possible since the cutting edges of the abrading particles are sharp. Since the dressing process for the grindstone becomes unnecessary, the work can be carried out efficiently and stably within a short processing time.
  • the structure of the apparatus can be simplified and the abrading process can be carried out smoothly without any abnormal chipping around the entire circumference of the semiconductor wafer after the process.
  • FIG. 1 is a front view conceptually showing the positional relationship between a semiconductor wafer and an abrading head of an abrading apparatus for outer peripheral parts of a semiconductor wafer according to a first embodiment of this invention.
  • FIG. 2 is a plan view conceptually showing the positional relationship between a semiconductor wafer and an abrading head of an abrading apparatus for outer peripheral parts of a semiconductor wafer according to a second embodiment of the invention.
  • FIGS. 3A , 3 B, 3 C and 3 D are diagrams for showing the steps of a method of abrading peripheral parts of a semiconductor wafer according to this invention.
  • FIG. 4 is a front view of an abrading apparatus for outer peripheral parts of a semiconductor wafer according to this invention.
  • FIG. 5 is a drawing for explaining the pressure adjusting part of the holding guide 46 shown in FIG. 4 .
  • FIG. 6 comprising FIGS. 6A , 6 B and 6 C, are drawings for explaining the back-grinding process on a semiconductor wafer.
  • FIG. 7 is a schematic front view of the pressing position adjusting mechanism.
  • FIG. 8 includes FIGS. 8A and 8B , FIG. 8A being a schematic side view of the pressing position adjusting mechanism before it is pressed against the outer peripheral part of a semiconductor wafer, and FIG. 8B being a schematic side view of the pressing position adjusting mechanism when it is pressed against the outer peripheral part of the semiconductor wafer.
  • a abrading method of this invention for outer peripheral parts of a semiconductor is a method that is carried out prior to the back-surface abrading process (known as the back-grinding process) of a semiconductor wafer.
  • FIG. 1 is a front view conceptually showing the positional relationship between a semiconductor wafer and an abrading head of an abrading apparatus according to a first embodiment of this invention for outer peripheral parts of a semiconductor wafer.
  • FIG. 2 is a plan view conceptually showing the positional relationship between a semiconductor wafer and an abrading head of an abrading apparatus according to a second embodiment of this invention for outer peripheral parts of a semiconductor wafer.
  • FIGS. 3A , 3 B, 3 C and 3 D, together referred to as FIG. 3 are diagrams for showing the steps of a method according to this invention of abrading peripheral parts of a semiconductor wafer.
  • FIG. 4 is a front view of an abrading apparatus according to this invention for outer peripheral parts of a semiconductor wafer.
  • FIG. 5 is a drawing for explaining the pressure adjusting part of the holding guide 46 shown in FIG. 4 .
  • the abrading apparatus for outer peripheral parts of a semiconductor wafer is provided with a rotating mechanism 21 for carrying a semiconductor wafer 11 horizontally thereon with its back surface (back-grinding surface) facing upward and rotating it and an abrading head 40 for abrading its outer peripheral parts.
  • the disk-shaped semiconductor wafer 11 is horizontally placed on a holding table 23 , which is supported on a rotary shaft 27 rotatably attached to a stage 24 and made rotatable by a motor (not shown).
  • the abrading head 40 is disposed so as to travel in the direction in which an abrading tape 20 will advance perpendicularly to the surface of the semiconductor wafer 11 which is placed horizontally, that is, in the vertical direction, and the abrading tape 20 is pressed approximately perpendicularly to the edge surface of the semiconductor wafer 11 .
  • the abrading tape 20 is contained inside the abrading head 40 , being wound around a feeder reel 42 . It is structured such that the abrading tape will be taken up by a take-up reel 43 after passing by an auxiliary roller 45 a , a lower roller 44 a , an upper roller 44 b and another auxiliary roller 45 b.
  • the abrading tape 20 travels vertically between the lower roller 44 a and the upper roller 44 b to carry out the abrading process as it is pressed against the outer peripheral part of the horizontally placed semiconductor wafer 11 by a pad 47 which is at the tip of a holding guide 46 perpendicularly to the abrading tape 20 .
  • the holding guide 46 serves to press the abrading tape 20 against the outer peripheral part of the semiconductor wafer 11 by being pressed in the direction shown by an arrow 51 with adjustment by means, for example, of an air cylinder.
  • a nozzle 52 for spraying an abrading liquid is provided at a position where the abrading tape 20 is pressed against the outer peripheral part of the semiconductor wafer 11 , and an abrading liquid is spread through this nozzle 52 at the time of the abrading process.
  • the protective sheet 12 (shown in FIG. 3 as being adhesively attached to the semiconductor wafer 11 ) is effectively prevented from becoming peeled off because the abrading tape 20 runs vertically upward and the abrading process can be carried out in the direction of pressing it in the direction towards the wafer.
  • FIG. 2 is referenced to explain an abrading apparatus according to the second embodiment of this invention for outer peripheral parts of a semiconductor wafer.
  • FIG. 2 is a front view for showing an abrading apparatus according to the second embodiment of the invention for outer peripheral parts of a semiconductor wafer. Portions thereof that are common to the first embodiment will not be repetitiously described. Only those portions that are different will be explained. Equivalent or like components are indicated by the same numerals or symbols as in FIG. 1 .
  • the abrading head 40 is disposed such that the abrading tape 20 will run between the lower roller 44 a and the upper roller 44 b in the circumferential direction of the horizontally placed semiconductor wafer 11 .
  • the abrading tape 20 runs horizontally between the lower roller 44 a and the upper roller 44 b . It is preferable to cause the abrading tape 20 to run opposite to the direction of rotation of the semiconductor wafer 11 at the position where the abrading tape 20 is pressed against the outer peripheral part of the semiconductor wafer 11 .
  • the second embodiment is advantageous in that the required width of the abrading tape 20 may be reduced, compared to the first embodiment of the invention. It also has the advantage that the mechanical effects such as the amplitude of motion in the vertical direction by the rotation of the wafer can be reduced at the time of the abrading process.
  • the first embodiment and the second embodiment of the invention described above are different only in that the abrading tape 20 travels vertically or horizontally between the lower roller 44 a and the upper roller 44 b . If it is so arranged that the abrading head 40 is rotatable such that the abrading tape 20 can be made to travel either vertically or horizontally between the lower roller 44 a and the upper roller 44 b , the features of both the first and second embodiments of the invention can be realized.
  • a protective sheet is adhesively attached to a semiconductor wafer with semiconductor elements and electronic components formed thereupon and the semiconductor wafer is thereafter placed on the holding table 23 shown in FIG. 1 or 2 with its front surface facing downward and its back surface facing upward.
  • FIGS. 3A , 3 B, 3 C and 3 D are diagrams for showing the steps of a method according to this invention of abrading peripheral parts of a semiconductor wafer, from the step of pasting the protective sheet on the wafer until the back-grinding step.
  • the protective sheet 12 is adhesively attached, as shown in FIG. 3A , onto the front surface 15 of the semiconductor wafer 11 where semiconductor elements and electronic components are already formed.
  • the protective sheet 12 may be preliminarily cut in the size of the region according to the external shape of the semiconductor wafer 11 and adhesively attached onto the front surface 15 or may be pasted on the front surface 15 first and then cut along the outer circumference.
  • the semiconductor wafer 11 with the protective sheet 12 pasted thereto is placed on and affixed to the holding table 23 shown in FIG. 1 or 2 with the surface having the protective sheet 12 facing downward.
  • the semiconductor wafer 11 is rotated and the abrading tape 20 contained inside the abrading head 40 is moved to the side of the outer peripheral part of the semiconductor wafer 11 and the abrading process is carried out by causing the abrading tape 20 to run and be pressed against the outer peripheral part of the semiconductor wafer 11 .
  • the abrading tape 20 is pressed from its back side by means of the holding guide 46 .
  • the outer peripheral part of the semiconductor wafer 11 is thus abraded by a required amount and the process is ended at a final position.
  • FIG. 3C shows the sectional shape of the outer peripheral part of the semiconductor wafer at the end of the abrading process. Since the abrading process can be carried out according to this invention while the abrading tape 20 is running, there is no problem of clogging which may occur if a grindstone is used, while the protective sheet 12 is abraded at the same time as the external peripheral part 13 .
  • the semiconductor wafer 11 with its outer peripheral parts thus abraded is then subjected to a back-grinding process to have its back surface abraded, for example, by a cup-shaped grindstone rotating at a high speed such that it is thinned, as shown in FIG. 3D , to its final thickness. Since no sharp knife-edge shape appears after the back-grinding process, as shown in FIG. 3D , the semiconductor wafer is not easily breakable or chipped.
  • An abrading tape 20 is used according to this invention.
  • Plastic films of polyethylene terephthalate (PET), polyester, polyolefin, EVA resins, polyvinyl carbonate (PVC) or polyethylene may be used as its base sheet.
  • An abrading tape obtained by forming on the surface of this base sheet an abrading particle layer having one or more kinds of abrading particles selected from micro-particles of carborundum, diamond, aluminum oxide, silica and cerium oxide may be used.
  • a particularly preferable kind of abrading tape 20 for the purpose of this invention may be produced by spreading abrading particles on the surface of a binder resin with which the surface of the film material is coated.
  • binder resin examples include polyester resins, epoxy resins, acryl resins, urethane resins and silicone resins.
  • the abrading particles are applied by using the charge spraying method such that directionality can be provided in the distribution of the abrading particles, in contrast to the conventional abrading tapes produced by a coating method. Since the cutting edges of the abrading particles can thus be aligned on the surface of the abrading tape, the abrading efficiency can be improved. Since the surface of the abrading particles is covered by a thin layer of binder resin, furthermore, there is no problem of these abrading particles dropping off and this also contributes to the improvement in the abrading efficiency.
  • Such an abrading tape 20 may be produced by applying a binder resin to the surface of a base film material, thereafter ionizing (charging) the abrading particles by a field charging method, a corona discharging method or a frictional charging method, spreading them on the surface of the aforementioned binder resin and thereafter hardening the binder resin.
  • the binder resin may be hardened by heating or by the UV hardening method.
  • the preferable range of the size of the abrading particles is #600-#3000 (or 30 ⁇ m-5 ⁇ m in average diameter). If it is below #600, the generation of chips becomes a problem. If it is over #3000, the work efficiency becomes deteriorated.
  • the abrading tapes of this invention as described above have an appropriate degree of directionality in the abrading particles on the surface of the base film material and hence have a superior abrading efficiency.
  • abrading tapes 20 with a patterning by roll transcription such that the surface has a pointed shape may be used.
  • an elastic material with shore-A hardness in the range of 20-50° is used as the pad 47 at the tip of the holding guide 46 for pressing the abrading tape 20 .
  • Examples of such material include resin and rubber materials. Those with a small frictional resistance against the running abrading tape are preferable.
  • shore-A hardness is a standard for measuring the hardness of rubber by using a durometer (or a spring-type hardness meter for rubber) adapted to insert a probe into the surface of a target object to deform it for measurement and to convert the degree of deformation into a number (or the depth of deformation)
  • Shore Durometer Type-A ASTM D2240 (trade name, produced by Instron Corporation) may be used.
  • the abrading tape 20 can be fed smoothly if a lubricating layer is formed with Teflon (trade name) or the like on the surface of the pad 47 where the tape is contacted.
  • the abrading tape 20 tends to bend excessively and it ceases to be possible to obtain a desired shape. If it is in excess of 50°, on the other hand, the edge parts become easier to be chipped excessively.
  • Rotational speed of the semiconductor wafer 500-2000 rpm; Feeding speed of abrading tape: 50-200 mm/min; Pressure on the pad: 5-20 N; Supply rate of abrading liquid: 200-1000 ml/min.
  • the semiconductor wafer 11 after having its outer peripheral parts abraded, is subjected to a back-grinding process, as shown in FIG. 3 , such that its back surface is abraded by a rapidly rotating cup-shaped grindstone such that a final thickness is obtained.
  • the abrading apparatus for outer peripheral parts of a semiconductor wafer mainly comprises a holding table 23 provided to a stage 24 for carrying thereon a semiconductor wafer 11 horizontally with its back surface (to be abraded) facing upward, a rotating mechanism 21 connected to a motor 32 for rotating this semiconductor wafer 11 , and an abrading head 40 for abrading outer peripheral parts of the semiconductor wafer.
  • the holding table 23 is in the shape of a porous plate and serves to horizontally carry thereon the semiconductor wafer 11 in the shape of a disk.
  • the semiconductor wafer 11 placed on the holding table 23 is kept thereon by a suction force through a suction pipe 28 connected to the holding table 23 .
  • the suction pipe 28 is connected to a suction pump (not shown) disposed externally.
  • the position of the center of rotation of the semiconductor wafer 11 on the holding table 23 is made adjustable by detecting the outer peripheries of the semiconductor wafer 11 by a periphery sensor (a laser-type transmission detection sensor).
  • a periphery sensor a laser-type transmission detection sensor
  • the abrading head 40 is disposed approximately perpendicularly to the surface of the semiconductor wafer 11 such that the abrading tape can be pressed to the upper surface of the semiconductor wafer 11 while the upper part of the abrading head 40 is inclined in the forward direction by less than 10° from the vertical.
  • the angle of this inclination less than 10°. This is because the outer peripheral parts of the semiconductor wafer become an obtuse angle if the outer peripheral parts are abraded with the inclination less than 10° and the generation of chipping becomes rare. This is the same if the upper part of the abrading head 40 is inclined backward.
  • the rotating mechanism 21 is provided with a rotatable holding table 23 and a motor 32 for rotating it.
  • the holding table 23 is provided with a vacuum chuck 22 for holding the semiconductor wafer 11 by suction. After the semiconductor wafer 11 to be abraded is placed on the holding table 23 , it is kept in position by suction through a suction tube 28 .
  • the holding table 23 is rendered rotatable by means of a bearing holder 25 affixed to a stage 24 through a rotary shaft 27 .
  • the rotating mechanism 21 is connected to an external suction pump through the suction tube 28 passing inside the rotary shaft 27 and further through a rotary joint.
  • the semiconductor wafer 11 is rotated by connecting a belt pulley 26 a affixed to the rotary shaft 27 of the holding table 23 with another belt pulley 26 b affixed to the motor shaft 33 of the motor 32 .
  • the motor 32 is affixed to the stage 24 through a support shaft 31 .
  • the abrading head 40 is a box-shaped structure made of a plate 41 to which the abrading tape 20 is mounted.
  • the abrading head 40 is structured such that the abrading tape 20 wound around a feed reel 42 will be taken up by a take-up reel 43 by passing by an auxiliary roller 45 a , a lower roller 44 a , an upper roller 44 b and another auxiliary roller 45 b .
  • the abrading tape 20 is pressed by a holding guide 46 against the outer peripheral part of the semiconductor wafer 11 to carry out the abrading process.
  • the lower roller 44 a and the upper roller 44 b are adjusted such that the abrading tape 20 will be smoothly guided towards the front surface of the semiconductor wafer 11 with an angle of inclination less than 10° from the vertical.
  • the upper part of the abrading head 40 may be inclined either forward or backward. A selection may be appropriately made according to the position of the tip of the outer peripheral parts of the semiconductor wafer 11 when the abrading process is carried out. In either case, the inclination should be by 10° or less for the reason explained above.
  • tape tension adjusting rollers and auxiliary rollers may be added in any convenient manner.
  • the abrading tape 20 is pressed by a pad 47 at the tip of the holding guide 46 .
  • a pressure adjusting cylinder 48 is connected through the holding guide 46 for adjusting the pressure.
  • This adjustment of pressure by the holding guide 46 may be effected by a mechanism shown in FIG. 5 , for example, by adjusting the pressure of air sent into an air tube 62 by means of a regulator 61 to a specified level and moving the holding guide 46 by the pressure adjusting cylinder (air cylinder) 48 .
  • the pad 47 for pressing the back surface of the abrading tape 20 is attached to the tip of the holding guide 46 and is pressed against the outer peripheral part of the wafer together with the abrading tape 20 to carry out the abrading process.
  • a material such as resin fluorides (polytetrafluoro ethylene (PTFE) and tetrafluoro ethylene-perfluoro alkylvinylether polymers (PFA)) with small frictional resistance is preferable.
  • PTFE polytetrafluoro ethylene
  • PFA tetrafluoro ethylene-perfluoro alkylvinylether polymers
  • a abrading apparatus thus structured for outer peripheral parts of a semiconductor wafer serves to rotate the semiconductor wafer 11 placed on its holding table 23 and to form an abrading surface by running the abrading tape 20 provided to the abrading head 40 such that its slope with respect to the front surface of the semiconductor wafer 11 is less than 10° from the vertical.
  • the abrading tape 20 is advanced at a specified speed.
  • the pressing position of the abrading tape 20 against the outer peripheral part of the semiconductor wafer 11 can be adjusted by providing a pressing position adjusting mechanism as shown in FIGS. 7 and 8 .
  • An outline of this adjusting mechanism and its operations will be presented next with reference to FIGS. 7 and 8 .
  • FIG. 7 is a schematic front view of the pressing position adjusting mechanism 69 .
  • FIG. 8A is a schematic side view of the pressing position adjusting mechanism before it is pressed against the outer peripheral part of a semiconductor wafer
  • FIG. 8B is a schematic side view of the pressing position adjusting mechanism as it is pressed against the outer peripheral part of the semiconductor wafer.
  • the pressing position adjusting mechanism 69 is provided inside the abrading head 40 and functions to swing so as to rotate the holding guide 46 , comprising a rotary arm 70 for holding the holding guide 46 with the pad 47 at its end between two planar members 71 a and 71 b , a shaft 72 that penetrates and connects with the planar members 71 a and 71 b , a motor 74 connected to the shaft 72 and serving to generate a torque for rotating the rotary arm 70 , and a gear head 73 provided between the shaft 72 and the motor 74 .
  • the planar members 71 a and 71 b of the rotary arm 70 further rotatably hold the lower roller 44 a , the upper roller 44 b and the auxiliary roller 45 a between them.
  • the shaft 72 which penetrates the planar members 71 a and 71 b is a cylindrical member in the shape of a bar and is connected to the motor 74 through the gear head 73 . As the shaft 72 is rotated by the motion of the motor 74 , the rotary arm 70 rotates around the shaft 72 .
  • the gear head 73 serves to control the torque by varying the rotational speed of the motor 74 and to thereby control the rotational position of the rotary arm 70 , or its swinging position.
  • a stepping motor or a servomotor may be used as the motor 74 .
  • the holding guide 46 is placed at a specified position of the rotary arm such that the abrading tape 20 can abrade the outer peripheral part of the semiconductor wafer 11 by being pressed by the pad 47 and is held by being sandwiched between the planar members 71 a and 71 b .
  • the pressure adjusting cylinder 48 for causing the holding guide 46 to slide is placed on the back side of the holding guide 46 .
  • the holding guide 46 and the abrading tape 20 pressed by the holding guide 46 are placed at a position opposite the outer peripheral part of the semiconductor wafer 11 placed on the wafer-holding table (not shown).
  • the shaft 72 is rotated by driving the motor 74 and controlling the torque by means of the gear head 73 .
  • the rotation of the shaft 72 causes the rotary arm 70 to rotate around the shaft 72 and the abrading tape 20 being compressed by the holding guide 46 comes to be pressed against the outer peripheral part of the semiconductor wafer 11 at a specified contact angle for carrying out the abrasion process.
  • the accuracy of the abrasion process can be improved by varying the angle and the pressure of compression by the abrading tape 20 .
  • a protective sheet of about 8 inches (for example, adhesive tape P7180 of a thermosetting type for protection of semiconductor surfaces produced by Lintec Corporation) is adhesively attached to the surface of a semiconductor wafer of 8 inches with semiconductor devices formed thereon. After its position was adjusted on the holding table of an abrading apparatus with its front surface facing downward, its position was fixed by suction.
  • the abrading tape 20 was of the type having epoxy resin applied to the surface of a PET film as the binder resin and having carborundum (SiC) abrading particles of #600 attached thereto by the electrostatic spraying method and hardened by heating. This tape was mounted to the abrading head 40 for the process. A silicon sponge with shore-A hardness 30° was used as the pad with Teflon (registered trademark) pasted as a lubricant on the surface.
  • Rotary speed of the wafer 1000 rpm; Feed speed of abrading tape: 100 mm/min; Pressure on pad: 10 N; Supply rate of abrading liquid (pure water): 500 ml/min.
  • the outer peripheral parts of semiconductor wafers were abraded together with the protective sheet under these conditions.
  • a grindstone comprising a diamond wheel with #1200 diamond abrading particles combined by a resin was used instead of an abrading tape with a wafer edge grinding apparatus W-GM-4200 (tradename) produced by Tokyo Seimitsu-sha.
  • the conditions of the process were as follows:
  • Rotary speed of the wafer 200 rpm; Rotary speed of the grindstone: 5000 rpm; Depth of cutting: 50 ⁇ m/min ( ⁇ 100 ⁇ m/min); Supply rate of abrading liquid: 3 L/min.
  • the changes in the diameter of the wafer per unit time were measured by using a digital caliper (CD-45C (tradename) produced by Mitutoyo Corporation). Chipping was measured and observed by using a device KP-2700/MX-1060Z (tradename) produced by HIROX Corporation.
  • the abraded surface conditions were evaluated by means of a device EPRO212-EN (tradename) produced by Yuuhi Denshi-sha.
  • the processed semiconductor wafers were evaluated regarding the speed of processing, the depth of chipping and the condition of clogging, and the following results were obtained.
  • the processing speed was greater than the speed obtainable by traditional abrading methods using a diamond wheel, the depth of chipping was good at 5-7 ⁇ m, and no clogging was observed on the tape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
US12/532,385 2008-02-22 2009-02-17 Method of and apparatus for abrading outer peripheral parts of a semiconductor wafer Abandoned US20100112909A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008042174 2008-02-22
JP2008-42174 2008-02-22
PCT/JP2009/052717 WO2009104614A1 (ja) 2008-02-22 2009-02-17 半導体ウェーハ外周端部の研削方法及び研削装置

Publications (1)

Publication Number Publication Date
US20100112909A1 true US20100112909A1 (en) 2010-05-06

Family

ID=40985493

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/532,385 Abandoned US20100112909A1 (en) 2008-02-22 2009-02-17 Method of and apparatus for abrading outer peripheral parts of a semiconductor wafer

Country Status (5)

Country Link
US (1) US20100112909A1 (ja)
JP (1) JP4463326B2 (ja)
KR (1) KR101578956B1 (ja)
TW (1) TW201001515A (ja)
WO (1) WO2009104614A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110306282A1 (en) * 2008-10-29 2011-12-15 Josef Fischer Adjustable Belt Sander
US20120045968A1 (en) * 2010-08-19 2012-02-23 Nihon Micro Coating Co., Ltd. Substrate polishing method and device
US20120135668A1 (en) * 2010-11-26 2012-05-31 Masayuki Nakanishi Method of polishing a substrate using a polishing tape having fixed abrasive
US20120156972A1 (en) * 2010-12-15 2012-06-21 Brown James W Glass edge finish system, belt assembly, and method for using same
US20140094095A1 (en) * 2012-09-24 2014-04-03 Ebara Corporation Polishing method
US20140213152A1 (en) * 2013-01-31 2014-07-31 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer Edge Trimming Tool Using Abrasive Tape
US9496129B2 (en) 2013-02-13 2016-11-15 Mipox Corporation Method for manufacturing a circular wafer by polishing the periphery, including a notch or orientation flat, of a wafer comprising crystal material, by use of polishing tape
CN107866724A (zh) * 2016-09-23 2018-04-03 株式会社冈本工作机械制作所 半导体装置的制造方法和半导体制造装置
CN109434687A (zh) * 2018-11-21 2019-03-08 湖南大合新材料有限公司 一种用于锑化镓单晶片夹装设备中的伸缩压紧模块
CN110634772A (zh) * 2019-08-26 2019-12-31 泉州洛江同满机械设计有限公司 一种薄型晶圆前端处理设备
CN111546136A (zh) * 2020-04-30 2020-08-18 济南晶正电子科技有限公司 一种无解理面晶片端面抛光方法
CN111653498A (zh) * 2020-06-12 2020-09-11 长江存储科技有限责任公司 一种半导体结构及其研磨方法
CN112936013A (zh) * 2021-02-20 2021-06-11 文鑫 一种pvc塑料线槽制造成型加工系统
TWI739361B (zh) * 2020-03-26 2021-09-11 南茂科技股份有限公司 清潔裝置及捲帶自動接合封裝結構的製造設備

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100541B2 (ja) * 2013-01-30 2017-03-22 株式会社荏原製作所 研磨方法
JP2014239134A (ja) * 2013-06-07 2014-12-18 株式会社ディスコ ウェーハの加工方法
JP2015013346A (ja) * 2013-07-05 2015-01-22 リンテック株式会社 シート研削装置および研削方法
KR101542872B1 (ko) * 2014-01-07 2015-08-07 조원구 피니싱 장치
US10388535B1 (en) * 2018-05-25 2019-08-20 Powertech Technology Inc. Wafer processing method with full edge trimming
CN109623554A (zh) * 2019-01-08 2019-04-16 天津中环领先材料技术有限公司 一种降低硅片边缘粗糙度的边抛工艺
DE102019119333A1 (de) * 2019-07-17 2021-01-21 Rud. Starcke Gmbh & Co. Kg Schleifvorrichtung

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010011002A1 (en) * 2000-01-28 2001-08-02 Steere Robert E. Wafer processing machine
US6402596B1 (en) * 2000-01-25 2002-06-11 Speedfam-Ipec Co., Ltd. Single-side polishing method for substrate edge, and apparatus therefor
US20020098787A1 (en) * 2001-01-09 2002-07-25 Junji Kunisawa Polishing apparatus
US20020116876A1 (en) * 2000-11-24 2002-08-29 Kazuo Suzuki Abrasive product and method of making the same
US20020142707A1 (en) * 2001-01-24 2002-10-03 Takashi Shimada Glass substrate for magnetic recording medium, production method thereof, and magnetic recording medium using the substrate
JP2003273053A (ja) * 2002-03-14 2003-09-26 Disco Abrasive Syst Ltd 平面研削方法
US7014529B1 (en) * 2004-10-15 2006-03-21 Kabushiki Kaisha Toshiba Substrate processing method and substrate processing apparatus
US7108582B2 (en) * 2004-04-20 2006-09-19 Nihon Microcoating Co., Ltd. Polishing machine
US20060252355A1 (en) * 2004-11-16 2006-11-09 Nihon Micro Coating Co., Ltd. Polishing tape and method
JP2007042811A (ja) * 2005-08-02 2007-02-15 Tokyo Seimitsu Co Ltd ウェーハ外周研削方法及びウェーハ外周研削装置
US7367873B2 (en) * 2002-02-12 2008-05-06 Ebara Corporation Substrate processing apparatus
US20090017730A1 (en) * 2004-10-15 2009-01-15 Takeo Kubota Polishing apparatus and polishing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025952A (ja) * 2000-07-07 2002-01-25 Disco Abrasive Syst Ltd 半導体ウエーハの処理方法
JP2004338064A (ja) * 2003-05-19 2004-12-02 Sony Corp 研磨ベルト、研磨装置及び研磨方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402596B1 (en) * 2000-01-25 2002-06-11 Speedfam-Ipec Co., Ltd. Single-side polishing method for substrate edge, and apparatus therefor
US20010011002A1 (en) * 2000-01-28 2001-08-02 Steere Robert E. Wafer processing machine
US20020116876A1 (en) * 2000-11-24 2002-08-29 Kazuo Suzuki Abrasive product and method of making the same
US20020098787A1 (en) * 2001-01-09 2002-07-25 Junji Kunisawa Polishing apparatus
US20020142707A1 (en) * 2001-01-24 2002-10-03 Takashi Shimada Glass substrate for magnetic recording medium, production method thereof, and magnetic recording medium using the substrate
US7367873B2 (en) * 2002-02-12 2008-05-06 Ebara Corporation Substrate processing apparatus
JP2003273053A (ja) * 2002-03-14 2003-09-26 Disco Abrasive Syst Ltd 平面研削方法
US7108582B2 (en) * 2004-04-20 2006-09-19 Nihon Microcoating Co., Ltd. Polishing machine
US7014529B1 (en) * 2004-10-15 2006-03-21 Kabushiki Kaisha Toshiba Substrate processing method and substrate processing apparatus
US20090017730A1 (en) * 2004-10-15 2009-01-15 Takeo Kubota Polishing apparatus and polishing method
US20060252355A1 (en) * 2004-11-16 2006-11-09 Nihon Micro Coating Co., Ltd. Polishing tape and method
JP2007042811A (ja) * 2005-08-02 2007-02-15 Tokyo Seimitsu Co Ltd ウェーハ外周研削方法及びウェーハ外周研削装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110306282A1 (en) * 2008-10-29 2011-12-15 Josef Fischer Adjustable Belt Sander
US8758094B2 (en) * 2008-10-29 2014-06-24 Josef Fischer Adjustable belt sander
US20120045968A1 (en) * 2010-08-19 2012-02-23 Nihon Micro Coating Co., Ltd. Substrate polishing method and device
US8814635B2 (en) * 2010-08-19 2014-08-26 Sanshin Co., Ltd. Substrate polishing method and device
US20120135668A1 (en) * 2010-11-26 2012-05-31 Masayuki Nakanishi Method of polishing a substrate using a polishing tape having fixed abrasive
US8926402B2 (en) * 2010-11-26 2015-01-06 Ebara Corporation Method of polishing a substrate using a polishing tape having fixed abrasive
US20120156972A1 (en) * 2010-12-15 2012-06-21 Brown James W Glass edge finish system, belt assembly, and method for using same
US8540551B2 (en) * 2010-12-15 2013-09-24 Corning Incorporated Glass edge finish system, belt assembly, and method for using same
US20140094095A1 (en) * 2012-09-24 2014-04-03 Ebara Corporation Polishing method
US9630289B2 (en) * 2012-09-24 2017-04-25 Ebara Corporation Polishing method involving a polishing member polishing at angle tangent to the substrate rotational direction
US9339912B2 (en) 2013-01-31 2016-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer polishing tool using abrasive tape
US20140213152A1 (en) * 2013-01-31 2014-07-31 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer Edge Trimming Tool Using Abrasive Tape
US9931726B2 (en) * 2013-01-31 2018-04-03 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer edge trimming tool using abrasive tape
US9496129B2 (en) 2013-02-13 2016-11-15 Mipox Corporation Method for manufacturing a circular wafer by polishing the periphery, including a notch or orientation flat, of a wafer comprising crystal material, by use of polishing tape
CN107866724A (zh) * 2016-09-23 2018-04-03 株式会社冈本工作机械制作所 半导体装置的制造方法和半导体制造装置
CN109434687A (zh) * 2018-11-21 2019-03-08 湖南大合新材料有限公司 一种用于锑化镓单晶片夹装设备中的伸缩压紧模块
CN110634772A (zh) * 2019-08-26 2019-12-31 泉州洛江同满机械设计有限公司 一种薄型晶圆前端处理设备
TWI739361B (zh) * 2020-03-26 2021-09-11 南茂科技股份有限公司 清潔裝置及捲帶自動接合封裝結構的製造設備
CN111546136A (zh) * 2020-04-30 2020-08-18 济南晶正电子科技有限公司 一种无解理面晶片端面抛光方法
CN111653498A (zh) * 2020-06-12 2020-09-11 长江存储科技有限责任公司 一种半导体结构及其研磨方法
CN112936013A (zh) * 2021-02-20 2021-06-11 文鑫 一种pvc塑料线槽制造成型加工系统

Also Published As

Publication number Publication date
KR20100123682A (ko) 2010-11-24
JPWO2009104614A1 (ja) 2011-06-23
WO2009104614A1 (ja) 2009-08-27
KR101578956B1 (ko) 2015-12-18
TW201001515A (en) 2010-01-01
JP4463326B2 (ja) 2010-05-19

Similar Documents

Publication Publication Date Title
US20100112909A1 (en) Method of and apparatus for abrading outer peripheral parts of a semiconductor wafer
US8513096B2 (en) Wafer dividing method
US8029335B2 (en) Wafer processing method
US20060009134A1 (en) Grinding wheel, grinding apparatus and grinding method
JP2017005056A (ja) ウエーハの加工方法
JP2017054888A (ja) ウエーハの加工方法
JP2877997B2 (ja) 半導体ウエハの処理方法
JP5119614B2 (ja) ウェーハ外周部研削方法
WO2003077297A1 (fr) Procede de meulage de la surface arriere d'une plaquette semi-conductrice
JP5401749B2 (ja) ウエハエッジ加工装置及びそのエッジ加工方法
JP3325646B2 (ja) 半導体ウエハの裏面研削方法および保護テープ貼付機
JP7037422B2 (ja) 被加工物の加工方法
US20220293425A1 (en) Method for manufacturing semiconductor device and apparatus for manufacturing semiconductor device
JPH1199471A (ja) 研磨治具およびこれを搭載する研磨装置
JP2017103387A (ja) ウェーハ分割方法及びウェーハ分割装置
JP6491055B2 (ja) ウエーハの加工方法
WO2021044735A1 (ja) 研磨装置
JP6487275B2 (ja) ウエーハの加工方法
US20220037160A1 (en) Processing method of wafer, protective sheet, and protective sheet laying method
US20230076401A1 (en) Processing apparatus
JP2005159011A (ja) 研磨装置、リテーナーリングおよび半導体装置の製造方法
EP4186636A1 (en) Grinding wheel and grinding methods
JP2011079112A (ja) 切断ブレードのドレッシング方法およびドレッシング装置
JP2001347446A (ja) テープ研磨装置
JPH11233466A (ja) 半導体素子の製造方法及びそのための装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: NIHON MICRO COATING CO., LTD.,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMAGUCHI, NAOHIRO;MATSUMOTO, YASUO;KATOH, KENJI;AND OTHERS;SIGNING DATES FROM 20090910 TO 20090911;REEL/FRAME:023285/0899

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION