WO2009104428A1 - 磁気ランダムアクセスメモリ - Google Patents

磁気ランダムアクセスメモリ Download PDF

Info

Publication number
WO2009104428A1
WO2009104428A1 PCT/JP2009/050210 JP2009050210W WO2009104428A1 WO 2009104428 A1 WO2009104428 A1 WO 2009104428A1 JP 2009050210 W JP2009050210 W JP 2009050210W WO 2009104428 A1 WO2009104428 A1 WO 2009104428A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetization
layer
magnetization free
free layer
fixed
Prior art date
Application number
PCT/JP2009/050210
Other languages
English (en)
French (fr)
Inventor
俊輔 深見
延行 石綿
哲広 鈴木
則和 大嶋
聖万 永原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US12/865,194 priority Critical patent/US8149615B2/en
Priority to JP2009554239A priority patent/JP5299643B2/ja
Publication of WO2009104428A1 publication Critical patent/WO2009104428A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic random access memory (MRAM: “Magnetic Random Access Memory”).
  • MRAM Magnetic Random Access Memory
  • the present invention relates to a domain wall motion type MRAM.
  • MRAM is expected as a non-volatile memory capable of high-speed operation and infinite rewriting, and has been actively developed.
  • a magnetoresistive element is integrated in a memory cell, and data is stored as the magnetization direction of the ferromagnetic layer of the magnetoresistive element.
  • Several methods have been proposed as a method for switching the magnetization of the ferromagnetic layer, all of which are common in that current is used. In order to put the MRAM into practical use, it is very important how much the write current can be reduced.
  • the most common method of writing information to the MRAM is to arrange a wiring for flowing a write current around the magnetoresistive element and to generate a ferromagnetic layer of the magnetoresistive element by a current magnetic field generated by flowing the write current.
  • This is a method of switching the magnetization direction of the.
  • This method can be written in 1 nanosecond or less in principle, and is suitable for realizing a high-speed MRAM.
  • Japanese Patent Laid-Open No. 2005-150303 discloses a structure in which the magnetization of the end portion of the magnetization fixed layer is directed in the film thickness direction for an MRAM that performs data writing by a current magnetic field.
  • the magnetic field for switching the magnetization of a magnetic material that has ensured thermal stability and disturbance magnetic field resistance is generally about several tens (Oe).
  • a large number of about several mA is required.
  • Write current is required.
  • the write current is large, the chip area is inevitably increased, and the power consumption required for writing increases, so that it is inferior in competitiveness compared to other random access memories.
  • the write current further increases, which is not preferable in terms of scaling.
  • a magnetoresistive element of a memory cell includes a first ferromagnetic layer having a reversible magnetization (often referred to as a magnetization free layer) and a second fixed magnetization. It is composed of a laminate including a ferromagnetic layer (often referred to as a magnetization fixed layer) and a tunnel barrier layer provided between these ferromagnetic layers.
  • the second method is to use a current-driven domain wall motion phenomenon.
  • the magnetization reversal method using the current-driven domain wall motion phenomenon can solve the above-described problems of spin injection magnetization reversal.
  • Japanese Patent Application Laid-Open Nos. 2005-191032, 2006-73930, and 2006-270069 disclose MRAMs that use the current-driven domain wall motion phenomenon.
  • a ferromagnetic layer (often called a magnetic recording layer) that holds data is provided with a magnetization reversal unit having reversible magnetization and both ends thereof. It is comprised by the two magnetization fixed parts which have the fixed magnetization connected.
  • the data is stored as the magnetization of the magnetization switching unit.
  • the magnetizations of the two magnetization fixed portions are fixed so as to be substantially antiparallel to each other.
  • a domain wall is introduced into the magnetic recording layer.
  • Physical Review Letters, vol. 92, number 7, p. As reported in 077205, (2004), when a current is passed in the direction penetrating the domain wall, the domain wall moves in the direction of conduction electrons, so that data can be written by passing a current through the magnetic recording layer. . Since the presence or absence of current-driven domain wall movement also depends on the current density, it can be said that there is scaling as with spin injection magnetization reversal.
  • the write current does not flow through the insulating layer, and the write current path and the read current path are different from each other.
  • the MRAM using current-driven domain wall motion has a problem that the absolute value of the write current becomes relatively large.
  • a current density of about 1 ⁇ 10 8 [A / cm 2 ] is generally required for domain wall movement.
  • the width of the ferromagnetic film in which the domain wall motion occurs is 100 nm and the film thickness is 10 nm
  • the write current is 1 mA.
  • the width of the ferromagnetic film may be reduced and the film thickness may be reduced.
  • the current density required for writing is further increased (for example, Japan Journal of Applied Physics, vol. 45, No. 5A, pp. 3850-3853, (2006)). reference).
  • reducing the width of the ferromagnetic film to 100 nm or less is accompanied by great difficulty in terms of processing technology.
  • One of the promising approaches for reducing the write current is to use a perpendicular magnetic anisotropic material film having magnetic anisotropy in the film thickness direction for the magnetic recording layer (layer where domain wall motion occurs).
  • a threshold current density of 10 6 [A / cm 2 ] has been observed (for example, Applied Physics Letters, vol. 90, p. 072508 (2007). )reference).
  • the domain wall motion type MRAM it is desired to independently improve the writing characteristics and the reading characteristics.
  • the structure of the magnetoresistive element becomes complicated, and there is a possibility that the variation in magnetization state between memory cells in which the same data is recorded increases.
  • the variation in the magnetization state between the reference cells increases, the variation in the reference level during data reading also increases.
  • One object of the present invention is to provide a technique capable of suppressing variations in the reference level when reading data in a domain wall motion type MRAM.
  • a domain wall motion type MRAM includes a memory cell and a reference cell that is referenced to generate a reference level when reading data.
  • the memory cell includes a first magnetoresistive element, and the reference cell includes a second magnetoresistive element.
  • the first magnetoresistive element includes a first magnetization free layer having perpendicular magnetic anisotropy, a first magnetization fixed layer having a fixed magnetization direction, a second magnetization free layer having a variable magnetization direction, and a first magnetization fixed layer. And a first nonmagnetic layer sandwiched between the layer and the second magnetization free layer.
  • the first magnetization fixed layer and the second magnetization free layer have in-plane magnetic anisotropy.
  • the first magnetization free layer is connected to the first magnetization fixed region whose magnetization direction is fixed, the second magnetization fixed region whose magnetization direction is fixed, the first magnetization fixed region and the second magnetization fixed region, and the magnetization direction Has a reversible magnetization free region.
  • the magnetization free region and the second magnetization free layer are magnetically coupled to each other. In the first plane parallel to each layer, the center of gravity of the second magnetization free layer is shifted in the first direction from the center of gravity of the magnetization free region.
  • the second magnetoresistive element includes a third magnetization free layer whose easy axis is parallel to the second direction, a second magnetization fixed layer whose magnetization direction is fixed in a third direction orthogonal to the second direction, and a third magnetization A second nonmagnetic layer sandwiched between the free layer and the second magnetization fixed layer.
  • the third magnetization free layer and the second magnetization fixed layer have in-plane magnetic anisotropy.
  • the present invention in the domain wall motion type MRAM, it is possible to independently improve the write characteristic and the read characteristic. Furthermore, it is possible to suppress variations in the reference level when reading data.
  • FIG. 1A is a perspective view showing a structure of a main part of a first magnetoresistive element according to an embodiment of the present invention.
  • FIG. 1B is a plan view showing the structure of the main part of the first magnetoresistive element of FIG. 1A.
  • FIG. 1C is a cross-sectional view showing the structure of the main part of the first magnetoresistive element of FIG. 1A.
  • 1D is a cross-sectional view illustrating a structure of a main part of the first magnetoresistive element in FIG. 1A.
  • FIG. 2A is a cross-sectional view for explaining the state of magnetic flux in the first magnetoresistive element of the present exemplary embodiment.
  • FIG. 1A is a cross-sectional view for explaining the state of magnetic flux in the first magnetoresistive element of the present exemplary embodiment.
  • FIG. 2B is a cross-sectional view for explaining two states that can be taken by the first magnetoresistive element of the present exemplary embodiment.
  • FIG. 2C is a cross-sectional view for explaining two states that can be taken by the first magnetoresistance element of the present exemplary embodiment.
  • FIG. 3A is a perspective view showing a configuration of a first modification of the first magnetoresistance element of the present exemplary embodiment.
  • 3B is a cross-sectional view illustrating a configuration of the first magnetoresistive element in FIG. 3A.
  • 3C is a cross-sectional view illustrating a configuration of the first magnetoresistive element in FIG. 3A.
  • FIG. 4A is a perspective view showing still another configuration of the second modified example of the first magnetoresistance element of the present exemplary embodiment.
  • FIG. 4B is a plan view illustrating the configuration of the first magnetoresistive element in FIG. 4A.
  • FIG. 5A is a perspective view showing a configuration of a third modification of the first magnetoresistance element of the present exemplary embodiment.
  • FIG. 5B is a cross-sectional view illustrating a configuration of the first magnetoresistive element in FIG. 5A.
  • FIG. 5C is a cross-sectional view illustrating a configuration of the first magnetoresistive element in FIG. 5A.
  • FIG. 6A is a plan view illustrating a configuration of a fourth modification example of the first magnetoresistance element of the present exemplary embodiment.
  • FIG. 6B is a plan view illustrating another configuration of the fourth modified example of the first magnetoresistance element of the present exemplary embodiment.
  • FIG. 5A is a perspective view showing a configuration of a third modification of the first magnetoresistance element of the present exemplary embodiment.
  • FIG. 5B is a cross-sectional view illustrating a configuration
  • FIG. 7 is a schematic diagram showing the configuration of a typical MRAM.
  • FIG. 8 is a perspective view showing an example of the first magnetoresistance element according to the exemplary embodiment of the present invention.
  • FIG. 9 is a plan view showing a magnetization state of the first magnetoresistive element shown in FIG.
  • FIG. 10 is a conceptual diagram showing variations in the magnetization state.
  • FIG. 11 is a histogram for explaining the variation of the reference level.
  • FIG. 12A is a perspective view showing an example of the second magnetoresistance element according to the exemplary embodiment of the present invention.
  • FIG. 12B is a plan view showing the magnetization state of the second magnetoresistance element shown in FIG. 12A.
  • FIG. 13A is a perspective view showing another example of the second magnetoresistance element according to the exemplary embodiment of the present invention.
  • FIG. 13B is an xy plan view of the structure shown in FIG. 13A.
  • FIG. 14A is a perspective view showing still another example of the second magnetoresistance element according to the exemplary embodiment of the present invention.
  • FIG. 14B is an xy plan view of the structure shown in FIG. 14A.
  • FIG. 15 is a schematic diagram showing the configuration of the MRAM according to the embodiment of the present invention.
  • FIG. 16 is a conceptual diagram showing magnetization states of the memory cell and the reference cell according to the embodiment of the present invention.
  • FIGS. 1A to 1D schematically show the structure of the first magnetoresistance element 1 according to the exemplary embodiment of the present invention. Specifically, FIG. 1A is a perspective view, and FIGS. 1B, 1C, and 1D are respectively an xy plan view, an xz cross-sectional view in the xyz coordinate system shown in FIG. 1A, It is yz sectional drawing.
  • the first magnetoresistive element 1 includes a first magnetization free layer 10, a second magnetization free layer 20, a first nonmagnetic layer 30, and a first magnetization fixed layer 40.
  • the second magnetization free layer 20 is provided adjacent to one surface of the first nonmagnetic layer 30, and the first magnetization fixed layer 40 is provided adjacent to the other surface of the first nonmagnetic layer 30. That is, the first nonmagnetic layer 30 is sandwiched between the first magnetization fixed layer 40 and the second magnetization free layer 20.
  • the first magnetization free layer 10, the second magnetization free layer 20, and the first magnetization fixed layer 40 are made of a ferromagnetic material.
  • the first magnetization free layer 10 has perpendicular magnetic anisotropy in the film thickness direction (z-axis direction in the figure), and the second magnetization free layer 20 and the first magnetization fixed layer 40 are in-plane in the in-plane direction. Has magnetic anisotropy.
  • the first nonmagnetic layer 30 is made of an insulator, and a magnetic tunnel junction (MTJ) is formed by the second magnetization free layer 20, the first nonmagnetic layer 30, and the first magnetization fixed layer 40. Is formed.
  • the first nonmagnetic layer 30 is preferably made of an insulator, but may be made of a semiconductor or a conductor.
  • the first magnetization free layer 10 includes a first magnetization fixed region 11a, a second magnetization fixed region 11b, and a magnetization free region 12.
  • the magnetization free region 12 is provided between the first magnetization fixed region 11a and the second magnetization fixed region 11b.
  • the first magnetization free layer 10 is designed so that the magnetization free region 12 is magnetically coupled to at least a part of the second magnetization free layer 20.
  • the first magnetization free layer 10 is designed such that the magnetization state of the magnetization free region 12 affects the magnetization state of the second magnetization free layer 20.
  • the magnetization free region 12 is electrically connected to the second magnetization free layer 20.
  • Each of the first magnetization fixed region 11a and the second magnetization fixed region 11b has magnetization fixed at least in part.
  • the magnetization directions of the first magnetization fixed region 11a and the second magnetization fixed region 11b are fixed in the film thickness direction (the z-axis direction in the figure), and they are oriented substantially antiparallel to each other.
  • the magnetization direction of the magnetization free region 12 can be reversed, and the magnetization thereof is substantially parallel to either the magnetization of the first magnetization fixed region 11a or the second magnetization fixed region 11b.
  • the magnetization direction of the magnetization free region 12 corresponds to stored data.
  • the second magnetization free layer 20 has magnetization that can be reversed in the in-plane direction (direction in the xy plane), and the magnetization direction of the first magnetization fixed layer 40 is in the in-plane direction (x ⁇ (direction in the y plane) is fixed in a predetermined direction.
  • the magnetization free region 12 and the second magnetization free layer 20 are magnetically coupled.
  • the center of gravity G12 of the magnetization free region 12 and the center of gravity G20 of the second magnetization free layer 20 are designed to be shifted in the xy plane.
  • the magnetization direction of the second magnetization free layer 20 is uniquely determined according to the magnetization direction of the magnetization free region 12 as will be described later. Data stored as the magnetization direction of the magnetization free region 12 is transmitted to the second magnetization free layer 20 via the magnetic coupling between the magnetization free region 12 and the second magnetization free layer 20.
  • FIG. 1A to 1D show an example in which the centroid G20 of the second magnetization free layer 20 is shifted in the + y direction with respect to the centroid G12 of the magnetization free region 12.
  • the shift direction is not limited to the + y direction.
  • the center of gravity G20 of the second magnetization free layer 20 may be shifted from the center of gravity G12 of the magnetization free region 12 in the “first direction”.
  • the magnetization direction of the first magnetization fixed layer 40 is preferably fixed in a direction parallel or antiparallel to the first direction.
  • ⁇ i means the total sum related to i. For example, in the case of a rectangle or parallelogram, the center of gravity is the intersection of diagonal lines, and in the case of an ellipse, the center of gravity is the center.
  • the material of each layer is illustrated.
  • the first magnetization free layer 10 includes at least one material selected from Fe, Co, and Ni.
  • perpendicular magnetic anisotropy can be stabilized by including Pt and Pd.
  • B, C, N, O, Al, Si, P, Ti, V, Cr, Mn, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Hf, Ta, W , Re, Os, Ir, Au, Sm, and the like can be added so that desired magnetic properties are expressed.
  • Co Co, Co—Pt, Co—Pd, Co—Cr, Co—Pt—Cr, Co—Cr—Ta, Co—Cr—B, Co—Cr—Pt—B, Co—Cr—Ta— B, Co-V, Co-Mo, Co-W, Co-Ti, Co-Ru, Co-Rh, Fe-Pt, Fe-Pd, Fe-Co-Pt, Fe-Co-Pd, Sm-Co, Examples thereof include Gd—Fe—Co, Tb—Fe—Co, and Gd—Tb—Fe—Co.
  • the magnetic anisotropy in the perpendicular direction can also be exhibited by laminating a layer containing any one material selected from Fe, Co, and Ni with different layers. Specifically, a laminated film of Co / Pd, Co / Pt, Co / Ni, Fe / Au, and the like are exemplified.
  • the second magnetization free layer 20 and the first magnetization fixed layer 40 preferably include at least one material selected from Fe, Co, and Ni.
  • B, C, N, O, Al, Si, P, Ti, V, Cr, Mn, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Hf, Ta, W , Re, Os, Ir, Au, and the like can be adjusted so that desired magnetic properties are expressed.
  • Ni—Fe, Co—Fe, Fe—Co—Ni, Ni—Fe—Zr, Co—Fe—B, Co—Fe—Zr—B and the like are exemplified.
  • the first nonmagnetic layer 30 is preferably made of an insulator.
  • suitable materials for the first nonmagnetic layer 30 include Mg—O, Al—O, Al—N, Ni—O, and Hf—O.
  • the present invention can also be implemented by using a semiconductor or a metal material for the first nonmagnetic layer 30.
  • materials that can be used for the first nonmagnetic layer 30 include Cr, Al, Cu, and Zn.
  • the second magnetization free layer 20 and the first magnetization fixed layer 40 are made of a Co—Fe—B material, and the first nonmagnetic layer 30 is made of an Mg—O material.
  • FIG. 2A is a schematic diagram for explaining that the magnetization direction of the second magnetization free layer 20 is uniquely determined by the magnetization direction of the magnetization free region 12.
  • FIG. 2A it is assumed that the magnetization of the magnetization free region 12 is substantially in one direction in the film thickness direction.
  • FIG. 2A schematically shows the state of the leakage magnetic flux from the magnetization free region 12. As shown in FIG.
  • the magnetic flux since the leakage magnetic flux needs to be smoothly connected, the magnetic flux has a component parallel to the in-plane direction as it goes to the end of the magnetization free region 12.
  • the magnetization direction of the second magnetization free layer 20 is determined by a component parallel to the in-plane direction of the magnetic flux.
  • 2B and 2C schematically show the magnetization states of the respective layers in the respective states of “0” and “1” in the first magnetoresistive element 1.
  • the magnetization direction of the first magnetization fixed layer 40 is illustrated as being fixed in the + y direction.
  • the magnetization direction of the first magnetization fixed layer 40 is the ⁇ y direction. It doesn't matter. If the magnetization of the magnetization free region 12 is oriented in the + z direction as shown in FIG. 2B, the magnetization of the second magnetization free layer 20 has a + y direction component due to the leakage magnetic flux as shown in FIG. 2A. As a result, the magnetizations of the second magnetization free layer 20 and the first magnetization fixed layer 40 have parallel components.
  • the magnetization of the second magnetization free layer 20 has a ⁇ y direction component due to the leakage flux in the direction opposite to that in FIG. 2A.
  • the magnetizations of the second magnetization free layer 20 and the first magnetization fixed layer 40 have antiparallel components.
  • the center of gravity G20 of the second magnetization free layer 20 is provided in a specific direction (first direction) with respect to the center of gravity G12 of the magnetization free region 12, so that the magnetization of the second magnetization free layer 20 is Along the specific direction, it has either a positive or negative direction component depending on the magnetization direction of the magnetization free region 12.
  • the magnetization of the second magnetization free layer 20 has either a parallel or antiparallel component to the magnetization direction of the first magnetization fixed layer 40.
  • the magnetization of the second magnetization free layer 20 and the magnetization free region 12 may be related not only by the method using the leakage magnetic flux shown here but also by any magnetic coupling mode such as using exchange coupling.
  • the direction of the easy axis of magnetization of the second magnetization free layer 20 is arbitrary as long as the direction of the magnetization can be changed in accordance with the magnetization of the magnetization free region 12. Therefore, the direction of the easy axis of the second magnetization free layer 20 may be in the y direction, or may be in the x direction. When facing the y direction, the magnetization is reversed between the easy magnetization axes, while when facing the x direction, the magnetization is rotated in the hard axis direction around the easy magnetization axis. Further, the magnetic anisotropy of the second magnetization free layer 20 may be provided by crystal magnetic anisotropy or may be provided by shape magnetic anisotropy.
  • the first magnetization free layer 10 includes the first magnetization fixed region 11a and the second magnetization fixed region 11b whose magnetization is fixed substantially antiparallel to each other in the film thickness direction, and the magnetization electrically connected thereto.
  • a free region 12 is provided, and the magnetization of the magnetization free region 12 is substantially parallel to either the first magnetization fixed region 11a or the second magnetization fixed region 11b. Due to the restriction of the magnetization state, a domain wall is introduced into the first magnetization free layer 10.
  • the magnetization free region 12 when the magnetization of the magnetization free region 12 is substantially parallel to the magnetization of the first magnetization fixed region 11a and is substantially antiparallel to the magnetization of the second magnetization fixed region 11b, the magnetization free region 12 and the second magnetization fixed region A domain wall is formed near the boundary of 11b.
  • the magnetization of the magnetization free region 12 when the magnetization of the magnetization free region 12 is substantially parallel to the magnetization of the second magnetization fixed region 11b and is substantially antiparallel to the magnetization of the first magnetization fixed region 11a, the magnetization free region 12 and the first magnetization fixed region A domain wall is formed near the boundary of 11a.
  • the position of the formed domain wall can be moved by passing a current directly through the first magnetization free layer 10.
  • the first magnetization fixed is obtained by flowing a current in a direction from the magnetization free region 12 toward the first magnetization fixed region 11a.
  • Conduction electrons flow from the region 11a to the magnetization free region 12, and the domain wall moves in the same direction as the flow of the conduction electrons. Due to the movement of the domain wall, the magnetization of the magnetization free region 12 becomes parallel to the first magnetization fixed region 11a.
  • the second magnetization fixed is obtained by flowing a current in a direction from the magnetization free region 12 toward the second magnetization fixed region 11b. Conduction electrons flow from the region 11b to the magnetization free region 12, and the domain wall moves in the same direction as the flow of the conduction electrons. Due to the movement of the domain wall, the magnetization of the magnetization free region 12 becomes parallel to the second magnetization fixed region 11b. In this way, information can be rewritten between the “0” state and the “1” state.
  • the first magnetization fixed region 11a and the second magnetization fixed region 11b be provided with terminals connected to external wiring. At this time, the write current flows between the first terminal connected to the first magnetization fixed region 11a and the second terminal connected to the second magnetization fixed region 11b.
  • the path of the write current for writing data to the first magnetoresistive element 1 of the present embodiment is not limited to this, and other methods will be described later.
  • the magnetoresistive effect is used to read data from the first magnetoresistive element 1 of the present embodiment.
  • a current flows between the first magnetization fixed layer 40 and the second magnetization free layer 20 through the first nonmagnetic layer 30, and the relative angles of magnetization of the first magnetization fixed layer 40 and the second magnetization free layer 20 are determined.
  • the data is read by detecting the resistance corresponding to. For example, when the magnetizations of the first magnetization fixed layer 40 and the second magnetization free layer 20 as shown in FIG. 2B have parallel components, a low resistance state is realized, and the first magnetization fixed layer as shown in FIG. 2C.
  • the resistance of the first magnetoresistive element 1 is detected as a voltage signal or a current signal, and data stored in the first magnetoresistive element 1 is determined using the voltage signal or the current signal.
  • the first magnetization free layer 10 is used at the time of data writing. In this sense, the first magnetization free layer 10 is referred to as a “write layer”.
  • the second magnetization free layer 20, the first nonmagnetic layer 30, and the first magnetization fixed layer 40 are used. In this sense, the second magnetization free layer 20, the first nonmagnetic layer 30, and the first magnetization fixed layer 40 are referred to as a “read layer group”.
  • the write layer and the read layer group are provided separately, but are related to each other through magnetic coupling.
  • the write layer and the read layer group can be independently optimized so as to obtain desired characteristics, and as a result, it is possible to simultaneously improve the write characteristics and the read characteristics.
  • a perpendicular magnetization film having appropriate material characteristics for reducing the write threshold current density can be applied to the write layer, and an MTJ that exhibits a high MR ratio can be applied to the read layer group.
  • a first technical advantage of the first magnetoresistive element 1 of the present embodiment is a reduction in write current. This is because the first magnetization free layer 10, which is a layer in which domain wall movement occurs during data writing, has magnetic anisotropy in the perpendicular direction.
  • the inventor performed micromagnetics calculation using the LLG equation taking into account the spin transfer torque, so that the domain wall formed of the material having perpendicular magnetic anisotropy is a material having in-plane magnetic anisotropy. It has been found that the current density required for driving with current is sufficiently small compared to the magnetic domain wall formed, while the magnetic field required for driving with magnetic field is sufficiently large.
  • the time change of magnetization ( ⁇ m / ⁇ t) is [1] a term representing the torque due to a magnetic field.
  • [2] damping term [3] adiabatic spin torque term, and [4] non-adiabatic spin torque term.
  • the domain wall formed of a material having perpendicular magnetic anisotropy is driven by the adiabatic spin torque term of [3] even at a current density of about 1 ⁇ 10 8 [A / cm 2 ].
  • the perpendicular magnetic anisotropy capable of domain-wall drive with the adiabatic spin torque term of [3] It can be seen that the material having the property is easy to achieve both strong domain wall pinning and domain wall driving by a low current density. That is, by using a material having perpendicular magnetic anisotropy, it is possible to reduce the current required for writing while maintaining a sufficient value for thermal stability.
  • the width (w) of the first magnetization free layer 10 is 100 nm
  • the film thickness (t) of the first magnetization free layer 10 is 2 nm
  • the half of the pin site width (q 0 ) of the domain wall is 15 nm.
  • the saturation magnetization (M S ) of the first magnetization free layer 10 is 500 [emu / cm 3 ]
  • the spin polarizability (P) is 0.5
  • the depinning magnetic field (H C ) at the pin site of the domain wall is Consider a configuration that is 1000 [Oe].
  • the thermal stability index ⁇ E / k B T is about 40.
  • k B is a Boltzmann constant and T is an absolute temperature.
  • the current density required to depin the domain wall from the pin site was found to be about 2 ⁇ 10 7 [A / cm 2 ] from micromagnetics calculation.
  • the write current of the element is 0.04 [mA].
  • the width of the first magnetization free layer 10 ( w) is 100 nm
  • the thickness (t) of the magnetization free layer is 10 nm
  • the half width (q 0 ) of the pin site width of the domain wall is 40 nm
  • the saturation magnetization (M S ) is 800 [emu / cm 3 ]
  • the current density required to depin the domain wall from the pin site in such a system is about 6 ⁇ 10 8 [A / cm 2 ].
  • this current density value is used here for comparison.
  • the write current to the element in the in-plane magnetization film is 6 [mA].
  • the parameters of the first magnetoresistive element 1 used here are only a guide, and the parameters of the first magnetoresistive element 1 can be changed variously. Therefore, the current value required for writing and the thermal stability ⁇ E / k B T also change in accordance with the change of the parameter, but the current value and the thermal stability change substantially in conjunction with each other. The magnitude relationship between the write currents in the inner magnetized film and the perpendicular magnetized film is not significantly covered.
  • the current density required for driving the domain wall with current is thin. It was found from the micromagnetics calculation that it was reduced. If the film thickness is reduced, the total amount of current is naturally reduced. However, in the perpendicular magnetic anisotropic material, in addition to this, the current density is reduced. Therefore, by using the perpendicular magnetic anisotropic material, the write current can be reduced. It can be effectively reduced.
  • the second technical advantage of the first magnetoresistive element 1 of the present embodiment is an increase in the read signal. This is because data stored in the first magnetization free layer 10 having perpendicular magnetic anisotropy is transmitted to the second magnetization free layer 20 having magnetic anisotropy in the in-plane direction, and MTJ for reading is This is because it is constituted by a ferromagnetic layer having magnetization in the film surface direction. If a Co—Fe—B / Mg—O / Co—Fe—B-based material or a material conforming thereto is used as the ferromagnetic layer constituting the MTJ, an even higher MR ratio can be realized.
  • the third technical advantage of the first magnetoresistive element 1 of the present embodiment is to eliminate the trade-off between writing and reading and to facilitate the manufacturing process. This is because the first magnetization free layer 10 for writing and the second magnetization free layer 20 for reading can be designed independently. For example, in the case of a general magnetic field writing type MRAM, when a material having a high spin polarization such as Co—Fe is used to increase a read signal, the magnetic anisotropy of the element generally increases. The current required for writing increases. However, in the first magnetoresistive element 1 of the present embodiment, the reduction of the write current and the increase of the read signal can be realized by adjusting the characteristics of another layer, so the above trade-off is eliminated. In addition to this, since the first magnetization free layer 10 and the second magnetization free layer 20 can be manufactured separately, the manufacturing process becomes easy.
  • the fourth technical advantage of the first magnetoresistive element 1 of the present embodiment is that the cost is reduced by omitting the magnetic shield or reducing the demand for the magnetic shield.
  • the perpendicular magnetic anisotropy material used for the first magnetization free layer 10 which is an information storage layer has a sufficiently large magnetocrystalline anisotropy, and thus has a much higher resistance to a disturbance magnetic field than an in-plane magnetic film.
  • a magnetic shield is practically necessary at present, but according to the present invention, a magnetic shield is no longer necessary or necessary to ensure disturbance magnetic field resistance. Since the demand for the performance of the shield is reduced, it is possible to manufacture at a low cost.
  • FIGS. 3A to 3C schematically show a first modification of the first magnetoresistive element 1.
  • 3A is a perspective view
  • FIG. 3B is an xz sectional view in FIG. 3A
  • FIG. 3C is a yz sectional view in FIG. 3A.
  • the conductive layer 50 is provided between the first magnetization free layer 10 and the second magnetization free layer 20 in the first modification.
  • the conductive layer 50 is composed of a conductor.
  • the conductive layer 50 may be a magnetic material or a non-magnetic material.
  • the conductive layer 50 also has a role of electrically connecting the first magnetization free layer 10 and the second magnetization free layer 20.
  • the shape of the conductive layer 50 may be provided only on the lower side of the second magnetization free layer 20 as shown in FIGS. 3A and 3B, or the upper surface of the first magnetization free layer 10 and the second It may be provided so as to cover the entire lower surface of the magnetization free layer 20. Further, although not shown, it may be provided so as to cover at least a part of the first magnetization free layer 10 and the second magnetization free layer 20.
  • the manufacturing process can be facilitated. This is because the upper and lower sides of the conductive layer 50 can be formed separately.
  • the conductive layer 50 can serve as a cap layer on the lower layer of the conductive layer 50, and can serve as a base layer on the upper layer of the conductive layer 50.
  • oxidation and chemical alteration of the lower layer of the conductive layer 50 can be prevented, and crystal orientation of the upper layer of the conductive layer 50 can be controlled and chemical alteration can be prevented.
  • the electrical contact between the first magnetization free layer 10 and the second magnetization free layer 20 can be improved.
  • the magnetization data of the magnetization free region 12 of the first magnetization free layer 10 can be efficiently transmitted to the second magnetization free layer 20.
  • the material of the conductive layer 50 is made of at least one element of Fe, Co, and Ni. It is desirable to include.
  • FIGS. 4A and 4B schematically show a second modification of the first magnetoresistive element 1.
  • 4A is a perspective view
  • FIG. 4B is an xy plan view.
  • the first magnetization free layer 10 includes a first magnetization fixed region 11a, a second magnetization fixed region 11b, and a magnetization free region 12.
  • the first magnetization fixed region 11a is connected to one end portion of the magnetization free region 12 and the second magnetization fixed region 11b is not connected to the other end portion.
  • the first magnetization fixed region 11a and the second magnetization fixed region 11b are connected and provided at one end of each of the first and second magnetizations. That is, the first magnetization fixed region 11a, the second magnetization fixed region 11b, and the magnetization free region 12 form a three-way path. 4A and 4B, the positional relationship and magnetic characteristics of each layer are as described above.
  • the first magnetization free layer 10 has perpendicular magnetic anisotropy, while the second magnetization free layer 20 and the first magnetization fixed layer 40 have in-plane magnetic anisotropy.
  • the center of gravity G20 of the second magnetization free layer 20 is shifted in the “first direction” from the center of gravity G12 of the magnetization free region 12 in the xy plane.
  • the magnetizations of the first magnetization fixed region 11a and the second magnetization fixed region 11b constituting the first magnetization free layer 10 are fixed in the antiparallel direction to each other in the film thickness direction.
  • the first magnetoresistive element 1 shown in FIGS. 4A and 4B is a four-terminal element.
  • One of the four terminals is provided in the first magnetization fixed layer 40, the other two terminals are provided in the first magnetization fixed region 11a and the second magnetization fixed region 11b, and the remaining one terminal is free of magnetization.
  • region 12. 4A and 4B a domain wall is formed either near the boundary between the first magnetization fixed region 11a and the magnetization free region 12 or near the boundary between the second magnetization fixed region 11b and the magnetization free region 12.
  • writing is performed by passing a current between the first magnetization fixed region 11a and the magnetization free region 12 or between the second magnetization fixed region 11b and the magnetization free region 12. In this case, the magnetic domain wall starts from the boundary between the first magnetization fixed region 11 a or the second magnetization fixed region 11 b and the magnetization free region 12, and is written by exiting from the other end of the magnetization free region 12. Is called.
  • FIGS. 5A to 5C schematically show a third modification of the first magnetoresistive element 1.
  • 5A is a perspective view
  • FIG. 5B is an xz sectional view
  • FIG. 5C is a yz sectional view.
  • the second magnetization free layer 20, the first nonmagnetic layer 30, and the first magnetization fixed layer 40 may be provided adjacent to each other in this order.
  • the order of stacking the free layers 10 is arbitrary. Therefore, as shown in FIGS. 5A to 5C, the first magnetization free layer 10 may be formed as the uppermost layer. Also in this case, the center of gravity of the magnetization free region 12 and the second magnetization free layer 20 is shifted in the xy plane, but the shift direction is arbitrary.
  • FIG. 6A is a plan view schematically showing the structure of a fourth modification of the first magnetoresistive element 1.
  • the center of gravity G20 of the second magnetization free layer 20 is in a specific direction in the in-plane direction (direction parallel to the xy plane) with respect to the center of gravity G12 of the magnetization free region 12 of the first magnetization free layer 10. Sneak away.
  • this specific direction is drawn as being substantially parallel to the + y direction, but this specific direction can be arbitrarily determined. Therefore, as shown in FIG. 6A, the specific direction may have an x component.
  • the center G20 of the second magnetization free layer 20 and the center of gravity of the magnetization free region 12 as shown in FIG. 6B.
  • the positional relationship may be G12.
  • FIG. 7 schematically shows a configuration of a typical MRAM.
  • An MRAM memory cell array has a plurality of cells arranged in a matrix. More specifically, the cell includes a memory cell MC for data recording and reference cells RC0 and RC1 that are referred to for generating a reference level when reading data.
  • the memory cell MC and the reference cells RC0 and RC1 have magnetoresistive elements having the same structure.
  • Data “0” or data “1” is stored in the memory cell MC.
  • the resistance value of the magnetoresistive element of the memory cell MC is R0 when the data is “0”, and R1 when the data is “1”.
  • the reference cell RC0 is set to data “0”, and the resistance value of the magnetoresistive element is R0.
  • the reference cell RC1 is set to data “1”, and the resistance value of the magnetoresistive element is R1.
  • Such setting of the reference cells RC0 and RC1 is performed by the same method as the data writing to the memory cell MC, and a dedicated set controller is provided for this purpose.
  • a read current is supplied to the reference cells RC0 and RC1 in addition to the memory cell MC to be read.
  • the read circuit generates a read level corresponding to the recording data of the memory cell MC based on the read current flowing through the memory cell MC.
  • the read circuit generates a reference level corresponding to an intermediate resistance value between the resistance values R0 and R1, based on the read current flowing through each of the reference cells RC0 and RC1. Then, the read circuit determines the recording data of the memory cell MC by comparing the read level with the reference level.
  • the first magnetoresistive element 1 described above is applied to the memory cell MC and the reference cells RC0 and RC1.
  • the write layer (10) and the read layer group (20 to 40) are separated.
  • the magnetization state of the second magnetization free layer 20 of the read layer group that is, the MTJ resistance value of the read layer group is determined remotely depending on the magnetization state of the magnetization free region 12 of the first magnetization free layer 10.
  • the MTJ resistance value (R0 or R1) of the read layer group may vary even between the memory cells MC in which the same data is recorded. The same applies to the reference cells RC0 and RC1.
  • the resistance value R0 of the readout layer group may vary between the reference cells RC0 set to data “0”, and the resistance value R1 of the readout layer group between the reference cells RC1 set to data “1” is May vary.
  • an increase in variation in the resistance value of each of the reference cells RC0 and RC1 results in an increase in variation in the reference level.
  • the variation in the reference level means an indefinite reference level, which increases the probability of erroneous data reading.
  • FIG. 8 is a perspective view showing an example of the first magnetoresistive element 1
  • FIG. 9 is a plan view showing the magnetization state of the first magnetoresistive element 1 shown in FIG. 8 and 9, the displacement direction (first direction) of the second magnetization free layer 20 with respect to the magnetization free region 12 of the first magnetization free layer 10 is the y direction, and the second magnetization free layer 20.
  • the easy axis of magnetization is along the x direction perpendicular to the y direction.
  • the perpendicular magnetization of the magnetization free region 12 applies a magnetization component in the + y direction or the ⁇ y direction to the second magnetization free layer 20, and the magnetization of the second magnetization free layer 20 is as shown in FIG.
  • the magnetization direction of the first magnetization fixed layer 40 is fixed parallel or antiparallel to the first direction and is orthogonal to the easy axis direction of the second magnetization free layer 20.
  • a difference occurs in the relative angle of the magnetization direction between the second magnetization free layer 20 and the first magnetization fixed layer 40, and two memory states of data “0” and data “1” are realized.
  • the second magnetization free layer 20 of the read layer group Variations in the magnetization state occur. That is, in the cell having a relatively large magnetic anisotropy of the second magnetization free layer 20, the amount of rotation of magnetization with respect to the easy axis is small. On the other hand, in the cell where the magnetic anisotropy of the second magnetization free layer 20 is relatively small, the amount of magnetization rotation with respect to the easy magnetization axis is large.
  • Such variation in the amount of rotation of magnetization means variation in the MTJ resistance value (R0 or R1) of the read layer group. That is, the resistance value R0 varies between reference cells RC0 set to data “0”, and the resistance value R1 varies between reference cells RC1 set to data “1”.
  • FIG. 11 conceptually shows the distribution of data “0” cells and data “1” cells, with the vertical axis representing frequency and the horizontal axis representing MTJ resistance.
  • the resistance value R0 varies between cells with data “0”
  • the resistance value R1 varies between cells with data “1”. Accordingly, when the reference level is generated by referring to the two types of reference cells RC0 and RC1 in which the complementary data is recorded, the reference level varies and becomes uncertain. Such an uncertain reference level increases the probability of erroneous data reading.
  • Second Magnetoresistive Element Therefore, according to the present embodiment, a “second magnetoresistive element 100” different from the first magnetoresistive element 1 is proposed for the reference cell. As will be described in detail below, the resistance value of the second magnetoresistive element 100 is fixed to an intermediate value between R0 and R1 (hereinafter referred to as “R0.5”; see FIG. 11). Yes. That is, the second magnetoresistive element 100 is formed in advance so that its resistance value is R0.5 alone. By applying such second magnetoresistive element 100 to the reference cell, variations in the reference level can be prevented.
  • FIG. 12A is a perspective view showing an example of the second magnetoresistance element 100 according to the present exemplary embodiment.
  • FIG. 12B is a plan view showing a magnetization state of the second magnetoresistance element 100 shown in FIG. 12A.
  • the second magnetoresistive element 100 according to this example has the same structure as that obtained by omitting the write layer (first magnetization free layer 10) from the first magnetoresistive element 1 shown in FIG. Yes.
  • the second magnetoresistive element 100 includes a third magnetization free layer 120, a second nonmagnetic layer 130, and a second magnetization fixed layer 140.
  • the third magnetization free layer 120 is provided adjacent to one surface of the second nonmagnetic layer 130
  • the second magnetization fixed layer 140 is provided adjacent to the other surface of the second nonmagnetic layer 130. Yes. That is, the second nonmagnetic layer 130 is sandwiched between the third magnetization free layer 120 and the second magnetization fixed layer 140.
  • the third magnetization free layer 120 and the second magnetization fixed layer 140 are ferromagnetic layers formed of a ferromagnetic material. Further, the third magnetization free layer 120 and the second magnetization fixed layer 140 are in-plane magnetization films having in-plane magnetic anisotropy.
  • the in-plane magnetization film is formed of a ferromagnetic material including at least one material selected from Fe, Co, and Ni.
  • B, C, N, O, Al, Si, P, Ti, V, Cr, Mn, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Hf, Ta, W , Re, Os, Ir, Au, etc. can be added to adjust the magnetic properties.
  • the second nonmagnetic layer 130 is preferably formed of an insulator. Specific examples of the material include Mg—O, Al—O, Al—N, Ni—O, and Hf—O.
  • the MTJ is formed by the third magnetization free layer 120, the second nonmagnetic layer 130, and the second magnetization fixed layer 140.
  • the magnetization direction of the second magnetization fixed layer 140 is fixed in one direction in the plane.
  • the magnetization direction of the second magnetization fixed layer 140 is fixed in the + y direction.
  • the easy magnetization axis of the third magnetization free layer 120 is orthogonal to the magnetization direction of the second magnetization fixed layer 140. That is, the easy magnetization axis of the third magnetization free layer 120 is orthogonal to the y direction and parallel to the x direction.
  • the planar shape of the third magnetization free layer 120 is an ellipse, and the major axis of the ellipse is along the x direction.
  • the third magnetization free layer 120, the second nonmagnetic layer 130, and the second magnetization fixed layer 140 described above constitute a “read layer group”. That is, when reading data, a read current flows between the third magnetization free layer 120 and the second magnetization fixed layer 140 so as to penetrate the MTJ.
  • the second magnetoresistive element 100 according to this example is not provided with a structure corresponding to the write layer. That is, no perpendicular magnetization film that affects the magnetization state of the third magnetization free layer 120 of the read layer group is provided.
  • the magnetization direction of the third magnetization free layer 120 is along the easy axis direction (x-axis direction).
  • the magnetization direction of the third magnetization free layer 120 is the + x direction.
  • the magnetization direction of the second magnetization fixed layer 140 is fixed in a direction perpendicular to the easy magnetization axis of the third magnetization free layer 120.
  • the resistance value of the readout layer group is an intermediate value “R0.5” between R0 and R1. That is, the second magnetoresistive element 100 is formed in advance so that the MTJ resistance value alone becomes “R0.5”.
  • FIG. 13A is a perspective view showing another example of the second magnetoresistive element 100.
  • FIG. 13B is an xy plan view of the structure shown in FIG. 13A.
  • the second magnetoresistive element 100 according to this example includes a structure corresponding to the write layer (first magnetization free layer 10) of the first magnetoresistive element 1 in addition to the structures shown in FIGS. 12A and 12B. Yes. However, the center of gravity of the first magnetoresistive element 1 is intentionally shifted, but the center of gravity of the second magnetoresistive element 100 of this example is the same.
  • the same components as those illustrated in FIGS. 12A and 12B are denoted by the same reference numerals, and redundant description will be omitted as appropriate.
  • the second magnetoresistance element 100 further includes a fourth magnetization free layer 110 in addition to the read layer group (120 to 140).
  • the fourth magnetization free layer 110 is a ferromagnetic layer formed of a ferromagnetic material.
  • the fourth magnetization free layer 110 is a perpendicular magnetization film having perpendicular magnetic anisotropy, and the magnetization direction is the + z direction or the ⁇ z direction.
  • the material of the fourth magnetization free layer 110 is the same as that of the first magnetization free layer 10 of the first magnetoresistive element 1.
  • the fourth magnetization free layer 110 having perpendicular magnetic anisotropy and the third magnetization free layer 120 having in-plane magnetic anisotropy in the readout layer group are magnetically coupled to each other.
  • the centroid G110 of the fourth magnetization free layer 110 and the centroid G120 of the third magnetization free layer 120 coincide with each other in the xy plane. Accordingly, the perpendicular magnetization of the fourth magnetization free layer 110 does not change the direction of the in-plane magnetization of the third magnetization free layer 120.
  • the magnetization direction of the third magnetization free layer 120 remains parallel to the easy axis direction. In other words, the read layer group is in the state shown in FIG. 12B, and “R0.5” is realized.
  • FIG. 14A is a perspective view showing still another example of the second magnetoresistive element 100.
  • FIG. 14B is an xy plan view of the structure shown in FIG. 14A.
  • the second magnetoresistive element 100 according to this example has the same components as those shown in FIGS. 13A and 13B. However, the positional relationship of the center of gravity is different.
  • the same components as those illustrated in FIGS. 13A and 13B are denoted by the same reference numerals, and redundant description will be omitted as appropriate.
  • the center G110 of the fourth magnetization free layer 110 having perpendicular magnetic anisotropy is shifted from the center G120 of the third magnetization free layer 120 having in-plane magnetic anisotropy.
  • the direction of deviation coincides with the easy axis direction of magnetization of the third magnetization free layer 120.
  • the center G110 of the fourth magnetization free layer 110 is shifted from the center G120 of the third magnetization free layer 120 in the ⁇ x direction.
  • the shift direction is parallel to the easy axis direction (x-axis direction) of the third magnetization free layer 120 and orthogonal to the magnetization direction of the second magnetization fixed layer 140.
  • the perpendicular magnetization of the fourth magnetization free layer 110 applies a magnetization component in the + x direction or the ⁇ x direction to the third magnetization free layer 120. Since the magnetization component coincides with the easy axis direction, the in-plane magnetization of the third magnetization free layer 120 does not rotate. The magnetization direction of the third magnetization free layer 120 remains parallel to the easy axis direction. In other words, the read layer group is in the state shown in FIG. 12B, and “R0.5” is realized.
  • FIG. 15 schematically shows a configuration of the MRAM according to the embodiment of the present invention.
  • An MRAM memory cell array has a plurality of cells arranged in a matrix. More specifically, the cell includes a memory cell MC for data recording and a reference cell RC that is referred to for generating a reference level when data is read.
  • the first magnetoresistive element 1 is applied to the memory cell MC.
  • the second magnetoresistive element 100 is applied to the reference cell RC.
  • each layer of the first magnetoresistive element 1 and each layer of the second magnetoresistive element 100 are preferably formed in the same layer.
  • the third magnetization free layer 120, the second nonmagnetic layer 130, and the second magnetization fixed layer 140 are the second magnetization of the first magnetoresistive element 1. It is formed in the same layer as each of the free layer 20, the first nonmagnetic layer 30, and the first magnetization fixed layer 40.
  • the fourth magnetization free layer 110 is also formed in the same layer as the first magnetization free layer 10 of the first magnetoresistance element 1. Is done.
  • the first magnetoresistive element 1 included in the memory cell MC may be any of the above-described examples (see FIGS. 1A to 6B, FIG. 8, and FIG. 9).
  • the resistance value of the reading layer group (20 to 40) of the first magnetoresistive element 1 is switched between R0 and R1 according to the recording data.
  • the second magnetoresistive element 100 included in the reference cell RC may be any of the above-described examples (see FIGS. 12A to 14B).
  • the resistance value of the read layer group (120 to 140) of the second magnetoresistive element 100 is fixed to the intermediate value “R0.5”.
  • a read current is passed through the memory cell MC to be read and the reference cell RC.
  • the read circuit generates a read level corresponding to the recording data (R0 or R1) of the memory cell MC based on the read current flowing through the memory cell MC.
  • the read circuit generates a reference level corresponding to the intermediate resistance value R0.5 based on the read current flowing through the reference cell RC. Then, the read circuit determines the recording data (R0 or R1) of the memory cell MC by comparing the read level with the reference level.
  • FIG. 16 shows an example of the magnetization states of the second magnetization free layer 20 of the memory cell MC and the third magnetization free layer 120 of the reference cell RC.
  • the first magnetoresistive element 1 shown in FIGS. 8 and 9 is applied to the memory cell MC. That is, the magnetization of the second magnetization free layer 20 rotates around the easy axis.
  • the magnetization rotation amount (resistance value R0) varies among memory cells MC with data “0”, and the magnetization rotation amount (resistance value R1) varies between memory cells MC with data “1” (see also FIG. 10).
  • the magnetization direction of the third magnetization free layer 120 is completely along the easy magnetization axis. Therefore, even if the magnetization rotation amount varies in the memory cell MC, it is possible to accurately determine the magnetization rotation direction, that is, the recording data (R0 or R1).
  • the resistance value R0 may vary between cells with data “0”, and the resistance value R1 may vary between cells with data “1”.
  • the reference cell RC is surely set to “R0.5”, and there is almost no variation in resistance value at least with respect to the reference cell RC. This means that variations in the reference level are suppressed and a more accurate reference level can be obtained.
  • R0.5 an accurate reference level
  • the first magnetoresistive element 1 applied to the memory cell MC may be any of the above-described examples. What is important is that the dispersion of the magnetization state in the reference cell RC is suppressed.
  • the second magnetoresistive element 100 having a resistance value of R0.5 alone is used. Therefore, it is not necessary to prepare two types of reference cells RC0 and RC1 (see FIG. 7) in which complementary data (R0 and R1) are recorded. Only one type of reference cell RC (see FIG. 15) having the second magnetoresistive element 100 is sufficient.
  • the reference cell RC is formed in advance so that the resistance value is R0.5, and the initial setting process of the reference cell RC is not necessary. Therefore, the manufacturing time is shortened and the manufacturing cost is reduced. Further, since an initial setting controller is not necessary, the area of the MRAM is reduced.
  • the read circuit needs to calculate a reference level corresponding to an intermediate resistance value between the resistance values R0 and R1 with reference to the two types of reference cells RC0 and RC1.
  • the reference level can be obtained directly by referring to one type of reference cell RC whose resistance value is fixed to R0.5. Therefore, the circuit configuration is simplified and the area of the MRAM is reduced.
  • FIG. 7 Furthermore, in the case of FIG. 7, two rows are required to arrange two types of reference cells RC0 and RC1. On the other hand, in FIG. 15, one row is sufficient for arranging one type of reference cell RC. Since the area for the reference cell is not required for one column, the area of the memory cell array is reduced. Particularly in the case of a small-scale array, the area reduction effect becomes remarkable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 MRAMは、第1磁気抵抗素子を含むメモリセルと第2磁気抵抗素子を含むリファレンスセルを備える。第1磁気抵抗素子は、第1磁化自由層と、第1磁化固定層と、第2磁化自由層と、第1磁化固定層と第2磁化自由層とに挟まれた第1非磁性層とを備える。第1磁化自由層は垂直磁気異方性を有し、第1磁化固定層及び第2磁化自由層は面内磁気異方性を有する。第1磁化自由層は、磁化方向が固定された第1、第2磁化固定領域、及び第1、第2磁化固定領域に接続され磁化方向が反転可能な磁化自由領域を有する。磁化自由領域と第2磁化自由層とは、互いに磁気的に結合している。各層に平行な平面において、第2磁化自由層の重心は、磁化自由領域の重心から第1方向にずれている。一方、第2磁気抵抗素子は、磁化容易軸が第2方向に平行な第3磁化自由層と、磁化方向が第2方向と直交する第3方向に固定された第2磁化固定層と、第3磁化自由層と第2磁化固定層とに挟まれた第2非磁性層とを備える。第3磁化自由層と第2磁化固定層は、面内磁気異方性を有する。

Description

磁気ランダムアクセスメモリ
 本発明は、磁気ランダムアクセスメモリ(MRAM: Magnetic Random Access Memory)に関する。特に、本発明は、磁壁移動方式のMRAMに関する。
 MRAMは高速動作、および無限回の書き換えが可能な不揮発性メモリとして期待され、盛んな開発が行われている。MRAMではメモリセルに磁気抵抗素子が集積化され、磁気抵抗素子の強磁性層の磁化の向きとしてデータが記憶される。この強磁性層の磁化をスイッチングさせる方法としていくつかの方式が提案されているが、いずれも電流を使う点では共通している。MRAMを実用化する上では、この書き込み電流をどれだけ小さくできるかが非常に重要であり、2006 Symposium on VLSI Circuits, Digest of Technical Papers, p.136によれば0.5mA以下への低減、さらに好ましくは0.2mA以下への低減が求められている。
 MRAMへの情報の書き込み方法のうちで最も一般的なのは、磁気抵抗素子の周辺に書き込み電流を流すための配線を配置し、書き込み電流を流すことで発生する電流磁界によって磁気抵抗素子の強磁性層の磁化の方向をスイッチングさせる方法である。この方法は、原理的には1ナノ秒以下での書き込みが可能であり、高速MRAMを実現する上では好適である。例えば、特開2005-150303号公報は、電流磁界によってデータ書き込みを行うMRAMについて、磁化固定層の端部の磁化が膜厚方向に向けられている構造を開示している。
 しかしながら熱安定性、外乱磁界耐性が確保された磁性体の磁化をスイッチングするための磁界は一般的には数10(Oe)程度となり、このような磁界を発生させるためには数mA程度の大きな書き込み電流が必要となる。書き込み電流が大きいと、チップ面積が大きくならざるを得ず、また書き込みに要する消費電力も増大するため、他のランダムアクセスメモリと比べて競争力で劣ることになる。これに加えて、メモリセルが微細化されると、書き込み電流はさらに増大してしまい、スケーリングの点でも好ましくない。
 近年このような問題を解決する手段として、以下の2つの方法が提案されている。第1の方法は、スピン注入磁化反転を利用することである。スピン注入磁化反転が利用されるMRAMでは、メモリセルの磁気抵抗素子が、反転可能な磁化を有する第1の強磁性層(しばしば、磁化自由層と呼ばれる)と、磁化が固定された第2の強磁性層(しばしば、磁化固定層と呼ばれる)と、これらの強磁性層の間に設けられたトンネルバリア層を備える積層体で構成される。このようなMRAMのデータ書き込みでは、磁化自由層と磁化固定層の間で電流を流したときのスピン偏極した伝導電子の磁化自由層中の局在電子との間の相互作用を利用して磁化自由層の磁化が反転される。スピン注入磁化反転の発生の有無は、(電流の絶対値ではなく)電流密度に依存することから、スピン注入磁化反転をデータ書き込みに利用する場合には、メモリセルのサイズが小さくなれば、書き込み電流も低減される。すなわち、スピン注入磁化反転方式はスケーリング性に優れていると言うことができる。しかしながら、データ書き込みの際、膜厚が薄いトンネルバリア層に書き込み電流を流さなければならず、書き換え耐性や信頼性が課題となる。また、書き込みの電流経路と読み出しの電流経路が同じになることから、読み出しの際の誤書き込みも懸念される。このようにスピン注入磁化反転はスケーリング性には優れるものの、実用化にはいくつかの障壁がある。
 第2の方法は、電流駆動磁壁移動現象を利用することである。電流駆動磁壁移動現象を利用した磁化反転方法は、スピン注入磁化反転の抱える上述のような問題を解決することができる。電流駆動磁壁移動現象を利用したMRAMは、例えば、特開2005-191032号公報、特開2006-73930号公報、特開2006-270069号公報に開示されている。電流駆動磁壁移動現象を利用したMRAMの最も一般的な構成では、データを保持する強磁性層(しばしば、磁気記録層と呼ばれる。)が、反転可能な磁化を有する磁化反転部と、その両端に接続された、固定された磁化を有する2つの磁化固定部とで構成される。データは、磁化反転部の磁化として記憶される。2つの磁化固定部の磁化は、互いに略反平行となるように固定されている。磁化がこのように配置されると、磁気記録層に磁壁が導入される。Physical Review Letters, vol. 92, number 7, p.077205, (2004)で報告されているように、磁壁を貫通する方向に電流を流すと磁壁は伝導電子の方向に移動することから、磁気記録層に電流を流すことによりデータ書き込みが可能となる。電流駆動磁壁移動の発生の有無も電流密度に依存することから、スピン注入磁化反転と同様にスケーリング性があると言える。これに加えて、電流駆動磁壁移動を利用したMRAMのメモリセルでは、書き込み電流が絶縁層を流れることはなく、また書き込み電流経路と読み出し電流経路とは別となるため、スピン注入磁化反転で挙げられるような上述の問題は解決されることになる。
 しかしながら、電流駆動磁壁移動を利用したMRAMでは、書き込み電流の絶対値が比較的大きくなってしまうという課題がある。電流誘起磁壁移動の観測は数多く報告されているが、概ね磁壁移動には1×10[A/cm]程度の電流密度を要している。この場合、例えば磁壁移動の起こる強磁性膜の幅を100nm、膜厚を10nmとした場合の書き込み電流は1mAとなる。これ以下に書き込み電流を低減するためには、強磁性膜の幅を小さく、且つ、膜厚を薄くすればよい。しかしながら、膜厚を薄くすると書き込みに要する電流密度は更に上昇してしまうことが報告されている(例えば、Japanese Journal of Applied Physics, vol.45, No.5A, pp.3850-3853,(2006)参照)。また、強磁性膜の幅を100nm以下に小さくすることは、加工技術の点で大いなる困難を伴う。
 書き込み電流を低減する有力なアプローチの一つは、磁気記録層(磁壁移動が起こる層)に、膜厚方向に磁気異方性を有する垂直磁気異方性材料の膜を使用することである。垂直磁気異方性材料の膜を使用する磁気抵抗素子では、10[A/cm]台の閾値電流密度が観測されている(例えば、Applied Physics Letters, vol.90,p.072508(2007)参照)。
 しかしながら、磁気記録層に垂直磁気異方性材料の膜を使用すると、MRAMの読み出し信号のSN比に相当する磁気抵抗効果比(MR比)を高くすることが難しくなり、読み出し特性との両立が困難になるという問題が発生する。例えば、近年、CoFeB/MgO/CoFeBの構造を有する磁気トンネル接合を中心に、磁気抵抗効果比として非常に大きな値が報告されている。しかしながら、CoFeBは、面内方向に磁気異方性を有する材料である。この他にも、多くの材料について磁気トンネル接合の開発が行われているが、それらのほとんどは面内方向に磁気異方性を有する材料である;垂直磁気異方性材料については、高い磁気抵抗効果比や高い信頼性を有する磁気トンネル接合を実現したという実績はほとんどない。
 従って、磁壁移動方式のMRAMにおいて、書き込み特性及び読み出し特性をそれぞれ独立に向上させることが望まれる。
 磁壁移動方式のMRAMにおいて、書き込み特性及び読み出し特性をそれぞれ独立に向上させることが望まれる。但しその場合、磁気抵抗素子の構造は複雑となり、同じデータが記録されたメモリセル間の磁化状態のばらつきが増大する可能性がある。特に、リファレンスセル間の磁化状態のばらつきが増大すると、データ読み出し時のリファレンスレベルのばらつきも増大してしまう。
 本発明の1つの目的は、磁壁移動方式のMRAMにおいて、データ読み出し時のリファレンスレベルのばらつきを抑制することができる技術を提供することにある。
 本発明の一実施の形態において、磁壁移動方式のMRAMが提供される。そのMRAMは、メモリセルと、データ読み出し時にリファレンスレベルを生成するために参照されるリファレンスセルとを備える。メモリセルは第1磁気抵抗素子を含み、リファレンスセルは第2磁気抵抗素子を含む。
 第1磁気抵抗素子は、垂直磁気異方性を有する第1磁化自由層と、磁化方向が固定された第1磁化固定層と、磁化方向が可変な第2磁化自由層と、第1磁化固定層と第2磁化自由層とに挟まれた第1非磁性層とを備える。第1磁化固定層及び第2磁化自由層は、面内磁気異方性を有する。第1磁化自由層は、磁化方向が固定された第1磁化固定領域と、磁化方向が固定された第2磁化固定領域と、第1磁化固定領域と第2磁化固定領域とに接続され磁化方向が反転可能な磁化自由領域とを有する。磁化自由領域と第2磁化自由層とは、互いに磁気的に結合している。各層に平行な第1平面において、第2磁化自由層の重心は、磁化自由領域の重心から第1方向にずれている。
 第2磁気抵抗素子は、磁化容易軸が第2方向に平行な第3磁化自由層と、磁化方向が第2方向と直交する第3方向に固定された第2磁化固定層と、第3磁化自由層と第2磁化固定層とに挟まれた第2非磁性層とを備える。第3磁化自由層と第2磁化固定層は、面内磁気異方性を有する。
 本発明によれば、磁壁移動方式のMRAMにおいて、書き込み特性及び読み出し特性をそれぞれ独立に向上させることが可能となる。更に、データ読み出し時のリファレンスレベルのばらつきを抑制することが可能となる。
 上記及び他の目的、長所、特徴は、次の図面と共に説明される本発明の実施の形態により明らかになるであろう。
図1Aは、本発明の一実施の形態の第1磁気抵抗素子の主要な部分の構造を表す斜視図である。 図1Bは、図1Aの第1磁気抵抗素子の主要な部分の構造を表す平面図である。 図1Cは、図1Aの第1磁気抵抗素子の主要な部分の構造を表す断面図である。 図1Dは、図1Aの第1磁気抵抗素子の主要な部分の構造を表す断面図である。 図2Aは、本実施の形態の第1磁気抵抗素子における磁束の状態を説明するための断面図である。 図2Bは、本実施の形態の第1磁気抵抗素子が取りうる2つの状態を説明するための断面図である。 図2Cは、本実施の形態の第1磁気抵抗素子が取りうる2つの状態を説明するための断面図である。 図3Aは、本実施の形態の第1磁気抵抗素子の第1変形例の構成を表す斜視図である。 図3Bは、図3Aの第1磁気抵抗素子の構成を表す断面図である。 図3Cは、図3Aの第1磁気抵抗素子の構成を表す断面図である。 図4Aは、本実施の形態の第1磁気抵抗素子の第2変形例の更に他の構成を表す斜視図である。 図4Bは、図4Aの第1磁気抵抗素子の構成を表す平面図である。 図5Aは、本実施の形態の第1磁気抵抗素子の第3変形例の構成を表す斜視図である。 図5Bは、図5Aの第1磁気抵抗素子の構成を表す断面図である。 図5Cは、図5Aの第1磁気抵抗素子の構成を表す断面図である。 図6Aは、本実施の形態の第1磁気抵抗素子の第4変形例の構成を表す平面図である。 図6Bは、本実施の形態の第1磁気抵抗素子の第4変形例の他の構成を表す平面図である。 図7は、典型的なMRAMの構成を示す概略図である。 図8は、本発明の実施の形態に係る第1磁気抵抗素子の一例を示す斜視図である。 図9は、図8で示された第1磁気抵抗素子の磁化状態を示す平面図である。 図10は、磁化状態のばらつきを示す概念図である。 図11は、リファレンスレベルのばらつきを説明するためのヒストグラムである。 図12Aは、本発明の実施の形態に係る第2磁気抵抗素子の一例を示す斜視図である。 図12Bは、図12Aで示された第2磁気抵抗素子の磁化状態を示す平面図である。 図13Aは、本発明の実施の形態に係る第2磁気抵抗素子の他の例を示す斜視図である。 図13Bは、図13Aで示された構造のx-y平面図である。 図14Aは、本発明の実施の形態に係る第2磁気抵抗素子の更に他の例を示す斜視図である。 図14Bは、図14Aで示された構造のx-y平面図である。 図15は、本発明の実施の形態に係るMRAMの構成を示す概略図である。 図16は、本発明の実施の形態に係るメモリセルとリファレンスセルの磁化状態を示す概念図である。
 添付図面を参照して、本発明の実施の形態に係る磁壁移動方式の磁気抵抗素子及びMRAMを説明する。
 1.第1磁気抵抗素子
 1-1.構成
 図1A~図1Dは、本発明の実施の形態に係る第1磁気抵抗素子1の構造を模式的に示している。詳細には、図1Aは斜視図であり、図1B、図1C、及び図1Dは、それぞれ、図1Aに示されるx-y-z座標系におけるx-y平面図、x-z断面図、y-z断面図である。
 本実施の形態に係る第1磁気抵抗素子1は、第1磁化自由層10と、第2磁化自由層20と、第1非磁性層30と、第1磁化固定層40とを具備する。第2磁化自由層20は第1非磁性層30の一方の面に隣接して設けられ、第1磁化固定層40は第1非磁性層30の他方の面に隣接して設けられる。つまり、第1非磁性層30は、第1磁化固定層40と第2磁化自由層20に挟まれている。
 第1磁化自由層10、第2磁化自由層20、及び第1磁化固定層40は強磁性体により構成される。第1磁化自由層10は、膜厚方向(図のz軸方向)の垂直磁気異方性を有し、第2磁化自由層20と第1磁化固定層40とは、面内方向の面内磁気異方性を有する。本実施の形態では、第1非磁性層30は絶縁体により構成されており、第2磁化自由層20、第1非磁性層30、及び第1磁化固定層40で磁気トンネル接合(MTJ)が形成されている。第1非磁性層30は、絶縁体により構成されることが望ましいが、半導体や導体から構成されてもよい。
 第1磁気抵抗素子1において、第1磁化自由層10は、第1磁化固定領域11a、第2磁化固定領域11b、及び磁化自由領域12から構成される。磁化自由領域12は、第1磁化固定領域11aと第2磁化固定領域11bとの間に設けられている。また、第1磁化自由層10は、磁化自由領域12が第2磁化自由層20の少なくとも一部と磁気的に結合されるように設計される。言い換えると、第1磁化自由層10は、磁化自由領域12の磁化状態が第2磁化自由層20の磁化状態に影響を及ぼすように設計されている。磁化自由領域12は、電気的にも第2磁化自由層20に接続して設けられている。
 第1磁化固定領域11a、第2磁化固定領域11bのそれぞれは、少なくとも一部分において固定された磁化を有する。第1磁化固定領域11a、第2磁化固定領域11bの磁化方向は、膜厚方向(図のz軸方向)に固定されており、且つ、それらは互いに略反平行方向を向けられている。一方、磁化自由領域12の磁化方向は反転可能であり、その磁化は第1磁化固定領域11a、第2磁化固定領域11bの磁化のいずれかと略平行方向となる。本実施の形態の第1磁気抵抗素子1においては、磁化自由領域12の磁化方向が記憶されるデータに対応する。
 また、第2磁化自由層20は、面内方向(x-y面内の方向)において反転可能な磁化を有しており、第1磁化固定層40の磁化方向は、面内方向(x-y面内の方向)において所定の方向に固定されている。
 前述のように、磁化自由領域12と第2磁化自由層20とは、磁気的に結合されている。好適には、磁化自由領域12の重心G12と第2磁化自由層20の重心G20はx-y面内においてずれるように設計される。これによって、後述のように第2磁化自由層20の磁化方向は磁化自由領域12の磁化方向に応じて一意的に決まる。磁化自由領域12の磁化方向として記憶されているデータは、磁化自由領域12と第2磁化自由層20の間の磁気結合を介して第2磁化自由層20に伝達される。なお、図1A~図1Dは、磁化自由領域12の重心G12に対して、第2磁化自由層20の重心G20が+y方向にずれた例を示している。但し、ずれ方向は+y方向に限られない。x-y面内において、第2磁化自由層20の重心G20は、磁化自由領域12の重心G12から“第1の方向”にずれていればよい。第1磁化固定層40の磁化方向は、第1の方向と平行あるいは反平行な方向に固定されることが望ましい。
 なお、ここでいう重心とは、x-y平面における幾何学的な意味での重心である。すなわち重心の位置ベクトルをRg=(Xg,Yg)とし、任意の点iの位置ベクトルをRi=(Xi,Yi)としたとき、重心の位置ベクトルRgはΣi(Ri-Rg)=0を満たす。ここでΣiはiに関する総和を意味する。例えば、長方形、平行四辺形の場合には重心は対角線の交点であり、楕円形の場合には重心はその中心である。
 次に、各層の材料について例示する。まず、第1磁化自由層10は、Fe、Co、Niのうちから選択される少なくとも一つの材料を含むことが望ましい。さらにPtやPdを含むことで垂直磁気異方性を安定化することができる。これに加えて、B、C、N、O、Al、Si、P、Ti、V、Cr、Mn、Cu、Zn、Zr、Nb、Mo、Tc、Ru、Rh、Ag、Hf、Ta、W、Re、Os、Ir、Au、Smなどを添加することによって所望の磁気特性が発現されるように調整することができる。具体的にはCo、Co-Pt、Co-Pd、Co-Cr、Co-Pt-Cr、Co-Cr-Ta、Co-Cr-B、Co-Cr-Pt-B、Co-Cr-Ta-B、Co-V、Co-Mo、Co-W、Co-Ti、Co-Ru、Co-Rh、Fe-Pt、Fe-Pd、Fe-Co-Pt、Fe-Co-Pd、Sm-Co、Gd-Fe-Co、Tb-Fe-Co、Gd-Tb-Fe-Coなどが例示される。この他、Fe、Co、Niのうちから選択されるいずれか一つの材料を含む層を、異なる層と積層させることにより垂直方向の磁気異方性を発現させることもできる。具体的にはCo/Pd、Co/Pt、Co/Ni、Fe/Auの積層膜などが例示される。
 また、第2磁化自由層20、第1磁化固定層40はFe、Co、Niのうちから選択される少なくとも一つの材料を含むことが望ましい。これに加えて、B、C、N、O、Al、Si、P、Ti、V、Cr、Mn、Cu、Zn、Zr、Nb、Mo、Tc、Ru、Rh、Ag、Hf、Ta、W、Re、Os、Ir、Auなどを添加することによって所望の磁気特性が発現されるように調整することができる。具体的には、Ni-Fe、Co-Fe、Fe-Co-Ni、Ni-Fe-Zr、Co-Fe-B、Co-Fe-Zr-Bなどが例示される。
 また第1非磁性層30は絶縁体から構成されることが望ましい。第1非磁性層30として好適な材料としては、具体的にはMg-O、Al-O、Al-N、Ni-O、Hf-Oなどが挙げられる。ただし、この他に、第1非磁性層30として半導体や金属材料を用いても本発明は実施できる。具体的には、第1非磁性層30として使用可能な材料としては、Cr、Al、Cu、Znなどが挙げられる。
 なお、第2磁化自由層20、第1非磁性層30、第1磁化固定層40には、読み出し信号のSN比に相当する磁気抵抗効果比が大きくなるような材料が選択されることが好ましい。例えばCo-Fe-B/Mg-O/Co-Fe-B系のMTJにおいては近年500%級の非常に大きな磁気抵抗効果比が報告されている。この観点では、第2磁化自由層20、第1磁化固定層40をCo-Fe-B系の材料とし、第1非磁性層30をMg-O系とすることが望ましい。
 1-2.原理
 以下では、磁化自由領域12と第2磁化自由層20の磁気結合、及び第1磁気抵抗素子1において磁化がとり得る2つの状態について、図2A~図2Cを用いてより詳細に説明する。図2Aは、磁化自由領域12の磁化方向で第2磁化自由層20の磁化方向が一意的に決まることを説明するための模式図である。単純化のため、図2Aにおいて、磁化自由領域12の磁化は、膜厚方向で実質的に一方向を向いているものと仮定されている。図2Aには、磁化自由領域12からの漏れ磁束の様子が模式的に示されている。図2Aに示されているように、漏れ磁束は滑らかに繋がる必要があるため、磁化自由領域12の端部に行くに従って磁束は面内方向に平行な成分を有するようになる。第2磁化自由層20の磁化方向は、この磁束の面内方向に平行な成分によって決定される。
 図2B、図2Cは、第1磁気抵抗素子1における“0”、“1”のそれぞれの状態における各層の磁化状態を模式的に示している。なお、図2B、図2Cでは第1磁化固定層40の磁化方向が+y方向に固定されているものとして図示されているが、第1磁化固定層40の磁化方向は、-y方向であっても構わない。今、図2Bのように磁化自由領域12の磁化が+z方向を向いている場合、図2Aに示されるような漏れ磁束によって、第2磁化自由層20の磁化は+y方向成分を持つ。これによって第2磁化自由層20と第1磁化固定層40の磁化は平行成分を持つことになる。一方、図2Cのように磁化自由領域12の磁化が-z方向を向いている場合、図2Aとは逆方向の漏れ磁束によって、第2磁化自由層20の磁化は-y方向成分を持つ。これによって、第2磁化自由層20と第1磁化固定層40の磁化は反平行成分を持つことになる。上述のように第2磁化自由層20の重心G20が磁化自由領域12の重心G12に対して特定方向(第1の方向)にずれて設けられることで、第2磁化自由層20の磁化は当該特定方向に沿って、磁化自由領域12の磁化方向に応じて正負いずれかの方向成分を持つことになる。これは磁化自由領域12の重心G12から放射状に漏れ磁束の面内方向成分が分布するためである。これによって第2磁化自由層20の磁化は、第1磁化固定層40の磁化方向と平行、反平行のいずれかの成分を持つ。
 磁化自由領域12において垂直方向の磁化成分として記憶されたデータが、磁気結合によって第2磁化自由層20の膜面方向の磁化成分へと伝達されることは、本実施の形態の第1磁気抵抗素子1の重要な特徴の一つである。従って、ここで示された漏れ磁束を用いる方法に限らず、例えば交換結合を利用するなど、あらゆる磁気結合様式によって第2磁化自由層20と磁化自由領域12の磁化を関連付けてもよい。
 なお、第2磁化自由層20の磁化は磁化自由領域12の磁化に応じてその方向を変えることができれば、その磁化容易軸の方向は任意である。従って、第2磁化自由層20の磁化容易軸の方向はy方向を向いていてもよいし、x方向を向いていてもよい。y方向を向いている場合には、磁化容易軸間での磁化反転となり、一方x方向を向いていれば、磁化容易軸を中心とした困難軸方向への磁化回転となる。また、第2磁化自由層20の磁気異方性は、結晶磁気異方性によって設けてもよく、形状磁気異方性によって設けてもよい。
 1-3.データ書き込み方法、データ読み出し方法
 本実施の形態に係る第1磁気抵抗素子1へのデータの書き込みは、第1磁化自由層10内に形成される磁壁を移動させることによって行われる。前述のように、第1磁化自由層10は磁化が膜厚方向で互いに略反平行に固定された第1磁化固定領域11aと第2磁化固定領域11bと、それらに電気的に接続された磁化自由領域12を具備し、磁化自由領域12の磁化は第1磁化固定領域11aか第2磁化固定領域11bのいずれかと略平行方向となる。このような磁化状態の制約によって、第1磁化自由層10内には磁壁が導入される。例えば、磁化自由領域12の磁化が第1磁化固定領域11aの磁化と略平行であり、第2磁化固定領域11bの磁化とは略反平行にあるとき、磁化自由領域12と第2磁化固定領域11bの境界付近に磁壁が形成される。また、磁化自由領域12の磁化が第2磁化固定領域11bの磁化と略平行であり、第1磁化固定領域11aの磁化とは略反平行にあるとき、磁化自由領域12と第1磁化固定領域11aの境界付近に磁壁が形成される。
 形成された磁壁は、第1磁化自由層10内に直接電流を流すことによってその位置を移動させることができる。例えば、磁化自由領域12と第1磁化固定領域11aの境界付近に磁壁が形成されている場合、磁化自由領域12から第1磁化固定領域11aへ向かう方向に電流を流すことによって、第1磁化固定領域11aから磁化自由領域12へと伝導電子が流れ、伝導電子の流れと同方向に磁壁が移動する。磁壁の移動により、磁化自由領域12の磁化は第1磁化固定領域11aと平行方向になる。また、磁化自由領域12と第2磁化固定領域11bの境界付近に磁壁が形成されている場合、磁化自由領域12から第2磁化固定領域11bへ向かう方向に電流を流すことによって、第2磁化固定領域11bから磁化自由領域12へと伝導電子が流れ、伝導電子の流れと同方向に磁壁が移動する。磁壁の移動により、磁化自由領域12の磁化は第2磁化固定領域11bと平行方向になる。このようにして“0”状態と“1”状態の間での情報の書き換えが可能である。
 実際には、上述のような書き込み電流を導入するために、第1磁化固定領域11aと第2磁化固定領域11bに、外部の配線に接続される端子が設けられることが望ましい。このとき書き込み電流は、第1磁化固定領域11aに接続される第1端子と第2磁化固定領域11bに接続される第2端子の間で流される。但し、本実施の形態の第1磁気抵抗素子1にデータを書き込むための書き込み電流の経路はこの限りではなく、他の方法も後に説明される。
 次に、本実施の形態の第1磁気抵抗素子1からのデータの読み出し方法について説明する。本実施の形態の第1磁気抵抗素子1からのデータの読み出しには、磁気抵抗効果が利用される。具体的には、第1非磁性層30を通して第1磁化固定層40と第2磁化自由層20の間で電流を流し、第1磁化固定層40と第2磁化自由層20の磁化の相対角に応じた抵抗を検出することでデータを読み出す。例えば、図2Bに示されるような第1磁化固定層40と第2磁化自由層20の磁化が平行成分を有する場合、低抵抗状態が実現され、図2Cに示されるような第1磁化固定層40と第2磁化自由層20の磁化が反平行成分を有する場合、高抵抗状態が実現される。第1磁気抵抗素子1の抵抗が、電圧信号、又は電流信号として検知され、その電圧信号、又は電流信号を用いて第1磁気抵抗素子1に記憶されているデータが判別される。
 以上に説明されたように、本実施の形態に係る第1磁気抵抗素子1では、データ書き込み時に第1磁化自由層10が用いられる。この意味で、第1磁化自由層10は「書き込み層」と参照される。一方、データ読み出し時には、第2磁化自由層20、第1非磁性層30及び第1磁化固定層40が用いられる。この意味で、第2磁化自由層20、第1非磁性層30及び第1磁化固定層40は、「読み出し層群」と参照される。本実施の形態によれば、書き込み層と読み出し層群は、別々に設けられるが、磁気結合を通して互いに関連し合っている。逆に言えば、磁気結合を介した情報伝達があるため、書き込み用の書き込み層と読み出し用の読み出し層群を別々に設けることが可能となる。従って、所望の特性が得られるように書き込み層と読み出し層群をそれぞれ独立に最適化することができ、結果として、書き込み特性の向上と読み出し特性の向上を同時に実現することが可能となる。例えば、書き込み閾値電流密度の低減のために適切な材料特性を有する垂直磁化膜を書き込み層に適用し、且つ、高いMR比を発現するMTJを読み出し層群に適用することができる。
 1-4.技術的利点
 本実施の形態の第1磁気抵抗素子1の第1の技術的利点は、書き込み電流の低減である。これは、データ書き込みの際に磁壁移動が起こる層である第1磁化自由層10が垂直方向に磁気異方性を有することに起因する。発明者は、スピントランスファートルクを考慮に入れたLLG方程式を用いたマイクロマグネティクス計算を行うことにより、垂直磁気異方性を有する材料で形成される磁壁は面内磁気異方性を有する材料で形成される磁壁に比べると、電流で駆動する場合に必要となる電流密度は十分小さく、一方磁界で駆動する場合に必要となる磁界は十分大きくなることを見出した。Europhysics Letters, vol.69, pp.990-996(2005)に記載されているように、スピントランスファートルクを考慮に入れたLLG方程式によれば、磁化の時間変化(∂m/∂t)は、[1]磁界によるトルクを表す項、[2]ダンピング項、[3]断熱スピントルク項、及び[4]非断熱スピントルク項の和として表される。マイクロマグネティクス計算によれば、垂直磁気異方性を有する材料で形成される磁壁は、1×10[A/cm]程度の電流密度においても[3]の断熱スピントルク項により駆動され、一方で面内磁化膜の場合には1×10[A/cm]程度の電流密度では[4]の非断熱スピントルク項がなければ磁壁は駆動されないことがわかった。ここで[3]の断熱スピントルク項による磁壁駆動の場合、過度に大きくないピニングのときには、ピニング磁界に依存せずに磁壁はピンサイトからデピンできることが知られている。従って、[3]の断熱スピントルク項での磁壁駆動が不可能な面内磁気異方性を有する材料に比べて、[3]の断熱スピントルク項での磁壁駆動が可能な垂直磁気異方性を有する材料は、強い磁壁のピニングと低電流密度による磁壁駆動を両立させ易いことがわかる。すなわち垂直磁気異方性を有する材料を用いることにより、熱安定性として十分な値を保った上で書き込みに要する電流を低減することが可能である。
 例えば、簡単な例として、第1磁化自由層10の幅(w)が100nm、第1磁化自由層10の膜厚(t)が2nm、磁壁のピンサイトの幅の半分(q)が15nmであり、また、第1磁化自由層10の飽和磁化(M)が500[emu/cm]、スピン分極率(P)が0.5、磁壁のピンサイトのデピン磁界(H)が1000[Oe]である構成について考えよう。この場合の熱安定性指標ΔE/kTは、約40となる。ここでkはボルツマン定数でTは絶対温度である。このような系を仮定した場合の、磁壁をピンサイトからデピンさせるのに必要な電流密度は、マイクロマグネティクス計算から約2×10[A/cm]となることがわかった。このとき、当該素子の書き込み電流は0.04[mA]となる。
 一方で、面内方向に磁気異方性を有する材料を用いて同じ熱安定性指標(ΔE/kT=40)を実現するための構造として、例えば、第1磁化自由層10の幅(w)が100nm、磁化自由層の膜厚(t)を10nm、磁壁のピンサイトの幅の半分(q)が40nmであり、また飽和磁化(M)が800[emu/cm]、スピン分極率(P)が0.7、磁壁のピンサイトのデピン磁界(H)が50[Oe]である構成について考える。。マイクロマグネティクス計算によればこのような系で磁壁をピンサイトからデピンさせるのに必要な電流密度は、約6×10[A/cm]となることがわかった。本来、このような電流密度は発熱やエレクトロンマイグレーション効果の観点から素子に通ずることは非現実的ではあるが、ここでは比較のためにこの電流密度の値を用いる。このとき、面内磁化膜での素子への書き込み電流は6[mA]となる。このように、垂直方向に磁気異方性を有する材料を磁壁移動が起こる層に用いることで、大幅な書き込み電流の低減がもたらされることがわかる。
 なお、ここで用いた第1磁気抵抗素子1のパラメータはあくまでも目安であり、第1磁気抵抗素子1のパラメータは様々に変更され得る。従って、書き込みに要する電流値や、熱安定性ΔE/kTも、そのパラメータの変更に応じて変化するが、電流値と熱安定性は概ね連動して変化するため、上述のような面内磁化膜と垂直磁化膜での書き込み電流の大小関係が大幅に覆ることはない。
 さらに加えて、垂直方向に磁気異方性を有する材料においては、面内方向に磁気異方性を有する材料とは異なり、電流で磁壁を駆動する場合に必要となる電流密度は膜厚が薄くなるほど低減することが、マイクロマグネティクス計算からわかった。膜厚を薄くすれば、当然トータルの電流量は低減するが、垂直磁気異方性材料では、これに加えて電流密度が低減するため、垂直磁気異方性材料を用いることにより、書き込み電流を効果的に低減することができる。
 本実施の形態の第1磁気抵抗素子1の第2の技術的利点は、読み出し信号の増大である。これは、垂直磁気異方性を有する第1磁化自由層10で記憶されているデータが面内方向に磁気異方性を有する第2磁化自由層20へと伝達され、読み出しのためのMTJは膜面方向に磁化を有する強磁性層により構成されるためである。MTJを構成する強磁性層として、Co-Fe-B/Mg-O/Co-Fe-B系の材料や、それに順ずる材料を用いれば、一層に高いMR比が実現可能である。
 本実施の形態の第1磁気抵抗素子1の第3の技術的利点は、書き込みと読み出しのトレードオフの解消及び製造プロセスの容易化である。これは書き込みのための第1磁化自由層10と読み出しのための第2磁化自由層20を、独立に設計することができるためである。例えば一般的な磁界書き込み型のMRAMの場合、読み出し信号を大きくするためにCo-Feなどのスピン偏極率の高い材料を用いた場合、概して素子の磁気異方性が大きくなってしまうため、書き込みに必要な電流が増加する。しかるに本実施の形態の第1磁気抵抗素子1では、書き込み電流の低減と読み出し信号の増大は、別の層の特性を調整することで実現できるため、上述のようなトレードオフは解消される。これに加えて、第1磁化自由層10と第2磁化自由層20は別々に製造することもできるため、製造プロセスは容易となる。
 本実施の形態の第1磁気抵抗素子1の第4の技術的利点は、磁気シールドの省略、または磁気シールドへの要求の低減による低コスト化である。これは、情報の記憶層である第1磁化自由層10に用いられる垂直磁気異方性材料では、結晶磁気異方性が十分大きいため、外乱磁界に対する耐性が面内磁化膜に比べて極めて大きくなるたるためである。面内方向に磁気異方性を有する材料では、現状では磁気シールドは事実上必須となるが、本発明に因れば外乱磁界耐性の保障に磁気シールドが必要なくなる、あるいは必要であっても磁気シールドの性能への要求は低減されるため、低コストでの製造が可能となる。
 1-5.第1変形例
 図3A~図3Cは、第1磁気抵抗素子1の第1変形例を模式的に示している。このうち図3Aは斜視図であり、図3Bは図3Aにおけるx-z断面図、図3Cは図3Aにおけるy-z断面図である。
 詳細には、第1変形例では第1磁化自由層10と第2磁化自由層20の間に導電層50が設けられる。導電層50は導体から構成される。なお、導電層50は磁性体であってもよいし、非磁性体であってもよい。導電層50は、第1磁化自由層10と第2磁化自由層20とを電気的に接続する役割も有している。
 導電層50の形状は、図3A、図3Bに示されているように、第2磁化自由層20の下側のみに設けられてもよいし、第1磁化自由層10の上面、及び第2磁化自由層20の下側の全面を覆うように設けられてもよい。また、図示されていないが、第1磁化自由層10、第2磁化自由層20の少なくとも一部分のみを覆うように設けられてもよい。
 導電層50が設けられることで、製造プロセスを容易にすることができる。これは導電層50の上下を分けて形成することができるためである。この際、導電層50は、導電層50の下側の層のキャップ層の役割を果たし、また導電層50の上側の層の下地層の役割を果たすことができる。これによって、導電層50の下側の層の酸化や化学的な変質を防止することができ、また導電層50の上側の層の結晶配向をコントロールしたり化学的な変質を防止したりすることができる。また導電層50が設けられることで、第1磁化自由層10と第2磁化自由層20の電気的なコンタクトを良好にすることができる。
 また導電層50に磁性材料を用いた場合、第1磁化自由層10の磁化自由領域12の磁化のデータを第2磁化自由層20へと効率的に伝達することができる。このためには導電層50に透磁率の高い材料を用いることが望ましい。これによって第2磁化自由層20の磁化をより容易に反転させることができる。導電層50を用いて効率的に磁化自由領域12の磁化情報を第2磁化自由層20へと伝達するためには、導電層50の材料はFe,Co,Niのうちの少なくとも一つの元素を含むことが望ましい。
 1-6.第2変形例
 図4A及び図4Bは、第1磁気抵抗素子1の第2変形例を模式的に示している。図4Aは斜視図を、図4Bはx-y平面図である。
 図4A、図4Bの構造においても、第1磁化自由層10は、第1磁化固定領域11a、第2磁化固定領域11b、磁化自由領域12から構成される。ただし、磁化自由領域12の一方の端部に第1磁化固定領域11aが接続して設けられ、他方の端部に第2磁化固定領域11bが接続して設けられるのではなく、磁化自由領域12の一方の端部に第1磁化固定領域11a及び第2磁化固定領域11bが接続して設けられる。すなわち、第1磁化固定領域11a、第2磁化固定領域11b、及び磁化自由領域12は三叉路を形成する。なお、図4A、図4Bの構造においても、各層の位置関係や磁気特性は上述の通りである。すなわち、第1磁化自由層10は垂直磁気異方性を有し、一方、第2磁化自由層20、第1磁化固定層40は面内磁気異方性を有する。また、第2磁化自由層20の重心G20は、x-y面内において磁化自由領域12の重心G12から“第1の方向”にずれている。また、第1磁化自由層10を構成する第1磁化固定領域11a、第2磁化固定領域11bの磁化は膜厚方向で互いに反平行方向に固定されている。
 図4A、図4Bで示される第1磁気抵抗素子1は4端子素子である。4つの端子のうちの1つは第1磁化固定層40に設けられ、他の2つの端子は第1磁化固定領域11aと第2磁化固定領域11bに設けられ、残りの1つの端子は磁化自由領域12に設けられる。図4A、図4Bの構造においても、第1磁化固定領域11aと磁化自由領域12の境界付近、または第2磁化固定領域11bと磁化自由領域12の境界付近のいずれか一方に磁壁が形成される。また図4A、図4Bの構造においては、第1磁化固定領域11aと磁化自由領域12の間、若しくは第2磁化固定領域11bと磁化自由領域12の間で電流を流すことにより書き込みを行う。この場合には、磁壁は第1磁化固定領域11aまたは第2磁化固定領域11bと磁化自由領域12との境界から出発して、磁化自由領域12のもう一方の端部から抜けることで書き込みが行われる。
 1-7.第3変形例
 図5A~図5Cは、第1磁気抵抗素子1の第3変形例を模式的に示している。図5Aは斜視図であり、図5Bはx-z断面図であり、図5Cはy-z断面図である。本実施の形態の第1磁気抵抗素子1においては、第2磁化自由層20、第1非磁性層30、第1磁化固定層40が隣接してこの順に設けられればよく、これらと第1磁化自由層10の積層順には任意性がある。従って、図5A~図5Cに示されているように、第1磁化自由層10が最上層に形成されてもよい。この場合も、磁化自由領域12と第2磁化自由層20の重心はx-y面内においてずれるが、そのずれ方向には任意性がある。
 1-8.第4変形例
 図6Aは、第1磁気抵抗素子1の第4変形例の構造を模式的に示す平面図である。本実施の形態においては、第2磁化自由層20の重心G20は第1磁化自由層10の磁化自由領域12の重心G12に対して面内方向(x-y平面に平行な方向)で特定方向にずれる。これまでの図ではこの特定方向が+y方向に略平行方向になるものとして描かれているが、この特定の方向は任意に決定され得る。従って図6Aに示されるように当該特定の方向がx成分を有していても構わない。また、第2変形例で説明されたように第1磁化自由層10が三叉路を有している場合、図6Bに示されるような第2磁化自由層20の重心G20と磁化自由領域12の重心G12の位置関係となっていても構わない。
 尚、以上に説明されたそれぞれの例は矛盾しない限り組み合わせることが可能である。
 2.リファレンスレベルのばらつき
 図7は、典型的なMRAMの構成を概略的に示している。MRAMのメモリセルアレイは、マトリックス状に配置された複数のセルを有している。より詳細には、セルには、データ記録用のメモリセルMCと、データ読み出し時にリファレンスレベルを生成するために参照されるリファレンスセルRC0、RC1が含まれる。メモリセルMC、リファレンスセルRC0及びRC1は、同一の構造の磁気抵抗素子を有している。
 メモリセルMCにはデータ“0”あるいはデータ“1”が格納される。メモリセルMCの磁気抵抗素子の抵抗値は、データ“0”の場合R0であり、データ“1”の場合R1である。リファレンスセルRC0はデータ“0”に設定されており、その磁気抵抗素子の抵抗値はR0である。一方、リファレンスセルRC1はデータ“1”に設定されており、その磁気抵抗素子の抵抗値はR1である。このようなリファレンスセルRC0、RC1の設定は、メモリセルMCに対するデータ書き込みと同様の方法で行われ、そのための専用のセットコントローラが設けられている。
 データ読み出し時、読み出し対象のメモリセルMCに加えて、リファレンスセルRC0、RC1に読み出し電流が流される。読み出し回路は、メモリセルMCを流れる読み出し電流に基づいて、メモリセルMCの記録データに応じた読み出しレベルを生成する。また、読み出し回路は、リファレンスセルRC0、RC1のそれぞれを流れる読み出し電流に基づいて、抵抗値R0とR1の中間抵抗値に対応するリファレンスレベルを生成する。そして、読み出し回路は、読み出しレベルをリファレンスレベルと比較することによって、メモリセルMCの記録データを判定する。
 ここで、上述の第1磁気抵抗素子1が、メモリセルMC、リファレンスセルRC0及びRC1に適用される場合を考える。上述の通り、書き込み特性と読み出し特性をそれぞれ独立に向上させるために、第1磁気抵抗素子1では書き込み層(10)と読み出し層群(20~40)が分離されている。そして、読み出し層群の第2磁化自由層20の磁化状態、すなわち、読み出し層群のMTJ抵抗値は、第1磁化自由層10の磁化自由領域12の磁化状態に依存して遠隔的に定まる。
 このような構造の場合、同じデータが記録されたメモリセルMC間であっても、読み出し層群のMTJ抵抗値(R0あるいはR1)がばらつく可能性がある。これは、リファレンスセルRC0、RC1に関しても同様である。データ“0”に設定されたリファレンスセルRC0間で読み出し層群の抵抗値R0はばらつく可能性があり、且つ、データ“1”に設定されたリファレンスセルRC1間で読み出し層群の抵抗値R1はばらつく可能性がある。上述の通りリファレンスレベルが2種類のリファレンスセルRC0、RC1のそれぞれを参照することにより生成される場合、それらリファレンスセルRC0、RC1のそれぞれの抵抗値のばらつきの増大は、リファレンスレベルのばらつきの増大を招く。リファレンスレベルのばらつきは、不確定なリファレンスレベルを意味し、それはデータの誤読み出し確率を増大させる。
 図8~図11を参照して、リファレンスレベルのばらつきの一例をより詳しく説明する。
 図8は、第1磁気抵抗素子1の一例を示す斜視図であり、図9は、図8で示された第1磁気抵抗素子1の磁化状態を示す平面図である。図8及び図9の例では、第1磁化自由層10の磁化自由領域12に対する第2磁化自由層20のずれ方向(第1の方向)はy方向であり、且つ、第2磁化自由層20の磁化容易軸がy方向と直交するx方向に沿っている。この場合、磁化自由領域12の垂直磁化は第2磁化自由層20に対して+y方向あるいは-y方向の磁化成分を印加し、図9に示されるように、第2磁化自由層20の磁化は磁化容易軸(x軸)を中心として磁化困難軸(y軸)方向へ回転する。その一方、第1磁化固定層40の磁化方向は、第1の方向と平行あるいは反平行に固定され、第2磁化自由層20の磁化容易軸方向と直交している。その結果、第2磁化自由層20と第1磁化固定層40との間の磁化方向の相対角に違いが生じ、データ“0”とデータ“1”の2つのメモリ状態が実現される。
 図8及び図9で示された第1磁気抵抗素子1がメモリセルMC、リファレンスセルRC0及びRC1に適用された場合、図10に示されるように、読み出し層群の第2磁化自由層20の磁化状態にばらつきが生じる。すなわち、第2磁化自由層20の磁気異方性が比較的大きいセルでは、磁化容易軸に対する磁化の回転量は小さくなる。逆に、第2磁化自由層20の磁気異方性が比較的小さいセルでは、磁化容易軸に対する磁化の回転量が大きくなる。このような磁化の回転量のばらつきは、読み出し層群のMTJ抵抗値(R0あるいはR1)のばらつきを意味する。すなわち、データ“0”に設定されたリファレンスセルRC0間で抵抗値R0がばらつき、データ“1”に設定されたリファレンスセルRC1間でも抵抗値R1がばらつく。
 図11は、データ“0”のセルとデータ“1”のセルの分布を概念的に示しており、縦軸は頻度、横軸はMTJ抵抗値をそれぞれ表している。上述の通り、データ“0”のセル間で抵抗値R0はばらつき、データ“1”のセル間で抵抗値R1はばらつく。従って、相補データが記録された2種類のリファレンスセルRC0、RC1を参照することによりリファレンスレベルが生成されると、そのリファレンスレベルがばらつき、不確定となる。そのような不確定なリファレンスレベルが、データの誤読み出し確率を増大させる。
 3.第2磁気抵抗素子
 そこで、本実施の形態によれば、リファレンスセル用に、第1磁気抵抗素子1とは異なる「第2磁気抵抗素子100」が提案される。以下に詳述されるように、第2磁気抵抗素子100の抵抗値は、上記R0とR1の間の中間値(以下、「R0.5」と参照される;図11参照)に固定されている。つまり、第2磁気抵抗素子100は、その抵抗値が単独でR0.5となるようにあらかじめ形成される。そのような第2磁気抵抗素子100をリファレンスセルに適用することによって、リファレンスレベルのばらつきが防止される。
 3-1.例(1)
 図12Aは、本実施の形態に係る第2磁気抵抗素子100の一例を示す斜視図である。図12Bは、図12Aで示された第2磁気抵抗素子100の磁化状態を示す平面図である。本例に係る第2磁気抵抗素子100は、既出の図8で示された第1磁気抵抗素子1から書き込み層(第1磁化自由層10)が省略されたものと同様の構造を有している。
 具体的には、第2磁気抵抗素子100は、第3磁化自由層120、第2非磁性層130及び第2磁化固定層140を備えている。第3磁化自由層120は、第2非磁性層130の一方の面に隣接して設けられ、第2磁化固定層140は、第2非磁性層130の他方の面に隣接して設けられている。つまり、第2非磁性層130は、第3磁化自由層120と第2磁化固定層140とに挟まれている。
 第3磁化自由層120及び第2磁化固定層140は、強磁性体により形成される強磁性層である。更に、第3磁化自由層120及び第2磁化固定層140は、面内磁気異方性を有する面内磁化膜である。その面内磁化膜は、Fe、Co、Niのうちから選択される少なくとも一つの材料を含む強磁性体で形成される。これに加えて、B、C、N、O、Al、Si、P、Ti、V、Cr、Mn、Cu、Zn、Zr、Nb、Mo、Tc、Ru、Rh、Ag、Hf、Ta、W、Re、Os、Ir、Auなどを添加することにより、磁気特性を調整することができる。具体的な材料としては、Ni-Fe、Co-Fe、Fe-Co-Ni、Ni-Fe-Zr、Co-Fe-B、Co-Fe-Zr-Bなどが例示される。第2非磁性層130は、絶縁体により形成されることが好適である。具体的な材料としては、Mg-O、Al-O、Al-N、Ni-O、Hf-Oなどが例示される。これら第3磁化自由層120、第2非磁性層130及び第2磁化固定層140によってMTJが形成されている。
 第2磁気抵抗素子100において、第2磁化固定層140の磁化方向は面内の一方向に固定されている。例えば図12A及び図12Bにおいて、第2磁化固定層140の磁化方向は+y方向に固定されている。このような磁化方向の固定は、第1磁気抵抗素子1の場合と同様に可能である。一方、第3磁化自由層120の磁化容易軸は、第2磁化固定層140の磁化方向と直交している。すなわち、第3磁化自由層120の磁化容易軸は、y方向と直交しておりx方向と平行である。特に、図12A及び図12Bの例では、第3磁化自由層120の平面形状は楕円形であり、その楕円形の長軸がx方向に沿っている。
 以上に説明された第3磁化自由層120、第2非磁性層130及び第2磁化固定層140は、「読み出し層群」を構成している。つまり、データ読み出し時には、MTJを貫通するように第3磁化自由層120と第2磁化固定層140の間に読み出し電流が流される。その一方で、本例に係る第2磁気抵抗素子100には、書き込み層に相当する構造が設けられていない。つまり、読み出し層群の第3磁化自由層120の磁化状態に影響を及ぼすような垂直磁化膜は設けられていない。
 従って、図12Bに示されるように、第3磁化自由層120の磁化方向は、その磁化容易軸方向(x軸方向)に沿った向きとなる。図12Bの例では、第3磁化自由層120の磁化方向は+x方向である。一方、第2磁化固定層140の磁化方向は、第3磁化自由層120の磁化容易軸と直交する方向に固定されている。従って、読み出し層群の抵抗値は、上記R0とR1の間の中間値“R0.5”となる。つまり、第2磁気抵抗素子100は、MTJ抵抗値が単独で“R0.5”となるようにあらかじめ形成されている。
 3-2.例(2)
 図13Aは、第2磁気抵抗素子100の他の例を示す斜視図である。図13Bは、図13Aで示された構造のx-y平面図である。本例に係る第2磁気抵抗素子100は、図12A及び図12Bで示された構造に加えて、第1磁気抵抗素子1の書き込み層(第1磁化自由層10)に相当する構造を備えている。但し、第1磁気抵抗素子1では重心が故意にずらされていたが、本例の第2磁気抵抗素子100では重心が一致している。図12A及び図12Bで示された構成と同じ構成には同一の符号が付され、重複する説明は適宜省略される。
 図13Aに示されるように、第2磁気抵抗素子100は、読み出し層群(120~140)に加えて、第4磁化自由層110を更に備えている。この第4磁化自由層110は、強磁性体により形成される強磁性層である。また、第4磁化自由層110は、垂直磁気異方性を有する垂直磁化膜であり、その磁化方向は+z方向あるいは-z方向である。第4磁化自由層110の材料は、第1磁気抵抗素子1の第1磁化自由層10と同様である。
 垂直磁気異方性を有する第4磁化自由層110と、上記読み出し層群中の面内磁気異方性を有する第3磁化自由層120とは、互いに磁気的に結合している。但し、図13Bに示されるように、x-y平面において、第4磁化自由層110の重心G110と第3磁化自由層120の重心G120は互いに一致している。従って、第4磁化自由層110の垂直磁化は、第3磁化自由層120の面内磁化の方向を変えない。第3磁化自由層120の磁化方向は、その磁化容易軸方向と平行のままである。すなわち、読み出し層群は既出の図12Bで示された状態となり、“R0.5”が実現される。
 3-3.例(3)
 図14Aは、第2磁気抵抗素子100の更に他の例を示す斜視図である。図14Bは、図14Aで示された構造のx-y平面図である。本例に係る第2磁気抵抗素子100は、図13A及び図13Bで示された構成要素と同様のものを有する。但し、重心の位置関係が異なっている。図13A及び図13Bで示された構成と同じ構成には同一の符号が付され、重複する説明は適宜省略される。
 本例によれば、垂直磁気異方性を有する第4磁化自由層110の重心G110は、面内磁気異方性を有する第3磁化自由層120の重心G120からずれている。x-y平面において、そのずれ方向は、第3磁化自由層120の磁化容易軸方向と一致している。例えば図14Bに示されるように、第4磁化自由層110の重心G110は、第3磁化自由層120の重心G120から-x方向にずれている。そのずれ方向は、第3磁化自由層120の磁化容易軸方向(x軸方向)と平行であり、第2磁化固定層140の磁化方向と直交している。
 この場合、第4磁化自由層110の垂直磁化は第3磁化自由層120に対して+x方向あるいは-x方向の磁化成分を印加する。その磁化成分は磁化容易軸方向と一致しているため、第3磁化自由層120の面内磁化は回転しない。第3磁化自由層120の磁化方向は、その磁化容易軸方向と平行のままである。すなわち、読み出し層群は既出の図12Bで示された状態となり、“R0.5”が実現される。
 4.MRAM
 図15は、本発明の実施の形態に係るMRAMの構成を概略的に示している。MRAMのメモリセルアレイは、マトリックス状に配置された複数のセルを有している。より詳細には、セルには、データ記録用のメモリセルMCと、データ読み出し時にリファレンスレベルを生成するために参照されるリファレンスセルRCが含まれる。本発明によれば、メモリセルMCには第1磁気抵抗素子1が適用される。一方、リファレンスセルRCには、第2磁気抵抗素子100が適用される。
 製造プロセスの観点からは、第1磁気抵抗素子1の各層と第2磁気抵抗素子100の各層は同じ層に形成されることが好適である。例えば図12Aで示された第2磁気抵抗素子100が用いられる場合、第3磁化自由層120、第2非磁性層130及び第2磁化固定層140は、第1磁気抵抗素子1の第2磁化自由層20、第1非磁性層30及び第1磁化固定層40のそれぞれと同じ層に形成される。更に、図13Aあるいは図14Aで示された第2磁気抵抗素子100が用いられる場合には、第4磁化自由層110も、第1磁気抵抗素子1の第1磁化自由層10と同じ層に形成される。
 メモリセルMCが含む第1磁気抵抗素子1は、既出の例のいずれであってもよい(図1A~図6B、図8、図9を参照)。その第1磁気抵抗素子1の読み出し層群(20~40)の抵抗値は、記録データに応じてR0とR1の間で切り換わる。リファレンスセルRCが含む第2磁気抵抗素子100は、既出の例のいずれであってもよい(図12A~図14Bを参照)。その第2磁気抵抗素子100の読み出し層群(120~140)の抵抗値は、中間値“R0.5”に固定されている。
 データ読み出し時、読み出し対象のメモリセルMCとリファレンスセルRCに読み出し電流が流される。読み出し回路は、メモリセルMCを流れる読み出し電流に基づいて、メモリセルMCの記録データ(R0又はR1)に応じた読み出しレベルを生成する。また、読み出し回路は、リファレンスセルRCを流れる読み出し電流に基づいて、中間抵抗値R0.5に対応するリファレンスレベルを生成する。そして、読み出し回路は、読み出しレベルをリファレンスレベルと比較することによって、メモリセルMCの記録データ(R0又はR1)を判定する。
 図16は、メモリセルMCの第2磁化自由層20とリファレンスセルRCの第3磁化自由層120の磁化状態の一例を示している。ここでは、メモリセルMCに、図8及び図9で示された第1磁気抵抗素子1が適用されている。つまり、第2磁化自由層20の磁化は磁化容易軸を中心として回転する。データ“0”のメモリセルMC間で磁化回転量(抵抗値R0)がばらつき、データ“1”のメモリセルMC間で磁化回転量(抵抗値R1)がばらついている(図10も参照)。一方、リファレンスセルRCでは、第3磁化自由層120の磁化方向は、完全に磁化容易軸に沿っている。従って、メモリセルMCにおいて磁化回転量がばらついていたとしても、その磁化の回転方向、すなわち記録データ(R0あるいはR1)を正確に判定することが可能である。
 より一般化すると、次の通りである。メモリセルMCに関して、データ“0”のセル間で抵抗値R0はばらつき、データ“1”のセル間で抵抗値R1はばらつくかもしれない。しかしながら、本実施の形態では、リファレンスセルRCは確実に“R0.5”にセットされており、少なくともリファレンスセルRCに関しては抵抗値のばらつきはほとんどない。これは、リファレンスレベルのばらつきが抑制され、より正確なリファレンスレベルが得られることを意味する。正確なリファレンスレベル(R0.5)を用いることにより、メモリセルMCの記録データ(R0又はR1)を正確に判定することが可能となる(図11参照)。
 以上に説明されたように、本実施の形態によれば、第2磁気抵抗素子100をリファレンスセルRCに適用することによって、リファレンスレベルのばらつきが抑制される。その結果、データの誤読み出しが抑制される。メモリセルMCに適用される第1磁気抵抗素子1は、既出の例のいずれであってもよい。重要なことは、リファレンスセルRCにおいて磁化状態のばらつきが抑制されることである。
 また、本実施の形態によれば、抵抗値が単独でR0.5となる第2磁気抵抗素子100が用いられる。従って、相補データ(R0、R1)が記録された2種類のリファレンスセルRC0、RC1(図7参照)を用意する必要がない。第2磁気抵抗素子100を有する1種類のリファレンスセルRC(図15参照)だけで十分である。
 図7の場合、セットコントローラを用いて、リファレンスセルRC0、RC1のそれぞれに相補データを初期設定する必要がある。一方、本実施の形態では、リファレンスセルRCは抵抗値がR0.5となるようにあらかじめ形成されており、リファレンスセルRCの初期設定工程は不要である。従って、製造時間が短縮され、製造コストが削減される。また、初期設定用のコントローラも不要となるため、MRAMの面積が削減される。
 また、図7の場合、読み出し回路は、2種類のリファレンスセルRC0、RC1を参照して、抵抗値R0とR1の中間抵抗値に対応するリファレンスレベルを算出する必要がある。一方、図15の場合、リファレンスレベルは、抵抗値がR0.5に固定された一種類のリファレンスセルRCを参照することによって直接的に得られる。従って、回路構成が単純になり、MRAMの面積が削減される。
 更に、図7の場合、2種類のリファレンスセルRC0、RC1を配置するために2列必要であった。一方、図15では、1種類のリファレンスセルRCを配置するために1列で十分である。リファレンスセルのための領域が1列分不要となるため、メモリセルアレイの面積が削減される。特に小規模アレイの場合には、面積削減効果が顕著となる。
 以上、本発明の実施の形態が添付の図面を参照することにより説明された。但し、本発明は、上述の実施の形態に限定されず、要旨を逸脱しない範囲で当業者により適宜変更され得る。
 本出願は、2008年2月19日に出願された日本国特許出願2008-038066を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (10)

  1.  第1磁気抵抗素子を含むメモリセルと、
     第2磁気抵抗素子を含み、前記メモリセルからのデータ読み出し時にリファレンスレベルを生成するために参照されるリファレンスセルと
     を具備し、
     前記第1磁気抵抗素子は、
     垂直磁気異方性を有する第1磁化自由層と、
     面内磁気異方性を有し、磁化方向が固定された第1磁化固定層と、
     面内磁気異方性を有し、磁化方向が可変な第2磁化自由層と、
     前記第1磁化固定層と前記第2磁化自由層とに挟まれた第1非磁性層と
     を備え、
     前記第1磁化自由層は、
     磁化方向が固定された第1磁化固定領域と、
     磁化方向が固定された第2磁化固定領域と、
     前記第1磁化固定領域と前記第2磁化固定領域とに接続され、磁化方向が反転可能な磁化自由領域と
     を有し、
     前記磁化自由領域と前記第2磁化自由層とは、互いに磁気的に結合しており、
     各層に平行な第1平面において、前記第2磁化自由層の重心は、前記磁化自由領域の重心から第1方向にずれており、
     前記第2磁気抵抗素子は、
     磁化容易軸が第2方向に平行な第3磁化自由層と、
     磁化方向が前記第2方向と直交する第3方向に固定された第2磁化固定層と、
     前記第3磁化自由層と前記第2磁化固定層とに挟まれた第2非磁性層と
     を備え、
     前記第3磁化自由層と前記第2磁化固定層は、面内磁気異方性を有する
     磁気ランダムアクセスメモリ。
  2.  請求の範囲1に記載の磁気ランダムアクセスメモリであって、
     前記第2磁化自由層の磁化容易軸は前記第1方向と直交しており、
     前記第1磁化固定層の磁化方向は前記第1方向と平行あるいは反平行である
     磁気ランダムアクセスメモリ。
  3.  請求の範囲1又は2に記載の磁気ランダムアクセスメモリであって、
     前記第3磁化自由層の平面形状の長軸方向は前記第2方向である
     磁気ランダムアクセスメモリ。
  4.  請求の範囲1乃至3のいずれか一項に記載の磁気ランダムアクセスメモリであって、
     前記第2磁化自由層と前記第3磁化自由層は同じ層に形成され、
     前記第1磁化固定層と前記第2磁化固定層は同じ層に形成され、
     前記第1非磁性層と前記第2非磁性層は同じ層に形成された
     磁気ランダムアクセスメモリ。
  5.  請求の範囲1乃至4のいずれか一項に記載の磁気ランダムアクセスメモリであって、
     前記第2磁気抵抗素子は、垂直磁気異方性を有する第4磁化自由層を更に備え、
     前記第3磁化自由層と前記第4磁化自由層は、互いに磁気的に結合しており、
     前記第3磁化自由層の磁化方向は前記第2方向と平行である
     磁気ランダムアクセスメモリ。
  6.  請求の範囲5に記載の磁気ランダムアクセスメモリであって、
     前記第1平面において、前記第3磁化自由層の重心は、前記第4磁化自由層の重心と一致している
     磁気ランダムアクセスメモリ。
  7.  請求の範囲5に記載の磁気ランダムアクセスメモリであって、
     前記第1平面において、前記第3磁化自由層の重心は、前記第4磁化自由層の重心から前記第2方向にずれている
     磁気ランダムアクセスメモリ。
  8.  請求の範囲5乃至7のいずれか一項に記載の磁気ランダムアクセスメモリであって、
     前記第1磁化自由層と前記第4磁化自由層は同じ層に形成され、
     前記第2磁化自由層と前記第3磁化自由層は同じ層に形成され、
     前記第1磁化固定層と前記第2磁化固定層は同じ層に形成され、
     前記第1非磁性層と前記第2非磁性層は同じ層に形成された
     磁気ランダムアクセスメモリ。
  9.  請求の範囲1乃至8のいずれか一項に記載の磁気ランダムアクセスメモリであって、
     前記第1磁化固定領域が前記磁化自由領域の一方の端部に隣接して設けられ、
     前記第2磁化固定領域が前記磁化自由領域の他方の端部に隣接して設けられる
     磁気ランダムアクセスメモリ。
  10.  請求の範囲1乃至8のいずれかに記載の磁気ランダムアクセスメモリであって、
     前記第1磁化固定領域が前記磁化自由領域の一方の端部に隣接して設けられ、
     前記第2磁化固定領域が前記磁化自由領域の前記一方の端部に隣接して設けられ、
     前記第1磁化固定領域と前記第2磁化固定領域と前記磁化自由領域とが、三叉路を形成する
     磁気ランダムアクセスメモリ。
PCT/JP2009/050210 2008-02-19 2009-01-09 磁気ランダムアクセスメモリ WO2009104428A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/865,194 US8149615B2 (en) 2008-02-19 2009-01-09 Magnetic random access memory
JP2009554239A JP5299643B2 (ja) 2008-02-19 2009-01-09 磁気ランダムアクセスメモリ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008038066 2008-02-19
JP2008-038066 2008-02-19

Publications (1)

Publication Number Publication Date
WO2009104428A1 true WO2009104428A1 (ja) 2009-08-27

Family

ID=40985315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050210 WO2009104428A1 (ja) 2008-02-19 2009-01-09 磁気ランダムアクセスメモリ

Country Status (3)

Country Link
US (1) US8149615B2 (ja)
JP (1) JP5299643B2 (ja)
WO (1) WO2009104428A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091342A (ja) * 2009-10-26 2011-05-06 Nec Corp 磁気抵抗素子、及び磁壁ランダムアクセスメモリ
JP2015060609A (ja) * 2013-09-18 2015-03-30 株式会社東芝 磁気記憶装置及びその駆動方法
JP7555119B2 (ja) 2021-04-02 2024-09-24 学校法人 関西大学 磁化制御デバイス及び磁気メモリ装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8482967B2 (en) * 2010-11-03 2013-07-09 Seagate Technology Llc Magnetic memory element with multi-domain storage layer
JP2012238631A (ja) * 2011-05-10 2012-12-06 Sony Corp 記憶素子、記憶装置
JP5987302B2 (ja) * 2011-11-30 2016-09-07 ソニー株式会社 記憶素子、記憶装置
JP6122353B2 (ja) * 2013-06-25 2017-04-26 ルネサスエレクトロニクス株式会社 半導体パッケージ
US9431600B2 (en) 2014-10-06 2016-08-30 International Business Machines Corporation Magnetic domain wall shift register memory devices with high magnetoresistance ratio structures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073930A (ja) * 2004-09-06 2006-03-16 Canon Inc 磁壁移動を利用した磁気抵抗効果素子の磁化状態の変化方法及び該方法を用いた磁気メモリ素子、固体磁気メモリ
JP2007103663A (ja) * 2005-10-04 2007-04-19 Toshiba Corp 磁気素子、記録再生素子、論理演算素子および論理演算器
JP2007258460A (ja) * 2006-03-23 2007-10-04 Nec Corp 磁気メモリセル、磁気ランダムアクセスメモリ、半導体装置及び半導体装置の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6865107B2 (en) * 2003-06-23 2005-03-08 Hewlett-Packard Development Company, L.P. Magnetic memory device
JP4080982B2 (ja) 2003-10-09 2008-04-23 株式会社東芝 磁気メモリ
JP4143020B2 (ja) 2003-11-13 2008-09-03 株式会社東芝 磁気抵抗効果素子および磁気メモリ
JP4413603B2 (ja) 2003-12-24 2010-02-10 株式会社東芝 磁気記憶装置及び磁気情報の書込み方法
US7042036B2 (en) * 2004-08-05 2006-05-09 The University Of Chicago Magnetic memory using single domain switching by direct current
JP4932275B2 (ja) 2005-02-23 2012-05-16 株式会社日立製作所 磁気抵抗効果素子
US7154773B2 (en) * 2005-03-31 2006-12-26 Infineon Technologies Ag MRAM cell with domain wall switching and field select
US7929342B2 (en) * 2005-08-15 2011-04-19 Nec Corporation Magnetic memory cell, magnetic random access memory, and data read/write method for magnetic random access memory
JP4444241B2 (ja) 2005-10-19 2010-03-31 株式会社東芝 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
US7626856B2 (en) * 2006-03-20 2009-12-01 Fuji Electric Device Technology Co., Ltd. Magnetic recording element
JP5201536B2 (ja) * 2006-12-12 2013-06-05 日本電気株式会社 磁気抵抗効果素子及びmram
JP2008147488A (ja) 2006-12-12 2008-06-26 Nec Corp 磁気抵抗効果素子及びmram
JP5338666B2 (ja) * 2007-08-03 2013-11-13 日本電気株式会社 磁壁ランダムアクセスメモリ
JP5299735B2 (ja) * 2007-08-24 2013-09-25 日本電気株式会社 磁壁ランダムアクセスメモリ
JP5260040B2 (ja) * 2007-12-19 2013-08-14 株式会社日立製作所 単一方向電流磁化反転磁気抵抗効果素子と磁気記録装置
US7525862B1 (en) * 2008-05-09 2009-04-28 International Business Machines Corporation Methods involving resetting spin-torque magnetic random access memory with domain wall
US7876595B2 (en) * 2008-09-19 2011-01-25 Seagate Technology Llc Magnetic shift register as counter and data storage device
US7933137B2 (en) * 2008-10-08 2011-04-26 Seagate Teachnology Llc Magnetic random access memory (MRAM) utilizing magnetic flip-flop structures
US7933146B2 (en) * 2008-10-08 2011-04-26 Seagate Technology Llc Electronic devices utilizing spin torque transfer to flip magnetic orientation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073930A (ja) * 2004-09-06 2006-03-16 Canon Inc 磁壁移動を利用した磁気抵抗効果素子の磁化状態の変化方法及び該方法を用いた磁気メモリ素子、固体磁気メモリ
JP2007103663A (ja) * 2005-10-04 2007-04-19 Toshiba Corp 磁気素子、記録再生素子、論理演算素子および論理演算器
JP2007258460A (ja) * 2006-03-23 2007-10-04 Nec Corp 磁気メモリセル、磁気ランダムアクセスメモリ、半導体装置及び半導体装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091342A (ja) * 2009-10-26 2011-05-06 Nec Corp 磁気抵抗素子、及び磁壁ランダムアクセスメモリ
JP2015060609A (ja) * 2013-09-18 2015-03-30 株式会社東芝 磁気記憶装置及びその駆動方法
JP7555119B2 (ja) 2021-04-02 2024-09-24 学校法人 関西大学 磁化制御デバイス及び磁気メモリ装置

Also Published As

Publication number Publication date
US20100309712A1 (en) 2010-12-09
JPWO2009104428A1 (ja) 2011-06-23
US8149615B2 (en) 2012-04-03
JP5299643B2 (ja) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5382348B2 (ja) 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ
JP5598697B2 (ja) 磁気抵抗効果素子、および磁気ランダムアクセスメモリ
JP5338666B2 (ja) 磁壁ランダムアクセスメモリ
JP5360599B2 (ja) 磁気抵抗効果素子及び磁気ランダムアクセスメモリ
JP5505312B2 (ja) 磁気メモリ素子及び磁気ランダムアクセスメモリ
US8787076B2 (en) Magnetic memory and method of manufacturing the same
WO2010095589A1 (ja) 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ
JP5299642B2 (ja) 磁気ランダムアクセスメモリ
KR20120080532A (ko) 기억 소자 및 기억 장치
JP5299643B2 (ja) 磁気ランダムアクセスメモリ
JP5370907B2 (ja) 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ
US8994130B2 (en) Magnetic memory element and magnetic memory
JPWO2008120482A1 (ja) 磁気ランダムアクセスメモリ
JP5370773B2 (ja) 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ、及びその初期化方法
JP5397224B2 (ja) 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ、及びその初期化方法
JP5435298B2 (ja) 半導体装置
WO2011052475A1 (ja) 磁気メモリ素子、磁気メモリ、及びその初期化方法
JP5397384B2 (ja) 磁性記憶素子の初期化方法
US8908423B2 (en) Magnetoresistive effect element, and magnetic random access memory
JP5445029B2 (ja) 磁気抵抗素子、及び磁壁ランダムアクセスメモリ
WO2012137911A1 (ja) 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712294

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12865194

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009554239

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09712294

Country of ref document: EP

Kind code of ref document: A1