WO2009101982A1 - 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ - Google Patents

縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ Download PDF

Info

Publication number
WO2009101982A1
WO2009101982A1 PCT/JP2009/052319 JP2009052319W WO2009101982A1 WO 2009101982 A1 WO2009101982 A1 WO 2009101982A1 JP 2009052319 W JP2009052319 W JP 2009052319W WO 2009101982 A1 WO2009101982 A1 WO 2009101982A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic thin
thin film
represented
polymer
Prior art date
Application number
PCT/JP2009/052319
Other languages
English (en)
French (fr)
Inventor
Masahiro Miura
Tetsuya Satoh
Hayato Tsurugi
Jun Kumagai
Masato Ueda
Original Assignee
Osaka University
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University, Sumitomo Chemical Company, Limited filed Critical Osaka University
Priority to EP09709634A priority Critical patent/EP2251342A4/en
Priority to US12/867,182 priority patent/US8344095B2/en
Priority to CN2009801049188A priority patent/CN101945878A/zh
Publication of WO2009101982A1 publication Critical patent/WO2009101982A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/52Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes
    • C07D333/62Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/491Vertical transistors, e.g. vertical carbon nanotube field effect transistors [CNT-FETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions

Definitions

  • the present invention relates to a condensed ring compound, a method for producing the same, a polymer, an organic thin film containing them, and an organic thin film element and an organic thin film transistor including the same.
  • organic semiconductor materials are applied to various organic thin film elements such as organic EL (electroluminescence) elements, organic transistors, organic solar cells, and optical sensors, they have been actively studied in recent years.
  • organic semiconductor material is required to have high charge (electron or hole) transportability.
  • charge transporting property it is important to use molecules in which ⁇ conjugation is spread in the organic semiconductor material, improve the packing of the molecules, and enhance the interaction between the molecules.
  • Patent Document 1 a compound containing dithienothiophene (Patent Document 1) or a compound in which a plurality of thiophene rings are combined in a plane (see Non-Patent Document 1) as an organic semiconductor material capable of obtaining high charge transportability. Etc. are known. JP 2004-339516 A Z. Bao et al. "Appl. Phys. Lett.”, 1996, 69, 4108.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a condensed ring compound and a polymer that can exhibit sufficient charge transportability and have excellent solubility in a solvent. To do. Another object of the present invention is to provide a method for producing the condensed ring compound, an organic thin film using the condensed ring compound and / or a polymer, and an organic thin film element and an organic thin film transistor provided with the organic thin film.
  • the condensed ring compound of the present invention is represented by the following general formula (1).
  • R 11 and R 12 each independently have a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkylamino group, an alkoxycarbonyl group having 3 or more carbon atoms in the alkyl moiety, or a substituent.
  • at least one of R 11 and R 12 is not a hydrogen atom.
  • R 13 and R 14 each independently represents a monovalent group
  • m and n each independently represents an integer of 0 to 2.
  • R 13 and R 14 When a plurality of R 13 and R 14 are present, they may be the same or different.
  • Y 11 and Y 12 are each independently a divalent group represented by the following formula (2a), (2b), (2c), (2d), (2e), (2f), (2g), or (2h).
  • Y 13 and Y 14 are each independently the following formulas (2a), (2b), (2c), (2d), (2e), (2f), (2g), (2h) or It is a divalent group represented by (2i).
  • R 21 , R 22 , R23 and R 24 each independently represent a hydrogen atom or a monovalent group, and R 23 and R 24 may be bonded to each other to form a ring.
  • the condensed ring compound having the above structure has a structure in which five aromatic ring structures are condensed and ⁇ conjugation spreads, it can exhibit high charge transportability when an organic thin film or the like is formed. Further, such a condensed ring compound has a structure in which a substituent is introduced into the central benzene ring structure. Therefore, the solubility with respect to a solvent etc. is also favorable, and the process to an organic thin film etc. is easy.
  • the present invention has a structure in which a condensed ring having two rings at two positions with respect to the central benzene ring has a condensed structure. High charge transportability tends to be obtained. Therefore, the fused ring compound of the present invention is useful as an organic semiconductor material for forming an organic thin film in an organic thin film element or the like.
  • Y 11 and Y 12 are a divalent group represented by the above formula (2a), and Y 13 and Y 14 are a divalent group represented by the above formula (2i). It is preferable that it is group of. Thereby, the charge transport property by the condensed ring compound is further improved. Moreover, such a compound has the advantage that the synthesis is relatively easy and the raw materials are easily available.
  • R 11 and R 12 are preferably each independently an alkyl group having 1 to 10 carbon atoms or an aryl group optionally having a substituent having 6 to 20 carbon atoms. This further improves the solubility of the condensed ring compound in the solvent.
  • the polymer of this invention has the structure represented by following General formula (3) as a structural unit, It is characterized by the above-mentioned.
  • R 31 and R 32 each independently have a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkylamino group, an alkoxycarbonyl group having 3 or more carbon atoms in the alkyl moiety, or a substituent.
  • at least one of R 31 and R 32 is not a hydrogen atom.
  • R 33 and R 34 each independently represent a hydrogen atom or a monovalent group.
  • Y 31 and Y 32 are each independently a divalent group represented by the following formula (4a), (4b), (4c), (4d), (4e), (4f), (4g), or (4h).
  • Y 33 and Y 34 are each independently the following formulas (4a), (4b), (4c), (4d), (4e), (4f), (4g), (4h) or It is a divalent group represented by (4i).
  • R 41 , R 42 , R 43 and R 44 each independently represent a hydrogen atom or a monovalent group, and R 43 and R 44 may be bonded to each other to form a ring.
  • Such a polymer contains the same condensed ring structure as the condensed ring compound of the present invention, it has excellent charge mobility and excellent solubility in a solvent.
  • the polymer of the present invention further has a structural unit represented by the following general formula (5). This further improves the charge mobility of the polymer.
  • Ar 5 represents a divalent aromatic hydrocarbon group which may have a substituent or a divalent heterocyclic group which may have a substituent.
  • Ar 5 is preferably a group represented by the following general formula (6).
  • R 61 and R 62 each independently represent a hydrogen atom or a monovalent group, and R 61 and R 62 may combine to form a ring.
  • Y 6 is a divalent group represented by the following formula (7a), (7b), (7c), (7d), (7e), (7f), (7g), (7h) or (7i). is there.
  • R 71 , R 72 , R 73 and R 74 each independently represent a hydrogen atom or a monovalent group, and R 73 and R 74 may be bonded to each other to form a ring.
  • Y 31 and Y 32 are divalent groups represented by the above formula (4a), and Y 33 and Y 34 are divalent groups represented by the above formula (4i).
  • Y 6 in the group represented by the general formula (6) is preferably a divalent group represented by the above formula (7a). Thereby, further excellent charge mobility and solubility can be obtained.
  • the method for producing a fused ring compound according to the present invention is a method for forming the fused ring compound of the present invention favorably, and is a compound represented by the following general formula (8a) in the presence of a base and a metal complex catalyst. And a compound represented by the following general formula (8b) are reacted to obtain a condensed ring compound represented by the following general formula (8c).
  • X 81 and X 82 each independently represent a hydrogen atom or a halogen atom. Provided that at least one of X 81 and X 82 is a halogen atom.
  • R 81 and R 82 may each independently have a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkylamino group, an alkoxycarbonyl group having 3 or more carbon atoms in the alkyl moiety, or a substituent.
  • An aryl group, a monovalent heterocyclic group which may have a substituent, or a cyano group is shown. However, at least one of R 81 and R 82 is not a hydrogen atom.
  • R 83 and R 84 each independently represent a monovalent group, and p and q are each independently an integer of 0 to 2. However, when a plurality of R 83 and R 84 are present, they may be the same or different.
  • Y 81 and Y 82 are each independently a divalent group represented by the following formula (9a), (9b), (9c), (9d), (9e), (9f), (9g), or (9h).
  • Y 83 and Y 84 are each independently the following formulas (9a), (9b), (9c), (9d), (9e), (9f), (9g), (9h) or (9i) is a divalent group represented.
  • R 91 , R 92 , R 93 and R 94 each independently represent a hydrogen atom or a monovalent group, and R 93 and R 94 may be bonded to each other to form a ring.
  • the condensed ring compound can be obtained simply by reacting the compound of the above formula (8a) with the compound of the above formula (8b). A condensed ring compound can be obtained.
  • Y 81 and Y 82 are divalent groups represented by the above formula (9a), and Y 83 and Y 84 are divalent groups represented by the above formula (9i). And preferred.
  • a condensed ring compound having further excellent charge transport properties can be obtained.
  • a condensed ring compound can be easily produced by using such a compound.
  • At least one of X 81 and X 82 is a halogen atom, but it is more preferable that both are halogen atoms.
  • at least one of X 81 and X 82 is more preferably an iodine atom, and both are particularly preferably an iodine atom. If it carries out like this, reaction with the compound represented by the said general formula (8a) and the compound represented by the said general formula (8b) will arise easily, and the compound represented by the said general formula (8c) will be more efficient. It will be obtained.
  • the present invention also provides an organic thin film containing the fused ring compound and / or polymer of the present invention. Since such an organic thin film contains the fused ring compound and / or polymer of the present invention, it has excellent charge transport properties and is suitable for an organic thin film element or the like.
  • the present invention further provides an organic thin film element comprising the organic thin film of the present invention.
  • an organic thin film element an organic thin film transistor is preferable. Since these organic thin film elements are provided with the organic thin film having a high charge transporting property of the present invention, they can exhibit excellent characteristics.
  • ADVANTAGE OF THE INVENTION while being able to exhibit sufficient electric charge transportability, it becomes possible to provide the condensed ring compound and polymer which have the outstanding solubility with respect to a solvent. Moreover, according to this invention, it becomes possible to provide the suitable manufacturing method of the said condensed ring compound. Furthermore, according to the present invention, it is possible to provide an organic thin film obtained by using the fused ring compound and having excellent charge transportability, and an organic thin film element and an organic thin film transistor provided with the organic thin film.
  • the fused ring compound of the present embodiment is a compound represented by the general formula (1).
  • the group represented by R 11 or R 12 is a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an alkylamino group, or an alkyl moiety having 3 or more carbon atoms.
  • At least one of R 11 and R 12 is not a hydrogen atom, and it is preferable that both of them are not hydrogen atoms.
  • an alkyl group a linear, branched, and cyclic thing is contained.
  • part or all of the hydrogen atoms of the functional group may be substituted with a halogen atom (particularly a fluorine atom).
  • the alkyl group is preferably one having 1 to 20 carbon atoms (abbreviated as “C1 to 20”, the same applies hereinafter).
  • Examples of such an alkyl group include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group.
  • a C1-16 alkyl group is preferable, and a C6-C12 alkyl group is more preferable from the viewpoint of improving solubility in a solvent.
  • a hexyl group, a heptyl group, an octyl group, a decyl group, or a cyclohexyl group is preferable.
  • alkoxy group alkylthio group, alkylamino group or alkoxycarbonyl group
  • those in which the alkyl group they contain is a C1-20 alkyl group are suitable.
  • the carbon number of the alkyl group which the alkoxycarbonyl group has is 3 or more. Examples of the C1-20 alkyl group are the same as those described above.
  • the aryl group which may have a substituent one having C6 to 60 is preferable.
  • examples thereof include a phenyl group, a phenyl group having a C1-12 alkoxy group, a phenyl group having a C1-12 alkyl group, a 1-naphthyl group, a 2-naphthyl group, and the like.
  • a C6-20 aryl group is preferable, and a phenyl group having a C1-12 alkoxy group or a phenyl group having a C1-12 alkyl group is more preferable.
  • the monovalent heterocyclic group which may have a substituent is preferably a C3-60 group.
  • Examples include a thienyl group, a thienyl group having a C1-12 alkyl group, a pyrrolyl group, a furyl group, a pyridyl group, a pyridyl group having a C1-12 alkyl group, and the like.
  • a C3-20 heterocyclic group is preferable, and a thienyl group, a thienyl group having a C1-12 alkyl group, a pyridyl group, or a pyridyl group having a C1-12 alkyl group is more preferable.
  • the heterocyclic group means a group in which at least one atom constituting the ring is a heteroatom in an organic group having a cyclic structure.
  • R 11 and R 12 are each independently preferably an alkyl group having 1 to 20 carbon atoms or an aryl group optionally having a substituent having 6 to 60 carbon atoms.
  • An aryl group which is an alkyl group having 1 to 14 carbon atoms or optionally having a substituent having 6 to 20 carbon atoms is more preferable, and an alkyl group having 1 to 14 carbon atoms is particularly preferable.
  • R 13 and R 14 are each independently a monovalent group, and m and n are integers of 0-2. However, when m or n is 2, the plurality of R 13 or R 14 may be the same group or different groups.
  • R 13 and R 14 include an alkyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group, an arylamino group, or a monovalent heterocyclic group. Of these, an alkyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group or an arylamino group is preferable, and an alkyl group or an aryl group is more preferable.
  • R 13 and R 14 are preferably suitably changed depending on the carrier organic thin film to be transported comprising a fused ring compound.
  • an electron donating group such as an arylamino group is preferable for increasing the hole transport property of the organic thin film
  • an electron withdrawing group such as a fluoroalkyl group or a fluoroalkoxy group is preferable from the viewpoint of increasing the electron transport property.
  • a polymerizable functional group is also mentioned as a monovalent group represented by R 13 and R 14 .
  • the condensed ring compound represented by the general formula (1) is suitable as a raw material for the polymer described later.
  • the condensed ring compound represented by the general formula (1) is suitable as a raw material for the polymer described later.
  • the condensed ring compound represented by the general formula (1) is suitable as a raw material for the polymer described later.
  • R 13 and R 14 is preferably a group as defined above other than a polymerizable functional group.
  • the polymerizable functional group refers to a group capable of causing a polymerization reaction with another polymerizable functional group.
  • the polymerizable functional group include a Wittig reaction, a Heck reaction, a Horner-Wadsworth-Emmons reaction, a Knoevenagel reaction, a Suzuki coupling reaction, a Grindard reaction, a Stille reaction, and a polymerization reaction using a Ni (0) catalyst.
  • it refers to a group that can react with other polymerizable functional groups to form a bond.
  • polymerizable functional groups examples include halogen atoms, alkyl sulfonate groups, aryl sulfonate groups, aryl alkyl sulfonate groups, alkylstannyl groups, arylstannyl groups, arylalkylstannyl groups, boric acid ester residues, Examples thereof include a sulfonium methyl group, a phosphonium methyl group, a phosphonate methyl group, a monohalogenated methyl group, a boric acid residue (—B (OH) 2 ), a formyl group, and a vinyl group.
  • a halogen atom, an alkylstannyl group or a borate ester residue is preferred.
  • R is an alkyl group or an aryl group, and two Rs may be bonded to form a ring.
  • the boric acid residue means a group in which a hydroxyl group is substituted for boron.
  • the boric acid ester residue is a monovalent group having a structure in which one of the bonds of the boron atom in the boric acid ester is replaced with a bonding bond for substitution, for example, the following formula (100a) to And a group represented by (100d).
  • Y 11 and Y 12 are each independently the formulas (2a), (2b), (2c), (2d), (2e), (2f), (2g) or ( 2h) (hereinafter expressed as “(2a) to (2h)”).
  • R 21 and R 22 in these divalent groups are each independently a hydrogen atom or a monovalent group. Examples of the monovalent group include a halogen atom in addition to the groups similar to R 11 and R 12 described above.
  • the group represented by the above formula (2h) has an asymmetric structure, the direction in which the bonding chain is bonded is not particularly limited.
  • the formula (2a), (2b), 2 divalent group is preferably represented by (2c) or (2h), the formula (2a), (2b) or ( The divalent group represented by 2c) is more preferable.
  • Y 11 and Y 12 are divalent groups represented by the above formula (2a), (2b) or (2c), a ring structure containing them (having R 11 and R 12 as substituents)
  • the two 5-membered rings fused to the benzene ring are each a thiophene ring, a furan ring or a pyrrole ring.
  • Y 11 and Y 12 are a divalent group represented by the above formula (2a) (that is, the ring structure is a thiophene ring) because good charge transportability is obtained.
  • Y 13 and Y 14 are each independently the formulas (2a), (2b), (2c), (2d), (2e), (2f), (2g), ( 2h) or (2i) (hereinafter referred to as “(2a) to (2i)”).
  • R 21 in these divalent groups, R 22, R 23 and R 24 each independently represent a hydrogen atom or a monovalent group, and R 23 and R 24, bonded to each other to form a ring It may be.
  • the monovalent group include a halogen atom in addition to the groups similar to R 11 and R 12 described above. Note that, as described above, the direction of bonding of the bonding chain of the group represented by the formula (2h) is not particularly limited.
  • Y 13 and Y 14 the formula (2a), (2b), , (2c), (2h) or a divalent group preferably represented by (2i), the formula (2a) ( The divalent group represented by 2b), (2c) or (2i) is more preferable.
  • Y 13 and Y 14 are divalent groups represented by the above formula (2a), (2b), (2c) or (2i)
  • a ring structure containing them Y 11 or Y 12 is represented by Two 5-membered rings or 6-membered rings fused to the ring structure to be included are a thiophene ring, a furan ring, a pyrrole ring, or a benzene ring, respectively.
  • Y 13 and Y 14 are a divalent group represented by the above formula (2a) (that is, the ring structure is a thiophene ring) or a divalent group represented by the above formula (2i). (That is, the ring structure is a benzene ring), and when Y 13 and Y 14 are a divalent group represented by the above formula (2i), a particularly good charge transport property can be obtained. preferable.
  • condensed ring compound as described above include compounds represented by the following general formula (1a) or (1b).
  • R ⁇ 11 >, R ⁇ 12 >, R ⁇ 13 >, R ⁇ 14 >, n, and m in the following formula are all as defined above.
  • the polymer of this embodiment has a structural unit represented by the general formula (3).
  • this structural unit is included as at least one of the structural units constituting the main chain of the polymer.
  • the structural unit represented by the general formula (3) is preferably contained in an amount of 30 mol% or more of all the structural units constituting the main chain of the polymer. , 50 mol% or more is more preferable.
  • R 31 , R 32 , R 33 , R 34 , Y 31 , Y 32 , Y 33, and Y 34 may be R 11 , R 12 , R 13 , The same groups as R 14 , Y 11 , Y 12 , Y 13 and Y 14 are preferred.
  • R 33 and R 34 are preferably groups other than the polymerizable functional groups described above.
  • the polymer means a polymer having two or more structural units formed from one monomer, and includes both those usually classified into oligomers and polymers.
  • the polymer of the present embodiment may be composed only of the structural unit represented by the general formula (3) or may further include another monomer unit.
  • a plurality of structural units of the general formula (3) are included, but the plurality of structural units of the general formula (3) may have the same structure or different structures. Also good.
  • the plurality of structural units of the general formula (3) are each preferably the same structure.
  • the polymer preferably further includes the structural unit of the general formula (5) as a structural unit constituting the main chain.
  • the structural unit of the general formula (5) the charge transport property by the polymer is further improved, and the solubility in a solvent, mechanical strength, heat resistance, and the like are also improved.
  • the group represented by Ar 5 in the structural unit of the general formula (5) is a divalent aromatic hydrocarbon group which may have a substituent or a divalent heterocyclic ring which may have a substituent. It is a group.
  • a divalent aromatic hydrocarbon group or divalent heterocyclic group is a group having a structure in which two substitution positions in an aromatic hydrocarbon or heterocyclic ring are provided for bonding in a polymer, that is, aromatic It is a group composed of the remaining atomic group obtained by removing two hydrogen atoms from a hydrocarbon or heterocyclic ring.
  • the divalent aromatic hydrocarbon group constituting the group represented by Ar 5 is preferably a divalent aromatic group (monocyclic or condensed ring) formed of C6 to 60, more preferably C6 to 20 Groups are preferred.
  • the condensed ring include naphthalene ring, anthracene ring, tetracene ring, pentacene ring, pyrene ring, perylene ring, fluorene ring and the like.
  • an aromatic ring which comprises this aromatic hydrocarbon group a benzene ring, a pentacene ring, a pyrene ring, or a fluorene ring is preferable.
  • the aromatic hydrocarbon group may further have a substituent as described above.
  • substituents include a halogen atom, a saturated or unsaturated hydrocarbon group, an aryl group, an alkoxy group, an aryloxy group, a monovalent heterocyclic group, an amino group, a nitro group, and a cyano group.
  • the divalent heterocyclic group is preferably a divalent group formed from a C3-60, more preferably a C3-20 heterocyclic ring.
  • the divalent heterocyclic group includes, for example, a compound in which 2 to 6 thiophene rings are condensed such as thiophene, thienothiophene or dithienothiophene, two hydrogen atoms from thiazole, pyrrole, pyridine, pyrimidine, pyrazine, triazine, etc.
  • Such a divalent heterocyclic group may further have a substituent, and examples of such a substituent include the same substituents as the aromatic hydrocarbon group described above.
  • the group represented by Ar 5 is preferably a group represented by the general formula (6).
  • the group represented by Y 6 in general formula (6) the same as Y 11 or Y 12 in the general formula (1) are preferred.
  • Y 6 in the group represented by the general formula (6) is preferably a group represented by the general formula (7a).
  • the polymer contains both the structural unit represented by the above general formula (3) and the structural unit represented by the above general formula (5), these suitable ratios in the polymer are represented by the general formula (3).
  • the ratio of the structural unit of the general formula (5) is preferably 10 to 1000 mol, more preferably 25 to 400 mol, and still more preferably 50 to 200 mol, per 100 mol of the monomer unit.
  • a polymer containing a combination of the structural unit represented by the general formula (3) and the structural unit represented by the general formula (5) is preferable.
  • these structural units may be copolymerized randomly or may be copolymerized in blocks. Examples of such a polymer include those having a structure represented by the following general formula (10a) or (10b).
  • R 31 to R 34 , Y 31 to Y 34 and Ar 5 are all as defined above.
  • k is an integer of 1 to 10. When k is 2 or more and there are a plurality of Ar 5 , they may be the same or different.
  • A is an integer of preferably 2 to 500, more preferably 3 to 20.
  • b is preferably an integer of 1 to 500, more preferably 2 to 20.
  • Y 31 and Y 32 are both sulfide groups
  • Y 33 and Y 34 are both vinylene groups
  • R 31 and R 32 are each independently an alkyl group or an aryl group (preferably Particularly preferred are those in which R 33 and R 34 are hydrogen atoms.
  • the terminal group of such a polymer is not particularly limited, and examples thereof include an electron-withdrawing group or an electron-donating group such as a hydrogen atom, an alkyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group, and a heterocyclic group. It is done. From the viewpoint of enhancing the electron transport property of the polymer, the terminal group is preferably an electron withdrawing group such as a fluoroalkyl group or a fluoroalkoxy group.
  • the terminal group may have a structure that can be conjugated with a conjugated structure of the main chain, and examples thereof include an aryl group having a unsaturated bond at a bonding site with the main chain or a monovalent heterocyclic group. It is done.
  • the fused ring compound having a polymerizable functional group as the group represented by R 13 and R 14 in the general formula (1) as a raw material monomer in the manufacture of the polymer polymerized
  • the polymerizable functional group remains at the later end.
  • the terminal composed of this polymerizable functional group may reduce durability and the like when an organic thin film is formed. Therefore, in the polymer, it is preferable to protect the polymerizable functional group with a stable group.
  • polymers represented by the following general formulas (11a) to (11p) are preferable as the polymer of the present embodiment.
  • R 31 to R 34 are as defined above.
  • R 111 and R 112 are each independently the terminal group described above.
  • R 113 represents a monovalent group.
  • R 114 and R 115 each independently represent a hydrogen atom or a monovalent group. Examples of these monovalent groups include the same groups as R 13 and R 14 in the general formula (1). Of these, an alkyl group or an alkoxy group is preferable, and an alkyl group is more preferable.
  • d represents an integer of 1 ⁇ 500
  • e is an integer of up to the number of substitutable positions in the ring 0 ⁇ R 113 are bonded.
  • f represents an integer of 1 to 3
  • g represents an integer of 0 to 3.
  • e, f or g is 2 or more, there are a plurality of groups or structural units in parentheses to which these are attached, but they may be the same or different.
  • the value of d is preferably selected as appropriate according to the method for forming the organic thin film using the polymer.
  • the polymer is an oligomer in which d is preferably 1 to 10, more preferably 2 to 10, and further preferably 2 to 5. Is preferred.
  • d is preferably 3 to 500, more preferably 6 to 300, still more preferably 20 to 200 as the polymer. It is.
  • the number average molecular weight in terms of polystyrene of the polymer preferable to be 1 ⁇ 10 3 ⁇ 1 ⁇ 10 8, 1 ⁇ 10 4 ⁇ 1 ⁇ 10 6 is more preferable.
  • the polymer has a structure in which a plurality of structural units in parentheses in each of the above general formulas are repeated.
  • the plurality of structural units have different structures even though they have the same structure. You may have. That is, functional groups such as R 113 ⁇ R 115 in the structural unit may be the same or different for each repeating unit. However, from the viewpoint of easily producing the polymer, it is preferable that all the structural units have the same structure.
  • the condensed ring compound can be obtained by reacting the compound represented by the general formula (8a) with the compound represented by the general formula (8b) in the presence of a base and a metal complex catalyst. In such a production method, a reaction occurs between the group represented by X 81 and X 82 in the compound of the general formula (8a) and the triple bond in the compound of the general formula (8b). Two condensed rings in the compound of formula (8a) are bridged to form a 6-membered ring structure between them. In addition, it is preferable to perform this reaction in inert gas atmosphere, such as nitrogen and argon.
  • inert gas atmosphere such as nitrogen and argon.
  • R 83 , R 84 , Y 81 , Y 82 , Y 83, and Y 84 may be R 13 , R 14 , Y 11 , Y 12 , Y in the general formula (1). 13 and from each other similar to the groups represented by Y 14 can be applied.
  • X 81 and X 82 are each independently a hydrogen atom or a halogen atom, when both are halogen atom. More specifically, at least one of X 81 and X 82 is preferably an iodine atom, and more preferably both are iodine atoms.
  • Examples of the metal complex catalyst in the above reaction include a palladium complex, a nickel complex, a platinum complex, a ruthenium complex, a rhodium complex, and an iridium complex.
  • a palladium complex or a nickel complex is preferable, and a palladium complex is more preferable.
  • the palladium complex include a divalent palladium complex and a palladium complex compound having an electron donating ligand.
  • Examples of the divalent palladium complex include palladium acetate, palladium chloride, sodium palladium acid, potassium palladium acid and the like, and palladium acetate is preferable.
  • Examples of the palladium complex compound having an electron-donating ligand include tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, tris (dibenzylideneacetone) dipalladium, and tetrakis (triphenylphosphine). Phosphine) palladium is preferred.
  • the metal complex catalyst is preferably 0.01 to 50 mol%, more preferably 1.0 to 20 mol%, still more preferably 3 to 15 mol%, based on the compound represented by the general formula (8a) as a raw material. Use.
  • both an inorganic base and an organic base can be applied, and an organic base is more preferable.
  • the inorganic base include alkali metal or alkaline earth metal hydroxides, carbonates, ammonium salts, acetates, and the like.
  • the organic base include trialkylamines, dialkylarylamines, alkyldiarylamines containing C1-20 alkyl groups, amines such as triarylamines, and pyridine.
  • organic base examples include trimethylamine, triethylamine, diisopropylethylamine, tri-n-propylamine, tributylamine, dicyclohexylmethylamine, pyridine, 2,3-lutidine, 2,4-lutidine, and 2,5-lutidine.
  • amines are particularly preferable. By using amines as the base, the formation of by-products during the reaction can be suppressed, and the desired condensed ring compound can be obtained in a high yield.
  • alkylamines particularly trialkylamines are preferred.
  • the above-described reaction can also be performed in a solvent.
  • a solvent inert to the reaction by the metal complex catalyst is preferable.
  • toluene, dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), tetrahydrofuran (THF), dioxane, isopropyl alcohol, acetonitrile, pinacolone and the like can be mentioned.
  • toluene, NMP or dioxane is preferable.
  • the amount of the solvent used is not particularly limited.
  • the amount is preferably 1 to 100 times, more preferably 2 to 30 times the weight of the compound represented by the general formula (8a) as the raw material. it can.
  • the reaction time is not particularly limited, and the reaction can be terminated when one of the compound represented by the general formula (8a) and the compound represented by the general formula (8b) disappears.
  • the time taken from the start to the end of the reaction is about 0.5 to 200 hours.
  • the reaction temperature can be appropriately set in the range of ⁇ 50 to 300 ° C., and preferably about 50 to 150 ° C.
  • a condensed ring compound can be obtained satisfactorily by the production method described above.
  • a reaction represented by the following reaction formula occurs, and a condensed ring compound represented by the following general formula (8c) is obtained.
  • the polymer can be obtained by polymerizing a monomer represented by the following general formula (13a) and a monomer represented by the following general formula (13b).
  • R 31 to R 34 , Y 31 , Y 32 , Y 33 and Y 34 are all as defined above.
  • R 131 to R 134 are each independently a polymerizable functional group.
  • R 33 and R 34 preferably from non-polymerizable functional groups.
  • examples of the polymerizable functional group include the same groups as those exemplified as the polymerizable functional groups for R 13 and R 14 in the general formula (1).
  • reaction for forming a bond between the compounds represented by the formula (13b) is repeatedly generated.
  • the reaction for forming a bond between the above compounds include Wittig reaction, Heck reaction, Horner-Wadsworth-Emmons reaction, Knoevenagel reaction, Suzuki coupling reaction, Grindard reaction, Stille reaction, and polymerization using Ni (0) catalyst. Reaction etc. are mentioned.
  • a reaction by decomposition of an intermediate compound having an appropriate leaving group can also be applied.
  • An example is a method of synthesizing poly (p-phenylene vinylene) from an intermediate compound having a sulfonium group.
  • the polymerizable functional group of R 131 to R 134 is preferably selected as appropriate according to the target reaction.
  • the polymer may be formed by a method other than the reaction with a polymerizable functional group. For example, a method in which condensed ring compounds in which m and n are 0 in the above general formula (1) are repeatedly bonded by an oxidation polymerization reaction using FeCl 3 or a polymerization reaction by electrochemical oxidation, etc.
  • the Suzuki coupling reaction, Grindard reaction, Stille reaction, and polymerization reaction using a Ni (0) catalyst are easy to control the structure, and the preparation of raw materials is relatively It is preferable because it is easy and the reaction operation is simple.
  • An oxidative polymerization reaction using FeCl 3 is also preferable because the preparation of raw materials is relatively easy and the reaction operation is simple.
  • combinations of polymerizable functional groups suitable for these reactions include a combination of a boric acid residue or a boric acid ester residue and a halogen atom in the case of the Suzuki coupling reaction.
  • the combination of a halomagnesium carbanion and a halogen atom is mentioned.
  • a combination of an alkylstannyl group and a halogen atom is exemplified, and in the case of a polymerization reaction using a Ni (0) catalyst, a combination of halogen atoms is exemplified.
  • the reaction for obtaining the polymer is preferably performed in an inert atmosphere in order to suppress side reactions. Further, from the viewpoint of obtaining a high-purity organic thin film from the polymer, it is desirable to purify the raw material monomer by various methods such as distillation, sublimation, and recrystallization. Further, after the reaction, the target product, the polymer, is extracted from the extract after extraction with an organic solvent and the solvent is distilled off. This polymer is further purified by means such as chromatography and recrystallization. It is preferable to do.
  • Each of the above reactions can occur in a solution in which the raw material monomer is dissolved in a solvent.
  • Suitable solvents vary depending on the reaction to be generated.
  • saturated hydrocarbons such as pentane, hexane, heptane, octane and cyclohexane
  • aromatic hydrocarbons such as benzene, toluene, ethylbenzene and xylene, carbon tetrachloride, chloroform
  • Halogenated saturated hydrocarbons such as dichloromethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane
  • halogenated aromatic hydrocarbons such as chlorobenzene, dichlorobenzene and trichlorobenzene
  • methanol Alcohols such as ethanol, propanol, isopropyl alcohol, butanol, t-butyl alcohol, carboxylic acids such as formic acid,
  • the organic thin film has a configuration having a film shape including the fused ring compound or polymer of the above-described embodiment.
  • the organic thin film may contain only one of the condensed ring compound and the polymer, or may contain both of them.
  • the organic thin film may contain two or more condensed ring compounds or polymers in combination.
  • the organic thin film may be composed only of a condensed ring compound or a polymer, or may further comprise other components.
  • the suitable thickness of such an organic thin film varies depending on the element to which the organic thin film is applied, but is usually in the range of 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, and more preferably 5 nm to 500 nm. 20 nm to 200 nm is more preferable.
  • the organic thin film when the organic thin film further contains a component other than the condensed ring compound or a polymer thereof, the organic thin film preferably contains at least 30% by mass of any of the condensed ring compound and the polymer, and preferably contains 50% by mass or more. More preferred. When the content of either the condensed ring compound or the polymer is less than 30% by mass, good charge mobility tends to be difficult to obtain.
  • the organic thin film may further contain a compound having a hole transport property or an electron transport property in order to obtain excellent charge (hole or electron) mobility.
  • the compound having a hole transporting property include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, aromatics in side chains or main chains.
  • Examples thereof include polysiloxane derivatives having a group amine, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, or polythienylene vinylene and derivatives thereof.
  • Examples of the compound having an electron transporting property include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinones and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof. , fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, fullerenes such as C 60 and a Examples thereof include derivatives.
  • the organic thin film may further contain other components in order to improve its properties.
  • other components include charge generation materials.
  • the organic thin film contains a charge generation material, the thin film absorbs light to generate charges, which is suitable for applications such as an optical sensor that requires charge generation by light absorption.
  • charge generation materials include azo compounds and derivatives thereof, diazo compounds and derivatives thereof, metal-free phthalocyanine compounds and derivatives thereof, metal phthalocyanine compounds and derivatives thereof, perylene compounds and derivatives thereof, polycyclic quinone compounds and derivatives thereof, squarylium compound and a derivative thereof, an azulenium compound and a derivative thereof, a thiapyrylium compound and a derivative thereof, and fullerenes such as C 60 and derivatives thereof.
  • the organic thin film further includes a sensitizer for sensitizing the charge generation function of the above-described charge generation material, a stabilizer for stabilizing the thin film, a UV absorber for absorbing UV light, and the like. May be included.
  • the organic thin film may further contain a polymer compound other than the condensed ring compound or the polymer as a polymer binder from the viewpoint of increasing its mechanical strength.
  • a polymer binder those that do not excessively reduce the charge transportability are preferable, and those that do not excessively absorb visible light are preferable.
  • polymer binder examples include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, and poly (2,5-thienylene vinylene) and derivatives thereof.
  • the organic thin film mentioned above can be manufactured by the following methods, for example.
  • the organic thin film is formed by applying a solution obtained by dissolving a condensed ring compound and / or a polymer and other components described above in a solvent as necessary onto a predetermined substrate, and then volatilizing the solvent. It can form by removing by.
  • the solvent is preferably a solvent that can dissolve or uniformly disperse the condensed ring compound or polymer and other components.
  • solvents include aromatic hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, n-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, Halogenated saturated hydrocarbon solvents such as chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane, halogenated aromatic hydrocarbon solvents such as chlorobenzene, dichlorobenzene and trichlorobenzene, ether solvents such as tetrahydrofuran and tetrahydropyran, etc. Can be illustrated.
  • the condensed ring compound or polymer is preferably
  • Examples of the method for applying the solution include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, and screen printing. , Flexographic printing method, offset printing method, inkjet printing method, dispenser printing method and the like. Of these, spin coating, flexographic printing, inkjet printing, or dispenser printing are preferred.
  • the method for producing the organic thin film is not necessarily limited thereto.
  • a vapor phase growth method such as a vacuum vapor deposition method can be applied.
  • the organic thin film may be further subjected to a step of orienting the condensed ring compound or polymer in the organic thin film according to its use.
  • a step of orienting the condensed ring compound or polymer in the organic thin film according to its use.
  • condensed ring compounds and polymers (main chain or side chain) in the organic thin film are arranged in a certain direction, and the charge transport property of the organic thin film is further enhanced.
  • an alignment method of the organic thin film a method usually used for alignment of liquid crystal or the like can be applied. Specifically, a rubbing method, a photo-alignment method, a sharing method (shear stress application method), a pulling application method, and the like are preferable because they are simple and useful, and a rubbing method or a sharing method is more preferable.
  • Organic thin film element Since the organic thin film of the above-described embodiment includes the condensed ring compound and / or polymer of the above-described embodiment, the organic thin film has excellent charge (electron or hole) transportability. Therefore, this organic thin film can efficiently transport electrons or holes injected from electrodes or the like, or electric charges generated by light absorption, etc., and can be used for various electric elements (organic thin film elements) using the organic thin film. Can be applied. Hereinafter, examples of organic thin film elements will be described.
  • the organic thin film transistor includes a source electrode and a drain electrode, an organic thin film layer (active layer) containing the condensed ring compound and / or polymer of the present invention, and a gate electrode for controlling the amount of current passing through the current path.
  • a source electrode and a drain electrode an organic thin film layer (active layer) containing the condensed ring compound and / or polymer of the present invention
  • a gate electrode for controlling the amount of current passing through the current path.
  • Any structure provided may be used, and field effect type, electrostatic induction type and the like are exemplified.
  • the field effect organic thin film transistor controls the amount of current passing through the source electrode and the drain electrode, the organic thin film layer (active layer) containing the condensed ring compound and / or polymer of the present invention, and the current path between them. It is preferable to include a gate electrode and an insulating layer disposed between the active layer and the gate electrode.
  • the source electrode and the drain electrode are provided in contact with the organic thin film layer (active layer) containing the condensed ring compound and / or polymer of the present invention, and the gate is sandwiched between the insulating layers in contact with the organic thin film layer. It is preferable that an electrode is provided.
  • the electrostatic induction type organic thin film transistor controls the amount of current passing through the source electrode and the drain electrode, the organic thin film layer containing the condensed ring compound and / or polymer of the present invention as a current path therebetween, and the current path.
  • a gate electrode and the gate electrode is provided in the organic thin film layer.
  • the source electrode, the drain electrode, and the gate electrode provided in the organic thin film layer are preferably provided in contact with the organic thin film layer containing the condensed ring compound and / or polymer of the present invention.
  • the structure of the gate electrode may be any structure as long as a current path flowing from the source electrode to the drain electrode is formed and the amount of current flowing through the current path can be controlled by a voltage applied to the gate electrode. It is done.
  • FIG. 1 is a schematic cross-sectional view of an organic thin film transistor (field effect organic thin film transistor) according to a first embodiment.
  • An organic thin film transistor 100 shown in FIG. 1 includes a substrate 1, a source electrode 5 and a drain electrode 6 formed on the substrate 1 with a predetermined interval, and a source electrode 5 and a drain electrode 6 so as to cover the substrate 1. Formed on the insulating layer 3 so as to cover the region of the insulating layer 3 between the source electrode 5 and the drain electrode 6, the insulating layer 3 formed on the active layer 2, and the insulating layer 3 formed between the source electrode 5 and the drain electrode 6. And a gate electrode 4.
  • FIG. 2 is a schematic cross-sectional view of an organic thin film transistor (field effect organic thin film transistor) according to a second embodiment.
  • An organic thin film transistor 110 shown in FIG. 2 includes a substrate 1, a source electrode 5 formed on the substrate 1, an active layer 2 formed on the substrate 1 so as to cover the source electrode 5, a source electrode 5 and a predetermined electrode.
  • the drain electrode 6 formed on the active layer 2 with an interval of the insulating layer 3 formed on the active layer 2 and the drain electrode 6, and the insulating layer 3 between the source electrode 5 and the drain electrode 6.
  • a gate electrode 4 formed on the insulating layer 3 so as to cover the region.
  • FIG. 3 is a schematic cross-sectional view of an organic thin film transistor (field effect organic thin film transistor) according to a third embodiment.
  • the organic thin film transistor 120 shown in FIG. 3 includes a substrate 1, an active layer 2 formed on the substrate 1, a source electrode 5 and a drain electrode 6 formed on the active layer 2 with a predetermined interval, and a source electrode. 5 and the drain electrode 6 so as to partially cover the insulating layer 3 formed on the active layer 2, the region of the insulating layer 3 where the source electrode 5 is formed below, and the drain electrode 6 are formed below.
  • a gate electrode 4 formed on the insulating layer 3 so as to partially cover the region of the insulating layer 3.
  • FIG. 4 is a schematic cross-sectional view of an organic thin film transistor (field effect organic thin film transistor) according to a fourth embodiment.
  • 4 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom.
  • an active layer 2 formed on the insulating layer 3 so as to cover it.
  • FIG. 5 is a schematic cross-sectional view of an organic thin film transistor (field effect organic thin film transistor) according to a fifth embodiment.
  • An organic thin film transistor 140 shown in FIG. 5 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom.
  • a source electrode 5 formed on the insulating layer 3 so as to partially cover the region of the insulating layer 3 formed on the active layer 2 and an active layer 2 formed on the insulating layer 3 so as to partially cover the source electrode 5.
  • a drain electrode 6 formed on the insulating layer 3 at a predetermined interval so as to partially cover the region of the active layer 2 formed below the gate electrode 4 It is.
  • FIG. 6 is a schematic cross-sectional view of an organic thin film transistor (field effect organic thin film transistor) according to a sixth embodiment.
  • An organic thin film transistor 150 shown in FIG. 6 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and the gate electrode 4 at the bottom.
  • the active layer 2 is formed on the insulating layer 3 so as to partially cover the region of the active layer 2 formed under the active layer 2 and the gate electrode 4 formed below.
  • the source electrode 5 and the drain electrode 6 formed on the insulating layer 3 with a predetermined distance from the source electrode 5 so as to partially cover the region of the active layer 2 where the gate electrode 4 is formed below. , Are provided.
  • FIG. 7 is a schematic cross-sectional view of an organic thin film transistor (static induction organic thin film transistor) according to a seventh embodiment.
  • the organic thin film transistor 160 shown in FIG. 7 includes a substrate 1, a source electrode 5 formed on the substrate 1, an active layer 2 formed on the source electrode 5, and a plurality on the active layer 2 with a predetermined interval.
  • a drain electrode 6 formed on the active layer 2a.
  • the active layer 2 and / or the active layer 2a contain the condensed ring compound and / or polymer of the present invention, and the source electrode 5 and the drain electrode 6 It becomes a current passage (channel).
  • the gate electrode 4 controls the amount of current passing through the current path (channel) in the active layer 2 and / or the active layer 2a by applying a voltage.
  • Such a field effect organic thin film transistor can be manufactured by a known method, for example, a method described in JP-A-5-110069.
  • the electrostatic induction organic thin film transistor can be produced by a known method, for example, a method described in JP-A-2004-006476.
  • the substrate 1 is not particularly limited as long as the characteristics as an organic thin film transistor are not impaired, but a glass substrate, a flexible film substrate, or a plastic substrate can be used.
  • the active layer 2 When forming the active layer 2, it is very advantageous and preferable to use an organic solvent-soluble compound, so that the active layer 2 is formed by using the organic thin film manufacturing method of the present invention described above. An organic thin film can be formed.
  • the insulating layer 3 in contact with the active layer 2 is not particularly limited as long as it is a material having high electrical insulation, and a known material can be used.
  • a known material can be used.
  • the surface of the insulating layer 3 is treated with a surface treatment agent such as a silane coupling agent in order to improve the interface characteristics between the insulating layer 3 and the active layer 2. It is also possible to form the active layer 2 after the modification.
  • a surface treatment agent such as a silane coupling agent
  • the surface treatment agent include silylamine compounds such as long-chain alkylchlorosilanes, long-chain alkylalkoxysilanes, fluorinated alkylchlorosilanes, fluorinated alkylalkoxysilanes, and hexamethyldisilazane.
  • the surface of the insulating layer can be treated with ozone UV or O 2 plasma.
  • a protective film on the organic thin film transistor after the organic thin film transistor is manufactured in order to protect the element.
  • an organic thin-film transistor is interrupted
  • the influence from the process of forming the display device driven on an organic thin-film transistor with a protective film can be reduced.
  • a method for forming a protective film for example, a method of covering with SiON x film of UV curable resin, thermosetting resin or inorganic.
  • a method of covering with SiON x film of UV curable resin, thermosetting resin or inorganic In order to effectively cut off from the atmosphere, it is preferable to perform the steps from the preparation of the organic thin film transistor to the formation of the protective film without exposure to the atmosphere (for example, in a dry nitrogen atmosphere or in a vacuum).
  • FIG. 8 is a schematic cross-sectional view of the solar cell according to the embodiment.
  • a solar cell 200 shown in FIG. 8 includes a substrate 1, a first electrode 7a formed on the substrate 1, and a condensed ring compound and / or polymer of the present invention formed on the first electrode 7a.
  • An active layer 2 made of an organic thin film and a second electrode 7b formed on the active layer 2 are provided.
  • a transparent or translucent electrode is used for one of the first electrode 7a and the second electrode 7b.
  • an electrode material a metal such as aluminum, gold, silver, copper, alkali metal, alkaline earth metal, or a translucent film or a transparent conductive film thereof can be used.
  • each electrode is preferably selected so that the difference in work function is large.
  • a charge generating agent, a sensitizer and the like can be added and used in order to increase photosensitivity.
  • the substrate 1 a silicon substrate, a glass substrate, a plastic substrate, or the like can be used.
  • FIG. 9 is a schematic cross-sectional view of the photosensor according to the first embodiment.
  • the optical sensor 300 shown in FIG. 9 includes the substrate 1, the first electrode 7a formed on the substrate 1, and the condensed ring compound and / or polymer of the present invention formed on the first electrode 7a.
  • An active layer 2 made of an organic thin film, a charge generation layer 8 formed on the active layer 2, and a second electrode 7b formed on the charge generation layer 8 are provided.
  • FIG. 10 is a schematic cross-sectional view of an optical sensor according to the second embodiment.
  • An optical sensor 310 illustrated in FIG. 10 is formed on the substrate 1, the first electrode 7a formed on the substrate 1, the charge generation layer 8 formed on the first electrode 7a, and the charge generation layer 8.
  • the active layer 2 made of an organic thin film containing the fused ring compound and / or polymer of the present invention, and a second electrode 7b formed on the active layer 2 are provided.
  • FIG. 11 is a schematic cross-sectional view of an optical sensor according to the third embodiment.
  • An optical sensor 320 shown in FIG. 11 includes a substrate 1, a first electrode 7a formed on the substrate 1, and a condensed ring compound and / or polymer of the present invention formed on the first electrode 7a.
  • An active layer 2 made of an organic thin film and a second electrode 7b formed on the active layer 2 are provided.
  • a transparent or translucent electrode is used as one of the first electrode 7a and the second electrode 7b.
  • the charge generation layer 8 is a layer that absorbs light and generates charges.
  • a metal such as aluminum, gold, silver, copper, alkali metal, alkaline earth metal, or a translucent film or a transparent conductive film thereof can be used.
  • the active layer 2 organic thin film
  • a carrier generating agent, a sensitizer and the like can be added and used in order to increase photosensitivity.
  • the base material 1 a silicon substrate, a glass substrate, a plastic substrate, etc. can be used as the base material 1.
  • the organic thin film element is not limited to the above-described embodiment as long as it is an electric element to which the organic thin film is applied.
  • organic thin film elements other than the above include organic EL elements, organic memories, photorefractive elements, spatial light modulators, and image sensors.
  • Example 2 Synthesis of 2,9-dibromo-5,6-di (n-decanyl) benzo [2,1-b: 3,4-b ′] bis [1] benzothiophene To a two-necked flask, add 6,6′-dibromo-3,3′-diiodo-2,2′-bibenzo [b] thiophene, 1,2-didecanylethyne, palladium acetate, N, N-dicyclohexylmethylamine and DMF The inside of the reaction vessel is purged with nitrogen, and heated and stirred to react.
  • Example 3 Synthesis of poly (5,6-di (n-decanyl) benzo [2,1-b: 3,4-b ′] bis [1] benzothiophene) In a two-neck flask, 2,9-dibromo-5,6-di (n- heptyl) benzo [2,1-b: 3,4-b '] bis [1] benzothiophene, Ni (COD) 2, 1 , 5-cyclooctadiene, bipyridyl and N, N-dimethylformamide are added, the inside of the reaction vessel is purged with nitrogen, and the mixture is reacted by stirring at 60 ° C.
  • Example 4 Production of organic thin film transistor and evaluation of its characteristics
  • An appropriate amount of the polymer A is weighed and chloroform is added thereto to prepare a chloroform solution, which is filtered through a membrane filter made of Teflon (registered trademark) to obtain a coating solution.
  • the substrate on which a thermally oxidized silicon oxide film serving as an insulating layer is formed on the surface of a highly doped n-type silicon substrate serving as a gate electrode is subjected to ultra-cleaning with an alkaline detergent, ultrapure water, or acetone. After sonic cleaning, the surface is cleaned by ozone UV irradiation. Hexamethyldisilazane (HMDS; manufactured by Hexamethyldisilazane, Aldrich) is dropped onto the cleaned substrate, and then the substrate surface is treated with HMDS by spinning. A chloroform solution (coating solution) of the above polymer A is dropped on the surface-treated substrate and then spun to form a polymer A thin film.
  • HMDS Hexamethyldisilazane
  • a Pt / Au electrode is deposited on the polymer A thin film by a vacuum deposition method using a metal mask to form a source electrode and a drain electrode to obtain an organic thin film transistor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Thin Film Transistor (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

 本発明は、十分な電荷輸送性を発揮し得るとともに、溶媒に対する優れた溶解性を有する縮合環化合物を提供することを目的とする。本発明の縮合環化合物は、下記一般式(1)で表されるものである。 【化1】 [式中、R11及びR12は、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキル部分の炭素数が3以上であるアルコキシカルボニル基、置換基を有していてもよいアリール基、置換基を有していてもよい1価の複素環基又はシアノ基を示し、R11及びR12の少なくとも一方は水素原子ではない。R13及びR14は、1価の基を示し、m及びnは、0~2の整数である。Y11、Y12、Y13及びY14は、S、O、N、Se、Te又は二重結合を含む所定の2価の基であり、Y11及びY12はこれを含む環が5員環となるように、Y13及びY14は、これを含む環が5又は6員環となるように選択される。]

Description

縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ
本発明は、縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタに関する。
有機半導体材料は、有機EL(エレクトロルミネッセンス)素子、有機トランジスタ、有機太陽電池、光センサ等の種々の有機薄膜素子に適用されることから、近年盛んに検討されている。これらの用途において優れた性能を得るために、有機半導体材料に対しては、電荷(電子又はホール)輸送性が高いことが求められる。高い電荷輸送性を得るためには、有機半導体材料において、π共役が広がった分子を用い、分子のパッキングを良好とし、分子間の相互作用を高めることが重要である。
このような観点から、高い電荷輸送性が得られる有機半導体材料として、ジチエノチオフェンを含む化合物(特許文献1)や、複数のチオフェン環が平面的に結合された化合物(非特許文献1参照)等が知られている。
特開2004-339516号公報 Z. Bao et al., 「Appl.Phys. Lett.」, 1996, 69, 4108.
しかしながら、上述した有機半導体材料として用いられる化合物は、いずれも分子の平面性が高く電荷輸送性にも優れるものであるが、これらの化合物は溶媒への溶解性が高くないため、有機薄膜等の形成が困難なものが多かった。一方、分子の平面性を低くすること等によって溶媒への溶解性を高めることも考えられるが、その場合、電荷輸送性が不十分となり易い傾向にあった。
そこで、本発明はこのような事情に鑑みてなされたものであり、十分な電荷輸送性を発揮し得るとともに、溶媒に対する優れた溶解性を有する縮合環化合物及び重合体を提供することを目的とする。本発明はまた、上記縮合環化合物の製造方法、上記縮合環化合物及び/又は重合体を用いた有機薄膜、並びに、この有機薄膜を備える有機薄膜素子及び有機薄膜トランジスタを提供することを目的とする。
上記目的を達成するため、本発明の縮合環化合物は、下記一般式(1)で表されることを特徴とする。
Figure JPOXMLDOC01-appb-C000010
[式中、R11及びR12は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキル部分の炭素数が3以上であるアルコキシカルボニル基、置換基を有していてもよいアリール基、置換基を有していてもよい1価の複素環基又はシアノ基を示す。ただし、R11及びR12の少なくとも一方は水素原子ではない。R13及びR14は、それぞれ独立に、1価の基を示し、m及びnは、それぞれ独立に、0~2の整数である。R13及びR14がそれぞれ複数存在する場合、それらは同一でも異なっていてもよい。Y11及びY12は、それぞれ独立に、下記式(2a)、(2b)、(2c)、(2d)、(2e)、(2f)、(2g)又は(2h)で表される2価の基であり、Y13及びY14は、それぞれ独立に、下記式(2a)、(2b)、(2c)、(2d)、(2e)、(2f)、(2g)、(2h)又は(2i)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000011
ただし、R21、R22R23及びR24は、それぞれ独立に、水素原子又は1価の基を示し、R23とR24とは、互いに結合して環を形成していてもよい。]
 上記構造を有する縮合環化合物は、5つの芳香環構造が縮合してπ共役が広がった構造を有していることから、有機薄膜等を形成した場合に高い電荷輸送性を発揮し得る。また、かかる縮合環化合物は、中央のベンゼン環構造に置換基が導入された構造を有している。そのため、溶媒等に対する溶解性も良好であり、有機薄膜等への加工が容易なものである。特に、本発明では、中央のベンゼン環に対し、2箇所において2つの環を有する縮合環が縮環した構造を有しているため、この縮環した環が1つの環であるものに比べて高い電荷輸送性が得られる傾向にある。したがって、本発明の縮合環化合物は、有機薄膜素子等における有機薄膜を形成するための有機半導体材料として有用である。
上記本発明の縮合環化合物において、Y11及びY12は、上記式(2a)で表される2価の基であり、Y13及びY14は、上記式(2i)で表される2価の基であると好ましい。これにより、縮合環化合物による電荷輸送性が更に良好になる。また、このような化合物は、合成が比較的容易であり、その原料が入手し易いという利点も有している。
さらに、R11及びR12は、それぞれ独立に、炭素数1~10のアルキル基又は炭素数6~20の置換基を有していてもよいアリール基であると好ましい。これにより、縮合環化合物の溶媒への溶解性が更に良好となる。
また、本発明の重合体は、下記一般式(3)で表される構造を構成単位として有することを特徴とする。
Figure JPOXMLDOC01-appb-C000012
[式中、R31及びR32は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキル部分の炭素数が3以上であるアルコキシカルボニル基、置換基を有していてもよいアリール基、置換基を有していてもよい1価の複素環基又はシアノ基を示す。ただし、R31及びR32の少なくとも一方は水素原子ではない。R33及びR34は、それぞれ独立に、水素原子又は1価の基を示す。Y31及びY32は、それぞれ独立に、下記式(4a)、(4b)、(4c)、(4d)、(4e)、(4f)、(4g)又は(4h)で表される2価の基であり、Y33及びY34は、それぞれ独立に、下記式(4a)、(4b)、(4c)、(4d)、(4e)、(4f)、(4g)、(4h)又は(4i)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000013
ただし、R41、R42、R43及びR44は、それぞれ独立に、水素原子又は1価の基を示し、R43とR44とは、互いに結合して環を形成していてもよい。]
このような重合体は、上記本発明の縮合環化合物と同様の縮合環構造を含むことから、優れた電荷移動度を有するとともに、溶媒に対する溶解性にも優れるものとなる。
また、本発明の重合体は、下記一般式(5)で表される構造単位を更に有するものであるとより好ましい。これにより、重合体の電荷移動度が更に優れるようになる。
Figure JPOXMLDOC01-appb-C000014
[式中、Arは、置換基を有していてもよい2価の芳香族炭化水素基又は置換基を有していてもよい2価の複素環基を示す。]
なかでも、上記Arは、下記一般式(6)で表される基であると好適である。こうすれば、重合体の電荷移動度が特に優れるようになる。
Figure JPOXMLDOC01-appb-C000015
[式中、R61及びR62は、それぞれ独立に、水素原子又は1価の基であり、R61とR62とが結合して環を形成してもよい。Yは、下記式(7a)、(7b)、(7c)、(7d)、(7e)、(7f)、(7g)、(7h)又は(7i)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000016
ただし、R71、R72、R73及びR74は、それぞれ独立に、水素原子又は1価の基を示し、R73とR74とは、互いに結合して環を形成していてもよい。]
本発明の重合体においては、Y31及びY32は、上記式(4a)で表される2価の基であり、Y33及びY34は、上記式(4i)で表される2価の基であり、一般式(6)で表される基におけるYは、上記式(7a)で表される2価の基であると好ましい。これにより、更に優れた電荷移動度及び溶解性が得られるようになる。
また、本発明による縮合環化合物の製造方法は、本発明の縮合環化合物を良好に形成する方法であって、塩基及び金属錯体触媒の存在下で、下記一般式(8a)で表される化合物と、下記一般式(8b)で表される化合物とを反応させて、下記一般式(8c)で表される縮合環化合物を得ることを特徴とする。
Figure JPOXMLDOC01-appb-C000017
[式中、X81及びX82は、それぞれ独立に水素原子又はハロゲン原子である。ただし、X81及びX82の少なくとも一方はハロゲン原子である。R81及びR82は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキル部分の炭素数が3以上であるアルコキシカルボニル基、置換基を有していてもよいアリール基、置換基を有していてもよい1価の複素環基又はシアノ基を示す。ただし、R81及びR82の少なくとも一方は水素原子ではない。R83及びR84は、それぞれ独立に1価の基を示し、p及びqは、それぞれ独立に0~2の整数である。ただし、R83及びR84がそれぞれ複数存在する場合、それらは同一でも異なっていてもよい。Y81及びY82は、それぞれ独立に、下記式(9a)、(9b)、(9c)、(9d)、(9e)、(9f)、(9g)又は(9h)で表される2価の基であり、Y83及びY84は、それぞれ独立に、下記式(9a)、(9b)、(9c)、(9d)、(9e)、(9f)、(9g)、(9h)又は(9i)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000018
 ただし、R91、R92、R93及びR94は、それぞれ独立に、水素原子又は1価の基を示し、R93とR94とは、互いに結合して環を形成していてもよい。]
このような縮合環化合物の製造方法によれば、上記式(8a)の化合物と上記式(8b)の化合物とを反応させただけで縮合環化合物を得ることができるため、簡便に本発明の縮合環化合物を得ることができる。
かかる製造方法において、Y81及びY82は、上記式(9a)で表される2価の基であり、Y83及びY84は、上記式(9i)で表される2価の基であると好ましい。これにより、更に電荷輸送性に優れる縮合環化合物が得られるようになる。また、このような化合物は合成が比較的容易であるため、かかる化合物を用いることにより、縮合環化合物を容易に製造することが可能となる。
また、X81及びX82は、少なくとも一方がハロゲン原子であるが、両方がハロゲン原子であるとより好ましい。特に、X81及びX82は、少なくとも一方がヨウ素原子であると更に好ましく、両方がヨウ素原子であると特に好ましい。こうすれば、上記一般式(8a)で表される化合物と上記一般式(8b)で表される化合物との反応が生じ易くなり、上記一般式(8c)で表される化合物が更に効率よく得られるようになる。
本発明はまた、本発明の縮合環化合物及び/又は重合体を含む有機薄膜を提供する。このような有機薄膜は、上記本発明の縮合環化合物及び/又は重合体を含むことから、優れた電荷輸送性を有しており、有機薄膜素子等に好適である。
本発明は更に、本発明の有機薄膜を備える有機薄膜素子を提供する。このような有機薄膜素子としては、有機薄膜トランジスタが好ましい。これらの有機薄膜素子は、本発明の電荷輸送性の高い有機薄膜を備えることから、優れた特性を発揮し得るものとなる。
本発明によれば、十分な電荷輸送性を発揮し得るとともに、溶媒に対する優れた溶解性を有する縮合環化合物及び重合体を提供することが可能となる。また、本発明によれば、上記縮合環化合物の好適な製造方法を提供することが可能となる。さらに、本発明によれば、上記縮合環化合物を用いて得られ、優れた電荷輸送性を有する有機薄膜、並びに、この有機薄膜を備える有機薄膜素子及び有機薄膜トランジスタを提供することが可能となる。
第1実施形態に係る有機薄膜トランジスタの模式断面図である。 第2実施形態に係る有機薄膜トランジスタの模式断面図である。 第3実施形態に係る有機薄膜トランジスタの模式断面図である。 第4実施形態に係る有機薄膜トランジスタの模式断面図である。 第5実施形態に係る有機薄膜トランジスタの模式断面図である。 第6実施形態に係る有機薄膜トランジスタの模式断面図である。 第7実施形態に係る有機薄膜トランジスタの模式断面図である。 実施形態に係る太陽電池の模式断面図である。 第1実施形態に係る光センサの模式断面図である。 第2実施形態に係る光センサの模式断面図である。 第3実施形態に係る光センサの模式断面図である。
符号の説明
1…基板、2…活性層、2a…活性層、3…絶縁層、4…ゲート電極、5…ソース電極、6…ドレイン電極、7a…第1の電極、7b…第2の電極、8…電荷発生層、100…第1実施形態に係る有機薄膜トランジスタ、110…第2実施形態に係る有機薄膜トランジスタ、120…第3実施形態に係る有機薄膜トランジスタ、130…第4実施形態に係る有機薄膜トランジスタ、140…第5実施形態に係る有機薄膜トランジスタ、150…第6実施形態に係る有機薄膜トランジスタ、160…第7実施形態に係る有機薄膜トランジスタ、200…実施形態に係る太陽電池、300…第1実施形態に係る光センサ、310…第2実施形態に係る光センサ、320…第3実施形態に係る光センサ。
以下、必要に応じて図面を参照することにより、本発明の好適な実施の形態について詳細に説明する。なお、図面の説明においては、同一の要素には同一の符号を付し、重複する説明は省略する。
[縮合環化合物]
 まず、好適な実施形態に係る縮合環化合物について説明する。本実施形態の縮合環化合物は、上記一般式(1)で表される化合物である。上記一般式(1)で表される化合物において、R11又はR12で表される基は、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキル部分の炭素数が3以上であるアルコキシカルボニル基、置換基を有していてもよいアリール基、置換基を有していてもよい1価の複素環基又はシアノ基である。R11及びR12の少なくとも一方は水素原子ではなく、これらの両方が水素原子でないことが好ましい。なお、アルキル基としては、直鎖状、分岐状及び環状のものが含まれる。また、上述した官能基は、当該官能基が有している水素原子の一部又は全てがハロゲン原子(特にフッ素原子)で置換されていてもよい。
ここで、アルキル基としては、炭素数1~20(「C1~20」と略す。以下同様)のものが好ましい。このようなアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロドデシル基等が挙げられる。なかでも、C1~16のアルキル基が好ましく、溶媒への溶解性をより良好に高める観点からは、C6~C12のアルキル基がより好ましい。例えば、ヘキシル基、ヘプチル基、オクチル基、デシル基又はシクロヘキシル基が好適である。
また、アルコキシ基、アルキルチオ基、アルキルアミノ基又はアルコキシカルボニル基としては、これらの有しているアルキル基がC1~20のアルキル基であるものが好適である。なお、アルコキシカルボニル基の有しているアルキル基の炭素数は3以上である。このC1~20のアルキル基としては、上述したのと同様のものが例示できる。
置換基を有していてもよいアリール基としては、C6~60のものが好ましい。例えば、フェニル基、C1~12のアルコキシ基を有するフェニル基、C1~12のアルキル基を有するフェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。なかでも、C6~20のアリール基が好ましく、C1~12のアルコキシ基を有するフェニル基又はC1~12のアルキル基を有するフェニル基が更に好適である。
置換基を有していてもよい1価の複素環基としては、C3~60のものが好ましい。例えば、チエニル基、C1~12のアルキル基を有するチエニル基、ピロリル基、フリル基、ピリジル基、C1~12のアルキル基を有するピリジル基等が挙げられる。なかでも、C3~20の複素環基が好ましく、チエニル基、C1~12のアルキル基を有するチエニル基、ピリジル基、又は、C1~12のアルキル基を有するピリジル基がより好ましい。なお、複素環基とは、環状構造を有する有機基において、環を構成する少なくとも1つの原子がヘテロ原子である基をいうものとする。
縮合環化合物において、上述したなかでも、R11及びR12としては、それぞれ独立に、炭素数1~20のアルキル基又は炭素数6~60の置換基を有していてもよいアリール基が好ましく、炭素数1~14のアルキル基であるか又は炭素数6~20の置換基を有していてもよいアリール基がより好ましく、炭素数1~14のアルキル基が特に好ましい。
また、R13及びR14は、それぞれ独立に一価の基であり、m及びnは0~2の整数である。ただし、m又はnが2である場合、複数のR13又はR14は、それぞれ同一の基であっても異なる基であってもよい。R13及びR14としては、アルキル基、アルコキシ基、フルオロアルキル基、フルオロアルコキシ基、アリール基、アリールアミノ基又は1価の複素環基が挙げられる。なかでも、アルキル基、アルコキシ基、フルオロアルキル基、フルオロアルコキシ基、アリール基又はアリールアミノ基が好ましく、アルキル基又はアリール基が更に好ましい。なお、R13及びR14は、縮合環化合物を含む有機薄膜が輸送すべきキャリアに応じて適宜変更することが好ましい。例えば、有機薄膜のホール輸送性を高める場合はアリールアミノ基等の電子供与基が好ましく、電子輸送性を高める観点からは、フルオロアルキル基、フルオロアルコキシ基等の電子吸引基が好ましい。
また、R13及びR14で表される一価の基としては、重合性官能基も挙げられる。特に、R13及びR14のそれぞれ少なくとも1つずつが重合性官能基であると、一般式(1)で表される縮合環化合物は、後述する重合体の原料として好適となる。なお、縮合環化合物のみで有機薄膜を形成する場合は、R13及びR14としては、重合性官能基以外の上述したような基とすることが好ましい。
ここで、重合性官能基とは、他の重合性官能基との間で重合反応を生じさせ得る基をいう。重合性官能基としては、例えば、Wittig反応、Heck反応、Horner-Wadsworth-Emmons反応、Knoevenagel反応、鈴木カップリング反応、Grinard反応、Stille反応等や、Ni(0)触媒を用いた重合反応等に供することにより、他の重合性官能基と反応して結合を生じ得る基をいう。
このような重合性官能基としては、例えば、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、アルキルスタニル基、アリールスタニル基、アリールアルキルスタニル基、ホウ酸エステル残基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、ホウ酸残基(-B(OH))、ホルミル基、ビニル基等が例示できる。なかでも、ハロゲン原子、アルキルスタニル基又はホウ酸エステル残基が好ましい。なお、これらの例示中のRは、アルキル基又はアリール基であり、2つのRが結合して環を形成していてもよい。また、ホウ酸残基とはホウ素に水酸基が置換した基を意味する。さらに、ホウ酸エステル残基とは、ホウ酸エステルにおけるホウ素原子が有する結合手の1つが置換用の結合手に置き換えられた構造を有する1価の基であり、例えば、下記式(100a)~(100d)で表されるような基が挙げられる。
Figure JPOXMLDOC01-appb-C000019
上記一般式(1)中、Y11及びY12は、それぞれ独立に、上記式(2a)、(2b)、(2c)、(2d)、(2e)、(2f)、(2g)又は(2h)(以下、「(2a)~(2h)」のように表記する)で表される2価の基である。これらの2価の基におけるR21及びR22は、それぞれ独立に、水素原子又は1価の基である。この一価の基としては、上述したR11やR12と同様の基のほか、ハロゲン原子が挙げられる。なお、上記式(2h)で表される基は非対称な構造を有しているが、その結合鎖が結合する方向は特に限定されない。
なかでも、Y11及びY12としては、上記式(2a)、(2b)、(2c)又は(2h)で表される2価の基が好ましく、上記式(2a)、(2b)又は(2c)で表される2価の基がより好ましい。なお、Y11及びY12が、上記式(2a)、(2b)又は(2c)で表される2価の基である場合、これらを含む環構造(R11とR12を置換基に持つベンゼン環に縮合している2つの5員環)は、それぞれ、チオフェン環、フラン環又はピロール環となる。特に、Y11及びY12が上記式(2a)で表される2価の基である(すなわち環構造がチオフェン環である)と、良好な電荷輸送性が得られることから好ましい。
上記一般式(1)中、Y13及びY14は、それぞれ独立に、上記式(2a)、(2b)、(2c)、(2d)、(2e)、(2f)、(2g)、(2h)又は(2i)(以下、「(2a)~(2i)」のように表記する)で表される2価の基である。これらの2価の基におけるR21、R22、R23及びR24は、それぞれ独立に、水素原子又は1価の基を示し、R23とR24とは、互いに結合して環を形成していてもよい。この一価の基としては、上述したR11やR12と同様の基のほか、ハロゲン原子が挙げられる。なお、上記と同様、上記式(2h)で表される基は、その結合鎖が結合する方向は特に限定されない。
なかでも、Y13及びY14としては、上記式(2a)、(2b)、(2c)、(2h)又は(2i)で表される2価の基が好ましく、上記式(2a)、(2b)、(2c)又は(2i)で表される2価の基がより好ましい。なお、Y13及びY14が、上記式(2a)、(2b)、(2c)又は(2i)で表される2価の基である場合、これらを含む環構造(Y11又はY12を含む環構造に縮合している2つの5員環又は6員環)は、それぞれ、チオフェン環、フラン環、ピロール環又はベンゼン環となる。特に、Y13及びY14が上記式(2a)で表される2価の基である(すなわち環構造がチオフェン環である)か、上記式(2i)で表される2価の基である(すなわち環構造がベンゼン環である)ことがより好ましく、Y13及びY14が上記式(2i)で表される2価の基であると、特に良好な電荷輸送性が得られることから一層好ましい。
上述したような縮合環化合物の好適な例としては、下記一般式(1a)又は(1b)で表される化合物が挙げられる。なお、下記式中のR11、R12、R13、R14、n及びmは、いずれも上記と同義である。
Figure JPOXMLDOC01-appb-C000020
[重合体]
 次に、好適な実施形態に係る重合体について説明する。本実施形態の重合体は、上記一般式(3)で表される構造単位を有するものである。重合体において、この構造単位は、当該重合体の主鎖を構成している構造単位の少なくとも一つとして含まれている。本実施形態の重合体において、上記一般式(3)で表される構造単位は、当該重合体の主鎖を構成している全ての構造単位のうち、30モル%以上含まれていると好ましく、50モル%以上含まれているとより好ましい。
一般式(3)で表される構造において、R31、R32、R33、R34、Y31、Y32、Y33及びY34としては、それぞれ上述したR11、R12、R13、R14、Y11、Y12、Y13及びY14と同様の基が好ましい。ただし、R33及びR34としては、上述した重合性官能基以外の基が好適である。なお、本実施形態において、重合体とは、1つのモノマーから形成された構造単位を2つ以上有するものをいい、通常オリゴマーやポリマーに分類されるものの両方を含むこととする。
本実施形態の重合体は、上記一般式(3)の構造単位のみから構成されるものでもよく、他のモノマー単位を更に含むものであってもよい。なお、重合体中、一般式(3)の構造単位は複数含まれることとなるが、複数の一般式(3)の構造単位は、それぞれ同一の構造であってもよく、異なる構造であってもよい。ただし、重合体を容易に得る観点からは、複数の一般式(3)の構造単位は、それぞれ同一の構造であると好ましい。
重合体は、上記一般式(3)のモノマー単位に加え、上記一般式(5)の構造単位を、主鎖を構成する構造単位として更に有していることも好ましい。このように一般式(5)の構造単位を有することで、重合体による電荷輸送性がさらに高められるとともに、溶媒への溶解性、機械的強度、耐熱性等も向上する。
一般式(5)の構造単位におけるArで表される基は、置換基を有していてもよい2価の芳香族炭化水素基又は置換基を有していてもよい2価の複素環基である。かかる2価の芳香族炭化水素基又は2価の複素環基は、芳香族炭化水素又は複素環において2箇所の置換位がポリマーにおける結合に供された構造を有する基であり、すなわち、芳香族炭化水素又は複素環から2つの水素原子を除いた残りの原子団から構成される基である。
Arで表される基を構成する2価の芳香族炭化水素基としては、好ましくはC6~60、より好ましくはC6~20の芳香環(単環又は縮合環)から形成される2価の基が好ましい。縮合環としては、ナフタレン環、アントラセン環、テトラセン環、ペンタセン環、ピレン環、ペリレン環、フルオレン環等が例示できる。なかでも、この芳香族炭化水素基を構成する芳香環としては、ベンゼン環、ペンタセン環、ピレン環又はフルオレン環が好ましい。また、芳香族炭化水素基は、上述の如く、置換基を更に有していてもよい。かかる置換基としては、ハロゲン原子、飽和又は不飽和炭化水素基、アリール基、アルコキシ基、アリールオキシ基、1価の複素環基、アミノ基、ニトロ基又はシアノ基が例示できる。
また、2価の複素環基としては、好ましくはC3~60、より好ましくはC3~20の複素環から形成される2価の基が好ましい。2価の複素環基としては、例えば、チオフェン、チエノチオフェン又はジチエノチオフェン等のチオフェン環が2~6個縮環した化合物、チアゾール、ピロール、ピリジン、ピリミジン、ピラジン、トリアジン等から水素原子2個を除いた残りの原子団からなる基が挙げられ、チオフェン、チエノチオフェン又はジチエノチオフェン等のチオフェン環が2~6個縮環した化合物から水素原子2個を除いた残りの原子団からなる基が好ましい。かかる2価の複素環基も更に置換基を有していてもよく、このような置換基としては、上述した芳香族炭化水素基と同様の置換基が挙げられる。
一般式(5)の構造単位において、Arで表される基としては、上記一般式(6)で表される基が好ましい。一般式(6)中のYで表される基としては、上記一般式(1)におけるY11又はY12と同様のものが好ましい。特に、一般式(6)で表される基におけるYは、上記一般式(7a)で表される基であると好適である。
重合体が上記一般式(3)で表される構造単位と上記一般式(5)で表される構造単位との両方を含む場合、重合体における好適なこれらの比率は、一般式(3)のモノマー単位100モルに対して、一般式(5)の構造単位が好ましくは10~1000モル、より好ましくは25~400モル、更に好ましくは50~200モルとなるような比率である。
本実施形態の重合体としては、上述の如く、上記一般式(3)で表される構造単位と上記一般式(5)で表される構造単位とを組み合わせて含むものが好適である。重合体において、これらの構造単位は、ランダムに共重合していてもよく、ブロック的に共重合していてもよい。このような重合体としては、下記一般式(10a)又は(10b)で表される構造を有するものが例示できる。
Figure JPOXMLDOC01-appb-C000021
式中、R31~R34、Y31~Y34及びArは、いずれも上記と同義である。kは、1~10の整数である。kが2以上でありArが複数ある場合は、それらは同一でも異なっていてもよい。また、aは、好ましくは2~500、より好ましくは3~20の整数である。さらに、bは好ましくは1~500、より好ましくは2~20の整数である。これらの重合体としては、Y31及びY32がいずれもスルフィド基であり、Y33及びY34がいずれもビニレン基であり、R31及びR32がそれぞれ独立にアルキル基又はアリール基(好ましくはアルキル基)であり、R33及びR34が水素原子であるものが特に好適である。
このような重合体の末端基としては、特に限定されないが、水素原子、アルキル基、アルコキシ基、フルオロアルキル基、フルオロアルコキシ基、アリール基、複素環基等の電子吸引基又は電子供与基が挙げられる。重合体の電子輸送性を高める観点からは、末端基はフルオロアルキル基、フルオロアルコキシ基等の電子吸引基であることが好ましい。また、末端基は、主鎖の共役構造と共役し得る構造を有するものであってもよく、例えば、主鎖との結合部位に不飽和結合を有するアリール基又は1価の複素環基が挙げられる。
また、上述したような、上記一般式(1)においてR13及びR14で表される基として重合性官能基を有する縮合環化合物を重合体の製造における原料モノマーとして用いた場合には、重合後の末端には重合性官能基が残ることになる。しかし、この重合性官能基からなる末端は、有機薄膜としたときに耐久性等を低下させるおそれがある。したがって、重合体においては、重合性官能基を安定な基で保護しておくことが好ましい。
より具体的には、本実施形態の重合体としては、下記一般式(11a)~(11p)で表されるものが好適である。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
上記一般式(11a)~(11p)中、R31~R34は上記と同義である。R111及びR112は、それぞれ独立に上述した末端基である。R113は、1価の基を示す。R114及びR115は、それぞれ独立に、水素原子又は1価の基を示す。これらの1価の基としては、上記一般式(1)におけるR13やR14等と同様のものが挙げられる。なかでも、アルキル基又はアルコキシ基が好ましく、アルキル基がより好ましい。また、式中、dは、1~500の整数を示し、eは、0~R113が結合している環における置換可能な部位の数までの整数である。fは、1~3の整数を示し、gは0~3の整数を示す。ただし、e、f又はgが2以上である場合、これらが付された括弧内の基又は構造単位は複数存在することになるが、それらはそれぞれ同一でも異なっていてもよい。
ここで、dの値は、重合体を用いた有機薄膜の形成方法に応じて適宜選択することが好ましい。例えば、真空蒸着法等の気相成長法により有機薄膜を形成する場合は、上記重合体としては、dが好ましくは1~10、より好ましくは2~10、更に好ましくは2~5であるオリゴマーが好ましい。また、重合体を有機溶媒に溶解した溶液を塗布する方法により有機薄膜を形成する場合は、重合体としては、dが好ましくは3~500、より好ましくは6~300、更に好ましくは20~200である。さらに、塗布によって成膜する場合、膜の均一性を向上する観点からは、重合体のポリスチレン換算の数平均分子量は、1×10~1×10であると好ましく、1×10~1×10であると一層好ましい。
なお、重合体は、上述した各一般式における括弧内の構造単位が複数繰り返された構成を有するが、重合体において、この複数の構造単位は、それぞれ同一の構造を有していても異なる構造を有していてもよい。つまり、構造単位中のR113~R115等の官能基は、繰り返し単位ごとに同じでも異なっていてもよい。ただし、重合体を容易に製造する観点からは、全ての構造単位が同一の構造を有していることが好ましい。
[縮合環化合物の製造方法]
 次に、上述した構造を有する縮合環化合物の好適な製造方法について説明する。縮合環化合物は、上記一般式(8a)で表される化合物と、上記一般式(8b)で表される化合物とを、塩基及び金属錯体触媒の存在下で反応させることによって得ることができる。このような製造方法においては、一般式(8a)の化合物におけるX81及びX82で表される基と、一般式(8b)の化合物における3重結合との間で反応が生じ、これによって一般式(8a)の化合物における2つの縮環が架橋されて、これらの間に6員環構造が形成される。なお、この反応は、窒素やアルゴン等の不活性ガス雰囲気下で行うことが好ましい。
上記一般式(8a)の化合物において、R83、R84、Y81、Y82、Y83及びY84としては、上記一般式(1)におけるR13、R14、Y11、Y12、Y13及びY14で表される基とそれぞれ同様のものが適用できる。また、X81及びX82は、それぞれ独立に水素原子又はハロゲン原子であり、両方がハロゲン原子であると好ましい。より具体的には、X81及びX82としては、少なくとも一方がヨウ素原子であると好ましく、両方がヨウ素原子であるとより好ましい。X81及びX82がヨウ素原子であると、上述した反応が極めて生じ易くなる傾向にある。また、一般式(8b)の化合物におけるR81及びR82としては、上記一般式(1)におけるR11及びR12とそれぞれ同様のものが適用できる。
上記反応における金属錯体触媒としては、例えば、パラジウム錯体、ニッケル錯体、白金錯体、ルテニウム錯体、ロジウム錯体又はイリジウム錯体が挙げられる。なかでも、パラジウム錯体又はニッケル錯体が好ましく、パラジウム錯体がより好ましい。パラジウム錯体としては、特に制限されないが、芳香族ハロゲン化物のカップリング反応を促進し得るものが好適である。このパラジウム錯体としては、例えば、2価パラジウム錯体や電子供与性の配位子を有するパラジウム錯体化合物等が挙げられる。
2価パラジウム錯体としては、酢酸パラジウム、塩化パラジウム、パラジウム酸ナトリウム、パラジウム酸カリウム等が例示でき、酢酸パラジウムが好ましい。また、電子供与性の配位子を有するパラジウム錯体化合物としては、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム等が挙げられ、テトラキス(トリフェニルホスフィン)パラジウムが好ましい。
なお、金属錯体触媒としては、上述したものを単独で、又は複数種組み合わせて適用してもよい。金属錯体触媒は、原料である一般式(8a)で表される化合物に対し、好ましくは0.01~50モル%、より好ましくは1.0~20モル%、更に好ましくは3~15モル%用いる。
また、上記反応に用いる塩基としては、無機塩基及び有機塩基の両方が適用でき、有機塩基がより好ましい。無機塩基としては、アルカリ金属又はアルカリ土類金属の水酸化物、炭酸塩、アンモニウム塩、酢酸塩等が挙げられる。有機塩基としては、C1~20のアルキル基を含むトリアルキルアミン、ジアルキルアリールアミン、アルキルジアリールアミンや、トリアリールアミン等のアミン類のほかピリジン等が挙げられる。
有機塩基としては、具体的には、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリ-n-プロピルアミン、トリブチルアミン、ジシクロヘキシルメチルアミン、ピリジン、2,3-ルチジン、2,4-ルチジン、2,5-ルチジン、2,6-ルチジン、3,4-ルチジン、3,5-ルチジン、2,3,4-コリジン、2,4,5-コリジン、2,5,6-コリジン、2,4,6-コリジン、3,4,5-コリジン、3,5,6-コリジン等が挙げられる。
有機塩基としては、特にアミン類が好ましい。塩基としてアミン類を用いることで、反応中の副生成物の生成を抑制でき、高収率で目的とする縮合環化合物を得ることができるようになる。アミン類のなかでも、アルキルアミン、特にトリアルキルアミンが好適である。このようなアルキルアミンとしては、窒素原子に隣接する炭素が1つ以上の水素原子を有するもの、つまり、N-CHx(X=1~3の整数)で表される構造を有するものが好ましく、窒素原子に隣接する炭素が2つ以上の水素原子を有するもの、つまり、N-CHx(X=2~3の整数)で表される構造を有するものがより好ましい。
上述した反応は、溶媒中で行うこともできる。反応に用いる溶媒としては、金属錯体触媒による反応に対して不活性なものが好適である。例えば、トルエン、ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)、テトラヒドロフラン(THF)、ジオキサン、イソプロピルアルコール、アセトニトリル、ピナコロン等が挙げられる。なかでも、トルエン、NMP又はジオキサンが好ましい。溶媒の使用量は特に限定されないが、例えば、原料である一般式(8a)で表される化合物の重量に対して好ましくは1~100倍量、より好ましくは2~30倍量とすることができる。
反応時間は特に限定されず、一般式(8a)で表される化合物又は一般式(8b)で表される化合物のいずれか一方が無くなった時点で終了とすることができる。反応開始から終了までにかかる時間は、0.5~200時間程度である。また、反応温度は、-50~300℃の範囲で適宜設定することができ、50~150℃程度とすることが好ましい。
なお、高純度の有機薄膜を得るために、上述した反応後には、得られた縮合環化合物を蒸留、昇華、再結晶等により精製することが好ましい。
以上説明した製造方法により縮合環化合物が良好に得られる。かかる製造方法においては、特に限定されないが、以下の反応式で表される反応が生じ、下記一般式(8c)で表される縮合環化合物が得られる。
Figure JPOXMLDOC01-appb-C000030
[重合体の製造方法]
 次に、上述した構造を有する重合体の好適な製造方法について説明する。以下の説明においては、上記一般式(3)で表されるモノマー単位及び上記一般式(5)で表されるモノマー単位の両方を有する重合体を製造する方法について説明する。
重合体は、下記一般式(13a)で表されるモノマー及び下記一般式(13b)で表されるモノマーを反応させて高分子化することにより得ることができる。
Figure JPOXMLDOC01-appb-C000031
式中、R31~R34、Y31、Y32、Y33及びY34は、いずれも上記と同義である。また、R131~R134は、それぞれ独立に重合性官能基である。なお、R33及びR34としては、重合性官能基以外のものが好ましい。重合性官能基としては、上記一般式(1)におけるR13及びR14の重合性官能基として例示したものと同様の基が挙げられる。
重合体を得るためには、上記一般式(13a)で表される化合物と上記一般式(13b)で表される化合物との間、一般式(13a)で表される化合物同士、又は、一般式(13b)で表される化合物同士で結合を生じる反応を繰り返し生じさせる。上記の化合物同士で結合を生じさせる反応としては、Wittig反応、Heck反応、Horner-Wadsworth-Emmons反応、Knoevenagel反応、鈴木カップリング反応、Grinard反応、Stille反応や、Ni(0)触媒を用いた重合反応等が挙げられる。その他、適当な脱離基を有する中間体化合物の分解による反応も適用できる。例えば、スルホニウム基を有する中間体化合物からポリ(p-フェニレンビニレン)を合成する方法が挙げられる。上記R131~R134の重合性官能基は、目的とする反応に応じて適宜選択することが好ましい。また、重合体は、重合性官能基による反応以外によって形成されてもよい。例えば、上記一般式(1)においてm及びnが0である縮合環化合物同士を、FeClを用いた酸化重合反応や電気化学的な酸化による重合反応等によって繰り返し結合させる方法も挙げられる。
重合体を得るための反応としては、上述したなかでも、鈴木カップリング反応、Grinard反応、Stille反応、Ni(0)触媒を用いた重合反応が、構造制御がし易く、原料の準備が比較的容易であり、しかも反応操作が簡便であることから好ましい。また、FeClを用いた酸化重合反応も、原料の準備が比較的容易であり、しかも反応操作が簡便であることから好ましい。
これらの反応に好適な重合性官能基の組み合わせとしては、具体的には、鈴木カップリング反応の場合、ホウ酸残基又はホウ酸エステル残基と、ハロゲン原子との組み合わせが挙げられ、Grinard反応の場合、ハロマグネシウムカルバニオンとハロゲン原子との組み合わせが挙げられる。また、Stille反応の場合、アルキルスタニル基とハロゲン原子との組み合わせが挙げられ、Ni(0)触媒を用いた重合反応の場合、ハロゲン原子同士の組み合わせが挙げられる。
重合体を得るための反応は、副反応を抑制するため、不活性雰囲気下で行うことが好ましい。また、重合体から純度の高い有機薄膜を得る観点からは、原料のモノマーは、蒸留、昇華、再結晶等の種々の方法で精製しておくことが望ましい。さらに、反応後、目的生成物である重合体は、有機溶媒で抽出して溶媒を留去した後に抽出物から単離されるが、この重合体は、クロマトグラフィーや再結晶等の手段で更に精製することが好ましい。
また、上記の各反応は、原料モノマーを溶媒に溶解させた溶液中で生じさせることができる。この場合、必要に応じて塩基や触媒等を加えて溶解させた上、溶媒の沸点以下の温度で反応を行うことが好ましい。
好適な溶媒は、生じさせるべき反応によってそれぞれ異なるが、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の飽和炭化水素、ベンゼン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、t-ブチルアルコール等のアルコール類、蟻酸、酢酸、プロピオン酸等のカルボン酸類、ジメチルエーテル、ジエチルエーテル、メチル-t-ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等のエーテル類、塩酸、臭素酸、フッ化水素酸、硫酸、硝酸等の無機酸等が例示できる。これらは、必要に応じて複数種組み合わせてもよい。なお、溶媒としては、副反応を抑制する観点から、十分に脱酸素処理が施されたものを用いることが好ましい。
[有機薄膜]
 次に、好適な実施形態に係る有機薄膜について説明する。有機薄膜は、上述した実施形態の縮合環化合物や重合体を含み膜状の形状を有する構成を有している。有機薄膜は、縮合環化合物及び重合体のいずれか一方のみを含んでいてもよく、これらの両方を含んでいてもよい。また、有機薄膜中には、縮合環化合物又は重合体がそれぞれ2種以上組み合わせて含まれていてもよい。
さらに、有機薄膜は、縮合環化合物又は重合体のみから構成されるものであってもよく、他の成分を更に含んで構成されるものであってもよい。このような有機薄膜の好適な厚さは、当該有機薄膜を適用する素子に応じて異なるが、通常1nm~100μmの範囲とされ、2nm~1000nmであると好ましく、5nm~500nmであるとより好ましく、20nm~200nmであると更に好ましい。
有機薄膜が、縮合環化合物又はその重合体以外の成分を更に含む場合、有機薄膜は、縮合環化合物及び重合体のいずれかを少なくとも30質量%以上含むことが好ましく、50質量%以上含むことがより好ましい。縮合環化合物及び重合体のいずれかの含有量が30質量%未満であると、良好な電荷移動度が得られ難くなる傾向にある。
例えば、有機薄膜は、優れた電荷(ホール又は電子)移動性を得るために、ホール輸送性又は電子輸送性を有する化合物を更に含んでいてもよい。ホール輸送性を有する化合物としては、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、又は、ポリチエニレンビニレン及びその誘導体等が例示できる。
また、電子輸送性を有する化合物としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアンスラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン類及びその誘導体等が例示できる。
有機薄膜は、その特性を向上させるために、その他の成分を更に含有していてもよい。その他の成分としては、例えば、電荷発生材料が挙げられる。有機薄膜が電荷発生材料を含むことで、当該薄膜が光を吸収して電荷を発生するようになり、光の吸収による電荷発生を要する光センサ等の用途に好適となる。
電荷発生材料としては、例えば、アゾ化合物及びその誘導体、ジアゾ化合物及びその誘導体、無金属フタロシアニン化合物及びその誘導体、金属フタロシアニン化合物及びその誘導体、ペリレン化合物及びその誘導体、多環キノン系化合物及びその誘導体、スクアリリウム化合物及びその誘導体、アズレニウム化合物及びその誘導体、チアピリリウム化合物及びその誘導体、C60等のフラーレン類及びその誘導体等が挙げられる。
また、有機薄膜は、上述した電荷発生材料による電荷発生機能を増感するための増感剤や、薄膜を安定化するための安定化剤、UV光を吸収するためのUV吸収剤等を更に含んでいてもよい。
さらに、有機薄膜は、その機械的強度を高める観点から、高分子バインダーとして、縮合環化合物又は重合体以外の高分子化合物を更に含有していてもよい。このような高分子バインダーとしては、電荷輸送性を過度に低下させないものが好ましく、また、可視光を過度に吸収しないものが好ましい。
高分子バインダーとしては、例えば、ポリ(N-ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。
上述した有機薄膜は、例えば、以下のような方法によって製造することができる。
すなわち、有機薄膜は、縮合環化合物及び/又は重合体、並びに、必要に応じて上述したその他の成分を溶媒に溶解させた溶液を、所定の基材上に塗布した後、溶媒を揮発させる等により除去することによって形成することができる。
溶媒としては、縮合環化合物又は重合体や、その他の成分を溶解又は均一に分散し得るものが好ましい。このような溶媒としては、トルエン、キシレン、メシチレン、テトラリン、デカリン、n-ブチルベンゼン等の芳香族炭化水素系溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素系溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル類系溶媒等が例示できる。縮合環化合物又は重合体は、溶媒に0.1質量%以上溶解させることが好ましい。
溶液を塗布する方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法等が挙げられる。なかでも、スピンコート法、フレキソ印刷法、インクジェット印刷法又はディスペンサー印刷法が好ましい。
上述したような方法により有機薄膜が得られるが、有機薄膜の製造方法は必ずしもこれに限定されない。例えば、原料として縮合環化合物やオリゴマー等の低分子材料を用いる場合は、真空蒸着法等の気相成長法を適用することもできる。
なお、有機薄膜に対しては、その用途に応じて有機薄膜中の縮合環化合物又は重合体を配向させる工程を更に施してもよい。かかる配向によって、有機薄膜中の縮合環化合物や重合体(主鎖又は側鎖)が一定の方向に並ぶこととなり、有機薄膜の電荷輸送性が更に高められる。
有機薄膜の配向方法としては、通常液晶等の配向に用いられる方法を適用することができる。具体的には、ラビング法、光配向法、シェアリング法(ずり応力印加法)、引き上げ塗布法等が、簡便かつ有用であることから好ましく、ラビング法又はシェアリング法がより好ましい。
[有機薄膜素子]
 上述した実施形態の有機薄膜は、上記実施形態の縮合環化合物及び/又は重合体を含むことから、優れた電荷(電子又はホール)輸送性を有するものとなる。したがって、この有機薄膜は、電極等から注入された電子又はホール、或いは、光吸収により発生した電荷等を効率よく輸送できるものであり、有機薄膜を用いた各種の電気素子(有機薄膜素子)に応用することができる。以下、有機薄膜素子の例についてそれぞれ説明する。
(有機薄膜トランジスタ)
 まず、好適な実施形態に係る有機薄膜トランジスタについて説明する。有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となり本発明の縮合環化合物及び/又は重合体を含む有機薄膜層(活性層)、電流経路を通る電流量を制御するゲート電極を備えた構造であればよく、電界効果型、静電誘導型などが例示される。
電界効果型有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となり本発明の縮合環化合物及び/又は重合体を含む有機薄膜層(活性層)、電流経路を通る電流量を制御するゲート電極、並びに、活性層とゲート電極との間に配置される絶縁層を備えることが好ましい。特に、ソース電極及びドレイン電極が、本発明の縮合環化合物及び/又は重合体を含む有機薄膜層(活性層)に接して設けられており、さらに有機薄膜層に接した絶縁層を挟んでゲート電極が設けられていることが好ましい。
一方、静電誘導型有機薄膜トランジスタは、ソース電極及びドレイン電極、これらの間の電流経路となり本発明の縮合環化合物及び/又は重合体を含む有機薄膜層、並びに電流経路を通る電流量を制御するゲート電極を有し、該ゲート電極が有機薄膜層中に設けられていることが好ましい。特に、ソース電極、ドレイン電極及び有機薄膜層中に設けられたゲート電極が、本発明の縮合環化合物及び/又は重合体を含む有機薄膜層に接して設けられていることが好ましい。ゲート電極の構造としては、ソース電極からドレイン電極へ流れる電流経路が形成され、かつゲート電極に印加した電圧で電流経路を流れる電流量が制御できる構造であればよく、例えば、くし形電極が挙げられる。
図1は第1実施形態に係る有機薄膜トランジスタ(電界効果型有機薄膜トランジスタ)の模式断面図である。図1に示す有機薄膜トランジスタ100は、基板1と、基板1上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6を覆うようにして基板1上に形成された活性層2と、活性層2上に形成された絶縁層3と、ソース電極5とドレイン電極6との間の絶縁層3の領域を覆うように絶縁層3上に形成されたゲート電極4と、を備えるものである。
図2は第2実施形態に係る有機薄膜トランジスタ(電界効果型有機薄膜トランジスタ)の模式断面図である。図2に示す有機薄膜トランジスタ110は、基板1と、基板1上に形成されたソース電極5と、ソース電極5を覆うようにして基板1上に形成された活性層2と、ソース電極5と所定の間隔を持って活性層2上に形成されたドレイン電極6と、活性層2及びドレイン電極6上に形成された絶縁層3と、ソース電極5とドレイン電極6との間の絶縁層3の領域を覆うように絶縁層3上に形成されたゲート電極4と、を備えるものである。
図3は、第3の実施形態に係る有機薄膜トランジスタ(電界効果型有機薄膜トランジスタ)の模式断面図である。図3に示す有機薄膜トランジスタ120は、基板1と、基板1上に形成された活性層2と、活性層2上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6を一部覆うようにして活性層2上に形成された絶縁層3と、ソース電極5が下部に形成されている絶縁層3の領域とドレイン電極6が下部に形成されている絶縁層3の領域とをそれぞれ一部覆うように、絶縁層3上に形成されたゲート電極4と、を備えるものである。
図4は第4実施形態に係る有機薄膜トランジスタ(電界効果型有機薄膜トランジスタ)の模式断面図である。図4に示す有機薄膜トランジスタ130は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域を一部覆うように、絶縁層3上に所定の間隔を持って形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6を一部覆うように絶縁層3上に形成された活性層2と、を備えるものである。
図5は第5実施形態に係る有機薄膜トランジスタ(電界効果型有機薄膜トランジスタ)の模式断面図である。図5に示す有機薄膜トランジスタ140は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域を一部覆うように絶縁層3上に形成されたソース電極5と、ソース電極5を一部覆うようにして絶縁層3上に形成された活性層2と、ゲート電極4が下部に形成されている活性層2の領域を一部覆うように、ソース電極5と所定の間隔を持って絶縁層3上に形成されたドレイン電極6と、を備えるものである。
図6は第6実施形態に係る有機薄膜トランジスタ(電界効果型有機薄膜トランジスタ)の模式断面図である。図6に示す有機薄膜トランジスタ150は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域を覆うように形成された活性層2と、ゲート電極4が下部に形成されている活性層2の領域を一部覆うように絶縁層3上に形成されたソース電極5と、ゲート電極4が下部に形成されている活性層2の領域を一部覆うように、ソース電極5と所定の間隔を持って絶縁層3上に形成されたドレイン電極6と、を備えるものである。
図7は第7実施形態に係る有機薄膜トランジスタ(静電誘導型有機薄膜トランジスタ)の模式断面図である。図7に示す有機薄膜トランジスタ160は、基板1と、基板1上に形成されたソース電極5と、ソース電極5上に形成された活性層2と、活性層2上に所定の間隔を持って複数形成されたゲート電極4と、ゲート電極4の全てを覆うようにして活性層2上に形成された活性層2a(活性層2aを構成する材料は、活性層2と同一でも異なっていてもよい)と、活性層2a上に形成されたドレイン電極6と、を備えるものである。
第1~第7実施形態に係る有機薄膜トランジスタにおいては、活性層2及び/又は活性層2aは、本発明の縮合環化合物及び/又は重合体を含有しており、ソース電極5とドレイン電極6の間の電流通路(チャネル)となる。また、ゲート電極4は、電圧を印加することにより活性層2及び/又は活性層2aにおける電流通路(チャネル)を通る電流量を制御する。
このような電界効果型有機薄膜トランジスタは、公知の方法、例えば特開平5-110069号公報記載の方法により製造することができる。また、静電誘導型有機薄膜トランジスタは、公知の方法、例えば特開2004-006476号公報記載の方法により製造することができる。
基板1としては、有機薄膜トランジスタとしての特性を阻害しなければ特に制限されないが、ガラス基板やフレキシブルなフィルム基板やプラスチック基板を用いることができる。
活性層2を形成する際に、有機溶媒可溶性の化合物を用いることが製造上非常に有利であり好ましいことから、上記で説明した本発明の有機薄膜の製造方法を用いて、活性層2となる有機薄膜を形成することができる。
活性層2に接した絶縁層3としては、電気の絶縁性が高い材料で有れば特に制限はなく、公知のものを用いることができる。例えば、SiOx、SiNx、Ta、ポリイミド、ポリビニルアルコール、ポリビニルフェノール、有機ガラス及びフォトレジストが挙げられる。低電圧化の観点から、誘電率の高い材料の方が好ましい。
絶縁層3の上に活性層2を形成する場合は、絶縁層3と活性層2の界面特性を改善するため、シランカップリング剤等の表面処理剤で絶縁層3の表面を処理して表面改質した後に活性層2を形成することも可能である。表面処理剤としては、例えば、長鎖アルキルクロロシラン類、長鎖アルキルアルコキシシラン類、フッ素化アルキルクロロシラン類、フッ素化アルキルアルコキシシラン類、ヘキサメチルジシラザン等のシリルアミン化合物が挙げられる。表面処理剤で処理する前に、絶縁層表面をオゾンUV、Oプラズマで処理をしておくことも可能である。
また、有機薄膜トランジスタを作製後、素子を保護するために有機薄膜トランジスタ上に保護膜を形成することが好ましい。これにより、有機薄膜トランジスタが、大気から遮断され、有機薄膜トランジスタの特性の低下を抑えることができる。また、保護膜により有機薄膜トランジスタの上に駆動する表示デバイスを形成する工程からの影響を低減することができる。
保護膜を形成する方法としては、例えば、UV硬化樹脂、熱硬化樹脂又は無機のSiON膜でカバーする方法が挙げられる。大気との遮断を効果的に行うため、有機薄膜トランジスタを作製後、保護膜を形成するまでの工程を大気に曝すことなく(例えば、乾燥した窒素雰囲気中、真空中)行うことが好ましい。
(太陽電池)
 次に、本発明の有機薄膜の太陽電池への応用を説明する。図8は、実施形態に係る太陽電池の模式断面図である。図8に示す太陽電池200は、基板1と、基板1上に形成された第1の電極7aと、第1の電極7a上に形成された本発明の縮合環化合物及び/又は重合体を含む有機薄膜からなる活性層2と、活性層2上に形成された第2の電極7bと、を備えるものである。
本実施形態に係る太陽電池においては、第1の電極7a及び第2の電極7bの一方に透明又は半透明の電極を用いる。電極材料としては、アルミニウム、金、銀、銅、アルカリ金属、アルカリ土類金属等の金属又はそれらの半透明膜、透明導電膜を用いることができる。高い開放電圧を得るためには、それぞれの電極として、仕事関数の差が大きくなるように選ばれることが好ましい。活性層2(有機薄膜)中には光感度を高めるために電荷発生剤、増感剤等を添加して用いることができる。基材1としては、シリコン基板、ガラス基板、プラスチック基板等を用いることができる。
(光センサ)
 次に、本発明の有機薄膜の光センサへの応用を説明する。図9は、第1実施形態に係る光センサの模式断面図である。図9に示す光センサ300は、基板1と、基板1上に形成された第1の電極7aと、第1の電極7a上に形成された本発明の縮合環化合物及び/又は重合体を含む有機薄膜からなる活性層2と、活性層2上に形成された電荷発生層8と、電荷発生層8上に形成された第2の電極7bと、を備えるものである。
図10は、第2実施形態に係る光センサの模式断面図である。図10に示す光センサ310は、基板1と、基板1上に形成された第1の電極7aと、第1の電極7a上に形成された電荷発生層8と、電荷発生層8上に形成された本発明の縮合環化合物及び/又は重合体を含む有機薄膜からなる活性層2と、活性層2上に形成された第2の電極7bと、を備えるものである。
図11は、第3実施形態に係る光センサの模式断面図である。図11に示す光センサ320は、基板1と、基板1上に形成された第1の電極7aと、第1の電極7a上に形成された本発明の縮合環化合物及び/又は重合体を含む有機薄膜からなる活性層2と、活性層2上に形成された第2の電極7bと、を備えるものである。
第1~第3実施形態に係る光センサにおいては、第1の電極7a及び第2の電極7bの一方に透明又は半透明の電極を用いる。電荷発生層8は光を吸収して電荷を発生する層である。電極材料としては、アルミニウム、金、銀、銅、アルカリ金属、アルカリ土類金属等の金属又はそれらの半透明膜、透明導電膜を用いることができる。活性層2(有機薄膜)中には光感度を高めるためにキャリア発生剤、増感剤等を添加して用いることができる。また基材1としては、シリコン基板、ガラス基板、プラスチック基板等を用いることができる。
以上、本発明をその実施形態に基づいて詳細に説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で様々な変形が可能である。例えば、有機薄膜素子は、有機薄膜を適用した電気素子であれば上述した実施形態のものに限定されない。上記以外の有機薄膜素子としては、例えば、有機EL素子、有機メモリー、フォトリフラクティブ素子、空間光変調器、撮像素子等が挙げられる。
以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(測定条件)
 以下の合成例及び実施例において、各種の分析等は以下の条件で行った。すなわち、まず、核磁気共鳴(NMR)スペクトルは、日本電子社製のJNM-GSX-400を用いて測定した。ガスクロマトグラフ-質量分析(GC-MS)は、島津製作所社製のQP-5050を用い、電子衝撃法により行った。高分解質量分析(HRMS)は、日本電子社製のJMS-DX-303を用いて行った。ガスクロマトグラフ(GC)分析は、島津製作所社製のGC-8Aにジーエルサイエンス社製のシリコンOV-17充填ガラスカラム(内径2.6mm、長さ1.5m)を装着して用いた。カラムクロマトグラフィー分離におけるシリカゲルは、和光純薬工業社製のワコーゲルC-200を用いた。
(参考合成例1:3,3’-ジヨード-2,2’-ビベンゾ[b]チオフェンの合成)
 まず、出発原料である3,3’-ジブロモ-2,2’-ビベンゾ[b]チオフェンを、参考文献(U. Dahlmann, R. Neidlein, Helv. Chim.Acta., 1997, 80, 111-120)の記載を参照して合成した。そして、これを用いてハロゲン交換反応を行い、3,3’-ジヨード-2,2’-ビベンゾ[b]チオフェンを合成した。
すなわち、まず、500mLの三口フラスコに、3,3’-ジブロモ-2,2’-ビベンゾ[b]チオフェン(2.89g、6.7mmol)を入れ、反応容器内を窒素置換した。これにジエチルエーテル(160mL)を加えて撹拌し、-78℃に冷却した。続いて、n-BuLi(1.6Mヘキサン溶液、8.90mL、14.5mmol)を加えて1時間撹拌した。さらに、ヨウ素(3.41g、13.4mmol)を加え、室温下で2時間撹拌して反応させた。
その後、反応混合物の上澄み液をデカンテーションにより回収し、残存した固体をCHClに溶かし、上澄み液と共に飽和チオ硫酸ナトリウム水溶液で洗浄した。有機層を硫酸ナトリウムで乾燥させた後、ろ紙でろ過した。そして、ろ液から溶媒を留去し、得られた固体をトルエンで再結晶することにより、目的物である3,3’-ジヨード-2,2’-ビベンゾ[b]チオフェンを白色固体(2.76g、収率79%)の状態で得た。得られた白色固体の融点を測定したところ、194℃であった。
得られた目的物のH-NMR、及びHRMSの測定結果は以下の通りであった。
H-NMR(400MHz,CDCl)δ7.92-7.78(m,4H),7.57-7.43(m,4H);HRMS(EI):m/z=517.8164(C16の計算値は517.8157である)
[縮合環化合物の製造]
(実施例1:(5,6-ジ(n-ヘプチル)ベンゾ[2,1-b:3,4-b’]ビス[1]ベンゾチオフェンの合成)
 30mLの二口フラスコに、上記で得られた3,3’-ジヨード-2,2’-ビベンゾ[b]チオフェン(575mg,1.11mmol)、8-ヘキサデシン(302mg,1.33mmol)、酢酸パラジウム(24.4mg,0.11mmol)、N,N-ジシクロヘキシルメチルアミン(520mg,2.66mmol)、DMF(15mL)を加え、反応容器内を窒素置換して140℃で2.5時間、加熱撹拌し反応させた。
反応後、CHClと希塩酸を加えて抽出し、有機層を硫酸ナトリウムで乾燥させた後、ろ紙でろ過した。ろ液から溶媒を留去し、残存した固体をトルエンに溶かし、ヘキサンを展開溶媒とするシリカゲルカラムクロマトグラフィーで精製することにより、目的物である5,6-ジ(n-ヘプチル)ベンゾ[2,1-b:3,4-b’]ビス[1]ベンゾチオフェンを黄色固体(470mg,収率87%)の状態で得た。得られた固体の融点を測定したところ、103℃であった。
得られた目的物のH-NMR、及びHRMSの測定結果は以下の通りであった。
H-NMR(400MHz,CDCl);δ8.31(d,J=7.6Hz,2H), 7.90(d,J=7.6,2H),7.55-7.41(m,4H),3.43-3.30(m,4H),1.88-1.73(m,4H),1.70-1.57(m,4H),1.55-1.30(m,12H),0.92(t,J=7.3Hz,6H)、HRMS(EI):m/z=486.2421(C3238の計算値は486.2415である)
(実施例2:2,9-ジブロモ-5,6-ジ(n-デカニル)ベンゾ[2,1-b:3,4-b’]ビス[1]ベンゾチオフェンの合成)
 二口フラスコに、6,6’-ジブロモ-3,3’-ジヨード-2,2’-ビベンゾ[b]チオフェン、1,2-ジデカニルエチン、酢酸パラジウム、N,N-ジシクロヘキシルメチルアミン及びDMFを加え、反応容器内を窒素置換して、加熱撹拌し反応させる。
反応後、CHClと希塩酸を加えて抽出し、有機層を硫酸ナトリウムで乾燥させた後、ろ紙でろ過する。ろ液から溶媒を留去し、残存した固体をトルエンに溶かし、ヘキサンを展開溶媒とするシリカゲルカラムクロマトグラフィーで精製することにより、目的物である2,9-ジブロモ-5,6-ジ(n-ヘプチル)ベンゾ[2,1-b:3,4-b’]ビス[1] ベンゾチオフェンを黄色固体の状態で得る。
[重合体の製造]
(実施例3:ポリ(5,6-ジ(n-デカニル)ベンゾ〔2,1-b:3,4-b’〕ビス[1] ベンゾチオフェン)の合成)
 二口フラスコに、2,9-ジブロモ-5,6-ジ(n-ヘプチル)ベンゾ[2,1-b:3,4-b’]ビス[1]ベンゾチオフェン、Ni(COD)、1,5-シクロオクタジエン、ビピリジル及び、N,N-ジメチルホルムアミドを加え、反応容器内を窒素置換し、60℃で攪拌して反応させる。
反応後の溶液に、トルエンを加えて水で洗浄する。続いて、有機層を硫酸ナトリウムで乾燥させる。その後、ろ過したろ液から溶媒を留去した後、ヘキサンとトルエンを展開溶媒とするシリカゲルカラムクロマトグラフィーで精製し、得られた液体にエタノールを加えることにより、目的物である、ポリ(5,6-ジ(n-デカニル)ベンゾ〔2,1-b:3,4-b’〕ビス[1]ベンゾチオフェン)を茶褐色固体の状態で得る。得られたポリマーを重合体Aとする。
[有機薄膜素子の製造及び評価]
(実施例4:有機薄膜トランジスタの製造及びその特性の評価)
 重合体Aを適量秤量し、これにクロロホルムを加えて、クロロホルム溶液を調製し、これをテフロン(登録商標)製のメンブランフィルターで濾過して、塗布液とする。
次に、ゲート電極となる高濃度にドープされたn-型シリコン基板の表面上に、絶縁層となる熱酸化シリコン酸化膜を形成させた基板に対し、アルカリ洗剤、超純水、アセトンで超音波洗浄を行った後、オゾンUV照射により表面を洗浄する。この洗浄された基板に、ヘキサメチルジシラザン(HMDS;Hexamethyldisilazane、Aldrich製)を滴下した後、スピンすることにより、基板表面をHMDSで処理する。この表面処理された基板上に、上記の重合体Aのクロロホルム溶液(塗布液)を滴下した後、スピンして重合体Aの薄膜を形成する。
それから、重合体Aの薄膜の上に、真空蒸着法により、金属マスクを用いてPt/Au電極をで蒸着し、ソース電極及びドレイン電極を形成して、有機薄膜トランジスタを得る。
得られた有機薄膜トランジスタに、真空中でゲート電圧V、ソース-ドレイン間電圧VSDを変化させて、トランジスタ特性を測定すると、良好なId-Vg特性が得られる。

Claims (13)

  1. 下記一般式(1)で表される縮合環化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R11及びR12は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキル部分の炭素数が3以上であるアルコキシカルボニル基、置換基を有していてもよいアリール基、置換基を有していてもよい1価の複素環基又はシアノ基を示す。ただし、R11及びR12の少なくとも一方は水素原子ではない。R13及びR14は、それぞれ独立に、1価の基を示し、m及びnは、それぞれ独立に、0~2の整数である。R13及びR14がそれぞれ複数存在する場合、それらは同一でも異なっていてもよい。Y11及びY12は、それぞれ独立に、下記式(2a)、(2b)、(2c)、(2d)、(2e)、(2f)、(2g)又は(2h)で表される2価の基であり、Y13及びY14は、それぞれ独立に、下記式(2a)、(2b)、(2c)、(2d)、(2e)、(2f)、(2g)、(2h)又は(2i)で表される2価の基である。
    Figure JPOXMLDOC01-appb-C000002
    ただし、R21、R22R23及びR24は、それぞれ独立に、水素原子又は1価の基を示し、R23とR24とは、互いに結合して環を形成していてもよい。]
  2. 前記Y11及び前記Y12が、前記式(2a)で表される2価の基であり、前記Y13及び前記Y14が、前記式(2i)で表される2価の基である請求項1記載の縮合環化合物。
  3. 前記R11及び前記R12が、それぞれ独立に、炭素数1~10のアルキル基であるか又は炭素数6~20の置換基を有していてもよいアリール基である請求項1又は2記載の縮合環化合物。
  4. 下記一般式(3)で表される構造単位を有する重合体。
    Figure JPOXMLDOC01-appb-C000003
    [式中、R31及びR32は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキル部分の炭素数が3以上であるアルコキシカルボニル基、置換基を有していてもよいアリール基、置換基を有していてもよい1価の複素環基又はシアノ基を示す。ただし、R31及びR32の少なくとも一方は水素原子ではない。R33及びR34は、それぞれ独立に、水素原子又は1価の基を示す。Y31及びY32は、それぞれ独立に、下記式(4a)、(4b)、(4c)、(4d)、(4e)、(4f)、(4g)又は(4h)で表される2価の基であり、Y33及びY34は、それぞれ独立に、下記式(4a)、(4b)、(4c)、(4d)、(4e)、(4f)、(4g)、(4h)又は(4i)で表される2価の基である。
    Figure JPOXMLDOC01-appb-C000004
    ただし、R41、R42、R43及びR44は、それぞれ独立に、水素原子又は1価の基を示し、R43とR44とは、互いに結合して環を形成していてもよい。]
  5. 下記一般式(5)で表される構造単位を更に有する請求項4記載の重合体。
    Figure JPOXMLDOC01-appb-C000005
    [式中、Arは、置換基を有していてもよい2価の芳香族炭化水素基又は置換基を有していてもよい2価の複素環基を示す。]
  6. 前記Arが、下記一般式(6)で表される基である請求項5記載の重合体。
    Figure JPOXMLDOC01-appb-C000006
    [式中、R61及びR62は、それぞれ独立に、水素原子又は1価の基であり、R61とR62とが結合して環を形成してもよい。Yは、下記式(7a)、(7b)、(7c)、(7d)、(7e)、(7f)、(7g)、(7h)又は(7i)で表される2価の基である。
    Figure JPOXMLDOC01-appb-C000007
    ただし、R71、R72、R73及びR74は、それぞれ独立に、水素原子又は1価の基を示し、R73とR74とは、互いに結合して環を形成していてもよい。]
  7. 前記Y31及び前記Y32が、前記式(4a)で表される2価の基であり、前記Y33及び前記Y34が、前記式(4i)で表される2価の基であり、前記Yが、前記式(7a)で表される2価の基である請求項6記載の重合体。
  8. 塩基及び金属錯体触媒の存在下で、下記一般式(8a)で表される化合物と、下記一般式(8b)で表される化合物とを反応させて、下記一般式(8c)で表される縮合環化合物を得る縮合環化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000008
    [式中、X81及びX82は、それぞれ独立に水素原子又はハロゲン原子である。ただし、X81及びX82の少なくとも一方はハロゲン原子である。R81及びR82は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アルキル部分の炭素数が3以上であるアルコキシカルボニル基、置換基を有していてもよいアリール基、置換基を有していてもよい1価の複素環基又はシアノ基を示す。ただし、R81及びR82の少なくとも一方は水素原子ではない。R83及びR84は、それぞれ独立に1価の基を示し、p及びqは、それぞれ独立に0~2の整数である。ただし、R83及びR84がそれぞれ複数存在する場合、それらは同一でも異なっていてもよい。Y81及びY82は、それぞれ独立に、下記式(9a)、(9b)、(9c)、(9d)、(9e)、(9f)、(9g)又は(9h)で表される2価の基であり、Y83及びY84は、それぞれ独立に、下記式(9a)、(9b)、(9c)、(9d)、(9e)、(9f)、(9g)、(9h)又は(9i)で表される2価の基である。
    Figure JPOXMLDOC01-appb-C000009
    ただし、R91、R92、R93及びR94は、それぞれ独立に、水素原子又は1価の基を示し、R93とR94とは、互いに結合して環を形成していてもよい。]
  9. 前記Y81及び前記Y82が、前記式(9a)で表される2価の基であり、前記Y83及び前記Y84が、前記式(9i)で表される2価の基である請求項8記載の縮合環化合物の製造方法。
  10. 前記X81及び前記X82の少なくとも一方が、ヨウ素原子である請求項8又は9記載の縮合環化合物の製造方法。
  11. 請求項1~3のいずれか一項に記載の縮合環化合物及び/又は請求項4~7のいずれか一項に記載の重合体を含む有機薄膜。
  12. 請求項11記載の有機薄膜を備える有機薄膜素子。
  13. 請求項11記載の有機薄膜を備える有機薄膜トランジスタ。
PCT/JP2009/052319 2008-02-13 2009-02-12 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ WO2009101982A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09709634A EP2251342A4 (en) 2008-02-13 2009-02-12 ANELLED RING COMPOUND AND METHOD OF PRODUCTION THEREOF, POLYMER, ORGANIC THIN LAYER WITH THE COMPOUND AND / OR THE POLYMER, AND ORGANIC THIN LAYER AND ORGANIC THIN-LAYER TRANSISTOR WITH THE ORGANIC THIN LAYER
US12/867,182 US8344095B2 (en) 2008-02-13 2009-02-12 Fused ring compound, method for producing the same, polymer, organic thin film containing the compound and/or polymer, and organic thin film device and organic thin film transistor each comprising the organic thin film
CN2009801049188A CN101945878A (zh) 2008-02-13 2009-02-12 稠环化合物及其制造方法、聚合物、含有其的有机薄膜及具有该有机薄膜的有机薄膜元件和有机薄膜晶体管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008032246A JP2009190999A (ja) 2008-02-13 2008-02-13 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ。
JP2008-032246 2008-02-13

Publications (1)

Publication Number Publication Date
WO2009101982A1 true WO2009101982A1 (ja) 2009-08-20

Family

ID=40957013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052319 WO2009101982A1 (ja) 2008-02-13 2009-02-12 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ

Country Status (6)

Country Link
US (1) US8344095B2 (ja)
EP (1) EP2251342A4 (ja)
JP (1) JP2009190999A (ja)
KR (1) KR20100135741A (ja)
CN (1) CN101945878A (ja)
WO (1) WO2009101982A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102209720A (zh) * 2008-09-08 2011-10-05 住友化学株式会社 新型化合物及有机半导体材料
WO2011120951A1 (en) * 2010-03-31 2011-10-06 Basf Se Annealed dithiophene copolymers
JP2012503679A (ja) * 2008-09-19 2012-02-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ベンゾビス(シロロチオフェン)より誘導されるポリマー、および、有機半導体としてのそれらの使用
US8729220B2 (en) 2010-03-31 2014-05-20 Basf Se Annellated dithiophene copolymers
JP2015145370A (ja) * 2008-06-05 2015-08-13 出光興産株式会社 ハロゲン化合物、多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2016147773A1 (ja) * 2015-03-13 2017-12-28 富士フイルム株式会社 有機半導体膜形成用組成物、有機薄膜トランジスタ、電子ペーパー、および、ディスプレイデバイス

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5166816B2 (ja) * 2007-10-15 2013-03-21 山本化成株式会社 有機トランジスタ
US8049411B2 (en) 2008-06-05 2011-11-01 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US8154013B2 (en) * 2008-11-19 2012-04-10 Xerox Corporation Organic thin-film transistors
JP2011111392A (ja) * 2009-11-24 2011-06-09 Idemitsu Kosan Co Ltd アセナフトチオフェン化合物及びそれを用いた有機薄膜太陽電池材料
JP5792482B2 (ja) * 2010-03-04 2015-10-14 住友化学株式会社 含窒素縮合環化合物、含窒素縮合環重合体、有機薄膜及び有機薄膜素子
DE102010056151A1 (de) 2010-12-28 2012-06-28 Merck Patent Gmbh Materiallen für organische Elektrolumineszenzvorrichtungen
KR20140007396A (ko) * 2011-01-31 2014-01-17 스미또모 가가꾸 가부시키가이샤 질소 함유 축합환 화합물, 질소 함유 축합환 중합체, 유기 박막 및 유기 박막 소자
JPWO2012176820A1 (ja) * 2011-06-22 2015-02-23 国立大学法人 岡山大学 縮合複素環化合物およびその重合体
CN102543723A (zh) * 2012-01-05 2012-07-04 复旦大学 一种栅控二极管半导体器件的制造方法
JP5869420B2 (ja) * 2012-05-07 2016-02-24 富士フイルム株式会社 有機薄膜太陽電池、これに用いられる組成物、単量体および半導体膜の製造方法
CN103936964B (zh) * 2013-01-17 2016-02-10 海洋王照明科技股份有限公司 含1,8-咔唑-苯并二(苯并噻二唑)共聚物及其制备方法和应用
CN103936966B (zh) * 2013-01-17 2016-04-13 海洋王照明科技股份有限公司 含3,6-咔唑-苯并二(苯并噻二唑)共聚物及其制备方法和应用
JP6016821B2 (ja) * 2014-01-10 2016-10-26 富士フイルム株式会社 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
WO2015116770A2 (en) * 2014-01-29 2015-08-06 Massachusetts Institute Of Technology Bottom-up ultra-thin functional optoelectronic films and devices
JP6033802B2 (ja) * 2014-02-06 2016-11-30 富士フイルム株式会社 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP6239457B2 (ja) * 2014-07-18 2017-11-29 富士フイルム株式会社 有機半導体膜形成用組成物、及び、有機半導体素子の製造方法
JP6301488B2 (ja) * 2014-09-30 2018-03-28 富士フイルム株式会社 有機半導体膜形成用組成物、並びに、有機半導体素子及びその製造方法
JP6250512B2 (ja) * 2014-09-30 2017-12-20 富士フイルム株式会社 熱電変換素子、導電膜、有機半導体デバイス、及び導電性組成物
WO2016098654A1 (ja) 2014-12-16 2016-06-23 富士フイルム株式会社 有機半導体素子及びその製造方法、有機半導体組成物、並びに、有機半導体膜
JP6318452B2 (ja) * 2015-01-19 2018-05-09 富士フイルム株式会社 有機薄膜トランジスタ及びその製造方法
WO2017086320A1 (ja) 2015-11-20 2017-05-26 富士フイルム株式会社 有機半導体組成物、有機半導体膜、有機薄膜トランジスタおよび有機薄膜トランジスタの製造方法
KR102498512B1 (ko) * 2017-09-18 2023-02-10 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기전계발광소자
TWI804168B (zh) * 2022-01-20 2023-06-01 國立清華大學 含非對稱具磺醯基之稠環單元的衍生物、其用途、產氫裝置以及光電組件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110069A (ja) 1991-10-14 1993-04-30 Mitsubishi Electric Corp 電界効果トランジスタの製造方法
JP2001508023A (ja) * 1995-12-11 2001-06-19 セファロン・インコーポレイテッド タンパク質キナーゼcの阻害剤としての縮合イソインドロン
JP2004006476A (ja) 2002-05-31 2004-01-08 Ricoh Co Ltd 縦型有機トランジスタ
JP2004339516A (ja) 2003-05-16 2004-12-02 Merck Patent Gmbh フルオレンおよびアリール基を含むモノマー、オリゴマーおよびポリマー
WO2005087780A1 (ja) * 2004-03-10 2005-09-22 Japan Science And Technology Agency 含カルコゲン縮環多環式有機材料及びその製造方法
WO2007105386A1 (ja) * 2006-03-10 2007-09-20 Osaka University 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ
JP2008010541A (ja) * 2006-06-28 2008-01-17 Konica Minolta Holdings Inc 有機半導体材料、有機半導体膜、有機薄膜トランジスタ及び有機薄膜トランジスタの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843607A (en) * 1997-10-02 1998-12-01 Xerox Corporation Indolocarbazole photoconductors
US8217181B2 (en) * 2004-12-30 2012-07-10 E. I. Du Pont De Nemours And Company Dihalogen indolocarbazole monomers and poly (indolocarbazoles)
DE102005023437A1 (de) * 2005-05-20 2006-11-30 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
JP2007019294A (ja) * 2005-07-08 2007-01-25 Konica Minolta Holdings Inc 有機半導体材料、有機半導体膜、有機半導体素子及び有機薄膜トランジスタ
JP5004071B2 (ja) 2006-03-10 2012-08-22 住友化学株式会社 縮合環化合物の製造方法
US8049411B2 (en) * 2008-06-05 2011-11-01 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US8057919B2 (en) * 2008-06-05 2011-11-15 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110069A (ja) 1991-10-14 1993-04-30 Mitsubishi Electric Corp 電界効果トランジスタの製造方法
JP2001508023A (ja) * 1995-12-11 2001-06-19 セファロン・インコーポレイテッド タンパク質キナーゼcの阻害剤としての縮合イソインドロン
JP2004006476A (ja) 2002-05-31 2004-01-08 Ricoh Co Ltd 縦型有機トランジスタ
JP2004339516A (ja) 2003-05-16 2004-12-02 Merck Patent Gmbh フルオレンおよびアリール基を含むモノマー、オリゴマーおよびポリマー
WO2005087780A1 (ja) * 2004-03-10 2005-09-22 Japan Science And Technology Agency 含カルコゲン縮環多環式有機材料及びその製造方法
WO2007105386A1 (ja) * 2006-03-10 2007-09-20 Osaka University 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ
JP2008010541A (ja) * 2006-06-28 2008-01-17 Konica Minolta Holdings Inc 有機半導体材料、有機半導体膜、有機薄膜トランジスタ及び有機薄膜トランジスタの製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DAHLMANN, U. ET AL.: "The diyne reaction of 3,3'-bis(phenylethynyl)-2,2'-bithiophene derivatives via rhodium complexes. A novel approach to condensed benzo[2,1-b:3,4-b'] dithiophenes", HELVETICA CHIMICA ACTA, vol. 80, no. 1, 1997, pages 111 - 120, XP008139779 *
HUDKINS, R.L. ET AL.: "Synthesis and Mixed Lineage Kinase Activity of Pyrrolocarbazole and Isoindolone Analogs of (+)-K-252a", JOURNAL OF MEDICINAL CHEMISTRY, vol. 50, no. 3, 2007, pages 433 - 441, XP008139773 *
See also references of EP2251342A4
U. DAHLMANN; R. NEIDLEIN, HELV. CHIM. ACTA., vol. 80, 1997, pages 111 - 120
Z. BAO ET AL., APPL. PHYS. LETT., vol. 69, 1996, pages 4108
ZANDER, M.: "Photoluminescence of thiophene benzologs, Zeitschrift fuer Naturforschung, Teil A: Physik, Physikalische Chemie", KOSMOPHYSIK, vol. 40A, no. 5, 1985, pages 497 - 502, XP008139783 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145370A (ja) * 2008-06-05 2015-08-13 出光興産株式会社 ハロゲン化合物、多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子
CN102209720A (zh) * 2008-09-08 2011-10-05 住友化学株式会社 新型化合物及有机半导体材料
JP2012503679A (ja) * 2008-09-19 2012-02-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ベンゾビス(シロロチオフェン)より誘導されるポリマー、および、有機半導体としてのそれらの使用
WO2011120951A1 (en) * 2010-03-31 2011-10-06 Basf Se Annealed dithiophene copolymers
CN102834945A (zh) * 2010-03-31 2012-12-19 巴斯夫欧洲公司 稠合的二噻吩共聚物
US8729220B2 (en) 2010-03-31 2014-05-20 Basf Se Annellated dithiophene copolymers
JPWO2016147773A1 (ja) * 2015-03-13 2017-12-28 富士フイルム株式会社 有機半導体膜形成用組成物、有機薄膜トランジスタ、電子ペーパー、および、ディスプレイデバイス
US10510965B2 (en) 2015-03-13 2019-12-17 Fujifilm Corporation Composition for forming organic semiconductor film, organic thin film transistor, electronic paper, and display device

Also Published As

Publication number Publication date
US8344095B2 (en) 2013-01-01
CN101945878A (zh) 2011-01-12
US20110213119A2 (en) 2011-09-01
EP2251342A1 (en) 2010-11-17
JP2009190999A (ja) 2009-08-27
EP2251342A4 (en) 2012-06-27
US20110065895A1 (en) 2011-03-17
KR20100135741A (ko) 2010-12-27

Similar Documents

Publication Publication Date Title
WO2009101982A1 (ja) 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ
US9362505B2 (en) Fused ring compound and method for producing same, polymer, organic thin film containing those, and organic thin film device and organic thin film transistor comprising such organic thin film
JP5164134B2 (ja) 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ
WO2009102031A1 (ja) 多環縮環化合物、多環縮環重合体及びこれらを含む有機薄膜
JP2008255097A (ja) 含フッ素多環芳香族化合物、含フッ素重合体、有機薄膜及び有機薄膜素子
JP2008248228A (ja) ジフルオロシクロペンタンジオン環と芳香環との縮合したユニットを含む重合体、並びにこれを用いた有機薄膜及び有機薄膜素子
WO2009101823A1 (ja) 分岐型化合物、これを用いた有機薄膜及び有機薄膜素子
WO2012105511A1 (ja) 含窒素縮合環化合物、含窒素縮合環重合体、有機薄膜及び有機薄膜素子
WO2012105517A1 (ja) 多環縮環化合物、多環縮環重合体及びこれらを含む有機薄膜
WO2012070582A1 (ja) 共役系化合物、並びにこれを用いた有機薄膜及び有機薄膜素子
JP5426199B2 (ja) 分岐型化合物、並びにこれを用いた有機薄膜及び有機薄膜素子
WO2010104042A1 (ja) 含フッ素重合体及びこれを用いた有機薄膜
WO2010104131A1 (ja) 共役系化合物、並びにこれを用いた有機薄膜及び有機薄膜素子
WO2013035564A1 (ja) 高分子化合物及び有機トランジスタ
JP5363771B2 (ja) 含窒素縮合環化合物、含窒素縮合環重合体、有機薄膜及び有機薄膜素子
JP5105581B2 (ja) 含フッ素化合物及びその製造方法、含フッ素重合体、有機薄膜、並びに、有機薄膜素子
WO2012118128A1 (ja) 重合体、この重合体を用いた有機薄膜及び有機薄膜素子
WO2011102390A1 (ja) 芳香族化合物、及びこれを用いた有機薄膜、並びにこの有機薄膜を備える有機薄膜素子
WO2009101914A1 (ja) 重合体、これを用いた有機薄膜及び有機薄膜素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104918.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009709634

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107020207

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12867182

Country of ref document: US