WO2009096611A1 - 基板用ガラス組成物 - Google Patents

基板用ガラス組成物 Download PDF

Info

Publication number
WO2009096611A1
WO2009096611A1 PCT/JP2009/053440 JP2009053440W WO2009096611A1 WO 2009096611 A1 WO2009096611 A1 WO 2009096611A1 JP 2009053440 W JP2009053440 W JP 2009053440W WO 2009096611 A1 WO2009096611 A1 WO 2009096611A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
substrate
cao
sro
substrates
Prior art date
Application number
PCT/JP2009/053440
Other languages
English (en)
French (fr)
Inventor
Kensuke Nagai
Tetsuya Nakashima
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to CN2009801069980A priority Critical patent/CN101959819A/zh
Priority to KR1020107011505A priority patent/KR101273782B1/ko
Priority to JP2009551641A priority patent/JP5392096B2/ja
Priority to EP09706784.7A priority patent/EP2246310B1/en
Publication of WO2009096611A1 publication Critical patent/WO2009096611A1/ja
Priority to US12/769,703 priority patent/US8349751B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/02Vessels; Containers; Shields associated therewith; Vacuum locks
    • H01J5/04Vessels or containers characterised by the material thereof

Definitions

  • the present invention relates to a glass composition for a substrate which is useful as a substrate for a flat panel display (hereinafter abbreviated as FPD), particularly as a substrate for a plasma display panel (hereinafter abbreviated as PDP) and has excellent polishing properties. Furthermore, it is related with the glass composition for substrates which suppresses yellowing.
  • FPD flat panel display
  • PDP plasma display panel
  • a PDP is generally manufactured by baking a metal electrode, an insulating paste, a rib paste, etc. on a substrate glass at a temperature of about 550 to 600 ° C., and then frit-sealing the counter plate and the periphery.
  • soda lime silica glass widely used for construction or automobiles has been generally used as glass for PDP substrates.
  • Patent Document 1 a glass composition for a substrate having a thermal expansion coefficient close to that of soda lime silica glass and a high glass transition point and strain point is known (see Patent Document 1). ).
  • the FPD substrate glass is sometimes chamfered (polished) for the purpose of preventing breakage and the like.
  • polishing may be performed for the reduction
  • conventional glass for substrates is poor in workability in polishing work, and easily causes problems such as a decrease in productivity and an increase in manufacturing cost.
  • the glass composition is simply excellent in polishing properties. That is, it is difficult to make the characteristics such as the glass transition point, the thermal expansion coefficient, the volume resistivity, the high temperature viscosity, and the specific gravity within the range to be satisfied as the substrate glass for PDP.
  • the present invention aims to provide a glass composition for a substrate that is excellent in polishing properties and can be produced with high productivity while ensuring the characteristics and quality as a substrate for PDP. . Furthermore, this invention aims at providing the glass composition for substrates which suppresses yellowing. Yellowing refers to a phenomenon in which a silver electrode for discharging plasma is baked and formed on the glass substrate surface, whereby the glass substrate surface turns yellow.
  • the present invention is expressed in terms of mass% based on oxide, and as a glass mother composition, SiO 2 55-75% Al 2 O 3 5-15% MgO 0-4% CaO 5.5% more than 12% or less SrO 5-18% BaO 0-13% ZrO 2 0.5-6% Na 2 O 0-10% K 2 O 0-15% Na 2 O + K 2 O 6-20% MgO + CaO + SrO + BaO 17-25% CaO + SrO 15-25% Consists of For substrates characterized by having a glass transition point of 600 ° C. or higher, an average coefficient of thermal expansion at 50 to 350 ° C. of 75 ⁇ 10 ⁇ 7 to 90 ⁇ 10 ⁇ 7 / ° C., and a degree of wear of 98 or higher. A glass composition is provided.
  • the glass composition for a substrate of the present invention provides a glass for a substrate that can be produced at a low cost with excellent polishing properties while ensuring the characteristics as an FPD substrate, particularly a PDP substrate. Can do. Furthermore, it is possible to obtain a glass for a substrate that hardly causes yellowing. Moreover, since the glass composition for substrates of the present invention has a high transition point and excellent thermal stability and is easy to process such as polishing, it can be used effectively as glass for solar cell substrates.
  • FIG. 1 is a schematic cross-sectional view of an end portion of a chamfered substrate glass.
  • Substrate glass 12 Chamfered portion T Thickness of substrate glass
  • the glass composition for substrates of the present invention is expressed in terms of mass% based on oxide, and as a glass mother composition, SiO 2 55-75% Al 2 O 3 5-15% MgO 0-4% CaO 5.5% more than 12% or less SrO 5-18% BaO 0-13% ZrO 2 0.5-6% Na 2 O 0-10% K 2 O 0-15% Na 2 O + K 2 O 6-20% MgO + CaO + SrO + BaO 17-25% CaO + SrO 15-25% Consists of.
  • SiO 2 A component that forms a glass skeleton. If it is less than 55%, the glass heat resistance deteriorates. If it exceeds 75%, the coefficient of thermal expansion will decrease, and the high temperature viscosity of the glass will increase and the solubility may deteriorate.
  • the content of SiO 2 is preferably 55 to 65%. More preferably, it is 55 to 60%, and still more preferably 55 to 57%.
  • Al 2 O 3 The effect of increasing the glass transition point and improving the heat resistance is less than 5%. On the other hand, if it exceeds 15%, the high temperature viscosity of the glass increases and the solubility decreases.
  • the content of Al 2 O 3 is preferably 5 to 10%. More preferably, it is 5 to 8%, and further preferably 5 to 7%. Further, considering the suppression of yellowing, it is more preferably 8 to 10%.
  • MgO When it is 0 to 4%, it has an action of lowering the viscosity at the time of melting the glass and promoting the melting. When this content rate is higher than 4%, the polishability of the obtained glass for a substrate may be lowered.
  • the MgO content is preferably 0 to 3.5%. More preferably, it is 0 to 3%.
  • the CaO content is preferably 6 to 10%. More preferably, it is 6 to 8%, and further preferably 6 to 7.5%. Considering suppression of yellowing, it is preferably 5.8 to 10%. More preferably, it is 5.8 to 8%, and still more preferably 5.8 to 7.5%.
  • the SrO content is preferably 8 to 15%. More preferably, it is 8 to 13%, and further preferably 9 to 12%.
  • BaO Similar to BaO: CaO and SrO, if it is 13% or less, it has the effect of improving the polishability of the glass for substrates, improving the glass transition point and increasing the thermal expansion coefficient, and reducing the high temperature viscosity of the glass. Can be made. However, if its content exceeds 13%, the thermal expansion coefficient of the glass becomes too large and the specific gravity becomes too heavy, so it is 13% or less.
  • the BaO content is preferably 10% or less. More preferably, it is 9% or less, More preferably, it is 8% or less. In view of environmental load, it is particularly preferable that BaO is not substantially contained.
  • MgO + CaO + SrO + BaO If these are less than 17% in total, the high-temperature viscosity of the glass will increase too much and the glass transition point will be too low. On the other hand, if the total amount exceeds 25%, the specific gravity is too large. The total amount of these is preferably 18 to 25%, more preferably 19 to 25%.
  • CaO + SrO + BaO When the total amount of CaO + SrO: CaO + SrO + BaO is less than 15%, the polishability of the glass for substrates cannot be improved. Moreover, the high-temperature viscosity of glass rises too much and a glass transition point becomes too low. On the other hand, if the total amount exceeds 25%, the specific gravity is too large. Among these, CaO + SrO is 15 to 25% because the polishability of the substrate glass is further improved. It is preferably 15 to 23%, more preferably 15 to 20%.
  • Na 2 O + K 2 O In order to obtain a predetermined thermal expansion coefficient, at least one kind is essential. If the total amount is less than 6%, the thermal expansion coefficient is too small. On the other hand, if the total amount exceeds 20%, the heat resistance of the glass decreases.
  • the total amount of these is preferably 7 to 17%, more preferably 7 to 15%. Considering suppression of yellowing, it is preferably 7 to 14%, more preferably 7 to 13%.
  • Na 2 O is 0 to 10%
  • K 2 O is 0 to 15%.
  • a Na 2 O content of 2 to 10% and a K 2 O content of 1 to 13% are preferred because the polishing properties of the substrate glass are further improved. Yellowing considering that inhibit the Na 2 O is 2-8%, preferably a K 2 O is 1-10%, a Na 2 O is 3 ⁇ 8% K 2 O 1. More preferably, it is 5 to 10%.
  • Li 2 O contains substantially no unavoidable impurities in order to lower the heat resistance of the glass.
  • ZrO 2 Used for improving the heat resistance and chemical durability of glass, but less than 0.5% has little effect. On the other hand, if the content exceeds 6%, the devitrification temperature of the glass becomes too high and the thermal expansion coefficient becomes too low.
  • the content of ZrO 2 is preferably 1 to 5%. More preferably, it is 1 to 4%, and further preferably 1 to 3.5%.
  • the glass composition for a substrate of the present invention is expressed in mass% on an oxide basis, and as a glass mother composition, SiO 2 55-65% Al 2 O 3 5-10% MgO 0-3.5% CaO 5.8-10% SrO 8-15% BaO 0-10% ZrO 2 1-5% Na 2 O 2-10% K 2 O 1-13% Na 2 O + K 2 O 7-17% MgO + CaO + SrO + BaO 18-25% CaO + SrO 15-23% Preferably it consists of.
  • the glass composition for a substrate is a glass mother composition.
  • the additive contains 0.06 to 0.15% of Fe 2 O 3 as an additive.
  • the solubility may contain B 2 O 3. However, if contained excessively, the coefficient of thermal expansion of the substrate glass becomes too low, so it is preferable to make it less than 1.5%. Moreover, it is more preferable that the glass composition for substrates of the present invention does not substantially contain B 2 O 3 .
  • a SO 3 as a fining agent.
  • a SO 3 source it is preferable to add a sulfate such as potassium sulfate (K 2 SO 4 ), sodium sulfate (Na 2 SO 4 ), calcium sulfate (CaSO 4 ) to the glass raw material.
  • a part of SO 3 added as a fining agent may remain.
  • the addition amount is 10 parts by mass with respect to the glass matrix composition raw material 100 parts by weight SO 3, would be separated from the glass melt during the dissolution , It will not melt. Further, if it is less than 0.5 parts by mass, the clarification effect is poor. For this reason, it is preferable to add 0.5 to 10 parts by mass. 0.5 to 8 parts by mass is more preferable, further preferably 0.5 to 4 parts by mass, and particularly preferably 0.7 to 2 parts by mass (hereinafter referred to as “parts by mass”). It means the addition amount with respect to 100 parts by mass).
  • the residual amount (content) in terms of SO 3 in the glass composition for substrates is preferably 0.001 to 0.6%, more preferably 0.002 to 0.5%, more preferably 0.00% in terms of mass%. 005 to 0.4% is more preferable, and 0.01 to 0.4% is particularly preferable.
  • the glass composition for a substrate of the present invention improves the solubility, clarity, and formability of the glass, so that SnO 2 , As 2 O 3 , Sb 2 O 3 ,
  • the total amount of P 2 O 5 , F, and Cl is preferably 2 parts by mass or less, more preferably 1.5 parts by mass or less.
  • additives are added so that the total amount of La 2 O 3 , TiO 2 , SnO 2 and ZnO is 5 parts by mass or less with respect to the glass matrix composition raw material. May be.
  • a colorant such as Fe 2 O 3 , CoO, NiO, or Nd 2 O 3 may be added.
  • a coloring agent may be added so that it may become 3 mass parts or less with respect to a glass mother composition raw material, and it is preferable to add so that it may become 1 mass part or less.
  • Fe 2 O 3 is contained as an additive in an amount of 0.06% or more.
  • Fe 2 O 3 to inhibit the varying glass yellow is contained 0.15% or less.
  • Fe 2 O 3 is preferably contained in an amount of 0.06 to 0.14%, more preferably 0.07 to 0.13%, still more preferably 0.08 to 0.12%.
  • the glass substrate of the glass composition of the present invention has an average content of Fe 2+ in the surface layer from the glass substrate surface on the side on which the silver electrode is formed to a depth of 10 ⁇ m. It is preferably 0.0725% or less in terms of Fe 2 O 3 .
  • the glass composition for substrates of the present invention preferably has a high temperature viscosity lower than that of conventional glass for PDP substrates.
  • the glass melt temperature T 2 corresponding to a viscosity of 10 2 dPa ⁇ s is preferably 1570 ° C. or lower.
  • the viscosity of 10 2 dPa ⁇ s is a reference viscosity indicating that the viscosity of the glass melt is sufficiently low. Accordingly, the temperature T 2 at which the viscosity of the glass melt is 10 2 dPa ⁇ s is the reference temperature of the glass melt.
  • the glass composition for substrates of the present invention can be subjected to the melting step at a low temperature. As a result, stable production of glass becomes possible.
  • T 2 is preferably 1560 ° C. or less, more preferably 1550 ° C. or less, further 1540 ° C. or less, and particularly preferably 1500 ° C. or less.
  • the glass melt temperature T 4 corresponding to a viscosity of 10 4 dPa ⁇ s is preferably 1200 ° C. or lower.
  • the viscosity of 10 4 dPa ⁇ s is a reference viscosity when glass is float formed. Accordingly, the temperature T 4 at which the viscosity of the glass melt becomes 10 4 dPa ⁇ s is also the reference temperature of the glass melt in the float forming process.
  • the glass composition for substrates of the present invention can carry out the float forming process at a lower temperature than before. As a result, stable molding of the glass becomes possible. In addition, the life of the float bath is extended. Further, since the fuel required to heat the float tank is reduced, the manufacturing cost of the substrate glass is reduced. Moreover, since the temperature of the glass ribbon drawn out from the float tank becomes low, the energy required for the slow cooling step performed following the float forming is reduced.
  • the glass composition for substrates of the present invention has an average coefficient of thermal expansion at 50 to 350 ° C. in the range of 75 ⁇ 10 ⁇ 7 to 90 ⁇ 10 ⁇ 7 / ° C.
  • a frit material or a paste material used when producing the PDP must be one that corresponds to the thermal expansion coefficient of the glass.
  • the glass composition for a substrate of the present invention preferably has a thermal expansion coefficient in the range of 80 ⁇ 10 ⁇ 7 to 90 ⁇ 10 ⁇ 7 / ° C.
  • the glass composition for a substrate of the present invention preferably has a specific gravity of 2.9 or less. If the specific gravity is more than 2.9, the glass composition for a substrate becomes heavy, which is not preferable for handling and particularly for transportation.
  • the specific gravity of the glass composition for a substrate being 2.9 or less is a particularly important characteristic for a large substrate.
  • the glass composition for a substrate of the present invention preferably has a specific gravity of 2.8 or less, more preferably 2.75 or less.
  • the glass composition for substrates of the present invention has a glass transition point Tg of 600 ° C. or higher.
  • Tg glass transition point
  • the shrinkage amount of the glass due to the heat treatment is not sufficiently reduced when a large PDP such as a nominal 40 inch is manufactured.
  • Tg glass transition point 615 degreeC or more, More preferably, it is 630 degreeC or more.
  • 640 degreeC or more, especially 650 degreeC or more are preferable.
  • the glass composition for substrates of the present invention preferably has a volume resistivity at 150 ° C. of 10 11 ⁇ ⁇ cm or more.
  • a silver electrode is formed on the surface of the substrate glass.
  • the substrate glass composition is preferably excellent in insulation.
  • the volume resistivity at 150 ° C. is 10 11 ⁇ ⁇ cm or more, the insulation is excellent, and even when the PDP is enlarged or densified, the silver electrode formed on the substrate glass is energized. There is no possibility that part of the current that is energized flows through the glass around the silver electrode.
  • the composition of the glass composition for a substrate is selected by focusing only on lowering the high-temperature viscosity, it is difficult to increase the volume resistivity at 150 ° C. to 10 11 ⁇ ⁇ cm or more.
  • the high temperature viscosity of the glass can be lowered while keeping the volume resistivity of the glass at 150 ° C. at 10 11 ⁇ ⁇ cm or more.
  • the volume resistivity of the glass at 150 ° C. is preferably 2 ⁇ 10 11 ⁇ ⁇ cm or more, and more preferably 5 ⁇ 10 11 ⁇ ⁇ cm or more.
  • the glass composition for a substrate of the present invention has a degree of wear (FA) which is one of the measures of polishability of 98 or more. Therefore, the workability of chamfering (edge polishing) for the purpose of preventing breakage such as breakage or chipping of the glass is high. Therefore, productivity can be improved and manufacturing cost can be reduced. In addition, the chamfering quality is improved and the yield is improved by reducing the breakage rate. In addition, the workability of polishing the glass surface for the purpose of preventing silver coloration during electrode formation on the glass surface is high. Therefore, productivity can be improved and manufacturing cost can be reduced.
  • the substrate glass of the present invention has a degree of wear (FA) of preferably 100 or more, more preferably 105 or more, and particularly preferably 105 to 150.
  • the degree of wear shall mean the measured value as follows.
  • a sample having a measurement area of 9 cm 2 whose mass has been measured in advance is held on the surface of a disk-shaped flat plate made of cast iron at a position 80 mm from the center. Then, in a state where it is rotated at 60 times / minute while maintaining a horizontal state, a lapping solution obtained by adding alumina abrasive grains having an average particle diameter of 20 ⁇ m to 20 ml of water is uniformly supplied for 5 minutes. . Next, after wrapping with a load of 9.807 N, the mass is measured. Then, the wear mass m is determined from the difference in mass before and after the lap. Then, the same operation is performed for the Japan Optical Glass Industry Association specified in the standard sample (BSC7), similarly determine the abrasion mass m 0. Then, the degree of wear (FA) is obtained from the following equation.
  • d means the specific gravity of the sample
  • d 0 means the specific gravity of the standard sample (BSC7). This specific gravity means a value measured by the Archimedes method using pure water.
  • the chamfering means that the edge portion generated at the end portion is polished after cutting the substrate glass into a desired size, and the chamfered cross section 12 is circularly formed so as to drop the corner as shown in FIG.
  • the shape is not limited to the arc shape, but may be other shapes).
  • the method for chamfering is not particularly limited.
  • the edge of the glass sheet can be chamfered using a rotating wheel with abrasive grains in which abrasive grains are provided on the peripheral surface of the rotating wheel as in a conventionally known method.
  • the polishing of the substrate glass surface for the purpose of preventing silver color development will be described.
  • a silver paste is baked on the surface of a substrate glass having a reduction layer on the surface to form a silver electrode, the surface may be discolored, and thus the reduction layer may be polished and removed.
  • the method for polishing is not particularly limited.
  • the surface of the substrate glass can be polished by using cerium oxide or the like as an abrasive as in a conventionally known method and using an Oscar type polishing machine.
  • a plate glass in connection with polishing, a plate glass can be ground using a core drill with abrasive grains provided with an abrasive grain portion at the tip of a rotating core, and holes can be easily formed.
  • the glass composition for a substrate of the present invention preferably has a crack depth of 37 ⁇ m or more when the Vickers indenter is pushed in with a load of 200 g as another measure of the polishing property. Also in this case, chamfering, polishing and perforation can be easily performed. However, when considered as a scale, the above degree of wear is preferable to the polishing rather than the crack depth.
  • the depth of the crack is measured by vertically cutting an indentation formed by pressing a Vickers indenter and measuring the vertical crack depth at the end face. In the glass for a substrate of the present invention, the depth of the crack is more preferably 39 to 100 ⁇ m.
  • a yellow paste b * on the glass surface after the silver paste is removed after the silver paste is applied and baked on the glass surface Is preferably 4 or less, more preferably 3.5 or less, and particularly preferably 0 to 3.
  • the glass for a substrate of the present invention can be used to produce a glass for a substrate, for example, by the following method. That is, the raw materials of each component that are usually used are prepared so as to become target components, which are continuously fed into a melting furnace, heated and melted at 1200 to 1400 ° C., and clarified at 1400 to 1700 ° C. The molten glass is formed into a predetermined plate thickness by the float method, and is cooled and then cut to obtain a transparent glass substrate.
  • Table 1 shows the glass compositions of Examples 1 to 5 (Examples), Examples 6 to 8 (Comparative Examples), and Table 2 shows Examples 9 to 13 (Examples).
  • a raw material was prepared so as to have a matrix composition (SiO 2 to Zr 2 O) described in Tables 1 and 2 and containing the additive described in Table 2, and sulfuric acid was added to 100 parts by mass of the raw material. 0.8 parts by mass of salt in terms of SO 3 was added to obtain a glass raw material, and the glass raw material was melted by heating at a temperature of 1500 to 1600 ° C. for 4 hours using a platinum crucible. For melting, a platinum stirrer was inserted and stirred for 2 hours to homogenize the glass.
  • the glass melt was poured out, slowly cooled, and then polished to form a plate having a thickness of 2.8 mm.
  • the glass composition (mass%), the glass transition point Tg (° C.), the average thermal expansion coefficient ⁇ 50-350 (10 ⁇ 7 / ° C.) at 50 to 350 ° C., the volume resistivity at 150 ° C. ⁇ ( ⁇ ⁇ cm), T 2 (° C.), T 4 (° C.), specific gravity (g / cm 3 ), degree of wear and crack depth ( ⁇ m) were measured.
  • the results are shown in Tables 1 and 2.
  • the residual amount of SO 3 in the glass was 0.05 to 0.3% by mass.
  • the value in parentheses in the table indicates the calculated value.
  • the average coefficient of thermal expansion at 50 to 350 ° C. is a value measured by using a differential thermal dilatometer (TMA), and is a value obtained by JIS R3102 (1995).
  • the glass transition point is a value measured using TMA, and was determined according to JIS R3103-3 (FY2001).
  • the volume resistivity was calculated by measuring the value of the current flowing in the glass when 100 V was applied by an electrode using a three-terminal method.
  • T 2 and T 4 are the temperatures T 2 when the viscosities of the compositions similar to those of Examples 1 to 13 are measured using a rotational viscometer, and the glass of Examples 1 to 13 has a viscosity of 10 2 dPa ⁇ s.
  • the temperature T 4 when 10 4 dPa ⁇ s was obtained was calculated by a weighted average.
  • the glass transition point was determined as follows. The glass was held at the temperature of the annealing point for 30 minutes and then slowly cooled at a cooling rate of 60 ° C./min. Next, for this slowly cooled glass, a differential thermal dilatometer was used to obtain a curve of thermal expansion coefficient with respect to temperature from room temperature to the yield point. A tangent line was drawn before and after the first bending point of this curve, and the temperature corresponding to the intersection of the tangent lines was taken as the glass transition point. The b * value was determined as follows. The glass obtained above was melted, poured into a plate shape, gradually cooled, and both surfaces were mirror-polished to obtain a plate glass having a thickness of 2.8 mm.
  • the glasses of Examples have an abrasion degree of 98 or more and excellent polishing properties. Furthermore, the glass transition point is 600 ° C. or higher, the thermal expansion coefficient is 75 ⁇ 10 ⁇ 7 / ° C. to 90 ⁇ 10 ⁇ 7 / ° C., and the volume resistivity ⁇ is 10 11 ⁇ ⁇ cm or higher. Suitable as substrate glass.
  • Example 6 CaO is 5.5% or less, and CaO + SrO is less than 15%, so the degree of wear is low.
  • Example 7 since SrO is less than 5% and CaO + SrO is less than 15%, the degree of wear is low. Therefore, the productivity of the glasses of Examples 6 to 8 is reduced.
  • the glasses of Examples 9 to 13 had b * of 4 or less, and yellowing hardly occurred.
  • a raw material is prepared so that it may become the glass composition of this invention, and it melt
  • chamfering of the glass end for the purpose of preventing breakage or the like is performed.
  • the glass surface is polished to remove the reducing layer on the glass surface.
  • the glass for a substrate having the composition of the present invention can efficiently chamfer (polish) the edge of the glass. Moreover, the glass surface can be polished efficiently. As a result, the target substrate glass can be manufactured with high productivity and low cost.
  • the glass composition for substrates of the present invention is suitable as a substrate for FPD, particularly as a substrate for PDP.
  • the substrate glass composition of the present invention can also be used as a magnetic disk substrate.

Abstract

 FPD用基板、特にPDP用基板としての特性を確保しつつ、研磨性が良好になっている。これにより、研磨作業の作業性、生産性に優れた基板用ガラスが得られる基板用ガラス組成物の提供。  酸化物基準の質量%表示で、ガラス母組成としてSiO2:55~75%、Al2O3:5~15%、MgO:0~4%、CaO:5.5%超12%以下、SrO:5~18%、BaO:0~13%、ZrO2:0.5~6%、Na2O:0~10%、K2O:0~15%、Na2O+K2O:6~20%、MgO+CaO+SrO+BaO:17~25%、CaO+SrO:15~25%からなり、ガラス転移点が600°C以上であり、50~350°Cにおける平均熱膨張係数が75×10-7~90×10-7/°Cであり、磨耗度が98以上であることを特徴とする基板用ガラス組成物。

Description

基板用ガラス組成物
 本発明は、フラットパネルディスプレイ(以下、FPDと略す)用基板、特にプラズマディスプレイパネル(以下、PDPと略す)用基板として有用で、研磨性に優れた基板用ガラス組成物に関する。さらに、黄変を抑制する基板用ガラス組成物に関する。
 従来、PDPは一般的に、基板ガラス上に金属電極、絶縁ペースト、リブペースト等を550~600℃程度の温度で焼成した後、対向板と周囲をフリットシールすることによって製造される。従来、PDP基板用ガラスとして建築用または自動車用として広く用いられるソーダライムシリカガラスが一般的に用いられてきた。
 しかし、ソーダライムシリカガラスのガラス転移点は530~560℃であるため、上記の焼成温度で熱処理を受けると、基板ガラスが変形または収縮し、寸法が著しく変化するため、対向板との電極位置あわせを精度よく実現しがたいという課題があった。
 この基板ガラスの熱変形または熱収縮の問題を解決するため、熱膨張係数がソーダライムシリカガラスと近く、ガラス転移点及び歪点が高い基板用ガラス組成物が知られている(特許文献1参照)。
特開平8-165138号公報
 ところで、FPD用基板ガラスは破損防止等を目的として該ガラス端部の面取(研磨)を行うことがある。また、フロート法により板ガラスを成形した後、ガラス表面の還元層除去のために研磨を行うことがある。しかしながら従来の基板用ガラスは研磨作業における作業性が悪く、生産性の低下、製造コストの増加といった問題を引き起こしやすい。
 これに対して、単に研磨性に優れたガラス組成としたのでは、PDP用の基板ガラスに要求される特性を満たすことが困難である。すなわち、ガラス転移点、熱膨張係数、体積抵抗率、高温粘度、比重等の特性をPDP用基板ガラスとして満たすべき範囲にすることが困難である。
 上記した問題点を解決するため、本発明はPDP用基板としての特性及び品質を確保しつつ、研磨性に優れ、高い生産性で製造できる基板用ガラスの組成物を提供することを目的とする。さらに、本発明は黄変を抑制する基板用ガラス組成物を提供することを目的とする。黄変とはプラズマを放電させるための銀電極をガラス基板表面に焼成形成することで、ガラス基板表面が黄色に変色するという現象をいう。
 上記目的を達成するため、本発明は、酸化物基準の質量%表示で、ガラス母組成として、
SiO2             55~75%
Al23             5~15%
MgO             0~4%
CaO             5.5%超12%以下
SrO             5~18%
BaO             0~13%
ZrO2             0.5~6%
Na2O             0~10%
2O              0~15%
Na2O+K2O          6~20%
MgO+CaO+SrO+BaO 17~25%
CaO+SrO         15~25%
からなり、
 ガラス転移点が600℃以上であり、50~350℃における平均熱膨張係数が75×10-7~90×10-7/℃であり、磨耗度が98以上であることを特徴とする基板用ガラス組成物を提供する。
 本発明の基板用ガラス組成物は、FPD用基板、特にPDP用基板としての特性を確保しつつ、研磨性に優れ、生産性が高く、低コストで製造することができる基板用ガラスを得ることができる。さらに、黄変が生じにくい基板用ガラスを得ることができる。
 また本発明の基板用ガラス組成物は、転移点が高く熱的安定性に優れ、研磨等の加工が容易であるため、太陽電池基板用ガラスとしても有効に使用できる。
図1は、面取された基板用ガラスの端部の概略断面図である。
符号の説明
 10  基板ガラス
 12  面取部
 T   基板ガラスの厚さ
 以下、本発明の基板用ガラス組成物についてさらに説明する。
 本発明の基板用ガラス組成物は、酸化物基準の質量%表示で、ガラス母組成として、
SiO2             55~75%
Al23             5~15%
MgO             0~4%
CaO             5.5%超12%以下
SrO             5~18%
BaO             0~13%
ZrO2             0.5~6%
Na2O             0~10%
2O              0~15%
Na2O+K2O          6~20%
MgO+CaO+SrO+BaO 17~25%
CaO+SrO         15~25%
からなる。
 本発明の基板用ガラス組成物において、上記組成に限定する理由は以下の通りである。
 以下において、特に断りのない限り質量%を単に%で表す。
 SiO2:ガラスの骨格を形成する成分で、55%未満ではガラス耐熱性が悪くなる。75%超では熱膨張係数が低下し、ガラスの高温粘性が増加して溶解性が悪化するおそれがある。
 SiO2の含有量は、55~65%であることが好ましい。より好ましくは55~60%、さらに好ましくは55~57%である。
 Al23:ガラス転移点を上げ、耐熱性を向上させる効果があるが、5%未満ではこの効果が少ない。他方、15%超ではガラスの高温粘性が増加し、溶解性が低下する。
 Al23の含有量は、5~10%であることが好ましい。より好ましくは5~8%、さらに好ましくは5~7%である。また、黄変を抑制することを考慮すると8~10%であることがより好ましい。
 MgO:0~4%であるとガラス溶解時の粘性を下げ、溶解を促進する作用がある。この含有率が4%よりも高いと、得られる基板用ガラスの研磨性が低下するおそれがある。
 MgOの含有量は、0~3.5%であることが好ましい。より好ましくは0~3%である。
 CaO:5.5超12%以下であると基板用ガラスの研磨性を向上させる効果がある。また、ガラスの転移点の向上と熱膨張係数の増大、およびガラスの高温粘性を下げ、比重を軽くする効果がある。その含有量が5.5%以下ではガラスの熱膨張係数が小さくなりすぎる。また、研磨性の向上が期待できない。他方、12%超では熱膨張係数が大きくなりすぎ、かつ失透温度が高くなりすぎる。
 CaOの含有量は、6~10%であることが好ましい。より好ましくは6~8%、さらに好ましくは6~7.5%である。黄変を抑制することを考慮すると5.8~10%であることが好ましい。より好ましくは5.8~8%、さらに好ましくは5.8~7.5%である。
 SrO:CaOと同様に、5~18%であると基板用ガラスの研磨性の向上、ガラスの転移点の向上と熱膨張係数の増大、電気抵抗を増加させる効果がある。その含有量が5%未満ではガラス転移点が低くなりすぎる。また、研磨性の向上が期待できない。他方、18%超ではガラスの熱膨張係数が大きくなりすぎ、比重が大きくなりすぎる。
 SrOの含有量は、8~15%であることが好ましい。より好ましくは8~13%、さらに好ましくは9~12%である。
 BaO:CaO、SrOと同様に、13%以下であると基板用ガラスの研磨性の向上、ガラスの転移点の向上と熱膨張係数の増大、およびガラスの高温粘性を下げる効果があるため、含有させることができる。しかしその含有量が13%超ではガラスの熱膨張係数が大きくなりすぎ、比重が重くなりすぎるため13%以下である。
 BaOの含有量は、10%以下であることが好ましい。より好ましくは9%以下であり、さらに好ましくは8%以下である。
 また、環境負荷を考慮すると、BaOは実質的に含有しないことが特に好ましい。
 MgO+CaO+SrO+BaO:これらが合量で17%未満ではガラスの高温粘性が上昇しすぎ、ガラス転移点が低くなりすぎる。他方、これらが合量で25%超では比重が大きくなりすぎる。
 これらは合量で18~25%であることが好ましく、19~25%であることがより好ましい。
 CaO+SrO:CaO+SrO+BaOが合量で15%未満では基板用ガラスの研磨性の向上が図れない。また、ガラスの高温粘性が上昇しすぎ、ガラス転移点が低くなりすぎる。他方、これらが合量で25%超では比重が大きくなりすぎる。
 この中でも、基板用ガラスの研磨性がより向上するので、CaO+SrOは15~25%である。15~23%であることが好ましく、15~20%であることがより好ましい。
 Na2O+K2O:所定の熱膨張係数とするために、少なくとも一種は必須である。これらの合量が6%未満では熱膨張係数が小さくなりすぎる。他方合量が20%超ではガラスの耐熱性が低下する。
 これらの合量が7~17%であることが好ましく、より好ましくは7~15%である。黄変を抑制することを考慮すると7~14%であることが好ましく、さらに好ましくは7~13%である。
 この中でNa2Oは0~10%であり、K2Oは0~15%である。Na2Oが2~10%であり、K2Oが1~13%であると基板用ガラスの研磨性がより向上するので好ましい。黄変を抑制することを考慮するとNa2Oが2~8%であり、K2Oが1~10%であると好ましく、Na2Oが3~8%であり、K2Oが1.5~10%であるとより好ましい。
 一方、Li2Oは、ガラスの耐熱性を下げるため、不可避不純物以外実質的に含有しない。
ZrO2:ガラスの耐熱性及び化学耐久性の向上のために使用するが、0.5%未満ではその効果が少ない。他方、その含有量が6%超ではガラスの失透温度が高くなりすぎ、熱膨張係数が低くなりすぎる。
 ZrO2の含有量は、1~5%であることが好ましい。より好ましくは1~4%、さらに好ましくは1~3.5%である。
 以上から、本発明の基板用ガラス組成物は、酸化物基準の質量%表示で、ガラス母組成として、
SiO2             55~65%
Al23             5~10%
MgO             0~3.5%
CaO             5.8~10%
SrO             8~15%
BaO             0~10%
ZrO2             1~5%
Na2O             2~10%
2O              1~13%
Na2O+K2O          7~17%
MgO+CaO+SrO+BaO 18~25%
CaO+SrO         15~23%
からなることが好ましい。
 黄変を抑制することを考慮すると、基板用ガラス組成物はガラス母組成として、
SiO2             55~65%
Al23             8~10%
MgO             0~3.5%
CaO             5.8~10%
SrO             8~15%
BaO             0~10%
ZrO2             1~5%
Na2O             2~8%
2O              1~10%
Na2O+K2O          7~14%
MgO+CaO+SrO+BaO 18~25%
CaO+SrO         15~23%

からなり、添加剤としてFe0.06~0.15%を含有することが好ましい。
 さらに、溶解性を向上するため、B23を含有してもよい。ただし、過度に含有すると、基板ガラスの熱膨張係数が低くなり過ぎるので1.5%未満とすることが好ましい。また、本発明の基板用ガラス組成物には、B23を実質的に含有しないことがより好ましい。
 また、本発明の基板用ガラス組成物の製造時、清澄剤としてSO3を添加することが好ましい。SO3源として、硫酸カリウム(K2SO4)、硫酸ナトリウム(Na2SO4)、硫酸カルシウム(CaSO4)等の硫酸塩をガラス原料に投入することが好ましいが、製造後の基板用ガラス組成物には、清澄剤として添加したSO3の一部が残存する場合がある。製造後の基板用ガラス組成物における残存量が0.6%超となるような量をガラス原料に投入した場合、製造時にガラスが再沸するなどしてガラス中に気泡が残存する傾向がある。
 なお、SO3を清澄剤として使用する際、その添加量が、SO3として前記ガラス母組成原料100質量部に対して10質量部超であると、溶解中にガラス融液から分離してしまい、溶け残ってしまう。また、0.5質量部未満であると清澄効果が乏しい。このため、0.5~10質量部添加するのが好ましい。0.5~8質量部がより好ましく、さらに好ましくは0.5~4質量部、特に好ましくは0.7~2質量部である(以下、「質量部」と記した場合、ガラス母組成原料100質量部に対する添加量を意味するものとする。)。
 この場合、基板用ガラス組成物へのSO3換算の残存量(含有量)は質量%表示で0.001~0.6%が好ましく、0.002~0.5%がより好ましく、0.005~0.4%がさらに好ましく、0.01~0.4%が特に好ましい。
 本発明の基板用ガラス組成物は、上記成分以外にガラスの溶解性、清澄性、成形性を改善するため、ガラス母組成原料に対して、SnO2、As23、Sb23、P25、F、Clが合量で好ましくは2質量部以下、より好ましくは1.5質量部以下となるようにする。
 また、基板用ガラス組成物の耐久性向上のため、ガラス母組成原料に対して、La23、TiO2、SnO2、ZnOが合量で5質量部以下となるように添加剤を添加してもよい。
 さらに、基板用ガラス組成物の色調を調整するため、Fe23、CoO、NiO、Nd23等の着色剤を添加してもよい。このような着色剤は、ガラス母組成原料に対して、合量で3質量部以下となるように添加してもよく、1質量部以下となるように添加することが好ましい。
 また、溶解性向上の観点から添加剤としてFeが0.06%以上含有されていると好ましい。また、ガラス黄変を抑制するためFeが0.15%以下含有されていると好ましい。Feは好ましくは0.06~0.14%、よりこの好ましくは0.07~0.13%、さらに好ましくは0.08~0.12%含有される。
 本発明のガラス組成物のガラス基板は、ガラス基板表面に銀電極が形成される際に、銀電極が形成される側のガラス基板表面から深さ10μmまでの表層におけるFe2+の平均含有量がFe換算で0.0725%以下であることが好ましい。
 本発明の基板用ガラス組成物は、高温粘度が従来のPDP基板用ガラスに比べて低くなっていることが好ましい。具体的には、102dPa・sの粘度に相当するガラス融液の温度T2が1570℃以下であることが好ましい。
 粘度102dPa・sは、ガラス融液の粘度が十分低くなっていることを示す基準粘度である。したがって、ガラス融液の粘度が102dPa・sとなる温度T2は、ガラス融液の基準温度である。
 本発明の基板用ガラス組成物は、その溶解工程を低温で実施することができる。この結果、ガラスの安定した生産が可能となる。また、溶解工程時の溶解槽の温度が低くなるので溶解槽の寿命が延長する。溶解工程の際に投入する燃料の量が少なくなるため、ガラス製造コストが下がる。
 T2は、1560℃以下であることが好ましく、より好ましくは1550℃以下、さらには1540℃以下であり、1500℃以下であることが特に好ましい。
 本発明の基板用ガラス組成物は、104dPa・sの粘度に相当するガラス融液の温度T4が1200℃以下であることが好ましい。
 粘度が104dPa・sは、ガラスをフロート成形する際の基準粘度である。したがって、ガラス融液の粘度が104dPa・sとなる温度T4は、フロート成形工程におけるガラス融液の基準温度でもある。
 本発明の基板用ガラス組成物は、フロート成形工程を従来よりも低温で実施することができる。この結果、ガラスの安定した成形が可能となる。また、フロートバスの寿命が延長する。また、フロート槽を加熱するのに要する燃料が少なくなるため、基板ガラスの製造コストが下がる。また、フロート槽から引き出されるガラスリボンの温度が低くなるので、フロート成形につづいて実施される徐冷工程に要するエネルギーが削減される。
 本発明の基板用ガラス組成物は、50~350℃における平均熱膨張係数が75×10-7~90×10-7/℃の範囲にある。本発明の基板用ガラス組成物をPDP基板に使用する場合、PDPを製造する際に使用するフリット材料やペースト材料として、ガラスの熱膨張係数に対応したものを使用しなければならない。PDPを製造する際に実施される焼成工程の温度領域(50~350℃)において、熱膨張係数が上記の範囲から逸脱しているものを選定することは非常に困難である。
 本発明の基板用ガラス組成物は、熱膨張係数が80×10-7~90×10-7/℃の範囲にあることがより好ましい。
 本発明の基板用ガラス組成物は、比重が2.9以下であることが好ましい。比重が2.9超であると基板用ガラス組成物が重くなるため、取扱い上、特に輸送上好ましくない。基板用ガラス組成物の比重が2.9以下であることは、大型の基板において特に重要な特性である。
 本発明の基板用ガラス組成物は、比重が2.8以下であることが好ましく、2.75以下であることがより好ましい。
 本発明の基板用ガラス組成物は、ガラス転移点Tgが600℃以上である。ガラス転移点が600℃未満であると、呼称40インチのような大型PDPを製造する場合に熱処理によるガラスの収縮量が十分小さくならない。
 本発明の基板用ガラス組成物は、Tgが615℃以上であることがより好ましく、さらに好ましくは630℃以上である。さらには640℃以上、特に650℃以上が好ましい。
 本発明の基板用ガラス組成物は、150℃での体積抵抗率が1011Ω・cm以上であることが好ましい。PDPを製造する際、基板ガラスの表面には銀電極が形成される。銀電極に通電した際、通電した電流の一部が銀電極周辺のガラスを流れるのを防止するため、基板用ガラス組成物は絶縁性に優れていることが好ましい。150℃での体積抵抗率が1011Ω・cm以上であれば絶縁性に優れており、PDPを大型化または高密度化した場合であっても、基板ガラス上に形成した銀電極に通電した際に通電した電流の一部が該銀電極周辺のガラスを流れるおそれがない。
 通常、高温粘度を下げることのみに着目して基板用ガラス組成物の組成を選択した場合、150℃での体積抵抗率を1011Ω・cm以上にすることが難しい。本発明の基板用ガラス組成物の場合、150℃でのガラスの体積抵抗率を1011Ω・cm以上に保ちつつ、ガラスの高温粘度を下げることができる。
 本発明の基板ガラスは、150℃でのガラスの体積抵抗率が2×1011Ω・cm以上であることが好ましく、5×1011Ω・cm以上であることがより好ましい。
 本発明の基板用ガラス組成物は、研磨性の尺度の一つである磨耗度(FA)が98以上である。従って、ガラスの割れや欠け等の破損防止等を目的とした面取(端部の研磨)の作業性が高い。よって生産性が向上し製造コストを低減させることができる。
 また、面取品質が向上し、破損率の低減による歩留まりの向上にも寄与する。また、ガラス表面への電極形成の際の銀発色防止等を目的としたガラス表面の研磨作業性が高い。よって、生産性が向上し、製造コストを低減させることができる。
 本発明の基板ガラスは、磨耗度(FA)が100以上であることが好ましく、105以上であることがより好ましく、105~150であるのが特に好ましい。
 ここで磨耗度は、次のような測定した値を意味するものとする。
 予め質量を測定した測定面積が9cmの試料を、円盤状の鋳鉄製平面皿の表面であって中心より80mmの位置に保持する。そして、これを水平状態を維持しつつ60回/分で回転させた状態で、表面に水20mlに平均粒径20μmのアルミナ砥粒を添加して得たラップ液を5分間一様に供給する。次に、9.807Nの荷重をかけてラップした後、質量を測定する。そして、ラップ前後の質量の差から磨耗質量mを求める。
 次に、同じ操作を、日本光学硝子工業会で指定された標準試料(BSC7)について行い、同様に磨耗質量mを求める。
 そして、次式より磨耗度(FA)を求める。
 FA=(m/d)/(m/d)×100
 式中、dは試料の比重、dは標準試料(BSC7)の比重を意味する。この比重は純水を使用したアルキメデス法で測定した値を意味するものとする。
 次に上記の破損防止等を目的とした面取(研磨)について説明する。
 本発明において面取とは、基板ガラスを所望の大きさに切断した後等において端部に生じるエッジ部分を研磨して、例えば図1に示すように角を落とすように面取断面12を円弧形状にすることである(円弧形状に限定されるわけではなく、他の形状であってもよい。)。
 面取を行う方法は特に限定されない。例えば従来公知の方法のように、回転されるホイール周面に砥粒部が設けられた砥粒付き回転ホイールを用いて、板ガラス端部の面取を行うことができる。
 次に上記の銀発色防止等を目的とした基板用ガラス表面の研磨について説明する。
 表面に還元層が存在する基板ガラス表面に銀ペーストを焼成して銀電極を形成すると、当該表面が変色する場合があるため、前記還元層を研磨して除去する場合がある。
 研磨を行う方法は特に限定されない。例えば従来公知の方法のように研磨剤として酸化セリウム等を使用し、オスカー式研磨機を用いて、基板ガラス表面を研磨することができる。
 一方、研磨と関連して、回転されるコア先端に砥粒部が設けられた砥粒付きコアドリルを用いて板ガラスを研削し、容易に孔を開けることもできる。
 本発明の基板用ガラス組成物は、研磨性の別の尺度として、ビッカース圧子を200gの荷重で押し込んだ際のクラックの深さが37μm以上であることが好ましい。この場合も容易に面取や研磨や孔開を行うことができる。ただし、尺度として考えた場合、クラック深さよりも上記磨耗度の方が研磨に則しているため好ましい。
 上記のクラックの深さは、ビッカース圧子を押し込んでできる圧痕を垂直に切断し、端面において垂直クラック深さを測定する。
 本発明の基板用ガラスは上記のクラックの深さが39~100μmであることがより好ましい。
 また、本発明の基板用ガラスは、黄変を抑制することを考慮すると、ガラス表面に銀ペーストを塗布し、焼成を行った後、該銀ペーストを除去した後のガラス表面の黄色着色bが4以下であることが好ましく、3.5以下であることがより好ましく、0~3であることが特に好ましい。
 本発明の基板用ガラス組成物によって、例えば次のような方法で基板用ガラスを製造できる。すなわち、通常使用される各成分の原料を目標成分になるように調合し、これを溶解炉に連続式に投入し、1200~1400℃で加熱して溶融し、1400~1700℃で清澄した後、この溶融ガラスをフロート法により所定の板厚に成形し、徐冷後切断することによって、透明なガラス基板を得る。
 以下、実施例を用いて本発明をさらに説明する。
 表1に例1~5(実施例)、例6~8(比較例)、表2に例9~13(実施例)のガラス組成を示す。
 表1、2に記載される母組成(SiO2~Zr2O)になるように、かつ表2に記載される添加剤を含有するように原料調製し、該原料100質量部に対し、硫酸塩をSO3換算で0.8質量部添加してガラス原料とし、該ガラス原料を白金坩堝を用いて、1500~1600℃の温度で4時間加熱し、溶解した。溶解に当たっては、白金スターラーを挿入し、2時間攪拌し、ガラスの均質化を行った。次いでガラス融液を流し出し、徐冷した後、研磨を行い厚さ2.8mmの板状にした。
 こうして得られたガラスについて、ガラス組成(質量%)、ガラス転移点Tg(℃)、50~350℃の平均熱膨張係数α50-350(10-7/℃)、150℃での体積抵抗率ρ(Ω・cm)、T2(℃)、T4(℃)、比重(g/cm)、磨耗度およびクラック深さ(μm)を測定した。結果を表1、2に示した。また、ガラス中のSOの残存量は0.05~0.3質量%であった。なお、表中のかっこの値は計算値を示す。
 50~350℃の平均熱膨張係数は、示差熱膨張計(TMA)を用いて測定した値であり、JIS R3102(1995年)により求めた値である。
 ガラス転移点はTMAを用いて測定した値であり、JIS R3103-3(2001年度)により求めた。
 体積抵抗率は3端子法を用いた電極により100Vを印加した際にガラス中に流れる電流値を測定し、算出した。
 T2、T4は、例1~13のそれぞれに類似する組成について回転粘度計を用いて粘度を測定し、例1~13のガラスの粘度が10dPa・sとなるときの温度T2および10dPa・sとなるときの温度T4を加重平均により計算して求めた。
 ガラス転移点は、次のようにして求めた。ガラスを徐冷点の温度で30分間保持した後、60℃/分の冷却速度で徐冷した。次いでこの徐冷したガラスについて、示差式熱膨張計を使用し、室温から屈伏点まで温度に対する熱膨張率の曲線を求めた。この曲線の最初に屈曲する点の前後で接線を引き、接線の交点に対応する温度をガラス転移点とした。
 b値は、次のようにして求めた。上記で得られたガラスを溶解し、板状に流し出し徐冷し、両面を鏡面研磨して、厚さ2.8mmの板状ガラスにした。該板状ガラス表面に還元反応層を形成させるため、水素10体積%及び窒素90体積%の雰囲気の電気炉にて、750℃で5時間加熱を行なった。この還元反応層が設けられた板状ガラス表面に銀ペースト(デュポン社製、ドータイト)を塗布し、200℃/時間で昇温し、560℃、1時間焼成した後、60℃/時間で室温まで降温し、10%の硝酸により銀ペーストを除去した後、可視光透過率を測定した。銀電極下面及びその周辺の黄色着色は、この値からC光源のL系色座標の色差b値をJIS-Z8729の方法で求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、2から明らかなように、実施例のガラス(例1~5、9~13)は磨耗度が98以上であり研磨性に優れる。
 さらに、ガラス転移点が600℃以上であり、熱膨張係数が75×10-7/℃~90×10-7/℃であり、体積抵抗率ρが1011Ω・cm以上であり、PDP用基板ガラスとして適している。
 これに対して例6および例8はCaOが5.5%以下であり、さらにCaO+SrOが15%未満であるので磨耗度が低い。
 また、例7はSrOが5%未満であり、さらにCaO+SrOが15%未満であるので、磨耗度が低い。
 したがって、例6~8のガラスは生産性が低下する。
 また、例9~13のガラスは、bが4以下であり、黄変が生じ難いことが確認できた。
 本発明のガラス組成物となるように原料を調合し、溶解後、フロート法により板ガラスに成形する。所定の寸法に切断後、破損防止等を目的とするガラス端部の面取を行う。また、必要に応じガラス表面の還元層除去のためにガラス表面の研磨を行う。
 本発明の組成を有する基板用ガラスは、ガラス端部の面取(研磨)を効率よく行うことができる。また、ガラス表面の研磨を効率よく行うことができる。その結果、生産性が高く、低コストで目的とする基板用ガラスを製造することができる。
 本発明の基板用ガラス組成物は、FPD用基板、特にPDP用基板として好適である。
 なお、本発明の基板用ガラス組成物は、磁気ディスク用基板としても用いることができる。

 なお、2008年2月27日に出願された日本特許出願2008-046356号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (4)

  1.  酸化物基準の質量%表示で、ガラス母組成として、
    SiO2             55~75%
    Al23             5~15%
    MgO             0~4%
    CaO             5.5%超12%以下
    SrO             5~18%
    BaO             0~13%
    ZrO2             0.5~6%
    Na2O             0~10%
    2O              0~15%
    Na2O+K2O          6~20%
    MgO+CaO+SrO+BaO 17~25%
    CaO+SrO         15~25%
    からなり、
     ガラス転移点が600℃以上であり、50~350℃における平均熱膨張係数が75×10-7~90×10-7/℃であり、磨耗度が98以上であることを特徴とする基板用ガラス組成物。
  2.  酸化物基準の質量%表示で、ガラス母組成として、
    SiO2             55~65%
    Al23             5~10%
    MgO             0~3.5%
    CaO             5.8~10%
    SrO             8~15%
    BaO             0~10%
    ZrO2             1~5%
    Na2O             2~10%
    2O              1~13%
    Na2O+K2O          7~17%
    MgO+CaO+SrO+BaO 18~25%
    CaO+SrO         15~23%
    からなることを特徴とする請求項1に記載の基板用ガラス組成物。
  3.  酸化物基準の質量%表示で、ガラス母組成として、
    SiO2             55~65%
    Al23             8~10%
    MgO             0~3.5%
    CaO             5.8~10%
    SrO             8~15%
    BaO             0~10%
    ZrO2             1~5%
    Na2O             2~8%
    2O              1~10%
    Na2O+K2O          7~14%
    MgO+CaO+SrO+BaO 18~25%
    CaO+SrO         15~23%
    からなり、添加剤としてFe0.06~0.15%を含有し、ガラス表面に銀ペーストを塗布し、焼成を行った後、該銀ペーストを除去した後のガラス表面の黄色着色bが4以下である請求項1または2に記載の基板用ガラス組成物。
  4.  150℃での体積抵抗率が1011Ω・cm以上である請求項1または2に記載の基板用ガラス組成物。
PCT/JP2009/053440 2008-02-27 2009-02-25 基板用ガラス組成物 WO2009096611A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801069980A CN101959819A (zh) 2008-02-27 2009-02-25 基板用玻璃组合物
KR1020107011505A KR101273782B1 (ko) 2008-02-27 2009-02-25 기판용 유리 조성물
JP2009551641A JP5392096B2 (ja) 2008-02-27 2009-02-25 基板用ガラス組成物
EP09706784.7A EP2246310B1 (en) 2008-02-27 2009-02-25 Glass composition for substrate
US12/769,703 US8349751B2 (en) 2008-02-27 2010-04-29 Glass composition for substrates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-046356 2008-02-27
JP2008046356 2008-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/769,703 Continuation US8349751B2 (en) 2008-02-27 2010-04-29 Glass composition for substrates

Publications (1)

Publication Number Publication Date
WO2009096611A1 true WO2009096611A1 (ja) 2009-08-06

Family

ID=40912945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053440 WO2009096611A1 (ja) 2008-02-27 2009-02-25 基板用ガラス組成物

Country Status (7)

Country Link
US (1) US8349751B2 (ja)
EP (1) EP2246310B1 (ja)
JP (1) JP5392096B2 (ja)
KR (1) KR101273782B1 (ja)
CN (1) CN101959819A (ja)
TW (1) TWI404693B (ja)
WO (1) WO2009096611A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947234A (zh) * 2010-06-15 2013-02-27 日本电气硝子株式会社 光学玻璃
WO2013099768A1 (ja) * 2011-12-27 2013-07-04 旭硝子株式会社 ガラス基板およびガラス基板の製造方法
JP2015187079A (ja) * 2010-07-26 2015-10-29 旭硝子株式会社 Cu−In−Ga−Se太陽電池用ガラス基板及びそれを用いた太陽電池
JP2016147792A (ja) * 2015-02-13 2016-08-18 旭硝子株式会社 ガラス基板

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231520B1 (ko) * 2007-10-25 2013-02-07 아사히 가라스 가부시키가이샤 기판용 유리 조성물 및 그 제조 방법
CN102471151B (zh) * 2009-06-30 2015-04-01 旭硝子株式会社 带密封材料层的玻璃构件以及使用该构件的电子器件及其制造方法
KR101935553B1 (ko) * 2012-02-01 2019-01-07 삼성디스플레이 주식회사 플렉시블 디스플레이 장치 및 그 제조방법
KR20220003632A (ko) 2013-08-15 2022-01-10 코닝 인코포레이티드 알칼리-도핑 및 알칼리가-없는 보로알루미노실리케이트 유리
KR102255630B1 (ko) 2013-08-15 2021-05-25 코닝 인코포레이티드 중간 내지 높은 cte 유리 및 이를 포함하는 유리 물품
KR20190010861A (ko) * 2016-05-25 2019-01-31 에이지씨 가부시키가이샤 무알칼리 유리 기판, 적층 기판, 및 유리 기판의 제조 방법
MX2021005663A (es) 2018-11-26 2021-07-07 Owens Corning Intellectual Capital Llc Composicion de fibra de vidrio de alto rendimiento con modulo especifico mejorado.
DK3887329T3 (da) 2018-11-26 2024-04-29 Owens Corning Intellectual Capital Llc Højydelsesglasfibersammensætning med forbedret elasticitetskoefficient
US11459263B2 (en) * 2019-10-01 2022-10-04 Owens-Brockway Glass Container Inc. Selective chemical fining of small bubbles in glass
US11951713B2 (en) 2020-12-10 2024-04-09 Corning Incorporated Glass with unique fracture behavior for vehicle windshield

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340933A (ja) * 1989-07-06 1991-02-21 Asahi Glass Co Ltd 基板用ガラス組成物
JPH08165138A (ja) 1994-10-14 1996-06-25 Asahi Glass Co Ltd 基板用ガラス組成物とそれを用いたプラズマディスプレイ用基板
JPH1143347A (ja) * 1997-07-23 1999-02-16 Asahi Glass Co Ltd 基板用のガラス組成物
JP2001058843A (ja) * 1999-06-08 2001-03-06 Asahi Glass Co Ltd 基板用ガラスおよびガラス基板
JP2004051473A (ja) * 2002-05-29 2004-02-19 Nippon Electric Glass Co Ltd フラットパネルディスプレイ装置用ガラス基板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2758550B1 (fr) * 1997-01-17 1999-02-12 Saint Gobain Vitrage Compositions de verre silico-sodo-calcique et leurs applications
TW565539B (en) * 1998-08-11 2003-12-11 Asahi Glass Co Ltd Glass for a substrate
CN1100734C (zh) * 1999-12-23 2003-02-05 洛阳玻璃股份有限公司 等离子体显示屏基板玻璃
US20050096209A1 (en) * 2002-06-10 2005-05-05 Asahi Glass Company, Limited Glass and method for producing glass
FR2876094B1 (fr) * 2004-10-04 2009-01-09 Saint Gobain Substrat en verre pour ecran de visualisation.
JP5157904B2 (ja) * 2006-07-07 2013-03-06 旭硝子株式会社 フラットパネルディスプレイ用ガラス基板の製造方法
WO2008056527A1 (fr) * 2006-11-10 2008-05-15 Asahi Glass Company, Limited Substrat de verre pour un dispositif d'affichage à panneau plat, procédé de fabrication de celui-ci et panneau d'affichage employant ledit substrat
CN102320742A (zh) 2007-03-23 2012-01-18 旭硝子株式会社 数据存储介质用基板玻璃及玻璃基板
KR101231520B1 (ko) * 2007-10-25 2013-02-07 아사히 가라스 가부시키가이샤 기판용 유리 조성물 및 그 제조 방법
CN101622205B (zh) 2008-01-28 2012-09-26 旭硝子株式会社 数据存储介质基板用玻璃、数据存储介质用玻璃基板及磁盘

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340933A (ja) * 1989-07-06 1991-02-21 Asahi Glass Co Ltd 基板用ガラス組成物
JPH08165138A (ja) 1994-10-14 1996-06-25 Asahi Glass Co Ltd 基板用ガラス組成物とそれを用いたプラズマディスプレイ用基板
JPH1143347A (ja) * 1997-07-23 1999-02-16 Asahi Glass Co Ltd 基板用のガラス組成物
JP2001058843A (ja) * 1999-06-08 2001-03-06 Asahi Glass Co Ltd 基板用ガラスおよびガラス基板
JP2004051473A (ja) * 2002-05-29 2004-02-19 Nippon Electric Glass Co Ltd フラットパネルディスプレイ装置用ガラス基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2246310A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947234A (zh) * 2010-06-15 2013-02-27 日本电气硝子株式会社 光学玻璃
JP2015187079A (ja) * 2010-07-26 2015-10-29 旭硝子株式会社 Cu−In−Ga−Se太陽電池用ガラス基板及びそれを用いた太陽電池
WO2013099768A1 (ja) * 2011-12-27 2013-07-04 旭硝子株式会社 ガラス基板およびガラス基板の製造方法
JP2016147792A (ja) * 2015-02-13 2016-08-18 旭硝子株式会社 ガラス基板

Also Published As

Publication number Publication date
US8349751B2 (en) 2013-01-08
EP2246310B1 (en) 2014-04-16
EP2246310A4 (en) 2011-05-11
KR20100086005A (ko) 2010-07-29
KR101273782B1 (ko) 2013-06-12
US20100210443A1 (en) 2010-08-19
TWI404693B (zh) 2013-08-11
EP2246310A1 (en) 2010-11-03
TW200951090A (en) 2009-12-16
CN101959819A (zh) 2011-01-26
JPWO2009096611A1 (ja) 2011-05-26
JP5392096B2 (ja) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5392096B2 (ja) 基板用ガラス組成物
JP5779296B2 (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、およびディスプレイ用のカバーガラス
JP5918148B2 (ja) 3次元精密成形用薄リチウムアルミノケイ酸ガラス
JP5573157B2 (ja) 基板用ガラス組成物および板ガラスの製造方法
CN109133615B (zh) 显示器用玻璃基板及其制造方法
TWI392660B (zh) 用於基材之高應變點玻璃組成物
JP5668477B2 (ja) ガラス基板及びその製造方法
TW201731787A (zh) 平面面板顯示器用玻璃基板及其製造方法
JP5764084B2 (ja) ガラス組成物、化学強化用ガラス組成物、強化ガラス物品、ディスプレイ用のカバーガラスおよび強化ガラス物品の製造方法
KR20140086915A (ko) 디스플레이용 유리 기판 및 그 제조 방법
JPWO2007129744A1 (ja) ディスプレイ基板用フロートガラス及びその製造方法
JPWO2008056527A1 (ja) フラットパネルディスプレイ用ガラス基板およびその製造方法、ならびにそれを用いたディスプレイパネル
JPWO2009060871A1 (ja) 基板用ガラス板
JP2013043783A (ja) 強化ガラス板の製造方法
JP6757159B2 (ja) 磁気記録媒体用ガラス基板及びその製造方法
JP2011011951A (ja) フラットパネルディスプレイ用ガラス基板およびその製造方法、ならびにそれを用いたディスプレイパネル
KR20180022871A (ko) 디스플레이용 유리 기판 및 그 제조 방법
JPWO2011158366A1 (ja) ガラス基板及びその製造方法
JP6587969B2 (ja) 磁気記録媒体用ガラス基板およびその製造方法
JP5092564B2 (ja) ディスプレイ装置用基板ガラス
JP2006143523A (ja) ディスプレイ装置用基板ガラス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106998.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706784

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009551641

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009706784

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107011505

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE