WO2013099768A1 - ガラス基板およびガラス基板の製造方法 - Google Patents

ガラス基板およびガラス基板の製造方法 Download PDF

Info

Publication number
WO2013099768A1
WO2013099768A1 PCT/JP2012/083117 JP2012083117W WO2013099768A1 WO 2013099768 A1 WO2013099768 A1 WO 2013099768A1 JP 2012083117 W JP2012083117 W JP 2012083117W WO 2013099768 A1 WO2013099768 A1 WO 2013099768A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
glass
iron
temperature
concentration
Prior art date
Application number
PCT/JP2012/083117
Other languages
English (en)
French (fr)
Inventor
淳 笹井
近藤 裕己
陽 中原
邦明 廣松
林 英明
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201280064655.4A priority Critical patent/CN104010980A/zh
Publication of WO2013099768A1 publication Critical patent/WO2013099768A1/ja
Priority to US14/318,017 priority patent/US20140305502A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/18Controlling or regulating the temperature of the float bath; Composition or purification of the float bath
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a glass substrate and a method for producing the glass substrate.
  • a so-called “highly transmissive glass substrate” having a high transmittance is applied to, for example, a glass substrate for a solar cell, taking advantage of its characteristics.
  • the glass substrate can be manufactured by a method called a float process.
  • a glass substrate is formed by introducing molten glass into a float bath having molten tin in a strong reducing atmosphere, forming a glass ribbon on the surface of the molten tin, and then cooling the glass ribbon to room temperature.
  • tin ions enter the surface (hereinafter referred to as the bottom surface) of the glass ribbon in contact with molten tin by thermal diffusion, and the outermost surface is in a strongly reduced state. If the iron concentration in the glass and the iron concentration in the tin are not in an equilibrium state, iron diffusion occurs in the direction of the equilibrium.
  • the iron concentration in the molten tin increases until equilibrium is reached.
  • the iron concentration in the molten tin is higher than the tin concentration in the glass ribbon, the iron concentration in the molten tin decreases until equilibrium is reached.
  • iron components enter the glass ribbon side from the molten tin side on the bottom surface.
  • the iron component has a property of absorbing light when present in an ionic state in the glass.
  • divalent iron ions show an absorption peak in the wavelength region of about 1000 nm.
  • Trivalent iron ions show an absorption peak in a wavelength region of about 380 nm.
  • iron ions are known to exhibit strong coloration with a peak at 450 nm called amber. Therefore, when such an iron component is contained in the glass ribbon, the transparency of the finally obtained glass substrate is lowered.
  • a high concentration iron component penetrates into the glass ribbon, it may be difficult to manufacture the “highly permeable glass substrate” itself.
  • Patent Document 1 discloses forming a “highly permeable glass substrate” using low iron concentration molten tin having an iron concentration of 55 ppm or more and less than 100 ppm. Yes.
  • a plurality of types of glass substrates are often manufactured in the same float process equipment.
  • a glass substrate for an automobile glass member having a characteristic that the iron concentration is relatively high
  • a highly permeable glass substrate are often manufactured by the same equipment. Since the iron concentration of a glass substrate for an automobile glass member is often high, after manufacturing a glass substrate for an automobile glass member, a considerable amount of iron, such as exceeding 100 ppm, is present in the molten tin. It may be included.
  • Patent Document 1 when the method described in Patent Document 1 is followed, for example, when a glass substrate for an automobile glass member is manufactured and then a highly permeable glass substrate is manufactured using the same equipment, the melting in the float bath is performed. It becomes necessary to replace tin with molten tin having a low iron concentration. Such exchange of molten tin leads to a decrease in the operating time of the facility and an increase in cost.
  • the present invention has been made in view of such a background, and in the present invention, in the float process, even when molten tin having a relatively high iron concentration is used, iron intrusion is effectively suppressed.
  • An object of the present invention is to provide a glass substrate manufacturing technique that can be used.
  • a glass substrate molded on molten tin having an iron concentration greater than the equilibrium concentration with the glass to be manufactured The logarithm log ⁇ of volume resistivity ⁇ ( ⁇ ⁇ cm) at 150 ° C. is 8.8 or more, The temperature T4 when the logarithm of the viscosity ⁇ (dPa ⁇ s) is 4 is 1100 ° C. or less, A glass substrate is provided in which the temperature T2 when the logarithm of the viscosity ⁇ (dPa ⁇ s) is 2 is 1500 ° C. or less.
  • a method of manufacturing a glass substrate (A) On molten tin with an iron concentration of 100 ppm or more, by molding a molten glass having a temperature T2 of 1500 ° C. or less when the logarithm of viscosity ⁇ (dPa ⁇ s) is 2, A step of obtaining a glass ribbon having a temperature T4 when the logarithm of viscosity ⁇ (dPa ⁇ s) is 4 is 1100 ° C. or lower and a logarithmic log ⁇ of volume resistivity ⁇ ( ⁇ ⁇ cm) at 150 ° C. is 8.8 or higher When, (B) cooling the glass ribbon to room temperature to obtain a glass substrate; A method of manufacturing a glass substrate having the following is provided.
  • the glass substrate can be a glass substrate having a high transmittance, which can be used for a solar cell substrate, for example.
  • a manufacturing method of a glass substrate (A) A molten glass having a temperature T2 (hereinafter simply referred to as “T2”) of 1500 ° C. or less when the logarithm of the viscosity ⁇ (dPa ⁇ s) is 2 on molten tin having an iron concentration of 100 ppm or more.
  • T2 a temperature of the viscosity ⁇
  • T4 The temperature when the logarithm of the viscosity ⁇ (dPa ⁇ s) is 4, is 1100 ° C. or less, and the logarithm log ⁇ of volume resistivity ⁇ ( ⁇ ⁇ cm) at 150 ° C.
  • glass ⁇ simply obtaining “glass ⁇ ” of 8.8 or more
  • B cooling the glass ribbon to room temperature to obtain a glass substrate;
  • a method for producing a glass substrate is provided.
  • this embodiment has a feature that the molten glass is prepared so that the log ⁇ of the glass ribbon is 8.8 or more. Moreover, in this embodiment, it has the characteristics that molten glass is prepared so that T4 may be 1100 degrees C or less.
  • the volume resistivity ⁇ means a value measured by a method based on ASTM C657-78.
  • T4 means a value measured by a rotational viscometer.
  • the molten glass has a viscosity of 4 in the logarithm of viscosity ⁇ (dPa ⁇ s), and shifts from a molten state to a molding process in a tin bath. Therefore, T4 corresponds to the temperature when the glass ribbon is in contact with the molten tin.
  • the present inventors have significantly suppressed the movement of various ions from the molten tin side to the glass ribbon side, and high diffusion prevention characteristics are obtained. I found out that I could become. For this reason, in this embodiment, even when the glass ribbon is in contact with the molten tin, it is possible to effectively suppress the iron component and tin from entering the glass ribbon side from the molten tin side. Become. Therefore, in this embodiment, even if the iron concentration contained in molten tin is 100 ppm or more, it can suppress significantly that an iron component penetrate
  • T4 is 1100 ° C. or lower. That is, the temperature at which the glass ribbon comes into contact with molten tin is suppressed to 1100 ° C. or lower. For this reason, the reactivity between a glass ribbon and molten tin is suppressed, and the penetration
  • T2 of molten glass is 1500 degrees C or less.
  • T2 means a value measured by a rotational viscometer.
  • the visible light transmittance Tv decreases when the amount of iron components (sum of divalent iron ions and trivalent iron ions) contained in the glass substrate increases.
  • the solar transmittance Te decreases when the amount of divalent iron ions contained in the glass substrate increases. Therefore, in order to obtain a “highly transmissive glass substrate” having both high visible light transmittance Tv and solar radiation transmittance Te, the total amount of iron components contained in the glass substrate is suppressed, and 2 contained in the glass substrate. It is necessary to reduce the amount of valent iron ions.
  • the molten glass is prepared so that the log ⁇ of the glass is 8.8 or more and T4 is 1100 ° C. or less.
  • the total amount of iron components that contribute to the reduction of the visible light transmittance Tv can be suppressed.
  • T2 of molten glass is 1500 degrees C or less.
  • the reaction of the formula (1) does not proceed so much in the right direction, and even when the glass substrate contains a small amount of iron component, the divalent iron that affects the solar transmittance Te. The amount of ions can be suppressed.
  • the glass has a volume resistivity ⁇ with a log ⁇ of 8.8 or more.
  • molten glass has the characteristics that T4 is 1100 degrees C or less.
  • one of the problems that occur when heat-treating a glass substrate is a phenomenon called bloom in which clouding occurs on the surface of the glass substrate.
  • This phenomenon occurs when tin ions are diffused excessively and a tin-rich layer is formed on the bottom surface of the glass substrate. That is, since the thermal expansion coefficient differs between the tin-rich layer and the bulk side of the glass substrate, fogging may occur in the tin-rich layer due to a mismatch in thermal expansion behavior when a glass substrate having a tin-rich layer is heat-treated.
  • the glass has a volume resistivity ⁇ with a log ⁇ of 8.8 or more.
  • molten glass has the characteristics that T4 is 1100 degrees C or less. For this reason, it can suppress significantly that tin penetrate
  • FIG. 1 schematically shows an example of a flow of a glass substrate manufacturing method according to the present embodiment.
  • the manufacturing method of the glass substrate in this embodiment is as follows.
  • (B) cooling the glass ribbon to room temperature to obtain a glass substrate (step S120);
  • Step S110 First, the glass raw material used as the raw material of a molten glass is prepared.
  • the glass raw material includes various glass matrix composition raw materials, cullet, a fining agent, and the like.
  • the fining agent may be, for example, SO 3 , SnO 2 , and / or Sb 2 O 3 .
  • the glass raw material is adjusted so that T2 is 1500 ° C. or lower in the molten glass state.
  • the glass raw material is adjusted so that T4 is 1100 ° C. or lower and the log ⁇ of the glass is 8.8 or higher.
  • Such a glass raw material adjustment method is not limited to the following, but can be controlled by the following method, for example.
  • a glass substrate having the above-described characteristics can be obtained by adding K 2 O, BaO, and / or SrO to the glass matrix composition raw material and appropriately controlling the amount added.
  • K 2 O, BaO, and / or SrO is added to the glass matrix composition raw material, and K 2 O, BaO, and / or SrO exceeds the concentration as an inevitable impurity in the glass substrate.
  • An amount can be present.
  • K 2 O, BaO, and / or SrO total concentration of K 2 O + BaO + SrO
  • total concentration of K 2 O + BaO + SrO can be set to 1% or more, more preferably 1.5% or more, in terms of oxide-based mass ratio with respect to the glass raw material. .
  • a glass raw material can be adjusted stably so that log (rho) of glass may be 8.8 or more.
  • K 2 O, BaO, and / or SrO total concentration of K 2 O + BaO + SrO
  • T2 total concentration of K 2 O + BaO + SrO
  • the “mass ratio based on oxide” means that when the oxide, composite salt, etc. used as the glass raw material of the present embodiment are all decomposed during melting and changed to oxide, the generated oxide It is the composition which described each component contained in glass by mass ratio.
  • the prepared glass raw material is melted to form molten glass.
  • the melting temperature varies depending on the glass raw material.
  • the melting temperature may be about 1300 to about 1600 ° C.
  • this molten glass is introduced into a float bath room whose atmosphere is controlled.
  • the atmosphere of the float bath room is a reducing atmosphere containing hydrogen.
  • a bath (molten tin bath) filled with molten tin is installed.
  • the iron concentration in the molten tin may be 100 ppm or more, may be a concentration exceeding 100 ppm, or 150 ppm or more.
  • the introduced molten glass is formed into a glass ribbon on the surface of molten tin.
  • the molded glass ribbon has a log ⁇ of 8.8 or more. For this reason, it is suppressed significantly that an iron component and a tin component diffuse and penetrate into the glass ribbon side from the contact surface of the glass ribbon with molten tin.
  • T4 is 1100 ° C. or lower. That is, the temperature at which the glass ribbon comes into contact with molten tin is suppressed to 1100 ° C. or lower. For this reason, the reactivity between a glass ribbon and molten tin is suppressed, and the penetration
  • molten glass having T2 of 1500 ° C. or lower is used. For this reason, even if it is a case where an iron component penetrate
  • the present inventors have made it possible to melt the glass raw material by making the log ⁇ of the glass ribbon be 8.8 or higher, T4 is 1100 ° C. or lower, and T2 is 1500 ° C. or lower. It has been found that iron and tin components can be effectively prevented from diffusing and entering the glass ribbon side from the tin side.
  • Step S120 Next, the glass ribbon formed in step S110 is discharged from the float bath chamber and then cooled to room temperature. Thereby, a glass substrate can be manufactured.
  • the glass substrate obtained by the manufacturing method according to the present embodiment has high permeability.
  • the glass substrate according to the present embodiment is obtained by the method as described above.
  • the glass substrate according to the present embodiment may be manufactured by other methods.
  • the glass substrate according to the present embodiment is Molded on molten tin whose iron concentration is higher than the equilibrium concentration with the glass to be produced (for example, iron concentration in molten tin of 100 ppm or more), log ⁇ is 8.8 or more, T2 is 1500 ° C. or less, It has the characteristics that T4 is 1100 degrees C or less.
  • the concentration of the iron component is significantly suppressed. For this reason, in the glass substrate by this embodiment, the absorption in wavelength 1000nm resulting from a bivalent iron ion is suppressed significantly. In addition, absorption at a wavelength of 450 nm due to trivalent iron ions is also significantly suppressed. For this reason, the glass substrate according to the present embodiment has high permeability.
  • the log ⁇ of the glass substrate according to the present embodiment can be in the range of 8.8 to 12.0.
  • T2 can be set in the range of 1350 ° C. or higher and 1500 ° C. or lower.
  • T4 can be in the range of 900 ° C. or higher and 1100 ° C. or lower.
  • the composition of the glass substrate according to the present embodiment is not particularly limited as long as it is adjusted to have the above-described characteristics.
  • the glass substrate according to the present embodiment may have the composition shown in Table 1 below in terms of oxide-based mass percentage.
  • the glass substrate according to the present embodiment may have the composition shown in Table 2 or Table 3.
  • At least a part of K 2 O may be substituted with BaO and / or SrO.
  • the glass substrate according to the present embodiment can be applied to a substrate for a solar cell, for example.
  • a solar cell for example.
  • FIG. 2 the solar cell including the glass substrate according to the present embodiment will be described.
  • FIG. 2 is a cross-sectional view schematically showing a configuration example of a solar cell including the glass substrate according to the present embodiment.
  • the solar cell 200 includes a glass substrate 210 having a first surface 212 and a second surface 214, and a solar cell element 230 configured on the first surface 212 of the glass substrate 210. And have. Although not shown in FIG. 2, the solar cell 200 may further include an antireflection film (not shown) installed on the second surface 214 of the glass substrate 210.
  • the element 230 for solar cells has a transparent conductive layer (first electrode layer) 250, a photoelectric conversion layer (power generation layer) 260, and a back surface conductive layer (second electrode layer) 270 in order from the glass substrate 210.
  • the transparent conductive layer 250 may be formed of, for example, a layer containing SnO 2 as a main component, a layer containing ZnO as a main component, or a layer made of tin-doped indium oxide (ITO).
  • SnO 2 has low impact on the photoelectric conversion layer (power generation layer) 260 when raw material costs, mass productivity, and components of the transparent conductive layer 250 are mixed into the photoelectric conversion layer (power generation layer) 260.
  • a layer containing as a main component is preferred.
  • the “main component” means that the component is contained in 90% or more in terms of oxide based mass percentage.
  • the layer mainly containing SnO 2 other layers of SnO 2, such as a layer of layers and antimony-doped tin oxide made of fluorine-doped tin oxide (FTO) and the like.
  • FTO fluorine-doped tin oxide
  • Examples of the method for forming the transparent conductive layer 250 include a thermal decomposition method, a CVD method, a sputtering method, a vapor deposition method, an ion plating method, and a spray method.
  • the thickness of the transparent conductive layer 250 is usually in the range of 200 nm to 1200 nm.
  • the photoelectric conversion layer (power generation layer) 260 is usually composed of a thin film semiconductor.
  • the thin film semiconductor include an amorphous silicon semiconductor, a microcrystalline silicon semiconductor, a compound semiconductor (CdTe semiconductor, etc.), an organic semiconductor, and the like. A plurality of these semiconductor layers may be stacked.
  • the thickness of the photoelectric conversion layer (power generation layer) 260 is usually 50 nm to 500 nm in the case of an amorphous silicon semiconductor, and 500 nm to 5000 nm in the case of a microcrystalline silicon semiconductor.
  • the amorphous silicon system and the microcrystalline silicon system are used.
  • the range is 500 nm to 6000 nm, and in the case of the CdTe semiconductor, the range is 500 nm to 10 ⁇ m.
  • the back surface conductive layer 270 may be made of a material that does not have optical transparency, may be made of a material that has optical transparency, or a laminate thereof. Examples of materials that do not have light transmission include silver and aluminum. As an example of material having light transparency, ITO, SnO 2, and ZnO, and the like.
  • a reflective layer may be further laminated on the surface opposite to the photoelectric conversion layer 260. As the reflective layer, silver, aluminum, or an alloy thereof, and white ink are used.
  • the thickness of the back surface conductive layer 270 is usually in the range of 100 nm to 10 ⁇ m.
  • the glass substrate according to the present embodiment is used as the glass substrate 210.
  • the glass substrate according to the present embodiment exhibits high permeability because the concentration of iron is significantly suppressed. That is, the glass substrate 210 has significantly suppressed absorption particularly in a wavelength region of about 1000 nm. Therefore, the solar cell 200 including the glass substrate 210 according to the present embodiment can exhibit good efficiency.
  • the solar cell to which the glass substrate according to the present embodiment can be applied is not limited to the solar cell structure described above.
  • it can be used for CI (G) S-based compound solar cells, crystalline silicon-based solar cells, and glass-sealed thin film solar cell cover glasses.
  • Example 1 Two types of glass substrates (glass substrates A and B) having different log ⁇ were produced by a float method using a tin bath having an iron concentration of about 150 ppm or more. Moreover, the transmittance
  • the composition of the glass substrates A and B was the soda lime glass type shown in Table 1 above.
  • the target for the thickness of the glass substrates A and B was 3.9 mm.
  • volume resistivity ⁇ was measured as follows by a method based on ASTM C657-78.
  • a glass substrate is cut into a size of about 50 mm in length and about 50 mm in width to produce a sample. Both surfaces of the obtained sample are optically polished so that the thickness is about 3.5 mm.
  • a metal aluminum film is formed by vapor deposition on both surfaces of the sample.
  • the volume resistivity of the sample is measured under three conditions of 100 ° C., 150 ° C. and 200 ° C.
  • the transmittance was measured with a spectrophotometer (manufactured by Perkin Elmer, trade name: Lambda 950) using a sample processed into a flat plate shape of 40 mm ⁇ 40 mm.
  • the glass substrate A having a log ⁇ of 8.8 or higher shows a higher transmittance than the glass substrate B having a log ⁇ of less than 8.8.
  • a glass substrate having a log ⁇ of 8.8 or more can be obtained by appropriately controlling the concentration of K 2 O in the glass substrate. Also, the values of T2 and T4 can be kept appropriate. It can be seen that high transmittance can be obtained at any wavelength of 450 nm and 1000 nm in the glass substrate having such characteristics.
  • the log ⁇ of the glass substrate is set to 8.8 or higher, T4 is set to 1100 ° C. or lower, and T2 is set to 1500 ° C. or lower, thereby preventing the iron component from entering the glass ribbon during the manufacturing of the glass substrate. Therefore, it was confirmed that high transmittance was obtained at wavelengths of 450 nm and 1000 nm.
  • Example 2 Next, a measurement sample having a transparent conductive layer formed on one surface of a glass substrate was prepared, and the transmittance at a wavelength of 1000 nm was evaluated.
  • the glass substrates A and B in Example 1 described above were used as the glass substrate.
  • a tin oxide layer was formed on one surface of these glass substrates by a general CVD method to obtain a measurement sample.
  • the measurement sample having the glass substrate A is referred to as sample A
  • the measurement sample having the glass substrate B is referred to as sample B.
  • the thickness of the tin oxide layer was about 500 nm.
  • the transmittance measurement method is the same as in Example 1.
  • the transmittance at a wavelength of 1000 nm was 83.7%.
  • the transmittance at a wavelength of 1000 nm was 83.3%.
  • the measurement sample A showed significantly higher transmittance than the measurement sample B even in the state of the measurement sample in which the transparent conductive layer was formed on the glass substrate.
  • Example 3 a DHB (Dump Heat Bias) test was performed using the measurement samples A and B prepared in Example 2.
  • the electrical and thermal durability of the transparent conductive layer can be evaluated simultaneously.
  • the measurement sample A (or B. The same applies hereinafter) was heated to any temperature in the range of 50 ° C. to 200 ° C.
  • a voltage of 500 V was applied to the measurement sample A using an external power source. The voltage was applied for 15 minutes so that the glass substrate side of the measurement sample A was the positive (anode) side and the transparent conductive layer side was the negative (cathode) side.
  • the sample A for measurement was placed in a thermostat controlled in temperature and humidity, and an exposure test was performed.
  • the humidity in the thermostatic bath was 100% relative humidity, and the temperature was 50 ° C.
  • the exposure time was 1 hour.
  • the appearance of the sample A for measurement was visually observed to evaluate the presence or absence of peeling of the transparent conductive layer.
  • the evaluation when at least one peeling portion that can be visually confirmed exists in the measurement sample A, it was determined that peeling occurred at that temperature.
  • the sample A for measurement did not peel after the exposure test when the heating temperature during voltage application was 150 ° C. or lower.
  • the measurement sample B it was found that when the heating temperature at the time of voltage application exceeds 120 ° C., the transparent conductive layer is peeled off.
  • a glass substrate manufacturing method capable of significantly suppressing the intrusion of iron can be provided even when molten tin having a relatively high iron concentration is used in the float process. Moreover, in this embodiment, it is a glass substrate manufactured using the molten tin which has comparatively high iron concentration, Comprising: The glass substrate by which the penetration
  • the present embodiment can be used for a highly permeable glass substrate that requires high permeability, such as a glass substrate for a solar cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 ガラス基板の製造方法であって、(a)鉄濃度が100ppm以上の溶融スズ上で、粘度η(dPa・s)の対数が2となるときの温度T2が1500℃以下である溶融ガラスを成形することにより、粘度η(dPa・s)の対数が4となるときの温度T4が1100℃以下であり、150℃における体積抵抗率ρ(Ω・cm)の対数logρが8.8以上のガラスリボンを得るステップと、(b)前記ガラスリボンを室温まで冷却して、ガラス基板を得るステップと、を有することを特徴とするガラス基板の製造方法。

Description

ガラス基板およびガラス基板の製造方法
 本発明は、ガラス基板およびガラス基板の製造方法に関する。
 高い透過率を有するいわゆる「高透過性ガラス基板」は、その特性を生かし、例えば太陽電池用のガラス基板等に適用されている。
 なお、工業的には、ガラス基板は、フロート法と呼ばれる方法により製造することができる。このフロート法では、強い還元雰囲気中で溶融スズを有するフロートバス内に溶融ガラスを導入し、溶融スズの表面でガラスリボンを成形した後、このガラスリボンを室温まで冷却することにより、ガラス基板が製造される。ここで、ガラスリボンの溶融スズと接する表面(以下、ボトム面と称する)には、スズイオンが熱拡散により侵入し、最表面は強い還元状態になっていることが知られている。またガラス中の鉄濃度とスズ中の鉄濃度が平衡状態になっていない場合には、その平衡になる方向に、鉄の拡散が起きる。その結果、ガラスリボン中のスズ濃度よりも溶融スズ中の鉄濃度の方が低い場合、溶融スズ中の鉄濃度は、平衡に達するまで増加する。一方、ガラスリボン中のスズ濃度よりも溶融スズ中の鉄濃度の方が高い場合、溶融スズ中の鉄濃度は、平衡に達するまで低下する。
 ここで、「高透過性ガラス基板」をフロート法で製造する場合、ボトム面において、溶融スズ側からガラスリボン側に鉄成分が侵入することに留意する必要がある。これは、鉄成分は、ガラス中にイオン状態で存在する際に、光を吸収する性質を有するためである。例えば、2価の鉄イオンは、波長約1000nmの領域で吸収ピークを示す。また、3価の鉄イオンは、波長約380nmの領域で吸収ピークを示す。加えて、強い還元状態下では、鉄イオンは、アンバーといわれる450nmにピークを持つ強い着色を呈することが知られている。従って、ガラスリボンにそのような鉄成分が含まれると、最終的に得られるガラス基板の透過性が低下してしまう。特に、高い濃度の鉄成分がガラスリボン中に侵入した場合、「高透過性ガラス基板」そのものを製造することが難しくなる場合がある。
 なお、このような問題に対処するため、特許文献1には、鉄の濃度が55ppm以上100ppm未満の、低鉄濃度溶融スズを用いて「高透過性ガラス基板」を成形することが開示されている。
特許第4251552号明細書
 前述の特許文献1に記載の方法では、鉄濃度の低い溶融スズを用いることにより、溶融スズ側からガラスリボン側に鉄が侵入することを抑制し、「高透過性ガラス基板」を成形する。
 しかしながら、このような方法は、以下の理由から現実的な対処法とは言えない。
 すなわち、一般には、同一のフロート法の設備において、複数の種類のガラス基板が製造されることが多い。例えば、自動車のガラス部材用のガラス基板(鉄濃度が比較的高いという特徴を有する)と、高透過性ガラス基板とが、同一の設備で製造される場合がしばしばある。自動車のガラス部材用のガラス基板の鉄濃度は、高い場合が多いので、自動車のガラス部材用のガラス基板を製造した後、溶融スズ中には、例えば100ppmを超えるような、相当量の鉄が含まれていることもある。
 従って、特許文献1に記載の方法に従った場合、例えば、自動車のガラス部材用のガラス基板を製造した後に、同一の設備で高透過性ガラス基板を製造する場合などにおいて、フロートバス内の溶融スズを、低鉄濃度の溶融スズに交換する必要が生じてしまう。このような溶融スズの交換は、設備の稼働時間の減少およびコストの上昇等につながる。
 このように、溶融スズ側からガラスリボン側に鉄成分が侵入することを抑制し、高透過性ガラス基板を製造することが可能な方法が、現在もなお要望されている。
 本発明は、このような背景に鑑みなされたものであり、本発明では、フロート法において、比較的高い鉄濃度を有する溶融スズを使用した場合であっても、鉄の侵入を効果的に抑制することが可能なガラス基板の製造技術を提供することを目的とする。
 一つの形態によれば、
 製造するガラスとの平衡濃度よりも大きい鉄濃度を有する溶融スズ上で成形されたガラス基板であって、
 150℃における体積抵抗率ρ(Ω・cm)の対数logρが8.8以上であり、
 粘度η(dPa・s)の対数が4となるときの温度T4が1100℃以下であり、
 粘度η(dPa・s)の対数が2となるときの温度T2が1500℃以下であるガラス基板が提供される。
 他の形態によれば、
 ガラス基板の製造方法であって、
 (a)鉄濃度が100ppm以上の溶融スズ上で、粘度η(dPa・s)の対数が2となるときの温度T2が1500℃以下である溶融ガラスを成形することにより、
 粘度η(dPa・s)の対数が4となるときの温度T4が1100℃以下であり、150℃における体積抵抗率ρ(Ω・cm)の対数logρが8.8以上のガラスリボンを得るステップと、
 (b)前記ガラスリボンを室温まで冷却して、ガラス基板を得るステップと、
 を有するガラス基板の製造方法が提供される。
本実施形態によるガラス基板の製造方法のフローの一例を概略的に示した図である。 本実施形態によるガラス基板を備える太陽電池の一構成例を概略的に示した図である。
 以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。
 本実施形態において、ガラス基板は、例えば、太陽電池用の基板等に使用され得る、高い透過率を有するガラス基板とすることができる。
 本実施形態では、ガラス基板の製造方法であって、
 (a)鉄濃度が100ppm以上の溶融スズ上で、粘度η(dPa・s)の対数が2となるときの温度T2(以下、単に「T2」という。)が1500℃以下である溶融ガラスを成形することにより、
 粘度η(dPa・s)の対数が4となるときの温度T4(以下、単に「T4」という。)が1100℃以下であり、150℃における体積抵抗率ρ(Ω・cm)の対数logρ(以下、単に「logρ」という。)が8.8以上のガラスリボンを得るステップと、
 (b)前記ガラスリボンを室温まで冷却して、ガラス基板を得るステップと、
 を有することを特徴とするガラス基板の製造方法が提供される。
 前述のように、従来の方法では、溶融スズ中の鉄濃度を55ppm以上100ppm未満に制御することにより、溶融スズ側からガラスリボン側への鉄の侵入を抑制し、高透過性ガラス基板を製造する。
 しかしながら、このような方法は、現在工業的に行われている一般的なガラス基板の製造方法への適用には限界がある。例えば、自動車のガラス部材用のガラス基板(鉄濃度が比較的高いという特徴を有する)と、高透過性ガラス基板とを、同一の設備で製造している場合、溶融スズ中に、例えば100ppmを超えるような、相当量の鉄が含まれていることがしばしば生じ得る。この場合、高透過性ガラス基板を製造する前に、毎回フロートバス内の溶融スズを、低鉄濃度の溶融スズに交換することは、設備の稼働時間の減少およびコストの上昇等につながる。
 これに対して、本実施形態では、ガラスリボンのlogρが8.8以上となるように、溶融ガラスが調製されているという特徴を有する。また、本実施形態では、T4が1100℃以下になるように、溶融ガラスが調製されているという特徴を有する。
 なお、本実施形態において、体積抵抗率ρは、ASTM C657-78に準拠した方法によって測定された値を意味する。
 また、本実施形態において、T4は、回転粘度計によって測定された値を意味する。通常、溶融ガラスは、粘度η(dPa・s)の対数が4の粘度で、溶解状態からスズ浴での成型プロセスに移行する。従って、T4は、ガラスリボンが溶融スズと接するときの温度に相当する。
 本発明者らは、ガラスリボンのlogρが8.8以上の場合、そのようなガラスリボンでは、溶融スズ側からガラスリボン側への各種イオンの移動が有意に抑制され、高い拡散防止特性が得られるようになることを見いだした。このため、本実施形態では、ガラスリボンが溶融スズと接触した状態であっても、溶融スズ側から、ガラスリボン側に、鉄成分やスズが侵入することを効果的に抑制することが可能になる。従って、本実施形態では、溶融スズに含まれる鉄濃度が100ppm以上であっても、溶融スズ側からガラスリボンに、鉄成分が侵入することを有意に抑制することができる。
 また、本実施形態では、T4が1100℃以下になっている。すなわち、ガラスリボンが溶融スズと接触する際の温度は、1100℃以下に抑制されている。このため、ガラスリボンと溶融スズの間の反応性が抑制され、溶融スズ側からの鉄成分の侵入がよりいっそう抑制される。
 さらに、本実施形態では、溶融ガラスのT2が1500℃以下であるという特徴を有する。
 ここで、本実施形態において、T2は、回転粘度計によって測定された値を意味する。
 一般に、2価の鉄(イオン)と3価の鉄(イオン)の間には、以下の(1)式で示す平衡反応が存在する。
 
  Fe=2FeO + 1/2O   (1)式
 
 この平衡は、高温ほど右にシフトするという特徴を有する。
 ここで、ガラス基板中に含まれる鉄成分(2価の鉄イオンと3価の鉄イオンの総和)の量が多くなると、可視光透過率Tvが低下することが知られている。また、ガラス基板中に含まれる2価の鉄イオンの量が多くなると、日射透過率Teが低下することが知られている。従って、可視光透過率Tvおよび日射透過率Teがともに高い「高透過性ガラス基板」を得るためには、ガラス基板中に含まれる鉄成分の総量を抑制するとともに、ガラス基板中に含まれる2価の鉄イオンの量を抑制する必要がある。
 前述のように、本実施形態では、ガラスのlogρが8.8以上となっている上、T4が1100℃以下になるように、溶融ガラスが調製されている。
 これらの特徴により、本実施形態では、可視光透過率Tvの低下に寄与する鉄成分の総量を抑制することができる。
 また、本実施形態では、溶融ガラスのT2が1500℃以下であるという特徴を有する。このため、本実施形態では、(1)式の反応が右方向にあまり進まなくなり、ガラス基板中に鉄成分がわずかに含まれる場合であっても、日射透過率Teに影響する2価の鉄イオンの量を抑制することができる。
 従って、本実施形態では、可視光透過率Tvおよび日射透過率Teがともに高い「高透過性ガラス基板」を得ることが可能になる。
 このように、本実施形態では、従来のフロート法の設備において、溶融スズに含まれる鉄の濃度をあまり意識することなく、高い透過性を有する高透過性ガラス基板を製造することが可能になる。
 また、本実施形態による方法では、ガラスは、logρが8.8以上となる体積抵抗率ρを有する。また、溶融ガラスは、T4が1100℃以下であるという特徴を有する。
 この場合、溶融スズに含まれる鉄成分に加えて、溶融スズそのものがガラスリボン側に侵入することも有意に抑制することができる。
 例えば、ガラス基板の熱処理の際に生じる不具合の一つに、ガラス基板の表面に曇りが発生するブルームと呼ばれる現象がある。この現象は、ガラス基板のボトム面に、過剰にスズイオンが拡散し、スズリッチ層が形成されている場合に生じる。すなわち、スズリッチ層とガラス基板のバルク側とでは、熱膨張係数が異なるため、スズリッチ層を有するガラス基板を熱処理した際に、熱膨張挙動のミスマッチによって、スズリッチ層に曇りが発生する場合がある。
 本実施形態による方法では、ガラスは、logρが8.8以上の体積抵抗率ρを有する。また、溶融ガラスは、T4が1100℃以下であるという特徴を有する。このため、ガラスリボンの溶融スズとの接触面から、スズがガラスリボン側に侵入することを有意に抑制することができる。従って、本実施形態による方法では、ブルーム現象を抑制することができるという追加の効果が得られる。
 (本実施形態におけるガラス基板の製造方法)
 次に、本実施形態におけるガラス基板の製造方法を、より具体的に説明する。
 図1には、本実施形態におけるガラス基板の製造方法のフローの一例を概略的に示す。
 図1に示すように、本実施形態におけるガラス基板の製造方法は、
 (a)鉄濃度が100ppm以上の溶融スズ上で、T2が1500℃以下である溶融ガラスを成形することにより、T4が1100℃以下であり、logρが8.8以上のガラスリボンを得るステップ(ステップS110)と、
 (b)前記ガラスリボンを室温まで冷却して、ガラス基板を得るステップ(ステップS120)と、
 を有する。
 以下、各ステップについて説明する。
 (ステップS110)
 まず、溶融ガラスの原料となるガラス原料が調製される。
 ガラス原料は、各種ガラス母組成原料、カレット、および清澄剤等を含む。清澄剤は、例えばSO、SnO、および/またはSb等であっても良い。
 ガラス原料は、溶融ガラスの状態において、T2が1500℃以下となるように調整される。また、ガラス原料は、T4が1100℃以下となり、ガラスのlogρが8.8以上となるように調整される。
 このようなガラス原料の調整方法は、以下に限定されないが、例えば以下の方法で制御することができる。
 例えば、ガラス母組成原料にKO、BaO、および/またはSrOを添加して、その際の添加量を適切に制御することにより、上記のような特徴を有するガラス基板を得ることができる。具体的には、例えば、KO、BaO、および/またはSrOを、ガラス母組成原料に添加して、ガラス基板中にKO、BaO、および/またはSrOが不可避不純物としての濃度を超える量存在するようにすることができる。KO、BaO、および/またはSrOを適切な量添加することにより、ガラス基板のlogρを高めるとともに、溶融ガラスやガラスリボンの状態における粘度を低く保ち、T2及びT4を低くすることができる。
 KO、BaO、および/またはSrO(KO+BaO+SrOの合計濃度)は、ガラス原料に対して、酸化物基準の質量比で1%以上、より好ましくは1.5%以上とすることができる。このような範囲とすることにより、ガラス原料を、ガラスのlogρが8.8以上となるように安定的に調整することができる。
 また、KO、BaO、および/またはSrO(KO+BaO+SrOの合計濃度)は、ガラス原料に対して、酸化物基準の質量比で7%以下、より好ましくは5%以下とすることができる。このような範囲とすることにより、例えばT2の温度を適切に保つことができる。
 ここで、「酸化物基準の質量比」とは、本実施形態のガラス原料として使用される酸化物、複合塩等が熔融時にすべて分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の質量比によってガラス中に含有される各成分を表記した組成である。
 次に、調製されたガラス原料を溶融し、溶融ガラスを形成する。溶融温度は、ガラス原料によって変化する。例えば、ソーダライムシリカガラスの場合、溶融温度は、約1300~約1600℃であっても良い。
 次に、この溶融ガラスは、雰囲気制御されたフロートバス室に導入される。通常の場合、フロートバス室の雰囲気は、水素を含む還元性雰囲気である。フロートバス室には、溶融スズが満たされた浴(溶融スズ浴)が設置されている。ここで、本実施形態では、溶融スズ中の鉄濃度は100ppm以上であってもよく、100ppmを超える濃度、150ppm以上であってもよい。
 導入された溶融ガラスは、溶融スズの表面でガラスリボンに成形される。
 本実施形態では、成形されたガラスリボンは、logρが8.8以上となっている。このため、ガラスリボンの溶融スズとの接触面から、鉄成分やスズ成分がガラスリボン側に拡散、侵入することが有意に抑制される。
 また、本実施形態では、T4が1100℃以下になっている。すなわち、ガラスリボンが溶融スズと接触する際の温度は、1100℃以下に抑制されている。このため、ガラスリボンと溶融スズの間の反応性が抑制され、溶融スズ側からの鉄成分やスズ成分の侵入がよりいっそう抑制される。
 さらに、本実施形態では、T2が1500℃以下である溶融ガラスが使用される。このため、仮に鉄成分がガラスリボン中に侵入した場合であっても、2価の鉄イオンの量を有意に抑制することができる。
 以上のように、本発明者らは、ガラス原料の特性を、ガラスリボンのlogρが8.8以上となるとともに、T4が1100℃以下及びT2が1500℃以下となるようにすることにより、溶融スズ側から鉄成分やスズ成分がガラスリボン側に拡散、侵入することを効果的に抑制できることを見いだした。
 (ステップS120)
 次に、ステップS110で成形されたガラスリボンは、フロートバス室から排出され、その後、室温まで冷却される。これにより、ガラス基板を製造することができる。
 本実施形態による製造方法では、ガラス基板への鉄成分の侵入を有意に抑制することができる上、2価の鉄イオンの量を有意に抑制することができる。従って、本実施形態による製造方法で得られたガラス基板は、高い透過性を有する。
 (本実施形態によるガラス基板)
 例えば前述のような方法によって、本実施形態によるガラス基板が得られる。ただし、本実施形態によるガラス基板は、他の方法によって製造されても良い。
 本実施形態によるガラス基板は、
 鉄濃度が、製造するガラスとの平衡濃度よりも大きい溶融スズ(例えば溶融スズ中の鉄濃度100ppm以上)上で成形され、
 logρが8.8以上であり、
 T2が1500℃以下であり、
 T4が1100℃以下であるという特徴を有する。
 本実施形態によるガラス基板は、鉄成分の濃度が有意に抑制されている。このため、本実施形態によるガラス基板では、2価の鉄イオンに起因した波長1000nmにおける吸収が有意に抑制される。また、3価の鉄イオンに起因した波長450nmにおける吸収も、有意に抑制される。このため、本実施形態によるガラス基板は、高い透過性を有する。
 ここで、本実施形態によるガラス基板のlogρは、8.8以上12.0以下の範囲とすることができる。
 また、本実施形態によるガラス基板において、T2は、1350℃以上1500℃以下の範囲とすることができる。
 さらに、本実施形態によるガラス基板において、T4は、900℃以上1100℃以下の範囲とすることができる。
 本実施形態によるガラス基板の組成は、前述の特性を有するように調整される限り、特に限られない。例えば、本実施形態によるガラス基板は、酸化物換算の質量百分率表示で、以下の表1に示す組成を有しても良い。
Figure JPOXMLDOC01-appb-T000001
 特に、本実施形態によるガラス基板は、表2または表3に示す組成を有しても良い。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 なお、これらの3種類の組成において、KOの少なくとも一部は、BaOおよび/またはSrOに置換されても良い。
 以上の表1~表3に示した組成範囲内において、T2が1500℃以下であり、T4が1100℃以下であるという特徴のガラスを安定的に得ることができる。
 (本実施形態によるガラス基板の適用例)
 次に、本実施形態によるガラス基板の適用例について説明する。
 本実施形態によるガラス基板は、例えば、太陽電池用の基板に適用することができる。以下、図2を参照して、本実施形態によるガラス基板を備える太陽電池について説明する。
 図2は、本実施形態によるガラス基板を備える太陽電池の一構成例を模式的に示した断面図である。
 図2に示すように、太陽電池200は、第1の表面212および第2の表面214を有するガラス基板210と、該ガラス基板210の第1の表面212上に構成された太陽電池用素子230とを有する。なお、図2には示されていないが、太陽電池200は、さらに、ガラス基板210の第2の表面214上に設置された反射防止膜(図示されていない)を有しても良い。
 太陽電池用素子230は、ガラス基板210から近い順に、透明導電層(第1の電極層)250、光電変換層(発電層)260、および裏面導電層(第2の電極層)270を有する。
 透明導電層250は、例えば、SnOを主成分とする層、ZnOを主成分とする層、またはスズドープ酸化インジウム(ITO)からなる層等で形成されても良い。これらの中では、原料コスト、量産性、および透明導電層250の成分が光電変換層(発電層)260に混入した際の光電変換層(発電層)260への影響の少なさから、SnOを主成分とする層が好ましい。ここで、「主成分」とは、該成分が酸化物基準の質量百分率表示で、90%以上含まれていることを意味する。
 また、SnOを主成分とする層としては、SnOからなる層の他、フッ素ドープ酸化スズ(FTO)からなる層およびアンチモンドープ酸化スズからなる層等が挙げられる。
 透明導電層250の形成方法としては、熱分解法、CVD法、スパッタリング法、蒸着法、イオンプレーティング法、およびスプレー法等が挙げられる。
 透明導電層250の厚さは、通常、200nm~1200nmの範囲である。
 光電変換層(発電層)260は、通常、薄膜半導体で構成される。薄膜半導体としては、アモルファスシリコン系半導体、微結晶シリコン系半導体、化合物半導体(CdTe系半導体等)、および有機系半導体等が挙げられる。また、これらの半導体層が複数積層される場合もある。
 光電変換層(発電層)260の厚さは、通常、アモルファスシリコン系半導体の場合には、50nm~500nm、微結晶シリコン系半導体の場合には、500nm~5000nm、アモルファスシリコン系と微結晶シリコン系の積層の場合には、500nm~6000nm、CdTe系半導体の場合には、500nm~10μmの範囲である。
 裏面導電層270は、光透過性を有さない材料で構成されても、光透過性を有する材料で構成されても、それらの積層でも良い。光透過性を有さない材料の一例としては、銀およびアルミニウム等が挙げられる。また、光透過性を有する材料の一例としては、ITO、SnO、およびZnO等が挙げられる。裏面電極層270に光透過性材用を用いた場合、さらに、光電変換層260とは反対の面に、反射層を積層しても良い。反射層としては、銀およびアルミニウム等、それらの合金、ならびに白色インクが用いられる。
 裏面導電層270の厚さは、通常、100nm~10μmの範囲である。
 ここで、太陽電池200において、ガラス基板210には、本実施形態によるガラス基板が使用される。
 前述のように、本実施形態によるガラス基板は、鉄製分の濃度が有意に抑制されているため、高い透過性を示す。すなわち、ガラス基板210は、特に、波長約1000nmの領域での吸収が有意に抑制されている。従って、本実施形態によるガラス基板210を備える太陽電池200は、良好な効率を発揮することができる。
 本実施形態によるガラス基板が適用できる太陽電池は、以上に挙げた太陽電池の構造に限られない。例えば、CI(G)S系化合物太陽電池、結晶シリコン系太陽電池、およびガラス封止薄膜太陽電池カバーガラスに用いることができる。
 以下、本実施形態の実施例について説明する。
 (実施例1)
 鉄濃度が約150ppm以上のスズ浴を用いて、フロート法により、logρの異なる2種類のガラス基板(ガラス基板A、B)を製造した。また、得られたガラス基板A、Bの透過率を評価した。
 (ガラス基板の製造)
 ガラス基板A、Bの組成は、前述の表1に示したソーダライムガラス系のものとした。ガラス基板A、Bの厚さは、いずれも3.9mmを目標とした。
 なお、体積抵抗率ρは、ASTM C657-78に準拠した方法で、以下のように測定した。
 まず、ガラス基板を、縦約50mm×横約50mmの寸法に切断し、サンプルを作製する。得られたサンプルの両面を、厚さが約3.5mmとなるように光学研磨する。
 次に、サンプルの両面に、蒸着法で金属アルミニウム膜を成膜する。この金属アルミニウム膜を電極として、100℃、150℃および200℃の3条件において、サンプルの体積抵抗率を測定する。
 得られた各温度での体積抵抗率の測定結果を、測定温度の逆数に対してプロットする。得られた直線の傾きAおよび切片Bから、以下の(2)式により、ρ(Ω・cm)の対数を算出する
 
 logρ=A/T+B   (2)式
 
 表4には、製造したガラス基板(ガラス基板A、B)の組成、T4、T2、およびρ(Ω・cm)の対数logρをまとめて示した。
Figure JPOXMLDOC01-appb-T000004
 (ガラス基板の透過率評価)
 次に、前述の2種類のガラス基板A、Bを用いて、波長450nmおよび1000nmにおける透過率を測定した。一般に、アンバー着色の吸収は、波長450nm近傍に吸収ピークを有する。また、2価の鉄イオンは、波長約1000nm近傍に吸収ピークを有する。これらの2つの吸光係数は、波長380nm近傍にピークがある3価の鉄イオンの吸収係数と比較しても非常に大きい。従って、450nmと1000nmの両波長における透過率を評価することにより、ガラス基板の透過性をある程度把握することができる。
 透過率は、40mm×40mmの平板形状に加工したサンプルを用いて、分光光度計(パーキン・エルマー社製、商品名:Lambda950)により測定した。
 結果を前述の表4の「透過率」の欄に示す。
 この結果から、logρが8.8以上のガラス基板Aは、logρが8.8未満のガラス基板Bに比べて、より高い透過率を示している。
 本実施例において、ガラス基板中のKOの濃度を適切に制御することにより、logρが8.8以上のガラス基板を得ることができることがわかる。また、T2及びT4の値も適切に保つことができる。このような特徴を有するガラス基板において、450nmおよび1000nmのいずれの波長においても、高い透過率が得られることがわかる。
 このように、ガラス基板のlogρを8.8以上とし、T4を1100℃以下とし、T2を1500℃以下とすることにより、ガラス基板の製造中に、ガラスリボンに鉄成分が侵入することが抑制され、このため、波長450nmおよび1000nmにおいて、高い透過率が得られることが確認された。
 (実施例2)
 次に、ガラス基板の一方の表面に、透明導電層を成膜した測定用サンプルを作製し、波長1000nmにおける透過率を評価した。
 ガラス基板として、前述の実施例1におけるガラス基板AおよびBを使用した。これらのガラス基板の一方の表面に、一般的なCVD法により、酸化スズ層を形成し、測定用サンプルを得た。以下、ガラス基板Aを有する測定用サンプルをサンプルAと称し、ガラス基板Bを有する測定用サンプルをサンプルBと称することにする。酸化スズ層の厚さは、約500nmとした。なお、透過率の測定方法は、実施例1の場合と同様である。
 測定の結果、測定用サンプルAの場合、波長1000nmでの透過率は、83.7%であった。これに対して、測定用サンプルBの場合、波長1000nmでの透過率は、83.3%であった。
 この結果から、ガラス基板に透明導電層を成膜した測定用サンプルの状態においても、測定用サンプルAでは、測定用サンプルBに比べて、有意に高い透過率を示すことがわかった。
 (実施例3)
 次に、実施例2で作製した測定用サンプルAおよびBを用いて、DHB(Dump Heat Bias)試験を実施した。
 DHB試験では、透明導電層の電気的および熱的耐久性を同時に評価することができる。
 DHB試験は、以下のように実施した。
 まず、測定用サンプルA(またはB。以下同じ)を、50℃~200℃の範囲のいずれかの温度に加熱した。
 次に、測定用サンプルを加熱したままの状態で、外部電源を用いて、測定用サンプルAに対して500Vの電圧を印加した。電圧は、測定用サンプルAのガラス基板側が正(アノード)側となり、透明導電層側が負(カソード)側となるようにして、15分間印加した。
 次に、加熱および電圧印加を停止した後、測定用サンプルAを、温度および湿度が制御された恒温槽内に配置し、暴露試験を行った。恒温槽内の湿度は、相対湿度100%とし、温度は、50℃とした。暴露時間は、1時間とした。
 暴露試験後に、測定用サンプルAの外観を目視で観察し、透明導電層の剥離の有無を評価した。なお評価に際しては、測定用サンプルA内に、目視で確認できる剥離部分が少なくとも1か所存在する場合、その温度では、剥離が発生していると判断した。
 試験の結果、測定用サンプルAでは、電圧印加時の加熱温度が150℃以下の場合、暴露試験後に、剥離が生じないことがわかった。これに対して、測定用サンプルBでは、電圧印加時の加熱温度が120℃を超えると、透明導電層に剥離が生じることがわかった。
 このように、測定用サンプルAでは、測定用サンプルBに比べて、ガラス基板と透明導電層との間に良好な密着性が得られた。
 これらの結果から、本実施形態によるガラス基板を使用した場合、従来のガラス基板に比べて、より厳しい環境下でも、ガラス基板と透明導電層との間に良好な密着性が維持されることが期待される。
 本実施形態では、フロート法において、比較的高い鉄濃度を有する溶融スズを使用した場合であっても、鉄の侵入を有意に抑制することが可能なガラス基板の製造方法を提供することができる。また、本実施形態では、比較的高い鉄濃度を有する溶融スズを使用して製造されたガラス基板であって、鉄の侵入が有意に抑制されたガラス基板を提供することができる。
 本実施形態は、太陽電池用ガラス基板など、高い透過性が要求される高透過性ガラス基板に利用することができる。
 以上、本発明の好ましい実施形態及び実施例について詳述したが、本発明は上記した特定の実施形態及び実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能なものである。
 本国際出願は2011年12月27日に出願された日本国特許出願2011-286738号に基づく優先権を主張するものであり、その全内容をここに援用する。

Claims (6)

  1.  製造するガラスとの平衡濃度よりも大きい鉄濃度を有する溶融スズ上で成形されたガラス基板であって、
     150℃における体積抵抗率ρ(Ω・cm)の対数logρが8.8以上であり、
     粘度η(dPa・s)の対数が4となるときの温度T4が1100℃以下であり、
     粘度η(dPa・s)の対数が2となるときの温度T2が1500℃以下であるガラス基板。
  2.  酸化物基準で表した場合、KO、BaO、およびSrOからなる群から選定された少なくとも1種を、不可避不純物濃度を超える濃度で含むことを特徴とする請求項1に記載のガラス基板。
  3.  KO+BaO+SrOの合計濃度が酸化物基準の質量比で1%以上であることを特徴とする請求項2に記載のガラス基板。
  4.  溶融スズ中の鉄濃度が100ppm以上であることを特徴とする請求項1乃至3のいずれか一つに記載のガラス基板。
  5.  さらに、透明導電性酸化物の層を有することを特徴とする請求項1乃至4のいずれか一つに記載のガラス基板。
  6.  ガラス基板の製造方法であって、
     (a)鉄濃度が100ppm以上の溶融スズ上で、粘度η(dPa・s)の対数が2となるときの温度T2が1500℃以下である溶融ガラスを成形することにより、
     粘度η(dPa・s)の対数が4となるときの温度T4が1100℃以下であり、150℃における体積抵抗率ρ(Ω・cm)の対数logρが8.8以上のガラスリボンを得るステップと、
     (b)前記ガラスリボンを室温まで冷却して、ガラス基板を得るステップと、
     を有するガラス基板の製造方法。
PCT/JP2012/083117 2011-12-27 2012-12-20 ガラス基板およびガラス基板の製造方法 WO2013099768A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280064655.4A CN104010980A (zh) 2011-12-27 2012-12-20 玻璃基板和玻璃基板的制造方法
US14/318,017 US20140305502A1 (en) 2011-12-27 2014-06-27 Glass substrate and method for producing glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011286738 2011-12-27
JP2011-286738 2011-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/318,017 Continuation US20140305502A1 (en) 2011-12-27 2014-06-27 Glass substrate and method for producing glass substrate

Publications (1)

Publication Number Publication Date
WO2013099768A1 true WO2013099768A1 (ja) 2013-07-04

Family

ID=48697257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083117 WO2013099768A1 (ja) 2011-12-27 2012-12-20 ガラス基板およびガラス基板の製造方法

Country Status (5)

Country Link
US (1) US20140305502A1 (ja)
JP (1) JPWO2013099768A1 (ja)
CN (1) CN104010980A (ja)
TW (1) TW201332910A (ja)
WO (1) WO2013099768A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017537051A (ja) * 2014-12-09 2017-12-14 エージーシー グラス ユーロップAgc Glass Europe 化学強化可能なガラス板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017124625A1 (de) 2016-12-22 2018-06-28 Schott Ag Dünnglassubstrat, Verfahren und Vorrichtung zu dessen Herstellung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107914A (ja) * 2007-11-01 2009-05-21 Central Glass Co Ltd フロート板ガラスの製造方法
WO2009096611A1 (ja) * 2008-02-27 2009-08-06 Asahi Glass Company, Limited 基板用ガラス組成物
WO2010125981A1 (ja) * 2009-04-28 2010-11-04 旭硝子株式会社 基板用ガラス板
JP2010538963A (ja) * 2007-09-21 2010-12-16 サン−ゴバン グラス フランス シリコ−ソード−カルシウムガラス板
JP2011173757A (ja) * 2010-02-25 2011-09-08 Nippon Electric Glass Co Ltd ガラス板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538963A (ja) * 2007-09-21 2010-12-16 サン−ゴバン グラス フランス シリコ−ソード−カルシウムガラス板
JP2009107914A (ja) * 2007-11-01 2009-05-21 Central Glass Co Ltd フロート板ガラスの製造方法
WO2009096611A1 (ja) * 2008-02-27 2009-08-06 Asahi Glass Company, Limited 基板用ガラス組成物
WO2010125981A1 (ja) * 2009-04-28 2010-11-04 旭硝子株式会社 基板用ガラス板
JP2011173757A (ja) * 2010-02-25 2011-09-08 Nippon Electric Glass Co Ltd ガラス板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017537051A (ja) * 2014-12-09 2017-12-14 エージーシー グラス ユーロップAgc Glass Europe 化学強化可能なガラス板

Also Published As

Publication number Publication date
US20140305502A1 (en) 2014-10-16
JPWO2013099768A1 (ja) 2015-05-07
TW201332910A (zh) 2013-08-16
CN104010980A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
US8940996B2 (en) Substrate for photovoltaic cell
TWI614224B (zh) 玻璃
JP5330400B2 (ja) 改良された抵抗率を有する層で被覆したガラス基板
JP5962663B2 (ja) 透明導電膜付きガラス板
JPS6215496B2 (ja)
KR20140061348A (ko) 에너지 투과율이 높은 플로트 유리 시트
JP2015506889A (ja) 高エネルギー透過率を持つガラス板
JP2022176332A (ja) エレクトロクロミック調光部材、光透過性導電ガラスフィルムおよびエレクトロクロミック調光素子
JP6023098B2 (ja) 半導体デバイスを含む光電池及び光起電モジュール
US20130319523A1 (en) Conductive transparent glass substrate for photovoltaic cell
WO2013099768A1 (ja) ガラス基板およびガラス基板の製造方法
JP7020458B2 (ja) 膜付きガラス基板及びその製造方法
JP2014224011A (ja) ガラス板およびガラス板の製造方法
WO2015076208A1 (ja) ガラス板
JP6673360B2 (ja) 太陽電池用ガラス基板及び太陽電池
TW201522270A (zh) 具有過濾效果之平板玻璃
JPS6230148B2 (ja)
WO2014088066A1 (ja) 高透過性ガラス
JP2017014039A (ja) 太陽電池用ガラス基板及びcigs太陽電池
JP2022063280A (ja) 膜付きガラス基板及びその製造方法
JP2022191380A (ja) 透明電極基板及び太陽電池
CN115605446A (zh) 带有透明导电膜的玻璃基板及其制造方法
JP2018177592A (ja) Cigs太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861251

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12861251

Country of ref document: EP

Kind code of ref document: A1