WO2009096447A1 - 無機ヨウ化物、その製造方法およびその製造システム - Google Patents

無機ヨウ化物、その製造方法およびその製造システム Download PDF

Info

Publication number
WO2009096447A1
WO2009096447A1 PCT/JP2009/051422 JP2009051422W WO2009096447A1 WO 2009096447 A1 WO2009096447 A1 WO 2009096447A1 JP 2009051422 W JP2009051422 W JP 2009051422W WO 2009096447 A1 WO2009096447 A1 WO 2009096447A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen iodide
gas
iodide
hydrogen
inorganic
Prior art date
Application number
PCT/JP2009/051422
Other languages
English (en)
French (fr)
Inventor
Satoshi Kanbe
Kazumi Hosono
Masahiro Wada
Original Assignee
Nippoh Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippoh Chemicals Co., Ltd. filed Critical Nippoh Chemicals Co., Ltd.
Priority to US12/864,746 priority Critical patent/US9272922B2/en
Priority to KR1020107017395A priority patent/KR101526030B1/ko
Priority to JP2009551551A priority patent/JP5520610B2/ja
Publication of WO2009096447A1 publication Critical patent/WO2009096447A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/12Iodides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B9/00General methods of preparing halides
    • C01B9/06Iodides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/16Halides of ammonium
    • C01C1/168Ammonium iodide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to an inorganic iodide, a method for producing the same, and a system for producing the same, and more particularly to a method and a system for synthesizing a high purity inorganic iodide by a simple method.
  • Patent Document 1 discloses a method of reducing iodine with aluminum or zinc by adding iodine to an alkaline aqueous solution to cause a reaction.
  • Patent Document 2 discloses a method in which iodine is added to an alkaline aqueous solution and then reduced with hydrogen sulfide.
  • Patent Document 3 discloses a method of reducing iodine or iodate with an alkali metal amalgam under alkali or neutrality.
  • Patent Document 4 discloses a method in which an organic reducing agent such as formic acid, oxalic acid, or malonic acid is acted on an alkali hydroxide aqueous solution of iodine.
  • Patent Document 5 discloses a method in which iodine is added to a potassium hydroxide solution and formic acid is added thereto as a reducing agent.
  • Patent Document 6 discloses a method of reacting iodine with potassium hydroxide or alkali carbonate using hydrazine as a reducing agent.
  • Patent Document 7 discloses a method in which formic acid is added to a potassium hydroxide solution and neutralized, and then a larger amount of iodine than the stoichiometric amount is added to react with the solution, and the free iodine in the product is treated with potassium sulfide. It is disclosed. US Pat. No. 2,828,184 US Pat. No. 3,402,995 Japanese Patent Publication “Japanese Patent Laid-Open No. 31-8013” Japanese Patent Publication “JP-A 1-261224” Russian patent 560826 specification Japanese Patent Publication “JP-A-61-48403” Russian patent 497233 specification
  • Patent Document 1 For example, in the methods described in Patent Document 1 and Patent Document 7, by-products must be removed after the reaction.
  • Patent Document 2 Patent Document 3, and Patent Document 6, a reducing agent that is difficult to handle must be used.
  • Patent Documents 4 and 5 use an easy-to-handle reducing agent such as formic acid or oxalic acid, but the reduction rate is slow, and the amount of inorganic iodide obtained with respect to iodine charged in the reaction system is small. That is, there is a problem that the yield is low.
  • it is necessary to remove a reducing agent and a by-product and the use of a reducing agent that is difficult to handle contributes to an increase in complicated steps, and is simple and efficient. Development of a method for producing inorganic iodide is desired.
  • the present invention has been made in view of the above problems, and an object thereof is to realize a simple and efficient method for producing an inorganic iodide.
  • the method for producing an inorganic iodide according to the present invention includes a reaction step of bringing hydrogen iodide gas into contact with an inorganic base compound in order to solve the above-mentioned problems.
  • the neutralization reaction can be satisfactorily performed only by contacting the hydrogen iodide gas and the inorganic base compound, so that the inorganic iodide can be produced simply and efficiently.
  • hydrogen iodide gas means the gas containing hydrogen iodide gas other than the case where the whole capacity
  • capacitance is hydrogen iodide gas.
  • the inorganic iodide is an inorganic compound containing at least one iodine atom.
  • the inorganic base compound is preferably a liquid.
  • the hydrogen iodide gas and the inorganic base compound can be brought into gas-liquid contact. Therefore, contact efficiency is good and productivity can be improved.
  • the hydrogen iodide gas preferably has an iodine content of 2% by weight or less when the total weight is 100%.
  • high purity hydrogen iodide gas since high purity hydrogen iodide gas can be used, high purity inorganic iodide can be produced without providing a purification step after producing inorganic iodide.
  • “high-purity hydrogen iodide gas” is intended to be hydrogen iodide gas having a very low content of a compound that can participate in the reaction between hydrogen iodide gas and an inorganic base compound.
  • the hydrogen iodide gas preferably has an impurity content of 2% by weight or less when the total weight of the hydrogen iodide gas is 100%.
  • impurity refers to a substance that can participate in the reaction between hydrogen iodide gas and an inorganic base compound. Examples thereof include iodine (iodine molecules) contained in hydrogen iodide gas, and by-products generated in the reaction for obtaining hydrogen iodide gas.
  • the hydrogen iodide gas dissolves a substance other than hydrogen iodide in the crude hydrogen iodide gas and does not dissolve hydrogen iodide in the crude hydrogen iodide gas.
  • a hydrogen iodide gas obtained by bringing the purified solution into contact is preferred.
  • “crude hydrogen iodide gas” refers to hydrogen iodide gas that has not been subjected to a treatment aimed at increasing its purity after generating hydrogen iodide.
  • the hydrogen iodide gas includes hydrogen iodide gas generated by bringing hydrogen gas and gaseous iodine into contact with each other in the presence of a catalyst.
  • high purity hydrogen iodide gas can be supplied to the reaction system.
  • the catalyst is preferably one in which at least one platinum group element is dispersed and supported on at least one of an oxide and activated carbon.
  • the inorganic base compound is preferably a compound containing at least one of an alkali metal and an alkaline earth metal.
  • a highly pure alkali metal iodide compound or alkaline earth metal iodide compound can be produced by a simple method.
  • the inorganic base compound is preferably ammonia.
  • the reaction step preferably has a reaction system pH value of 1.50 or more and 11.00 or less after completion of the reaction.
  • the inorganic iodide according to the present invention is manufactured by the above-described manufacturing method. According to the above configuration, an inorganic iodide having high purity and reduced production cost can be provided.
  • an inorganic iodide production system is a hydrogen iodide gas generator that generates hydrogen iodide gas by bringing hydrogen gas into contact with gaseous iodine, and the generator
  • generates an inorganic iodide by making an inorganic base compound contact are characterized by the above-mentioned.
  • the inorganic iodide production system further includes a purification unit for purifying the hydrogen iodide gas by bringing the purified solution into contact with the hydrogen iodide gas generated in the generation unit,
  • the reaction unit preferably generates an inorganic iodide using the hydrogen iodide gas purified in the purification unit.
  • the manufacturing method of the inorganic iodide concerning embodiment of this invention includes the process which makes hydrogen iodide gas and an inorganic base compound contact.
  • the inorganic iodide means an inorganic compound containing at least one iodine atom.
  • hydrogen iodide means gaseous hydrogen iodide, that is, hydrogen iodide gas, unless otherwise specified
  • iodine means iodine molecule (I 2 ) unless otherwise specified. I mean.
  • the hydrogen iodide gas used in the manufacturing method according to the present embodiment is a gas containing hydrogen iodide gas. That is, in the present embodiment, the hydrogen iodide gas is not limited to the case where the entire capacity is hydrogen iodide gas.
  • the iodine content in the hydrogen iodide gas is preferably 2% by weight or less based on the total weight. In this case, after synthesizing the inorganic iodide, there is an advantage that a high-purity inorganic iodide can be produced without performing a purification treatment or a reduction treatment for removing unreacted iodine molecules.
  • the iodine content in the hydrogen iodide gas is more preferably 1% by weight or less, and further preferably 0.5% by weight or less, when the total weight is 100%. .
  • the hydrogen iodide gas preferably has an impurity content of 2% by weight or less when the total weight is 100%.
  • the “impurity” refers to a substance that can participate in the reaction between hydrogen iodide gas and an inorganic base compound. Examples thereof include iodine (iodine molecules) contained in hydrogen iodide gas, and by-products generated in the reaction for obtaining hydrogen iodide gas. That is, in this embodiment, the high purity hydrogen iodide gas may be a hydrogen iodide gas having an impurity content of 2% by weight or less when the total weight is 100%.
  • impurity refers to a substance that can participate in the reaction between hydrogen iodide gas and an inorganic base compound.
  • impurities include iodine (iodine molecules) contained in hydrogen iodide gas, and by-products generated in the reaction for obtaining hydrogen iodide gas.
  • hydrogen iodide gas As the hydrogen iodide gas, hydrogen iodide gas obtained by various known methods can be used. Depending on the purity of the hydrogen iodide gas, it can be used as it is as a raw material of the production method of the present embodiment without being subjected to a purification treatment. Moreover, you may use the hydrogen iodide gas obtained by performing a refinement
  • the catalyst is preferably a catalyst in which a platinum group element is dispersed and supported on at least one of oxide and activated carbon. According to this embodiment, iodine and hydrogen can be activated. Therefore, the production rate of hydrogen iodide can be improved even at a relatively low temperature. Moreover, the conversion rate of iodine and the yield of hydrogen iodide to be produced can be improved together.
  • platinum group elements include platinum (Pt), palladium (Pd), ruthenium (Ru), osmium (Os), iridium (Ir), and rhodium (Rh).
  • oxides include magnesium oxide, titanium oxide, silica, alumina, cordierite, zirconia, silica alumina and zeolite.
  • activated carbon include wood chips, wood powder, coconut shells and Plant-based activated carbon activated from walnut shells, mineral activated carbon activated from peat, coal coke and tar, etc., natural materials such as recycled fibers and rayon, and synthetic materials such as phenolic resin and acrylic resin Examples of the activated carbon include activated carbon.
  • platinum group element used as the catalyst only one kind of the above-described platinum group elements may be used, or two or more kinds may be mixed and used.
  • oxide and activated carbon used as a support for the platinum group element only one kind may be used, or two or more kinds may be mixed and used.
  • oxides and activated carbon may be used alone or in combination.
  • the reaction temperature in this gas phase catalytic reduction reaction is preferably in the range of 150 to 1000 ° C., more preferably in the range of 200 to 900 ° C., and further preferably in the range of 250 to 850 ° C. preferable.
  • the “gas space velocity” in this specification and the like means the ratio of the reaction gas volume and the catalyst volume per unit time in the standard state.
  • high-purity hydrogen iodide gas can be easily obtained.
  • the obtained hydrogen iodide gas contains no gas other than unreacted iodine and hydrogen.
  • hydrogen does not affect, for example, the process of synthesizing inorganic iodide, it is not necessary to perform a separate process for separating hydrogen.
  • it when it is desired to remove hydrogen from the hydrogen iodide-containing gas, it can be easily removed by removing iodine from the hydrogen iodide-containing gas and then cooling and liquefying the hydrogen iodide gas.
  • generating hydrogen iodide gas from red phosphorus, water, and an iodine can be mentioned, for example.
  • hydrogen iodide gas can be obtained by a conventionally known method.
  • the hydrogen iodide gas may contain gaseous phosphoric acid or sulfuric acid in addition to unreacted iodine.
  • the purified solution is preferably a solvent that can dissolve not only iodine but also phosphoric acid or sulfuric acid.
  • a solvent is water.
  • This purification is a process for removing substances other than hydrogen iodide (hereinafter also referred to as “impurities”) in the hydrogen iodide gas.
  • impurities substances other than hydrogen iodide
  • the crude hydrogen iodide gas is brought into gas-liquid contact with a purified solution that dissolves impurities in the crude hydrogen iodide gas and does not dissolve hydrogen iodide.
  • the “impurity” is an impurity in accordance with the above definition.
  • the purified solution is not particularly limited as long as it dissolves impurities in hydrogen iodide gas and does not dissolve hydrogen iodide.
  • the purified solution is preferably one that can remove unreacted iodine. Unreacted iodine is difficult to separate from hydrogen iodide, and can be problematic when the produced hydrogen iodide is used in other reactions. Therefore, it is preferable to positively remove it.
  • Examples of such a purified solution include a saturated hydrogen iodide solution.
  • the saturated hydrogen iodide solution is a solution that dissolves iodine very well. However, since hydrogen iodide is in a saturated state, it is a solution that hardly dissolves.
  • the solvent for the saturated hydrogen iodide solution is not particularly limited as long as it is a solvent capable of dissolving hydrogen iodide.
  • examples thereof include solvents such as water, ketones, halogen compounds, aromatic compounds, ethers and alcohols.
  • an aqueous solution containing an alkali metal iodide or an aqueous solution containing an alkaline earth metal iodide may be used.
  • the solvent include water, acetone, chloroform, carbon tetrachloride, benzene, toluene, xylene, petroleum ether, dioxane, ethyl ether, methanol, potassium iodide aqueous solution and barium iodide aqueous solution. It can.
  • water an aqueous solution containing an alkali metal iodide, ketones, and aromatic compounds are preferable, and water that can be easily and inexpensively obtained is more preferable.
  • the temperature of the saturated hydrogen iodide solution need not be strictly controlled. This is because hydrogen iodide is dissolved in a saturated solution with heat of dissolution, but hydrogen iodide has a high dissolution rate in, for example, water and high solubility.
  • the contact method is not particularly limited as long as hydrogen iodide gas and the purified solution can be brought into gas-liquid contact, and a conventionally known method can be used.
  • a contact method using a packed tower (or packed tube) filled with a packing as an absorbing tower (or absorbing tube) can be mentioned.
  • a saturated hydrogen iodide solution is caused to flow down from the top of the packed column, and hydrogen iodide gas containing impurities is introduced from the downstream of the column to make countercurrent gas-liquid contact.
  • cocurrent gas-liquid contact in which hydrogen iodide gas is introduced from the upstream side of the tower is also possible.
  • any material that does not erode to iodine, hydrogen iodide, and hydriodic acid, or that hardly erodes, and that increases the contact area between the saturated hydrogen iodide solution and hydrogen iodide gas can be used.
  • the material for the filler include various ceramics and glass.
  • the shape of the filler is not particularly limited, and examples thereof include a spherical shape, a cylindrical shape (cylinder shape), and an annular shape (ring shape).
  • the filling material only those having the same shape may be used, or those having different shapes may be used in combination.
  • the material of the packed tower is a material which is not eroded or hardly eroded by iodine, hydrogen iodide and hydriodic acid, like the material of the packed material.
  • the size of the packed tower can be appropriately set depending on the amount of hydrogen iodide gas to be purified. Further, the amount of saturated hydrogen iodide solution to be used and the flow rate can be appropriately set based on the size of the packed tower to be used, that is, the amount of hydrogen iodide gas to be purified.
  • an apparatus using a batch type purification tank As an apparatus used for purification, in addition to the above packed tower, for example, an apparatus using a batch type purification tank can be cited. More specifically, it is an apparatus for blowing hydrogen iodide gas containing impurities into a purification tank in which a purified solution is stored. Even in this case, the impurities in the hydrogen iodide gas blown into the purification tank are dissolved and absorbed in the purification solution, so that high purity hydrogen iodide can be obtained very easily without complicated processing. Obtainable.
  • the solubility of impurities in the purified solution there is a limit to the solubility of impurities in the purified solution. Therefore, in either case of using a packed tower or a batch type purification tank, for example, if impurities become supersaturated and precipitate as solids, they can be replaced with new purified solutions. It is preferable to do.
  • the iodine dissolved in the purified solution is preferably concentrated and recovered as solid iodine. The recovered iodine may be reused in the reaction for generating hydrogen iodide.
  • the inorganic base compound used in the present embodiment is a compound that can cause a neutralization reaction with hydrogen iodide.
  • it is a compound that generates a hydroxide ion (OH) by causing a dissociation or equilibrium reaction in an aqueous solution.
  • inorganic base compounds include metal hydroxides such as alkali metals, alkaline earth metals, rare earth elements, transition metals, hydroxides of typical elements such as aluminum and zinc, basic metal oxides, and metal carbonates.
  • metal hydroxides such as alkali metals, alkaline earth metals, rare earth elements, transition metals, hydroxides of typical elements such as aluminum and zinc, basic metal oxides, and metal carbonates.
  • At least one of alkali metal or alkaline earth metal hydroxide and ammonia is preferable because it is inexpensive and easily available.
  • the inorganic base compound is subjected to the reaction in a solid state, an aqueous solution completely dissolved in a solvent such as water, or a slurry dispersed in water. Especially, it is preferable to use for reaction in the state of the aqueous solution dissolved in water. This point will be described in detail in the description of the reaction described later.
  • reaction In the manufacturing method according to the present embodiment, hydrogen iodide gas is brought into contact with an inorganic base compound. That is, the target inorganic iodide is obtained by bringing these into contact with each other and causing a neutralization reaction.
  • the inorganic base compound is potassium hydroxide
  • the reaction follows the following reaction formula (1).
  • the contact between the hydrogen iodide gas and the inorganic base compound is preferably carried out by gas-liquid contact using a liquid inorganic base compound (hereinafter also referred to as “inorganic base solution”).
  • inorganic base solution a liquid inorganic base compound
  • the concentration of the inorganic base solution is not limited as long as the inorganic base compound is dissolved.
  • a saturated concentration is preferable.
  • the solvent used can be minimized. This has the advantage of reducing the raw material costs and reducing the energy required for separating and recovering the inorganic iodide from the reaction solution, thereby reducing the production cost.
  • the solvent at least one of water and alcohols can be used.
  • a known method can be adopted as the method of gas-liquid contact.
  • hydrogen iodide gas and an inorganic base solution can be brought into gas-liquid contact in a reaction tower filled with a packing.
  • gas-liquid contact can be achieved by blowing hydrogen iodide gas into a storage tank storing an inorganic base solution.
  • the reaction temperature is not particularly limited as long as the reaction can proceed.
  • the pH value at the end of the reaction is more preferably 2.0 or more and 10.00 or less, and further preferably 2.00 or more and 7.00 or less.
  • the pH value of the reaction system can be controlled by appropriately adding an acidic compound or an alkaline compound to the reaction system according to the measured pH value. For example, when the pH value is less than 1.50, an inorganic base solution may be added, and when the pH value exceeds 11.00, hydrogen iodide or an organic acid may be added.
  • organic acid it is preferable to use a reducing acid.
  • organic acids include formic acid, hydrazine, sulfurous acid, phosphorous acid, and the like.
  • stabilization of potassium iodide can be aimed at by adjusting pH using the acid which has reducibility.
  • this acid plays the role of removal of an unreacted iodine and the release
  • a reduction treatment can be performed to remove unreacted iodine molecules.
  • This reduction treatment can be performed by a conventionally known reduction treatment such as addition of a reducing agent exemplified by formic acid and oxalic acid.
  • a reducing agent exemplified by formic acid and oxalic acid.
  • hydrogen iodide gas hydrogen iodide gas was used without purification even though the iodine content was 4% by weight or more based on the total weight of the gas supplied to the reaction system. In some cases, it is preferable to perform this reduction treatment.
  • high purity inorganic iodide can be produced simply and efficiently by bringing hydrogen iodide gas into contact with an inorganic base compound.
  • a high-purity inorganic iodide can be produced without obtaining a separate purification step after obtaining an inorganic iodide.
  • a system for producing an inorganic iodide includes: A hydrogen iodide gas generator that generates hydrogen iodide gas by contacting hydrogen gas with gaseous iodine; A reaction section for bringing the hydrogen iodide gas into contact with the inorganic base compound.
  • the system according to the present embodiment preferably includes a purification unit that purifies the hydrogen iodide gas generated by the generation unit.
  • FIG. 1 is a block diagram showing a system according to the present embodiment.
  • the manufacturing system according to the present embodiment includes a hydrogen iodide gas generation unit 10, a purification unit 20, and a reaction unit 30.
  • the hydrogen iodide gas generator 10 includes a reaction tower 12 for reacting hydrogen gas with iodine.
  • the reaction tower 12 includes a catalyst layer 12a.
  • Hydrogen gas and gaseous iodine 14 are supplied from the lower part of the reaction tower 12, and a crude hydrogen iodide gas 16 generated from the upper part of the reaction tower 12 is obtained.
  • the catalyst layer 12a is filled with a catalyst similar to the catalyst described in the first embodiment.
  • a heating device an electric furnace, an oil bath, etc. is provided on the outer surface of the reaction tower 12.
  • the purification unit 20 includes a packed tower 22 filled with a packing material and a tank 24 in which a purified solution is stored.
  • the packed tower 22 is a place where the crude hydrogen iodide gas 16 produced in the production unit 10 is brought into gas-liquid contact with the purified solution.
  • the purification solution can be the same as the purification solution described in the first embodiment.
  • the purified solution 28 stored in the tank 24 is introduced from the upper part of the packed tower 22 and discharged from the lower part. At this time, the discharged purified solution 28 is collected in the tank 24. That is, the purified solution 28 circulates through the tank 24 and the packed tower 22. Then, the crude hydrogen iodide gas 16 generated in the generation unit 10 is introduced from the lower part (downstream) of the packed tower 22. Then, the crude hydrogen iodide gas 16 is brought into gas-liquid contact with the purified solution in the packed tower 22 until it is discharged from the upper part. Thus, by bringing hydrogen iodide gas into contact with the purified solution, unreacted iodine in the hydrogen iodide gas can be removed, and high-purity hydrogen iodide gas 26 is obtained.
  • the purification unit 20 can also have a configuration in which hydrogen iodide gas is directly blown into a tank in which a purified solution is stored, and the hydrogen iodide gas from which impurities have been removed is recovered. .
  • the reaction unit 30 includes a reaction tower 32 for bringing hydrogen iodide gas into contact with an inorganic base compound, and a recovery tank 34 for recovering a product obtained by the reaction.
  • An inorganic base solution 38 is introduced into the reaction tower 32 from upstream.
  • the hydrogen iodide gas 26 is introduced into the reaction tower 32 so as to be orthogonal to the flow path of the inorganic base solution 38. These are brought into gas-liquid contact in the reaction tower 32 to cause a neutralization reaction.
  • the obtained inorganic iodide 36 is recovered as a solution in the recovery tank 34.
  • a temperature control mechanism such as a cooling mechanism is provided outside the reaction tower 32 in order to control the temperature of the reaction system.
  • the target inorganic iodide can be obtained by distilling off the solvent from the inorganic iodide solution recovered in the recovery tank 34.
  • reaction unit 30 can be configured such that the hydrogen iodide gas 26 is directly blown into a tank in which the inorganic base solution is stored.
  • high-purity hydrogen iodide gas that can be suitably used for the reaction with the inorganic base compound can be easily and efficiently produced, and the obtained hydrogen iodide gas can be used in the atmosphere. It can be contacted with an inorganic base compound without exposure to the inside.
  • Example 1 (Generation of crude hydrogen iodide gas) A mixed gas having a hydrogen flow rate of 450 ml / min and a gaseous iodine flow rate of 75 ml / min is brought into contact in the presence of a platinum catalyst in which 1 g of platinum is supported per liter of support on spherical alumina having a particle diameter of 3 mm heated to 350 ° C., Hydrogen iodide gas was produced. The weight ratio of unreacted iodine to generated hydrogen iodide in hydrogen iodide gas was 2/98 (the rest was hydrogen gas).
  • the hydrogen iodide gas after passing through the absorption tube was absorbed in water and recovered as an aqueous solution.
  • the amount of iodine and hydrogen iodide in the recovered aqueous solution of hydrogen iodide were measured by titration analysis using an aqueous solution of sodium thiosulfate and an aqueous solution of sodium hydroxide, respectively.
  • the weight ratio of iodine and hydrogen iodide contained in the hydrogen iodide aqueous solution was 0.01 / 99.99.
  • the production amount of hydrogen iodide was 0.00656 mol / min.
  • the hydrogen iodide gas thus obtained was blown into a 200 ml four-necked flask containing 20.1 g of a 48 wt% aqueous potassium hydroxide solution prepared using 96 wt% potassium hydroxide and 100 g of ion exchange water.
  • a neutralization reaction was performed between hydrogen iodide and potassium hydroxide.
  • the pH value of the reaction solution was monitored with a pH meter, and the blowing was terminated when the pH of the aqueous reaction solution reached 5.72. Subsequently, this reaction liquid was transferred to a rotary evaporator, and concentrated completely. After collecting 110 g of water, it was sufficiently dried. As a result, 27.8 g of colorless potassium iodide was recovered. The yield was 97.2% based on the amount of potassium hydroxide charged.
  • the purity of potassium iodide in the obtained solid was determined by titration with an aqueous potassium iodate solution and found to be 99.8% by weight. Moreover, since the color of the obtained solid was visually confirmed to be white, the presence of iodine was not recognized. Further, 1 g of the obtained solid was dissolved in 40 ml of water, 1 ml of chloroform was added to 5 ml of the aqueous solution, and the mixture was shaken well to confirm that the chloroform phase did not exhibit a purple color.
  • Presence of potassium iodate is obtained by dissolving 1 g of the solid obtained in 20 ml of water not containing dissolved oxygen, adding 1 ml of the starch solution, and adding 0.3 ml of 0.5 mol / l sulfuric acid while maintaining the temperature at about 15 ° C. When left for a minute, it was confirmed that it did not exist because it did not appear blue. It was 6.76 when pH of the aqueous solution which melt
  • Example 2 Generation of crude hydrogen iodide gas
  • Water 300 g; 16.7 mol
  • red phosphorus 31 g; 1.00 mol
  • iodine 634.5 g; 2.50 mol
  • the four-necked flask was heated while flowing nitrogen gas at 30 ml / min into the four-necked flask under normal pressure, and the azeotropic composition (weight ratio) of hydrogen iodide and water under normal pressure was 57%.
  • excess hydrogen iodide was generated as hydrogen iodide gas.
  • the generated hydrogen iodide gas was absorbed in water, and the iodine amount and hydrogen iodide amount in the hydrogen iodide gas were measured by titration analysis with sodium thiosulfate and sodium hydroxide, respectively. As a result, the weight ratio of iodine to hydrogen iodide in hydrogen iodide gas was 0.7 / 99.3.
  • the hydrogen iodide gas after passing through the absorption tube was absorbed in water and recovered as an aqueous solution.
  • the amount of iodine and hydrogen iodide in the recovered aqueous solution of hydrogen iodide were measured by titration analysis using an aqueous solution of sodium thiosulfate and an aqueous solution of sodium hydroxide, respectively.
  • the weight ratio of iodine and hydrogen iodide contained in the hydrogen iodide aqueous solution was 0.01 / 99.99.
  • Example 3 (Generation of crude hydrogen iodide gas) A mixed gas having a hydrogen flow rate of 450 ml / min and a gaseous iodine flow rate of 75 ml / min was brought into contact with a platinum group catalyst heated to 350 ° C. to generate hydrogen iodide gas. The weight ratio of unreacted iodine to generated hydrogen iodide in hydrogen iodide gas was 2/98 (the rest was hydrogen gas).
  • the hydrogen iodide gas after passing through the absorption tube was absorbed in water and recovered as an aqueous solution.
  • the amount of iodine and hydrogen iodide in the recovered aqueous solution of hydrogen iodide were measured by titration analysis using an aqueous solution of sodium thiosulfate and an aqueous solution of sodium hydroxide, respectively.
  • the weight ratio of iodine and hydrogen iodide contained in the hydrogen iodide aqueous solution was 0.01 / 99.99.
  • the production amount of hydrogen iodide was 0.00656 mol / min.
  • reaction with inorganic base compounds In a 300 ml four-necked flask, 200 ml of ion-exchanged water and 54.0 g of barium hydroxide octahydrate were added. The hydrogen iodide gas was blown into the aqueous solution so that the temperature of the aqueous solution did not exceed 60 ° C., and a neutralization reaction was performed. While the hydrogen iodide gas was being blown, the pH value of the reaction solution was monitored with a pH meter, and when the pH value of the reaction aqueous solution reached 6.05, the blowing was terminated.
  • reaction solution was transferred to a rotary evaporator, and water was removed and the solution was concentrated under reduced pressure.
  • concentration was completed, crystals of barium iodide dihydrate were precipitated in the flask and were in a slurry state.
  • the slurry was subjected to suction filtration using a Buchner funnel to perform solid-liquid separation.
  • the collected water-wet crystals were further dried under reduced pressure at 60 ° C. to obtain 70 g of white barium iodide dihydrate.
  • the yield was 95.8% based on the charged amount of barium hydroxide octahydrate.
  • Example 4 (Generation of crude hydrogen iodide gas) A mixed gas having a hydrogen flow rate of 450 ml / min and a gaseous iodine flow rate of 75 ml / min was brought into contact with a platinum group catalyst heated to 350 ° C. to generate hydrogen iodide gas. The weight ratio of unreacted iodine to generated hydrogen iodide in hydrogen iodide gas was 2/98 (the rest was hydrogen gas).
  • a vertical glass absorption tube (hereinafter also referred to simply as “absorption tube”) in which 20 ml of a ring-shaped magnetic filler is filled in the filling tube is prepared, and a saturated hydrogen iodide aqueous solution is transferred from the top to the bottom of the absorption tube using a pump. And circulated to flow down.
  • the flow rate of the saturated aqueous solution of hydrogen iodide was 50 ml / min.
  • the produced hydrogen iodide gas was introduced from the lower part of the absorption tube, and unreacted iodine was dissolved in a saturated hydrogen iodide aqueous solution and absorbed.
  • the hydrogen iodide gas after passing through the absorption tube was absorbed in water and recovered as an aqueous solution.
  • the amount of iodine and hydrogen iodide in the recovered aqueous solution of hydrogen iodide were measured by titration analysis using an aqueous solution of sodium thiosulfate and an aqueous solution of sodium hydroxide, respectively.
  • the weight ratio of iodine and hydrogen iodide contained in the hydrogen iodide aqueous solution was 0.01 / 99.99.
  • the production amount of hydrogen iodide was 0.00656 mol / min.
  • reaction with inorganic base compounds The hydrogen iodide gas purified as described above was blown into a 200 ml four-necked flask containing 25 wt% aqueous ammonia (100 g; 1.47 mol) to carry out a neutralization reaction. While hydrogen iodide gas was being blown in, the pH value of the reaction solution was monitored with a pH meter, and when the pH value of the reaction solution reached 7.90, the blowing was terminated.
  • reaction solution was transferred to a rotary evaporator, and concentrated under reduced pressure by removing water.
  • concentration was completed, ammonium iodide crystals were precipitated in the flask and were in a slurry state.
  • the slurry was subjected to suction filtration using a Buchner funnel to perform solid-liquid separation.
  • the collected water-wet crystals were further dried under reduced pressure at 60 ° C. to obtain 204 g of white ammonium iodide.
  • the yield was 95.7% based on the amount of ammonia charged.
  • Example 5 Generation of crude hydrogen iodide gas
  • a mixed gas having a hydrogen flow rate of 450 ml / min and a gaseous iodine flow rate of 75 ml / min was brought into contact with a platinum group catalyst heated to 350 ° C. to generate hydrogen iodide gas.
  • the weight ratio of unreacted iodine to generated hydrogen iodide in hydrogen iodide gas was 2/98 (the rest was hydrogen gas).
  • a vertical glass absorption tube (hereinafter also referred to as “absorption tube”) in which 20 ml of a ring-shaped magnetic filler is filled in a filling tube is prepared, and a saturated hydrogen iodide aqueous solution is transferred from the upper portion to the lower portion of the absorption tube using a pump. Circulation was made to flow down. The flow rate of the saturated aqueous solution of hydrogen iodide was 50 ml / min. Subsequently, the produced hydrogen iodide gas was introduced from the lower part of the absorption tube, and unreacted iodine was dissolved in a saturated hydrogen iodide aqueous solution and absorbed.
  • the hydrogen iodide gas (that is, hydrogen iodide) after passing through the absorption tube was absorbed in water and recovered as an aqueous solution.
  • the amount of iodine and hydrogen iodide in the recovered aqueous solution of hydrogen iodide were measured by titration analysis using an aqueous solution of sodium thiosulfate and an aqueous solution of sodium hydroxide, respectively.
  • the weight ratio of iodine and hydrogen iodide contained in the hydrogen iodide aqueous solution was 0.01 / 99.99.
  • the hydrogen iodide gas thus obtained was blown into a 200 ml four-necked flask containing 20.1 g of a 48 wt% aqueous potassium hydroxide solution prepared using 96 wt% potassium hydroxide and 100 g of ion exchange water. Then, neutralization reaction of hydrogen iodide and potassium hydroxide was carried out. While the hydrogen iodide gas was being blown, the pH value of the reaction solution was monitored with a pH meter, and the blow was terminated when the pH of the aqueous reaction solution reached 10.84.
  • reaction solution was transferred to a rotary evaporator and concentrated completely, and after collecting 110 g of water, it was further sufficiently dried to recover 27.8 g of solid.
  • the yield based on the charged potassium hydroxide was 97.5% by weight.
  • Example 6 Generation of crude hydrogen iodide gas
  • a mixed gas having a hydrogen flow rate of 450 ml / min and a gaseous iodine flow rate of 75 ml / min was brought into contact in the presence of a platinum catalyst in which 1 g of platinum was supported per liter of support on a spherical alumina particle diameter of 3 mm heated to 350 ° C.
  • Hydrogen fluoride gas was generated.
  • the weight ratio of unreacted iodine to generated hydrogen iodide in hydrogen iodide gas was 2/98. (The rest was hydrogen gas).
  • a vertical glass absorption tube filled with 20 ml of a ring-shaped magnetic filler was prepared in the filling tube, and a saturated hydrogen iodide aqueous solution was circulated by using a pump so as to flow downward from the upper portion of the absorption tube.
  • the flow rate of the saturated aqueous solution of hydrogen iodide was 50 ml / min.
  • a hydrogen iodide-containing gas was introduced at the upper part of the absorption tube from a little lower part of the introduction of the saturated hydrogen iodide aqueous solution, and unreacted iodine was absorbed in the saturated hydrogen iodide aqueous solution.
  • the hydrogen iodide gas after passing through the absorption tube was absorbed in water and recovered as an aqueous solution.
  • the amount of iodine and the amount of hydrogen iodide in the collected aqueous hydrogen iodide solution were measured by titration analysis with sodium thiosulfate and aqueous sodium hydroxide, respectively.
  • the weight ratio of iodine and hydrogen iodide contained in the hydrogen iodide aqueous solution was 0.01 / 99.99.
  • the production amount of hydrogen iodide was 0.00656 mol / min.
  • the obtained potassium iodide was evaluated in the same manner as in Example 1. The purity was 97.4% by weight. The presence of iodine was not confirmed, but the presence of potassium iodate was confirmed. The pH value of the aqueous solution was 10.61.
  • Example 7 (Generation of crude hydrogen iodide gas) A mixed gas having a hydrogen flow rate of 450 ml / min and a gaseous iodine flow rate of 75 ml / min is contacted in the presence of a platinum catalyst in which 1 g of platinum is supported per liter of support on a spherical alumina particle diameter of 3 mm heated to 350 ° C. Hydrogen fluoride gas was generated. The weight ratio of unreacted iodine to generated hydrogen iodide in hydrogen iodide gas was 2/98 (the rest was hydrogen gas).
  • a vertical glass absorption tube filled with 20 ml of a ring-shaped magnetic filler was prepared in the filling tube, and a saturated hydrogen iodide aqueous solution was circulated by using a pump so as to flow downward from the upper portion of the absorption tube.
  • the flow rate of the saturated aqueous solution of hydrogen iodide was 50 ml / min.
  • a hydrogen iodide-containing gas was introduced at the upper part of the absorption tube from a little lower part of the introduction of the saturated hydrogen iodide aqueous solution, and unreacted iodine was absorbed in the saturated hydrogen iodide aqueous solution.
  • the hydrogen iodide gas after passing through the absorption tube was absorbed in water and recovered as an aqueous solution.
  • the amount of iodine and the amount of hydrogen iodide in the collected aqueous hydrogen iodide solution were measured by titration analysis with sodium thiosulfate and aqueous sodium hydroxide, respectively.
  • the weight ratio of iodine and hydrogen iodide contained in the hydrogen iodide aqueous solution was 0.01 / 99.99.
  • the production amount of hydrogen iodide was 0.00656 mol / min.
  • the hydrogen iodide gas thus obtained was blown into a 200 ml four-necked flask containing 20.1 g of a 48 wt% aqueous potassium hydroxide solution prepared using potassium hydroxide having a purity of 96 wt% and 100 g of ion exchange water. Then, neutralization reaction of hydrogen iodide and potassium hydroxide was carried out. While hydrogen iodide gas was being blown, the pH value of the reaction solution was monitored with a pH meter, and when the pH value of the aqueous reaction solution reached 1.05, the blowing was terminated. Subsequently, this reaction solution was transferred to a rotary evaporator, and concentrated completely and dried sufficiently. As a result, 28.3 g of light yellow potassium iodide was recovered. The yield based on the charged potassium hydroxide was 99.1% by weight.
  • the obtained potassium iodide was evaluated in the same manner as in Example 1. The purity was 99.4% by weight. Moreover, the presence of iodine was confirmed. Furthermore, pH value when it was set as aqueous solution was 4.41. The presence of potassium iodate was unknown because samples containing iodine cannot be measured by the measurement principle of the JIS method.
  • Example 8 (Generation of crude hydrogen iodide gas) A mixed gas having a hydrogen flow rate of 450 ml / min and a gaseous iodine flow rate of 75 ml / min was brought into contact in the presence of a platinum catalyst in which 1 g of platinum was supported per liter of support on a spherical alumina particle diameter of 3 mm heated to 350 ° C. Hydrogen fluoride gas was generated. The weight ratio of unreacted iodine to generated hydrogen iodide in hydrogen iodide gas was 2/98. (The rest was hydrogen gas). The production amount of hydrogen iodide was 0.00656 mol / min.
  • Example 9 Genetic of crude hydrogen iodide gas
  • a mixed gas having a hydrogen flow rate of 75 ml / min and a gaseous iodine flow rate of 75 ml / min was brought into contact in the presence of a platinum catalyst in which 1 g of platinum was supported per liter of support on spherical alumina having a particle diameter of 3 mm heated to 350 ° C.
  • Hydrogen fluoride gas was generated.
  • the weight ratio of the unreacted iodine in the hydrogen iodide gas to the produced hydrogen iodide was 4.3 / 95.7. (The rest was hydrogen gas).
  • the production amount of hydrogen iodide was 0.00641 mol / min.
  • Comparative Example 2 In Comparative Example 1, 191 g of a white solid was recovered in the same manner as in Comparative Example 1, except that the time required for completion of the reaction was changed to 6 hours. The purity of the recovered solid potassium iodide was 99.5% by weight. The presence of potassium iodate was not observed.
  • Example 1 to 9 it was confirmed that high-purity inorganic iodide could be obtained by a simple process.
  • Examples 1 and 2 are compared with Examples 5, 6, and 7, the pH value of the reaction system and the contents of iodine and potassium iodate are determined by JIS standards. It was confirmed that potassium iodide satisfying the specified standards can be obtained.
  • Example 9 when Example 9 is compared with Examples 1 and 2, the unreacted iodine content in the hydrogen iodide gas is set to 4% by weight or less, so that iodine satisfying the standard defined in the JIS standard is satisfied. It was confirmed that potassium halide can be obtained.
  • high purity inorganic iodide can be produced simply and efficiently by bringing hydrogen iodide gas into contact with an inorganic base compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

 本発明の無機ヨウ化物の製造方法は、ヨウ化水素ガスと、無機塩基化合物とを接触させる反応工程を含むことにより、効率よく高純度の無機ヨウ化物を製造することができる。これにより、簡便で効率のよい無機ヨウ化物の製造方法を実現することができる。

Description

無機ヨウ化物、その製造方法およびその製造システム
 本発明は、無機ヨウ化物、その製造方法およびその製造システムに関し、特に、簡便な方法で、高純度な無機ヨウ化物を合成する方法およびシステムに関する。
 従来、無機ヨウ化物の合成方法としては、様々な方法が知られている。たとえば、無機ヨウ化物の合成方法の一例として、以下の特許文献1から7を挙げることができる。特許文献1には、アルカリ水溶液にヨウ素を添加して反応させて、ヨウ素酸塩をアルミニウムや亜鉛で還元する方法が開示されている。また、特許文献2には、アルカリ水溶液にヨウ素を添加した後、硫化水素で還元する方法が開示されている。特許文献3には、ヨウ素またはヨウ素酸塩をアルカリまたは中性下で、アルカリ金属アマルガムにより還元する方法が開示されている。特許文献4には、ヨウ素の水酸化アルカリ水溶液に、蟻酸、蓚酸、マロン酸などの有機還元剤を作用する方法が開示されている。特許文献5には、水酸化カリウム溶液にヨウ素を加え、これに還元剤として蟻酸を添加する方法が開示されている。特許文献6には、水酸化カリウムまたは、炭酸アルカリに還元剤として、ヒドラジンを用いてヨウ素を反応させる方法が開示されている。特許文献7には、水酸化カリウム溶液に蟻酸を添加して中和後、これに化学量論量より多めのヨウ素を加えて反応させ、生成物中の遊離ヨウ素を硫化カリウムで処理する方法が開示されている。
米国特許第2,828,184号明細書 米国特許第3,402,995号明細書 日本国公開特許公報「特開昭31‐8013号公報」 日本国公開特許公報「特開平1‐261224号公報」 露国特許560826号明細書 日本国公開特許公報「特開昭61‐48403号公報」 露国特許497233号明細書
 しかしながら、上記特許文献1から7に記載の無機ヨウ化物の合成方法では、いずれもヨウ素分子を出発物質として用いるために、還元剤を使用する必要がある。そのため、目的とする無機ヨウ化物を単離する際に、還元剤や副生成物の除去を行う必要がある。また、用いる還元剤によっては、毒性を示すなど取り扱いが困難な還元剤もある。
 たとえば、特許文献1、特許文献7に記載の方法では、反応後に、副生成物を除去しなくてはならない。特許文献2、特許文献3、特許文献6では、取り扱いが困難である還元剤を使用しなくてはならない。さらに、特許文献4、5では、蟻酸や蓚酸などの扱いやすい還元剤を用いているが、還元速度が遅く、また、反応系に仕込んだヨウ素に対して得られる無機ヨウ化物の量が少ない、つまり、収率が低いという問題がある。上述のように、還元剤や副生成物の除去をしなくてはならないことや、取り扱いが困難である還元剤を使用することは、煩雑な工程を増やす一因となり、簡便で、効率のよい無機ヨウ化物の製造方法の開発が望まれている。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、簡便で、効率のよい無機ヨウ化物の製造方法を実現することにある。
 本発明にかかる無機ヨウ化物の製造方法は、上記課題を解決するために、ヨウ化水素ガスと、無機塩基化合物とを接触させる反応工程を含むことを特徴とする。
 上記構成によれば、ヨウ化水素ガスと、無機塩基化合物とを接触するのみで良好に中和反応を行わせることができるため、簡便に効率よく無機ヨウ化物を製造することができる。
 なお、本発明において、ヨウ化水素ガスとは、その全容量がヨウ化水素ガスである場合の他、ヨウ化水素ガスを含むガスのことをいう。また、本発明において、無機ヨウ化物とは、少なくとも1つのヨウ素原子を含む無機化合物である。
 本発明にかかる製造方法では、前記無機塩基化合物は、液体であることが好ましい。
 上記構成によれば、ヨウ化水素ガスと、無機塩基化合物とを気液接触させることができる。そのため、接触効率がよく、生産性を向上させることができる。
 本発明にかかる製造方法では、前記ヨウ化水素ガスは、その全重量を100%としたとき、ヨウ素の含有量が2重量%以下であることが好ましい。
 上記構成によれば、高純度のヨウ化水素ガスを用いることができるため、無機ヨウ化物を生成した後に、精製工程を設けずとも、高純度の無機ヨウ化物を製造することができる。なお、本発明において、「高純度のヨウ化水素ガス」とは、ヨウ化水素ガスと無機塩基化合物との反応に関与し得る化合物の含有量が非常に低いヨウ化水素ガスという意図である。
 また、本発明にかかる製造方法では、前記ヨウ化水素ガスは、その全重量を100%としたとき、不純物の含有量が2重量%以下であることが好ましい。ここで、「不純物」とは、ヨウ化水素ガスと、無機塩基化合物との反応に関与し得る物質のことをいう。たとえば、ヨウ化水素ガス中に含まれるヨウ素(ヨウ素分子)、ヨウ化水素ガスを得る反応で生じた副生成物などが挙げられる。
 本発明にかかる製造方法では、前記ヨウ化水素ガスが、粗ヨウ化水素ガスに対して、当該粗ヨウ化水素ガス中のヨウ化水素以外の物質を溶解し、かつ、ヨウ化水素を溶解しない精製溶液を接触させることにより得られたヨウ化水素ガスであることが好ましい。
 上記構成によれば、より高純度のヨウ化水素ガスを反応系に供することができる。なお、本発明において、「粗ヨウ化水素ガス」とは、ヨウ化水素を発生させた後に、純度をあげることを目的とした処理が施されていないヨウ化水素ガスのことをいう。
 本発明にかかる製造方法では、前記ヨウ化水素ガスが、水素ガスとガス状ヨウ素とを、触媒の存在下にて接触させることにより生成されたヨウ化水素ガスを含むことが好ましい。
 上記構成によれば、高純度なヨウ化水素ガスを反応系に供することができる。
 本発明にかかる製造方法では、前記触媒は、少なくとも1種類以上の白金族元素を酸化物および活性炭の少なくともいずれか一方に分散担持させたものであることが好ましい。
 本発明にかかる製造方法では、前記無機塩基化合物が、アルカリ金属およびアルカリ土類金属の少なくとも1種を含む化合物であることが好ましい。
 上記構成によれば、簡便な方法で、高純度なヨウ化アルカリ金属化合物、ヨウ化アルカリ土類金属化合物を製造することができる。
 本発明にかかる製造方法では、前記無機塩基化合物は、アンモニアであることが好ましい。
 上記構成によれば、簡便な工程で、高純度のヨウ化アンモニウムを製造することができる。
 本発明にかかる製造方法では、前記反応工程は、反応終了後の反応系pH値が、1.50以上、11.00以下であることが好ましい。
 上記構成によれば、高品質な無機ヨウ化物を得ることができる。
 本発明にかかる無機ヨウ化物は、上述の製造方法により製造されたことを特徴とする。上記構成によれば、高純度で、生産コストが低減した無機ヨウ化物を提供することができる。
 本発明にかかる無機ヨウ化物製造システムは、上記課題を解決するために、水素ガスとガス状ヨウ素とを接触させることによりヨウ化水素ガスを生成するヨウ化水素ガスの生成部と、前記生成部において生成したヨウ化水素ガスと、無機塩基化合物とを接触させることにより無機ヨウ化物を生成する反応部と、を備えていることを特徴とする。
 上記構成によれば、本発明に係る無機ヨウ化物の製造方法と同様の作用効果を得ることができる。また、高純度なヨウ化水素ガスを反応系に供することができる。
 本発明にかかる無機ヨウ化物製造システムでは、前記生成部において生成されたヨウ化水素ガスに対して、精製溶液を接触させることにより、該ヨウ化水素ガスを精製する精製部をさらに備えており、前記反応部は、前記精製部において精製されたヨウ化水素ガスを用いて無機ヨウ化物を生成することが好ましい。
 上記構成によれば、より高純度なヨウ化水素ガスを反応系に供することができる。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。
本発明の実施形態にかかる製造システムを示すブロック図である。
符号の説明
 10  生成部
 12  反応塔
 14  水素ガスおよびガス状ヨウ素
 16  粗ヨウ化水素ガス
 20  精製部
 22  充填塔
 24  タンク
 26  ヨウ化水素ガス
 28  精製溶液
 30  反応部
 32  反応塔
 34  回収槽
 36  無機ヨウ化物
 〔第1実施形態〕
 本発明の実施形態にかかる無機ヨウ化物の製造方法は、ヨウ化水素ガスと、無機塩基化合物とを接触させる工程を含む。なお、本明細書において、無機ヨウ化物とは、少なくとも1つのヨウ素原子を含む無機化合物を意味している。また、「ヨウ化水素」とは、特に断りのない限り、気体のヨウ化水素、すなわちヨウ化水素ガスを意味し、「ヨウ素」とは、特に断りのない限り、ヨウ素分子(I2)を意味している。
 [ヨウ化水素ガス]
 本実施形態にかかる製造方法で用いられるヨウ化水素ガスとは、ヨウ化水素ガスを含有する気体である。つまり、本実施形態において、ヨウ化水素ガスとは、その全容量がヨウ化水素ガスである場合に限られない。ヨウ化水素ガス中のヨウ素の含有量は、その全重量に対して、ヨウ素の含有量が2重量%以下であることが好ましい。この場合には、無機ヨウ化物を合成した後に、精製処理や未反応のヨウ素分子を除去するための還元処理などを行わずとも、高純度の無機ヨウ化物を製造できるという利点を有する。
 ヨウ化水素ガス中のヨウ素の含有量は、その全重量を100%としたとき、ヨウ素の含有量が1重量%以下であることがより好ましく、0.5重量%以下であることがさらに好ましい。
 また、本実施形態において、前記ヨウ化水素ガスは、その全重量を100%としたとき、不純物の含有量が2重量%以下であることが好ましい。ここで、「不純物」とは、ヨウ化水素ガスと、無機塩基化合物との反応に関与し得る物質のことをいう。たとえば、ヨウ化水素ガス中に含まれるヨウ素(ヨウ素分子)、ヨウ化水素ガスを得る反応で生じた副生成物などが挙げられる。つまり、本実施形態において、高純度のヨウ化水素ガスとは、全重量100%としたときに、不純物の含有量が2重量%以下のヨウ化水素ガスであってもよい。
 ここで、「不純物」とは、ヨウ化水素ガスと、無機塩基化合物との反応に関与し得る物質のことをいう。不純物としては、たとえば、ヨウ化水素ガス中に含まれるヨウ素(ヨウ素分子)、ヨウ化水素ガスを得る反応で生じた副生成物などが挙げられる。
 ヨウ化水素ガスは、公知の種々の方法により得られたヨウ化水素ガスを用いることができる。ヨウ化水素ガスは、その純度によっては、精製処理を施すことなくそのまま、本実施形態の製造方法の原料であるヨウ化水素ガスとして使用されることができる。また、必要に応じて、粗ヨウ化水素ガスに精製処理を施して得られたヨウ化水素ガスを、本実施形態のヨウ化水素ガスとして使用してもよい。
 以下に、ヨウ化水素ガスの生成方法の一例と、ヨウ化水素ガスの精製方法の一例についてそれぞれ説明する。
 (第1の生成方法)
 第1の生成方法として、ヨウ素と水素との気相接触還元反応によりヨウ化水素ガスを得る場合について説明する。この方法では、触媒の存在下、ガス状のヨウ素および水素ガスを接触させる。
 触媒としては、白金族元素を酸化物および活性炭の少なくともいずれか一方に分散担持させた触媒であることが好ましい。この態様により、ヨウ素と水素とを活性化させることができる。そのため、比較的低い温度においてもヨウ化水素の生成速度を向上できる。また、ヨウ素の転化率および生成するヨウ化水素の収率も併せて向上できる。
 白金族元素としては、白金(Pt)、パラジウム(Pd)、ルテニウム(Ru)、オスミウム(Os)、イリジウム(Ir)およびロジウム(Rh)を挙げることができる。また、酸化物の具体例としては、酸化マグネシウム、酸化チタン、シリカ、アルミナ、コージライト、ジルコニヤ、シリカアルミナおよびゼオライトを挙げることができ、活性炭の具体例としては、木片、木粉、ヤシ殻およびクルミ殻などを原料として活性化した植物系活性炭、泥炭、石炭コークスおよびタールなどを原料として活性化した鉱物系活性炭ならびに再生繊維、レーヨンなどの天然素材、およびフェノール樹脂、アクリル樹脂などの合成素材を原料として活性化した活性炭などを挙げることができる。
 また、触媒として用いる白金族元素は、上述した白金族元素のうちの1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。白金族元素の担体として用いられる酸化物および活性炭もまた、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。さらに、酸化物および活性炭を、単独で使用してもよいし、両者を併用して使用してもよい。
 この気相接触還元反応における反応温度は、150~1000℃の範囲内であることが好ましく、200~900℃の範囲内であることがより好ましく、250~850℃の範囲内であることがさらに好ましい。また、ガス空間速度は。300~10000hr-1の範囲内であることが好ましく、500~4000hr-1の範囲内であることがより好ましい。なお、本明細書等における「ガス空間速度」とは、標準状態において単位時間当たりの反応ガス容積と触媒容積との比率を意味している。
 第1の方法によれば、高純度のヨウ化水素ガスを簡便に得られる。得られたヨウ化水素ガス中には、未反応ヨウ素および水素以外の気体は含まれていない。また、水素は、例えば無機ヨウ化物の合成工程において影響を及ぼさないため、水素を分離する処理を別段として施す必要はない。しかし、ヨウ化水素含有ガスから水素を除去したい場合には、ヨウ化水素含有ガスからヨウ素を除去した後に、ヨウ化水素ガスを冷却し、液化させることによって、容易に除去することができる。
 (第2の生成方法)
 第2の生成方法として、たとえば、赤リン、水およびヨウ素からヨウ化水素ガスを生成する方法を挙げることができる。この方法の場合、従来公知の方法によって、ヨウ化水素ガスを得ることができる。この場合におけるヨウ化水素ガス中には、未反応ヨウ素以外にもガス状のリン酸または硫酸などが含まれ得る。
 したがって、第2の生成方法により得られたヨウ化水素ガスを後述の精製方法により精製する場合には、精製溶液として、ヨウ素だけでなくリン酸または硫酸も溶解できる溶媒であることが好ましい。このような溶媒としては、水を挙げることができる。
 (精製方法)
 次に、たとえば、上記の第1の生成方法および第2の生成方法により得られたヨウ化水素ガスを必要に応じて精製する方法について説明する。この精製は、ヨウ化水素ガス中のヨウ化水素以外の物質(以下、「不純物」とも称する)を除去する処理である。具体的には、粗ヨウ化水素ガスと、当該粗ヨウ化水素ガス中の不純物を溶解し、かつ、ヨウ化水素を溶解しない精製溶液とを気液接触させる。なお、「不純物」とは、上述の定義に従う不純物である。
 精製溶液としては、ヨウ化水素ガス中の不純物を溶解し、かつ、ヨウ化水素を溶解しないものであれば、特に限定されるものではない。それらの中でも、精製溶液は、未反応のヨウ素を除去できるものであることが好ましい。未反応のヨウ素は、ヨウ化水素からの分離が困難であり、かつ生成したヨウ化水素を他の反応に用いる場合に問題となり得る。そのため、積極的に取り除くことが好ましいためである。
 このような精製溶液としては、たとえば、飽和ヨウ化水素溶液を挙げることができる。飽和ヨウ化水素溶液は、ヨウ素を非常によく溶解する溶液であるが、ヨウ化水素は飽和状態であるため、ほとんど溶解しない溶液である。
 飽和ヨウ化水素溶液の溶媒としては、ヨウ化水素を溶解できる溶媒であれば特に限定されるものではない。たとえば、水、ケトン類、ハロゲン化合物、芳香族化合物、エーテル類、アルコール類などの溶媒を挙げることができる。また、アルカリ金属のヨウ化物を含有する水溶液またはアルカリ土類金属のヨウ化物を含有する水溶液であってもよい。溶媒のより具体的な例としては、水、アセトン、クロロホルム、四塩化炭素、ベンゼン、トルエン、キシレン、石油エーテル、ジオキサン、エチルエーテル、メタノール、ヨウ化カリウム水溶液およびヨウ化バリウム水溶液などを挙げることができる。これらの中でも、水、アルカリ金属のヨウ化物を含有する水溶液、ケトン類および芳香族化合物であることが好ましく、容易かつ安価に得ることができる水であることがより好ましい。
 なお、飽和ヨウ化水素溶液の温度は、厳密に制御する必要はない。これは、ヨウ化水素を飽和溶液に溶解する際には溶解熱を伴うが、ヨウ化水素の、たとえば水への溶解速度が速く、かつ溶解度が高いためである。
 接触方法としては、ヨウ化水素ガスと、精製溶液とを気液接触できる限り特に制限されることはなく、従来公知の方法を用いることができる。たとえば、充填物を充填した充填塔(または充填管)を吸収塔(または吸収管)として用いた接触方法を挙げることができる。この場合、充填塔の塔頂より飽和ヨウ化水素溶液を流下させ、不純物を含有するヨウ化水素ガスを塔下流より導入し、向流気液接触させる。また、ヨウ化水素ガスを塔上流より導入する並流気液接触でも可能である。
 これによって、ヨウ化水素ガスに含まれ得る不純物、たとえば、未反応のヨウ素は、充填塔内部において接触した精製溶液に吸収されるため、充填塔の下部では、煩雑な処理を行うことなく、極めて容易に高純度のヨウ化水素を得ることができる。また、ヨウ素などの不純物を吸収した精製溶液は、循環ポンプによって再度、充填塔の上部に戻してもよい。
 充填物としては、ヨウ素、ヨウ化水素およびヨウ化水素酸に侵食されないか、または侵食され難い材質であり、かつ飽和ヨウ化水素溶液とヨウ化水素ガスとの接触面積を増加させるものであれば、特に限定されるものではない。充填物の材質としては、具体的には、各種セラミックおよびガラスなどを挙げることができる。また、充填物の形状についても特に限定されるものではなく、たとえば、球形状、円柱状(シリンダー状)および環状(リング状)などの形状を挙げることができる。充填物は、形状が同一のもののみを用いてもよいし、形状が異なるものを併せて使用してもよい。なお、充填塔の材質も、充填物の材質と同様に、ヨウ素、ヨウ化水素およびヨウ化水素酸に侵食されないか、または侵食され難い材質であることが好ましい。
 充填塔の大きさは、精製するヨウ化水素ガスの量によって、適宜設定することができる。また、使用する飽和ヨウ化水素溶液の量、および流速についても使用する充填塔の大きさ、すなわち精製するヨウ化水素ガスの量に基づいて適宜設定することができる。
 精製に用いる装置としては、上記の充填塔を用いる場合の他、たとえば、バッチ式の精製槽を用いた装置を挙げることができる。より具体的には、不純物を含有するヨウ化水素ガスを、精製溶液が貯留されている精製槽に吹き込む装置である。この場合であっても、精製槽に吹き込まれたヨウ化水素ガス中の不純物は、精製溶液に溶解、吸収されるため、煩雑な処理を行うことなく、極めて容易に高純度のヨウ化水素を得ることができる。
 また、たとえば、精製溶液への不純物の溶解度には限度がある。したがって、充填塔を用いる場合およびバッチ式の精製槽を用いる場合のいずれの場合であっても、たとえば、不純物が過飽和状態となり、固体として析出するような状態となれば、新たな精製溶液と交換することが好ましい。このとき、精製溶液中に溶解しているヨウ素は、濃縮し、固体ヨウ素として回収することが好ましい。なお、回収したヨウ素は、ヨウ化水素を生成する反応に再利用してもよい。
 この精製方法を採用することで、発生させたヨウ化水素をほとんど損失することなく、ヨウ化水素ガス中の不純物を極めて容易に除去できる。すなわち、効率よく、極めて容易に高純度のヨウ化水素ガスを得ることができる。
 [無機塩基化合物]
 本実施形態において用いられる無機塩基化合物は、ヨウ化水素と中和反応を起こしえる化合物である。例えば、水溶液中で解離または平衡反応を起こして、水酸化物イオン(OH)を生じる化合物である。無機塩基化合物としては、金属水酸化物、たとえば、アルカリ金属、アルカリ土類金属、希土類元素、遷移金属、アルミニウムや亜鉛などの典型元素の水酸化物、金属の塩基性酸化物、金属の炭酸塩、例えばアルカリ金属の炭酸塩、金属の炭酸水素塩、例えば、アルカリ金属の炭素水素塩、さらにアンモニアが好ましい。
 中でも、安価で入手が容易であるため、アルカリ金属またはアルカリ土類金属の水酸化物、アンモニアの少なくとも1種が好ましい。
 無機塩基化合物は、固体状態、または、例えば水などの溶媒に完全に溶解させた水溶液状態、あるいは、水に分散させたスラリー状態で反応に供される。中でも、水に溶解させた水溶液の状態で反応に供されることが好ましい。この点については、後述の反応の説明にて詳細を説明する。
 [反応]
 本実施形態にかかる製造方法では、ヨウ化水素ガスと、無機塩基化合物とを接触させる。つまり、これらを接触させて、中和反応を起こすことで、目的とする無機ヨウ化物を得る。無機塩基化合物が、水酸化カリウムである場合、反応は、下記の反応式(1)に従う。
   HI+KOH → KI+H20・・・(1)
 ヨウ化水素ガスと無機塩基化合物との接触は、液体の無機塩基化合物(以下、「無機塩基溶液」とも称する)を用いて、気液接触により反応を進めることが好ましい。気液接触を採用する場合、気固接触の場合と比べて、接触効率がよく、生産性を向上させることができる。
 気液接触をさせる場合、無機塩基化合物が溶解されている限り、無機塩基溶液の濃度に制限はない。好ましくは、飽和濃度であることが好ましい。無機塩基溶液の濃度が、飽和濃度である場合には、用いる溶媒を最小量にすることができる。このことにより、原料費の削減および反応液から無機ヨウ化物を分離回収するのに、必要なエネルギーの低減につながり、生産コストが低減されるという利点がある。また、溶媒としては、水およびアルコール類の少なくとも1種を用いることができる。
 気液接触の方法としては、公知の方法を採用することができる。たとえば、充填物を充填した反応塔内において、ヨウ化水素ガスと無機塩基溶液とを気液接触させることができる。他には、無機塩基溶液を貯留した貯留槽中にヨウ化水素ガスを吹き込むことにより気液接触させることができる。
 また、気固接触をさせる場合には、粒状の水酸化カリウムを充填したガラス管にヨウ化水素ガスを導入することによりこれらを反応させることができる。
 この反応では、反応温度については、反応を進めることができる限り、特に制限はない。また、反応終了後の反応系のpH値が、1.50以上、11.00以下の範囲になるように制御することが好ましい。すなわち、気液接触の場合には、反応液の最終pH値が上記範囲内であることが好ましい。反応終了時のpHが1.50より小さい場合、製品中にヨウ素またはヨウ化水素が含まれやすくなり、高品質のヨウ化カリウムを得ることができない。また、反応終了時のpH値が11.00を超える場合、ヨウ素酸塩が製品中に含まれやすくなり、高品質な無機ヨウ化物が得られないという問題点がある。反応の終点のpH値は、より好ましくは、2.0以上、10.00以下であり、さらに好ましくは、2.00以上、7.00以下である。
 反応系のpH値は、計測されたpH値に応じて、適宜、酸性化合物またはアルカリ性化合物を反応系に加えることにより制御することができる。たとえば、pH値が、1.50より小さい場合には、無機塩基溶液を添加すればよく、pHが11.00を超える場合には、ヨウ化水素あるいは有機酸を添加すればよい。
 有機酸としては、還元性を有する酸を用いることが好ましい。このような有機酸として、蟻酸、ヒドラジン、亜硫酸、亜リン酸などを挙げることができる。このように、還元性を有する酸を用いてpHを調整することにより、ヨウ化カリウムの安定化を図ることができる。また、還元性を有する酸を用いる場合には、この酸がpH調整に加えて、未反応ヨウ素の除去および無機ヨウ化物の分解によるヨウ素の遊離防止の役割を果たす。
 さらに、反応終了後には、必要に応じて、未反応のヨウ素分子を除去するために還元処理を行うことができる。この還元処理は、蟻酸や蓚酸などに例示される還元剤の添加など、従来公知の還元処理を行うことができる。特にヨウ化水素ガスとして、ヨウ素の含有量が、反応系に供されるガスの全重量に対して、4重量%以上であるにもかかわらず、精製することなく、ヨウ化水素ガスを用いた場合には、この還元処理を行うことが好ましい。
 本実施形態にかかる製造方法によれば、ヨウ化水素ガスと、無機塩基化合物とを接触させることにより、簡便に効率よく高純度の無機ヨウ化物を製造することができる。特に、高純度のヨウ化水素ガスを用いた場合には、無機ヨウ化物を得た後に、別段の精製工程を経ずとも、高純度の無機ヨウ化物を製造することができる。
 2.第2実施形態
 次に、本実施形態にかかる無機ヨウ化物の製造システムについて説明する。
 本発明の一実施形態にかかる無機ヨウ化物を製造するためのシステムは、
 水素ガスとガス状ヨウ素とを接触させてヨウ化水素ガスを生成するヨウ化水素ガスの生成部と、
 該ヨウ化水素ガスと、無機塩基化合物とを接触させる反応部と、を含む。
 さらに、本実施形態にかかるシステムは、該生成部で生成されたヨウ化水素ガスを精製する精製部を含むことが好ましい。
 本実施形態にかかるシステムについて、図1を参照しつつ説明する。図1は、本実施形態にかかるシステムを示すブロック図である。本実施形態にかかる製造システムは、ヨウ化水素ガス生成部10と、精製部20と、反応部30とを含む。
 (生成部)
 ヨウ化水素ガスの生成部10は、水素ガスと、ヨウ素とを反応させる反応塔12を含む。反応塔12は、触媒層12aを含む。水素ガスおよびガス状のヨウ素14は、反応塔12の下部から供給され、反応塔12の上部から生成した粗ヨウ化水素ガス16が得られる。触媒層12aには、第1実施形態で説明した触媒と同様の触媒が充填されている。また、反応塔12の外面には、加熱装置(電気炉、オイルバスなど)が設けられている。
 (精製部)
 精製部20は、充填物が充填された充填塔22と、精製溶液が貯留されたタンク24とを含む。充填塔22は、生成部10で生成された粗ヨウ化水素ガス16と、精製溶液を気液接触させる箇所である。精製溶液は、第1の実施形態で説明した精製溶液と同様とすることができる。
 精製部20では、タンク24に貯留されている精製溶液28が充填塔22のその上部から導入され、下部から排出される。このとき、排出された精製溶液28は、タンク24に回収される。つまり、タンク24と充填塔22とを精製溶液28が循環している。そして、生成部10で生じた粗ヨウ化水素ガス16が、充填塔22の下部(下流)から導入される。そして、粗ヨウ化水素ガス16が上部から排出されるまでの間に、充填塔22内にて、精製溶液と気液接触をするのである。このように、ヨウ化水素ガスを精製溶液と接触させることで、ヨウ化水素ガス中の未反応のヨウ素を除去することができ、高純度のヨウ化水素ガス26が得られる。
 また、精製部20としては、上述した構成以外に、精製溶液が貯留されたタンクに、直接ヨウ化水素ガスを吹き込み、不純物が除去されたヨウ化水素ガスを回収するという構成をとることもできる。
 (反応部)
 反応部30は、ヨウ化水素ガスと無機塩基化合物とを接触させる反応塔32と、反応により得られた生成物を回収する回収槽34とを含む。反応塔32には、上流から無機塩基溶液38が導入される。一方、ヨウ化水素ガス26は、無機塩基溶液38の流路と直交するようにして反応塔32に導入される。これらが反応塔32にて気液接触し、中和反応が引き起こされる。得られた無機ヨウ化物36は、回収槽34にて溶液として回収される。反応塔32の外側には、反応系の温度を制御するために温度制御機構、たとえば、冷却機構が設けられている。
 この回収槽34に回収された無機ヨウ化物溶液から溶媒を留去することにより、目的とする無機ヨウ化物を得ることができる。
 また、反応部30としては、無機塩基溶液が貯留されたタンクに、ヨウ化水素ガス26を直接吹き込む構成をとることもできる。
 本実施形態にかかるシステムによれば、無機塩基化合物との反応に好適に用いることができる高純度のヨウ化水素ガスを簡便に効率よく製造することができ、得られたヨウ化水素ガスを大気中に曝すことなく、無機塩基化合物と接触させることができる。
 〔実施例1〕
 (粗ヨウ化水素ガスの生成)
 水素流量450ml/分、ガス状ヨウ素流量75ml/分の混合ガスを、350℃に加熱した粒径3mmの球状アルミナに担体1Lあたり1gの白金を担持させた白金触媒の存在下にて接触させ、ヨウ化水素ガスを生成した。なお、ヨウ化水素ガスにおける未反応ヨウ素と生成したヨウ化水素との重量比は、2/98であった(残りは水素ガスであった)。
 (ヨウ化水素ガスの精製)
 充填管にリング状の磁性充填物20mlを充填した縦型ガラス吸収管(以下、単に吸収管とも称する)を用意し、ポンプを用いて飽和ヨウ化水素水溶液を吸収管の上部から下部へと流下するように循環させた。なお、飽和ヨウ化水素水溶液の流速度は、50ml/分とした。次いで、生成したヨウ化水素ガスを吸収管の下部から導入し、未反応ヨウ素を飽和ヨウ化水素水溶液に溶解させ吸収した。
 (ヨウ化水素ガスの評価)
 吸収管を通過した後のヨウ化水素ガスは、水に吸収させ、水溶液として回収した。回収したヨウ化水素の水溶液中のヨウ素量およびヨウ化水素量は、それぞれチオ硫酸ナトリウムおよび水酸化ナトリウム水溶液による滴定分析によって測定した。その結果、ヨウ化水素水溶液に含有されているヨウ素とヨウ化水素との重量比は、0.01/99.99であった。なお、ヨウ化水素の生成量は、0.00656モル/分であった。
 (無機塩基化合物との反応)
 純度96重量%の水酸化カリウムを用いて調整した48重量%の水酸化カリウム水溶液20.1gと、イオン交換水100gの入った200mlの四つ口フラスコに、得られたヨウ化水素ガスを吹き込み、ヨウ化水素と水酸化カリウムとの間で中和反応を行わせた。ヨウ化水素ガスの吹き込み中、反応液のpH値をpHメーターで追跡しながら、反応水溶液のpHが5.72になったところで吹き込みを終了した。ついで、この反応液を回転エバポレータに移し、全濃縮し、110gの水を回収した後に、十分に乾燥させた。その結果、27.8gの無色のヨウ化カリウムを回収した。収率は、水酸化カリウムの仕込み量を基準として、97.2%であった。
 (ヨウ化カリウムの評価)
 得られた固体におけるヨウ化カリウムの純度を、ヨウ素酸カリウム水溶液の滴定法により求めたところ、99.8重量%であった。また、得られた固体の色を目視で確認したところ白色であったため、ヨウ素の存在は認められなかった。さらに、得られた固体1gを40mlの水に溶解させ、その水溶液5mlにクロロホルム1mlを加え、よく振りクロロホルム相が紫色を呈さないことを確認した。ヨウ素酸カリウムの存在は、溶存酸素を含まない水20mlに得られた固体1gを溶解させ、ここにでんぷん溶液1mlを加えて、約15℃に保ちながら0.5mol/l硫酸0.3ml加え1分間放置したところ、青色に呈色しなかったため存在しないことを確認した。二酸化炭素を含まない水100mlに、得られた固体5gを溶解した水溶液のpHをpH計で測定したところ、6.76であった。これらの結果は、各項目についてJIS規格で定められている値を満たしていた。
 〔実施例2〕
 (粗ヨウ化水素ガスの生成)
 四つ口フラスコに水(300g;16.7mol)、赤リン(31g;1.00mol)を入れ、撹拌しながら0℃に冷却した。そこに、ヨウ素(634.5g;2.50mol)を10回に分けて加え、4時間反応させてヨウ化水素を合成した。次に、四つ口フラスコを常圧下において四つ口フラスコ内に窒素ガスを30ml/分で流しながら加熱し、常圧下におけるヨウ化水素と水との共沸組成(重量比)である57%に対して過剰なヨウ化水素をヨウ化水素ガスとして発生させた。
 発生させたヨウ化水素ガスを水に吸収させ、ヨウ化水素ガスにおけるヨウ素量とヨウ化水素量とをそれぞれチオ硫酸ナトリウムおよび水酸化ナトリウムによる滴定分析によって測定した。結果として、ヨウ化水素ガスにおけるヨウ素とヨウ化水素との重量比は、0.7/99.3であった。
 (ヨウ化水素ガスの精製)
 充填管にリング状の磁性充填物20mlを充填した縦型ガラス吸収管(以下、単に吸収管とも称する)を用意し、ポンプを用いて飽和ヨウ化水素水溶液を吸収管の上部から下部へと流下するように循環させた。なお、飽和ヨウ化水素水溶液の流速度は、50ml/分とした。次いで、生成したヨウ化水素ガスを吸収管の下部から導入し、未反応ヨウ素を飽和ヨウ化水素水溶液に溶解させ吸収した。
 (ヨウ化水素ガスの評価)
 吸収管を通過した後のヨウ化水素ガスは、水に吸収させ、水溶液として回収した。回収したヨウ化水素の水溶液中のヨウ素量およびヨウ化水素量は、それぞれチオ硫酸ナトリウムおよび水酸化ナトリウム水溶液による滴定分析によって測定した。その結果、ヨウ化水素水溶液に含有されているヨウ素とヨウ化水素との重量比は、0.01/99.99であった。
 (無機塩基化合物との反応)
 精製後のヨウ化水素ガスを用いて、実施例1と同様にして水酸化カリウム水溶液との中和反応を行わせた。得られたヨウ化カリウムの収率は、96.8%であった。
 (ヨウ化カリウムの評価)
 実施例1と同様の方法にて、ヨウ化カリウムの純度、ヨウ素およびヨウ素酸カリウムの含有量、水溶液にしたときのpHを測定した。その結果、純度は、99.6重量%であり、ヨウ素およびヨウ素酸カリウムの存在は確認されなかった。また、pH値は、6.80であった。これらの結果は、各項目についてJIS規格で定められている数値を満たしていた。
 〔実施例3〕
 (粗ヨウ化水素ガスの生成)
 水素流量450ml/分、ガス状ヨウ素流量75ml/分の混合ガスを、350℃に加熱した白金族触媒に接触させ、ヨウ化水素ガスを生成した。なお、ヨウ化水素ガスにおける未反応ヨウ素と生成したヨウ化水素との重量比は、2/98であった(残りは水素ガスであった)。
 (ヨウ化水素ガスの精製)
 充填管にリング状の磁性充填物20mlを充填した縦型ガラス吸収管(以下、単に吸収管とも称する)を用意し、ポンプを用いて飽和ヨウ化水素水溶液を吸収管の上部から下部へと流下するように循環させた。なお、飽和ヨウ化水素水溶液の流速度は、50ml/分とした。次いで、生成したヨウ化水素ガスを吸収管の下部から導入し、未反応ヨウ素を飽和ヨウ化水素水溶液に溶解吸収させた。
 (ヨウ化水素ガスの測定)
 吸収管を通過した後のヨウ化水素ガスは、水に吸収させ、水溶液として回収した。回収したヨウ化水素の水溶液中のヨウ素量およびヨウ化水素量は、それぞれチオ硫酸ナトリウムおよび水酸化ナトリウム水溶液による滴定分析によって測定した。その結果、ヨウ化水素水溶液に含有されているヨウ素とヨウ化水素との重量比は、0.01/99.99であった。なお、ヨウ化水素の生成量は、0.00656モル/分であった。
 (無機塩基化合物との反応)
 300mlの四つ口フラスコに、イオン交換水200mlと、水酸化バリウム8水和物54.0gを加えた。この水溶液の温度が60℃を超えないように、水溶液に上記ヨウ化水素ガスを吹き込み、中和反応を行わせた。ヨウ化水素ガスの吹き込み中、反応液のpH値をpHメーターで追跡しながら、反応水溶液のpH値が6.05になったところで吹き込みを終了した。
 その後、この反応液を回転式エバポレータに移し、減圧下、水を除去して濃縮した。濃縮完了時フラスコ内には、ヨウ化バリウム2水和物の結晶が析出し、スラリー状態となっていた。このスラリーを、ブフナーロートを用いて吸引濾過し、固液分離を行った。回収した水湿結晶をさらに60℃で減圧乾燥を行い、白色のヨウ化バリウム2水和物70gを得た。収率は、水酸化バリウム8水和物の仕込み量を基準として、95.8%であった。
 (ヨウ化バリウム2水和物の評価)
 このようにして得られた白色固体について、硝酸銀滴定法により純度を測定したところ、ヨウ化バリウム2水和物の純度は99.6重量%であった。
 〔実施例4〕
 (粗ヨウ化水素ガスの生成)
 水素流量450ml/分、ガス状ヨウ素流量75ml/分の混合ガスを、350℃に加熱した白金族触媒に接触させ、ヨウ化水素ガスを生成した。なお、ヨウ化水素ガスにおける未反応ヨウ素と生成したヨウ化水素との重量比は、2/98であった(残りは水素ガスであった)。
 (ヨウ化水素ガスの精製)
 充填管にリング状の磁性充填物20mlを充填した縦型ガラス吸収管(以下、単に「吸収管」とも称する)を用意し、ポンプを用いて飽和ヨウ化水素水溶液を吸収管の上部から下部へと流下するように循環させた。なお、飽和ヨウ化水素水溶液の流速度は、50ml/分とした。次いで、生成したヨウ化水素ガスを吸収管の下部から導入し、未反応ヨウ素を飽和ヨウ化水素水溶液に溶解させ吸収した。
 (ヨウ化水素ガスの評価)
 吸収管を通過した後のヨウ化水素ガスは、水に吸収させ、水溶液として回収した。回収したヨウ化水素の水溶液中のヨウ素量およびヨウ化水素量は、それぞれチオ硫酸ナトリウムおよび水酸化ナトリウム水溶液による滴定分析によって測定した。その結果、ヨウ化水素水溶液に含有されているヨウ素とヨウ化水素との重量比は、0.01/99.99であった。なお、ヨウ化水素の生成量は、0.00656モル/分であった。
 (無機塩基化合物との反応)
 上述のように精製されたヨウ化水素ガスを、25重量%アンモニア水(100g;1.47mol)が入った200mlの四つ口フラスコに吹き込み、中和反応を行った。ヨウ化水素ガスの吹き込み中、反応液のpH値をpHメーターで追跡しながら、反応液のpH値が7.90になったところで、吹き込みを終了した。
 その後、得られた反応液を回転エバポレータに移し、減圧下、水を除去して濃縮した。濃縮完了時フラスコ内には、ヨウ化アンモニウムの結晶が析出し、スラリー状態となっていた。このスラリーを、ブフナーロートを用いて吸引濾過し、固液分離を行った。回収した水湿結晶をさらに60℃で減圧乾燥を行い、白色のヨウ化アンモニウム204gを得た。収率は、アンモニアの仕込み量を基準にして95.7%であった。
 (ヨウ化アンモニウムの評価)
 ヨウ化アンモニウムの純度は、ヨウ素酸カリウム滴定法により測定したところ、99.3重量%であった。
 〔実施例5〕
 (粗ヨウ化水素ガスの生成)
 水素流量450ml/分、ガス状ヨウ素流量75ml/分の混合ガスを、350℃に加熱した白金族触媒に接触させ、ヨウ化水素ガスを生成した。なお、ヨウ化水素ガスにおける未反応ヨウ素と生成したヨウ化水素との重量比は、2/98であった(残りは水素ガスであった)。
 (ヨウ化水素ガスの精製)
 充填管にリング状の磁性充填物20mlを充填した縦型ガラス吸収管(以下、「吸収管」とも称する)を用意し、ポンプを用いて飽和ヨウ化水素水溶液を吸収管の上部から下部へと流下するように循環させた。なお、飽和ヨウ化水素水溶液の流速度は、50ml/分とした。次いで、生成したヨウ化水素ガスを吸収管の下部から導入し、未反応ヨウ素を飽和ヨウ化水素水溶液に溶解させ吸収した。
 (ヨウ化水素ガスの評価)
 吸収管を通過した後のヨウ化水素ガス(すなわち、ヨウ化水素)は、水に吸収させ、水溶液として回収した。回収したヨウ化水素の水溶液中のヨウ素量およびヨウ化水素量は、それぞれチオ硫酸ナトリウムおよび水酸化ナトリウム水溶液による滴定分析によって測定した。その結果、ヨウ化水素水溶液に含有されているヨウ素とヨウ化水素との重量比は、0.01/99.99であった。
 (無機塩基化合物との反応)
 純度96重量%の水酸化カリウムを用いて調整した48重量%の水酸化カリウム水溶液20.1gと、イオン交換水100gの入った200mlの四つ口フラスコに、得られたヨウ化水素ガスを吹き込み、ヨウ化水素および水酸化カリウムの中和反応を行わせた。ヨウ化水素ガスの吹き込み中、反応液のpH値をpHメーターで追跡しながら、反応水溶液のpHが10.84になったところで吹き込みを終了した。その後、この反応液を回転エバポレータに移し、全濃縮し、110gの水を回収した後に、さらに十分に乾燥して、27.8gの固体を回収した。また、仕込んだ水酸化カリウムを基準した収率は、97.5重量%であった。
 (ヨウ化カリウムの評価)
 実施例1と同様の方法で、得られた固体のヨウ化カリウムについて評価した。その結果、純度は、99.5重量%であり、ヨウ素およびヨウ素酸カリウムの存在も確認されなかった。また、水溶液のpH値は、9.72であった。
 〔実施例6〕
 (粗ヨウ化水素ガスの生成)
 水素流量450ml/分、ガス状ヨウ素流量75ml/分の混合ガスを、350℃に加熱した粒径3mmの球状アルミナに担体1Lあたり1gの白金を担持させた白金触媒の存在下に接触させ、ヨウ化水素ガスを生成させた。なお、ヨウ化水素ガスにおける未反応ヨウ素と生成したヨウ化水素との重量比は2/98であった。(残りは水素ガスであった)。
 (ヨウ化水素ガスの精製)
 充填管にリング状の磁性充填物20mlを充填した縦型ガラス吸収管を用意し、ポンプを用いて飽和ヨウ化水素水溶液を吸収管の上部から下部へと流下するように循環させた。なお、飽和ヨウ化水素水溶液の流速度は、50ml/分とした。次いで、ヨウ化水素含有ガスを吸収管の上部で飽和ヨウ化水素水溶液の導入の少し下部から導入し、未反応ヨウ素を飽和ヨウ化水素水溶液に吸収させた。
 (ヨウ化水素ガスの評価)
 吸収管を通過した後のヨウ化水素ガスは水に吸収させ、水溶液として回収した。回収したヨウ化水素水溶液中のヨウ素量とヨウ化水素量は、それぞれチオ硫酸ナトリウムおよび水酸化ナトリウム水溶液による滴定分析によって測定した。その結果、ヨウ化水素水溶液に含有されているヨウ素とヨウ化水素との重量比は、0.01/99.99であった。なお、ヨウ化水素の生成量は、0.00656モル/分であった。
 (無機塩基化合物との反応)
 純度96重量%の水酸化カリウムを用いて調整した48重量%の水酸化カリウム水溶液20.1gと、イオン交換水100gの入った200mlの四つ口フラスコに、得られたヨウ化水素ガスを吹き込み、ヨウ化水素および水酸化カリウムの中和反応を行わせた。ヨウ化水素ガスの吹き込み中、反応液のpH値をpHメーターで追跡しながら、反応水溶液のpHが11.62になったところで吹き込みを終了した。ついで、反応液を回転エバポレータに移し、全濃縮し、十分に乾燥させた。その結果、27.7gの無色のヨウ化カリウムを回収した。また、仕込んだ水酸化カリウムを基準とした収率は、97.0重量%であった。
 (ヨウ化カリウムの評価)
 実施例1と同様の方法で、得られたヨウ化カリウムを評価した。純度は、97.4重量%であった。ヨウ素の存在は確認されなかったが、ヨウ素酸カリウムの存在が確認された。また、水溶液のpH値は、10.61であった。
 〔実施例7〕
 (粗ヨウ化水素ガスの生成)
 水素流量450ml/分、ガス状ヨウ素流量75ml/分の混合ガスを、350℃に加熱した粒径3mmの球状アルミナに担体1Lあたり1gの白金を担持させた白金触媒の存在下に接触させ、ヨウ化水素ガスを生成させた。なお、ヨウ化水素ガスにおける未反応ヨウ素と生成したヨウ化水素との重量比は2/98であった(残りは水素ガスであった)。
 (ヨウ化水素ガスの精製)
 充填管にリング状の磁性充填物20mlを充填した縦型ガラス吸収管を用意し、ポンプを用いて飽和ヨウ化水素水溶液を吸収管の上部から下部へと流下するように循環させた。なお、飽和ヨウ化水素水溶液の流速度は、50ml/分とした。次いで、ヨウ化水素含有ガスを吸収管の上部で飽和ヨウ化水素水溶液の導入の少し下部から導入し、未反応ヨウ素を飽和ヨウ化水素水溶液に吸収させた。
 (ヨウ化水素ガスの評価)
 吸収管を通過した後のヨウ化水素ガスは水に吸収させ、水溶液として回収した。回収したヨウ化水素水溶液中のヨウ素量とヨウ化水素量は、それぞれチオ硫酸ナトリウムおよび水酸化ナトリウム水溶液による滴定分析によって測定した。その結果、ヨウ化水素水溶液に含有されているヨウ素とヨウ化水素との重量比は、0.01/99.99であった。なお、ヨウ化水素の生成量は、0.00656モル/分であった。
 (無機塩基化合物との反応)
 純度96重量%の水酸化カリウムを用いて調整した48重量%の水酸化カリウム水溶液20.1gと、イオン交換水100gの入った200mlの四つ口フラスコに、得られたヨウ化水素ガスを吹き込み、ヨウ化水素および水酸化カリウムの中和反応を行わせた。ヨウ化水素ガスの吹き込み中、反応液のpH値をpHメーターで追跡しながら、反応水溶液のpH値が1.05になったところで、吹き込みを終了した。ついで、この反応液を回転エバポレータに移し、全濃縮し、十分に乾燥させた。その結果、28.3gの薄黄色のヨウ化カリウムを回収した。また、仕込んだ水酸化カリウムを基準とした収率は、99.1重量%であった。
 (ヨウ化カリウムの評価)
 実施例1と同様の方法で、得られたヨウ化カリウムを評価した。純度は、99.4重量%であった。また、ヨウ素の存在が確認された。さらに、水溶液にしたときのpH値は、4.41であった。なお、ヨウ素酸カリウムの存在については、JIS法の測定原理よりヨウ素を含むサンプルは測定できないため不明であった。
 〔実施例8〕
 (粗ヨウ化水素ガスの生成)
 水素流量450ml/分、ガス状ヨウ素流量75ml/分の混合ガスを、350℃に加熱した粒径3mmの球状アルミナに担体1Lあたり1gの白金を担持させた白金触媒の存在下に接触させ、ヨウ化水素ガスを生成させた。なお、ヨウ化水素ガスにおける未反応ヨウ素と生成したヨウ化水素との重量比は2/98であった。(残りは水素ガスであった)。なお、ヨウ化水素の生成量は、0.00656モル/分であった。
 (無機塩基化合物との反応)
 純度96重量%の水酸化カリウムを用いて調整した48重量%の水酸化カリウム水溶液20.1gと、イオン交換水100gの入った200mlの四つ口フラスコに、上記未反応ヨウ素を含んだヨウ化水素ガスを吹き込み、ヨウ化水素および水酸化カリウムの中和反応を行わせた。ヨウ化水素ガスの吹き込み中、反応液のpH値をpHメーターで追跡しながら、反応水溶液のpHが6.95になったところで吹き込みを終了した。ついで、14重量%の蟻酸水溶液を0.56g添加し、さらに48重量%水酸化カリウム水溶液0.15g追加した。その時のpH値は12.67であった。その後、反応液を湯浴につけて、4時間煮沸した。反応液を冷却後、pHを測定したところpH値は3.66であった。この反応液を回転エバポレータに移し、全濃縮し、十分に乾燥させた。その結果、27.5gの白色のヨウ化カリウムを回収した。また、仕込んだ水酸化カリウムを基準とした収率は、96.9重量%であった。
 (ヨウ化カリウムの評価)
 実施例1と同様の方法で、得られたヨウ化カリウムを評価した。純度は、99.5重量%であった。ヨウ素およびヨウ素酸カリウムの存在は認められなかった。水溶液にしたときのpH値は、6.69であった。
 〔実施例9〕
 (粗ヨウ化水素ガスの生成)
 水素流量75ml/分、ガス状ヨウ素流量75ml/分の混合ガスを、350℃に加熱した粒径3mmの球状アルミナに担体1Lあたり1gの白金を担持させた白金触媒の存在下に接触させ、ヨウ化水素ガスを生成させた。なお、ヨウ化水素ガスにおける未反応ヨウ素と生成したヨウ化水素との重量比は4.3/95.7であった。(残りは水素ガスであった)。なお、ヨウ化水素の生成量は、0.00641モル/分であった。
 (無機塩基化合物との反応)
 純度96重量%の水酸化カリウムを用いて調整した48重量%の水酸化カリウム水溶液20.1gと、イオン交換水100gの入った200mlの四つ口フラスコに、上記未反応ヨウ素を含んだヨウ化水素ガスを吹き込み、ヨウ化水素および水酸化カリウムの中和反応を行わせた。ヨウ化水素ガスの吹き込み中、反応液のpH値をpHメーターで追跡しながら、反応水溶液のpHが5.70になったところで吹き込みを終了した。この反応液を回転エバポレータに移し、全濃縮し、十分に乾燥させた。その結果、28.1gの褐色のヨウ化カリウムを回収した。また、仕込んだ水酸化カリウムを基準とした収率は、98.2重量%であった。
 (ヨウ化カリウムの評価)
 実施例1と同様の方法で、得られたヨウ化カリウムの純度を測定したところ、97.2重量%であった。実施例1と同様な方法で、水溶液にしたときのpH値を測定したところ、7.01であった。また、実施例1と同様の方法で、ヨウ素が検出された。ヨウ素酸カリウムについては、JIS法の測定原理よりヨウ素を含むサンプルは測定できなかった。
 〔比較例1〕
 300mlの四つ口フラスコに、純水113g、48重量%水酸化カリウム水溶液138g、ヨウ素150gを仕込み攪拌した。フラスコ内の溶液の温度を30℃~40℃に維持しつつ、溶液を攪拌しながら、88重量%の蟻酸32gを15分かけて滴下した。自然発熱が収まった後、マントルヒータにて100~105℃に加温して、2時間かけて熟成した。この熟成した溶液を回転式エバポレータに移して濃縮後さらに十分に乾燥して190.0gの固体を回収した。この回収固体は、紫色に薄く着色していた。この固体全量を100gの純水に溶解し、粉状活性炭0.6gを加え、30分攪拌した。その後、減圧濾過して活性炭を濾別した。ろ液を再度回転式エバポレータにて水分を除去し、白色の固体189gを回収した。この回収固体のヨウ化カリウムの純度は、96.4重量%であった。また、ヨウ素酸カリウムの含有量は3.0重量%であった。
 〔比較例2〕
 比較例1において、反応完結に要する時間を6時間に変更した以外は、比較例1と同様の操作により、白色の固体191gを回収した。この回収固体のヨウ化カリウムの純度は、99.5重量%であった。また、ヨウ素酸カリウムの存在は認められなかった。
 実施例1から実施例9によれば、簡便な工程で、高純度の無機ヨウ化物を得られることを確認できた。また、実施例1、2と、実施例5、6、7とを比較すると、反応系のpH値を制御することで、pH値、ヨウ素およびヨウ素酸カリウムの含有量について、JIS規格で定められている規格を満たすヨウ化カリウムを得られることが確認された。さらに、実施例9と、実施例1、2とを比較すると、ヨウ化水素ガス中の未反応のヨウ素含有量を4重量%以下にすることにより、JIS規格で定められている規格を満たすヨウ化カリウムを得られることが確認された。
 また、比較例1、2と比較して、実施例1~9は、簡便な工程であり、かつ、反応効率がよいことが確認された。
 本発明にかかる無機ヨウ化物の製造方法によれば、ヨウ化水素ガスと、無機塩基化合物とを接触させることにより、簡便に効率よく高純度の無機ヨウ化物を製造することができる。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。
 医薬品の原料、フィルムの感光剤または液晶ディスプレイに好適に用いられる無機ヨウ化物を簡便な方法で、効率よく製造することができる。

Claims (12)

  1.  ヨウ化水素ガスと、無機塩基化合物とを接触させる反応工程を含むことを特徴とする無機ヨウ化物の製造方法。
  2.  前記無機塩基化合物は、液体であることを特徴とする請求の範囲第1項に記載の無機ヨウ化物の製造方法。
  3.  前記ヨウ化水素ガスは、その全重量を100%としたとき、ヨウ素の含有量が2重量%以下であることを特徴とする請求の範囲第1項または第2項に記載の無機ヨウ化物の製造方法。
  4.  前記ヨウ化水素ガスは、粗ヨウ化水素ガスに対して、当該粗ヨウ化水素ガス中のヨウ化水素以外の物質を溶解し、かつ、ヨウ化水素を溶解しない精製溶液を接触させることにより得られたヨウ化水素ガスであることを特徴とする請求の範囲第1項から第3項のいずれか1項に記載の無機ヨウ化物の製造方法。
  5.  前記ヨウ化水素ガスは、水素ガスとガス状のヨウ素とを、触媒の存在下にて接触させることにより生成されたヨウ化水素ガスを含むことを特徴とする請求の範囲第1項から第4項のいずれか1項に記載の無機ヨウ化物の製造方法。
  6.  前記触媒は、少なくとも1種類以上の白金族元素を酸化物および活性炭の少なくともいずれか一方に分散担持させたものであることを特徴とする請求の範囲第5項に記載の無機ヨウ化物の製造方法。
  7.  前記無機塩基化合物が、アルカリ金属およびアルカリ土類金属の少なくとも1種を含む化合物であることを特徴とする請求の範囲第1項から第6項のいずれか1項に記載の無機ヨウ化物の製造方法。
  8.  前記無機塩基化合物は、アンモニアであることを特徴とする請求の範囲第1項から第6項のいずれか1項に記載の無機ヨウ化物の製造方法。
  9.  前記反応工程では、反応終了後の反応系のpH値が、1.50以上、11.00以下であることを特徴とする請求の範囲第1項から第8項のいずれか1項に記載の無機ヨウ化物の製造方法。
  10.  請求の範囲第1項から第9項のいずれか1項に記載の無機ヨウ化物の製造方法により製造された無機ヨウ化物。
  11.  水素ガスとガス状ヨウ素とを接触させることによりヨウ化水素ガスを生成するヨウ化水素ガスの生成部と、
     前記生成部において生成したヨウ化水素ガスと、無機塩基化合物とを接触させることにより無機ヨウ化物を生成する反応部と、
    を備えていることを特徴とする無機ヨウ化物製造システム。
  12.  前記生成部において生成されたヨウ化水素ガスに対して精製溶液を接触させることにより、該ヨウ化水素ガスを精製する精製部をさらに備えており、
     前記反応部は、前記精製部において精製されたヨウ化水素ガスを用いて無機ヨウ化物を生成することを特徴とする請求の範囲第11項に記載の無機ヨウ化物製造システム。
PCT/JP2009/051422 2008-01-31 2009-01-29 無機ヨウ化物、その製造方法およびその製造システム WO2009096447A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/864,746 US9272922B2 (en) 2008-01-31 2009-01-29 Inorganic iodide, production method thereof, and production system thereof
KR1020107017395A KR101526030B1 (ko) 2008-01-31 2009-01-29 무기 요오드화물, 그의 제조 방법 및 그의 제조 시스템
JP2009551551A JP5520610B2 (ja) 2008-01-31 2009-01-29 無機ヨウ化物、その製造方法およびその製造システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008021326 2008-01-31
JP2008-021326 2008-01-31

Publications (1)

Publication Number Publication Date
WO2009096447A1 true WO2009096447A1 (ja) 2009-08-06

Family

ID=40912798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051422 WO2009096447A1 (ja) 2008-01-31 2009-01-29 無機ヨウ化物、その製造方法およびその製造システム

Country Status (4)

Country Link
US (1) US9272922B2 (ja)
JP (1) JP5520610B2 (ja)
KR (1) KR101526030B1 (ja)
WO (1) WO2009096447A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065637A (ja) * 2012-09-26 2014-04-17 Nippo Kagaku Kk ヨウ化リチウム水溶液の製造方法及びその利用
JP2014065638A (ja) * 2012-09-26 2014-04-17 Nippo Kagaku Kk ヨウ化リチウム水溶液の製造方法及びその利用
WO2017159665A1 (ja) * 2016-03-14 2017-09-21 出光興産株式会社 ハロゲン化アルカリ金属の製造方法、及び硫化物系固体電解質の製造方法
CN107792831A (zh) * 2016-08-31 2018-03-13 天津市科密欧化学试剂有限公司 一种试剂级氢碘酸的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101531734B1 (ko) * 2008-01-31 2015-06-25 닛포가가쿠 가부시키가이샤 요오드 화합물 제조시스템 및 제조 방법
KR101526030B1 (ko) 2008-01-31 2015-06-04 닛포가가쿠 가부시키가이샤 무기 요오드화물, 그의 제조 방법 및 그의 제조 시스템
AU2010331314A1 (en) * 2009-12-14 2012-06-28 Nippon Shokubai Co., Ltd. Process for synthesis of ammonia
CN103143250A (zh) * 2013-03-29 2013-06-12 镇江绿源新材料有限公司 一种热解焦油过程中吸收碘的方法
EP4370468A1 (en) * 2021-07-16 2024-05-22 Honeywell International Inc. An integrated process and catalysts for manufacturing hydrogen iodide from hydrogen and iodine
WO2023288200A1 (en) * 2021-07-16 2023-01-19 Honeywell International Inc. Systems and methods for removal of iodine from hydrogen iodide streams

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925103A (ja) * 1994-11-28 1997-01-28 Mitsui Toatsu Chem Inc 精ヨウ化水素の製造方法
JP2001089136A (ja) * 1999-09-14 2001-04-03 Fuji Photo Film Co Ltd 弗化沃化バリウムの生成方法、沃素含有弗化ハロゲン化バリウム蛍光体および放射線像変換パネル
JP2004315332A (ja) * 2003-04-18 2004-11-11 Nippo Kagaku Kk 無機ヨウ素化合物の製造方法
JP2005255514A (ja) * 2004-02-10 2005-09-22 Nippon Shokubai Co Ltd ヨウ化物の製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2828184A (en) * 1954-04-13 1958-03-25 Behrman Abraham Sidney Preparation of alkali metal or alkali earth metal iodates and iodides
US3278264A (en) 1964-12-11 1966-10-11 Shell Oil Co Hydrogen iodide production
US3402995A (en) * 1965-12-22 1968-09-24 Lithium Corp Method of preparing alkali metal iodides
US3879446A (en) * 1969-06-05 1975-04-22 Eastman Kodak Co Preparation of unsaturated organic compounds by oxidative dehydrogenation
US3650693A (en) * 1970-09-24 1972-03-21 Du Pont Preparation of fibrous titanium dioxide
US4066739A (en) * 1976-03-30 1978-01-03 Chen Wu Chi Process for recovering hydrogen and elemental sulfur from hydrogen sulfide and/or mercaptans-containing gases
US4053376A (en) 1976-10-27 1977-10-11 Ppg Industries, Inc. Electrolytic production of hydrogen iodide
US4111991A (en) * 1977-05-16 1978-09-05 Deepwater Chemical Co. Process for making halogen salts
US4272435A (en) * 1977-10-12 1981-06-09 Sumitomo Chemical Company, Limited Process for the preparation of azo compounds from amino compounds in the presence of a phase transfer catalyst
US4150094A (en) 1977-12-30 1979-04-17 General Atomic Company Method of reacting I2 with a liquid and a gas
CA1152728A (en) 1980-05-12 1983-08-30 Sara J. Arnold Gaseous reagent generator
US4302432A (en) * 1980-11-21 1981-11-24 Eastman Kodak Company Preparation of hydrogen iodide, lithium iodide and methyl iodide
US4410505A (en) * 1982-05-07 1983-10-18 Ga Technologies Inc. Hydrogen iodide decomposition
JPS6148403A (ja) 1984-08-10 1986-03-10 Takekoshi Kagaku:Kk ヨウ化アルカリの製法
US4925646A (en) 1987-03-24 1990-05-15 Advanced Technology Materials, Inc. Process and composition for drying of gaseous hydrogen halides
US4853148A (en) 1987-03-24 1989-08-01 Advanced Technology Materials, Inc. Process and composition for drying of gaseous hydrogen halides
JPH01261224A (ja) 1988-04-13 1989-10-18 Ise Kagaku Kogyo Kk ヨウ化アルカリの製造法
JPH04209875A (ja) * 1990-12-05 1992-07-31 Toyobo Co Ltd 染色された交編編地とその製法
US5423960A (en) * 1993-10-29 1995-06-13 Vaughan; Daniel J. Method and apparatus for manufacturing iodine-free iodides
JPH0859205A (ja) 1994-08-16 1996-03-05 Mitsui Toatsu Chem Inc ヨウ化水素酸の製造方法
US5693306A (en) * 1994-11-28 1997-12-02 Mitsui Toatsu Chemicals, Inc. Production process for refined hydrogen iodide
US5520793A (en) 1995-04-03 1996-05-28 Benham Electrosynthesis Company, Inc. Methods of producing hydrogen iodide electrochemically
JP2776766B2 (ja) 1995-08-11 1998-07-16 科学技術振興事業団 高比放射能対応型13n標識薬剤の製造方法とその装置
JPH0959003A (ja) 1995-08-21 1997-03-04 Mitsui Toatsu Chem Inc ヨウ化水素の純度保持法
JP2729593B2 (ja) 1995-09-25 1998-03-18 株式会社トリケミカル研究所 ヨウ化水素の製造方法
JP3543898B2 (ja) 1996-09-09 2004-07-21 三井化学株式会社 エッチング用ガスおよびその製造方法
US6372017B1 (en) * 2000-02-07 2002-04-16 Orville Lee Maddan Method for producing magnesium
US6719817B1 (en) * 2003-06-17 2004-04-13 Daniel J Marin Cavitation hydrogen generator
JP4489487B2 (ja) 2004-04-02 2010-06-23 ダイセル化学工業株式会社 ヨウ化水素の分離方法
KR101295904B1 (ko) * 2005-05-02 2013-08-12 닛포가가쿠 가부시키가이샤 요오드의 회수방법
KR101531734B1 (ko) 2008-01-31 2015-06-25 닛포가가쿠 가부시키가이샤 요오드 화합물 제조시스템 및 제조 방법
KR101526030B1 (ko) 2008-01-31 2015-06-04 닛포가가쿠 가부시키가이샤 무기 요오드화물, 그의 제조 방법 및 그의 제조 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925103A (ja) * 1994-11-28 1997-01-28 Mitsui Toatsu Chem Inc 精ヨウ化水素の製造方法
JP2001089136A (ja) * 1999-09-14 2001-04-03 Fuji Photo Film Co Ltd 弗化沃化バリウムの生成方法、沃素含有弗化ハロゲン化バリウム蛍光体および放射線像変換パネル
JP2004315332A (ja) * 2003-04-18 2004-11-11 Nippo Kagaku Kk 無機ヨウ素化合物の製造方法
JP2005255514A (ja) * 2004-02-10 2005-09-22 Nippon Shokubai Co Ltd ヨウ化物の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065637A (ja) * 2012-09-26 2014-04-17 Nippo Kagaku Kk ヨウ化リチウム水溶液の製造方法及びその利用
JP2014065638A (ja) * 2012-09-26 2014-04-17 Nippo Kagaku Kk ヨウ化リチウム水溶液の製造方法及びその利用
WO2017159665A1 (ja) * 2016-03-14 2017-09-21 出光興産株式会社 ハロゲン化アルカリ金属の製造方法、及び硫化物系固体電解質の製造方法
JPWO2017159665A1 (ja) * 2016-03-14 2019-01-17 出光興産株式会社 ハロゲン化アルカリ金属の製造方法、及び硫化物系固体電解質の製造方法
US10910669B2 (en) 2016-03-14 2021-02-02 Idemitsu Kosan Co., Ltd. Alkali metal halide production method, and sulfide solid electrolyte production method
CN107792831A (zh) * 2016-08-31 2018-03-13 天津市科密欧化学试剂有限公司 一种试剂级氢碘酸的制备方法

Also Published As

Publication number Publication date
KR101526030B1 (ko) 2015-06-04
US20100303708A1 (en) 2010-12-02
KR20100130177A (ko) 2010-12-10
JP5520610B2 (ja) 2014-06-11
US9272922B2 (en) 2016-03-01
JPWO2009096447A1 (ja) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5520610B2 (ja) 無機ヨウ化物、その製造方法およびその製造システム
JP5437082B2 (ja) ヨウ素化合物製造システムおよび製造方法
EP3828170A1 (en) Method for safely preparing pimavanserin and tartrate salt thereof using triphosgene
JP2010524672A (ja) ルテニウム含有担持触媒材料からルテニウムを回収する方法
JP5013692B2 (ja) フルオロメタンの製造方法およびその製品
JP2016198720A (ja) アンモニア分解触媒、アンモニア分解触媒の製造方法、水素の製造方法及び水素の製造装置
CN112543751B (zh) 合成碘佛醇的中间体有机碘化化合物的一锅制备方法
JP4822253B2 (ja) 二酸化炭素と水素からギ酸塩の製造方法
JP4629322B2 (ja) シロスタゾールの製造法
WO2013153846A1 (ja) フッ化カルシウムの製造方法及び装置
JP2002047258A (ja) N−イソプロピルグリシンの製造方法
RU2323879C2 (ru) Способ получения солей додекагидро-клозо-додекаборной кислоты
RU2424187C1 (ru) Способ получения высокочистого фторида бария
WO2018173949A1 (ja) メタノールの製造装置及びメタノールの製造方法
WO2019012859A1 (ja) 次亜塩素酸ナトリウム水溶液、及びこれを得るための次亜塩素酸ナトリウム5水和物結晶、並びに次亜塩素酸ナトリウム水溶液の製造方法
JP6180717B2 (ja) ヨウ化リチウム水溶液の製造方法及びその利用
WO2013153847A1 (ja) フッ化カルシウムの製造方法及び装置
SU576937A3 (ru) Способ получени моно- - оксиэтил-7-рутина
EP0714849B1 (en) Production process for refined hydrogen iodide
RU2424189C1 (ru) Способ получения высокочистого фторида стронция
JP2006241091A (ja) 1,3−ジベンジル−2−オキソイミダゾリジン−4,5−ジカルボン酸の製造方法
JPH0264009A (ja) シアナミドの製法
JPH0585707A (ja) アジ化ナトリウムの製造方法
JPH0664908A (ja) アジ化ナトリウムの連続的製造方法
JP2000211905A (ja) フリーヒドロキシルアミン水溶液の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705328

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009551551

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12864746

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107017395

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09705328

Country of ref document: EP

Kind code of ref document: A1