WO2009088004A1 - 露光方法及び露光装置 - Google Patents

露光方法及び露光装置 Download PDF

Info

Publication number
WO2009088004A1
WO2009088004A1 PCT/JP2009/050054 JP2009050054W WO2009088004A1 WO 2009088004 A1 WO2009088004 A1 WO 2009088004A1 JP 2009050054 W JP2009050054 W JP 2009050054W WO 2009088004 A1 WO2009088004 A1 WO 2009088004A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
characteristic
exposure
projection optical
pattern
Prior art date
Application number
PCT/JP2009/050054
Other languages
English (en)
French (fr)
Inventor
Akinori Shirato
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to CN200980100816A priority Critical patent/CN101836166A/zh
Publication of WO2009088004A1 publication Critical patent/WO2009088004A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2014Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame
    • G03F7/2016Contact mask being integral part of the photosensitive element and subject to destructive removal during post-exposure processing
    • G03F7/202Masking pattern being obtained by thermal means, e.g. laser ablation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70475Stitching, i.e. connecting image fields to produce a device field, the field occupied by a device such as a memory chip, processor chip, CCD, flat panel display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to an exposure method and an exposure apparatus for transferring a pattern to a photosensitive substrate.
  • An object of the present invention is to provide an exposure method and an exposure apparatus capable of suppressing a line width difference generated at a joint portion of transfer patterns to be joined on a photosensitive substrate.
  • the exposure method of the present invention includes a characteristic information acquisition step of acquiring transfer characteristic information of a transfer pattern formed on a photosensitive substrate using a plurality of projection optical modules arranged side by side, and the photosensitive information among a plurality of the transfer patterns.
  • a joint information obtaining step for obtaining joint information indicating the projection optical module corresponding to the joint between the first transfer pattern and the second transfer pattern joined on the substrate, and a characteristic adjustment for changing the transfer characteristic of the transfer pattern Based on the transfer characteristic information and the joint information, a mechanism operation amount that corrects a characteristic difference between the transfer characteristics of the first transfer pattern and the second transfer pattern at the joint portion.
  • a deriving step for deriving and operating the characteristic adjusting mechanism based on the correction operation amount to move the first transfer pattern and the second transfer pattern forward; Characterized in that it comprises a, a transfer step of sequentially forming on a photosensitive substrate.
  • the exposure apparatus of the present invention includes a plurality of projection optical modules arranged side by side, a characteristic adjustment mechanism that changes transfer characteristics of a transfer pattern formed on a photosensitive substrate using the plurality of projection optical modules, Storage means for storing transfer characteristic information of the transfer pattern, and the projection optical module corresponding to the joint portion of the first transfer pattern and the second transfer pattern to be joined on the photosensitive substrate among the plurality of transfer patterns.
  • a joint information obtaining unit that obtains part information; and a correction operation amount that is an operation amount of the characteristic adjustment mechanism and corrects a characteristic difference between the transfer characteristics of the first transfer pattern and the second transfer pattern in the joint portion. And deriving based on the transfer characteristic information and the joint information, operating the characteristic adjustment mechanism based on the correction operation amount, and And control means for performing over emissions and control of sequentially forming the second transfer pattern on the photosensitive substrate, characterized in that it comprises a.
  • the exposure method and the exposure apparatus of the present invention it is possible to suppress the line width difference generated at the joint portion of each transfer pattern to be joined on the photosensitive substrate.
  • FIG. 1 is a perspective view showing the arrangement of an exposure apparatus according to the first embodiment.
  • the exposure apparatus EX is formed on a mask stage MST that supports a mask M, a substrate stage PST that supports a photosensitive substrate P, an illumination optical system IL that illuminates the mask M with exposure light EL, and a mask M.
  • the photosensitive substrate P is, for example, a glass substrate coated with a photosensitive agent (photoresist), and a transfer pattern is formed in the photosensitive agent.
  • the projection optical system PL is composed of a plurality (seven) of projection optical modules PLa to PLg arranged in parallel.
  • the exposure apparatus EX in the present embodiment includes a mask M and a photosensitive substrate P with respect to the projection optical system PL.
  • the mask M is illuminated with the exposure light EL while moving synchronously (synchronous scanning), and the pattern image of the mask M is transferred to the photosensitive substrate P.
  • the synchronous movement direction (scanning direction) between the mask M and the photosensitive substrate P is the X-axis direction
  • the direction orthogonal to the scanning direction in the horizontal plane is the Y-axis direction (non-scanning direction)
  • the X-axis direction is taken as the Z-axis direction.
  • the directions around the X-axis, Y-axis, and Z-axis are the ⁇ X, ⁇ Y, and ⁇ Z directions, respectively.
  • the mask stage MST is movable in the X-axis direction, the Y-axis direction, the Z-axis direction, and the ⁇ Z direction, and is driven by a mask stage drive unit MSTD configured by a linear motor or the like under the control of the control device CONT.
  • the exposure light EL that has passed through the mask M is incident on the projection optical modules PLa to PLg, respectively.
  • the projection optical modules PLa to PLg are supported on the surface plate 150, and form a pattern image corresponding to the irradiation area on the mask M by the exposure light EL on the photosensitive substrate P.
  • the projection optical modules PLa, PLc, PLe, and PLg and the projection optical modules PLb, PLd, and PLf are arranged in the Y-axis direction, respectively.
  • the rows of the projection optical modules PLa, PLc, PLe, and PLg and the rows of the projection optical modules PLb, PLd, and PLf are arranged apart from each other in the X axis direction, and are arranged in a staggered manner along the Y axis direction as a whole.
  • Each of the projection optical modules PLa to PLg has a plurality of optical elements (lenses and the like).
  • the exposure light EL transmitted through the projection optical modules PLa to PLg forms a pattern image corresponding to the irradiation area on the mask M for each of the different projection areas 50a to 50g on the photosensitive substrate P.
  • the substrate stage PST has a substrate holder PH, and holds the photosensitive substrate P via the substrate holder PH. Similar to mask stage MST, substrate stage PST is movable in the X-axis direction, Y-axis direction, and Z-axis direction, and is also movable in the ⁇ X, ⁇ Y, and ⁇ Z directions.
  • the substrate stage PST is driven by a substrate stage drive unit PSTD configured by a linear motor or the like under the control of the control device CNTO.
  • a focus detection system 110 that detects the position of the surface in the Z-axis direction is provided.
  • the focus detection system 110 is configured by arranging a plurality of oblique incidence type focus detection systems, for example.
  • the detection result of the focus detection system 110 is output to the control device CONT, and the control device CONT has a predetermined distance and parallel between the pattern surface of the mask M and the exposure surface of the photosensitive substrate P based on the detection result of the focus detection system 110. Control to make a degree.
  • the control device CONT is connected to the storage unit 80, and monitors the positions of the mask stage MST and the substrate stage PST based on recipe information stored in the storage unit 80, and the substrate stage drive unit PSTD and the mask. By controlling the stage drive unit MSTD, the mask M and the photosensitive substrate P are moved synchronously in the X-axis direction.
  • FIG. 2 is a diagram showing the configuration of the illumination optical system IL and the projection optical system PL.
  • the illumination optical system IL includes a light source 1 composed of an ultra-high pressure mercury lamp or the like, an elliptical mirror 1a that condenses light emitted from the light source 1, and light collected by the elliptical mirror 1a.
  • the dichroic mirror 2 that reflects light having a wavelength necessary for exposure and transmits light having other wavelengths, and the wavelength necessary for exposure among light reflected by the dichroic mirror 2 (usually g, h, i
  • a wavelength selection filter 3 that passes light including only at least one band of lines) as exposure light, and a plurality of exposure lights from the wavelength selection filter 3 (seven in this embodiment) are branched into reflection mirrors.
  • a light guide 4 that is incident on each of the illumination system modules IMa to IMg via a light source 5 is provided.
  • the illumination system module IM constituting the illumination optical system IL in the present embodiment, seven illumination system modules IMa to IMg are provided corresponding to the projection optical modules PLa to PLg.
  • each of the illumination system modules IMa to IMg is arranged corresponding to each of the projection optical modules PLa to PLg with a predetermined interval in the X axis direction and the Y axis direction.
  • the exposure light EL emitted from each of the illumination system modules IMa to IMg illuminates different irradiation areas on the mask M in correspondence with the projection optical modules PLa to PLg.
  • Each of the illumination system modules IMa to IMg includes an illumination shutter 6, a relay lens 7, a fly-eye lens 8 as an optical integrator, and a condenser lens 9.
  • the illumination shutter 6 is disposed on the downstream side of the light path of the light guide 4 so as to be detachable from the light path.
  • the illumination shutter 6 shields the exposure light when it is arranged in the optical path, and cancels the shielding when retracted from the optical path.
  • a shutter drive unit 6 a that drives the illumination shutter 6 is connected to the illumination shutter 6.
  • the shutter driving unit 6a is controlled by the control device CONT.
  • each of the illumination system modules IMa to IMg is provided with a light amount adjusting mechanism 10.
  • the light amount adjusting mechanism 10 adjusts the exposure amount by setting the illuminance of the exposure light for each optical path, and includes a half mirror 11, a detector 12, a filter 13, and a filter driving unit 14. Yes.
  • the half mirror 11 is disposed in the optical path between the filter 13 and the relay lens 7, and causes a part of the exposure light transmitted through the filter 13 to enter the detector 12.
  • the detector 12 independently detects the illuminance of the incident exposure light, and outputs the detected illuminance signal to the control device CONT.
  • the filter 13 is formed so that the transmittance gradually changes linearly in a predetermined range along the X-axis direction, for example, and is disposed between the illumination shutter 6 and the half mirror 11 in each optical path.
  • the filter drive unit 14 adjusts the exposure amount for each optical path by moving the filter 13 along the X-axis direction based on an instruction from the control device CONT.
  • the light beam that has passed through the light amount adjusting mechanism 10 reaches the fly-eye lens 8 through the relay lens 7.
  • the fly-eye lens 8 forms a secondary light source on the exit surface side, and the exposure light EL from the secondary light source passes through the condenser lens 9 and includes a right-angle prism 16, a lens system 17, and a concave mirror 18. After passing through the catadioptric optical system 15, the irradiation area on the mask M is illuminated uniformly.
  • Each of the projection optical modules PLa to PLg includes an image shift mechanism 19, a focus position adjustment mechanism 31, two sets of catadioptric optical systems 21 and 22, a field stop 20, a blind 30, and a magnification adjustment mechanism 23. It has.
  • the image shift mechanism 19 shifts the pattern image of the mask M in the X-axis direction or the Y-axis direction, for example, by rotating two parallel flat plate glasses in the ⁇ Y direction or the ⁇ X direction, respectively.
  • the focus position adjusting mechanism 31 includes, for example, a pair of wedge prisms, and changes the image plane position of the pattern image by changing the total thickness of the wedge prisms in the optical path. The tilt angle of the image plane of the pattern image is changed by rotating around the optical axis.
  • the exposure light EL that has passed through the mask M passes through the image shift mechanism 19 and the focus position adjustment mechanism 31 and then enters the first set of catadioptric optical system 21.
  • the catadioptric optical system 21 forms an intermediate image of the pattern of the mask M, and includes a right-angle prism 24, a lens system 25, and a concave mirror 26.
  • the right-angle prism 24 is rotatable in the ⁇ Z direction, and the pattern image of the mask M can be rotated.
  • the field stop 20 and the blind 30 are arranged on the image plane of the intermediate image formed by the catadioptric optical system 21 or in the vicinity thereof.
  • the field stop 20 sets a projection area on the photosensitive substrate P as described later.
  • the exposure light EL transmitted through the field stop 20 enters the second set of catadioptric optical system 22.
  • the catadioptric optical system 22 includes a right-angle prism 27, a lens system 28, and a concave mirror 29.
  • the right-angle prism 27 is also rotatable in the ⁇ Z direction, and the pattern image of the mask M can be rotated.
  • the exposure light EL emitted from the catadioptric optical system 22 passes through the magnification adjusting mechanism 23 and forms a pattern image of the mask M on the photosensitive substrate P at an erecting equal magnification.
  • the magnification adjusting mechanism 23 is configured by, for example, arranging a first plano-convex lens, a biconvex lens, and a second plano-convex lens in this order along the Z axis, and by moving the biconvex lens in the Z axis direction, the pattern of the mask M Change the magnification of the image.
  • a detector (light detection device) 41 is disposed on the substrate stage PST.
  • the detector 41 detects, for example, illuminance as information relating to the exposure amount of the exposure light EL applied to the photosensitive substrate P, and outputs the detection result to the control device CONT.
  • the detector 41 can be installed at the same level as the photosensitive substrate P by a mechanism (not shown), and can be moved in the X-axis direction and the Y-axis direction.
  • a pattern image detection sensor 70 provided with a reference member 70a having a predetermined reference mark is provided at the ⁇ X side end in the scanning direction of the substrate stage PST.
  • the reference member 70a is set so that the height of the reference mark in the Z-axis direction substantially coincides with the surface (exposure surface) of the photosensitive substrate P.
  • the pattern image detection sensor 70 is provided so as to be movable in the X-axis direction and the Y-axis direction by a mechanism (not shown).
  • the pattern image detection sensor 70 detects an aerial image as a pattern image of a predetermined pattern (measurement mark) provided on the mask M via the reference mark on the reference member 70a, and outputs the detection result to the control device CONT. .
  • FIG. 3 is a diagram showing the field stop 20 and the blind 30 provided in the projection optical system PL.
  • the field stop 20 and the blind 30 are disposed at a position substantially conjugate with the mask M and the photosensitive substrate P, and are provided in the blind unit 120 attached to the surface plate 150.
  • one blind unit 120 is provided for each column of ⁇ X side projection optical modules PLa, PLc, PLe, and PLg and each column of + X side projection optical modules PLb, PLd, and PLf.
  • the field stop 20 is provided for each of the projection optical modules PLa to PLg, and the projection regions 50a to 50g of the projection optical modules PLa to PLg on the photosensitive substrate P are formed in the corresponding field stop 20, respectively.
  • each opening K is formed in an isosceles trapezoidal shape having two sides parallel to the Y-axis direction, or a trapezoidal shape having two sides parallel to the Y-axis direction and one side parallel to the X-axis direction.
  • the projection areas 50a to 50g are set in a trapezoidal shape having a conjugate relationship with the corresponding opening K.
  • the blind 30 is a parallelogram-shaped plate member having two sides parallel to the X-axis and Y-axis directions, and each hypotenuse of the blind 30 is formed in parallel with any hypotenuse of the opening K.
  • the blind 30 is movable in the X-axis direction and the Y-axis direction within the blind unit 120 by a drive mechanism (not shown), and at least a part of each optical path of one or more projection optical modules among the projection optical modules PLa to PLg. Can be appropriately shielded.
  • the blind 30 can block at least a part of the exposure light EL in the corresponding projection optical module, and can change the effective size of the projection area.
  • the blind 30 can set and change the width of the corresponding projection area in the Y-axis direction.
  • FIG. 4 is a plan view showing projection areas 50a to 50g on the photosensitive substrate P.
  • the projection areas 50a to 50g are adjacent to each other in the Y-axis direction, that is, end parts 51a and 51b, end parts 51c and 51d, end parts 51e and 51f, end parts 51g and 51h, and end parts 51i and 51j.
  • the end portions 51k and 51l are set to overlap in the Y-axis direction. For this reason, by performing exposure (scanning exposure) while scanning the photosensitive substrate P in the X-axis direction with respect to the projection areas 50a to 50g, overlapping areas 52a to 52f (double exposure) overlapped (see FIG. 4 is formed between the two-dot difference lines.
  • the ⁇ X side blind 30 moves in the Y direction and is effective in at least one of the ⁇ X side projection regions 50a, 50c, 50e, and 50g. Set the appropriate size. Further, the + X side blind 30 is also moved in the Y direction, and the effective size of at least one of the + X side projection areas 50b, 50d, and 50f is appropriately set.
  • the blind image Y of the pattern image of the mask M transferred through the projection regions 50a to 50g is used.
  • the width in the axial direction can be set as appropriate, and the pattern width in the Y-axis direction of the transfer pattern formed on the photosensitive substrate P as a latent image corresponding to the pattern image can be set as appropriate. Note that the projection area positioned outside the pattern width of the transfer pattern set by the blind 30 is shielded by a blind mechanism (not shown) or the supply of the exposure light EL from the illumination optical system IL is stopped.
  • the joint portions 47 are formed by overlappingly exposing the boundary portions of the transfer patterns MA and MB corresponding to the boundary portions 45 and 46 of the partial patterns PA and PB, respectively.
  • the entire transfer pattern MPA on the photosensitive substrate P is a combination of the transfer pattern MA of the partial pattern PA and the transfer pattern MB of the partial pattern PB.
  • the transfer pattern MA is formed using the projection optical modules PLa to PLf among the projection optical modules PLa to PLg.
  • the transfer pattern MB is used using the projection optical modules PLb to PLg. Shall be formed.
  • the joint portion 47A in the transfer pattern MA is formed using the projection optical module PLf
  • the joint portion 47B in the transfer pattern MB is formed using the projection optical module PLb.
  • the range of the projection optical module used for each of the first and second scanning exposures and the pattern width in the Y-axis direction of the transfer patterns MA and MB are set before each scanning exposure using the blind 30 and a blind mechanism (not shown). Is done.
  • the control device CONT acquires illuminance information in each of the projection areas 50a to 50g and stores it in the storage unit 80 (step S10).
  • step S10 the control device CONT sequentially moves the detector 41 into the projection areas 50a to 50g, detects the illuminance of the exposure light EL in the projection areas 50a to 50g, and acquires the detection result as illuminance information.
  • the control device CONT acquires illuminance information indicating the illuminance of the end portions 51a to 51l of the projection regions 50a to 50g, for example.
  • the control apparatus CONT acquires the illumination information shown in FIG. 7A, for example.
  • the control device CONT adjusts the light amount of each of the illumination system modules IMa to IMg.
  • the mechanism 10 is adjusted and corrected within the illuminance range ILR, and illuminance information indicating the correction result is acquired.
  • the control device CONT acquires illuminance information input from an input device (not shown) (for example, a keyboard or a data communication device) instead of acquiring the illuminance information detected by the detector 41, and stores the illuminance information. 80 can also be stored. Alternatively, exposure energy information calculated based on illuminance information can be acquired and stored in the storage unit 80.
  • an input device for example, a keyboard or a data communication device
  • exposure energy information calculated based on illuminance information can be acquired and stored in the storage unit 80.
  • the control device CONT obtains joint information, which is information relating to the joint portions 47 of the transfer patterns MA and MB, from recipe information stored in the storage unit 80 in advance (step S11). Specifically, the control device CONT acquires information indicating the projection optical module PLf corresponding to the joint 47A of the transfer pattern MA and the projection optical module PLb corresponding to the joint 47B of the transfer pattern MB as joint information. To do.
  • the control device CONT masks the first and second scanning exposures based on the exposure amount characteristic information such as illuminance information or exposure energy information stored in step S10 and the joint information acquired in S11.
  • the scanning speeds of the stage MST and the substrate stage PST are derived (step S12).
  • the control device CONT has a scanning speed that brings the exposure energy difference between the transfer patterns MA and MB in the joint portion 47 within a predetermined energy difference range, and the projection areas 50a to 50f corresponding to the first scanning exposure and A scanning speed for deriving the exposure energy value exposed by each of the projection areas 50b to 50g corresponding to the second scanning exposure within a predetermined energy value range IER (see FIG. 7B) is derived.
  • control device CONT derives the scanning speed using a predetermined arithmetic expression or a lookup table based on the exposure amount characteristic information and the joint information.
  • the exposure energy corresponds to the integrated exposure amount per unit area on the photosensitive substrate P by one scanning exposure.
  • the control device CONT sets the position of the blind 30 when performing the first scanning exposure, and sets the pattern width of the transfer pattern MA (step S13). That is, the ⁇ X side blind 30 is disposed so as to shield the projection area 50g, and the + X side blind 30 is retracted from the projection areas 50b, 50d, and 50f. Then, the control device CONT aligns the photosensitive substrate P placed on the substrate stage PST and the mask M placed on the mask stage MST, and the substrate stage PST and the mask at the scanning speed derived in step S12. The first scanning exposure is performed by moving the stage MST in the X-axis direction synchronously (step S14). As a result, a transfer pattern MA is formed on the photosensitive substrate P as shown in FIG.
  • the control device CONT sets the position of the blind 30 when performing the second scanning exposure, and sets the pattern width of the transfer pattern MB (step S15). That is, the ⁇ X side blind 30 is arranged so as to shield the projection area 50a, and the + X side blind 30 is arranged so as to shield a part of the projection area 50b on the + Y side. Subsequently, the control device CONT moves the substrate stage PST stepwise in the non-scanning direction and aligns the mask M with the photosensitive substrate P. That is, alignment is performed so that the joint 47B of the transfer pattern MB formed by the second scanning exposure is superimposed on the joint 47A of the transfer pattern MA formed by the first scanning exposure.
  • control device CONT performs the second scanning exposure by synchronously moving the mask M and the photosensitive substrate P in the X-axis direction at the scanning speed derived in step S12 (step S16).
  • a transfer pattern MB is formed on the photosensitive substrate P as shown in FIG.
  • the transfer patterns MA and MB are formed on the photosensitive substrate P by joining them together, so that a single mask M is used, which is larger than the transfer pattern corresponding to the pattern PPA provided on the mask M.
  • a transfer pattern MPA can be formed on the photosensitive substrate P.
  • the exposure energy distribution as shown in FIG. 7B can be corrected to the exposure energy distribution as shown in FIG. 7C.
  • FIG. 7B shows the exposure energy distribution when the first and second scanning exposures are performed at the same scanning speed based on the illuminance information shown in FIG. ) Shows the exposure energy distribution when the first and second scanning exposures are performed based on the scanning speed derived in step S12.
  • the exposure energy distribution in the first and second scanning exposures that is, the exposure energy distribution of the entire transfer patterns MA and MB is set within a predetermined exposure energy value range IER.
  • the exposure energy difference between the transfer patterns MA and MB at the joint portion 47 within a predetermined energy difference range
  • the pattern line width of the entire transfer pattern MPA can be within a desired line width range, and the joint portion. 47, the occurrence of a line width difference between the pattern line widths of the transfer patterns MA and MB can be suppressed. Therefore, when a device such as a liquid crystal display device is manufactured using the exposure method and exposure apparatus of the first embodiment, a large device corresponding to the transfer pattern MPA can be manufactured satisfactorily.
  • the scanning speeds of the first and second scanning exposures are derived based on the exposure amount characteristic information and the joint information. It is also possible to derive only one scanning speed of scanning exposure and set the other scanning speed to a preset scanning speed.
  • control device CONT performs steps S20 and S21 in the same manner as steps S10 and S11 in the first embodiment.
  • the control device CONT stores the exposure amount characteristic information as shown in FIG. 9A in the storage unit 80, for example.
  • the control device CONT sets each exposure energy distribution in the first and second scanning exposures based on the exposure amount characteristic information stored in step S20 and the joint information acquired in step S21.
  • An adjustment amount (operation amount) of at least one of the light amount adjustment mechanism 10 and the condenser lens 9 of the projection optical module is derived (step S22).
  • the control device CONT adjusts the exposure energy difference between the transfer patterns MA and MB in the joint portion 47 within a predetermined energy difference range, and includes projection areas 50a to 50f corresponding to the first scanning exposure and An adjustment amount for deriving the exposure energy value exposed by each of the projection areas 50b to 50g corresponding to the second scanning exposure within a predetermined energy value range IER (see FIG. 9B) is derived.
  • the control device CONT adjusts so that the illuminance adjustment value of the projection optical module close to the joint portion 47 is greater than or equal to the illuminance adjustment value of the projection optical module separated from the joint portion 47. Is derived.
  • the control device CONT sets the pattern width of the transfer pattern MA, similarly to step S13 in the first embodiment (step S23). Then, the alignment between the photosensitive substrate P and the mask M is performed, and at least one of the light quantity adjusting mechanisms 10 and the condenser lens 9 is operated based on the adjustment amount derived in step S22, and the illuminance and the projection areas 50a to 50f At least one of the illuminance distributions is adjusted (step S24).
  • the adjustment of the illuminance of each of the projection areas 50a to 50f is performed by the light amount adjusting mechanism 10 of each of the illumination system modules IMa to IMf. This is performed by tilting the condenser lens 9 of the illumination system modules IMa to IMf.
  • the controller CONT performs first scanning exposure (step S25), and forms a transfer pattern MA on the photosensitive substrate P as shown in FIG.
  • control device CONT sets the pattern width of the transfer pattern MB, similarly to step S15 in the first embodiment (step S26). Then, the substrate stage PST is moved stepwise in the non-scanning direction, and the mask M and the photosensitive substrate P are aligned. Subsequently, similarly to step S24, the control device CONT operates at least one of the light quantity adjustment mechanisms 10 and the condenser lens 9 based on the adjustment amount derived in step S22, and the illuminance and illuminance of each projection region 50b to 50g. At least one of the distributions is adjusted (step S27). Thereafter, second scanning exposure is performed (step S28), and a transfer pattern MB is formed on the photosensitive substrate P as shown in FIG. In this way, the transfer pattern MPA can be formed on the photosensitive substrate P.
  • the exposure energy distribution as shown in FIG. 9B can be corrected to the exposure energy distribution as shown in FIG. 9C.
  • FIG. 9B shows each scanning exposure without adjusting the illuminance or the illuminance distribution between the first and second scanning exposures based on the exposure amount characteristic information shown in FIG.
  • FIG. 9C shows the exposure energy distribution when performing the first and second scanning exposures based on the illuminance distribution corrected based on the adjustment amount derived at step S22.
  • the pattern line width of the entire transfer pattern MPA can be set within a desired line width range and the joint 47 can be used as in the first embodiment. Generation of a line width difference between the pattern line widths of the transfer patterns MA and MB can be suppressed.
  • the exposure method according to the third embodiment is performed by the same procedure as the exposure procedure shown in FIG. However, it is assumed that the control device CONT stores the exposure amount characteristic information as shown in FIG.
  • step S22 the control device CONT uses the adjustment amount of each light quantity adjustment mechanism 10 corresponding to the adjustment value of the illuminance of each projection area 50a to 50f in the first scanning exposure as the distance between the transfer patterns MA and MB in the joint portion 47.
  • An adjustment amount is derived so that a value of 1 ⁇ 2 of the illuminance difference between the projection areas 50a to 50f is approximately evenly allocated.
  • the adjustment amount of each light quantity adjustment mechanism 10 corresponding to the adjustment value of the illuminance of each projection region 50b to 50g in the second scanning exposure is 1 ⁇ 2 of the illuminance difference between the transfer patterns MA and MB in the joint portion 47.
  • An adjustment amount is derived so that the value is substantially evenly allocated to the illuminance of each of the projection areas 50b to 50g.
  • the exposure energy distribution as shown in FIG. 10B can be corrected to the exposure energy distribution as shown in FIG. 10C.
  • FIG. 10B shows each scanning exposure without adjusting the illuminance or illuminance distribution between the first and second scanning exposures based on the exposure amount characteristic information shown in FIG.
  • FIG. 10C shows the exposure energy distribution when performing the first and second scanning exposures based on the illuminance distribution corrected based on the adjustment amount derived in step S23.
  • the pattern line width in the entire transfer pattern MPA can be within a desired line width range, as in the first and second embodiments. Generation of a line width difference between the pattern line widths of the transfer patterns MA and MB in the portion 47 can be suppressed.
  • the control device CONT has focus position information indicating the distribution of the focus positions (focusing positions) of the projection optical modules PLa to PLg, or image plane position information indicating the distribution of the image plane positions.
  • control device CONT detects, for example, a spatial image of the measurement mark at each end 51a to 51l of each projection region 50a to 50g, and acquires focus information corresponding to this detection result. Thereby, the control apparatus CONT acquires the focus information shown in FIG.
  • each projection optical module PLa to PLg When the focus position of each projection optical module PLa to PLg is not within the focus position range FOR (see 12 (a)) as a predetermined allowable range, the control device CONT applies to each projection optical module PLa to PLg.
  • the focus position adjustment mechanism 31 provided is adjusted and corrected within the focus position range FOR, and focus information indicating the correction result is acquired.
  • step S30 the control device CONT acquires focus information input from an input device (not shown) and stores it in the storage unit 80 instead of acquiring focus information detected using the pattern image detection sensor 70. You can also.
  • the control device CONT obtains joint information, which is information related to the joint portions 47 of the transfer patterns MA and MB, from recipe information stored in the storage unit 80 in advance. Obtain (step S31).
  • the control device CONT adjusts the tilt angle as the operation amount of the substrate stage PST in the first and second scanning exposures based on the focus information stored in step S30 and the joint information acquired in S31.
  • a value is derived (step S32).
  • the control device CONT is an adjustment value that brings the difference in focus position (focus difference) between the transfer patterns MA and MB at the joint 47 into a predetermined focus difference range, and is a projection corresponding to the first scanning exposure.
  • An adjustment value that brings the focus position in each of the projection areas 50a to 50f and the projection areas 50b to 50g corresponding to the second scanning exposure into a predetermined focus position range FOR is derived.
  • the control device CONT derives an adjustment value based on the focus information and the joint information using a predetermined arithmetic expression or a lookup table.
  • control device CONT sets the pattern width of the transfer pattern MA, similarly to step S13 in the first embodiment (step S33). Then, the photosensitive substrate P and the mask M are aligned, the substrate stage PST is operated based on the adjustment value derived in step S32, the inclination angle is adjusted (step S34), and the first scanning exposure is performed (step S34). Step S35). As a result, a transfer pattern MA is formed on the photosensitive substrate P as shown in FIG.
  • control device CONT sets the pattern width of the transfer pattern MB, similarly to step S15 in the first embodiment (step S36). Then, the substrate stage PST is moved stepwise in the non-scanning direction to align the photosensitive substrate P and the mask M. Subsequently, similarly to step S34, the controller CONT operates the substrate stage PST based on the adjustment value derived in step S32, adjusts the tilt angle (step S37), and performs the second scanning exposure (step). S38). In this way, the transfer pattern MPA can be formed on the photosensitive substrate P.
  • a focus position distribution as shown in FIG. 12B can be corrected to a focus position distribution as shown in FIG.
  • FIG. 12B shows each scanning exposure based on the focus information shown in FIG. 12A without adjusting the tilt angle of the substrate stage PST between the first and second scanning exposures.
  • FIG. 12C shows the focus position distribution when performing the first and second scanning exposures based on the tilt angle of the substrate stage PST corrected based on the adjustment value derived in step S32.
  • the focus position distribution is shown.
  • the focus position distributions shown in FIGS. 12B and 12C show the focus position distributions based on the exposure surface (pattern transfer surface) of the photosensitive substrate P placed on the substrate stage PST.
  • the focus position distribution in the first and second scanning exposures that is, the focus position distribution of the entire transfer patterns MA and MB is set within a predetermined focus position range FOR.
  • the pattern line width of the entire transfer pattern MPA can be within a desired line width range. The occurrence of a line width difference between the pattern line widths of the transfer patterns MA and MB can be suppressed.
  • the substrate stage PST is based on the focus information indicating the focus position distribution along the Y-axis direction of each of the projection optical modules PLa to PLg.
  • the adjustment value of the tilt angle is derived, but based on the focus position distribution indicating the focus position distribution at a plurality of positions in the X-axis direction, that is, the two-dimensional focus position distribution along the XY plane, the substrate stage It is also possible to derive a dynamic adjustment value of the tilt angle of the PST and sequentially adjust the tilt angle of the substrate stage PST during the first and second scanning exposures.
  • the pattern image detection sensor 70 and the focus detection system 110 cooperate to detect the focus information of each projection optical module PLa to PLg over the scanning range in the X-axis direction of the substrate stage PST. Can be obtained by doing.
  • control device CONT performs steps S40 and S41 in the same manner as steps S30 and S31 in the fourth embodiment.
  • the control device CONT stores the focus information as shown in FIG.
  • the control device CONT determines the focus positions of the projection optical modules PLa to PLg in the first and second scanning exposures.
  • An adjustment amount (operation amount) of the focus position adjustment mechanism 31 that adjusts the image plane position and the image plane tilt angle of each projection optical module PLa to PLg is derived as an adjustment value (step S42).
  • the control device CONT is an adjustment amount that brings the focus difference between the transfer patterns MA and MB in the joint portion 47 into a predetermined focus difference range, and the projection regions 50a to 50f corresponding to the first scanning exposure and the first An adjustment amount for deriving the focus position in each of the projection areas 50b to 50g corresponding to the two-scan exposure within the predetermined focus position range FOR is derived.
  • the adjustment value of the image plane position of the projection optical module close to the joint portion 47 is greater than or equal to the adjustment value of the image plane position of the projection optical module separated from the joint portion 47.
  • the adjustment amount is derived as follows.
  • control device CONT sets the pattern width of the transfer pattern MA, similarly to step S13 in the first embodiment (step S43). Then, the photosensitive substrate P and the mask M are aligned, and the focus positions of the projection optical modules PLa to PLf are adjusted by operating the focus position adjustment mechanisms 31 based on the adjustment amounts derived in step S42. (Step S44). Thereafter, the controller CONT performs first scanning exposure (step S45), and forms a transfer pattern MA on the photosensitive substrate P as shown in FIG.
  • control device CONT sets the pattern width of the transfer pattern MB, similarly to step S15 in the first embodiment (step S46). Then, the control device CONT moves the substrate stage PST stepwise in the non-scanning direction, aligns the photosensitive substrate P and the mask M, and sets the focus positions of the projection optical modules PLb to PLg in the same manner as in step S44. Adjustment is performed by operating each focus position adjustment mechanism 31 based on the adjustment amount derived in step S42 (step S47). Thereafter, the controller CONT performs second scanning exposure (step S48), and forms a transfer pattern MB on the photosensitive substrate P as shown in FIG. In this way, the transfer pattern MPA can be formed on the photosensitive substrate P.
  • the focus position distribution as shown in FIG. 14B can be corrected to the focus position distribution as shown in FIG. 14C.
  • the focus position adjusting mechanism 31 of each projection optical module is adjusted between the first and second scanning exposures based on the focus information shown in FIG.
  • FIG. 14C shows the focus position distribution when each scanning exposure is performed, and FIG. 14C is based on the image plane position and the image plane tilt angle of each projection optical module corrected based on the adjustment amount derived in step S42.
  • the focus position distribution when performing first and second scanning exposures is shown.
  • the pattern line width of the entire transfer pattern MPA can be set within a desired line width range and the joint 47 can be used as in the fourth embodiment. Generation of a line width difference between the pattern line widths of the transfer patterns MA and MB can be suppressed.
  • the dynamic adjustment amount of each focus position adjustment mechanism 31 during scanning exposure is derived based on the two-dimensional focus information along the XY plane. During the first and second scanning exposures, it is possible to sequentially adjust at least one of the image plane position and the image plane tilt angle of the corresponding projection optical module.
  • the exposure method according to the sixth embodiment is performed by the same procedure as the exposure procedure shown in FIG. However, it is assumed that the control device CONT stores the focus information as shown in FIG.
  • step S42 the control device CONT uses the transfer pattern MA in the joint 47 as the adjustment amount of each focus position adjustment mechanism 31 corresponding to the adjustment value of the focus position of each projection optical module PLa to PLf in the first scanning exposure.
  • An adjustment amount is derived so that a value that is 1 ⁇ 2 of the difference in the focus position between MBs is allocated approximately evenly to the focus positions of the projection optical modules PLa to PLf.
  • the adjustment amount of each focus position adjustment mechanism 31 corresponding to the adjustment value of the focus position of each projection optical module PLb to PLg in the second scanning exposure the difference in the focus position between the transfer patterns MA and MB in the joint portion 47 is obtained.
  • An adjustment amount is derived so that a value of 1/2 is allocated substantially evenly to the focus positions of the projection optical modules PLb to PLg.
  • the focus position distribution as shown in FIG. 15B can be corrected to the focus position distribution as shown in FIG. 15C.
  • the focus position adjustment mechanism 31 of each projection optical module is adjusted between the first and second scanning exposures based on the focus information shown in FIG.
  • FIG. 15C shows the focus position distribution when performing each scanning exposure
  • FIG. 15C is based on the image plane position and the image plane tilt angle of each projection optical module corrected based on the adjustment amount derived in step S42.
  • the focus position distribution when performing first and second scanning exposures is shown.
  • the pattern line width in the entire transfer pattern MPA can be set within a desired line width range as in the fourth and fifth embodiments. Generation of a line width difference between the pattern line widths of the transfer patterns MA and MB in the portion 47 can be suppressed.
  • the control device CONT acquires information on the initial transfer position (transfer characteristic information) and stores it in the storage unit 80 (step S50).
  • the initial transfer position is measured by a long dimension measuring device whose absolute dimensions are managed using the photosensitive substrate P developed or etched after the trial exposure, and the outer peripheral portion (and necessary if necessary) of the transfer pattern corresponding to the pattern PPA. Accordingly, the measurement is performed by measuring the misalignment of the transfer pattern by measuring the measurement mark in the center).
  • the positional deviation amount of the transfer pattern thus measured is input from an input unit (not shown) and stored in the storage unit 80.
  • the control device CONT acquires the joint information as in step S21 in the first embodiment (step S51).
  • FIG. 17A shows the initial transfer characteristics of the transfer pattern stored in the storage unit 80 in step S51.
  • the control device CONT performs the first and second scans so that the positional deviation amount at the joint 47 between the transfer pattern MA in the first scanning exposure and the transfer pattern MB in the second scanning exposure falls within a predetermined positional deviation range.
  • Adjustment amounts (operation amounts) of the image shift mechanism 19, the magnification adjustment mechanism 23, the right-angle prisms 24 and 27, etc. for adjusting the imaging characteristics of the projection optical modules PLa to PLg in exposure are calculated using the method of least squares or the like. Derived (step S52).
  • the control device CONT adjusts the imaging characteristics of the projection optical modules PLa to PLf in the first scanning exposure so that the positional deviation amount at the joint 47 over the scanning range of the scanning exposure falls within a predetermined positional deviation range.
  • Values and adjustment values of the imaging characteristics of the projection optical modules PLb to PLg in the second scanning exposure are calculated, and adjustments of the image shift mechanism 19, the magnification adjustment mechanism 23, the right-angle prisms 24, 27, etc. corresponding to the adjustment values are calculated. Deriving the quantity.
  • the adjustment amount is derived so that the entire peripheral portion of the transfer pattern MA and the transfer pattern MB is within a predetermined misalignment range FDR as an allowable range as shown in FIG.
  • the control device CONT sets the pattern width of the transfer pattern MA, similarly to step S13 in the first embodiment (step S53). Then, the photosensitive substrate P and the mask M are aligned, and the imaging characteristics of the projection optical modules PLa to PLf are adjusted based on the adjustment amount derived in step S52 (step S54). At this time, adjustment is performed by operating at least one of the image shift mechanism 19, the magnification adjustment mechanism 23, and the right-angle prisms 24 and 27 of the projection optical modules PLa to PLf. Further, in the first scanning exposure, by sequentially operating the adjustment mechanisms of the projection optical modules PLa to PLf based on the adjustment amounts derived in step S52, the transfer pattern is formed on the photosensitive substrate P as shown in FIG. MA is formed (step S55).
  • control device CONT sets the pattern width of the transfer pattern MB, similarly to step S15 in the first embodiment (step S56). Then, the control device CONT aligns the mask M with the photosensitive substrate P, and sets the imaging characteristics of the projection optical modules PLb to PLg based on the adjustment amounts derived in step S52, as in step S54. Adjustment is performed by operating the adjustment mechanism (step S57). Further, in the second scanning exposure, by sequentially operating the adjustment mechanisms of the projection optical modules PLb to PLg based on the adjustment amount derived in step S52, the transfer pattern on the photosensitive substrate P as shown in FIG. MB is formed (step S58). In this way, the transfer pattern MPA can be formed on the photosensitive substrate P.
  • step S52 when the adjustment amount of each adjustment mechanism is derived so as to linearly correct the correction of the displacement amount of the transfer pattern, a correction result as shown in FIG. 18A is obtained, but nonlinearly.
  • a correction result as shown in FIG. 18B can be obtained.
  • the pattern line width in the entire transfer pattern MPA can be within a desired line width range, as in the first to sixth embodiments. Generation of a line width difference between the pattern line widths of the transfer patterns MA and MB at the joint portion 47 can be suppressed.
  • the case where the displacement of the transfer pattern occurs in the scanning direction (X-axis direction) has been described, but the case where the displacement of the transfer pattern occurs in the non-scanning direction (Y-axis direction). That is, even when there is a gap in the non-scanning direction between the transfer patterns MA and MB transferred onto the photosensitive substrate by the trial exposure, the transfer pattern is misaligned in the scanning direction (X-axis direction). In addition, the displacement of the transfer pattern can be corrected. Further, by performing linear correction and non-linear correction on the transfer pattern, it is possible to correct the transfer patterns MA and MB so as to be rectangular.
  • trial exposure is performed to measure the amount of positional deviation of the transfer pattern, and this measurement result is input from the input unit as information on the initial transfer position and stored in the storage unit 80.
  • the aerial image corresponding to the pattern PPA may be detected using the pattern image detection sensor 70, and information on the initial transfer position corresponding to the detection result may be stored in the storage unit 80.
  • the transfer characteristics of the transfer pattern are adjusted when the transfer patterns are joined. However, the same applies even when the transfer patterns are not joined.
  • transfer characteristics can be adjusted for each scanning exposure. When the transfer patterns are joined at a plurality of positions on the plate P, the adjustment amount of the transfer characteristics can be changed (optimized) according to the positions.
  • FIG. 19 is a flowchart showing a manufacturing process of a semiconductor device.
  • a metal film is deposited on a wafer to be a semiconductor device substrate (step S400), and a photoresist, which is a photosensitive material, is applied onto the deposited metal film (step S400).
  • Step S420 the projection image of the pattern provided with the mask is transferred to each shot area on the wafer using the exposure apparatus according to the present invention (step S440: exposure process (illumination process and projection process)), and this transfer is completed.
  • step S460 development process
  • step S460 development process
  • step S480 processing step
  • the resist pattern is a photoresist layer in which unevenness having a shape corresponding to the projected image of the pattern transferred by the exposure apparatus according to the present invention is formed, and the recess penetrates the photoresist layer.
  • step S480 the wafer surface is processed through this resist pattern.
  • the processing performed in step S480 includes at least one of etching of the wafer surface or film formation of a metal film, for example.
  • step S440 the exposure apparatus according to the present invention performs pattern transfer using the photoresist-coated wafer as a photosensitive substrate.
  • FIG. 20 is a flowchart showing manufacturing steps of a liquid crystal device such as a liquid crystal display element.
  • a pattern formation process step S500
  • a color filter formation process step S520
  • a cell assembly process step S540
  • a module assembly process step S560
  • step S500 a predetermined pattern such as a circuit pattern and an electrode pattern is formed on a glass substrate coated with a photoresist as a photosensitive substrate using the exposure apparatus according to the present invention.
  • an exposure step of transferring the projection image of the pattern provided on the mask to the photoresist layer using the exposure apparatus according to the present invention development of the photosensitive substrate to which the projection image of the pattern has been transferred, That is, a development process for developing the photoresist layer on the glass substrate to form a photoresist layer having a shape corresponding to the projected image of the pattern, and a processing process for processing the glass substrate through the developed photoresist layer; It is included.
  • the color filter forming step of step S520 a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or three of R, G, and B are arranged.
  • a color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning direction.
  • a liquid crystal panel (liquid crystal cell) is assembled using the glass substrate on which the predetermined pattern is formed in step S500 and the color filter formed in step S520.
  • a liquid crystal panel is formed by injecting liquid crystal between a glass substrate and a color filter.
  • various components such as an electric circuit and a backlight for performing the display operation of the liquid crystal panel are attached to the liquid crystal panel assembled in step S540.
  • the present invention can be used for an exposure method and an exposure apparatus for transferring a pattern to a photosensitive substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 物体Mに対して並設された複数の投影光学モジュールPLa~PLgを用いて前記物体の投影像を感光基板Pに転写する露光装置EXにおいて、前記感光基板に対する前記投影像の転写特性を変化させる調整機構14と、前記投影光学モジュールごとの前記転写特性を示す転写特性情報を記憶した記憶手段80と、前記物体の投影像のうち前記感光基板上で継ぎ合わされる第1投影像と第2投影像との継ぎ位置に対応する継ぎ位置情報を取得する継ぎ情報取得手段と、前記転写特性情報および前記継ぎ位置情報をもとに、前記継ぎ位置における前記第1投影像と前記第2投影像との前記転写特性の特性差に対応する前記調整機構の調整値を算出し、該調整値に基づいて前記調整機構を動作させ、前記第1投影像および前記第2投影像の少なくとも一方に対する前記転写特性を変化させる制御手段CONTとを備える。

Description

露光方法及び露光装置
 本発明は、感光基板にパターンを転写する露光方法及び露光装置に関するものである。
 従来、並設された複数の投影光学モジュールを用いて感光基板にパターンを転写するマルチレンズ式の露光装置が知られている(例えば、特開2003-151880号公報)。この公報に記載の露光装置では、マスクに設けられたパターンの像を、マスクと感光基板とを同期走査させながら複数の投影光学モジュールを用いて感光基板に投影し、この投影したパターンの像に対応する潜像としての転写パターンを感光基板上に形成する。そして、感光基板上で複数の転写パターンを感光基板の走査方向と直交する方向(以下、非走査方向と呼ぶ。)に順次継ぎ合わせることで、ひと続きの大きな転写パターンを得ることができる。
 その際、この露光装置では、継ぎ合わせる各転写パターンの非走査方向のパターン幅の設定を適宜変更することが可能であり、このパターン幅の変更にともなって、隣り合う転写パターンの継ぎ部に対応する投影光学モジュールも適宜変更される。なお、感光基板上で転写パターンを継ぎ合わせるとは、隣り合う転写パターンの境界部(端部)を感光基板上で互いに隣接もしくは重ね合わせて形成することを意味する。
 ところが、上述した露光装置では、継ぎ合わせる各転写パターンの継ぎ部(境界部)が異なる投影光学モジュールを用いて形成されるため、継ぎ部における各転写パターンのパターン線幅に大きな線幅差が生じる恐れがあり、ひと続きに形成される転写パターン内でその線幅差に起因するパターンのむら(転写むら)が発生する恐れがあった。かかる転写むらは、例えば、この露光装置を液晶表示デバイスの製造に用いる場合、液晶表示デバイス上に明るさのむらを生じさせる原因として問題となる。
 本発明の目的は、感光基板上で継ぎ合わせる各転写パターンの継ぎ部に生じる線幅差を抑制することができる露光方法及び露光装置を提供することである。
 本発明の露光方法は、並設された複数の投影光学モジュールを用いて感光基板上に形成される転写パターンの転写特性情報を取得する特性情報取得工程と、複数の前記転写パターンのうち前記感光基板上で継ぎ合わされる第1転写パターンおよび第2転写パターンの継ぎ部に対応する前記投影光学モジュールを示す継ぎ部情報を取得する継ぎ情報取得工程と、前記転写パターンの転写特性を変化させる特性調整機構の動作量であって前記継ぎ部における前記第1転写パターンおよび前記第2転写パターンの前記転写特性の特性差を補正する補正動作量を、前記転写特性情報および前記継ぎ部情報をもとに導出する導出工程と、前記補正動作量に基づいて前記特性調整機構を動作させ、前記第1転写パターンおよび前記第2転写パターンを前記感光基板上に順次形成する転写工程と、を含むことを特徴とする。
 また、本発明の露光装置は、並設された複数の投影光学モジュールと、前記複数の投影光学モジュールを用いて感光基板上に形成される転写パターンの転写特性を変化させる特性調整機構と、前記転写パターンの転写特性情報を記憶した記憶手段と、複数の前記転写パターンのうち前記感光基板上で継ぎ合わされる第1転写パターンおよび第2転写パターンの継ぎ部に対応する前記投影光学モジュールを示す継ぎ部情報を取得する継ぎ情報取得手段と、前記特性調整機構の動作量であって前記継ぎ部における前記第1転写パターンおよび前記第2転写パターンの前記転写特性の特性差を補正する補正動作量を、前記転写特性情報および前記継ぎ部情報をもとに導出し、該補正動作量に基づいて前記特性調整機構を動作させ、前記第1転写パターンおよび前記第2転写パターンを前記感光基板上に順次形成する制御を行う制御手段と、を備えることを特徴とする。
 本発明の露光方法及び露光装置によれば、感光基板上で継ぎ合わせる各転写パターンの継ぎ部に生じる線幅差を抑制することができる。
本発明に係る露光装置の構成を示す斜視図である。 本発明に係る露光装置の構成を示す図である。 本発明に係る露光装置の視野絞りとブラインドを示す図である。 本発明に係る露光装置の投影領域を示す図である。 本発明に係る露光装置が形成する転写パターンを説明する図である。 第1の実施形態に係る露光方法の露光手順を示すフローチャートである。 第1の実施形態に係る露光方法で取得される露光量特性情報を示す図である。 第2の実施形態に係る露光方法の露光手順を示すフローチャートである。 第2の実施形態に係る露光方法で取得される露光量特性情報を示す図である。 第3の実施形態に係る露光方法で取得される露光量特性情報を示す図である。 第4の実施形態に係る露光方法の露光手順を示すフローチャートである。 第4の実施形態に係る露光方法で取得されるフォーカス情報を示す図である。 第5の実施形態に係る露光方法の露光手順を示すフローチャートである。 第5の実施形態に係る露光方法で取得されるフォーカス情報を示す図である。 第6の実施形態に係る露光方法で取得されるフォーカス情報を示す図である。 第7の実施形態に係る露光方法の露光手順を示すフローチャートである。 第7の実施形態に係る露光方法で取得される転写特性を説明する図である。 第7の実施形態に係る露光方法で形成される転写パターンを示す図である。 本発明に係るデバイス製造方法の製造工程を示すフローチャートである。 本発明に係るデバイス製造方法の製造工程を示すフローチャートである。
 まず、本発明の第1の実施形態にかかる露光装置及び露光方法について説明する。図1は、第1の実施形態にかかる露光装置の構成を示す斜視図である。図1において、露光装置EXは、マスクMを支持するマスクステージMSTと、感光基板Pを支持する基板ステージPSTと、マスクMを露光光ELで照明する照明光学系ILと、マスクMに形成されたパターンの投影像(以下、パターン像と呼ぶ。)を感光基板Pに転写し、このパターン像に対応する潜像としての転写パターンを感光基板P上に形成する投影光学系PLと、露光装置EXの動作を統括制御する制御装置CONT(図2参照)とを備えている。感光基板Pは、例えばガラス基板に感光剤(フォトレジスト)を塗布したものであり、転写パターンは、この感光剤中に形成される。投影光学系PLは並設された複数(7つ)の投影光学モジュールPLa~PLgにより構成され、本実施形態における露光装置EXは、この投影光学系PLに対してマスクMと感光基板Pとを同期移動(同期走査)しつつマスクMを露光光ELで照明し、マスクMのパターン像を感光基板Pに転写する。
 ここで、以下の説明において、マスクMと感光基板Pとの同期移動方向(走査方向)をX軸方向、水平面内において走査方向と直交する方向をY軸方向(非走査方向)、X軸方向及びY軸方向に直交する方向をZ軸方向とする。また、X軸、Y軸、及びZ軸の軸線まわり方向を、それぞれθX、θY、及びθZ方向とする。
 マスクステージMSTは、X軸方向、Y軸方向、Z軸方向及びθZ方向に移動可能であり、制御装置CONTの制御の下、リニアモータ等により構成されるマスクステージ駆動部MSTDにより駆動される。
 マスクMを透過した露光光ELは、投影光学モジュールPLa~PLgにそれぞれ入射する。この投影光学モジュールPLa~PLgは定盤150に支持され、露光光ELによるマスクM上の照射領域に対応するパターン像を感光基板Pに結像させる。投影光学モジュールPLa、PLc、PLe、PLgと、投影光学モジュールPLb、PLd、PLfとは、それぞれY軸方向に配置されている。また、投影光学モジュールPLa、PLc、PLe、PLgの列と、投影光学モジュールPLb、PLd、PLfの列とはX軸方向に離れて配置されており、全体でY軸方向に沿って千鳥状に配置されている。投影光学モジュールPLa~PLgのそれぞれは、複数の光学素子(レンズ等)を有している。各投影光学モジュールPLa~PLgを透過した露光光ELは、感光基板P上の異なる投影領域50a~50gごとにマスクM上の照射領域に対応したパターン像を結像する。
 基板ステージPSTは基板ホルダPHを有しており、この基板ホルダPHを介して感光基板Pを保持する。基板ステージPSTは、マスクステージMSTと同様に、X軸方向、Y軸方向及びZ軸方向に移動可能であり、更に、θX、θY、及びθZ方向にも移動可能である。基板ステージPSTは、制御装置CNTOの制御の下、リニアモータ等により構成される基板ステージ駆動部PSTDにより駆動される。
 また、-X側の投影光学モジュールPLa、PLc、PLe、PLgの列と、+X側の投影光学モジュールPLb、PLd、PLfの列との間には、マスクMのパターン面及び感光基板Pの露光面のZ軸方向における位置を検出するフォーカス検出系110が設けられている。フォーカス検出系110は、例えば、斜入射方式の焦点検出系を複数配置して構成される。フォーカス検出系110の検出結果は制御装置CONTに出力され、制御装置CONTは、フォーカス検出系110の検出結果に基づいて、マスクMのパターン面と感光基板Pの露光面とが所定の間隔および平行度をなすように制御する。
 制御装置CONTは、記憶部80と接続されており、記憶部80に記憶されているレシピ情報等に基づいて、マスクステージMST及び基板ステージPSTの位置をモニタしながら、基板ステージ駆動部PSTD及びマスクステージ駆動部MSTDを制御することにより、マスクMと感光基板PとをX軸方向に同期移動させる。
 図2は、照明光学系IL及び投影光学系PLの構成を示す図である。図2に示すように、照明光学系ILは、超高圧水銀ランプ等からなる光源1と、光源1から射出された光を集光する楕円鏡1aと、この楕円鏡1aによって集光された光のうち露光に必要な波長の光を反射し、その他の波長の光を透過させるダイクロイックミラー2と、ダイクロイックミラー2で反射した光のうち更に露光に必要な波長(通常は、g、h、i線のうち少なくとも1つの帯域)のみ含んだ光を露光光として通過させる波長選択フィルタ3と、波長選択フィルタ3からの露光光を複数本(本実施形態では7本)に分岐して、反射ミラー5を介して各照明系モジュールIMa~IMgに入射させるライトガイド4を備えている。ここで、照明光学系ILを構成する照明系モジュールIMとして本実施形態では、投影光学モジュールPLa~PLgに対応して7つの照明系モジュールIMa~IMgが設けられている。但し、図2においては、便宜上、照明系モジュールIMfに対応するもののみが示されている。照明系モジューIMa~IMgのそれぞれは、X軸方向とY軸方向とに所定の間隔を持って、投影光学モジュールPLa~PLgのそれぞれに対応して配置されている。そして、照明系モジュールIMa~IMgのそれぞれから射出した露光光ELは、投影光学モジュールPLa~PLgに対応させてマスクM上の異なる照射領域をそれぞれ照明する。
 照明系モジュールIMa~IMgのそれぞれは、照明シャッタ6と、リレーレンズ7と、オプティカルインテグレータとしてのフライアイレンズ8と、コンデンサレンズ9とを備えている。照明シャッタ6は、ライトガイド4の光路下流側に、光路に対して挿脱自在に配置されている。照明シャッタ6は、光路内に配置されたときに露光光を遮光し、光路から退避したときにその遮光を解除する。照明シャッタ6には、この照明シャッタ6を駆動するシャッタ駆動部6aが接続されている。シャッタ駆動部6aは制御装置CONTによって制御される。
 また、照明系モジュールIMa~IMgのそれぞれには光量調整機構10が設けられている。この光量調整機構10は、光路毎に露光光の照度を設定することによって露光量を調整するものであって、ハーフミラー11と、ディテクタ12と、フィルタ13と、フィルタ駆動部14とを備えている。ハーフミラー11は、フィルタ13とリレーレンズ7との間の光路中に配置され、フィルタ13を透過した露光光の一部をディテクタ12へ入射させる。ディテクタ12は、入射した露光光の照度を独立して検出し、検出した照度信号を制御装置CONTへ出力する。フィルタ13は、例えば透過率がX軸方向に沿って所定範囲で線形に漸次変化するように形成されており、各光路中の照明シャッタ6とハーフミラー11との間に配置されている。フィルタ駆動部14は、制御装置CONTの指示に基づいてフィルタ13をX軸方向に沿って移動することにより、光路ごとに露光量を調整する。
 光量調整機構10を透過した光束はリレーレンズ7を介してフライアイレンズ8に達する。フライアイレンズ8は射出面側に二次光源を形成し、この二次光源からの露光光ELは、コンデンサレンズ9を通過し、直角プリズム16と、レンズ系17と、凹面鏡18とを備えた反射屈折型光学系15を通過した後、マスクM上の照射領域を均一に照明する。
 投影光学モジュールPLa~PLgのそれぞれは、像シフト機構19と、フォーカス位置調整機構31と、2組の反射屈折型光学系21、22と、視野絞り20と、ブラインド30と、倍率調整機構23とを備えている。像シフト機構19は、例えば、2枚の平行平面板ガラスをそれぞれθY方向もしくはθX方向に回転することで、マスクMのパターン像をX軸方向もしくはY軸方向にシフトさせる。また、フォーカス位置調整機構31は、例えば、1対の楔プリズムを備え、光路中の楔プリズムの厚さの総和を変化させることによりパターン像の像面位置を変化させ、少なくとも一方の楔プリズムを光軸回りに回転させることによりパターン像の像面の傾斜角度を変化させる。マスクMを透過した露光光ELは像シフト機構19、フォーカス位置調整機構31を透過した後、1組目の反射屈折型光学系21に入射する。反射屈折型光学系21は、マスクMのパターンの中間像を形成するものであって、直角プリズム24とレンズ系25と凹面鏡26とを備えている。直角プリズム24はθZ方向に回転自在となっており、マスクMのパターン像を回転可能となっている。
 視野絞り20およびブラインド30は、反射屈折型光学系21が形成する中間像の像面もしくはその近傍に配置されている。視野絞り20は、後述のように感光基板P上での投影領域を設定する。視野絞り20を透過した露光光ELは、2組目の反射屈折型光学系22に入射する。反射屈折型光学系22は、反射屈折型光学系21と同様に、直角プリズム27とレンズ系28と凹面鏡29とを備えている。直角プリズム27もθZ方向に回転自在となっており、マスクMのパターン像を回転可能となっている。
 反射屈折型光学系22から射出した露光光ELは、倍率調整機構23を通過し、感光基板P上にマスクMのパターン像を正立等倍で結像する。倍率調整機構23は、例えば、第1平凸レンズ、両凸レンズおよび第2平凸レンズをZ軸に沿ってこの順に配置して構成され、両凸レンズをZ軸方向に移動させることにより、マスクMのパターン像の倍率を変化させる。
 基板ステージPST上には、ディテクタ(光検出装置)41が配設されている。ディテクタ41は、感光基板Pに照射される露光光ELの露光量に関する情報として、例えば照度を検出し、検出結果を制御装置CONTへ出力する。ディテクタ41は、図示しない機構によって、感光基板Pと同一平面の高さに設置可能であるとともに、X軸方向およびY軸方向に移動可能に設けられている。
 また、基板ステージPSTの走査方向の-X側の端部には、所定の基準マークを有する基準部材70aを備えたパターン像検出センサ70が設けられている。基準部材70aは、その基準マークのZ軸方向における高さが感光基板Pの表面(露光面)と略一致するように設定されている。パターン像検出センサ70は、図示しない機構によって、X軸方向およびY軸方向に移動可能に設けられている。パターン像検出センサ70は、マスクMに設けられた所定パターン(計測用マーク)のパターン像としての空間像を基準部材70a上の基準マークを介して検出し、検出結果を制御装置CONTへ出力する。
 図3は、投影光学系PLが備える視野絞り20とブラインド30とを示す図である。視野絞り20及びブラインド30は、マスクM及び感光基板Pに対して略共役な位置に配置されており、定盤150に取り付けられたブラインドユニット120内に設けられている。ここで、ブラインドユニット120は、-X側の投影光学モジュールPLa、PLc、PLe、PLgの列と、+X側の投影光学モジュールPLb、PLd、PLfの列とに1つずつ設けられている。視野絞り20は、投影光学モジュールPLa~PLgのそれぞれに対して設けられており、各投影光学モジュールPLa~PLgの感光基板P上における投影領域50a~50gは、それぞれ対応する視野絞り20に形成された開口Kによって設定される。本実施形態において、各開口Kは、Y軸方向に平行な2辺を有する等脚台形状、もしくはY軸方向に平行な2辺とX軸方向に平行な1辺とを有する台形状に形成されており、投影領域50a~50gは、それぞれ対応する開口Kと共役関係となる台形形状に設定される。
 ブラインド30は、X軸及びY軸方向に平行な2辺を有する平行四辺形状の板部材であって、ブラインド30の各斜辺は、開口Kのいずれかの斜辺と平行に形成されている。ブラインド30は、図示しない駆動機構によってブラインドユニット120内でX軸方向およびY軸方向に移動自在とされており、投影光学モジュールPLa~PLgのうち1以上の投影光学モジュールの各光路の少なくとも一部を適宜遮蔽することができる。これによって、ブラインド30は、対応する投影光学モジュールにおける露光光ELの少なくとも一部を遮光して、その投影領域の実効的な大きさを設定変更することができる。具体的には、ブラインド30は、対応する投影領域のY軸方向の幅を設定変更することができる。
 図4は、感光基板P上の投影領域50a~50gを示す平面図である。投影領域50a~50gは、Y軸方向に隣り合う投影領域の端部同士、すなわち端部51aと51b、端部51cと51d、端部51eと51f、端部51gと51h、端部51iと51j、端部51kと51lが、Y軸方向に重なり合うように設定されている。このため、投影領域50a~50gに対して感光基板PをX軸方向へ走査しながら露光(走査露光)を行うことで、重複して露光(二重露光)される重複領域52a~52f(図4において二点差線で挟まれた領域)が形成される。
 また、図4において破線で示すように、2つのブラインド30のうち、-X側のブラインド30はY方向に移動して-X側の投影領域50a、50c、50e、50gの少なくとも1つの実効的な大きさを適宜設定する。また、+X側のブラインドの30もY方向に移動して+X側の投影領域50b、50d、50fの少なくとも1つの実効的な大きさを適宜設定する。これによって、ブラインド30は、投影領域50a~50gに対して感光基板PをX軸方向へ走査して走査露光を行う場合、投影領域50a~50gを介して転写されるマスクMのパターン像のY軸方向の幅を適宜設定することができ、そのパターン像に対応する潜像として感光基板P上に形成される転写パターンのY軸方向のパターン幅を適宜設定することができる。なお、ブラインド30が設定する転写パターンのパターン幅より外側に位置する投影領域は、図示しないブラインド機構によって遮蔽されるか、照明光学系ILからの露光光ELの供給が停止される。
 次に、上述した構成を有する露光装置EXを用いて複数回の走査露光を行い、マスクMのパターン像に対応する複数の転写パターンを感光基板上で継ぎ合わせる露光方法について説明する。以下の説明では、図5に示すように、マスクM上に形成されているパターンPPAのうち、Y軸方向に長さLAを有する部分パターンPAと、Y軸方向に長さLBを有する部分パターンPBとの2つの領域のパターン像を2回の走査露光(第1及び第2走査露光)に分けて感光基板P上に順次転写し、このパターン像に対応する転写パターンを感光基板P上で継ぎ合わせてパターン合成を行うものとする。その際、部分パターンPA,PBのそれぞれの境界部45,46に対応する転写パターンMA,MBの境界部を重複して露光することで継ぎ部47を形成する。これによって、感光基板P上の全体の転写パターンMPAは、部分パターンPAの転写パターンMAと、部分パターンPBの転写パターンMBとが継ぎ合わされたものとなる。
 また、第1走査露光では、投影光学モジュールPLa~PLgのうち投影光学モジュールPLa~PLfを用いて転写パターンMAを形成し、第2走査露光では、投影光学モジュールPLb~PLgを用いて転写パターンMBを形成するものとする。この場合、転写パターンMAにおける継ぎ部47Aは、投影光学モジュールPLfを用いて形成され、転写パターンMBにおける継ぎ部47Bは、投影光学モジュールPLbを用いて形成される。なお、第1及び第2走査露光ごとに用いる投影光学モジュールの範囲と、転写パターンMA,MBのY軸方向のパターン幅とは、ブラインド30および図示しないブラインド機構を用いて各走査露光前に設定される。
 以下、図6を参照しながら、露光手順について説明する。まず、制御装置CONTは、各投影領域50a~50gにおける照度情報を取得し、記憶部80に記憶させる(ステップS10)。このステップS10では、制御装置CONTは、ディテクタ41を各投影領域50a~50g内に順次移動させ、投影領域50a~50gにおける露光光ELの照度を検出し、この検出結果を照度情報として取得する。このとき、制御装置CONTは、例えば投影領域50a~50gの各端部51a~51lの照度を示す照度情報を取得する。これによって、制御装置CONTは、例えば図7(a)に示す照度情報を取得する。
 なお、制御装置CONTは、各投影領域50a~50gの照度が所定の許容範囲としての照度範囲ILR(図7(a)参照)内にない場合には、各照明系モジュールIMa~IMgの光量調整機構10を調整して照度範囲ILR内に補正し、この補正結果を示す照度情報を取得する。
 また、制御装置CONTは、ステップS10において、ディテクタ41によって検出した照度情報を取得する代わりに、図示しない入力装置(例えば、キーボードまたはデータ通信装置など)から入力される照度情報を取得して記憶部80に記憶させることもできる。あるいは、照度情報をもとに算出される露光エネルギー情報を取得して記憶部80に記憶させることもできる。
 次に、制御装置CONTは、記憶部80に予め記憶されているレシピ情報等から転写パターンMA,MBの継ぎ部47に関する情報である継ぎ部情報を取得する(ステップS11)。具体的には、制御装置CONTは、転写パターンMAの継ぎ部47Aに対応する投影光学モジュールPLfと、転写パターンMBの継ぎ部47Bに対応する投影光学モジュールPLbとを示す情報を継ぎ部情報として取得する。
 次に、制御装置CONTは、ステップS10で記憶させた照度情報もしくは露光エネルギー情報等の露光量特性情報と、S11で取得した継ぎ部情報とをもとに、第1及び第2走査露光におけるマスクステージMST及び基板ステージPSTの走査速度を導出する(ステップS12)。その際、制御装置CONTは、継ぎ部47における転写パターンMA,MB間の露光エネルギー差を所定のエネルギー差範囲内にする走査速度であって、第1走査露光に対応する投影領域50a~50fおよび第2走査露光に対応する投影領域50b~50gの各投影領域によって露光される露光エネルギー値を所定のエネルギー値範囲IER(図7(b)参照)内にする走査速度を導出する。ここで、制御装置CONTは、露光量特性情報および継ぎ部情報をもとに、所定の演算式あるいはルックアップテーブル等を利用して走査速度の導出を行う。なお、露光エネルギーとは、一回の走査露光による感光基板P上の単位面積当たりの積算露光量に相当する。
 次に、制御装置CONTは、第1走査露光を行う際のブラインド30の位置を設定し、転写パターンMAのパターン幅の設定を行う(ステップS13)。即ち、-X側のブラインド30が投影領域50gを遮光するように配置され、+X側のブラインド30が投影領域50b,50d,50fから退避される。そして、制御装置CONTは、基板ステージPSTに載置されている感光基板PとマスクステージMSTに載置されているマスクMとを位置合わせし、ステップS12によって導出した走査速度で基板ステージPST及びマスクステージMSTをX軸方向に同期移動させて第1走査露光を行う(ステップS14)。これにより、図5に示すように、感光基板P上には転写パターンMAが形成される。
 次に、制御装置CONTは、第2走査露光を行う際のブラインド30の位置を設定し、転写パターンMBのパターン幅の設定を行う(ステップS15)。即ち、-X側のブラインド30が投影領域50aを遮光するように配置され、+X側のブラインド30が投影領域50bの+Y側の一部を遮光するように配置される。つづいて、制御装置CONTは、基板ステージPSTを非走査方向にステップ移動させ、マスクMと感光基板Pとの位置合わせを行う。即ち、第1走査露光で形成された転写パターンMAの継ぎ部47Aに、第2走査露光で形成される転写パターンMBの継ぎ部47Bが重ね合わせられるように位置合わせを行う。そして、制御装置CONTは、マスクMと感光基板Pとを、ステップS12によって導出した走査速度で、X軸方向に同期移動して第2走査露光を行う(ステップS16)。これにより、図5に示すように、感光基板P上には転写パターンMBが形成される。
 このようにして、転写パターンMA,MBを感光基板P上で継ぎ合わせて形成することで、一枚のマスクMを用いて、このマスクMに設けられたパターンPPAに対応する転写パターンよりも大きな転写パターンMPAを感光基板P上に形成することができる。
 以上説明した第1の実施形態の露光方法及び露光装置では、例えば図7(b)に示すような露光エネルギー分布を、図7(c)に示すような露光エネルギー分布に補正することができる。ここで、図7(b)は、図7(a)に示した照度情報をもとに、等しい走査速度で第1及び第2走査露光を行う場合の露光エネルギー分布を示し、図7(c)は、ステップS12によって導出した走査速度に基づいて第1および第2走査露光を行う場合の露光エネルギー分布を示している。
 そして、第1の実施形態の露光方法及び露光装置では、第1及び第2走査露光における露光エネルギー分布、すなわち転写パターンMA,MB全体の露光エネルギー分布を所定の露光エネルギー値範囲IER内にするとともに、継ぎ部47における転写パターンMA,MBの露光エネルギー差を所定のエネルギー差範囲内にすることによって、転写パターンMPA全体におけるパターン線幅を所望の線幅範囲内にすることができるとともに、継ぎ部47における転写パターンMA,MBのパターン線幅の線幅差の発生を抑制することができる。このため、第1の実施形態の露光方法及び露光装置を用いて液晶表示デバイス等のデバイス製造を行う場合、転写パターンMPAに対応する大型のデバイスを良好に製造することができる。
 なお、上述した第1の実施形態の露光方法では、露光量特性情報および継ぎ部情報をもとに第1及び第2走査露光の走査速度を導出するものとして説明したが、第1及び第2走査露光のいずれか一方の走査速度のみ導出し、他方の走査速度は、予め設定された走査速度とすることもできる。
 次に、本発明の第2の実施形態に係る露光方法について説明する。この実施形態に係る露光方法は、上述した露光装置EXを用いて行うものであるため、第1の実施形態で用いたのと同一の符号を用いて説明を行う。
 まず、制御装置CONTは、図8に示すように、第1の実施形態におけるステップS10,S11と同様にステップS20,S21を行う。なお、この第2の実施形態では、制御装置CONTは、例えば図9(a)に示すような露光量特性情報を記憶部80に記憶させるものとする。
 次に、制御装置CONTは、ステップS20で記憶させた露光量特性情報とステップS21で取得した継ぎ部情報とをもとに、第1及び第2走査露光における露光エネルギー分布を設定するための各投影光学モジュールの光量調整機構10およびコンデンサレンズ9の少なくとも一方の調整量(動作量)を導出する(ステップS22)。その際、制御装置CONTは、継ぎ部47における転写パターンMA,MB間の露光エネルギー差を所定のエネルギー差範囲内にする調整量であって、第1走査露光に対応する投影領域50a~50fおよび第2走査露光に対応する投影領域50b~50gの各投影領域によって露光される露光エネルギー値を所定のエネルギー値範囲IER(図9(b)参照)内にする調整量を導出する。このとき、制御装置CONTは、継ぎ部47に近い投影光学モジュールの照度の調整値が継ぎ部47から離れた投影光学モジュールの照度の調整値よりも大きくなる、もしくは同等以上となるように調整量を導出する。
 次に、制御装置CONTは、第1の実施形態におけるステップS13と同様に、転写パターンMAのパターン幅の設定を行う(ステップS23)。そして、感光基板PとマスクMとの位置合わせをし、ステップS22で導出した調整量に基づいて各光量調整機構10およびコンデンサレンズ9の少なくとも一方を動作させ、各投影領域50a~50fの照度および照度分布の少なくとも一方を調整する(ステップS24)。ここで各投影領域50a~50fの照度の調整は、各照明系モジュールIMa~IMfの光量調整機構10により行い、各投影領域50a~50f内における照度分布としての照度の傾斜成分の補正は、各照明系モジュールIMa~IMfのコンデンサレンズ9のチルトにより行う。その後、制御装置CONTは、第1走査露光を行い(ステップS25)、図5に示すように、感光基板P上に転写パターンMAを形成する。
 次に、制御装置CONTは、第1の実施形態におけるステップS15と同様に、転写パターンMBのパターン幅の設定を行う(ステップS26)。そして、基板ステージPSTを非走査方向にステップ移動し、マスクMと感光基板Pとの位置合わせを行う。つづいて、制御装置CONTは、ステップS24と同様に、ステップS22で導出した調整量に基づいて各光量調整機構10およびコンデンサレンズ9の少なくとも一方を動作させ、各投影領域50b~50gの照度および照度分布の少なくとも一方を調整する(ステップS27)。その後、第2走査露光を行い(ステップS28)、図5に示すように、感光基板P上に転写パターンMBを形成する。このようにして、転写パターンMPAを感光基板P上に形成することができる。
 以上説明した第2の実施形態の露光方法及び露光装置では、例えば図9(b)に示すような露光エネルギー分布を、図9(c)に示すような露光エネルギー分布に補正することができる。ここで、図9(b)は、図9(a)に示した露光量特性情報をもとに、第1及び第2走査露光の間で照度もしくは照度分布の調整を行うことなく各走査露光を行う場合の露光エネルギー分布を示し、図9(c)は、ステップS22によって導出した調整量をもとに補正した照度分布に基づいて第1および第2走査露光を行う場合の露光エネルギー分布を示している。そして、第2の実施形態の露光方法及び露光装置では、第1の実施形態と同様に、転写パターンMPA全体におけるパターン線幅を所望の線幅範囲内にすることができるとともに、継ぎ部47における転写パターンMA,MBのパターン線幅の線幅差の発生を抑制することができる。
 なお、上述した第2の実施形態の露光方法では、第1及び第2走査露光のそれぞれに対応する各投影領域の照度および照度分布の少なくとも一方を調整するものとして説明したが、継ぎ部47に対応する投影領域のみ、もしくはその近傍に位置する投影領域を含めた一部の投影領域のみについて調整を行うこともできる。
 次に、本発明の第3の実施形態に係る露光方法について説明する。この実施形態に係る露光方法は、上述した露光装置EXを用いて行うものであるため、第1の実施形態で用いたのと同一の符号を用いて説明を行う。
 第3の実施形態に係る露光方法は、図8に示した露光手順と同様の手順によって行われる。ただし、制御装置CONTは、例えば図10(a)に示すような露光量特性情報を記憶部80に記憶させるものとする。
 また、ステップS22では、制御装置CONTは、第1走査露光における各投影領域50a~50fの照度の調整値に対応する各光量調整機構10の調整量として、継ぎ部47における転写パターンMA,MB間の照度差の1/2の値を各投影領域50a~50fの照度に略均等に割り振るような調整量を導出する。また、第2走査露光における各投影領域50b~50gの照度の調整値に対応する各光量調整機構10の調整量としては、継ぎ部47における転写パターンMA,MB間の照度差の1/2の値を各投影領域50b~50gの照度に略均等に割り振るような調整量を導出する。
 これによって、第3の実施形態の露光方法及び露光装置では、例えば図10(b)に示すような露光エネルギー分布を、図10(c)に示すような露光エネルギー分布に補正することができる。ここで、図10(b)は、図10(a)に示した露光量特性情報をもとに、第1及び第2走査露光の間で照度もしくは照度分布の調整を行うことなく各走査露光を行う場合の露光エネルギー分布を示し、図10(c)は、ステップS23によって導出した調整量に基づいて補正した照度分布をもとに第1および第2走査露光を行う場合の露光エネルギー分布を示している。そして、第3の実施形態の露光方法及び露光装置では、第1及び第2の実施形態と同様に、転写パターンMPA全体におけるパターン線幅を所望の線幅範囲内にすることができるとともに、継ぎ部47における転写パターンMA,MBのパターン線幅の線幅差の発生を抑制することができる。
 次に、本発明の第4の実施形態に係る露光方法について説明する。この実施形態に係る露光方法は、上述した露光装置EXを用いて行うものであるため、第1の実施形態で用いたのと同一の符号を用いて説明を行う。
 まず、制御装置CONTは、図11に示すように、各投影光学モジュールPLa~PLgのフォーカス位置(合焦位置)の分布を示すフォーカス位置情報、もしくは像面位置の分布を示す像面位置情報等のフォーカス情報を取得し、記憶部80に記憶させる(ステップS30)。即ち、パターン像検出センサ70を各投影領域50a~50g内に順次移動させ、マスクMに設けられた計測用マークの空間像を基準部材70a上の基準マークを介して検出することにより、その空間像のコントラスト情報等から各投影光学モジュールPLa~PLgのフォーカス情報を取得する。このとき、制御装置CONTは、例えば各投影領域50a~50gの各端部51a~51lにおける計測用マークの空間像を検出し、この検出結果に対応するフォーカス情報を取得する。これによって、制御装置CONTは、例えば図12(a)に示すフォーカス情報を取得する。
 なお、制御装置CONTは、各投影光学モジュールPLa~PLgのフォーカス位置が所定の許容範囲としてのフォーカス位置範囲FOR(12(a)参照)内にない場合には、各投影光学モジュールPLa~PLgに設けられているフォーカス位置調整機構31を調整してフォーカス位置範囲FOR内に補正し、この補正結果を示すフォーカス情報を取得する。
 また、制御装置CONTは、ステップS30において、パターン像検出センサ70を用いて検出したフォーカス情報を取得する代わりに、図示しない入力装置から入力されるフォーカス情報を取得して記憶部80に記憶させることもできる。
 次に、制御装置CONTは、第1の実施形態におけるステップS11と同様に、記憶部80に予め記憶されているレシピ情報等から転写パターンMA,MBの継ぎ部47に関する情報である継ぎ部情報を取得する(ステップS31)。
 次に、制御装置CONTは、ステップS30で記憶させたフォーカス情報とS31で取得した継ぎ部情報とをもとに、第1及び第2走査露光における基板ステージPSTの動作量としての傾斜角度の調整値を導出する(ステップS32)。その際、制御装置CONTは、継ぎ部47における転写パターンMA,MB間のフォーカス位置の差(フォーカス差)を所定のフォーカス差範囲内にする調整値であって、第1走査露光に対応する投影領域50a~50fおよび第2走査露光に対応する投影領域50b~50gの各投影領域におけるフォーカス位置を所定のフォーカス位置範囲FOR内にする調整値を導出する。ここで、制御装置CONTは、フォーカス情報および継ぎ部情報をもとに、所定の演算式あるいはルックアップテーブル等を利用して調整値の導出を行う。
 次に、制御装置CONTは、第1の実施形態におけるステップS13と同様に、転写パターンMAのパターン幅の設定を行う(ステップS33)。そして、感光基板PとマスクMとの位置合わせをし、ステップS32によって導出した調整値に基づいて基板ステージPSTを動作させ、その傾斜角度を調整し(ステップS34)、第1走査露光を行う(ステップS35)。これによって、図5に示すように、感光基板P上に転写パターンMAが形成される。
 次に、制御装置CONTは、第1の実施形態におけるステップS15と同様に、転写パターンMBのパターン幅の設定を行う(ステップS36)。そして、基板ステージPSTを非走査方向にステップ移動させ、感光基板PとマスクMとの位置合わせを行う。つづいて、制御装置CONTは、ステップS34と同様に、ステップS32で導出した調整値に基づいて基板ステージPSTを動作させ、その傾斜角度を調整し(ステップS37)、第2走査露光を行う(ステップS38)。このようにして、転写パターンMPAを感光基板P上に形成することができる。
 以上説明した第4の実施形態の露光方法及び露光装置では、例えば図12(b)に示すようなフォーカス位置分布を、図12(c)に示すようなフォーカス位置分布に補正することができる。ここで、図12(b)は、図12(a)に示したフォーカス情報をもとに、第1及び第2走査露光の間で基板ステージPSTの傾斜角度の調整を行うことなく各走査露光を行う場合のフォーカス位置分布を示し、図12(c)は、ステップS32によって導出した調整値をもとに補正した基板ステージPSTの傾斜角度に基づいて第1および第2走査露光を行う場合のフォーカス位置分布を示している。なお、図12(b),(c)に示すフォーカス位置分布は、基板ステージPSTに載置された感光基板Pの露光面(パターン転写面)を基準としたフォーカス位置の分布を示している。
 そして、第4の実施形態の露光方法及び露光装置では、第1及び第2走査露光におけるフォーカス位置分布、すなわち転写パターンMA,MB全体のフォーカス位置分布を、所定のフォーカス位置範囲FOR内にするとともに、継ぎ部47における転写パターンMA,MB間のフォーカス差を所定のフォーカス差範囲内にすることで、転写パターンMPA全体におけるパターン線幅を所望の線幅範囲内にすることができ、継ぎ部47における転写パターンMA,MBのパターン線幅の線幅差の発生を抑制することができる。
 なお、上述した第4の実施形態では、図12(a)に示したように、各投影光学モジュールPLa~PLgのY軸方向に沿ったフォーカス位置分布を示すフォーカス情報をもとに基板ステージPSTの傾斜角度の調整値を導出するものとしたが、X軸方向の複数の位置におけるフォーカス位置分布、つまりXY平面に沿った2次元的なフォーカス位置分布を示すフォーカス情報をもとに、基板ステージPSTの傾斜角度の動的(ダイナミック)な調整値を導出し、第1及び第2走査露光中に基板ステージPSTの傾斜角度を逐次調整するようにすることもできる。この場合、2次元的なフォーカス情報は、パターン像検出センサ70とフォーカス検出系110とを協働させ、基板ステージPSTのX軸方向の走査範囲にわたって各投影光学モジュールPLa~PLgのフォーカス情報を検出することによって取得することができる。
 次に、本発明の第5の実施形態に係る露光方法について説明する。この実施形態に係る露光方法は、上述した露光装置EXを用いて行うものであるため、第1の実施形態で用いたのと同一の符号を用いて説明を行う。
 まず、制御装置CONTは、図13に示すように、第4の実施形態におけるステップS30,S31と同様に、ステップS40,S41を行う。なお、この第5の実施形態では、制御装置CONTは、例えば図14(a)に示すようなフォーカス情報を記憶部80に記憶させるものとする。
 次に、制御装置CONTは、ステップS40で記憶させたフォーカス情報とステップS41で取得した継ぎ部情報とをもとに、第1及び第2走査露光における各投影光学モジュールPLa~PLgのフォーカス位置の調整値として各投影光学モジュールPLa~PLgの像面位置および像面傾斜角度を調整するフォーカス位置調整機構31の調整量(動作量)を導出する(ステップS42)。その際、制御装置CONTは、継ぎ部47における転写パターンMA,MB間のフォーカス差を所定のフォーカス差範囲内にする調整量であって、第1走査露光に対応する投影領域50a~50fおよび第2走査露光に対応する投影領域50b~50gの各投影領域におけるフォーカス位置を所定のフォーカス位置範囲FOR内にする調整量を導出する。このとき、制御装置CONTは、継ぎ部47に近い投影光学モジュールの像面位置の調整値が継ぎ部47から離れた投影光学モジュールの像面位置の調整値よりも大きくなる、もしくは同等以上となるように調整量を導出する。
 次に、制御装置CONTは、第1の実施形態におけるステップS13と同様に、転写パターンMAのパターン幅の設定を行う(ステップS43)。そして、感光基板PとマスクMとの位置合わせをし、各投影光学モジュールPLa~PLfのフォーカス位置を、ステップS42で導出した調整量に基づいて各フォーカス位置調整機構31を動作させることで調整する(ステップS44)。その後、制御装置CONTは、第1走査露光を行い(ステップS45)、図5に示すように感光基板P上に転写パターンMAを形成する。
 次に、制御装置CONTは、第1の実施形態におけるステップS15と同様に、転写パターンMBのパターン幅の設定を行う(ステップS46)。そして、制御装置CONTは、基板ステージPSTを非走査方向にステップ移動し、感光基板PとマスクMとの位置合わせをし、各投影光学モジュールPLb~PLgのフォーカス位置を、ステップS44と同様に、ステップS42で導出した調整量に基づいて各フォーカス位置調整機構31を動作させることで調整する(ステップS47)。その後、制御装置CONTは、第2走査露光を行い(ステップS48)、図5に示すように感光基板P上に転写パターンMBを形成する。このようにして、転写パターンMPAを感光基板P上に形成することができる。
 以上説明した第5の実施形態の露光方法及び露光装置では、例えば図14(b)に示すようなフォーカス位置分布を、図14(c)に示すようなフォーカス位置分布に補正することができる。ここで、図14(b)は、図14(a)に示したフォーカス情報をもとに、第1及び第2走査露光の間で各投影光学モジュールのフォーカス位置調整機構31の調整を行うことなく各走査露光を行う場合のフォーカス位置分布を示し、図14(c)は、ステップS42によって導出した調整量をもとに補正した各投影光学モジュールの像面位置および像面傾斜角度に基づいて第1および第2走査露光を行う場合のフォーカス位置分布を示している。そして、第5の実施形態の露光方法及び露光装置では、第4の実施形態と同様に、転写パターンMPA全体におけるパターン線幅を所望の線幅範囲内にすることができるとともに、継ぎ部47における転写パターンMA,MBのパターン線幅の線幅差の発生を抑制することができる。
 なお、第5の実施形態においても、XY平面に沿った2次元的なフォーカス情報をもとに、走査露光中の各フォーカス位置調整機構31の動的(ダイナミック)な調整量を導出し、第1及び第2走査露光中に各々対応する投影光学モジュールの像面位置および像面傾斜角度の少なくとも一方を逐次調整することができる。
 次に、本発明の第6の実施形態に係る露光方法について説明する。この実施形態に係る露光方法は、上述した露光装置EXを用いて行うものであるため、第1の実施形態で用いたのと同一の符号を用いて説明を行う。
 第6の実施形態に係る露光方法は、図13に示した露光手順と同様の手順によって行われる。ただし、制御装置CONTは、例えば図15(a)に示すようなフォーカス情報を記憶部80に記憶させるものとする。
 また、ステップS42では、制御装置CONTは、第1走査露光における各投影光学モジュールPLa~PLfのフォーカス位置の調整値に対応する各フォーカス位置調整機構31の調整量として、継ぎ部47における転写パターンMA,MB間のフォーカス位置の差の1/2の値を各投影光学モジュールPLa~PLfのフォーカス位置に略均等に割り振るような調整量を導出する。また、第2走査露光における各投影光学モジュールPLb~PLgのフォーカス位置の調整値に対応する各フォーカス位置調整機構31の調整量として、継ぎ部47における転写パターンMA,MB間のフォーカス位置の差の1/2の値を各投影光学モジュールPLb~PLgのフォーカス位置に略均等に割り振るような調整量を導出する。
 これによって、第6の実施形態の露光方法及び露光装置では、例えば図15(b)に示すようなフォーカス位置分布を、図15(c)に示すようなフォーカス位置分布に補正することができる。ここで、図15(b)は、図15(a)に示したフォーカス情報をもとに、第1及び第2走査露光の間で各投影光学モジュールのフォーカス位置調整機構31の調整を行うことなく各走査露光を行う場合のフォーカス位置分布を示し、図15(c)は、ステップS42によって導出した調整量をもとに補正した各投影光学モジュールの像面位置および像面傾斜角度に基づいて第1および第2走査露光を行う場合のフォーカス位置分布を示している。そして、第6の実施形態の露光方法及び露光装置では、第4及び第5の実施形態と同様に、転写パターンMPA全体におけるパターン線幅を所望の線幅範囲内にすることができるとともに、継ぎ部47における転写パターンMA,MBのパターン線幅の線幅差の発生を抑制することができる。
 次に、本発明の第7の実施形態に係る露光方法について説明する。この実施形態に係る露光方法は、上述した露光装置EXを用いて行うものであるため、第1の実施形態で用いたのと同一の符号を用いて説明を行う。
 まず、制御装置CONTは、図16に示すように初期転写位置の情報(転写特性情報)を取得し、記憶部80に記憶する(ステップS50)。ここで初期転写位置の計測は、試し露光の後に現像またはエッチングされた感光基板Pを用いて、絶対寸法管理された長寸法測定器で、パターンPPAに対応する転写パターンの外周部(及び必要に応じて中央部)の計測用マークを計測することによる転写パターンの位置ずれの計測により行う。このようにして計測された転写パターンの位置ずれ量は、図示しない入力部から入力され、記憶部80に記憶される。その後制御装置CONTは、第1の実施形態におけるステップS21と同様に継ぎ部情報を取得する(ステップS51)。
 図17(a)は、ステップS51で記憶部80に記憶させた転写パターンの初期の転写特性を示す図である。制御装置CONTは、第1走査露光における転写パターンMAと第2走査露光における転写パターンMBとの継ぎ部47での位置ずれ量が所定の位置ずれ範囲内になるように、第1及び第2走査露光における各投影光学モジュールPLa~PLgの結像特性を調整するための像シフト機構19、倍率調整機構23および直角プリズム24,27等の調整量(動作量)を、最小自乗法等を用いて導出する(ステップS52)。ここで制御装置CONTは、走査露光の走査範囲にわたる継ぎ部47における位置ずれ量が所定の位置ずれ範囲内になるように、第1走査露光における各投影光学モジュールPLa~PLfの結像特性の調整値、及び第2走査露光における各投影光学モジュールPLb~PLgの結像特性の調整値を算出し、この調整値に対応する像シフト機構19、倍率調整機構23および直角プリズム24,27等の調整量を導出する。このとき、転写パターンMAおよび転写パターンMBの全体の周縁部が、図17(b)で示すような許容範囲としての所定の位置ずれ範囲FDR内となるように調整量を導出する。
 次に、制御装置CONTは、第1の実施形態におけるステップS13と同様に、転写パターンMAのパターン幅の設定を行う(ステップS53)。そして、感光基板PとマスクMとの位置合わせをし、各投影光学モジュールPLa~PLfの結像特性を、ステップS52で導出した調整量に基づいて調整する(ステップS54)。この際、各投影光学モジュールPLa~PLfの像シフト機構19、倍率調整機構23、直角プリズム24,27の少なくとも1つを動作させて調整する。さらに第1走査露光において、ステップS52で導出した調整量に基づき各投影光学モジュールPLa~PLfの各調整機構を逐次動作させることで、図18(a)に示すように感光基板P上に転写パターンMAを形成する(ステップS55)。
 次に、制御装置CONTは、第1の実施形態におけるステップS15と同様に、転写パターンMBのパターン幅の設定を行う(ステップS56)。そして、制御装置CONTは、マスクMと感光基板Pとの位置合わせを行い、各投影光学モジュールPLb~PLgの結像特性を、ステップS54と同様に、ステップS52で導出した調整量に基づいて各調整機構を動作させることで調整する(ステップS57)。さらに第2走査露光において、ステップS52で導出した調整量に基づき各投影光学モジュールPLb~PLgの各調整機構を逐次動作させることで、図18(a)に示すように感光基板P上に転写パターンMBを形成する(ステップS58)。このようにして、転写パターンMPAを感光基板P上に形成することができる。
 なお、ステップS52において、転写パターンの位置ずれ量の補正を線形に補正するように各調整機構の調整量を導出した場合、図18(a)に示すような補正結果が得られるが、非線形に補正をするように調整量を導出した場合には、図18(b)で示すような補正結果を得ることができる。
 以上説明した第7の実施形態の露光方法及び露光装置では、第1~第6の実施形態と同様に、転写パターンMPA全体におけるパターン線幅を所望の線幅範囲内にすることができるとともに、継ぎ部47における転写パターンMA,MBのパターン線幅の線幅差の発生を抑制することができる。
 なお、上述した第7の実施形態においては、転写パターンの位置ずれが走査方向(X軸方向)に生じる場合について説明したが、転写パターンの位置ずれが非走査方向(Y軸方向)に生じる場合、即ち試し露光により感光基板上に転写された転写パターンMA,MB間の非走査方向に隙間ができるような場合においても、転写パターンの位置ずれが走査方向(X軸方向)に生じる場合と同様に、転写パターンの位置ずれの補正を行うことができる。更に、転写パターンに対して線形補正及び非線形補正を行うことにより、転写パターンMA,MBの全体が矩形状になるように補正することも可能である。
 また、上述した第7の実施形態においては、試し露光を行い転写パターンの位置ずれ量を計測し、この計測結果を初期転写位置の情報として入力部から入力することにより記憶部80に記憶させているが、パターン像検出センサ70を用いてパターンPPAに対応する空間像を検出し、この検出結果に対応する初期転写位置の情報を記憶部80に記憶させるようにしてもよい。
 なお、上述した第1~第7の実施形態では、転写パターンの継ぎ合わせを行う場合に、転写パターンの転写特性を調整するものとして説明したが、転写パターンの継ぎ合わせを行わない場合でも、同様に走査露光ごとに転写特性を調整することができる。また、プレートP上の複数の位置で転写パターンの継ぎ合わせを行う場合には、その位置に応じて転写特性の調整量を変化させる(最適化する)ことができる。
 次に、本発明に係る露光装置を用いたデバイス製造方法について説明する。図19は、半導体デバイスの製造工程を示すフローチャートである。この図に示すように、半導体デバイスの製造工程では、半導体デバイスの基板となるウエハに金属膜を蒸着し(ステップS400)、この蒸着した金属膜上に感光性材料であるフォトレジストを塗布する(ステップS420)。つづいて、本発明に係る露光装置を用いてマスク設けられたパターンの投影像をウエハ上の各ショット領域に転写し(ステップS440:露光工程(照明工程および投影工程))、この転写が終了したウエハの現像、つまりパターンの投影像が転写されたフォトレジストの現像を行う(ステップS460:現像工程)。その後、ステップS460によってウエハ上に形成されたレジストパターンをマスクとし、ウエハに対してエッチング等の加工を行う(ステップS480:加工工程)。ここで、レジストパターンとは、本発明にかかる露光装置によって転写されたパターンの投影像に対応する形状の凹凸が形成されたフォトレジスト層であって、その凹部がフォトレジスト層を貫通しているものである。ステップS480では、このレジストパターンを介してウエハ表面の加工を行う。ステップS480で行われる加工には、例えばウエハ表面のエッチングまたは金属膜等の成膜の少なくとも一方が含まれる。なお、ステップS440では、本発明にかかる露光装置は、フォトレジストが塗布されたウエハを感光基板としてパターンの転写を行う。
 図20は、液晶表示素子等の液晶デバイスの製造工程を示すフローチャートである。この図に示すように、液晶デバイスの製造工程では、パターン形成工程(ステップS500)、カラーフィルタ形成工程(ステップS520)、セル組立工程(ステップS540)およびモジュール組立工程(ステップS560)を順次行う。ステップS500のパターン形成工程では、感光基板としてフォトレジストが塗布されたガラス基板上に、本発明にかかる露光装置を用いて回路パターンおよび電極パターン等の所定のパターンを形成する。このパターン形成工程には、本発明にかかる露光装置を用いてフォトレジスト層に、マスクに設けられたパターンの投影像を転写する露光工程と、パターンの投影像が転写された感光基板の現像、つまりガラス基板上のフォトレジスト層の現像を行い、パターンの投影像に対応する形状のフォトレジスト層を形成する現像工程と、この現像されたフォトレジスト層を介してガラス基板を加工する加工工程とが含まれている。ステップS520のカラーフィルタ形成工程では、R(Red)、G(Green)、B(Blue)に対応する3つのドットの組をマトリクス状に多数配列するか、またはR、G、Bの3本のストライプのフィルタの組を水平走査方向に複数配列したカラーフィルタを形成する。ステップS540のセル組立工程では、ステップS500によって所定パターンが形成されたガラス基板と、ステップS520によって形成されたカラーフィルタとを用いて液晶パネル(液晶セル)を組み立てる。具体的には、例えばガラス基板とカラーフィルタとの間に液晶を注入することで液晶パネルを形成する。ステップS560のモジュール組立工程では、ステップS540によって組み立てられた液晶パネルに対し、この液晶パネルの表示動作を行わせる電気回路およびバックライト等の各種部品を取り付ける。
 なお、本開示は、2008年1月9日に提出された日本国特許出願2008-2492号に含まれた主題に関し、その開示の全ては、ここに参照事項として明白に組み込まれる。
 本発明は、感光基板にパターンを転写する露光方法及び露光装置に利用可能である。

Claims (27)

  1.  並設された複数の投影光学モジュールを用いて感光基板上に形成される転写パターンの転写特性情報を取得する特性情報取得工程と、
     複数の前記転写パターンのうち前記感光基板上で継ぎ合わされる第1転写パターンおよび第2転写パターンの継ぎ部に対応する前記投影光学モジュールを示す継ぎ部情報を取得する継ぎ情報取得工程と、
     前記転写パターンの転写特性を変化させる特性調整機構の動作量であって前記継ぎ部における前記第1転写パターンおよび前記第2転写パターンの前記転写特性の特性差を補正する補正動作量を、前記転写特性情報および前記継ぎ部情報をもとに導出する導出工程と、
     前記補正動作量に基づいて前記特性調整機構を動作させ、前記第1転写パターンおよび前記第2転写パターンを前記感光基板上に順次形成する転写工程と、
     を含むことを特徴とする露光方法。
  2.  前記継ぎ部情報に対応する前記投影光学モジュールによって投影されるパターン像の少なくとも一部を遮蔽して前記第1転写パターンおよび前記第2転写パターンの少なくとも一方のパターン幅を設定するパターン幅設定工程を含むことを特徴とする請求項1に記載の露光方法。
  3.  前記導出工程は、前記補正動作量として、前記第1転写パターンの前記転写特性を変化させる第1補正動作量と、前記第2転写パターンの前記転写特性を変化させる第2補正動作量との少なくとも一方を導出し、
     前記転写工程は、前記第1補正動作量と前記第2補正動作量との少なくとも一方に基づいて前記特性調整機構を動作させ、前記第1転写パターンと前記第2転写パターンとの少なくとも一方に対応する前記転写特性を変化させることを特徴とする請求項1または2に記載の露光方法。
  4.  前記導出工程は、前記特性差を示す差分値を所定特性差範囲内にする前記補正動作量を導出することを特徴とする請求項1~3のいずれか一項に記載の露光方法。
  5.  前記導出工程は、前記転写特性を示す特性値を所定特性値範囲内にする前記補正動作量を導出することを特徴とする請求項4に記載の露光方法。
  6.  前記特性調整機構は、前記投影光学モジュールごとに前記転写特性を変化させ、
     前記導出工程は、前記投影光学モジュールごとの前記特性調整機構の動作量を前記補正動作量として導出することを特徴とする請求項1~5のいずれか一項に記載の露光方法。
  7.  前記導出工程は、複数の前記投影光学モジュールのうちの第1投影光学モジュールよりも前記継ぎ部に近い第2投影光学モジュールにおける前記転写特性を、前記第1投影光学モジュールにおける前記転写特性に比して同等以上に変化させる前記補正動作量を導出することを特徴とする請求項6に記載の露光方法。
  8.  前記導出工程は、2以上の前記投影光学モジュールにおける前記転写特性を略均等に変化させる前記補正動作量を導出することを特徴とする請求項6に記載の露光方法。
  9.  前記導出工程は、隣り合う前記投影光学モジュール間における前記転写特性のモジュール間特性差を示す差分値を所定特性差範囲内にする前記補正動作量を導出することを特徴とする請求項6~8のいずれか一項に記載の露光方法。
  10.  前記転写特性は、前記投影光学モジュールを介して前記転写パターンを形成する露光光の露光量を示す露光量特性と、前記投影光学モジュールの像面と前記感光基板とのフォーカス位置を示すフォーカス特性と、の少なくとも一方を含むことを特徴とする請求項1~9のいずれか一項に記載の露光方法。
  11.  前記転写工程は、前記感光基板を所定方向へ移動させながら前記第1転写パターンと前記第2転写パターンとを前記感光基板上に形成することを特徴とする請求項1~10のいずれか一項に記載の露光方法。
  12.  並設された複数の投影光学モジュールと、
     前記複数の投影光学モジュールを用いて感光基板上に形成される転写パターンの転写特性を変化させる特性調整機構と、
     前記転写パターンの転写特性情報を記憶した記憶手段と、
     複数の前記転写パターンのうち前記感光基板上で継ぎ合わされる第1転写パターンおよび第2転写パターンの継ぎ部に対応する前記投影光学モジュールを示す継ぎ部情報を取得する継ぎ情報取得手段と、
     前記特性調整機構の動作量であって前記継ぎ部における前記第1転写パターンおよび前記第2転写パターンの前記転写特性の特性差を補正する補正動作量を、前記転写特性情報および前記継ぎ部情報をもとに導出し、該補正動作量に基づいて前記特性調整機構を動作させ、前記第1転写パターンおよび前記第2転写パターンを前記感光基板上に順次形成する制御を行う制御手段と、
     を備えることを特徴とする露光装置。
  13.  前記継ぎ部情報に対応する前記投影光学モジュールによって投影されるパターン像の少なくとも一部を遮蔽して前記第1転写パターンおよび前記第2転写パターンのパターン幅を設定するパターン幅設定機構を備えることを特徴とする請求項12に記載の露光装置。
  14.  前記制御手段は、前記補正動作量として、前記第1転写パターンの前記転写特性を変化させる第1補正動作量と、前記第2転写パターンの前記転写特性を変化させる第2補正動作量との少なくとも一方を導出し、該第1補正動作量と該第2補正動作量との少なくとも一方に基づいて前記特性調整機構を動作させ、前記第1転写パターンと前記第2転写パターンとの少なくとも一方に対応する前記転写特性を変化させることを特徴とする請求項12または13に記載の露光装置。
  15.  前記制御手段は、前記特性差を示す差分値を所定特性差範囲内にする前記補正動作量を導出することを特徴とする請求項12~14のいずれか一項に記載の露光装置。
  16.  前記制御手段は、前記転写特性を示す特性値を所定特性値範囲内にする前記補正動作量を導出することを特徴とする請求項15に記載の露光装置。
  17.  前記特性調整機構は、前記投影光学モジュールごとに前記転写特性を変化させ、
     前記制御手段は、前記投影光学モジュールごとの前記特性調整機構の動作量を前記補正動作量として導出することを特徴とする請求項12~16のいずれか一項に記載の露光装置。
  18.  前記制御手段は、複数の前記投影光学モジュールのうちの第1投影光学モジュールよりも前記継ぎ部に近い第2投影光学モジュールにおける前記転写特性を、前記第1投影光学モジュールにおける前記転写特性に比して同等以上に変化させる前記補正動作量を導出することを特徴とする請求項17に記載の露光装置。
  19.  前記制御手段は、2以上の前記投影光学モジュールにおける前記転写特性を略均等に変化させる前記補正動作量を導出することを特徴とする請求項17に記載の露光装置。
  20.  前記制御手段は、隣り合う前記投影光学モジュール間における前記転写特性のモジュール間特性差を示す差分値を所定特性差範囲内にする前記補正動作量を導出することを特徴とする請求項17~19のいずれか一項に記載の露光装置。
  21.  前記感光基板を所定方向へ移動させる走査機構を備え、
     前記制御手段は、前記感光基板を前記所定方向へ移動させながら前記第1転写パターンと前記第2転写パターンとを前記感光基板上に形成する制御を行うことを特徴とする請求項12~20のいずれか一項に記載の露光装置。
  22.  前記転写特性は、前記投影光学モジュールを介して前記転写パターンを形成する露光光の露光量を示す露光量特性を含み、
     前記特性調整機構は、前記露光量特性を変化させる露光量調整機構を有することを特徴とする請求項12~21のいずれか一項に記載の露光装置。
  23.  前記露光量調整機構は、前記照度と前記照度分布との少なくとも一方を変化させる照度調整機構を含むことを特徴とする請求項22に記載の露光装置。
  24.  前記感光基板を所定方向へ移動させる走査機構を備え、
     前記露光量調整機構は、前記走査機構の前記所定方向への走査速度を変化させる速度調整機構を含むことを特徴とする請求項22に記載の露光装置。
  25.  前記転写特性は、前記投影光学モジュールの像面と前記感光基板とのフォーカス位置を示すフォーカス特性を含み、
     前記特性調整機構は、前記フォーカス位置を変化させるフォーカス調整機構を有することを特徴とする請求項12~21のいずれか一項に記載の露光装置。
  26.  前記特性調整機構は、前記投影光学モジュールの像面位置および像面傾斜角度の少なくとも一方を変化させる像面調整機構と、前記投影光学モジュールの像面に対する前記感光基板の相対距離および該像面に対する前記感光基板の相対傾斜角度の少なくとも一方を変化させる基板調整機構と、の少なくとも一方を有することを特徴とする請求項25に記載の露光装置。
  27.  前記特性調整機構は、前記投影光学モジュールの結像特性を変化させる結像特性調整機構を有することを特徴とする請求項12~21のいずれか一項に記載の露光装置。
PCT/JP2009/050054 2008-01-09 2009-01-07 露光方法及び露光装置 WO2009088004A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980100816A CN101836166A (zh) 2008-01-09 2009-01-07 曝光方法及曝光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-002492 2008-01-09
JP2008002492A JP2009163133A (ja) 2008-01-09 2008-01-09 露光方法及び露光装置

Publications (1)

Publication Number Publication Date
WO2009088004A1 true WO2009088004A1 (ja) 2009-07-16

Family

ID=40853117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050054 WO2009088004A1 (ja) 2008-01-09 2009-01-07 露光方法及び露光装置

Country Status (4)

Country Link
JP (1) JP2009163133A (ja)
KR (1) KR20100106949A (ja)
CN (1) CN101836166A (ja)
WO (1) WO2009088004A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150388A1 (ja) * 2016-02-29 2017-09-08 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、遮光装置、及び露光方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094286A1 (ja) * 2011-12-20 2013-06-27 株式会社ニコン 基板処理装置、デバイス製造システム、及びデバイス製造方法
JP2013238670A (ja) * 2012-05-11 2013-11-28 Canon Inc 露光装置、露光方法、デバイスの製造方法及び開口板
JP6039292B2 (ja) * 2012-08-02 2016-12-07 キヤノン株式会社 露光装置及び物品の製造方法
CN104698769B (zh) * 2013-12-10 2017-04-12 上海微电子装备有限公司 蓝宝石衬底的拼接曝光方法
CN113625532B (zh) * 2020-05-08 2022-10-25 上海微电子装备(集团)股份有限公司 基底标记位置检测方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151880A (ja) * 2001-11-12 2003-05-23 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法
JP2004335864A (ja) * 2003-05-09 2004-11-25 Nikon Corp 露光装置及び露光方法
WO2006080285A1 (ja) * 2005-01-25 2006-08-03 Nikon Corporation 露光装置及び露光方法並びにマイクロデバイスの製造方法
JP2006261361A (ja) * 2005-03-17 2006-09-28 Nikon Corp 露光装置及びマイクロデバイスの製造方法
JP2008242173A (ja) * 2007-03-28 2008-10-09 Orc Mfg Co Ltd 露光描画装置
JP2008250140A (ja) * 2007-03-30 2008-10-16 Fujifilm Corp 露光装置における露光方法及び露光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151880A (ja) * 2001-11-12 2003-05-23 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法
JP2004335864A (ja) * 2003-05-09 2004-11-25 Nikon Corp 露光装置及び露光方法
WO2006080285A1 (ja) * 2005-01-25 2006-08-03 Nikon Corporation 露光装置及び露光方法並びにマイクロデバイスの製造方法
JP2006261361A (ja) * 2005-03-17 2006-09-28 Nikon Corp 露光装置及びマイクロデバイスの製造方法
JP2008242173A (ja) * 2007-03-28 2008-10-09 Orc Mfg Co Ltd 露光描画装置
JP2008250140A (ja) * 2007-03-30 2008-10-16 Fujifilm Corp 露光装置における露光方法及び露光装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150388A1 (ja) * 2016-02-29 2017-09-08 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、遮光装置、及び露光方法
JPWO2017150388A1 (ja) * 2016-02-29 2018-11-29 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、遮光装置、及び露光方法
TWI663482B (zh) * 2016-02-29 2019-06-21 日商尼康股份有限公司 曝光裝置、平板顯示器之製造方法、元件製造方法、遮光裝置、及曝光方法

Also Published As

Publication number Publication date
JP2009163133A (ja) 2009-07-23
KR20100106949A (ko) 2010-10-04
CN101836166A (zh) 2010-09-15

Similar Documents

Publication Publication Date Title
TWI479271B (zh) An exposure apparatus and an exposure method, and an element manufacturing method
US8363209B2 (en) Method and apparatus to adjust misalignment of the maskless exposure apparatus
JP4057937B2 (ja) 露光装置
WO2009088004A1 (ja) 露光方法及び露光装置
JP2004335864A (ja) 露光装置及び露光方法
JP2003151880A (ja) 露光装置及び露光方法、並びにデバイス製造方法
KR20010051835A (ko) 노광장치 및 노광방법
US20100068655A1 (en) Position measuring module, position measuring apparatus, stage apparatus, exposure apparatus and device manufacturing method
JP2007052214A (ja) 走査型露光装置及びマイクロデバイスの製造方法
US6288772B1 (en) Scanning exposure method and scanning type exposure apparatus
KR20110088741A (ko) 기준마크를 포함하는 마이크로 렌즈 어레이와 이를 포함하는 마스크리스 노광장치 및 그 교정방법
JP5404619B2 (ja) 露光装置
JP6519109B2 (ja) 露光方法及び装置、並びにデバイス製造方法
US9041907B2 (en) Drawing device and drawing method
JP2003272989A (ja) 露光方法及び露光装置
JP2004200430A (ja) 露光装置、露光装置の調整方法及び露光方法
JPH09298155A (ja) 露光方法、露光装置及びマスク
WO2023282211A1 (ja) 露光装置、デバイス製造方法およびフラットパネルディスプレイの製造方法
JP2011192900A (ja) 投影光学装置及び露光装置並びにデバイス製造方法
JP4807100B2 (ja) 露光装置、露光方法及びデバイス製造方法
JP2000298353A (ja) 走査露光方法および走査型露光装置
JP4543913B2 (ja) 露光装置及びマイクロデバイスの製造方法
JP2019117417A (ja) 露光装置
JP2006100568A (ja) 走査型投影露光装置及びマイクロデバイスの製造方法
JP2001209187A (ja) 露光装置及び露光方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100816.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09700157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107008413

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09700157

Country of ref document: EP

Kind code of ref document: A1