WO2009084692A1 - 可変焦点レンズ - Google Patents

可変焦点レンズ Download PDF

Info

Publication number
WO2009084692A1
WO2009084692A1 PCT/JP2008/073863 JP2008073863W WO2009084692A1 WO 2009084692 A1 WO2009084692 A1 WO 2009084692A1 JP 2008073863 W JP2008073863 W JP 2008073863W WO 2009084692 A1 WO2009084692 A1 WO 2009084692A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electro
focus lens
variable focus
light
Prior art date
Application number
PCT/JP2008/073863
Other languages
English (en)
French (fr)
Inventor
Tadayuki Imai
Masahiro Sasaura
Jun Miyazu
Shogo Yagi
Kazuo Fujiura
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to JP2009548120A priority Critical patent/JP5406046B2/ja
Priority to US12/808,105 priority patent/US8014061B2/en
Priority to CN2008801224619A priority patent/CN101910914B/zh
Priority to EP08867509.5A priority patent/EP2233966B1/en
Publication of WO2009084692A1 publication Critical patent/WO2009084692A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/128Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode field shaping

Definitions

  • the present invention relates to a variable focus lens, and more particularly to a variable focus lens that can change a focal length using an optical material having an electro-optic effect.
  • optical components such as optical lenses and prisms are optical devices such as cameras, microscopes, and telescopes, electrophotographic recording devices such as printers and copiers, optical recording devices such as DVDs, optical devices for communication, industrial use, etc. It is used for.
  • a normal optical lens has a fixed focal length.
  • a lens that can adjust the focal length according to the situation a so-called variable focus lens may be used in the above-described devices and apparatuses.
  • the conventional variable focus lens mechanically adjusts the focal length by combining a plurality of lenses.
  • such a mechanical variable focus lens has a limit in extending the application range from the viewpoint of response speed, manufacturing cost, miniaturization, power consumption, and the like.
  • variable focus lens in which a material capable of changing the refractive index is applied to the transparent medium constituting the optical lens, a variable focus lens that mechanically deforms the shape of the optical lens, instead of moving the position of the optical lens, etc. It was issued.
  • a variable focus lens using liquid crystal as an optical lens has been proposed.
  • This variable focus lens encloses the liquid crystal in a container made of a transparent material by sandwiching the liquid crystal between two glass plates.
  • a transparent electrode is provided inside the container, and the refractive index is controlled by applying an electric field to the liquid crystal, and the focal length is variably controlled (see, for example, Patent Document 1).
  • variable focus lens liquid is often used as the material of the deformable lens.
  • the variable focus lens described in Non-Patent Document 1 has a structure in which a liquid such as silicon oil is sealed in a space sandwiched between glass plates. The glass plate is thinly processed. By applying pressure to the glass plate with a lead zirconate titanate (PZT) piezo actuator from the outside, the lens composed of the oil and the entire glass plate is deformed, and the focal position is adjusted. Control.
  • PZT lead zirconate titanate
  • the conventional variable focus lens includes a variable focus lens that mechanically adjusts the focal length, a variable focus lens that controls the refractive index by applying an electric field to the liquid crystal, and a variable focus lens that deforms the lens by a PZT piezo actuator.
  • the response speed required to change the focal length is limited, and there is a problem that it cannot be applied to a high-speed response of 1 ms or less.
  • An object of the present invention is to provide a variable focus lens that can change the focal length at high speed.
  • one embodiment of the present invention is formed on an electro-optic material made of a single crystal having inversion symmetry, and a light incident surface and a light exit surface of the electro-optic material.
  • An optical axis is set so that the light is incident from a gap where the electrode on the incident surface is not formed, and is emitted from a gap where the electrode on the emission surface is not formed.
  • a portion of the electric lines of force connecting the electrode and the electrode on the exit surface bends in the gap, thereby changing the electric field of the portion through which the light is transmitted with the optical axis as a center.
  • the focal point of the light transmitted through the electro-optic material is variable by changing the voltage applied between the electrodes on the exit surface.
  • the electro-optic material is preferably a perovskite single crystal material, typically potassium tantalate niobate (KTa 1-x Nb x O 3 ).
  • the main component of the crystal is composed of groups Ia and Va in the periodic table, group Ia is potassium, and group Va can contain at least one of niobium and tantalum.
  • group Ia is potassium
  • group Va can contain at least one of niobium and tantalum.
  • the electrodes on the entrance surface and the electrode on the exit surface are arranged in parallel with opposing sides across the gap. Furthermore, it is preferable that the opposing side of the electrode on the incident surface and the opposing side of the electrode on the output surface facing each other with the electro-optic material interposed therebetween are arranged in parallel.
  • FIG. 1 is a diagram showing a configuration of a variable focus lens according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the principle of the variable focus lens according to the present embodiment.
  • FIG. 3 is a diagram showing an electric field component and a refractive index distribution inside the substrate of the variable focus lens.
  • FIG. 4 is a diagram illustrating a configuration of the variable focus lens according to the first embodiment.
  • FIG. 5A is a diagram illustrating an optical path length modulation distribution of the variable focus lens according to the second example.
  • FIG. 5B is a diagram illustrating an optical path length modulation distribution of the variable focus lens according to the second example.
  • FIG. 6 is a diagram illustrating the deviation between the optical path length modulation and the ideal quadratic curve in the variable focus lens according to the second example.
  • variable focus lens of this embodiment is composed of an electro-optic material and an electrode attached thereto. By utilizing the electro-optic effect, a much faster response speed can be obtained as compared with a conventional variable focus lens.
  • FIG. 1 shows a configuration of a variable focus lens according to an embodiment of the present invention.
  • a pair of upper electrodes 2a, 2b and lower electrodes 3a, 3b are respectively formed on the upper surface (light incident surface) and the lower surface (light emitting surface) of the substrate 1 obtained by processing the electro-optic material into a plate shape.
  • the upper electrodes 2a and 2b are set to the same potential, and the lower electrodes 3a and 3b are set to the same potential.
  • the optical axis is set in the y-axis direction so that light passes through the gap between the pair of electrodes having the same potential.
  • Each of the upper electrodes 2a and 2b is formed so that sides facing each other across a gap through which light passes is parallel to the z axis, and the interval between the two sides is A.
  • the lower electrodes 3a and 3b have the same configuration, and the positions of the opposing sides coincide with the opposing sides of the upper electrodes 2a and 2b in the x-axis direction, that is, with the substrate 1 in between.
  • the thickness of the substrate 1 is T.
  • a voltage can be applied from the upper electrode 2 to the lower electrode pair 3 or vice versa.
  • the electro-optic material is preferably an oxide single crystal material having inversion symmetry.
  • the inversion symmetry will be described later in detail. Details of the electrodes will be described later.
  • variable focus lens The principle of the variable focus lens according to the present embodiment will be described with reference to FIG.
  • a positive voltage is applied to the upper electrodes 2a and 2b, and a negative voltage is applied to the lower electrodes 3a and 3b.
  • an electric field is generated between the vertically facing electrodes in a state of facing from top to bottom.
  • the electric field is generated not only between the upper and lower electrodes but also around it, and also in a portion where light is transmitted. Due to the protruding electric field, an electro-optic effect is generated in the substrate 1 which is an electro-optic material, and the refractive index of the portion through which light is transmitted is modulated.
  • the electro-optic material generally has a relative dielectric constant sufficiently larger than 1. For this reason, the electric field lines of the electric field inside the substrate 1 are nearly parallel to the substrate surface near the surface (see reference numerals 4a and 4b). The electric lines of force 4a traveling rightward from the upper electrode 2a proceed almost parallel to the upper surface of the substrate 1 after leaving the upper electrode 2a. On the other hand, the electric lines of force 4b traveling leftward from the upper electrode 2b also proceed almost parallel to the upper surface of the substrate 1 after leaving the upper electrode 2b.
  • the electric lines of force 4a and 4b collide with each other at the center of the upper electrodes 2a and 2b, the electric lines of force 4a and 4b are largely turned from there and proceed downward.
  • the electric lines of force 4a and 4b then reach the lower surface, change their direction greatly, proceed in opposite directions, and proceed to the lower electrodes 3a and 3b, respectively.
  • the electric lines of force traveling near the surface inside the substrate 1 are bent sharply in the gap between the pair of electrodes having the same potential, so that the electric field greatly changes in the bent portion. That is, the refractive index is modulated by changing the electric field around the optical axis where light is transmitted.
  • FIG. 3 shows the electric field component and the refractive index distribution inside the substrate.
  • 3 (a) shows the x-axis direction in the vicinity of the upper surface of the substrate 1, the distribution of the electric field component E x.
  • the horizontal axis represents the position in the x-axis direction of the portion where light between the pair of electrodes having the same potential is transmitted. Since the direction of the electric lines of force differs 180 degrees between the left and right with the central portion as the boundary, this distribution is obtained.
  • FIG. 3B similarly shows the distribution of the electric field component E y in the y-axis direction at each position in the x-axis direction.
  • the electric field component E y has the same sign, but its absolute value is small at the center and increases as it approaches the electrode.
  • Such an electric field distribution modulates the refractive index in the x-axis direction.
  • FIG. 3C shows a refractive index when light having an optical electric field incident in the z direction is incident using potassium tantalate niobate (KTa 1-x Nb x O 3 , hereinafter referred to as KTN) as an electrooptic material.
  • KTN potassium tantalate niobate
  • variable focus lenses having the configuration shown in FIGS. 1 and 2 are prepared and arranged so that the optical axes of the portions through which the light passes are aligned.
  • the two variable focus lenses By arranging the two variable focus lenses at an angle of 90 degrees with respect to the optical axis as a center, by performing condensing or diverging in two directions, a function equivalent to a spherical lens can be realized.
  • the electro-optic effect includes several different-order electro-optic effects, but in general, the first-order electro-optic effect (hereinafter referred to as Pockels effect) and the second-order electro-optic effect (hereinafter referred to as Kerr effect). Is used).
  • a material having a secondary electro-optic effect (Kerr effect) in which refractive index modulation proportional to the square of the electric field occurs is preferable.
  • Kerr effect as shown in FIG. 3, the refractive index distribution ⁇ n is because it does not depend on the sign of the electric field component E x, become suitable symmetrical shape as a lens.
  • a single crystal having inversion symmetry refers to a crystal in which the arrangement of atoms is exactly the same as the original arrangement of atoms when the arrangement of atoms is inverted in the x, y, z coordinate system around a certain origin. Note that when a material having spontaneous polarization is inverted on the coordinate axis, the direction of spontaneous polarization is inverted, and thus such a crystal material does not have inversion symmetry. On the other hand, a single crystal having inversion symmetry has no Pockels effect, and the Kerr effect is the lowest order electro-optic effect. Therefore, among crystal materials having an electro-optic effect, a single crystal having inversion symmetry is desirable.
  • the magnitude of the electric field inside the crystal is proportional to the voltage applied to the electrode. Also, since the refractive index modulation is proportional to the square of the electric field, the magnitude of the refractive index modulation is proportional to the square of the voltage. Thereby, the focal length of the concave lens can be controlled by the voltage. Although it has been described here that it functions as a concave lens, the sign of the electro-optic coefficient differs depending on the material and light polarization, so that a convex lens can also be realized.
  • the electro-optic material is preferably a single crystal material having a perovskite crystal structure. This is because the perovskite single crystal material has a cubic phase having reversal symmetry in the use state if the use temperature is appropriately selected, and does not have the Pockels effect in this cubic phase. For example, even the most well-known barium titanate (BaTiO 3 , hereinafter referred to as BT) may exceed the temperature at which the phase transition from the tetragonal phase to the cubic phase (hereinafter referred to as the phase transition temperature) occurs at around 120 ° C. For example, it becomes a cubic phase and exhibits the Kerr effect.
  • BaTiO 3 barium titanate
  • the single crystal material mainly composed of KTN has more preferable characteristics.
  • BT has a predetermined phase transition temperature, whereas KTN can select a phase transition temperature depending on the composition ratio of tantalum and niobium.
  • the phase transition temperature can be set near room temperature.
  • KTN has a cubic phase at a temperature higher than the phase transition temperature, has inversion symmetry, and has a large Kerr effect. Even in the same cubic phase, the Kerr effect becomes overwhelmingly closer to the phase transition temperature. For this reason, setting the phase transition temperature around room temperature is very important for easily realizing a large Kerr effect.
  • the main component of the crystal is composed of groups Ia and Va in the periodic table, group Ia is potassium, and group Va contains at least one of niobium and tantalum. Can be used. Furthermore, it is possible to include one or more members of Group Ia of the periodic table excluding potassium as an additive impurity, for example, lithium, or Group IIa.
  • a cubic phase KLTN K 1-y Li y Ta 1-x Nb x O 3 , 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) crystal having a large Kerr effect may be used.
  • the dielectric constant increases rapidly when the operating temperature is brought close to the phase transition temperature.
  • the electro-optic effect is increased.
  • the dielectric constant is high, the bending of the electric lines of force shown in FIG. 2 becomes more abrupt and the lens effect increases.
  • the focal length is 1 m or less due to the synergistic effect of combining the large electro-optic effect and the bending of the electric field lines.
  • the refractive index modulation of KTN varies depending on the relationship between the direction of the applied electric field and the direction of the optical electric field, as in other electro-optic crystals.
  • the refractive index modulation [Delta] n x and [Delta] n z where light feel
  • n 0 is the refractive index before modulation.
  • s 11 and s 12 are electro-optic coefficients. S 11 is positive, whereas s 12 has a negative value, and the absolute value is larger in s 11 . Because of this feature, the function changes completely depending on the polarization state of the incident light, a convex lens when the direction of the optical electric field is the x direction, and a concave lens when the direction of the optical field is the z direction.
  • Electrode material When a high voltage is applied to the electro-optic material, charges are injected from the electrodes, and space charges can be generated in the crystal. This space charge causes an electric field to be tilted in the direction of voltage application, so that the refractive index is also tilted.
  • the carrier injection efficiency injected from the electrode should be small.
  • the work function of the electrode material is preferably 5.0 eV or more.
  • Electrode material having a work function of 5.0 eV or more Co (5.0), Ge (5.0), Au (5.1), Pd (5.12), Ni (5.15), Ir (5.27), Pt (5.65), Se (5.9) can be used.
  • Figures in parentheses indicate work functions (eV).
  • the work function of the electrode material is preferably less than 5.0 eV in order to suppress the injection of holes.
  • Ti (3.84) or the like can be used as an electrode material having a work function of 5.0 eV or more. Since the Ti single-layer electrode is oxidized and becomes high resistance, generally, the Ti layer and the electro-optic crystal are bonded using an electrode in which Ti / Pt / Au is laminated. Furthermore, transparent electrodes such as ITO (Indium Tin Oxide) and ZnO can also be used.
  • FIG. 4 shows a configuration of the variable focus lens according to the first example.
  • a pair of upper electrodes 12a and 12b and a pair of lower electrodes 13a and 13b are formed on the upper and lower surfaces of the substrate 11 obtained by processing the electro-optic material into a plate shape.
  • the relative dielectric constant at this temperature is 20,000.
  • Each of the upper electrodes 12a and 12b and the lower electrodes 13a and 13b has a square shape of 0.6 mm ⁇ 2.6 mm and is formed by depositing platinum (Pt).
  • the opposing sides are arranged in parallel with a gap through which light passes, and the distance A between these two sides is 1.4 mm.
  • the collimated laser light is incident on the gap between the upper electrodes 12a and 12b while the temperature of the variable focus lens of Example 1 is controlled at 40 ° C.
  • the polarization of light is a straight line, and the direction of the oscillating electric field is the z-axis direction.
  • a voltage of 500 V is applied between the upper and lower electrodes, the light emitted from between the lower electrodes 13a and 13b spreads in the x-axis direction and functions as a cylindrical concave lens.
  • the focal length is 25 cm.
  • the applied voltage is 250 V
  • the spread becomes small and the focal length becomes about 1 m. That is, the focal length can be changed by the applied voltage. Since changing the focal length only changes the applied voltage, the response time is 1 ⁇ s or less, which is an improvement of three orders of magnitude or more compared to the response time of the conventional variable focus lens.
  • the measurement is performed by rotating the polarized light by 90 degrees while maintaining the traveling direction of the light. That is, the direction of the oscillating electric field of light is the x-axis direction. In this case, it functions as a convex lens.
  • the applied voltage is 500 V
  • the focal length is 19 cm, and the focal length can be changed by the applied voltage.
  • the characteristic of the lens is expressed by optical path length modulation that the light receives by passing through the substrate 1.
  • the optical path length modulation ⁇ s is obtained by integrating the refractive index modulation ⁇ n over the path through the electro-optic material. As described above, since the refractive index modulation is a function of x and y, this is assumed to be ⁇ n (x, y). The refractive index modulation ⁇ n does not depend on z. Since the variable focus lens according to the present embodiment propagates light in the y-axis direction, the optical path length modulation ⁇ s is
  • FIGS. 5A and 5B show optical path length modulation distributions of the variable focus lens according to Example 2.
  • the horizontal axis represents the position in the x-axis direction, and the origin is the center of the portion through which light is transmitted.
  • the vertical axis represents the optical path length modulation ⁇ s.
  • the optical path length modulation ( ⁇ Sx) when the optical electric field is directed in the x-axis direction is convex upward, indicating that it functions as a convex lens.
  • the optical path length modulation ( ⁇ Sz) when the optical electric field is directed in the z-axis direction is convex downward, indicating that it functions as a concave lens.
  • FIG. 5A and 5B show the results of fitting to a quadratic curve. Ideally, it would be desirable to follow this quadratic curve, but in each case there is a slight deviation. Furthermore, FIG. 5A has a larger deviation from the quadratic curve than FIG. 5B. This is because the electric lines of force that spread from each electrode to the portion where light is transmitted spread only within a range determined by the thickness T of the substrate 1. That is, when the same voltage is applied between the upper electrode and the lower electrode, if the distance A between the upper electrode and the lower electrode is too wide (in the case of FIG. 5A), the electric lines of force reach the center of the portion where the light is transmitted. This is because the electro-optic effect is reduced and the refractive index modulation is also reduced.
  • FIG. 6 shows the deviation between the optical path length modulation and the ideal quadratic curve in the variable focus lens according to Example 2.
  • the vertical axis represents the peak / peak value of the deviation between the actual optical path length modulation ⁇ s and the ideal quadratic curve. That is, the optical path length modulation (plots ⁇ and ⁇ in FIGS. 5A and 5B) is determined by determining the interval A and the thickness T, and the fitting shown in FIGS. 5A and 5B is performed. In this range, the minimum value and the maximum value of the deviation amount are obtained, and the deflection width is shown as the peak / peak value.
  • the guideline for the amount of deviation of the optical path length modulation ⁇ s is about the light wavelength (approximately 1 ⁇ m), so it is desirable that R be 1.5 or less.
  • the upper electrodes 12a and 12b are shown as independent electrodes. However, as long as unnecessary disturbance is not given to the electric field distribution inside the substrate 11, the upper electrodes 12a and 12b are coupled on the upper surface of the substrate 11 or by other methods. It may be a combined electrode. Similarly, the lower electrodes 13a and 13b may be combined electrodes as long as the electric field distribution inside the substrate 11 is not disturbed.
  • the opposing sides of the upper electrodes 12a and 12b and the lower electrodes 13a and 13b are coincident in the x-axis direction with the substrate 11 interposed therebetween, but are not necessarily coincident with each other. What is necessary is just to be parallel.
  • the upper electrode and the lower electrode are shown as squares, but the shape excluding the opposite sides across the gap through which light passes can be any shape since it does not affect the lens action. Further, from the outer extension of the light transmitting region, about the same distance as the electrode interval A or the substrate thickness T, or more in the z-axis direction, even on the sides facing each other with a gap therebetween, It may be any shape.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

 焦点距離の変更を高速に行うことができる可変焦点レンズを提供する。電気光学材料と、該電気光学材料の光の入射面と光の出射面とに形成された電極とを備え、前記光を前記入射面の電極が形成されていない空隙から入射し、前記出射面の電極が形成されていない空隙から出射するように光軸が設定され、前記入射面の電極と前記出射面の電極とを結ぶ電気力線の一部が前記空隙で屈曲することにより、前記光軸を中心に前記光が透過する部分の電界が変化させられ、前記入射面の電極と前記出射面の電極との間の印加電圧を変えることにより、前記電気光学材料を透過した光の焦点が可変となる。

Description

可変焦点レンズ
 本発明は、可変焦点レンズに関し、より詳細には、電気光学効果を有する光学材料を用いて、焦点距離を変更可能とした可変焦点レンズに関する。
 従来、光学レンズ、プリズムなどの光学部品は、カメラ、顕微鏡、望遠鏡などの光学機器、プリンタ、コピー機など電子写真方式の記録装置、DVDなどの光記録装置、通信用、工業用の光デバイス等に用いられている。通常の光学レンズは、焦点距離が固定されているが、上述の機器、装置の中には、状況に応じて焦点距離を調整することのできるレンズ、いわゆる可変焦点レンズを用いる場合がある。従来の可変焦点レンズは、複数のレンズを組み合わせて、機械的に焦点距離を調整する。しかしながら、このような機械式の可変焦点レンズは、応答速度・製造コスト・小型化・消費電力などの点から、適用範囲を広げることには限界があった。
 そこで、光学レンズを構成する透明媒質に、屈折率を可変できる物質を適用した可変焦点レンズ、光学レンズの位置を動かすのではなく、機械的に光学レンズの形状を変形させる可変焦点レンズなどが考え出された。前者の可変焦点レンズとして、光学レンズとして液晶を利用した可変焦点レンズが提案されている。この可変焦点レンズは、2枚のガラス板で液晶を挟み込むなどして、透明物質でできた容器に液晶を封じ込めている。この容器の内側を球面上に加工して、液晶をレンズ形状に成形すると、可変焦点レンズを構成することができる。この容器の内側には透明電極が設けられ、液晶に電界をかけることによって屈折率を制御し、焦点距離を可変制御する(例えば、特許文献1参照)。
 後者の可変焦点レンズとして、変形するレンズの材料は、液体が用いられることが多い。例えば、非特許文献1に記載された可変焦点レンズは、ガラス板に挟まれた空間に、シリコンオイルなどの液体を封入した構造を有している。ガラス板は、薄く加工されており、外部からチタン酸ジルコン酸鉛(PZT)ピエゾアクチュエータによって、ガラス板に圧力をかけることにより、オイルとガラス板全体で構成されるレンズを変形させ、焦点位置を制御する。この可変焦点レンズの動作原理は、眼球の水晶体と同じである。
 しかしながら、従来の可変焦点レンズは、機械的に焦点距離を調整する可変焦点レンズ、液晶に電界をかけて屈折率を制御する可変焦点レンズ、PZTピエゾアクチュエータによりレンズを変形させる可変焦点レンズのいずれも、焦点距離を変更するのに要する応答速度に限界があり、1ms以下の高速応答に適用することができないという問題があった。
 本発明の目的は、焦点距離の変更を高速に行うことができる可変焦点レンズを提供することにある。
特開平11-64817号公報
金子卓他、「可変焦点レンズを用いた長焦点深度視覚機構」、デンソーテクニカルレビュー、Vol.3, No.1, p.52-58, 1998
 このような目的を達成するために、本発明の一実施態様は、反転対称性を有する単結晶からなる電気光学材料と、該電気光学材料の光の入射面と光の出射面とに形成された電極とを備え、前記光を前記入射面の電極が形成されていない空隙から入射し、前記出射面の電極が形成されていない空隙から出射するように光軸が設定され、前記入射面の電極と前記出射面の電極とを結ぶ電気力線の一部が前記空隙で屈曲することにより、前記光軸を中心に前記光が透過する部分の電界が変化させられ、前記入射面の電極と前記出射面の電極との間の印加電圧を変えることにより、前記電気光学材料を透過した光の焦点が可変であることを特徴とする。
 前記電気光学材料は、ペロブスカイト型単結晶材料が好適であり、典型的にはタンタル酸ニオブ酸カリウム(KTa1-xNb)を用いることができる。また、前記電気光学材料は、結晶の主成分が、周期律表Ia族とVa族から構成されており、Ia族はカリウムであり、Va族はニオブ、タンタルの少なくとも1つを含むことができ、さらに、添加不純物としてカリウムを除く周期律表Ia族、例えばリチウム、またはIIa族の1または複数種を含むこともできる。
 前記入射面の電極および前記出射面の電極の各々は、前記空隙を挟んで対向する辺が平行に配置されていることが好ましい。さらに、前記入射面の電極の前記対向する辺と、前記電気光学材料を挟んで対向する前記出射面の電極の前記対向する辺のそれぞれは、平行に配置されていることが好ましい。
図1は、本発明の一実施形態にかかる可変焦点レンズの構成を示す図である。 図2は、本実施形態にかかる可変焦点レンズの原理を説明するための図である。 図3は、可変焦点レンズの基板内部における電界成分と屈折率の分布とを示す図である。 図4は、実施例1にかかる可変焦点レンズの構成を示す図である。 図5Aは、実施例2にかかる可変焦点レンズの光路長変調分布を示す図である。 図5Bは、実施例2にかかる可変焦点レンズの光路長変調分布を示す図である。 図6は、実施例2にかかる可変焦点レンズにおいて光路長変調と理想的な二次曲線とのずれを示す図である。
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。本実施形態の可変焦点レンズは、電気光学材料と、これに取付けた電極から構成される。電気光学効果を利用することにより、従来の可変焦点レンズと比較して、はるかに高速な応答速度を得ることができる。
 図1に、本発明の一実施形態にかかる可変焦点レンズの構成を示す。電気光学材料を板状に加工した基板1の上面(光の入射面)および下面(光の出射面)に、それぞれ1対の上部電極2a,2bおよび下部電極3a,3bが形成されている。上部電極2a,2bの各々は等しい電位とし、下部電極3a,3bの各々も等しい電位とする。光は、同電位の電極対の間の空隙を通過するように、y軸方向に光軸を設定する。上部電極2a,2bのそれぞれは、光が透過する空隙を挟んで対向する辺がz軸に平行となるように形成されており、この2つの辺の間隔をAとする。下部電極3a,3bも同じ構成であり、その対向する辺の位置は、x軸方向において上部電極2a,2bの対向する辺と一致、すなわち基板1を挟んで一致している。ここで、基板1の厚さをTとする。電圧を上部電極2から下部電極対3へ、またはその逆に印加することができる。
 電気光学材料は、反転対称性を有する酸化物単結晶材料が好適である。反転対称性については、詳しくは後述する。電極についても詳しくは後述する。
 図2を参照して、本実施形態にかかる可変焦点レンズの原理を説明する。図1に示した可変焦点レンズにおいて、上部電極2a,2bに正の電圧、下部電極3a,3bに負の電圧をかける。このとき、通常のコンデンサと同様、電界は上下に向かい合った電極同士の間を、上から下に向いた状態で発生する。また、電界は、上下の電極の間だけでなく、その周囲にも発生し、光が透過する部分にも発生する。このはみ出した電界により、電気光学材料である基板1には、電気光学効果が発生し、光が透過する部分の屈折率が変調される。
 光が透過する部分の電界分布と屈折率変調について説明する。電気光学材料は、一般的に比誘電率が1より十分に大きい。このため、基板1の内部の電界の電気力線は、表面付近では、基板表面に対して平行に近くなる(符号4a,4b参照)。上部電極2aから右方向へ進む電気力線4aは、上部電極2aを出た後、そのまま基板1の上面にほぼ平行に進む。一方、上部電極2bから左方向へ進む電気力線4bも、上部電極2bを出た後、そのまま基板1の上面にほぼ平行に進む。2つの電気力線4a,4bは、上部電極2a,2bの中央でぶつかるので、そこから大きく向き変え、基板1の下方向へ進む。電気力線4a,4bは、その後下面に達し、大きく向きを変えて、互いに反対方向に進み、それぞれ下部電極3a,3bまで進む。このように、基板1の内部で、表面付近を進む電気力線は、同電位の電極対の間の空隙において急激に屈曲するので、この屈曲部分では電界が大きく変化する。すなわち、光軸を中心に、光が透過する部分で電界が変化して、屈折率が変調される。
 図3に、基板内部における電界成分と屈折率の分布とを示す。図3(a)は、基板1の上面付近のx軸方向の、電界成分Eの分布を示す。横軸は、同電位の電極対の間にある光が透過する部分のx軸方向の位置を表している。中央部を境に、左と右とでは電気力線の向きが180度異なるため、このような分布となる。図3(b)は、同じくx軸方向の各々の位置におけるy軸方向の電界成分Eの分布を示す。電界成分Eは、符号は変わらないが、その絶対値は中央部で小さく、電極に近づくほど大きくなる。このような電界分布により、x軸方向の屈折率が変調される。
 図3(c)に、電気光学材料としてタンタル酸ニオブ酸カリウム(KTa1-xNb、以下KTNという)を用いて、光電界の向きがz方向の光を入射したときの屈折率変調を示す。基板1の中央部付近、すなわち光軸付近は、中央部からx軸方向に離れて、電極対に近い部分よりも屈折率が低いため、光は高速で進行し、中心部から電極対に近い部分ほど、光の速度は遅くなる。このため、基板1を透過した光の波面は、中央部付近よりも電極対に近い部分で遅れた形となり、凹レンズとして機能する。光が透過する部分をレンズとして考えると、集光または発散の効果の強いレンズを実現することができる。図1および図2の構成では、x軸方向にのみ集光または発散が起こり、z方向での集散は起こらないので、一般的な球面レンズではなく、いわゆるシリンドリカルレンズとして機能する。
 図1および図2の構成の可変焦点レンズをもう一組用意し、光が透過する部分の光軸を一致させて配置する。2つの可変焦点レンズを、光軸を中心に互いに90度の角度で配置することにより、2方向で集光または発散を行うことにより、球面レンズと等価な機能を実現することができる。
  (電気光学材料)
 電気光学効果には、いくつかの次数の異なる電気光学効果が含まれるが、一般的には、1次の電気光学効果(以下、ポッケルス効果という)と2次の電気光学効果(以下、カー効果という)が利用されている。しかし、電気光学効果の中でも、電界の自乗に比例した屈折率変調が起こる、2次の電気光学効果(カー効果)を有する材料が好適である。カー効果の場合は、図3に示したように、屈折率分布Δnは電界成分Eの符号に依存しないので、レンズとして好適な左右対称形になるからである。一方、ポッケルス効果の場合は、屈折率変調は電界の1乗に比例し、電界成分Eによる屈折率変化は左右対称とならないため、レンズとしてうまく機能しない。
 また、反転対称性を有する単結晶とは、原子の配列を、ある原点を中心としてx,y,z座標系で反転したとき、元の原子の配列と完全に同じ配列となる結晶をいう。なお、自発分極を有する材料を、座標軸上で反転すると、自発分極の向きが反転するので、このような結晶材料は反転対称性を有していない。一方、反転対称性を有する単結晶は、ポッケルス効果を有さず、カー効果が最低次の電気光学効果となる。従って、電気光学効果を有する結晶材料の中でも、反転対称性を有する単結晶が望ましい。
 結晶内部の電界の大きさは、電極に印加する電圧に比例する。また、屈折率変調は電界の自乗に比例するため、結局、屈折率変調の大きさは電圧の自乗に比例する。これにより、凹レンズの焦点距離は電圧によって制御できる。また、ここでは凹レンズとして機能すると説明したが、電気光学係数の符号は材料や光偏光によって異なるので、凸レンズを実現することもできる。
 電気光学材料は、ペロブスカイト型の結晶構造を有する単結晶材料が好適である。ペロブスカイト型単結晶材料は、使用温度を適切に選択すれば、使用状態において反転対称性を有する立方晶相となり、この立方晶相にてポッケルス効果を有さないためである。例えば、最もよく知られたチタン酸バリウム(BaTiO、以下BTという)でも、120℃付近において正方晶相から立方晶相へ相転移する温度(以下、相転移温度という)を超えた温度であれば、立方晶相となり、カー効果を発現する。
 さらに、KTNを主成分とする単結晶材料は、より好適な特徴を有する。BTは相転移温度が決まっているのに対し、KTNは、タンタルとニオブの組成比により、相転移温度を選択することができる。これにより、室温付近に相転移温度を設定することができる。KTNは、相転移温度よりも高い温度であれば立方晶相となり、反転対称性を有し、大きなカー効果を有する。同じ立方晶相にあっても、より相転移温度に近い方が、カー効果が圧倒的に大きくなる。このため、室温付近に相転移温度を設定することは、大きなカー効果を簡便に実現する上で、非常に重要である。
 反転対称性を有する単結晶材料として、結晶の主成分が、周期律表Ia族とVa族から構成されており、Ia族はカリウムであり、Va族はニオブ、タンタルの少なくとも1つを含む材料を用いることができる。さらに、添加不純物としてカリウムを除く周期律表Ia族、例えばリチウム、またはIIa族の1または複数種を含むこともできる。例えば、大きなカー効果を有する立方晶相のKLTN(K1-yLiTa1-xNb、0<x<1、0<y<1)結晶を用いることもできる。
 KTNにおいて、使用温度を相転移温度に近づけると、誘電率が急激に高くなるため、
電気光学効果が大きくなる。また、誘電率が高いと、図2に示した電気力線の屈曲が、より急激になり、レンズ効果が大きくなる。大きな電気光学効果と大きな電気力線の屈曲とを合わせた相乗効果により、例えば、KTNの比誘電率が10,000を超え、KTN基板に印加する電圧が500Vを超えると、焦点距離が1m以下となり、実用上有効な特性が得られる。
 なお、KTNは、他の電気光学結晶と同様に、印加電界の向きと光電界の向きとの関係により、屈折率変調が変わる。図2の構成において、偏光は、光電界の向きがx軸方向の場合と、z軸方向の場合の2種類がある。それぞれの場合に、光が感じる屈折率変調ΔnとΔnとは、
Figure JPOXMLDOC01-appb-M000001
となって異なる。ここで、nは変調前の屈折率である。
 また、s11とs12は電気光学係数であるが、s11は正なのに対し、s12は負の値を持ち、絶対値はs11の方が大きい。この特徴のため、光電界の向きがx方向の場合は凸レンズ、z方向の場合は凹レンズと、入射光の偏光状態によって機能が全く変わる。
  (電極材料)
 電気光学材料に高い電圧を印加すると、電極から電荷が注入され、結晶内に空間電荷が発生しうる。この空間電荷により電圧の印加方向に電界の傾斜が生じるために、屈折率の変調にも傾斜が生じる。
 従って、電気光学材料をレンズとして機能させるための所望の屈折率分布が得られなかったり、電気光学材料を透過する光が偏向しないようにするためには、基板1に電圧を印加した際に、基板1の内部に空間電荷が形成されない方がよい。空間電荷の量は、キャリアの注入効率に依存する量であるため、電極から注入されるキャリアの注入効率は小さい方がよい。電極材料の仕事関数が大きくなるにつれて、電極と基板との間はショットキー接合に近づき、キャリアの注入効率は減少する。電気光学結晶において電気伝導に寄与するキャリアが電子の場合には、電極材料の仕事関数は、5.0eV以上であることが好ましい。例えば、仕事関数が5.0eV以上の電極材料として、Co(5.0)、Ge(5.0)、Au(5.1)、Pd(5.12)、Ni(5.15)、Ir(5.27)、Pt(5.65)、Se(5.9)を用いることができる。()内は仕事関数(eV)を示す。
 一方、電気光学結晶において電気伝導に寄与するキャリアが正孔の場合には、正孔の注入を抑えるために、電極材料の仕事関数は、5.0eV未満であることが好ましい。例えば、仕事関数が5.0eV以上の電極材料として、Ti(3.84)等を用いることができる。なお、Tiの単層電極は酸化して高抵抗になるので、一般的には、Ti/Pt/Auを積層した電極を用いて、Tiの層と電気光学結晶とを接合させる。さらに、ITO(Indium Tin Oxide)、ZnOなどの透明電極を用いることもできる。
  (実施例1)
 図4に、実施例1にかかる可変焦点レンズの構成を示す。電気光学材料を板状に加工した基板11の上面および下面に、それぞれ1対の上部電極12a,12bおよび下部電極13a,13bが形成されている。基板11は、KTN単結晶から、ブロックを切り出し、3mm×3mm×(厚さT=)1mmの形状に成形した。基板11の6面とも、結晶の(100)面に平行とし、光学研磨を行っている。このKTN単結晶は、相転移温度35℃であったので、これを少し上回る40℃で使用することとした。この温度での比誘電率は20,000である。
 上部電極12a,12b、下部電極13a,13bのそれぞれは、0.6mm×2.6mmの方形で、白金(Pt)を蒸着して形成されている。そして、光が透過する空隙を挟んで対向する辺を平行に配置してあり、この2つの辺の間隔Aは1.4mmである。
 実施例1の可変焦点レンズを、40℃で温度制御した状態で、コリメートしたレーザ光を、上部電極12a,12bの間の空隙に入射する。光の偏光は直線で、振動電界の方向はz軸方向である。上下電極間に500Vの電圧を印加すると、下部電極13a,13bの間から出射する光は、x軸方向に広がり、シリンドリカル凹レンズとして機能する。焦点距離は25cmである。ここで、印加電圧を250Vにすると、広がりは小さくなり、焦点距離は約1mになる。すなわち、印加電圧により、焦点距離を変化させることができる。焦点距離の変更は、印加電圧を変更するだけなので、応答時間は1μs以下であり、従来の可変焦点レンズの応答時間と比較して、3桁以上改善されている。
 また、光の進行方向はそのままに、偏光を90度回転させて測定を行う。つまり、光の振動電界の方向をx軸方向とする。この場合は、凸レンズとして機能する。印加電圧が500Vのとき、焦点距離は19cmであり、印加電圧によって焦点距離を変化させることができる。
  (実施例2)
 レンズの特性は、基板1を透過することによって光が受ける光路長変調によって表される。光路長変調Δsとは、電気光学材料を透過する間の経路にわたって、屈折率変調Δnを積分したものである。上述したように、屈折率変調はxとyとの関数であるため、これをΔn(x,y)とする。屈折率変調Δnはzには依存しない。本実施形態にかかる可変焦点レンズは、y軸方向に光が伝搬するので、光路長変調Δsは、
Figure JPOXMLDOC01-appb-M000002
となり、yには依存せずxのみの関数となる。すなわち、光を集散させるx軸方向でのみ変化し、z軸方向には変化しない。
 図5A,Bに、実施例2にかかる可変焦点レンズの光路長変調分布を示す。図5Aは、上部電極および下部電極の間隔A=2mmの場合の光路長変調分布を示し、図5Bは、間隔A=1mmの場合の光路長変調分布を示す。基板1は、いずれの場合も厚さT=1mmの電気光学材料を使用している。横軸は、x軸方向の位置を表し、光が透過する部分の中央を原点としている。縦軸は、光路長変調Δsである。いずれも、光電界がx軸方向に向いている場合の光路長変調(ΔSx)は上に凸であり、凸レンズとして機能していることを表している。なお、光電界がz軸方向に向いている場合の光路長変調(ΔSz)は下に凸であり、凹レンズとして機能していることを表す。
 図5A,Bの曲線は、二次曲線へのフィッティングを結果を示している。理想的には、この二次曲線に従うことが望ましいが、いずれの場合もわずかにずれが存在している。さらに、図5Aは、図5Bと較べて二次曲線からのずれが大きい。これは、各電極から光が透過する部分へ広がる電気力線は、基板1の厚さTによって決定される範囲内しか広がらないからである。すなわち、上部電極と下部電極との間に同じ電圧を印加したとき、上部電極および下部電極の間隔Aが広すぎる(図5Aの場合)と、光が透過する部分の中央に電気力線が届かず、電気光学効果が小さくなり、屈折率変調も小さくなるからである。
 図6に、実施例2にかかる可変焦点レンズにおいて光路長変調と理想的な二次曲線とのずれを示す。横軸は、電極対の間の空隙の間隔Aと基板1の厚さTとの比R(=A/T)を示す。縦軸は、実際の光路長変調Δsと理想的な二次曲線とのずれ量のピーク・ピーク値を示す。すなわち、間隔Aと厚さTとを決めて実際の光路長変調(図5A,Bのプロット○、□)を求めて、図5A,Bに示したフィッティングを行い、x座標が空隙の間隔Aの範囲にわたって、ずれ量の最小値と最大値を求め、そのふれ幅をピーク・ピーク値として示している。Rが大きい場合は、光が透過する部分の中央に電気力線が届かず、光路長変調Δsのずれ量が大きくなるので、Rをある程度小さく設定しておくことが望ましい。実用上、光路長変調Δsのずれ量の目安は、光波長程度(およそ1μm)であることから、Rを1.5以下にすることが望ましい。
 上記実施例1においては、上部電極12a,12bは、それぞれ独立した電極として示しているが、基板11内部の電界分布に不要な乱れを与えない限り、基板11の上面で結合または他の方法で結合された1つの電極であっても構わない。同様に、下部電極13a,13bも、基板11内部の電界分布に不要な乱れを与えない限り、結合された1つの電極であってもよい。
 上記実施例1においては、上部電極12a,12bと下部電極13a,13bの対向する辺は、基板11を挟んでx軸方向において一致しているが、完全に一致している必要はなく、互いに平行であればよい。
 上記実施例においては、上部電極および下部電極を方形として示したが、光の透過する空隙を挟んで対向する辺を除いた形状は、レンズ作用に影響しないため、任意の形状であってよい。さらに、光の透過する領域の外延から、電極の間隔Aまたは基板の厚さTと同程度、またはそれ以上z軸方向に離れたところについては、空隙を挟んで対向する辺であっても、任意の形状であってよい。

Claims (10)

  1.  反転対称性を有する単結晶からなる電気光学材料と、該電気光学材料の光の入射面と光の出射面とに形成された電極とを備え、
     前記光を前記入射面の電極が形成されていない空隙から入射し、前記出射面の電極が形成されていない空隙から出射するように光軸が設定され、
     前記入射面の電極と前記出射面の電極とを結ぶ電気力線の一部が前記空隙で屈曲することにより、前記光軸を中心に前記光が透過する部分の電界が変化させられ、
     前記入射面の電極と前記出射面の電極との間の印加電圧を変えることにより、前記電気光学材料を透過した光の焦点が可変であることを特徴とする可変焦点レンズ。
  2.  前記電気光学材料は、ペロブスカイト型単結晶材料であることを特徴とする請求項1に記載の可変焦点レンズ。
  3.  前記電気光学材料は、タンタル酸ニオブ酸カリウム(KTa1-xNb)であることを特徴とする請求項2に記載の可変焦点レンズ。
  4.  前記電気光学材料は、結晶の主成分が、周期律表Ia族とVa族から構成されており、Ia族はカリウムであり、Va族はニオブ、タンタルの少なくとも1つを含むことを特徴とする請求項2に記載の可変焦点レンズ。
  5.  前記電気光学材料は、さらに、添加不純物としてカリウムを除く周期律表Ia族、例えばリチウム、またはIIa族の1または複数種を含むことを特徴とする請求項4に記載の可変焦点レンズ。
  6.  前記電極は、前記電気光学材料とショットキー接合が形成される材料であることを特徴とする請求項1ないし5のいずれかに記載の可変焦点レンズ。
  7.  前記入射面の電極および前記出射面の電極の各々は、前記空隙を挟んで対向する辺が平行に配置されていることを特徴とする請求項1ないし6のいずれかに記載の可変焦点レンズ。
  8.  前記入射面の電極の前記対向する辺と、前記電気光学材料を挟んで対向する前記出射面の電極の前記対向する辺のそれぞれは、平行に配置されていることを特徴とする請求項7に記載の可変焦点レンズ。
  9.  前記入射面の電極の前記対向する辺と、前記電気光学材料を挟んで対向する前記出射面の電極の前記対向する辺のそれぞれは、前記電気光学材料を挟んで一致した位置に配置されていることを特徴とする請求項8に記載の可変焦点レンズ。
  10.  前記空隙を挟んで対向する辺の間隔Aと前記電気光学材料の厚さTとの比R=A/Tは、1.5以下であることを特徴とする請求項7、8または9に記載の可変焦点レンズ。
PCT/JP2008/073863 2007-12-28 2008-12-26 可変焦点レンズ WO2009084692A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009548120A JP5406046B2 (ja) 2007-12-28 2008-12-26 可変焦点レンズ
US12/808,105 US8014061B2 (en) 2007-12-28 2008-12-26 Variable-focal length lens
CN2008801224619A CN101910914B (zh) 2007-12-28 2008-12-26 变焦透镜
EP08867509.5A EP2233966B1 (en) 2007-12-28 2008-12-26 Method of variably converging or diverging light using a variable focal lenght lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007341067 2007-12-28
JP2007-341067 2007-12-28

Publications (1)

Publication Number Publication Date
WO2009084692A1 true WO2009084692A1 (ja) 2009-07-09

Family

ID=40824405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073863 WO2009084692A1 (ja) 2007-12-28 2008-12-26 可変焦点レンズ

Country Status (5)

Country Link
US (1) US8014061B2 (ja)
EP (1) EP2233966B1 (ja)
JP (1) JP5406046B2 (ja)
CN (1) CN101910914B (ja)
WO (1) WO2009084692A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143449A1 (ja) * 2009-06-12 2010-12-16 日本電信電話株式会社 可変焦点レンズおよび顕微鏡
CN101963699A (zh) * 2010-09-08 2011-02-02 华中科技大学 一种基于ktn晶体的变焦透镜的轴向随机扫描方法
JP2012004514A (ja) * 2010-06-21 2012-01-05 Nippon Telegr & Teleph Corp <Ntt> 波長可変レーザ光源
JP2012042900A (ja) * 2010-08-23 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> 偏光無依存可変焦点レンズ
JP2012042688A (ja) * 2010-08-18 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> 可変焦点レンズ
JP2014052532A (ja) * 2012-09-07 2014-03-20 Saitama Univ 非線形光学顕微鏡
JP2017506666A (ja) * 2014-02-28 2017-03-09 テンシャ セラピューティクス,インコーポレイテッド 高インスリン血症に関連した症状の処置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5230554B2 (ja) * 2009-07-23 2013-07-10 キヤノン株式会社 光学機器
US9442285B2 (en) 2011-01-14 2016-09-13 The Board Of Trustees Of The University Of Illinois Optical component array having adjustable curvature
WO2012158709A1 (en) 2011-05-16 2012-11-22 The Board Of Trustees Of The University Of Illinois Thermally managed led arrays assembled by printing
KR102266468B1 (ko) * 2014-07-18 2021-06-17 삼성전자주식회사 초점 제어 방법 및 그 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164817A (ja) 1997-06-10 1999-03-05 Olympus Optical Co Ltd 可変焦点レンズ、可変焦点回折光学素子、および可変偏角プリズム
JP2001194690A (ja) * 2000-01-14 2001-07-19 Minolta Co Ltd 焦点位置可変空間変調デバイス
WO2006137408A1 (ja) * 2005-06-20 2006-12-28 Nippon Telegraph And Telephone Corporation 電気光学素子
JP2007310104A (ja) * 2006-05-17 2007-11-29 Nippon Telegr & Teleph Corp <Ntt> 電気光学素子およびその製造方法
JP2009014793A (ja) * 2007-06-29 2009-01-22 Sunx Ltd 焦点距離調整装置、レーザ加工装置、レーザ変位計及び電気光学素子

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL212435A (ja) * 1955-12-07
US3357771A (en) * 1963-10-01 1967-12-12 Gen Telephone & Elect Light beam deflector employing electro-optic crystal
US3460884A (en) * 1965-06-21 1969-08-12 Ibm Electro-optical devices utilizing the stark-shift phenomenon
US4181399A (en) * 1978-01-03 1980-01-01 Sperry Rand Corporation Optical internal reflectance switchable coupler
US4466703A (en) * 1981-03-24 1984-08-21 Canon Kabushiki Kaisha Variable-focal-length lens using an electrooptic effect
JPH01230017A (ja) * 1988-03-10 1989-09-13 Ricoh Co Ltd 光学素子
US5272561A (en) 1989-01-24 1993-12-21 Ricoh Company, Ltd. Electrooptic device
US5124835A (en) * 1989-06-21 1992-06-23 Ricoh Company, Ltd. Optical scanning apparatus
US5221989A (en) * 1991-11-13 1993-06-22 Northrop Corporation Longitudinal plzt spatial light modulator
US5301201A (en) * 1993-03-01 1994-04-05 At&T Bell Laboratories Article comprising a tunable semiconductor laser
JPH09146128A (ja) * 1995-11-24 1997-06-06 Sony Corp 電気光学素子
JP3734563B2 (ja) 1996-03-26 2006-01-11 株式会社リコー 電気光学レンズ
US6577434B2 (en) 2000-01-14 2003-06-10 Minolta Co., Ltd. Variable focal position spatial modulation device
JP3935810B2 (ja) * 2002-09-27 2007-06-27 シャープ株式会社 光路変換デバイス
US7177514B2 (en) 2003-07-16 2007-02-13 Nippon Telegraph And Telephone Corporation Optical waveguide material and optical waveguide
US6859333B1 (en) * 2004-01-27 2005-02-22 Research Foundation Of The University Of Central Florida Adaptive liquid crystal lenses
CN101153945A (zh) * 2006-09-29 2008-04-02 鸿富锦精密工业(深圳)有限公司 镜头模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164817A (ja) 1997-06-10 1999-03-05 Olympus Optical Co Ltd 可変焦点レンズ、可変焦点回折光学素子、および可変偏角プリズム
JP2001194690A (ja) * 2000-01-14 2001-07-19 Minolta Co Ltd 焦点位置可変空間変調デバイス
WO2006137408A1 (ja) * 2005-06-20 2006-12-28 Nippon Telegraph And Telephone Corporation 電気光学素子
JP2007310104A (ja) * 2006-05-17 2007-11-29 Nippon Telegr & Teleph Corp <Ntt> 電気光学素子およびその製造方法
JP2009014793A (ja) * 2007-06-29 2009-01-22 Sunx Ltd 焦点距離調整装置、レーザ加工装置、レーザ変位計及び電気光学素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2233966A4 *
TAKUYA KANEKO: "Optical Microscope Expanded Depth of Field using Dynamic Focusing Lens for Micro Parts Assembling", DENSO TECHNICAL REVIEW, vol. 3, no. 1, 1998, pages 52 - 58

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143449A1 (ja) * 2009-06-12 2010-12-16 日本電信電話株式会社 可変焦点レンズおよび顕微鏡
US8773749B2 (en) 2009-06-12 2014-07-08 Nippon Telegraph And Telephone Corporation Variable focusing lens and microscope
JP2012004514A (ja) * 2010-06-21 2012-01-05 Nippon Telegr & Teleph Corp <Ntt> 波長可変レーザ光源
JP2012042688A (ja) * 2010-08-18 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> 可変焦点レンズ
JP2012042900A (ja) * 2010-08-23 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> 偏光無依存可変焦点レンズ
CN101963699A (zh) * 2010-09-08 2011-02-02 华中科技大学 一种基于ktn晶体的变焦透镜的轴向随机扫描方法
JP2014052532A (ja) * 2012-09-07 2014-03-20 Saitama Univ 非線形光学顕微鏡
JP2017506666A (ja) * 2014-02-28 2017-03-09 テンシャ セラピューティクス,インコーポレイテッド 高インスリン血症に関連した症状の処置

Also Published As

Publication number Publication date
JP5406046B2 (ja) 2014-02-05
CN101910914B (zh) 2013-03-27
EP2233966B1 (en) 2013-10-23
US20100290104A1 (en) 2010-11-18
JPWO2009084692A1 (ja) 2011-05-19
EP2233966A4 (en) 2011-01-12
US8014061B2 (en) 2011-09-06
EP2233966A1 (en) 2010-09-29
CN101910914A (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
JP5406046B2 (ja) 可変焦点レンズ
JP5426500B2 (ja) 偏光無依存可変焦点レンズ
JP2010026079A (ja) 光デバイス
JP5406292B2 (ja) 可変焦点レンズおよび顕微鏡
JP5411089B2 (ja) 可変焦点レンズ
JP2014202786A (ja) 可変焦点レンズ
JP5432044B2 (ja) 可変焦点レンズ
JP2014026229A (ja) 可変焦点レンズ
JP5069267B2 (ja) 可変焦点レンズ
JP5161156B2 (ja) 可変焦点レンズ
JP2014098790A (ja) 光ピンセット装置
US9291874B2 (en) Optical deflection element and optical deflection device
JP5069266B2 (ja) 可変焦点レンズ
JP6611052B2 (ja) 可変焦点レンズ
JP6010510B2 (ja) 可変焦点ミラー
US10788728B2 (en) Light beam steering using electro-optical and conductive materials
JP6346572B2 (ja) 可変焦点レンズ
JP2015215581A (ja) 光アッテネータおよび多チャンネル光アッテネータ
JP2018101109A (ja) 可変焦点レンズ
JP6259360B2 (ja) 可変焦点レンズ
JP2016102958A (ja) 可変焦点レンズ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122461.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08867509

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009548120

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12808105

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008867509

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE