WO2009084244A1 - 露光装置、移動体駆動システム、パターン形成装置、及び露光方法、並びにデバイス製造方法 - Google Patents

露光装置、移動体駆動システム、パターン形成装置、及び露光方法、並びにデバイス製造方法 Download PDF

Info

Publication number
WO2009084244A1
WO2009084244A1 PCT/JP2008/004044 JP2008004044W WO2009084244A1 WO 2009084244 A1 WO2009084244 A1 WO 2009084244A1 JP 2008004044 W JP2008004044 W JP 2008004044W WO 2009084244 A1 WO2009084244 A1 WO 2009084244A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
moving body
measurement
axis
wafer
Prior art date
Application number
PCT/JP2008/004044
Other languages
English (en)
French (fr)
Inventor
Yuichi Shibazaki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to KR1020137022078A priority Critical patent/KR101497862B1/ko
Priority to JP2009547917A priority patent/JP5088588B2/ja
Priority to KR1020137022077A priority patent/KR101525342B1/ko
Priority to CN2008800195892A priority patent/CN101681809B/zh
Publication of WO2009084244A1 publication Critical patent/WO2009084244A1/ja
Priority to HK10104653.8A priority patent/HK1137093A1/xx

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70975Assembly, maintenance, transport or storage of apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7096Arrangement, mounting, housing, environment, cleaning or maintenance of apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Definitions

  • the present invention relates to an exposure apparatus, a moving body drive system, a pattern forming apparatus, an exposure method, and a device manufacturing method, and more particularly, used in a lithography process when manufacturing an electronic device such as a semiconductor element or a liquid crystal display element.
  • steppers step-and-repeat type projection exposure apparatuses
  • steppers step-and-scan type Projection exposure apparatuses
  • scanning steppers also called scanners
  • peripheral exposure is performed in which a portion that cannot be used as a device is exposed in a shot region (hereinafter referred to as “peripheral shot”) that partially protrudes from the effective exposure region in the peripheral portion of the wafer.
  • peripheral shot a shot region that partially protrudes from the effective exposure region in the peripheral portion of the wafer.
  • the throughput is reduced by the time required for the peripheral exposure.
  • a twin wafer stage type exposure that employs a technique in which a plurality of, for example, two wafer stages for holding wafers are provided and different operations are processed in parallel on the two wafer stages.
  • Various devices have been proposed.
  • an exposure apparatus of a twin wafer stage type employing an immersion exposure method has been proposed (see, for example, Patent Document 2).
  • the device rule (practical minimum line width) is gradually miniaturized, and accordingly, the exposure apparatus is required to have a higher precision overlay performance. For this reason, the number of sample shots of enhanced global alignment (EGA), which is the mainstream of wafer alignment, is expected to increase further, and even with a twin wafer stage type exposure apparatus, there is a concern about a decrease in throughput.
  • EGA enhanced global alignment
  • the position of a stage holding a wafer is generally measured using a laser interferometer.
  • the required performance has become severe due to the miniaturization of patterns due to the high integration of semiconductor elements, and now the air fluctuations caused by the temperature change and / or temperature gradient of the laser interferometer beam path. Short-term fluctuations in measured values due to inequality are no longer negligible.
  • an exposure apparatus that exposes an object with an exposure beam, and moves along a predetermined plane including a first axis and a second axis that are orthogonal to each other while holding the object.
  • a measurement system that is arranged in a direction parallel to the first axis from an exposure position where the exposure is performed, and performs predetermined measurement on the object; and from the measurement system in a direction parallel to the first axis
  • a first exposure apparatus comprising: a peripheral exposure system that is disposed separately and exposes at least a part of a shot area around the object.
  • the peripheral exposure system at least a part of the shot area around the object is exposed by the peripheral exposure system while the moving body that holds the object moves along the direction parallel to the first axis in the predetermined plane. Accordingly, the movement of the object (moving body) from the measurement system toward the exposure position or the movement of the object (moving body) in the opposite direction (for example, movement of the moving body from the exposure position to the object replacement position) is performed in parallel.
  • the peripheral exposure can be performed, and unlike the case where the peripheral exposure is performed independently, the throughput is hardly lowered.
  • an exposure apparatus for exposing an object with an exposure beam, wherein the object is held in the predetermined plane including a first axis and a second axis that are orthogonal to each other.
  • a peripheral exposure system that exposes at least a part of a peripheral region different from the region to be displayed, and in parallel with the movement of the movable body from one of the exposure position and the replacement position to the other, It is a 2nd exposure apparatus with which at least one part of exposure operation is performed.
  • the present invention is an exposure apparatus that exposes an object with an energy beam to form a pattern on the object, and includes a first axis and a second axis that hold the object and are orthogonal to each other.
  • a first moving body that moves in a predetermined plane; a second moving body that holds an object and moves independently of the first moving body in the plane; and a position in a direction parallel to the second axis
  • a mark detection system having a plurality of different detection areas and detecting a mark on the object placed on each of the first and second moving bodies; and held by one of the first and second moving bodies In parallel with the exposure of the object, the other one of the first and second moving bodies is moved in a direction parallel to the first axis, and the object held by the other moving body is different.
  • a plurality of marks are detected by the mark detection system and the position information is obtained.
  • a third exposure apparatus provided with; controller and for measuring.
  • the other of the first and second moving bodies is parallel to the first axis. While moving in the direction, a plurality of different marks on the object held by the other moving body are detected by the mark detection system, and the position information is measured. Accordingly, in parallel with the exposure of the object held on one moving body, the other moving body is positioned in the vicinity of a plurality of detection areas of the mark detection system (for example, replacement of the object held on the moving body).
  • the present invention is an exposure apparatus that exposes an object with an energy beam to form a pattern on the object, and includes a first axis and a second axis that hold the object and are orthogonal to each other.
  • a first moving body that moves in a predetermined plane; a second moving body that holds an object and moves independently of the first moving body in the plane; and the first and second moving bodies are A planar motor that drives in a plane; and controls the planar motor, and when the exposure of the object held by the first movable body is completed, the first movable body is exposed at the exposure position where the exposure is performed.
  • a control device that moves the object on the second moving body to a second exchange position where the object is exchanged along a second feedback path located on the other side in a direction parallel to the second axis. It is an exposure apparatus.
  • first exchange position and the second exchange position may be the same or different.
  • the control device controls the planar motor that drives the first and second moving bodies in the plane, and the first time when the exposure of the object held by the first moving body is completed.
  • the moving body is moved to the first exchange position where the object on the first moving body is exchanged along the first feedback path located on one side of the exposure position in the direction parallel to the second axis, and the second movement
  • the second moving body moves along the second feedback path in which the second moving body is located on the other side in the direction parallel to the second axis of the exposure position. It moves to the 2nd exchange position where exchange is performed.
  • the cable for wiring and piping is attached to the first moving body from one side in the direction parallel to the second axis, and the second moving body is attached from the other side in the direction parallel to the second axis.
  • the cables can be prevented from being twisted and the length thereof can be shortened as much as possible.
  • the present invention is an exposure apparatus that exposes an object with an energy beam to form a pattern on the object, and includes a first axis and a second axis that hold the object and are orthogonal to each other.
  • a first moving body that moves in a predetermined plane; a second moving body that holds an object and moves independently of the first moving body in the plane; and the first and second moving bodies are moved to the plane.
  • a liquid immersion device that forms a liquid immersion region by supplying a liquid between the optical member and one of the first and second moving bodies. And after the exposure of the object held by the one moving body is completed, the first moving body and the second moving body are transferred to pass the immersion area from the one moving body to the other moving body.
  • the moving body is switched to a separated state in which the moving body is separated, and the one moving body separated from the other moving body is moved to a return path located on one side of the exposure position with respect to a direction parallel to the second axis.
  • a control device that controls the planar motor so as to move the object on the first and second moving bodies to an exchange position where the object is exchanged.
  • the proximity state in which the first moving body and the second moving body are brought closer to each other below a predetermined distance, the first moving body and the second moving body are brought into contact with each other in the direction parallel to the first axis, that is, the first moving body and the second moving body are separated.
  • the term “proximity state” is used as a concept including the state where the separation distance is zero, that is, the contact state even when there is an explicit state of contact, and even when there is no explicit state.
  • the liquid immersion area is passed from one moving body to the other moving body, so that both moving bodies are parallel to the first axis.
  • Switching between a proximity state in which the direction is close to a predetermined distance or less and a separation state in which both moving bodies are separated is performed, and one moving body that is separated from the other moving body is switched in a direction parallel to the second axis.
  • the planar motor is controlled to move to an exchange position where the objects on the first and second moving bodies are exchanged along a return path located on one side of the exposure position.
  • one moving body is moved to the replacement position along a feedback path located on one side of the exposure position with respect to the direction parallel to the second axis, and the other moving body is exposed to the position parallel to the second axis.
  • the moving range in the direction parallel to the second axis of both moving bodies can be set narrower.
  • the present invention is a moving body drive system for driving a moving body substantially along a predetermined plane, and first and second directions orthogonal to each other in a plane parallel to the predetermined plane. Irradiating detection light to a scale having a two-dimensional grating having a periodic direction as a periodic direction, and receiving a light from the scale, and including the first and second directions based on a measurement value of the head
  • An encoder system for measuring positional information of the moving body in at least two directions of freedom within a predetermined plane; and a driving device for driving the moving body along the predetermined plane based on the measurement information of the encoder system;
  • a movable body drive system is provided.
  • the predetermined plane including the first and second directions based on the measurement value of the head, having a head that irradiates the scale having the two-dimensional grating with the detection light and receives the reflected light from the scale.
  • the driving apparatus drives the moving body along a predetermined plane. Therefore, the degree of freedom in the arrangement of the heads is greatly improved and the layout is facilitated as compared with the case where an encoder system including a plurality of one-dimensional heads that respectively measure the position information of the moving body in the first and second directions is used. For example, by using only one scale, it is possible to measure the position of the moving body in the direction of two degrees of freedom in a plane parallel to the predetermined plane.
  • the present invention provides a moving body on which an object is placed and which can move substantially along a moving surface while holding the object; and a patterning device that generates a pattern on the object; And a moving body driving system of the present invention for driving the moving body to form a pattern on the object.
  • an exposure apparatus for forming a pattern on an object by irradiation with an energy beam, the patterning apparatus for irradiating the object with the energy beam; and the moving body drive system of the present invention; And a sixth exposure apparatus that drives the movable body on which the object is placed by the movable body drive system for relative movement between the energy beam and the object.
  • the moving body on which the object is placed is driven with high accuracy by the moving body drive system of the present invention for the relative movement between the energy beam irradiated to the object from the patterning device and the object. Accordingly, it is possible to form a pattern on the object with high accuracy by scanning exposure.
  • an exposure apparatus for exposing an object with an energy beam, a movable body capable of holding the object and substantially movable along a predetermined plane;
  • a measuring device for measuring the position information of the object, the measuring position being irradiated with the measuring beam apart from the exposure position irradiated with the energy beam with respect to one direction; and orthogonal to the first direction within the predetermined plane;
  • Scales having the first direction as a longitudinal direction and having a two-dimensional lattice are disposed on both sides of the moving body with respect to the second direction, and at least one head can face each of the two scales.
  • a pair of head units having a plurality of heads with different positions with respect to the direction are arranged so as to be able to face the moving body, and face simultaneously with the pair of scales
  • An encoder system that measures position information of the moving body in the direction of three degrees of freedom within the predetermined plane based on outputs of two heads; position information of the object measured by the measuring device; and measurement by the encoder system
  • a driving device that drives the moving body based on the positional information of the moving body that has been made.
  • the position information of the object on the moving body is measured by the measurement device at the measurement position irradiated with the measurement beam, which is arranged away from the exposure position in the first direction within the predetermined plane, and the encoder system
  • the position information of the moving body in the direction of three degrees of freedom within the predetermined plane is measured, and measured by the driving device with the measuring device
  • the moving body is driven with high accuracy based on the position information of the object and the position information of the moving body measured by the encoder system. Therefore, it becomes possible to expose the object held by the moving body with high accuracy.
  • the layout of the heads and the like is facilitated as compared with the case of using an encoder system including a plurality of one-dimensional heads that respectively measure the position information of the moving body in the first and second directions.
  • an exposure apparatus that exposes an object with an energy beam, a movable body capable of holding the object and substantially movable along a predetermined plane;
  • a measuring device for measuring the position information of the object, the measuring position being irradiated with the measuring beam apart from the exposure position irradiated with the energy beam with respect to one direction; and orthogonal to the first direction within the predetermined plane;
  • a pair of scales having a second direction as a longitudinal direction and having a two-dimensional lattice are disposed so as to be able to face the moving body, and at least one head can be opposed to the pair of scales and be positioned with respect to the first direction.
  • a plurality of heads having different heads are arranged on both sides of the moving body, and the predetermined heads are based on outputs of two heads facing each other simultaneously with the pair of scales.
  • the position information of the object on the moving body is measured by the measurement device at the measurement position irradiated with the measurement beam, which is arranged away from the exposure position in the first direction within the predetermined plane, and the encoder system Based on the outputs of the two heads facing each other simultaneously with the pair of scales, the position information of the moving body in the three-degree-of-freedom direction in the predetermined plane is measured, and the driving device measures the object measured by the measuring device.
  • the moving body is driven with high accuracy based on the position information and the position information of the moving body measured by the encoder system. Therefore, it becomes possible to expose the object held by the moving body with high accuracy.
  • the arrangement of the head on the moving body is facilitated as compared to the case of using an encoder system including a plurality of one-dimensional heads that respectively measure the position information of the moving body in the first and second directions.
  • a first device including exposing an object using any of the first to eighth exposure apparatuses of the present invention and developing the exposed object. It is a manufacturing method.
  • an exposure method for exposing an object with an exposure beam wherein the object is placed on a moving body that moves along a predetermined plane including a first axis and a second axis orthogonal to each other.
  • a first axis of a measurement system that is disposed away from an exposure position where the exposure is performed in a direction parallel to the first axis in the predetermined plane and performs predetermined measurement on the object.
  • the peripheral exposure system at least a part of the shot area around the object is exposed by the peripheral exposure system while the moving body on which the object is placed moves along the direction parallel to the first axis in the predetermined plane. Is done. Accordingly, the movement of the object (moving body) from the measurement system toward the exposure position or the movement of the object (moving body) in the opposite direction (for example, movement of the moving body from the exposure position to the object replacement position) is performed in parallel.
  • the peripheral exposure can be performed, and unlike the case where the peripheral exposure is performed independently, the throughput is hardly lowered.
  • an exposure method for exposing an object with an exposure beam wherein the object is held by a movable body movable within a predetermined plane including a first axis and a second axis orthogonal to each other. And an exposure position at which the exposure is performed and an exchange position of the object arranged away from the exposure position in a direction parallel to the first axis, and the exposure is performed on the object.
  • the peripheral exposure system that exposes at least a part of the peripheral region different from the region to be exposed, exposing the peripheral region in parallel with the movement of the moving body from one of the exposure position and the replacement position to the other. And a step of performing at least a part of the operation.
  • an exposure method for exposing an object with an energy beam to form a pattern on the object wherein the first axis and the second axis orthogonal to each other are respectively held by holding the object.
  • a mark detection system having a plurality of detection regions having different positions with respect to a direction parallel to the second axis while moving a plurality of different marks on the object held by the other moving body while moving in a direction parallel to the axis
  • It is the 3rd exposure method including the process of detecting and measuring the position information.
  • the other of the first and second moving bodies is moved in a direction parallel to the first axis.
  • a plurality of different marks on the object held by the other moving body are detected by a mark detection system having a plurality of detection regions having different positions with respect to the direction parallel to the second axis, and the position information is measured.
  • the other moving body is positioned in the vicinity of a plurality of detection areas of the mark detection system (for example, the object held by the moving body).
  • the position information of a plurality of marks for example, all marks on the object held by the other moving body is detected. It becomes possible to do. As a result, it is possible to improve throughput and improve overlay accuracy.
  • an exposure method in which an object is exposed with an energy beam to form a pattern on the object, and the first axis and the second axis orthogonal to each other are respectively held by holding the object.
  • the first movement when the exposure of the object held by the first moving body is completed by controlling the plane motors that drive the first and second moving bodies that move independently within a predetermined plane including the first moving body.
  • the body is moved to a first exchange position where an object on the first moving body is exchanged along a first feedback path located on one side in a direction parallel to the second axis of the exposure position where the exposure is performed.
  • the second moving body When the exposure of the object held by the second moving body is completed, the second moving body is placed on a second feedback path located on the other side of the exposure position in a direction parallel to the second axis.
  • a second exchange position where an object on the second moving body is exchanged along
  • a fourth exposure method comprising the step of moving to.
  • the first moving body is exposed when the exposure of the object held by the first moving body is completed by controlling the planar motor that drives the first and second moving bodies in the plane.
  • the position of the object on the first moving body is moved along the first return path located on one side in the direction parallel to the second axis of the position to the first exchanging position where the object is exchanged, and is held by the second moving body.
  • the object on the second moving body is exchanged along the second feedback path that is located on the other side of the second moving body in the direction parallel to the second axis of the exposure position. Move to the second exchange position.
  • the cable for wiring and piping is attached to the first moving body from one side in the direction parallel to the second axis, and the second moving body is attached from the other side in the direction parallel to the second axis.
  • the cables can be prevented from being twisted and the length thereof can be shortened as much as possible.
  • an exposure method for exposing an object with an energy beam wherein the object is held by a moving body; and the moving body is driven by the moving body driving system of the present invention. And exposing the object with the energy beam.
  • the moving body holding the object is accurately driven by the moving body drive system of the present invention and the object is exposed with the energy beam, the object can be exposed with high accuracy.
  • an exposure method for exposing an object with an energy beam wherein the object is held by a movable body substantially movable along a predetermined plane; Measuring positional information of an object on the moving body at a measurement position irradiated with a measurement beam, which is arranged apart from an exposure position irradiated with the energy beam with respect to one direction;
  • a pair of scales having the first direction as a longitudinal direction and having a two-dimensional lattice are disposed on the movable body apart from each other in a second direction orthogonal to the first direction, and at least one of each of the pair of scales
  • An encoder system in which a pair of head units having a plurality of heads that can be opposed to each other and have different positions with respect to the second direction is arranged to be able to face the moving body, Measuring position information of the moving body in a direction of three degrees of freedom within a predetermined plane; driving the moving body based on the measured position information
  • the position information of the object on the moving body is measured at the measurement position irradiated with the measurement beam, which is arranged away from the exposure position in the first direction in the predetermined plane, and the predetermined plane is obtained by the encoder system.
  • the position information of the moving body in the three degrees of freedom direction is measured.
  • the moving body is driven based on the measured position information and the measurement information of the encoder system, and the object is exposed with the energy beam. Therefore, the object can be exposed with high accuracy.
  • an exposure method for exposing an object with an energy beam wherein the object is held by a movable body substantially movable along a predetermined plane; Measuring positional information of an object on the moving body at a measurement position irradiated with a measurement beam, which is arranged apart from an exposure position irradiated with the energy beam with respect to one direction; A pair of scales having a second direction orthogonal to the first direction as a longitudinal direction and having a two-dimensional lattice are disposed so as to be able to face the moving body, and at least one head can face each of the pair of scales, and A plurality of heads having different positions with respect to the first direction are related to a direction of three degrees of freedom within the predetermined plane by an encoder system arranged on each side of the movable body. Measuring position information of the moving body; driving the moving body based on the measured position information and measurement information of the encoder system, and exposing the object with
  • the position information of the object on the moving body is measured at the measurement position irradiated with the measurement beam, which is arranged away from the exposure position in the first direction in the predetermined plane, and the predetermined plane is obtained by the encoder system.
  • the position information of the moving body in the three degrees of freedom direction is measured.
  • the moving body is driven based on the measured position information and the measurement information of the encoder system, and the object is exposed with the energy beam. Therefore, the object can be exposed with high accuracy.
  • an object is exposed to form a pattern by any one of the first to seventh exposure methods of the present invention; and the object on which the pattern is formed is developed. And a second device manufacturing method.
  • FIG. 9A and FIG. 9A show schematically the structure of the exposure apparatus which concerns on 1st Embodiment. It is a top view which shows a wafer stage. It is a top view which shows a measurement stage. It is a figure for demonstrating an interferometer system. It is a top view which shows a stage apparatus and various measuring devices. It is a figure for demonstrating arrangement
  • FIG. 9B are diagrams for explaining an on state and an off state of the micromirror, respectively.
  • FIG. 2 is a block diagram showing a main configuration of a control system in the exposure apparatus of FIG. 1. It is a figure for demonstrating the shot map of a wafer. It is a figure for demonstrating the alignment shot area
  • FIG. 6 is a diagram showing a state of a wafer stage and a measurement stage when alignment marks attached to five second alignment shot areas are simultaneously detected using alignment systems AL1, AL2 1 to AL2 4 . It is a figure which shows the state of a wafer stage and the measurement stage when at least one of the process of Pri-BCHK latter half and the process of focus calibration latter half is performed.
  • FIG. 6 is a diagram showing the state of a wafer stage and a measurement stage when alignment marks attached to five third alignment shot areas are simultaneously detected using alignment systems AL1, AL2 1 to AL2 4 .
  • FIG. 25A to FIG. 25F are diagrams for explaining the process of peripheral exposure. It is a figure which shows all the areas
  • FIG. 43A is a side view showing wafer stage WST1 in FIG. 42
  • FIG. 43B is a plan view showing wafer stage WST1.
  • 44A is a side view showing wafer stage WST2 in FIG. 42
  • FIG. 44B is a plan view showing wafer stage WST2.
  • FIG. 43 is a diagram for explaining an arrangement of heads and the like of an encoder system and a surface position measurement system that constitute a measurement system included in the wafer stage apparatus of FIG. 42.
  • FIG. 5 is a diagram (No. 1) for describing a parallel processing operation using wafer stages WST1 and WST2.
  • FIG. 10 is a diagram (No. 2) for explaining the parallel processing operation using wafer stage WST1 and WST2.
  • FIG. 11 is a diagram (No. 3) for explaining the parallel processing operation using wafer stage WST1 and WST2.
  • FIG. 11 is a diagram (No. 4) for explaining the parallel processing operation using wafer stage WST1 and WST2.
  • FIG. 11 is a diagram (No.
  • FIG. 10 is a view (No. 6) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 10 is a view (No. 7) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 10 is a view (No. 8) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 10 is a view (No. 9) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 10 is a view (No. 10) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 11 is a view (No.
  • FIG. 11 used to explain a parallel processing operation using wafer stage WST1 and WST2
  • FIG. 12 is a view (No. 12) used to explain a parallel processing operation using wafer stage WST1 and WST2
  • FIG. 19 is a view (No. 13) used to explain a parallel processing operation using wafer stage WST1 and WST2
  • FIG. 14 is a view (No. 14) used to explain a parallel processing operation using wafer stage WST1 and WST2
  • FIG. 22 is a view (No. 15) used to explain a parallel processing operation using wafer stage WST1 and WST2
  • FIG. 16 is a view (No. 16) used to explain a parallel processing operation using wafer stage WST1 and WST2
  • FIG. 17 is a view (No.
  • FIG. 17 used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 18 is a view (No. 18) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 20 is a view (No. 19) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 20 is a view (No. 20) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 22 is a view (No. 21) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 22 is a view (No. 22) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 22 is a view (No. 22) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 22 is a view (No.
  • FIG. 23 used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 24 is a view (No. 24) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 25 is a view (No. 25) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 26 is a view (No. 26) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 27 is a view (No. 27) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 28 is a view (No. 28) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 29 is a view (No. 29) used to explain a parallel processing operation using wafer stage WST1 and WST2;
  • FIG. 1 schematically shows a configuration of an exposure apparatus 100 according to the first embodiment.
  • the exposure apparatus 100 is a step-and-scan projection exposure apparatus, a so-called scanner.
  • a projection optical system PL is provided.
  • a direction parallel to the optical axis AX of the projection optical system PL is a Z-axis direction, and a reticle in a plane perpendicular to the Z-axis direction.
  • the direction in which the wafer is relatively scanned is the Y-axis direction
  • the direction orthogonal to the Z-axis and the Y-axis is the X-axis direction
  • the rotation (tilt) directions around the X-axis, Y-axis, and Z-axis are ⁇ x, ⁇ y, And the ⁇ z direction will be described.
  • the exposure apparatus 100 includes an illumination system 10, a reticle stage RST, a projection unit PU, a stage apparatus 50 having a wafer stage WST and a measurement stage MST, a control system for these, and the like.
  • wafer W is placed on wafer stage WST.
  • the illumination system 10 includes, for example, a light source, an illumination uniformizing optical system having an optical integrator, and a reticle blind (both not shown) as disclosed in, for example, US Patent Application Publication No. 2003/0025890. And an optical system.
  • the illumination system 10 illuminates the slit-shaped illumination area IAR on the reticle R defined by the reticle blind (masking system) with illumination light (exposure light) IL with a substantially uniform illuminance.
  • ArF excimer laser light (wavelength 193 nm) is used as the illumination light IL.
  • reticle stage RST On reticle stage RST, reticle R on which a circuit pattern or the like is formed on its pattern surface (lower surface in FIG. 1) is fixed, for example, by vacuum suction.
  • the reticle stage RST can be slightly driven in the XY plane by a reticle stage drive system 11 (not shown in FIG. 1, refer to FIG. 10) including a linear motor, for example, and also in the scanning direction (left and right direction in FIG. 1). In the Y-axis direction) at a predetermined scanning speed.
  • Position information in the XY plane of reticle stage RST (including information on the position in the ⁇ z direction (hereinafter also referred to as ⁇ z rotation (or ⁇ z rotation amount) or yawing (or yawing amount) as appropriate)) is reticle laser interference.
  • a meter hereinafter referred to as “reticle interferometer” 116
  • a movable mirror 15 (actually, a Y movable mirror (or retroreflector) having a reflective surface orthogonal to the Y-axis direction and a reflective surface orthogonal to the X-axis direction) For example, with a resolution of about 0.25 nm.
  • the measurement value of reticle interferometer 116 is sent to main controller 20 (not shown in FIG. 1, refer to FIG. 10).
  • the projection unit PU is arranged below reticle stage RST in FIG.
  • the projection unit PU includes a lens barrel 40 and a projection optical system PL stored in the lens barrel 40.
  • the projection optical system PL for example, a refractive optical system including a plurality of optical elements (lens elements) arranged along an optical axis AX parallel to the Z-axis direction is used.
  • the projection optical system PL is, for example, double-sided telecentric and has a predetermined projection magnification (for example, 1/4, 1/5, or 1/8).
  • the illumination area IAR on the reticle R is illuminated by the illumination system 10
  • a reduced image of the circuit pattern of the reticle R in the illumination area IAR passes through the projection optical system PL (projection unit PU), and the second surface of the projection optical system PL ( It is formed in an area (hereinafter also referred to as an exposure area) IA that is conjugated to the illumination area IAR on the wafer W, which is disposed on the image plane side and has a resist (sensitive agent) coated on the surface thereof.
  • reticle R is moved relative to illumination area IAR (illumination light IL) in the scanning direction (Y-axis direction) and exposure area IA (illumination light IL).
  • illumination area IAR illumination light IL
  • exposure area IA illumination light IL
  • scanning exposure of one shot area (partition area) on the wafer W is performed, and the pattern of the reticle R is transferred to the shot area.
  • a pattern is generated on the wafer W by the illumination system 10, the reticle R, and the projection optical system PL, and the pattern is formed on the wafer W by exposure of the sensitive layer (resist layer) on the wafer W by the illumination light IL. Is formed.
  • the exposure apparatus 100 is provided with a local liquid immersion apparatus 8 for performing immersion type exposure.
  • the local liquid immersion device 8 includes, for example, a liquid supply device 5, a liquid recovery device 6 (both not shown in FIG. 1, refer to FIG. 10), a liquid supply tube 31A, a liquid recovery tube 31B, a nozzle unit 32, and the like.
  • the nozzle unit 32 holds an optical element on the most image plane side (wafer W side) constituting the projection optical system PL, here a lens (hereinafter also referred to as “tip lens”) 191. It is suspended and supported by a main frame (not shown) that holds the projection unit PU so as to surround the lower end portion of the lens barrel 40.
  • a main frame not shown
  • the lower end surface of the nozzle unit 32 is set substantially flush with the lower end surface of the front lens 191. Further, the nozzle unit 32 is connected to the supply port and the recovery port of the liquid Lq, the lower surface on which the wafer W is disposed and provided with the recovery port, and the supply connected to the liquid supply tube 31A and the liquid recovery tube 31B, respectively. A flow path and a recovery flow path are provided. As shown in FIG.
  • the liquid supply pipe 31A and the liquid recovery pipe 31B are inclined by approximately 45 ° with respect to the X-axis direction and the Y-axis direction in plan view (viewed from above), and the center of the projection unit PU has a through (to the exposure with matching the center of the area IA is the optical axis AX, the embodiment of the projection optical system PL) and parallel to the Y axis linear (reference axis) symmetrically arranged with respect to LV 0.
  • the liquid supply pipe 31A is connected to the liquid supply apparatus 5 (not shown in FIG. 1, see FIG. 10), and the liquid recovery pipe 31B is connected to the liquid recovery apparatus 6 (not shown in FIG. 1, see FIG. 10).
  • the liquid supply device 5 includes a tank for storing the liquid, a pressurizing pump, a temperature control device, a valve for controlling the flow rate of the liquid, and the like.
  • the liquid recovery device 6 includes a tank for storing the recovered liquid, a suction pump, a valve for controlling the flow rate of the liquid, and the like.
  • the main control device 20 controls the liquid supply device 5 to supply the liquid Lq between the tip lens 191 and the wafer W via the liquid supply pipe 31A and to control the liquid recovery device 6. Then, the liquid Lq is recovered from between the front lens 191 and the wafer W via the liquid recovery tube 31B. At this time, main controller 20 controls liquid supply device 5 and liquid recovery device 6 so that the amount of supplied liquid Lq and the amount of recovered liquid Lq are always equal. Accordingly, a certain amount of liquid Lq (see FIG. 1) is always exchanged and held between the front lens 191 and the wafer W, thereby forming the liquid immersion region 14 (see FIG. 14 and the like). In addition, even when a measurement stage MST described later is positioned below the projection unit PU, the liquid immersion region 14 can be similarly formed between the tip lens 191 and the measurement table.
  • pure water that transmits ArF excimer laser light (light having a wavelength of 193 nm) (hereinafter, simply described as “water” unless otherwise required) is used as the liquid.
  • the stage apparatus 50 includes a wafer stage WST and a measurement stage MST disposed above the base board 12, and a measurement system 200 that measures positional information of these stages WST and MST (see FIG. 10). And a stage drive system 124 (see FIG. 10) for driving the stages WST and MST.
  • the measurement system 200 includes an interferometer system 118, an encoder system 150, a surface position measurement system 180, and the like.
  • the wafer stage WST and the measurement stage MST are supported on the base board 12 by a non-contact bearing (not shown) fixed to each bottom surface, for example, an air bearing with a clearance of about several ⁇ m.
  • the stages WST and MST can be independently driven in the XY plane by a stage driving system 124 (see FIG. 10) including a linear motor, for example.
  • Wafer stage WST includes a stage main body 91 and a wafer table WTB mounted on stage main body 91.
  • Wafer table WTB and stage main body 91 are moved in a direction of six degrees of freedom (X, X) with respect to base board 12 by a drive system including a linear motor and a Z-leveling mechanism (including a voice coil motor) (both not shown).
  • Y, Z, ⁇ x, ⁇ y, ⁇ z can be driven.
  • a wafer holder (not shown) for holding the wafer W by vacuum suction or the like is provided at the center of the upper surface of the wafer table WTB.
  • a circular opening that is slightly larger than the wafer holder is formed in the center outside the wafer holder (wafer mounting area), and has a rectangular outer shape (contour) (liquid repellent).
  • Plate) 28 is provided. The surface of the plate 28 is subjected to a liquid repellency treatment with respect to the liquid Lq. The plate 28 is installed so that the entire surface (or part) of the plate 28 is flush with the surface of the wafer W.
  • the plate 28 includes a first liquid repellent area 28a having a rectangular outer shape (outline) with the opening formed in the center, and a rectangular frame-shaped second liquid repellent area provided around the first liquid repellent area 28a. 28b.
  • first and second liquid repellent regions 28a and 28b are also referred to as first and second water repellent plates 28a and 28b, respectively.
  • a measuring plate 30 is provided at the end of the first water repellent plate 28a on the + Y side.
  • the measurement plate 30 is provided with a reference mark FM at the center, and a pair of aerial image measurement slit patterns (slit-like measurement patterns) SL so as to sandwich the reference mark FM. Then, corresponding to each aerial image measurement slit pattern SL, a light transmission system (not shown) for guiding the illumination light IL transmitted therethrough to the outside of the wafer stage WST (light receiving system provided in the measurement stage MST described later). ) Is provided.
  • Y scales 39Y 1 and 39Y 2 are respectively formed on one side and the other side of the upper surface in the X-axis direction (left and right direction in FIG. 2).
  • Each of the Y scales 39Y 1 and 39Y 2 has a grid line 38 having a longitudinal direction in the X axis direction, for example, arranged along a direction (Y axis direction) parallel to the Y axis at a predetermined pitch.
  • a reflection type grating for example, a diffraction grating).
  • X scales 39X 1 and 39X 2 are respectively formed in regions on one side and the other side of the upper surface of the second water repellent plate 28b in the Y-axis direction (the vertical direction in FIG. 2).
  • Each of the X scales 39X 1 and 39X 2 has, for example, lattice lines 37 having a longitudinal direction in the Y-axis direction arranged along a direction (X-axis direction) parallel to the X-axis at a predetermined pitch.
  • a reflection type grating for example, a diffraction grating).
  • Each scale is produced by, for example, ticking the diffraction grating on a thin glass plate at a pitch between 138 nm and 4 ⁇ m, for example, 1 ⁇ m pitch.
  • These scales are covered with the liquid repellent film (water repellent film) described above.
  • the pitch of the lattice is shown much wider than the actual pitch.
  • the diffraction grating may be covered with a glass plate having a low thermal expansion coefficient having water repellency so that the surface thereof is the same height (surface position) as the surface of the wafer.
  • the glass plate a glass plate having the same thickness as the wafer, for example, 1 mm thick can be used.
  • a positioning pattern (not shown) for determining the relative position between the encoder head and the scale, which will be described later, is provided near the end of each scale.
  • This positioning pattern is composed of, for example, grid lines having different reflectivities.
  • reflecting surface 17a and reflecting surface 17b used in an interferometer system to be described later are formed.
  • the measurement stage MST includes a stage main body 92 that is driven in an XY plane by a linear motor (not shown) and the like, and a measurement table MTB mounted on the stage main body 92.
  • the measurement stage MST is configured to be driven in at least three degrees of freedom (X, Y, ⁇ z) with respect to the base board 12 by a drive system (not shown).
  • a stage drive system 124 including a drive system for wafer stage WST and a drive system for measurement stage MST.
  • the measurement table MTB (and the stage main body 92) is provided with various measurement members.
  • this measuring member for example, as shown in FIG. 3, an illuminance unevenness sensor 94, an aerial image measuring device 96, a wavefront aberration measuring device 98, an illuminance monitor (not shown), and the like are provided.
  • the stage main body 92 is provided with a pair of light receiving systems (not shown) in an arrangement facing the above pair of light sending systems (not shown).
  • each aerial image measurement slit pattern SL of measurement plate 30 on wafer stage WST is measured in a state where wafer stage WST and measurement stage MST are close to each other within a predetermined distance in the Y-axis direction (including a contact state).
  • An aerial image measuring device 45 (see FIG. 10) is configured in which the transmitted illumination light IL is guided by each light transmission system (not shown) and received by a light receiving element of each light receiving system (not shown) in the measurement stage MST.
  • a fiducial bar (hereinafter abbreviated as “FD bar”) 46 extends in the X-axis direction on the ⁇ Y side end face of the measurement table MTB.
  • the FD bar 46 is kinematically supported on the measurement stage MST by a full kinematic mount structure. Since the FD bar 46 is a prototype (measurement standard), an optical glass ceramic having a low thermal expansion coefficient, for example, Zerodure (trade name) manufactured by Schott is used as the material.
  • Reference gratings (for example, diffraction gratings) 52 having a periodic direction in the Y-axis direction are formed in the vicinity of one end and the other end in the longitudinal direction of the FD bar 46 in a symmetrical arrangement with respect to the center line CL. .
  • a plurality of reference marks M are formed on the upper surface of the FD bar 46. As each reference mark M, a two-dimensional mark having a size detectable by a primary alignment system and a secondary alignment system described later is used.
  • the surface of the FD bar 46 and the surface of the measurement table MTB are also covered with a liquid repellent film (water repellent film).
  • the reflection surface 19a and the reflection surface 19b similar to the wafer table WTB are formed on the + Y side end surface and the ⁇ X side end surface of the measurement table MTB (see FIG. 3).
  • a predetermined distance from the center of the projection unit PU (the optical axis AX of the projection optical system PL) is on the ⁇ Y side on the reference axis LV 0 described above.
  • a primary alignment system AL1 having a detection center at a position is provided.
  • Primary alignment system AL1 is fixed to the lower surface of the main frame (not shown).
  • Secondary alignment systems AL2 1 , AL2 2 , AL2 3 , AL2 4 having detection centers arranged almost symmetrically with respect to the reference axis LV 0 on one side and the other side in the X axis direction across the primary alignment system AL1 are provided.
  • the secondary alignment systems AL2 1 to AL2 4 are fixed to the lower surface of the main frame (not shown) via a movable support member (not shown), and using drive mechanisms 60 1 to 60 4 (see FIG. 10).
  • the relative positions of these detection areas can be adjusted with respect to the X-axis direction.
  • a straight line (reference axis) LA parallel to the X axis passing through the detection center of the primary alignment system AL1 shown in FIG. 6 and the like coincides with the optical axis of the measurement beam B6 from the interferometer 127 described later.
  • each alignment system (AL1, AL2 1 to AL2 4 ), for example, an image processing type FIA (Field Image Alignment) system is used. Imaging signals from the alignment systems AL1, AL2 1 to AL2 4 are supplied to the main controller 20 through a signal processing system (not shown).
  • FIA Field Image Alignment
  • interferometer system 118 that measures position information of wafer stage WST and measurement stage MST will be described.
  • interferometer system 118 includes Y interferometer 16, X interferometers 126, 127, and 128, and Z interferometers 43A and 43B for measuring the position of wafer stage WST, and the positions of measurement stage MST.
  • a Y interferometer 18 for measurement and an X interferometer 130 are included.
  • the Y interferometer 16 and the three X interferometers 126, 127, and 128 have interferometer beams (length measuring beams) B4 (B4 1 , B4 2 ) and B5 (B5 1 ) on the reflecting surfaces 17a and 17b of the wafer table WTB, respectively. , B5 2 ), B6 and B7.
  • the Y interferometer 16 and the three X interferometers 126, 127, and 128 receive the reflected light, measure the position information of the wafer stage WST in the XY plane, and use the measured position information as the main information. This is supplied to the control device 20.
  • the X interferometer 126 passes through the optical axis AX of the projection optical system PL (in this embodiment, also coincides with the center of the exposure area IA described above) and is a straight line (reference axis LH (FIG. 5) parallel to the X axis.
  • the reflection surface 17b is irradiated with at least three length measuring beams parallel to the X axis including a pair of length measuring beams B5 1 and B5 2 symmetrical with respect to the above)).
  • the Y interferometer 16 reflects at least three measurement beams parallel to the Y axis, including a pair of measurement beams B4 1 , B4 2 , and B3 (see FIG.
  • main controller 20 determines the position in the ⁇ x direction (hereinafter referred to as “X” and “Y”) of wafer table WTB (wafer stage WST) based on the measurement results of Y interferometer 16 and X interferometer 126 or 127.
  • ⁇ x rotation (or ⁇ x rotation amount), or pitching (or pitching amount) as appropriate, position in the ⁇ y direction (hereinafter, as appropriate, ⁇ y rotation (or ⁇ y rotation amount), or rolling (or rolling amount). ) And ⁇ z rotation (ie yaw amount) can also be calculated.
  • a movable mirror 41 having a concave reflecting surface is attached to the side surface of the stage body 91 on the ⁇ Y side.
  • the movable mirror 41 is set to have a length in the X-axis direction that is longer than the reflection surface 17a of the wafer table WTB.
  • a pair of Z interferometers 43A and 43B are provided to face the movable mirror 41 (see FIGS. 1 and 4).
  • the Z interferometers 43A and 43B irradiate two length measuring beams B1 and B2 to the fixed mirrors 47A and 47B fixed to, for example, a main frame (not shown) that supports the projection unit PU via the movable mirror 41, respectively.
  • each reflected light is received and the optical path length of length measuring beam B1, B2 is measured.
  • main controller 20 calculates the position of wafer stage WST in the four degrees of freedom (Y, Z, ⁇ y, ⁇ z) direction.
  • the position in the XY plane (including rotation information in the ⁇ z direction) of wafer stage WST is mainly measured using an encoder system described later.
  • Interferometer system 118 is used when wafer stage WST is located outside the measurement area of the encoder system (for example, in the vicinity of unloading position UP and loading position LP shown in FIG. 5 and the like). Further, it is used as an auxiliary when correcting (calibrating) long-term fluctuations in the measurement results of the encoder system (for example, due to deformation of the scale over time) or for backup when the output of the encoder system is abnormal.
  • interferometer system 118 and an encoder system may be used together to control the position of wafer stage WST (wafer table WTB).
  • the Y interferometer 18 and the X interferometer 130 of the interferometer system 118 irradiate the reflection surfaces 19a and 19b of the measurement table MTB with interferometer beams (measurement beams), respectively.
  • position information of the measurement stage MST for example, including at least the position in the X-axis and Y-axis directions and the rotation information in the ⁇ z direction
  • the measurement result is sent to the main controller 20. Supply.
  • the main configuration of the encoder system 150 is disclosed in, for example, US Patent Application Publication No. 2008/0088843.
  • head units 62A, 62B, 62C, and 62D are provided on the + X side, + Y side, -X side of the nozzle unit 32, and -Y side of the primary alignment system AL1.
  • head units 62E and 62F are provided on the ⁇ Y side of the head units 62C and 62A, respectively, and at substantially the same Y position as the primary alignment system AL1.
  • the head units 62A to 62F are fixed in a suspended state to a main frame (not shown) that holds the projection unit PU via support members.
  • the head unit 62A is arranged on the + X side of the nozzle unit 32, and a plurality of (here, four) head units 62A are arranged on the aforementioned reference axis LH along the X axis direction at intervals WD.
  • Y heads 65 2 to 65 5 and a Y head 65 1 disposed at a position on the ⁇ Y side of the nozzle unit 32 that is a predetermined distance away from the reference axis LH in the ⁇ Y direction.
  • the distance between the Y heads 65 1 and 65 2 in the X-axis direction is also set substantially equal to WD.
  • the head unit 62 ⁇ / b> C is configured symmetrically with the head unit 62 ⁇ / b> A and is disposed symmetrically with respect to the reference axis LV 0 described above.
  • the head unit 62C includes Y heads 65 5 to 65 1 and five Y heads 64 1 to 64 5 arranged symmetrically with respect to the reference axis LV 0 .
  • Y heads 65 1 to 65 5 and 64 1 to 64 5 are also referred to as Y heads 65 and 64, respectively.
  • the head unit 62A uses the Y scale 39Y 1 described above to measure a Y-axis position (Y position) of the wafer stage WST (wafer table WTB) in a multi-lens (here 5 eyes) Y linear encoder ( Hereinafter, 70A (refer to FIG. 10) is configured as appropriate.
  • the head unit 62C uses the above-described Y scale 39Y 2 to measure the Y position of the wafer stage WST (wafer table WTB), which is a multi-lens (here, 5 eyes) Y encoder 70C (see FIG. 10). Configure.
  • the adjacent Y heads (more precisely, the measurement beam emitted by each Y head).
  • the distance WD in the X-axis direction between the irradiation points on the scale) is set to be slightly narrower than the width in the X-axis direction (more precisely, the length of the grid line 38) of the Y scales 39Y 2 and 39Y 1 . Accordingly, at the time of exposure, at least one of the five Y heads 65 j and 64 i always faces the corresponding Y scale 39Y 1 and 39Y 2 .
  • the head unit 62B is arranged on the + Y side of the nozzle unit 32 (projection unit PU), and a plurality of head units 62B arranged on the reference axis LV 0 at intervals WD along the Y-axis direction.
  • four X heads 66 5 to 66 8 are provided.
  • the head unit 62D includes a plurality of (here, four) X heads 66 1 to 66 4 disposed on the ⁇ Y side of the primary alignment system AL1 and disposed on the reference axis LV 0 at an interval WD.
  • X heads 66 1 to 66 8 will also be referred to as X head 66 as appropriate.
  • the head unit 62B uses the above-described X scale 39X 1 to measure the position (X position) of the wafer stage WST (wafer table WTB) in the X axis direction (multiple eyes (here, four eyes) X linear encoder). (Hereinafter abbreviated as “X encoder” or “encoder” as appropriate) 70B (see FIG. 10). Further, the head unit 62D uses the above-described X scale 39X 2 to measure the X position of the wafer stage WST (wafer table WTB), and a multi-lens (here, four eyes) X linear encoder 70D (see FIG. 10). Configure.
  • the head unit 62B, 62D are of the four X heads 66 1-66 4 66 5-66 8 provided respectively, the X heads 66 adjacent (more precisely, the irradiation on the scale of the X head emits the measurement beam
  • the interval WD in the Y-axis direction of the dots is set to be narrower than the width of the X scales 39X 1 and 39X 2 in the Y-axis direction (more precisely, the length of the lattice line 37). Therefore, at the time of exposure or wafer alignment, at least one of the four X heads 66 included in the head units 62B and 62D, that is, the eight X heads 66, always corresponds to the corresponding X scale 39X 1 or opposed to the 39X 2.
  • the distance between the most + Y side X heads 66 4 of the most -Y side of the X heads 66 5 and the head unit 62D of the head unit 62B is the movement of the Y-axis direction of wafer stage WST, between the two X heads
  • the width of the wafer table WTB is set to be narrower than the width in the Y-axis direction so that it can be switched (connected).
  • the head unit 62E is arranged on the ⁇ X side of the secondary alignment system AL2 1 , and has three Y heads 67 1 to 67 1 arranged on the above-described reference axis LA at almost the same interval as the interval WD. 67 3, a reference axis Y heads 67 4 arranged in the secondary alignment systems AL2 1 on the + Y side a predetermined distance away in the + Y direction from the LA, and a.
  • the distance in the X-axis direction between the Y heads 67 3 and 67 4 is also set to WD.
  • Y heads 67 1 to 67 4 are also referred to as Y head 67 as appropriate.
  • the head unit 62F is symmetrical with the head unit 62E with respect to the reference axis LV 0 described above, and the four Y heads 68 1 to 68 1 are arranged symmetrically with respect to the four Y heads 67 4 to 67 1 and the reference axis LV 0. Has four .
  • the Y heads 68 1-68 4 as appropriate, also described as Y heads 68.
  • At the time of an alignment operation described later, at least one of the Y heads 67 p and 68 q (p, q 1 to 4) faces the Y scales 39Y 2 and 39Y 1 .
  • the Y position (and ⁇ z rotation) of wafer stage WST is measured by Y heads 67 p and 68 q (that is, Y encoders 70E and 70F constituted by Y heads 67 p and 68 q ).
  • the Y positions of the FD bar 46 are measured at the positions of the respective reference gratings 52 by the Y heads 67 3 and 68 2 that are opposed to the reference gratings 52 and opposed to the pair of reference gratings 52, respectively.
  • the encoder constituted by the Y heads 67 3 and 68 2 respectively facing the pair of reference grids 52 will be referred to as Y encoders 70E 2 and 70F 2
  • the above-described Y scales 39Y 2 and 39Y are used for identification.
  • the Y encoders 70E and 70F configured by the Y heads 67 and 68 facing 1 are referred to as Y encoders 70E 1 and 70F 1 .
  • the measurement values of the encoders 70A to 70F described above are supplied to the main control device 20, and the main control device 20 has three of the encoders 70A to 70D or three of the 70B, 70D, 70E 1 and 70F 1 . Based on the measurement value, the position of wafer stage WST in the XY plane is controlled, and based on the measurement value of encoders 70E 2 and 70F 2 , rotation (yawing) of FD bar 46 (measurement stage MST) in the ⁇ z direction is performed. Control.
  • the measurement stage MST is not shown, and a liquid immersion area formed by the water Lq held between the measurement stage MST and the tip lens 191 is indicated by reference numeral 14.
  • symbols UP and LP are set symmetrically with respect to the reference axis LV 0 , an unloading position at which the wafer is unloaded on the wafer table WTB, and the wafer is loaded onto the wafer table WTB. Each loading position is shown. Note that the unloading position UP and the loading position LP may be the same position.
  • an irradiation system 90a and a light receiving system 90b having the same configuration as that disclosed in US Pat. No. 5,448,332, for example.
  • An oblique incidence type multi-point focal position detection system (hereinafter abbreviated as “multi-point AF system”) 90 is provided.
  • the irradiation system 90a is disposed on the + Y side of the ⁇ X end of the head unit 62E described above, and light is received on the + Y side of the + X end of the head unit 62F while facing this.
  • a system 90b is arranged.
  • the multipoint AF system 90 is fixed to the lower surface of the main frame that holds the projection unit PU described above.
  • a plurality of detection points of the multi-point AF system 90 (90a, 90b) are arranged at predetermined intervals along the X-axis direction on the surface to be detected.
  • N M / 2 2).
  • a plurality of detection points irradiated with the detection beam are not individually illustrated, and are long and narrow detection areas (beam areas) AF extending in the X-axis direction between the irradiation system 90a and the light receiving system 90b. It is shown.
  • this detection area AF has a length in the X-axis direction that is set to be approximately the same as the diameter of the wafer W, the wafer W is scanned almost once in the Y-axis direction, so that the entire surface of the wafer W is almost completely Z-axis direction.
  • Position information (surface position information) can be measured.
  • the multipoint AF system 90 (90a, 90b) in the vicinity of both end portions of detection area AF of the reference axis LV 0 with respect to symmetrical arrangement, the surface position sensors for measuring the pair of Z position Heads (hereinafter abbreviated as “Z head”) 72a, 72b, and 72c, 72d are provided.
  • the Z heads 72a to 72d are fixed to the lower surface of the main frame (not shown).
  • Z heads 72a to 72d for example, an optical displacement sensor head similar to an optical pickup used in a CD drive device or the like is used.
  • Z heads 72a to 72d irradiate wafer table WTB with a measurement beam from above, receive the reflected light, and measure the surface position of wafer table WTB at the irradiation point.
  • a configuration is adopted in which the measurement beam of the Z head is reflected by the reflection type diffraction grating constituting the Y scales 39Y 1 and 39Y 2 described above.
  • the three outer Z heads 76 3 to 76 5 and 74 1 to 74 3 belonging to the head units 62A and 62C are arranged in parallel to the reference axis LH at a predetermined distance in the + Y direction from the reference axis LH. Has been.
  • head units 62A on the + Y side of the innermost Z heads 76 1, 74 5 projection unit PU belonging to each of 62C, 2 remaining Z heads 76, 74 4 each Y heads 65 2, 64 4 - Arranged on the Y side.
  • the five Z heads 76 j and 74 i belonging to the head units 62A and 62C are arranged symmetrically with respect to the reference axis LV 0 .
  • a head of an optical displacement sensor similar to the Z heads 72a to 72d described above is employed as each of the Z heads 76 j and 74 i .
  • the adjacent Z head (more precisely, the irradiation point on the scale of the measurement beam emitted by each Z head) in the X-axis direction is The distance WD in the X-axis direction between the Y heads 65 and 64 is set equal. Accordingly, at the time of exposure, at least one of each of the five Z heads 76 j and 74 i is always set to the corresponding Y scale 39Y 1 and 39Y 2 , similarly to the Y heads 65 j and 64 i. opposite.
  • the Z heads 72a to 72d, 74 1 to 74 5 , and 76 1 to 76 5 described above are connected to the main controller 20 via the signal processing / selecting device 160 as shown in FIG.
  • the main controller 20 selects an arbitrary Z head from among the Z heads 72a to 72d, 74 1 to 74 5 , and 76 1 to 76 5 via the signal processing / selecting device 160, and sets the operating state.
  • the surface position information detected by the Z head is received via the signal processing / selection device 160.
  • Z heads 72a ⁇ 72d, 74 1 ⁇ 74 5, 76 and 1-76. 5 the position information of the tilt direction and a signal processing and selection device 160 with respect to the Z-axis direction and the XY plane of wafer stage WST
  • a surface position measurement system 180 that measures the above is configured.
  • a peripheral exposure unit extending in the X-axis direction between the detection area (beam area) AF of the multipoint AF system and the head units 62C and 62A. 51 is arranged.
  • the peripheral exposure unit 51 is supported in a suspended state on a lower surface of a main frame (not shown) via a support member (not shown).
  • the peripheral exposure unit 51 includes a light source (not shown) that emits light having substantially the same wavelength as the illumination light IL, and a peripheral exposure active mask (hereinafter, abbreviated as an active mask as appropriate) 51a on which light from the light source enters. (See FIG. 8).
  • the illumination light IL may be guided to the active mask 51a using, for example, an optical fiber.
  • the length of the peripheral exposure unit 51 (active mask 51a) is set to be somewhat longer than the diameter of the wafer W, as shown in FIG. As shown in FIG. 8 as an example, the active mask 51a has a pair of variable shaping masks VM1 and VM2 at both ends in the X-axis direction.
  • a micromirror array including a plurality of micromirrors M ij (see FIGS. 9A and 9B) arranged in a matrix in the XY plane.
  • a movable micromirror is formed by MEMS technology on an integrated circuit made by a CMOS process.
  • Each micromirror M ij tilts a mirror surface (reflection surface) around a predetermined axis (for example, an axis coinciding with the diagonal of the micromirror) within a predetermined angular range, ⁇ ⁇ ( ⁇ is, for example, 3 degrees (or 12 degrees)).
  • each variable shaping mask includes a base substrate, a movable microphone mirror M ij formed on the substrate, and an electrode for turning each micro mirror on and off.
  • Each micromirror M ij reflects, as an example, a state (or posture) of reflecting light from the light source toward the wafer W as shown in FIG. B) is set to one of the states (or postures) in which light from the light source is reflected in a predetermined direction that does not enter the wafer W.
  • the former is referred to as an on state (or an on posture) of the micromirror M ij
  • the latter is referred to as an off state (or an off posture) of the micromirror M i, j .
  • the main controller 20 individually controls each micromirror M ij to either the on state (or on posture) or the off state (or off posture). Therefore, according to the peripheral exposure unit 51 of the present embodiment, the wafer stage WST is moved in the Y-axis direction while the center of the wafer W in the X-axis direction and the center of the peripheral exposure unit 51 in the longitudinal direction substantially coincide with each other. Thus, an arbitrary pattern can be formed by exposing an arbitrary position in the vicinity of both ends of the wafer W in the X-axis direction. That is, the peripheral exposure unit 51 can form two irradiation regions for peripheral exposure that are separated in the X-axis direction, and the position thereof is variable at least in the X-axis direction.
  • FIG. 10 shows the main configuration of the control system of the exposure apparatus 100.
  • This control system is mainly configured of a main control device 20 composed of a microcomputer (or a workstation) for overall control of the entire apparatus.
  • various sensors provided on the measurement stage MST such as the illuminance unevenness sensor 94, the aerial image measuring device 96, and the wavefront aberration measuring device 98 described above, are collectively shown as a sensor group 99.
  • the main controller 20 controls the opening and closing of the valves of the liquid supply device 5 and the liquid recovery device 6 of the local liquid immersion device 8 as described above, and the leading end lens of the projection optical system PL. 191 is always filled with water.
  • the control of the liquid supply device 5 and the liquid recovery device 6 is omitted.
  • the following description of the operation will be made with reference to a number of drawings, and the same members may or may not be labeled with the same members for each drawing. In other words, although the reference numerals described in the drawings are different, the drawings have the same configuration regardless of the presence or absence of the reference numerals. The same applies to each drawing used in the description so far.
  • FIG. 11 a plan view of the wafer W is shown.
  • the shot area Sj is a two-shot area where two identical devices (chips) are formed.
  • 16 shot areas (S2, S4, S6, S18, S20, S22, S24, S26, S51, S53, S55, S57, S59, S71, S73, and S75 that are blackened in FIG. 12 are used.
  • three shot areas are first alignment shot areas, and five shot areas (S51, S53, S55, S57, S59) are second alignment shot areas, Five shot regions (S18, S20, S22, S24, S26) are third alignment shot regions, and three shot regions (S2, S4, S6) are force alignment shot regions.
  • peripheral shots S1, S7, S8, S16, S17, S27, S50, S60, S61, S69, S70, S76
  • the half area on the edge side of the wafer W (S1a, S7a, S8a, S16a, S17a, S27a, S50a, S60a, S61a, S69a, S70a, S76a) is a peripheral exposure target area (hereinafter referred to as a peripheral exposure area). It has become.
  • FIG. 14 shows a state in which step-and-scan exposure is performed on wafer W placed on wafer stage WST.
  • wafer stage WST is moved to the scanning start position (acceleration start position) for exposure of each shot area on wafer W based on the result of wafer alignment (EGA: Enhanced Global Alignment) performed before the start. It is performed by repeating the movement between the moving shots and the scanning exposure in which the pattern formed on the reticle R is transferred to each shot area by the scanning exposure method. Further, the exposure is performed in the order from the shot area located on the ⁇ Y side on the wafer W to the shot area located on the + Y side. Note that the liquid immersion region 14 is formed between the projection unit PU and the wafer W.
  • main controller 20 causes wafer stage WST to have a position in the XY plane (including the position in the ⁇ z direction ( ⁇ z rotation)) of two Y encoders 70A and 70C and two X encoders 70B and 70D. Control is performed based on the measurement results of a total of three encoders.
  • the two X encoders 70B and 70D are constituted by two X heads 66 facing the X scales 39X 1 and 39X 2 respectively, and the two Y encoders 70A and 70C are the Y scales 39Y 1 and 39Y 2 .
  • the Y heads 65 and 64 are opposed to each other.
  • the Z position and ⁇ y rotation (rolling) of wafer stage WST are respectively controlled by Z heads 74 i , belonging to head units 62C and 62A, which face the X-axis direction one side and the other side of the wafer table WTB surface, respectively. It is controlled based on the measured value of 76 j .
  • the ⁇ x rotation (pitching) of wafer stage WST is controlled based on the measurement value of Y interferometer 16.
  • Z heads 74 i, 76 j In the case where three or more Z heads including Z head 74 i, 76 j on the surface of second water repellent plate 28b of wafer table WTB is opposed, Z heads 74 i, 76 j, and the other one Z Based on the measurement value of the head, it is also possible to control the position of wafer stage WST in the Z-axis direction, ⁇ y rotation (rolling), and ⁇ x rotation (pitching). In any case, control of the position of the wafer stage WST in the Z-axis direction, ⁇ y rotation, and ⁇ x rotation (that is, focus / leveling control of the wafer W) is performed based on the result of focus mapping performed in advance. .
  • main controller 20 executes position (Z, ⁇ y) control of wafer stage WST using Z heads 74 3 and 76 3 .
  • Z heads 74 3 and 76 3 deviate from the corresponding Y scale, and instead, Z heads 74 4 and 76 4 (Shown in a circle) are opposed to the Y scales 39Y 2 and 39Y 1 , respectively. Therefore, main controller 20 switches to stage control using Z heads 74 4 and 76 4 .
  • main controller 20 performs stage control by constantly switching the encoder and Z head to be used according to the position coordinates of wafer stage WST.
  • the X position and ⁇ z rotation amount (yawing amount) of wafer stage WST are converted to Y position and ⁇ x rotation using Y interferometer 16 using X interferometers 126, 127, or 128 constituting interferometer system 118.
  • the Z position, the Z position, the ⁇ y rotation amount, and the ⁇ z rotation amount are measured using the Z interferometers 43A and 43B.
  • any one of X interferometers 126, 127, and 128 is used according to the Y position of wafer stage WST.
  • an X interferometer 126 is used as shown in FIG.
  • the measurement result of the interferometer system 118 excludes the pitching amount ( ⁇ x rotation amount), either supplementarily, at the time of backup described later, or when measurement by the encoder system 150 and / or the surface position measurement system 180 cannot be performed. It is used for position control of wafer stage WST.
  • main controller 20 drives wafer stage WST toward unload position UP.
  • the wafer stage WST and the measurement stage MST which are separated from each other during the exposure, come into contact with each other with a separation distance of about 300 ⁇ m therebetween, and shift to the scram state.
  • the ⁇ Y side surface of FD bar 46 on measurement table MTB and the + Y side surface of wafer table WTB come into contact with or approach each other.
  • both stages WST and MST move in the ⁇ Y direction, so that the liquid immersion region 14 formed under the projection unit PU moves onto the measurement stage MST.
  • FIGS. 15 and 16 show the state after the movement.
  • wafer stage WST releases the scrum state with measurement stage MST and moves to unloading position UP.
  • main controller 20 unloads wafer W on wafer table WTB.
  • main controller 20 drives wafer stage WST in the + X direction to move it to loading position LP, and loads the next wafer W onto wafer table WTB.
  • main controller 20 adjusts the position of FD bar 46 supported by measurement stage MST in the XY plane, baseline measurement of four secondary alignment systems AL2 1 to AL2 4 , Execute Sec-BCHK (secondary baseline check). Sec-BCHK is performed at intervals for each wafer exchange.
  • the Y encoders 70E 2 and 70F 2 described above are used.
  • main controller 20 drives wafer stage WST to position reference mark FM on measurement plate 30 within the detection field of primary alignment system AL1, as shown in FIG. 17, and alignment systems AL1, AL2
  • Pri-BCHK Primary Baseline Check
  • two Y heads 68 2 and 67 3 and one X head 66 1 are respectively connected to Y scales 39Y 1 and 39Y 2. and come to face the X scale 39X 2. Therefore, main controller 20 switches from interferometer system 118 to stage control using encoder system 150 (encoders 70E 1 , 70F 1 , 70D). Interferometer system 118 is used again as an auxiliary, except for measuring the amount of ⁇ x rotation of wafer stage WST. Of the three X interferometers 126, 127, and 128, the X interferometer 127 is used.
  • main controller 20 manages the position of wafer stage WST based on the measurement values of the three encoders described above, and moves toward the position where alignment marks attached to the three first alignment shot areas are detected. Starts moving the wafer stage WST in the + Y direction.
  • main controller 20 stops wafer stage WST.
  • the main controller 20 operates (turns on) the Z heads 72a to 72d when all or a part of the Z heads 72a to 72d face the wafer table WTB or at a point before that. Measurement of the Z position and tilt amount ( ⁇ y rotation amount) of wafer stage WST is started.
  • main controller 20 uses primary alignment system AL1, secondary alignment systems AL2 2 and AL2 3 to detect the alignment marks attached to the three first alignment shot areas almost simultaneously and individually. (See the star mark in FIG. 18), the detection results of the three alignment systems AL1, AL2 2 and AL2 3 and the measurement values of the three encoders at the time of detection are associated with each other and stored in a memory (not shown).
  • the transition to the contact state (or proximity state) between the measurement stage MST and the wafer stage WST is completed at the position where the alignment mark in the first alignment shot region is detected.
  • Main controller 20 moves both stages WST and MST in the + Y direction in the contact state (or proximity state) (step movement toward the position where alignment marks attached to the five second alignment shot areas are detected) ) Is started.
  • main controller 20 irradiates wafer table WTB with the detection beam of multipoint AF system (90a, 90b) as shown in FIG. To start. As a result, a multi-point AF detection area is formed on wafer table WTB.
  • main controller 20 sets center of wafer table WTB on reference axis LV 0.
  • the measured values of the Z heads 72a, 72b, 72c, 72d (the surface position information at one end and the other end of the wafer table WTB) in the state where the lines match, and the multipoint AF system (90a, 90b) )
  • the detection result surface position information
  • the liquid immersion region 14 is formed on the upper surface of the FD bar 46.
  • main controller 20 determines in the XY plane of wafer stage WST based on the measured values of X head 66 2 (X linear encoder 70D) and Y linear encoders 70E 1 and 70F 1 facing X scale 39X 2 . The position is controlled.
  • main controller 20 again moves both stages WST and MST in the + Y direction in the contact state (or in the proximity state) after the detection of the alignment marks attached to the five second alignment shot areas is completed. Simultaneously with the start, as shown in FIG. 20, position information (surface position information) on the surface of the wafer W in the Z-axis direction is detected using the Z heads 72a to 72d and the multipoint AF system (90a, 90b). Start focus mapping.
  • main controller 20 measures by Y linear encoders 70E 1 and 70F 1 .
  • Y linear encoders 70E 1 and 70F 1 By controlling on / off of each micromirror M ij constituting the two variable forming masks VM1, VM2 of the peripheral exposure unit 51 according to the Y position of the wafer stage WST, FIG. As shown in FIG. 25B and FIG. 25C, the peripheral exposure regions S70a and S76a, S61a and S69a, S50a and S60a are sequentially exposed.
  • main controller 20 may expose each peripheral exposure region entirely using peripheral exposure unit 51 or may form a predetermined pattern.
  • main controller 20 provides an optical axis for projection optical system PL of wafer stage WST. Wafer stage with reference to surface position information measured by Z heads 72a, 72b, 72c, 72d without switching the Z head used for controlling the position (Z position) with respect to the direction to Z heads 74 i , 76 j In the state where the Z position control of WST (measurement plate 30) is continued, the following second half of the focus calibration is performed.
  • main controller 20 controls the position (Z position) in the optical axis direction of projection optical system PL of measurement plate 30 (wafer stage WST) on the basis of the surface position information measured by Z heads 72a to 72d.
  • the aerial image of the measurement mark formed on the mark plate (not shown) on the reticle R or the reticle stage RST using the aerial image measuring device 45 is converted into, for example, the pamphlet of International Publication No. 2005/1224834 (and corresponding to this).
  • the best focus position of the projection optical system PL is measured based on the measurement result disclosed in US Patent Application Publication No. 2008/030715).
  • Main controller 20 synchronizes with the capture of the output signal from aerial image measurement device 45 during the above Z-direction scan measurement, and surface position information at one end and the other end of wafer table WTB in the X-axis direction.
  • the measurement values of the pair of Z heads 74 3 and 76 3 are measured.
  • the values of the Z heads 74 3 and 76 3 corresponding to the best focus position of the projection optical system PL are stored in a memory (not shown).
  • the position (Z position) of the measurement plate 30 (wafer stage WST) in the optical axis direction of the projection optical system PL on the basis of the surface position information measured by the Z heads 72a to 72d in the latter half of the focus calibration process. This is because the latter half of the focus calibration is performed during the focus mapping described above.
  • the main controller 20 performs the following processing of the latter half of the Pri-BCHK before and after the processing of the latter half of the focus calibration. That is, main controller 20 uses, for example, the aerial image measuring device 45, a projected image (aerial image) of a pair of measurement marks on reticle R projected by projection optical system PL.
  • main controller 20 uses, for example, the aerial image measuring device 45, a projected image (aerial image) of a pair of measurement marks on reticle R projected by projection optical system PL.
  • measurement is performed in a slit-scan aerial image measurement operation using a pair of aerial image measurement slit patterns SL, and the measurement results (XY of wafer table WTB)
  • the aerial image intensity corresponding to the position is stored in the memory.
  • the position of the XY plane of wafer table WTB is the X head 66 4 facing X scale 39X 2 (encoders 70D), opposite to the Y scales 39Y 1, 39Y 2 2 Control is performed based on the two Y heads 67 3 and 68 2 (encoders 70E 1 and 70F 1 ) (or Y heads 65 j and 64 i (encoders 70A and 70C)).
  • main controller 20 calculates the baseline of primary alignment system AL1 based on the result of the first half of Pri-BCHK and the result of the second half of Pri-BCHK. At the same time, the main controller 20 obtains an offset at a representative detection point of the multipoint AF system (90a, 90b) based on the results of the first and second half processes of the focus calibration described above, and stores it in the internal memory. Store. The main controller 20 adds an offset to the mapping information when reading the mapping information obtained as a result of the focus mapping during exposure.
  • main controller 20 moves wafer stage WST to its position. While stopping at the position, the measurement stage MST continues to move in the + Y direction as it is. Then, main controller 20 uses five alignment systems AL1, AL2 1 to AL2 4 to detect the alignment marks attached to the five third alignment shot regions almost simultaneously and individually (the star mark in FIG. 22). (See), the detection results of the five alignment systems AL1, AL2 1 to AL2 4 and the measurement values of the three encoders at the time of detection are associated with each other and stored in the internal memory. Also at this point, focus mapping continues.
  • measurement stage MST and wafer stage WST shift from contact (or proximity state) to separation state. After shifting to this separated state, main controller 20 stops at that position when measurement stage MST reaches an exposure start standby position where it waits until exposure starts.
  • main controller 20 starts moving wafer stage WST in the + Y direction toward a position for detecting alignment marks attached to the three force alignment shots. At this time, the focus mapping is continued. On the other hand, measurement stage MST stands by at the exposure start stand-by position.
  • main controller 20 starts Y linear encoder 70E 1 until both stages WST and MST start moving in the + Y direction and reach the position shown in FIG. , 70F 1 , according to the Y position of the wafer stage WST, the micromirrors M ij constituting the two variable forming masks VM1, VM2 of the peripheral exposure unit 51 are individually controlled on and off. As shown in FIGS. 25D and 25E, the peripheral exposure regions S17a and S27a, S8a and S16a are sequentially exposed. Also in this case, main controller 20 may expose each peripheral exposure region entirely using peripheral exposure unit 51 or may form a predetermined pattern.
  • main controller 20 immediately stops wafer stage WST, and uses wafers on wafer W using primary alignment system AL1, secondary alignment systems AL2 2 and AL2 3. Alignment marks attached to the three force alignment shot areas are detected almost simultaneously and individually (see the star mark in FIG. 23), and the detection results of the above three alignment systems AL1, AL2 2 and AL2 3 and their detection time Of the four encoders (for example, 70E 1 , 70E 2 , 70B, 70D) are associated with the measured values of the three encoders and stored in a memory (not shown). Even at this time, the focus mapping is continued, and the measurement stage MST remains on standby at the exposure start standby position.
  • primary alignment system AL1, secondary alignment systems AL2 2 and AL2 3. Alignment marks attached to the three force alignment shot areas are detected almost simultaneously and individually (see the star mark in FIG. 23), and the detection results of the above three alignment systems AL1, AL2 2 and AL2 3 and their detection time Of the four encoders (for example, 70E 1 , 70E 2 , 70B
  • main controller 20 uses the detection results of the total 16 alignment marks thus obtained and the corresponding encoder measurement values, for example, the statistics disclosed in Japanese Patent Application Laid-Open No. 61-044429. Calculation is performed to calculate array information (coordinate values) of all shot areas on the wafer W on the coordinate system defined by the measurement axes of the four encoders 70E 1 , 70E 2 , 70B, and 70D of the encoder system. .
  • main controller 20 continues the focus mapping while moving wafer stage WST in the + Y direction again.
  • main controller 20 performs two variable moldings of peripheral exposure unit 51 according to the Y position of wafer stage WST, which is measured by Y linear encoders 70E 1 and 70F 1 .
  • mask VM1, VM2 by individually controlling the on and off of the micromirrors M ij constituting a, as shown in FIG. 25 (F), successively exposing a peripheral exposure regions S1a and S7a.
  • main controller 20 may expose each peripheral exposure region entirely using peripheral exposure unit 51 or may form a predetermined pattern.
  • peripheral exposure of the wafer W is completed, and the peripheral exposure regions S1a, S7a, S8a, S16a, S17a, S27a, S50a, S60a, S61a, S69a, S70a, and S76a are exposed as shown in FIG. This is a completed area.
  • main controller 20 moves wafer stage WST to a scan start position (exposure start position) for first shot exposure on wafer W.
  • main controller 20 moves Z position of wafer stage WST, While maintaining the ⁇ y rotation and the ⁇ x rotation, the Z head used for controlling the Z position and ⁇ y rotation of wafer stage WST is switched from Z heads 72a to 72d to Z heads 74 i and 74 j .
  • the main controller 20 performs the step-and-scan method based on the results of the wafer alignment (EGA) described above and the baselines of the five latest alignment systems AL1, AL2 1 to AL2 4 . Exposure is performed by immersion exposure, and a reticle pattern is sequentially transferred to a plurality of shot areas on the wafer W. Thereafter, the same operation is repeated.
  • a plurality of detection points are set at predetermined intervals in the X-axis direction while the wafer stage WST moves linearly in the Y-axis direction.
  • Surface position information on the surface of the wafer W is detected by the point AF system (90a, 90b), and a plurality of alignment systems AL1, AL2 1 to AL2 4 in which detection areas are arranged in a line along the X-axis direction on the wafer W. Alignment marks whose positions are different from each other are detected, and the peripheral exposure unit 51 performs peripheral exposure of the wafer W.
  • wafer stage WST (wafer W) includes a plurality of detection points (detection areas AF) of multipoint AF system (90a, 90b), detection areas of a plurality of alignment systems AL1, AL2 1 to AL2 4 , and peripheral exposure.
  • detection points AF detection areas of multipoint AF system
  • AL1, AL2 1 to AL2 4 detection areas of a plurality of alignment systems AL1, AL2 1 to AL2 4 , and peripheral exposure.
  • the alignment mark detection operation it is possible to significantly improve the throughput as compared with the case where the alignment mark detection operation, the surface position information (focus information) detection operation, and the peripheral exposure operation are performed independently (separately). That is, since the time required for the peripheral exposure operation can be substantially overlapped with the wafer alignment operation time, the peripheral exposure operation hardly reduces the throughput.
  • the position information in the XY plane of the wafer table WTB is not affected by air fluctuations or the like by the encoder system 150 including the encoders 70A to 70F and the like that have good short-term measurement stability.
  • the surface position measurement system 180 including the Z heads 72a to 72d, 74 1 to 74 5 , 76 1 to 76 5, and the like is capable of accurately measuring the position information in the Z-axis direction orthogonal to the XY plane of the wafer table WTB. It is measured with high accuracy without being affected by air fluctuation.
  • both the encoder system 150 and the surface position measurement system 180 directly measure the upper surface of the wafer table WTB, it is possible to control the position of the wafer table WTB, and hence the wafer W, simply and directly. Become.
  • the surface position measurement system 180 and the multipoint AF system (90a, 90b) are simultaneously operated by the main controller 20 during the focus mapping described above, and the multipoint AF system (90a, 90b, The detection result of 90b) is converted into data based on the measurement result of the surface position measurement system 180. Therefore, by obtaining this conversion data in advance, the surface position measurement system 180 can only measure the position information in the Z-axis direction of the wafer table WTB and the position information in the tilt direction with respect to the XY plane. The surface position of the wafer W can be controlled without acquiring the surface position information of W. Therefore, in the present embodiment, the focus / leveling control of the wafer W at the time of exposure is performed with high accuracy without any particular problem, although the working distance between the front lens 191 and the surface of the wafer W is narrow. be able to.
  • the surface position of the wafer table WTB and hence the wafer W can be controlled with high accuracy, so that high-accuracy exposure with almost no exposure failure due to surface position control errors becomes possible.
  • a pattern image can be formed on the wafer W without image blur due to defocusing.
  • the arrangement interval in the X-axis direction of the plurality of Y heads 64 and 65 whose measurement direction is the Y-axis direction is narrower than the width of the Y scales 39Y 1 and 39Y 2 in the X-axis direction.
  • the arrangement interval in the Y axis direction of the plurality of X heads 66 whose direction is the measurement direction is narrower than the width of the X scales 39X 1 and 39X 2 in the Y axis direction.
  • the Y linear encoder 70A that irradiates the Y scale 39Y 1 or 39Y 2 with detection light (beam) while sequentially switching the plurality of Y heads 64 and 65 or Based on the measurement value of 70C, the Y position of wafer table WTB (wafer stage WST) can be measured.
  • a plurality of X heads 66 are sequentially switched and detected on X scale 39X 1 or 39X 2 .
  • the X position of wafer table WTB (wafer stage WST) can be measured based on the measurement value of X linear encoder 70B or 70D that emits light (beam).
  • the alignment system (AL1, AL2 1 to AL 4 ) is separated from the exposure position where the wafer W is exposed (position where the liquid immersion area 14 below the projection unit PU is formed) in the Y-axis direction. ), And the multi-point AF system 90 and the peripheral exposure unit 51 are exemplified, but the present invention is not limited to this.
  • one of the alignment system (AL1, AL2 1 to AL2 4 ) and the multipoint AF system 90 may not be arranged at the above position. Even in such a case, the wafer peripheral exposure can be performed in parallel with the wafer stage WST being moved in the Y-axis direction toward the exposure position for the measurement of the wafer by the other measuring apparatus. . Accordingly, the time required for the peripheral exposure can be overlapped with another processing time, so that the throughput can be improved.
  • both the alignment system (AL1, AL2 1 to AL2 4 ) and the multipoint AF system (90a, 90b) may not be arranged at the above positions.
  • a measuring apparatus that performs some measurement on the wafer is disposed at the same position as the alignment system (AL1, AL2 1 to AL 4 ) and the multipoint AF system (90a, 90b).
  • the present invention is not limited to this, and at least one of the Y scales 39Y 1 and 39Y 2 for measuring the position in the Y-axis direction and the X scales 39X 1 and 39X 2 for measuring the position in the X-axis direction is not a pair but only one. Alternatively, it may be provided on wafer table WTB, or at least one of the pair of head units 62A and 62C and the two head units 62B and 62D may be provided. Further, the extending direction of the scale and the extending direction of the head unit are not limited to orthogonal directions such as the X-axis direction and the Y-axis direction in the above-described embodiment, and may be any direction that intersects each other.
  • the head units 62A to 62D have a plurality of heads arranged at a predetermined interval.
  • the present invention is not limited to this, and the light beam is applied to a region extending in the pitch direction of the Y scale or X scale.
  • a single head provided may be employed.
  • AL1, AL2 1 to AL2 4 alignment system
  • multipoint AF system 90a, 90b
  • Z sensor interferometer system 118
  • encoder system 70A
  • the present invention is not limited to this.
  • the present invention can be applied to an exposure apparatus that is not provided with a measurement stage MST or the like.
  • the present invention is applicable as long as it includes a wafer stage (moving body) and some other constituent parts among the above constituent parts.
  • the peripheral exposure unit 51 is arranged on the projection unit PU side of the alignment system (AL1, AL2 1 to AL 4 ) (and the multipoint AF system (90a, 90b)) is illustrated.
  • the peripheral exposure unit may be arranged on the unloading position UP and loading position LP side of the alignment system (AL1, AL2 1 to AL 4 ) (and the multipoint AF system (90a, 90b)). good.
  • the wafer stage WST is subjected to the peripheral exposure of the wafer W in the forward path from the loading position LP toward the exposure position (projection unit PU) is exemplified.
  • the peripheral exposure may be performed on the return path from the position (projection unit PU) to the unloading position UP, or the peripheral exposure of one wafer may be performed on both the outward path and the return path.
  • the peripheral exposure unit 51 capable of irradiating two irradiation areas for peripheral exposure separated in the X-axis direction
  • the configuration of the peripheral exposure unit is not limited to this.
  • wafer stage WST detects a plurality of detection points (detection areas AF) of multipoint AF system (90a, 90b) and a plurality of alignment systems AL1, AL2 1 to AL2 4 .
  • the surface position information of almost the entire surface of the wafer W, the detection of all the alignment marks to be detected on the wafer W, and the wafer W can be obtained simply by linearly passing through the area and below the peripheral exposure unit 51.
  • the case where the three operations with the peripheral exposure are completed has been described.
  • the present invention is not limited thereto, and at least a part of the peripheral exposure operation may be performed in parallel with the movement of the wafer stage WST (wafer W) from the loading position to the exposure position.
  • the throughput can be further improved. That is, it is sufficient that at least a part of the peripheral exposure operation is performed during the movement of the wafer stage WST (wafer W) from the loading position to the exposure position, and the others are not essential.
  • the measurement system 200 includes both the interferometer system 118 and the encoder system 150.
  • the measurement system is not limited thereto, and the measurement system is one of the interferometer system 118 and the encoder system 150. May contain only.
  • FIG. 27 schematically shows a configuration of an exposure apparatus 500 according to the second embodiment.
  • the exposure apparatus 500 is a step-and-scan projection exposure apparatus, a so-called scanner.
  • the exposure apparatus 500 includes an illumination system 10, a reticle stage RST, a projection unit PU, a stage apparatus 50 having a wafer stage WST and a measurement stage MST, a control system for these, and the like.
  • wafer W is placed on wafer stage WST.
  • the exposure apparatus 500 is different from the exposure apparatus 100 of the first embodiment except that a wafer table WTB ′ is used instead of the wafer table WTB described above, and the configuration of the encoder system 150 is different.
  • the exposure apparatus 100 is configured similarly to the exposure apparatus 100 of the first embodiment. In the following, the description will be focused on the differences, and the same reference numerals are used for the same or equivalent components as those in the first embodiment described above, and the description will be simplified or omitted. Further, for simplification of description, the description of the configuration related to the peripheral exposure and focus / leveling control of the wafer W is omitted.
  • the stage apparatus 50 includes a wafer stage WST and a measurement stage MST arranged on the base board 12, as in the first embodiment.
  • the stage apparatus 50 further includes a measurement system 200 that measures positional information of both stages WST and MST, a stage drive system 124 that drives both stages WST and MST, and the like (both not shown in FIG. 27, see FIG. 32). It has.
  • the measurement system 200 includes an interferometer system 118 and an encoder system 150 as shown in FIG.
  • Wafer stage WST includes stage main body 91 and wafer table WTB 'mounted on stage main body 91.
  • Wafer table WTB ′ and stage main body 91 are driven in a direction of six degrees of freedom (X, Y, Z, ⁇ x) with respect to base board 12 by a drive system including, for example, a linear motor and a Z / leveling mechanism (including a voice coil motor). , ⁇ y, ⁇ z).
  • a wafer holder (not shown) that holds the wafer W by vacuum suction or the like is provided at the center of the upper surface of the wafer table WTB '.
  • a plate liquid repellent
  • the surface of the plate 28 ' is subjected to a liquid repellency treatment with respect to the liquid Lq.
  • the plate 28 ′ is installed so that all or part of the surface thereof is flush with the surface of the wafer W.
  • the plate 28 ′ is positioned at the center in the X-axis direction of the wafer table WTB, and the first liquid repellent region 28 a ′ having a rectangular outer shape (contour) in which the above-described circular opening is formed at the center, and the first The wafer table WTB has a pair of rectangular second liquid repellent regions 28b ′ positioned at the + X side end portion and the ⁇ X side end portion of the wafer table WTB with the liquid repellent region 28a ′ interposed therebetween in the X axis direction.
  • the first and second liquid repellent regions 28a ′ and 28b ′ are hereinafter referred to as the first and second water repellent plates 28a ′ and 28a, respectively. Also referred to as 28b '.
  • a reference mark FM and a pair of aerial image measurement slit patterns (slit-like measurement patterns) SL sandwiching the reference mark FM are formed in the vicinity of the + Y side end of the first water repellent plate 28a ′.
  • a plate 30 is provided.
  • the illumination light IL passing therethrough is transmitted to the outside of wafer stage WST, specifically, the above-described light receiving system (not shown) provided on measurement table MTB (and stage body 92). ) Is provided.
  • the aerial image measuring device 45 (FIG. 5) guides the illumination light IL transmitted through the image measurement slit pattern SL by each light transmission system (not shown) and receives the light by the light receiving element of each light reception system (not shown) in the measurement stage MST. 32) is configured.
  • moving scales 39A and 39B are formed on the pair of second water repellent plates 28b ', respectively.
  • Each of the moving scales 39A and 39B is configured by a reflective two-dimensional diffraction grating in which, for example, a diffraction grating having a periodic direction in the Y-axis direction and a diffraction grating having a periodic direction in the X-axis direction are combined.
  • the pitch of the lattice lines of the two-dimensional diffraction grating is set to 1 ⁇ m, for example, in both the Y-axis direction and the X-axis direction. In FIG. 28, the pitch of the lattice is shown larger than the actual pitch for convenience of illustration. The same applies to the other drawings.
  • each second water repellent plate 28b ' there is a positioning pattern (not shown) configured in the same manner as described above for determining the relative position between the encoder head and the moving scale, which will be described later. Is provided.
  • a reflecting surface 17a and a reflecting surface 17b are formed on the ⁇ Y end surface and the ⁇ X end surface of wafer table WTB ′.
  • the Y interferometer 16 of the interferometer system 118 (see FIG. 32) and the three X interferometers 126 to 128 each have interferometer beams (measurement beams) on their reflecting surfaces 17a and 17b. ) irradiating B4 1, B4 2, B5 1 , B5 2, B6, B7 and the like.
  • the Y interferometer 16 and the three X interferometers 126 to 128 receive the reflected light, measure the position information of the wafer stage WST in the XY plane, and use the measured position information as the main control device. 20 is supplied. Also in the second embodiment, main controller 20 adds to the X and Y positions of wafer table WTB ′ (wafer stage WST) based on the measurement results of Y interferometer 16 and X interferometer 126 or 127.
  • the rotation information in the ⁇ x direction that is, pitching
  • the rotation information in the ⁇ y direction that is, rolling
  • the rotation information in the ⁇ z direction that is, yawing
  • a movable mirror 41 having a concave reflecting surface is attached to the side surface on the ⁇ Y side of the stage main body 91.
  • the pair of Z interferometers 43A and 43B that constitute a part of the interferometer system 118 irradiates the fixed mirrors 47A and 47B with the two length measuring beams B1 and B2 via the movable mirror 41, respectively, and reflects the respective reflected lights. , And the optical path lengths of the measuring beams B1 and B2 are measured. Based on the result, main controller 20 calculates the position of wafer stage WST in the four degrees of freedom (Y, Z, ⁇ y, ⁇ z) direction.
  • position information (including rotation information in the ⁇ z direction) of wafer stage WST (wafer table WTB ′) in the XY plane is mainly used by using encoder system 150 (see FIG. 32) described later. It is measured.
  • Interferometer system 118 is used when wafer stage WST is located outside the measurement area of the encoder system (for example, near unloading position UP or loading position LP shown in FIG. 30). Further, it is used as an auxiliary when correcting (calibrating) long-term fluctuations in the measurement results of the encoder system (for example, due to deformation of the scale over time) or for backup when the output of the encoder system is abnormal.
  • the position of wafer stage WST (wafer table WTB ') may be controlled by using interferometer system 118 and the encoder system together.
  • FIG. 32 also shows a stage drive system 124 including a drive system for wafer stage WST and a drive system for measurement stage MST.
  • a primary alignment having a detection center at a position on the reference axis LV 0 at a predetermined distance from the optical axis AX to the ⁇ Y side.
  • System AL1 is arranged.
  • Secondary alignment systems AL2 1 , AL2 2 , AL2 3 , AL2 4 having detection centers arranged almost symmetrically with respect to the reference axis LV 0 on one side and the other side in the X-axis direction across the primary alignment system AL1 Are provided.
  • a pair of head units 62A 'and 62B' are arranged on the + X side and the -X side of the nozzle unit 32, respectively. These head units 62A 'and 62B' are fixed in a suspended state to a main frame (not shown) that holds the projection unit PU via a support member.
  • each of the head units 62A ′ and 62B ′ includes a plurality of (here, four) two-dimensional heads (hereinafter referred to as “head” or “2D” arranged on the reference axis LH at intervals WD. 165 2 to 165 5 and 164 1 to 164 4, and heads 165 1 and 164 disposed at the ⁇ Y side position of the nozzle unit 32 that is a predetermined distance away from the reference axis LH in the ⁇ Y direction. 5 and. Note that the distance in the X-axis direction between the heads 165 1 and 165 2 and between the heads 164 4 and 164 5 is also set to WD.
  • the heads 165 1 to 165 5 and the heads 164 1 to 164 5 are also referred to as a head 165 and a head 164, respectively, as necessary.
  • the head unit 62A ′ uses the above-described moving scale 39A to measure the position of the wafer stage WST (wafer table WTB ′) in the X-axis direction (X position) and the multi-view (Y position) in the Y-axis direction (Y position).
  • a five-lens XY linear encoder hereinafter abbreviated as “XY encoder” or “encoder” as appropriate
  • XY encoder or “encoder” as appropriate
  • the head unit 62B ′ uses the above-described moving scale 39B to measure the X position and the Y position of the wafer stage WST (wafer table WTB ′), a multi-lens (here, 5 eyes) XY encoder 170B (5 eyes). (See FIG. 32).
  • the X-axis direction of five heads 165 and 164 (more precisely, irradiation points on the moving scale of measurement beams (encoder beams) emitted by the heads 165 and 164) provided in the head units 62A ′ and 62B ′, respectively.
  • the width of the moving scale refers to the width of the diffraction grating (or its formation region), more precisely, the range in which the position can be measured by the head.
  • head units 62C ′ and 62D ′ are provided at a predetermined distance on the ⁇ Y side of the head units 62B ′ and 62A ′.
  • the head units 62C 'and 62D' are fixed in a suspended state to a main frame (not shown) that holds the projection unit PU via a support member.
  • Head unit 62C ' as shown in FIG. 31, secondary alignment systems AL2 1 three heads 167 1-167 3 located at substantially the same distance as distance WD on reference axis LA to the -X side, the reference And a head 167 4 disposed on the + Y side of the secondary alignment system AL2 1 that is a predetermined distance away from the axis LA in the + Y direction.
  • the distance between the heads 167 3 and 167 4 in the X-axis direction is set slightly narrower than WD.
  • the head unit 62D ′ is symmetrical with the head unit 62C ′ with respect to the reference axis LV 0 described above, and the four heads 168 1 to 168 arranged symmetrically with respect to the four heads 167 4 to 167 1 and the reference axis LV 0. Has four .
  • the heads 167 1 to 167 4 and the heads 168 1 to 168 4 are also referred to as a head 167 and a head 168, respectively, as necessary.
  • At the time of alignment operation at least one head 167 and 168 respectively faces the moving scales 39B and 39A. That is, at least one of the measurement beams (encoder beams) emitted from the heads 167 and 168 is always applied to the moving scales 39B and 39A.
  • the X position, the Y position, and the ⁇ z rotation of wafer stage WST are measured by heads 167 and 168 (that is, XY encoders 170C and 170D configured by these heads 167 and 168).
  • the Y position of the FD bar 46 is measured at the position of each reference grating 52 by the heads 167 3 and 168 2 facing the reference grating 52 and facing the pair of reference gratings 52.
  • encoders composed of the heads 167 3 and 168 2 facing the pair of reference gratings 52 are Y linear encoders (also abbreviated as “Y encoder” or “encoder” as appropriate) 170G and 170H (see FIG. 32). ).
  • the Y encoders 170G and 170H function as Y heads instead of 2D heads by having some of the heads 167 3 and 168 2 constituting the encoders 170C and 170D face the pair of reference gratings 52. Pay attention and call it this way. In the following, for the sake of convenience, description will be made assuming that Y encoders 170G and 170H exist in addition to XY encoders 170C and 170D.
  • Main controller 20 controls the position (including rotation (yawing) in the ⁇ z direction) of wafer table WTB in the XY plane based on the measurement values of XY encoders 170A, 170B, or 170C, 170D, and the Y encoder Based on the measured values of 170G and 170H, the rotation of the FD bar 46 (measurement stage MST) in the ⁇ z direction is controlled.
  • FIG. 32 shows the main configuration of the control system of the exposure apparatus 500.
  • This control system is mainly configured of a main control device 20 composed of a microcomputer (or a workstation) for overall control of the entire apparatus.
  • the arrangement of the moving scale on the wafer table WTB ′ as described above and the arrangement of the head as described above are employed.
  • movement scales 39A and 39B and heads 165 and 164 head units 62A ′ and 62B ′) or heads 168 and 167 are always used.
  • Head units 62D ′ and 62C ′ are opposed to each other.
  • FIG. 33 a head that is opposed to the corresponding moving scale and is used for position measurement is shown surrounded by a solid circle.
  • the main controller 20 transfers the pattern of the reticle R onto the wafer W.
  • each of the five head units 62A ′ and 62B ′ are controlled using the measurement values of each of heads 165 and 164 that face moving scales 39A and 39B from heads 165 and 164, respectively. .
  • main controller 20 uses the measurement values of heads 168 and 167 (encoders 170D and 170C) of head units 62D ′ and 62C ′ facing the moving scales 39A and 39B, respectively, during wafer alignment to perform wafer alignment.
  • the position and rotation (rotation in the ⁇ z direction) of the stage WST in the XY plane are controlled.
  • main controller 20 moves heads 165 and 164 for measuring the X position and Y position of wafer stage WST when driving wafer stage WST in the X-axis direction as indicated by the white arrow in FIG. 33, the heads are sequentially switched to the adjacent heads 165 and 164 as indicated by an arrow e 1 in FIG.
  • the head 164 2 surrounded by the solid circle is switched to the head 164 3 surrounded by the dotted circle (and the head 165 2 surrounded by the solid circle is switched to the head 165 3 surrounded by the dotted circle).
  • the interval WD between the adjacent heads 165 and 164 included in the head units 62A ′ and 62C ′ is set.
  • the moving scales 39A and 39B are set to be narrower than the width in the X-axis direction.
  • FIG. 34 shows one 2D head 164 of the head unit 62B ′ that irradiates the moving scale 39B with detection light (measurement beam).
  • the head 164 includes a light source 164a for irradiating a laser beam to a moving scale (moving grating) 39B provided at the end on the ⁇ X side of the upper surface of the wafer table WTB ′,
  • the fixed scale 164b 1 , 164b 2 and 164b 3 , 164b 4, and the fixed scales 164b 1 , 164b 2, and the fixed scale 164b 3, which collect the diffracted light generated by the moving scale 39B, are fixed.
  • 164b 4 includes an index scale 164c that interferes with the diffracted light collected by the index scale 164c, and a detector 164d that detects light interfered with the index scale 164c.
  • the posture of the light source 164a is set by design so that the optical axis of the laser light emitted from the light source 164a is perpendicular to the XY plane.
  • the fixed scales 164b 1 and 164b 2 are transmission type phase gratings composed of a plate on which a diffraction grating having a periodic direction in the Y-axis direction is formed.
  • the fixed scales 164b 3 and 164b 4 are transmission type phase gratings composed of a plate on which a diffraction grating whose periodic direction is the X-axis direction is formed.
  • the index scale 164c is a transmissive two-dimensional grating in which a diffraction grating having a periodic direction in the Y-axis direction and a diffraction grating having a periodic direction in the X-axis direction are formed.
  • the detector 164d includes, for example, a quadrant detector or a CCD.
  • Fixed scale 164b 1 diffracts the -1st-order diffracted light generated in the Y-axis direction of the movement scale 39B in the diffraction grating whose periodic direction +1 generates order diffracted light, the + 1st-order diffracted light toward the index scale 164c.
  • the fixed scale 164b 2 diffracts the + 1st order diffracted light generated by the diffraction grating whose periodic direction is the Y-axis direction of the moving scale 39B to generate a ⁇ 1st order diffracted light. Head.
  • the + 1st order diffracted light and the ⁇ 1st order diffracted light generated by the fixed scales 164b 1 and 164b 2 overlap each other at the same position on the index scale 164c. That is, the + 1st order diffracted light and the ⁇ 1st order diffracted light interfere on the index scale 164c.
  • the fixed scale 164b 3 generates + 1st order diffracted light by diffracting the ⁇ 1st order diffracted light generated by the diffraction grating whose periodic direction is the X-axis direction of the moving scale 39B, and this + 1st order diffracted light is directed to the index scale 164c.
  • the fixed scale 164b 4 diffracts the + 1st order diffracted light generated by the diffraction grating whose periodic direction is the X-axis direction of the moving scale 39B to generate a ⁇ 1st order diffracted light, and this ⁇ 1st order diffracted light is transmitted to the index scale 164c. Head.
  • the + 1st order diffracted light and the ⁇ 1st order diffracted light generated by the fixed scales 164b 3 and 164b 4 overlap each other at the same position on the index scale 164c. That is, the + 1st order diffracted light and the ⁇ 1st order diffracted light interfere on the index scale 164c.
  • the diffraction angle of the diffracted light generated in each grating of the moving scale is determined based on the wavelength of the laser light emitted from the light source 164a and the pitch of the moving scale (moving grating) 39B.
  • the apparent bending angle of the ⁇ first-order diffracted light generated by the moving scale (moving grating) 39B is determined.
  • a two-dimensional pattern (checkered pattern) appears on the detector 164d. Since this two-dimensional pattern changes according to the Y-axis direction position and the X-axis direction position of wafer stage WST, this change is measured by a quadrant or CCD that forms at least a part of detector 164d. By doing so, the position of wafer stage WST in the Y-axis direction and the X-axis direction can be measured.
  • the index scale 164c may be rotated by a minute amount around the Z axis to generate moire fringes, and the moire fringes may be used for measurement of the wafer stage WST.
  • the encoder 170B unlike the interferometers of the interferometer system 118, the optical path lengths of the two beams to be interfered are extremely short and almost equal, so the influence of air fluctuation can be almost ignored.
  • the other encoders 170A, 170C, and 170D are configured in the same manner as the encoder 170B.
  • Each encoder has a resolution of, for example, about 0.1 nm.
  • the position of the wafer stage WST (wafer table WTB ′) in the XY plane (including rotation in the ⁇ z direction) is performed by the main controller 20 during an exposure operation described later.
  • Stage position-derived error correction information of each encoder according to the position information (including tilt information) of wafer stage WST regarding the non-measurement direction of the encoder, characteristic information of the moving scale (for example, flatness of the lattice plane, and / or Including grid formation error), and Abbe removal amount of moving scale (Abbe error correction information)) It is controlled on the basis of.
  • the stage position-induced error correction information is the non-measurement direction with respect to the encoder head (in the second embodiment, directions other than the X-axis direction and the Y-axis direction, for example, the ⁇ x direction, the ⁇ y direction, the ⁇ z direction, This is information indicating the degree to which the position (pitching amount, rolling amount, yawing amount, Z position, etc.) of wafer stage WST with respect to the Z-axis direction or the like affects the measurement value of the encoder.
  • the stage position-induced error correction information is acquired in advance as follows.
  • main controller 20 changes wafer stage WST to a plurality of different postures, and maintains the posture of wafer stage WST based on the measurement result of interferometer system 118 for each posture from heads 165 and 164.
  • Wafer stage WST is moved in the Z-axis direction within a predetermined stroke range while irradiating detection light to specific areas of movement scales 39A and 39B, and the measurement result of the encoder is sampled during the movement. Thereby, change information (error characteristic curve) of the measurement value of the encoder corresponding to the position in the direction (Z-axis direction) orthogonal to the moving surface of wafer stage WST for each posture is obtained.
  • main controller 20 performs a predetermined calculation on the basis of the sampling result, that is, the change information of the measured value of the encoder corresponding to the position of wafer stage WST in the Z-axis direction for each posture, thereby performing wafer calculation. Correction information of the measurement value of the encoder corresponding to the position information of the stage WST in the non-measurement direction is obtained. Therefore, it is possible to determine stage position-induced error correction information for correcting the measurement error of the encoder due to the relative change between the head and the moving scale in the non-measurement direction by a simple method.
  • the corresponding scale 39B is the same.
  • the detection light from each head 164 is irradiated to a specific area of the above, and the measurement result of the encoder described above is sampled. Based on the sampling result, correction information of each head 164 (each encoder) facing the moving scale 39B is obtained. As a result, by using this correction information, a geometric error caused by the tilting of the head is also corrected.
  • main controller 20 targets a plurality of encoders corresponding to the same movement scale, and when obtaining the correction information, the head of the encoder targeted when moving wafer stage WST in the Z-axis direction.
  • the correction information of the target encoder is obtained in consideration of a geometric error caused by the tilting of the encoder. Therefore, in the second embodiment, there is no cosine error caused by different tilt angles of the plurality of heads. Even if the head 164 is not tilted, if a measurement error occurs in the encoder due to, for example, the optical characteristics (telecentricity, etc.) of the head, the correction information is obtained in the same manner to obtain the measurement error.
  • wafer stage WST is driven so as to compensate for an encoder system measurement error (hereinafter also referred to as a head-induced error) caused by the head unit.
  • a head-induced error an encoder system measurement error
  • correction information of measurement values of the encoder system may be calculated based on the characteristic information of the head unit (for example, including head tilt and / or optical characteristics).
  • the characteristic information of the moving scale includes irregularities (including inclination) on the scale surface (more precisely, the surface of the diffraction grating and, if the diffraction grating is covered with the cover glass, the surface of the cover glass). ) And / or lattice formation error (grid pitch and / or bend of lattice line) and the like, which are measured in advance.
  • the Abbe removal amount is the height (Z position) of the surface (diffraction grating surface) of each moving scale on the wafer table WTB ′ and the exposure center (center of the above-described exposure area IA). In the form, it indicates the difference from the height of the reference plane including the optical axis AX of the projection optical system PL). If there is an error (or gap) between the height of the reference plane of wafer stage WST and the height of each moving scale surface (diffraction grating surface), the axis is parallel to the XY plane (X axis or Y axis) of wafer stage WST. During rotation (pitching or rolling), a so-called Abbe error occurs in the measured value of the encoder.
  • the reference plane is a plane that serves as a reference for displacement in the Z-axis direction of wafer stage WST measured by interferometer system 118, and the alignment (position) of each shot area on wafer W in the Z-axis direction.
  • the Abbe removal amount is acquired in advance as follows.
  • main controller 20 determines, for each moving scale of the encoder system, the periodic direction of the diffraction grating based on the measurement value of interferometer system 118 that measures the tilt angle of wafer stage WST relative to the XY plane with respect to the periodic direction of the diffraction grating.
  • the wafer stage WST is tilted at an angle ⁇ , and the Abbe removal amount of the diffraction grating surface is determined based on the measured values of the encoder system before and after the tilt and the information on the angle ⁇ measured by the interferometer system 118. Is calculated. Then, main controller 20 stores the calculated information in the memory.
  • the main controller 20 controls the opening and closing of the valves of the liquid supply device 5 and the liquid recovery device 6 of the local liquid immersion device 8 as described above, and the leading end lens of the projection optical system PL. Directly below 191 is always filled with water. However, in the following, in order to make the explanation easy to understand, explanation regarding the control of the liquid supply device 5 and the liquid recovery device 6 is omitted. Further, the following description of the operation will be made with reference to a number of drawings, and the same members may or may not be labeled with the same members for each drawing. In other words, although the reference numerals described in the drawings are different, the drawings have the same configuration regardless of the presence or absence of the reference numerals. The same applies to each drawing used in the description so far.
  • FIG. 35 shows a state in which step-and-scan exposure is performed on wafer W placed on wafer stage WST.
  • This exposure is a shot that moves wafer stage WST to a scan start position (acceleration start position) for exposure of each shot area on wafer W based on the result of wafer alignment (for example, EGA) performed before the start. It is carried out by repeating the inter-movement and the scanning exposure for transferring the pattern formed on the reticle R to each shot area by the scanning exposure method. Further, the exposure is performed in the order from the shot area located on the ⁇ Y side on the wafer W to the shot area located on the + Y side.
  • main controller 20 causes wafer head WST (wafer table WTB ′) to be positioned in the XY plane (including rotation in the ⁇ z direction) by two heads facing movement scales 39A and 39B, respectively.
  • the main controller 20 causes the ⁇ y rotation (rolling) and ⁇ x rotation (pitching) of the wafer stage WST to cause the above-described X interferometer 126 (or Z interferometers 43A and 43B) and Y interferometer. Management is based on 16 measurement values. Note that at least one of the position in the Z-axis direction (Z position), ⁇ y rotation (rolling), and ⁇ x rotation (pitching) of wafer stage WST, such as the Z position and ⁇ y rotation, is used as an upper surface of another sensor, such as wafer table WTB ′.
  • the main controller 20 controls the position of the wafer stage WST (wafer table WTB ′) during exposure in the Z-axis direction, ⁇ y rotation and ⁇ x rotation control (focus / leveling control of the wafer W) in advance.
  • the measurement is performed based on the measurement result of the wafer surface position information measured in step (b) and the measurement result of the encoder system 150 and / or the interferometer system 118.
  • main controller 20 performs stage control by appropriately switching the encoder to be used according to the position coordinates of wafer stage WST.
  • the position (X, Y, Z, ⁇ x, ⁇ y, ⁇ z) measurement of wafer stage WST using interferometer system 118 is always performed independently of the position measurement of wafer stage WST using the encoder system described above. It has been broken.
  • one of X interferometers 126, 127, and 128 is used according to the Y position of wafer stage WST.
  • an X interferometer 126 is used as an auxiliary, as shown in FIG.
  • main controller 20 drives wafer stage WST toward unload position UP.
  • wafer stage WST and measurement stage MST which are separated from each other during exposure, are brought into contact with each other with a separation distance of about 300 ⁇ m, for example, and shift to a scram state.
  • the ⁇ Y side end surface of the FD bar 46 on the measurement table MTB and the + Y side end surface of the wafer table WTB are in contact with or close to each other.
  • both stages WST and MST move in the ⁇ Y direction, so that the liquid immersion region 14 formed under the projection unit PU moves onto the measurement stage MST.
  • wafer stage WST releases the scrum state with measurement stage MST and moves to unload position UP.
  • main controller 20 unloads wafer W on wafer table WTB '.
  • wafer stage WST is driven in the + X direction to move to loading position LP, and the next wafer W is loaded onto wafer table WTB '.
  • main controller 20 adjusts the position of FD bar 46 supported by measurement stage MST in the XY plane, baseline measurement of four secondary alignment systems AL2 1 to AL2 4 , Execute Sec-BCHK (secondary baseline check).
  • the Y encoders 170G and 170H described above are used.
  • main controller 20 drives wafer stage WST to position reference mark FM on measurement plate 30 within the detection field of primary alignment system AL1, as shown in FIG. 38, and to align alignment systems AL1, AL2. performs processing of the first half of Pri-BCHK determining a reference position of the baseline measurement of 1 ⁇ AL2 4.
  • main controller 20 switches from interferometer system 118 to stage control using encoder system 150 (encoders 170D and 170C).
  • the interferometer system 118 is again used auxiliary.
  • the X interferometer 127 is used.
  • main controller 20 performs wafer alignment (EGA) using primary alignment system AL1 and secondary alignment systems AL2 1 to AL2 4 (see the star mark in FIG. 39).
  • EAA wafer alignment
  • the wafer stage WST and the measurement stage MST are in the scrum state before the wafer alignment shown in FIG. 39 is started.
  • Main controller 20 drives both stages WST and MST in the + Y direction while maintaining the scrum state. Thereafter, the water in the immersion area 14 moves from the measurement table MTB to the wafer table WTB ′.
  • main controller 20 measures the latter half of the Pri-BCHK that measures the intensity distribution of the projected image of the mark on the reticle relative to the XY position of wafer table WTB ′ using aerial image measurement device 45. Execute.
  • main controller 20 releases the scrum state of both stages WST and MST. Then, as shown in FIG. 35, step-and-scan exposure is performed to transfer a reticle pattern onto a new wafer W. Thereafter, the same operation is repeatedly executed.
  • a pair of moving scales 39A and 39B having two-dimensional lattices are provided at both ends in the X-axis direction on the upper surface of wafer stage WST, and the wafer
  • the pair of head units 62A ′ and 62B ′ such that at least one head 165 and 164 can always face the movement scales 39A and 39B is provided in the projection unit PU. It is arrange
  • main controller 20 uses position information (including rotation information in the ⁇ z direction) of wafer stage WST in the XY plane during the exposure operation of the step-and-scan method, and heads 165, 164, that is, encoders. It becomes possible to measure with high accuracy using 170A and 170B. Therefore, according to the second embodiment, the layout of the encoder head is easier compared to the exposure apparatus disclosed as an embodiment in the pamphlet of International Publication No. 2007/097379.
  • the positions of the wafer stage WST in the X-axis direction, the Y-axis direction, and the ⁇ z direction facing the moving scales 39A and 39B respectively.
  • the head 165 1 located closer to the center, 164 5 of the Y position of the other are arranged at different (the remaining four) heads. Accordingly, the five heads 165 and 164 of the head units 62A ′ and 62B ′ can be arranged in accordance with the empty space, and the entire apparatus can be downsized by improving the space efficiency.
  • the connection switching of the used head
  • the five heads 165 and 164 of the head units 62A ′ and 62B ′ without any trouble. Accordingly, the position of the wafer stage WST in the XY plane is measured with high accuracy without being affected by air fluctuations by the encoder system 150 including the XY encoders 170A and 170B having the head units 62A ′ and 62B ′, respectively. It becomes possible to do.
  • the measurement value of the encoder system 150 encoders 170A and 170B
  • correction information for correcting the measurement value of each encoder at least one of stage position error correction information (including head error correction information), moving scale characteristic information, Abbe error correction information, etc.
  • stage position error correction information including head error correction information
  • moving scale characteristic information including moving scale characteristic information
  • Abbe error correction information etc.
  • a movement operation between shots in which the wafer stage WST is moved to a scanning start position (acceleration start position) for exposure of each shot area on the wafer W, and a pattern formed on the reticle R is a scanning exposure method.
  • the scanning exposure operation for transferring to each shot area the pattern of the reticle R can be transferred to a plurality of shot areas on the wafer W with high accuracy (overlapping accuracy).
  • high-resolution exposure can be realized by liquid immersion exposure, so that a fine pattern can be accurately transferred onto the wafer W in this respect.
  • the peripheral exposure unit 51, the multipoint AF system (90a, 90b), and the like are actually provided at the same positions as in the first embodiment described above. ing. Therefore, according to the exposure apparatus 500, as in the exposure apparatus 100 of the first embodiment, the wafer stage WST (wafer W) has a plurality of detection points (detection areas AF) of the multipoint AF system (90a, 90b). The surface position information of almost the entire surface of the wafer W can be detected and passed over the detection area of the plurality of alignment systems AL1, AL2 1 to AL2 4 and below the peripheral exposure unit 51 in a straight line.
  • the three operations of detection of all the alignment marks to be detected (for example, alignment marks in the alignment shot area in EGA) and the peripheral exposure of the wafer W are completed. Accordingly, the throughput can be improved significantly compared to the case where the alignment mark detection operation, the surface position information (focus information) detection operation, and the peripheral exposure operation are performed independently (separately).
  • a surface position measurement system similar to that in the first embodiment described above can be provided. Accordingly, the same focus mapping as in the first embodiment described above and the surface position control of the wafer W using the result of the focus mapping can be performed. Therefore, in the present embodiment, the focus / leveling control of the wafer W at the time of exposure is performed with high accuracy without any particular problem, although the working distance between the front lens 191 and the surface of the wafer W is narrow. be able to.
  • the moving scales 39A and 39B are arranged on the wafer stage WST, and the main frame (not shown) holding the projection unit PU outside the wafer stage WST, that is, the projection scale PU is opposed thereto.
  • the exposure apparatus 500 includes the encoder system having the configuration in which the head units 62A ′ to 62D ′ are arranged below (shown).
  • the present invention is not limited to this, and an encoder head may be provided on wafer stage WST and a scale member may be provided outside wafer stage WST as in the following third embodiment.
  • FIG. 40 is a plan view showing the arrangement of the stage device and sensor unit provided in the exposure apparatus of the third embodiment.
  • the exposure apparatus of the third embodiment is different from the exposure apparatus of the second embodiment described above only in the configuration of the encoder system, and the other configurations are the same. Therefore, hereinafter, the description will focus on the encoder system which is the difference.
  • the same reference numerals are used for the same or equivalent components as those in the second embodiment described above, and descriptions thereof are omitted.
  • the 2D heads 172 1 to 172 are placed on the pair of second water repellent plates 28b ′ on the upper surface of the wafer table WTB ′ instead of the moving scales 39A and 39B.
  • 6 and 174 1 to 174 6 are provided at regular intervals WD in the direction parallel to the reflecting surface 17b.
  • the 2D heads 172 1 to 172 6 and 174 1 to 174 6 those having the same configuration as the 2D heads 164, 165, 167, and 168 described above are used.
  • 2D heads 172 1 to 172 6 and 2D heads 174 1 to 174 6 are arranged symmetrically with respect to the center line of wafer table WTB ′.
  • the 2D heads 172 1 to 172 6 and the 2D heads 174 1 to 174 6 are also described as heads 172 and 174, respectively, as appropriate.
  • each of the fixed scales 39A ′ and 39B ′ has a rectangular notch formed on one side of one end in the longitudinal direction of the rectangle, and has the same shape as the notch.
  • the extending portion has a shape provided on the other side of the one end portion.
  • the fixed scale 39A ′ is arranged in a state of being substantially in contact with the surface on the + X side of the nozzle unit 32 with the X-axis direction as the longitudinal direction, and a rectangular cutout at a part on the + Y side of the ⁇ X end. And an extended portion having the same shape as the cut-out portion is provided on the ⁇ Y side of the ⁇ X end portion. The extended portion protrudes somewhat toward the ⁇ Y side from the nozzle unit 32.
  • the fixed scale 39B ′ has a symmetrical shape with respect to the fixed scale 39A ′, and is arranged symmetrically with respect to the reference line LV 0 .
  • the fixed scales 39A ′ and 39B ′ are fixed in parallel to the XY plane on the back surface of a main frame (not shown) that holds the projection unit PU.
  • the fixed scales 39A ′ and 39B ′ are somewhat shorter in length than the moving scales 39A and 39B described above, and the reflection type two-dimensional diffraction grating is provided on the lower surface (the surface on the ⁇ Z side). Is formed.
  • a rectangular shape is separated by a predetermined distance (for example, approximately the same dimension as the width of the fixed scale 39A ′) on the ⁇ Y side of the fixed scales 39A ′ and 39B ′.
  • Fixed scales 39D ′ and 39C ′ are arranged with the X-axis direction as the longitudinal direction.
  • the fixed scales 39D ′ and 39C ′ are arranged symmetrically with respect to the reference line LV 0 described above.
  • the fixed scales 39D ′ and 39C ′ are arranged close to the secondary alignment systems AL2 4 and AL2 1 , respectively.
  • the fixed scales 39D ′ and 39C ′ are fixed in parallel to the XY plane on the back surface of a main frame (not shown) that holds the projection unit PU.
  • the fixed scales 39D 'and 39C' are somewhat shorter in length than the above-described fixed scales 39A 'and 39B', and the lower surface (the surface on the -Z side) has the above-described reflective two-dimensional diffraction. A lattice is formed.
  • a pair of 2D heads 176 is provided on the upper surface of the FD bar 46 instead of the pair of reference grids 52 described above.
  • the 2D heads 172 1 to 172 6 are multi-eye (here, 6 eyes) that measure the X position and the Y position of the wafer stage WST (wafer table WTB ′) using the fixed scale 39A ′ or 39D ′.
  • the XY encoder 170A ′ (see FIG. 41) is configured.
  • the 2D heads 174 1 to 174 6 use the fixed scale 39B ′ or 39C ′ described above to measure the X position and the Y position of the wafer stage WST (wafer table WTB ′) (multiple eyes (here, 5). Eye) XY encoder 170B ′ (see FIG. 41).
  • the heads 172 and 174 respectively faces the fixed scales 39A 'and 39B'. That is, at least one measurement beam among the measurement beams (encoder beams) emitted from the heads 172 and 174 is always applied to the fixed scales 39A ′ and 39B ′.
  • the heads 172 and 174 (that is, encoders 170A ′ and 170B ′ configured by these heads 172 and 174) measure the X position, the Y position, and the ⁇ z rotation of the wafer stage WST.
  • At the time of alignment operation at least one of the heads 174 and 172 respectively faces the fixed scales 39C 'and 39D'. That is, at least one measurement beam among the measurement beams (encoder beams) emitted from the heads 174 and 172 is always applied to the fixed scales 39C 'and 39D'.
  • the X position, Y position, and ⁇ z rotation of wafer stage WST are measured by heads 174 and 172 (that is, encoders 170B ′ and 170A ′ configured by heads 174 and 172).
  • the pair of 2D heads 176 on the FD bar 46 are opposed to the fixed scales 39C ′ and 39D ′ when measuring the baseline of the secondary alignment system, and the pair of 2D heads 176.
  • the X and Y positions of the FD bar 46 and the ⁇ z rotation are measured.
  • an encoder constituted by a pair of 2D heads 176 facing the fixed scales 39C 'and 39D' will be referred to as encoders 170C 'and 170D' (see FIG. 41).
  • the four encoders 170A 'to 170D' described above supply the measured values to the main controller 20.
  • Main controller 20 controls the position (including rotation (yawing) in the ⁇ z direction) of wafer table WTB ′ in the XY plane based on the measurement values of encoders 170A ′ and 170B ′, and encoders 170C ′ and 170D. Based on the measured value of ', the position of the FD bar 46 in the X, Y, and ⁇ z directions is controlled.
  • the control operation of each part is performed by the main controller 20 as in the exposure apparatus 500 of the second embodiment described above.
  • the main controller 20 as in the exposure apparatus 500 of the second embodiment described above.
  • the encoder head is exemplified as a 2D head configured as shown in FIG. 34 as an example.
  • the present invention is not limited to this, and two one-dimensional heads are combined.
  • a two-dimensional head may be configured. That is, the two-dimensional head referred to in this specification includes a combination of two one-dimensional heads.
  • the present invention is not limited to this, and the exposure includes only a single wafer stage.
  • a plurality of devices such as disclosed in US Pat. No. 6,590,634, US Pat. No. 5,969,441, US Pat. No. 6,208,407, etc.
  • the present invention can also be applied to a multi-stage type exposure apparatus including a wafer stage, for example, a twin-stage type exposure apparatus.
  • the exposure apparatus controller measures the alignment of the wafer while moving the other wafer stage at least in the Y-axis direction in parallel with the exposure of the wafer held on one of the two wafer stages.
  • Peripheral exposure of at least a part of the shot area in the peripheral part of the wafer held by the other wafer stage passing under the peripheral exposure unit can be performed.
  • the peripheral exposure operation may be started during the measurement operation at the measurement station. In this case, the peripheral exposure operation ends after the measurement operation ends and before the exposure starts.
  • the peripheral exposure unit may be arranged during the measurement operation by arranging the peripheral exposure unit in the measurement station together with the alignment system (AL1, AL2 1 to AL2 5 ).
  • the position control of the wafer stage between the measurement station and the exposure station may be performed using any measurement apparatus.
  • the peripheral exposure operation may be performed on the forward path (that is, the movement path of the wafer stage from the measurement station to the exposure station) or on the return path (that is, from the exposure station to the measurement station (unloading).
  • the wafer stage movement path to the loading position may be performed, or the peripheral exposure operation of one wafer may be performed separately for the forward path and the backward path.
  • an encoder system having the above-described 2D head (2D encoder) is provided at least on one wafer without providing a peripheral exposure unit. It may be employed only as a stage position measuring device. That is, in the second and third embodiments, it is sufficient if there is an encoder system having the above-described 2D head, and the configuration and sequence other than the encoder system (such as performing stage movement and measurement operation in parallel) are arbitrary. May be used in combination, but is not essential.
  • the measurement system 200 includes both the interferometer system 118 and the encoder system 150.
  • the measurement system is not limited thereto, and the measurement system includes the interferometer system 118 and the interferometer system 118. Only one of the encoder system 150 may be included.
  • FIG. 42 schematically shows a configuration of an exposure apparatus 1000 according to the fourth embodiment.
  • the exposure apparatus 1000 is a step-and-scan projection exposure apparatus, a so-called scanner.
  • the projection optical system PL is provided, in the following, the direction parallel to the optical axis AX of the projection optical system PL is the Z-axis direction, and is orthogonal thereto.
  • the direction in which the reticle and wafer are relatively scanned within the surface to be scanned is the Y-axis direction
  • the direction orthogonal to the Z-axis and the Y-axis is the X-axis direction
  • the rotation (tilt) direction around the X-axis, Y-axis, and Z-axis are described as ⁇ x, ⁇ y, and ⁇ z directions, respectively.
  • the exposure apparatus 1000 includes an illumination system 10, a reticle stage RST that holds the reticle R illuminated by the illumination light IL from the illumination system 10, and a projection optical system PL that irradiates the wafer with the illumination light IL emitted from the reticle R. It includes a projection unit PU including two stages, a stage apparatus 1050 including two wafer stages WST1 and WST2, a local liquid immersion apparatus 8, and a control system thereof. Wafers W1, W2 are held on wafer stages WST1, WST2, respectively.
  • stage apparatus 1050 includes two wafer stages WST1, WST2 arranged on base board 12, and measurement system 200 (see FIG. 47) that measures positional information of both wafer stages WST1, WST2. And a stage drive system 124 (see FIG. 47) for driving wafer stages WST1 and WST2.
  • the measurement system 200 includes an interferometer system 118, an encoder system 150, a surface position measurement system 180, and the like.
  • Wafer stages WST1 and WST2 are levitated and supported on base board 12 with a clearance of about several ⁇ m, for example, by an air slider (described later) provided therein. Wafer stages WST1 and WST2 can be independently driven in the XY plane along the upper surface (moving guide surface) of base board 12 by a planar motor, which will be described later, constituting stage drive system 124.
  • wafer stage WST1 includes a stage main body 91A and a wafer table WTB1 mounted on stage main body 91A.
  • the stage main body 91 ⁇ / b> A includes a mover 56 that forms a planar motor 151 together with a stator 152 embedded in the base board 12, and the lower half of the mover 56.
  • an air slider 54 having a plurality of air bearings.
  • the mover 56 is constituted by, for example, a magnet unit including a flat plate-like magnet generator composed of a plurality of flat plate magnets arranged in a matrix so that the polarities of adjacent magnetic pole faces are different from each other.
  • the mover 56 has a thin rectangular parallelepiped shape.
  • the stator 152 is constituted by an armature unit having a plurality of armature coils (drive coils) 57 arranged in a matrix in the base board 12.
  • armature coil 57 in the fourth embodiment, an X drive coil and a Y drive coil are provided.
  • a moving magnet type of electromagnetic force driving method (Lorentz force driving method) is constituted by a stator 152 made of an armature unit including a plurality of X driving coils and Y driving coils and a mover 56 made of the aforementioned magnet unit.
  • a planar motor 151 is configured.
  • the plurality of armature coils 57 are covered by a flat plate member 58 made of a non-magnetic material that constitutes the upper surface of the base board 12.
  • the upper surface of the flat plate member 58 constitutes a pressure receiving surface for the pressurized air from the air bearings provided in the air slider 54 and the moving guide surfaces of the wafer stages WST1 and WST2.
  • Wafer table WTB1 is attached to a table main body 34 made of a thin, rectangular parallelepiped (thick plate-shaped) member and a side surface on the + Y side of the table main body 34 (precisely, a full kinematic mount structure makes the table main body FD bar 46 (kinematically supported by 34) and measuring portion 138 fixed to the side surface on the -Y side of table body 34.
  • the table main body 34, the FD bar 46, and the measurement unit 138 are collectively referred to as a wafer table WTB1 unless otherwise required.
  • the table body 34 has the same shape and size as the mover 56 as viewed from above.
  • Wafer table WTB1 is mounted on stage main body 91A via a Z / leveling mechanism (not shown) that forms part of stage drive system 124 (for example, including a voice coil motor). Wafer table WTB1 is finely driven in the Z-axis direction, ⁇ x direction, and ⁇ y direction with respect to stage main body 91A by the Z / leveling mechanism. Therefore, wafer table WTB1 is moved in a direction of six degrees of freedom (X, Y, Z, ⁇ x, ⁇ y, can be driven to ⁇ z).
  • a wafer holder (not shown) for holding the wafer by vacuum suction or the like is provided at the center of the upper surface of wafer table WTB1.
  • a plate having a circular opening that is slightly larger than the wafer holder in the center and having a rectangular outer shape (contour) is formed outside the wafer holder (wafer mounting region). 28 is provided.
  • the surface of the plate 28 is subjected to a liquid repellency treatment with respect to the liquid Lq.
  • the plate 28 is set so that almost all of its surface is substantially flush with the surface of the wafer W1.
  • the FD bar 46 and the measuring unit 138 are attached to the table main body 34 so that the surfaces thereof are substantially flush with the surface of the plate 28.
  • a rectangular opening is formed in the approximate center in the X-axis direction near the + Y side end of the plate 28, and the measurement plate 30 is embedded in the opening.
  • An aerial image including an optical system including an objective lens and a light receiving element (for example, a photomultiplier tube) inside the wafer table WTB1 below each of the pair of aerial image measurement slit patterns SL on the measurement plate 30.
  • a pair of measuring devices 45A (see FIG. 47) is provided corresponding to the pair of aerial image measurement slit patterns SL.
  • the aerial image measurement device 45A for example, a device having the same configuration as that disclosed in US Patent Application Publication No. 2002/0041377 is used.
  • the surface of the measurement plate 30 is substantially flush with the plate 28.
  • moving scales 39A and 39B are formed in regions on one side and the other side (left and right sides in FIG. 43B) of the upper surface of the plate 28, respectively.
  • Each of the moving scales 39A and 39B is configured by a reflective two-dimensional grating (for example, a diffraction grating) in which a grating having a periodic direction in the Y-axis direction and a grating having a periodic direction in the X-axis direction are combined.
  • the pitch of the lattice lines of the two-dimensional lattice is, for example, 1 ⁇ m in both the Y-axis direction and the X-axis direction. In FIG. 43B, the pitch of the lattice is shown larger than the actual pitch for convenience of illustration. The same applies to the other drawings.
  • the moving scales 39A and 39B are covered with a liquid repellent film (water repellent film).
  • the glass plate In order to protect the diffraction grating, it is also effective to cover it with a glass plate having a low thermal expansion coefficient with water repellency.
  • a glass plate having the same thickness as that of the wafer for example, a thickness of 1 mm can be used, and the table body so that the surface of the glass plate has the same height (surface position) as the wafer surface 34 (wafer table WTB1) is installed on the upper surface.
  • a positioning pattern (not shown) for determining a relative position between an encoder head and a scale, which will be described later, is provided near the end of each moving scale of the plate 28.
  • This positioning pattern is composed of, for example, grid lines having different reflectivities.
  • a glass plate having a low coefficient of thermal expansion is used as the plate 28.
  • a scale member made of, for example, a glass plate having a low thermal expansion coefficient with a lattice formed thereon is, for example, a leaf spring (or vacuum suction) or the like of the wafer table WTB1 so that local expansion and contraction does not occur. It may be fixed to the upper surface.
  • wafer table WTB1 can be formed of a material having a low thermal expansion coefficient. In such a case, the moving scale may be directly formed on the upper surface of wafer table WTB1.
  • the FD bar 46 is configured in the same manner as in the first embodiment, as shown in FIG.
  • the distance between the pair of reference gratings 52 formed on the FD bar 46 is a distance L.
  • the measuring unit 138 has a rectangular parallelepiped shape whose longitudinal direction is the X-axis direction.
  • the measurement unit 138 is provided with various measurement members described later.
  • Wafer stage WST2 includes stage main body 91B and wafer table WTB2, as shown in FIGS. 42, 44 (A) and 44 (B), and is configured in the same manner as wafer stage WST1 described above. Yes. Wafer stage WST2 is driven by planar motor 151 including mover 56 and stator 152.
  • wafer table WTB2 is similar to wafer table WTB1 described above, and includes table body 34, the side surface on the + Y side of table body 34, and the side on ⁇ Y side. It has three parts, an FD bar 46 attached to each side surface and a measuring unit 138.
  • various measurement members included in measurement unit 138 of wafer stage WST2 are different from various measurement members included in measurement unit 138 of wafer stage WST1. That is, in the fourth embodiment, a plurality of types of measurement members are distributed and arranged in measurement units 138 provided in wafer stages WST1 and WST2, respectively.
  • a pair of aerial image measurement devices configured to include measurement plate 30 of wafer table WTB2 will be described as aerial image measurement device 45B below.
  • an illuminance unevenness sensor 94 similar to that described above, as shown in FIG. 43B, and a light receiving portion having a predetermined area for receiving the illumination light IL on the image plane of the projection optical system PL are included.
  • An illuminance monitor 97, a wavefront aberration measuring instrument 98, an aerial image measuring instrument, and the like shown in FIG. 44B can be used.
  • a measurement member for example, a transmittance measuring instrument that measures the transmittance of the projection optical system PL, and / or the above-described local liquid immersion device 8, such as the nozzle unit 32 (or the tip lens). 191) may be used. Further, a member different from the measurement member, for example, a cleaning member for cleaning the nozzle unit 32, the tip lens 191 and the like may be mounted on any of the wafer stages.
  • the illumination light IL is received through the projection optical system PL and water.
  • each sensor may be mounted on the wafer table, for example, only part of the optical system, or the entire sensor may be arranged on the wafer table. The same applies to the aerial image measuring devices 45A and 45B.
  • the first cable shuttle (not shown) that is movable in the Y-axis direction installed on the ⁇ X side of the base board 12 from the ⁇ X side end of the wafer stage WST1 is not recommended.
  • the illustrated wiring and piping cables are connected.
  • a cable for wiring / piping (not shown) is connected to a second cable shuttle (not shown) that is movable in the Y-axis direction installed on the + X side of the base board 12 from the + X side end of the wafer stage WST2. It is connected.
  • power is supplied to the Z / leveling mechanism provided on both wafer stages WST1 and WST2 and the measurement member, and the pressurized air is supplied to the air slider.
  • illustration is omitted in FIG. 42 from the viewpoint of avoiding complication of the drawing, but actually, as shown in FIG. 45, the center of the projection unit PU (projection optics).
  • the optical axis AX of the system PL (which coincides with the center of the exposure area IA in the fourth embodiment) and parallel to the Y axis, that is, on the reference axis LV 0 , from the optical axis AX to the ⁇ Y side.
  • a primary alignment system AL1 having a detection center is disposed at a position separated by a predetermined distance.
  • secondary alignment systems AL2 1 , AL2 2 , AL2 3 , AL2 in which detection centers are arranged almost symmetrically with respect to the reference axis LV 0 on one side and the other side in the X-axis direction across the primary alignment system AL1. And 4 are provided. That is, the five alignment systems AL1, AL2 1 to AL2 4 have their detection centers arranged at different positions in the X-axis direction, that is, along the X-axis direction.
  • an image processing type FIA Field Image Alignment
  • Imaging signals from each of the primary alignment system AL1 and the four secondary alignment systems AL2 1 to AL2 4 are supplied to the main controller 20 of FIG. 47 via an alignment signal processing system (not shown).
  • interferometer system 118 that measures position information of wafer stages WST1 and WST2 will be described.
  • the + X side surface (+ X end surface) and the ⁇ X side surface ( ⁇ X end surface) of wafer table WTB1 are respectively mirror-finished to form reflecting surfaces 27a and 27c shown in FIG. ing. Further, the + Y side surface (+ Y end surface) of wafer table WTB1, that is, the + Y end surface of FD bar 46, and the ⁇ Y side surface ( ⁇ Y end surface) of wafer table WTB1, that is, the ⁇ Y end surface of measurement unit 138, Reflective surfaces 27b and 27d are formed, respectively.
  • the interferometer system 118 includes four Y interferometers 206, 207, 208, and 209 and six X interferometers 217, 218, 226, 227, 228, and 229.
  • Y interferometers 206, 207, and 208 are arranged on the + Y side of base board 12 at different positions in the X-axis direction.
  • the Y interferometer 209 is disposed on the ⁇ Y side of the base board 12 so as to face the Y interferometer 207.
  • X interferometers 217 and 218 are arranged on the ⁇ X side of base board 12 at a predetermined interval in the Y-axis direction.
  • the X interferometers 226, 227, 228, and 229 are arranged on the + X side of the base board 12 at different positions with respect to the Y-axis direction. Among these, the X interferometers 227 and 228 are arranged to face the X interferometers 217 and 218, respectively.
  • the Y interferometer 207 is a multi-axis interferometer that uses the aforementioned reference axis LV 0 as a substantial measurement axis in the Y-axis direction.
  • the Y interferometer 207 irradiates at least three length measuring beams parallel to the Y axis on the reflecting surface 27b of the wafer table WTB1 (or the reflecting surface 27f of the wafer table WTB2), receives the reflected light, and Position information in the Y-axis direction of the reflecting surface 27b (or 27f) at the measurement beam irradiation point is measured. These pieces of position information are sent to the main controller 20 (see FIG. 47).
  • main controller 20 determines the position (Y position), ⁇ z rotation amount (yaw amount), and ⁇ x rotation amount of wafer table WTB1 (or WTB2) in the Y-axis direction. (Pitching amount) is calculated.
  • Y interferometers 206, 208, and 209 are used to measure the Y position, pitching amount, and yawing amount of wafer table WTB1 (or WTB2).
  • the Y interferometers 206 and 208 have substantial length measurement axes LV 1 and LV 2 in the Y axis direction parallel to the reference axis LV 0 , respectively.
  • Y interferometer 209 has a substantial measurement axis as reference axis LV 0 and irradiates at least three measurement beams onto reflection surface 27d of wafer table WTB1 or reflection surface 27h of wafer table WTB2. .
  • the X interferometers 217 and 227 are multi-axis interferometers that use the reference axis LH described above as a substantial measurement axis in the X-axis direction.
  • X interferometer 217 irradiates a plurality of length measuring beams parallel to the X axis onto reflecting surface 27c of wafer table WTB1, receives each reflected light, and reflects the reflecting surface at the irradiation point of each length measuring beam. The position information in the X-axis direction of 27c is measured.
  • the X interferometer 227 irradiates the reflection surface 27e of the wafer table WTB2 with a plurality of length measurement beams parallel to the X axis, receives each reflected light, and reflects the reflection surface at the irradiation point of the length measurement beam.
  • the position information in the X-axis direction of 27e is measured.
  • Main controller 20 calculates the X position and ⁇ y rotation amount (rolling amount) of wafer tables WTB1 and WTB2 based on the position information measured by X interferometers 217 and 227, respectively.
  • the X interferometers 218 and 228 are multi-axis interferometers similar to the X interferometers 217 and 227, and are used to measure the X positions of the wafer tables WTB1 and WTB2 and the ⁇ y rotation amount (rolling amount), respectively. .
  • the remaining X interferometers 226 and 229 are multi-axis interferometers similar to the X interferometers 217 and 227, and both measure the X position of the wafer tables WTB1 and WTB2 and the ⁇ y rotation amount (rolling amount). Used.
  • the X interferometer 229 uses the aforementioned reference axis LA as the length measurement axis.
  • interferometer system 118 including the Y interferometers 206, 207, 208, and 209 and the X interferometers 217, 218, 226, 227, 228, and 229, five degrees of freedom of the wafer tables WTB1 and WTB2 ( Position information in the X, Y, ⁇ x, ⁇ y, ⁇ z) directions can be measured.
  • a multi-axis interferometer for example, each X interferometer, is installed at a part of the main frame that holds the projection unit PU via a reflective surface that is inclined by 45 ° and is installed on the wafer stages WST1 and WST2. It is also possible to irradiate a laser beam on the reflective surface and detect the Z position of wafer stages WST1 and WST2.
  • the encoder system is set such that the X axis direction is the longitudinal direction on the + X side and the ⁇ X side of the liquid immersion region 14 (nozzle unit 32) described above.
  • 150 two head units 162A and 162B are arranged. These head units 162A and 162B are not shown in FIG. 45 and the like from the viewpoint of avoiding complication of the drawings, but actually, the head units 162A and 162B are suspended from the main frame holding the projection unit PU described above via a support member. Fixed in the lowered state.
  • 2D heads two-dimensional encoder heads
  • the 2D head is an encoder head that has sensitivity in two biaxial directions orthogonal to each other, in this case, the X axis direction and the Y axis direction, that is, the orthogonal biaxial direction (X axis direction and Y axis direction) is the measurement direction. It is.
  • a 2D head for example, the one shown in FIG. 34 having the same configuration as the 2D head employed in the second and third embodiments described above can be used.
  • the head unit 162A uses the above-described moving scale 39A to measure the positions of the wafer stages WST1, WST2 in the X-axis direction (X position) and the Y-axis direction (Y position) (multi-lens in this case). ) 170A (refer to FIG. 47) (hereinafter abbreviated as “encoder” where appropriate).
  • head unit 162B uses multi-lens (here, 5 eyes) two-dimensional encoder 170B (refer to FIG. 47) that measures the X and Y positions of wafer stages WST1 and WST2 using moving scale 39B described above. Configure.
  • the interval WD in the X-axis direction of the 5 2D heads (164 i or 165 j ) (that is, measurement beams) provided in the head units 162A and 162B is the moving scales 39A and 39B (more precisely, two-dimensional Is set slightly narrower than the width in the X-axis direction.
  • 2D heads 166 1 and 166 2 are arranged at positions away from the 2D heads 164 3 and 165 3 by a predetermined distance in the ⁇ Y direction.
  • the 2D heads 166 1 and 166 2 are provided symmetrically with respect to the reference axis LV 0 .
  • the 2D heads 166 1 and 166 2 are actually fixed in a suspended state to the main frame that holds the projection unit PU described above via a support member.
  • the 2D heads 166 2 and 166 1 constitute two-dimensional encoders 170E and 170F (see FIG. 47) that measure the X position and the Y position of the wafer stages WST1 and WST2 using the above-described moving scales 39A and 39B, respectively.
  • movement scale 39B, 2D heads 166 1, 166 2 are opposed respectively to 39A, wafer stage WST1 by the 2D heads 166 1, 166 2 (i.e., 2-dimensional encoder 170E, 170F) , Or the X and Y positions of WST2 and the ⁇ z rotation amount are measured.
  • head units 162C and 162D are provided at a predetermined distance further to the ⁇ Y side from the 2D heads 166 2 and 166 1 , respectively.
  • the head units 162C and 162D are not shown in FIG. 45 and the like from the viewpoint of avoiding complication of the drawings, but are actually fixed to the main frame in a suspended state via support members.
  • the head unit 162D includes five 2D heads 167 1 to 167 5 respectively disposed at the same X position as the five 2D heads 64 1 to 64 5 belonging to the head unit 162B. More specifically, the head unit 162D is disposed on the ⁇ X side of the secondary alignment system AL2 1 , and includes the four 2D heads 167 1 to 167 4 disposed on the reference axis LA with the interval WD, and the innermost ( + X side) distance WD away from the 2D heads 167 4 + X side, and the reference axis LA secondary alignment system AL2 1 of one 2D heads 167 disposed at the position of the -Y side 5 a predetermined distance away on the -Y side from And.
  • the head unit 162C is symmetrical with the head unit 162D with respect to the reference axis LV 0 , and includes the two 2D heads 167 5 to 167 1 and the five 2D heads 168 1 to 168 5 arranged symmetrically with respect to the reference axis LV 0. I have.
  • the 2D heads 167 and 168 measure the X and Y positions and the ⁇ z rotation amount of the wafer stage WST1 or WST2.
  • the interval in the X-axis direction of the 2D heads 167 4 , 168 2 adjacent to the secondary alignment systems AL2 1 , AL2 4 in the X-axis direction is set substantially equal to the above-mentioned distance L.
  • the secondary alignment systems AL2 1 to AL2 4 are periodically updated in the same procedure as Sec-BCHK (interval) disclosed in, for example, pamphlet of International Publication No. 2007/097379. Baseline measurement is performed.
  • the two 2D heads 167 4 and 168 2 face the pair of reference gratings 52 of the FD bar 46 and face the pair of reference gratings 52, respectively.
  • the 2D heads 167 4 and 168 2 measure the Y position of the FD bar 46 at the position of each reference grating 52.
  • encoders composed of 2D heads 167 4 and 168 2 facing the pair of reference grids 52 are respectively Y linear encoders (also abbreviated as “Y encoder” or “encoder” where appropriate) 170G and 170H (FIG. 47). See).
  • the encoders 170A to 170H described above measure the position coordinates of the wafer stage WST1 (or WST2) with a resolution of about 0.1 nm, for example, and supply the measured values to the main controller 20.
  • Main controller 20 controls the position (including ⁇ z rotation) of wafer stage WST1 (or WST2) in the XY plane based on the measurement values of encoders 170A and 170B, 170C and 170D, or 170E and 170F.
  • the ⁇ z rotation of the FD bar 46 (wafer stage) is controlled based on the measurement values of the Y encoders 170G and 170H.
  • the 2D heads 164 i , 165 j , 166 1 , 166 2 , 167 p , 168 q described above for example, two pairs of fixed scales arranged in the X-axis direction and the Y-axis direction are used.
  • a three-grating diffraction interference type encoder that collects the same order diffracted light in the orthogonal biaxial direction generated from a two-dimensional grating (moving scales 39A and 39B) on each pair of fixed scales on a common index kale. Is used.
  • the present invention is not limited to this, and a 2D head having any configuration may be used as long as the position of the wafer table in the XY two-dimensional direction can be measured with a single head.
  • a multipoint AF system including an irradiation system 90a and a light receiving system 90b is provided.
  • the irradiation system 90a is disposed on the + Y side of the head unit 162D described above, and the light receiving system 90b is disposed on the + Y side of the head unit 162C in a state opposite thereto.
  • An irradiation system 90a and photodetection system 90b is, and are arranged in symmetry with respect to reference axis LV 0.
  • a plurality of detection points irradiated with the detection beams are not shown individually, but are shown as elongated detection areas (beam areas) AF extending in the X-axis direction between the irradiation system 90a and the light receiving system 90b.
  • the detection area AF is set to have a length in the X-axis direction that is somewhat longer than the diameter of the wafer (W1, W2). Axial position information (surface position information) can be measured.
  • the detection area AF is arranged between the liquid immersion area 14 (exposure area IA) and the detection area of the alignment system (AL1, AL2 1 , AL2 2 , AL2 3 , AL2 4 ) in the Y-axis direction. Therefore, the detection operation can be performed in parallel in the multipoint AF system and the alignment system.
  • the multipoint AF system is provided on a main frame or the like that holds the projection unit PU.
  • the pair of head units 162E are arranged almost symmetrically with the pair of head units 162C and 162D described above.
  • 162F are arranged.
  • the head units 162E and 162F are fixed to the lower surface of the main frame (not shown).
  • Head unit 162E, 162F has a symmetrical arrangement with respect to reference axis LV 0.
  • the head unit 162F includes 2D heads 167 1 to 167 5 belonging to the head unit 162D described above, and five Z heads 171 1 to 171 5 arranged symmetrically with respect to the straight line LF.
  • the head unit 162E has 2D heads 168 1 to 168 5 belonging to the head unit 162C described above, and five Z heads 173 1 to 173 5 arranged symmetrically with respect to the straight line LF.
  • the Z heads 171 1 to 171 5 and the Z heads 173 5 to 173 1 are symmetric with respect to the reference line LV 0 .
  • the Z heads 171 1 to 171 5 and the Z heads 173 1 to 173 5 irradiate the wafer table WTB1 or WTB2, specifically, the moving scales 39A and 39B with light from above, receive the reflected light, and
  • a sensor head that measures positional information in the Z-axis direction on the surface of wafer table WTB1 or WTB2 at the light irradiation point for example, an optical displacement sensor head configured as an optical pickup used in a CD drive device or the like is used. ing.
  • the four outer Z heads 76 2 to 76 5 and 74 1 to 74 4 belonging to the head units 162A and 162B are arranged in parallel to the reference axis LH at a predetermined distance in the + Y direction from the reference axis LH. Has been.
  • the head unit 162A, the innermost Z heads 76 1, 74 5 belonging to each 162B, the + Y side of projection unit PU, it is disposed. Then, the head unit 162B, 5 one Z heads 74 i belonging to each 162A, 76 j (i, j 1 ⁇ 5) are arranged symmetrically with respect to reference axis LV 0 together.
  • the Z heads 171 1 to 171 5 , the Z heads 173 1 to 173 5 , the Z heads 74 1 to 74 5 , and the Z heads 76 1 to 76 5 are the signal processing / selecting device 160 as shown in FIG. It is connected to the main controller 20 via The main control unit 20, from the Z heads 171 1 ⁇ 171 5, Z heads 173 1 ⁇ 173 5, Z heads 74 1 to 74 5, and Z heads 76 1-76 5 through a signal processing and selection device 160 An arbitrary Z head is selected to be activated, and surface position information detected by the activated Z head is received via the signal processing / selecting device 160.
  • a surface position measurement system 180 is configured to measure position information of the wafer table WTB1 (or WTB2) in the Z-axis direction and the tilt direction with respect to the XY plane.
  • peripheral exposure having a peripheral exposure active mask 51a extending in the X-axis direction between the 2D heads 166 1 and 166 2 described above.
  • a unit 51 (see FIG. 8) is arranged.
  • the peripheral exposure unit 51 is supported in a suspended state on a lower surface of a main frame (not shown) via a support member (not shown).
  • the wafer W1 positioned below the peripheral exposure unit 51 is switched by switching the micromirrors constituting the pair of variable shaping masks VM1, VM2 of the peripheral exposure active mask between the ON state and the OFF state. Any area of the peripheral shot on (or W2) can be exposed.
  • peripheral exposure active mask 51a of the peripheral exposure unit 51 may be constituted by a single variable shaping mask extending in the X direction. Further, instead of the light from the light source, the illumination light IL may be guided to the active mask for peripheral exposure using, for example, an optical fiber.
  • peripheral exposure unit 51 by moving the wafer stage WST1 or WST2 in the Y-axis direction in a state where the center in the X-axis direction of the wafer W1 or W2 and the center in the longitudinal direction of the peripheral exposure unit 51 substantially coincide with each other, Arbitrary peripheral exposure regions of the wafer W1 or W2 (for example, refer to the regions S1a, S7a, S8a, S16a, S17a, S27a, S50a, S60a, S61a, S69a, S70a, and S76a in FIG. 13) to expose arbitrary patterns. Can be formed.
  • FIG. 47 shows the main configuration of the control system of the exposure apparatus 1000.
  • This control system is mainly configured of a main control device 20 composed of a microcomputer (or a workstation) for overall control of the entire apparatus.
  • various sensors such as the illuminance unevenness sensor 94, the illuminance monitor 97, and the wavefront aberration measuring instrument 98 described above are collectively shown as a sensor group 99.
  • the main controller 20 controls the liquid supply device 5 and the liquid recovery device 6 so that the liquid Lq is supplied directly below the front lens 191 of the projection optical system PL and the front lens 191
  • the liquid immersion region 14 is always formed by collecting a certain amount of the liquid Lq from directly below and holding it between the front lens 191 and the wafer table WTB1 and / or WTB2.
  • explanation regarding the control of the liquid supply device 5 and the liquid recovery device 6 is omitted.
  • step-and-scan exposure is performed on the wafer W2 held on the wafer stage WST2 below the liquid immersion area 14 (projection unit PU).
  • the position of wafer table WTB1 is managed by main controller 20 based on the measurement values of Y interferometer 208 and X interferometer 229.
  • the position of the wafer table WTB2 in the XY plane (including the rotation amount in the ⁇ z direction) is the 2D head 165 j belonging to the head units 162A and 162B facing the moving scales 39A and 39B of the wafer table WTB2, respectively. It is controlled by main controller 20 based on the measurement value of 164 i (that is, two-dimensional encoder 170A, 170B).
  • the position in the Z-axis direction of wafer table WTB2 being exposed and the rotation (rolling) in the ⁇ y direction are respectively applied to one end and the other end (moving scales 39B and 39A) of the surface of wafer table WTB2 in the X-axis direction. It is controlled by main controller 20 based on the measured values of a pair of opposing Z heads 74 i and 76 j . Further, rotation (pitching) of wafer table WTB2 during exposure in the ⁇ x direction is controlled by main controller 20 based on the measurement value of Y interferometer 207.
  • Control of the position in the Z-axis direction, ⁇ y rotation, and ⁇ x rotation (focus / leveling control of the wafer W) of the wafer table WTB2 during exposure is performed based on the result of focus mapping performed in advance. Further, the positions in the direction of five degrees of freedom excluding the Z-axis direction of wafer table WTB2 are also measured by interferometers 207 and 227.
  • the above exposure operation is performed by the main controller 20 based on the results of wafer alignment (for example, EGA) performed in advance and the latest baselines of the alignment systems AL1, AL2 1 to AL2 4 and the like.
  • Inter-shot movement operation in which wafer stage WST2 is moved to a scanning start position (acceleration start position) for exposure of a shot area
  • scanning exposure operation in which a pattern formed on reticle R is transferred to each shot area by a scanning exposure method It is performed by repeating.
  • the number of shot areas to be exposed on the wafer W2 is an even number, and the above exposure is performed in the order of the shot area located at the upper left in FIG. Done in
  • main controller 20 causes wafer stage WST1 to move in the + X direction as shown in FIG. Driving is started.
  • Wafer stage WST1 is moved to a position shown in FIG. 50 where reference mark FM on measurement plate 30 is positioned within the field of view (detection region) of primary alignment system AL1.
  • the main controller 20 controls the position of the wafer table WTB1 in the XY plane from the control based on the measurement values of the interferometers 208 and 229 to the movement scales 39B and 39A of the wafer table WTB1.
  • main controller 20 starts Y interferometer 209 and X interferometer prior to the start of wafer alignment (and other preprocessing measurements) for new wafer W1.
  • 229 and the two-dimensional encoders 170D and 170C are reset (reset of the origin).
  • main controller 20 detects reference mark FM on measurement plate 30 of wafer stage WST1 using primary alignment system AL1. Then, main controller 20 detects the position of reference mark FM with reference to the index center of primary alignment system AL1, and associates the detection result with the measured values of encoders 170C and 170D at the time of detection in the memory.
  • main controller 20 starts scanning (scanning) of wafer stage WST1 in the + Y direction, and moves it to the alignment region as shown in FIG. Then, main controller 20 starts enhanced global alignment (EGA) while measuring the position coordinates of wafer stage WST2 using encoders 170C and 170D (and interferometers 209 and 229). More specifically, main controller 20 moves wafer stage WST1 in the X-axis direction and moves it stepwise in the Y-axis direction, and uses at least one alignment system including primary alignment system AL1 for each step position.
  • ESA enhanced global alignment
  • a part of a plurality of alignment marks attached to a plurality of specific shot areas (sample shot areas) on the wafer W1 is detected, and the detection result is correlated with the measurement values of the encoders 170C and 170D at the time of detection.
  • Store in the illustrated memory Store in the illustrated memory.
  • FIG. 51 shows that the alignment marks attached to the four sample shot areas are detected almost simultaneously and individually using the primary alignment system AL1, the secondary alignment systems AL2 2 , AL2 3 , and AL2 4. (See the star mark in FIG. 51). At this time, the step-and-scan exposure for wafer W2 held on wafer stage WST2 is continued.
  • Main controller 20 starts scanning wafer stage WST1 in the + Y direction, and then moves wafer stage WST1 in the + Y direction so that the detection beam of the multipoint AF system (90a, 90b) is on wafer W1. 2, the two Z heads 171 p and 173 q (for example, 171 3 and 173 3 ) facing the moving scales 39B and 39A and the multipoint AF system (90a and 90b) are operated together ( ON) and focus mapping is started.
  • focus mapping in the fourth embodiment means that the Z stage 171 p and 173 q and the multipoint AF system (90a, 90b) are operating simultaneously, and the wafer stage WST1 (or WST2) is in the state.
  • the surface of the wafer table WTB1 (or WTB2) measured by the Z heads 171 p and 173 q at a predetermined sampling interval the surface of the plate 28, specifically, Specifically, the position information (surface position information) in the Z-axis direction of the movement scales 39B and 39A) and the wafer W1 (or W2) surface at a plurality of detection points detected by the multipoint AF system (90a, 90b).
  • Position information (surface position information) in the Z-axis direction, and the acquired surface position information and the encoders 170C and 170D at the time of sampling. It refers to a process of sequentially storing the three measured values in association with each other in a memory (not shown).
  • main controller 20 moves wafer stage WST1 by a predetermined distance in the + Y direction and a predetermined distance in the -X direction based on the measurement values of encoders 170C and 170D, as shown in FIG.
  • the five alignment systems AL1, AL2 1 to AL2 4 position the alignment marks attached to the five sample shot areas on the wafer W at positions where they can be detected almost simultaneously and individually.
  • main controller 20 uses five alignment systems AL1, AL2 1 to AL2 4 to detect the five alignment marks almost simultaneously and individually (see the star mark in FIG. 52).
  • the detection results of AL1, AL2 1 to AL2 4 and the measured values of the encoders 170C and 170D at the time of detection are associated with each other and stored in a memory (not shown). At this time, the focus mapping on the wafer stage WST1 side and the step-and-scan exposure on the wafer W2 on the wafer stage WST2 are continued.
  • main controller 20 moves wafer stage WST1 by a predetermined distance in the + Y direction and a predetermined distance in the + X direction based on the measurement values of encoders 170C and 170D, and moves the five stages shown in FIG.
  • the alignment systems AL1, AL2 1 to AL2 4 position the alignment marks attached to the five sample shot areas on the wafer W at positions where they can be detected almost simultaneously and individually.
  • the main controller 20 detects the five alignment marks almost simultaneously and individually using the five alignment systems AL1, AL2 1 to AL2 4 (see the star mark in FIG. 53), and the five alignment systems described above.
  • the detection results of AL1, AL2 1 to AL2 4 and the measured values of encoders 170C and 170D at the time of detection are associated with each other and stored in a memory (not shown). At this time, the focus mapping on the wafer stage WST1 side and the step-and-scan exposure on the wafer W2 of the wafer stage WST2 are continued.
  • main controller 20 moves wafer stage WST1 by a predetermined distance in the + Y direction and by a predetermined distance in the -X direction based on the measurement values of encoders 170C and 170D, and 5 shown in FIG.
  • the two alignment systems AL1, AL2 1 to AL2 4 position the alignment marks attached to the five sample shot areas on the wafer W at positions where they can be detected almost simultaneously and individually.
  • main controller 20 uses five alignment systems AL1, AL2 1 to AL2 4 to detect five alignment marks almost simultaneously and individually (see the star mark in FIG. 54), and the five alignment systems described above.
  • the detection results of AL1, AL2 1 to AL2 4 and the measured values of encoders 170C and 170D at the time of detection are associated with each other and stored in a memory (not shown).
  • main controller 20 measures the measured value of X interferometer 229 (or the measured values of encoders 170C and 170D) at this time.
  • X interferometer 218 is preset based on Thereby, thereafter, the X position of wafer table WTB1 and the rotation amount (rolling amount) in the ⁇ y direction can be measured also by X interferometer 218.
  • the focus mapping on the wafer stage WST1 side and the step-and-scan exposure on the wafer W2 on the wafer stage WST2 are continued.
  • main controller 20 moves wafer stage WST by a predetermined distance in the + Y direction and a predetermined distance in the + X direction on the basis of the measurement values of encoders 170C and 170D, thereby causing alignment system AL1 shown in FIG. , AL2 3 position the alignment marks provided in the last two sample shot areas on the wafer W at positions where they can be detected almost simultaneously and individually.
  • main controller 20 uses two alignment systems AL1, AL2 3 to detect two alignment marks almost simultaneously and individually (see the star mark in FIG. 55), and the two alignment systems AL1, AL2
  • the detection result of 3 and the measurement values of the encoders 170C and 170D at the time of detection are associated with each other and stored in a memory (not shown).
  • the step-and-scan exposure for wafer W2 on wafer stage WST2 is completed.
  • the above-described focus mapping on the wafer stage WST1 side is continued.
  • the main controller 20 measures the measurement value of the X interferometer 227 ( Alternatively, the X interferometer 226 is preset based on the measured values of the encoders 170A and 170B.
  • main controller 20 uses peripheral exposure unit 51 to start peripheral exposure (peripheral scan exposure) of the scanning exposure method for wafer W1 (see FIG. 55). Since the 2D heads 166 2 and 166 1 are opposed to the moving scales 39A and 39B at the time when the peripheral exposure is started, as shown in FIG. 2 , 166 1 , that is, measurement of position information in the XY plane of wafer stage WST1 based on measurement values of encoders 170E and 170F is also started.
  • main controller 20 moves wafer stage WST2 and wafer stage WST1 to the first scrum start position shown in FIG. 56 while continuing the peripheral scan exposure.
  • the encoders used for measuring the positional information of wafer stage WST1 in the XY plane are switched from encoders 170C and 170D to encoders 170E and 170F.
  • main controller 20 stops the operation of multipoint AF system (90a, 90b) (and Z heads 171 p , 173 q ). Te (in the OFF), and ends the focus mapping, multipoint AF system (90a, 90b) the surface position information about the respective detection points of the reference surface position information by Z head 171 p, 173 q taken simultaneously Convert to the data to be used. Conversion in this case is performed by a method similar to the method disclosed in, for example, International Publication No. 2007/097379 pamphlet.
  • the surface of wafer table WTB1 (scales 39B and 39A are formed by the Z heads 74 i and 76 j described above, respectively.
  • the tilt amount (mainly ⁇ y rotation amount) with respect to the Z position of the wafer table WTB1 and the XY plane is calculated.
  • the main controller 20 determines the measurement values of the two encoders 170C and 170D corresponding to the detection results of the plurality of alignment marks obtained so far.
  • the baseline of the secondary alignment system AL2 n measured in advance for example, statistical calculation is performed by the EGA method disclosed in US Pat. No.
  • main controller 20 moves wafer stage WST1 back and forth in a zigzag manner in the X-axis direction while moving wafer stage WST1 in the + Y direction.
  • WST1 is positioned, and each time positioning is performed, an alignment mark is detected using at least two of the five alignment systems AL1, AL2 1 to AL2 4 simultaneously. Therefore, according to the fourth embodiment, the position information of the alignment marks in the plurality of sample shot regions on the wafer W1 is much shorter than when the alignment marks are sequentially detected by a single alignment system. Can be obtained at Therefore, even when all shot areas on the wafer W1 are sample shot areas, measurement can be performed in a short time.
  • the centerline of wafer table WTB1 substantially coincides with the reference axis LV 0 is, and the center line of wafer table WTB2 is, the reference axis LV 0
  • the wafer table WTB2 has a ⁇ Y end surface ( ⁇ Y end surface of the measurement unit 138) and a + Y end surface of the wafer table WTB1 (the + Y end surface of the FD bar 46) in a state of being deviated from the predetermined distance (first offset amount) + X side. Is in a scram state in which they come into contact (or come close to each other through a clearance of about 300 ⁇ m, for example).
  • the ⁇ Y side end of measuring unit 138 that forms part of wafer table WTB2 and the + Y side end of FD bar 46 that forms part of wafer table WTB1 are in contact (or close proximity).
  • wafer stage WST1 and wafer stage WST2 are connected via FD bar 46 and measurement unit 138.
  • Contact (or proximity) can be made in the Y-axis direction.
  • the sum of the length in the Y-axis direction of measurement unit 138 of wafer table WTB2 and the length in the Y-axis direction of FD bar 46 of wafer table WTB1 is in the state in which measurement unit 138 and FD bar 46 are in contact with wafer stage WST1.
  • wafer stage WST2 (more precisely, the + Y side end of air slider 54 of wafer stage WST1 and the -Y side end of air slider 54 of wafer stage WST2 are prevented from contacting). It is set to length.
  • Main controller 20 drives wafer stage WST1 in the + Y direction based on the measurement values of encoders 170E and 170F while maintaining the above-mentioned scram state, and at the same time, wafer stage WST2 based on the measurement values of interferometers 207 and 226. Then, as shown by the white thick arrow in FIG. 57, the driving is performed in the + Y direction and the + X direction. Even during the movement of both wafer stages WST1 and WST2, the peripheral scan exposure is continued.
  • liquid immersion region 14 formed between tip lens 191 and wafer table WTB2 is placed on wafer table WTB2.
  • the liquid immersion area 14 moves from the wafer table WTB2 to the table main body 34 of the wafer table WTB1 via the measuring unit 138 of the wafer table WTB2 and the FD bar 46 of the wafer table WTB1.
  • the state of both wafer stages WST1, WST2 immediately before being transferred to is shown.
  • main controller 20 projects the projected image (aerial image) of the pair of measurement marks on reticle R projected by projection optical system PL into the above-described aerial image measurement device 45A including measurement plate 30 of wafer stage WST1.
  • a pair of measurements is performed in the aerial image measurement operation of the slit scan method using the pair of aerial image measurement slit patterns SL.
  • Each aerial image of the mark is measured, and the measurement result (aerial image intensity corresponding to the XY position of wafer table WTB1) is stored in the memory.
  • the position of the wafer table WTB1 in the XY plane is set to two 2D heads 164 i , 165 j (encoders 170B, 170A).
  • main controller 20 presets Y interferometer 206 based on the measurement value of Y interferometer 207 immediately after the measurement beam from Y interferometer 206 starts to hit reflection surface 27f. After this preset is performed, the position of wafer table WTB2 is controlled by main controller 20 based on the measurement values of interferometers 206 and 226, as shown in FIG.
  • main controller 20 presets X interferometer 217 based on the measured value of X interferometer 218 and presets Y interferometer 207 based on the measured value of Y interferometer 209.
  • main controller 20 presets interferometers 207 and 217 based on the measurement values of encoders 170B and 170A.
  • main controller 20 measures the position information of wafer table WTB1 using interferometers 207 and 217.
  • the position of wafer table WTB1 in the XY plane is controlled based on the measurement values of encoders 170B and 170A.
  • main controller 20 moves wafer stage WST2 to the position shown in FIG. 59 in parallel with performing the above-described aerial image measurement operation.
  • main controller 20 uses the above-described primary alignment system AL1 to detect the reference mark FM on measurement plate 30 of wafer stage WST1 and the above-described aerial image. Based on the measurement result, the baseline of the primary alignment system AL1 is calculated. At this time, the peripheral exposure of the wafer W1 described above is continued.
  • main controller 20 moves wafer stage WST1 to the exposure start position for wafer W1 while continuing the peripheral exposure of wafer W1, and also loads the right side loading shown in FIG. Wafer stage WST2 starts to move in the ⁇ Y direction toward the position. At the time when exposure of the wafer W1 is started, the peripheral exposure is completed.
  • the exposure operation of the wafer W1 is performed based on the result of the wafer alignment (the aforementioned EGA) performed in advance by the main controller 20 and the latest baselines of the alignment systems AL1, AL2 1 to AL2 4.
  • Wafer stage WST1 is moved to a scanning start position (acceleration start position) for exposure of each shot area on W1, and a pattern formed on reticle R is transferred to each shot area by a scanning exposure method. This is performed by repeating the scanning exposure operation.
  • the number of shot areas to be exposed on the wafer W1 is an even number of lines, and the above-described exposure is performed in a shot area located on the lower right side from the shot area located on the upper right side in FIG. Done in order.
  • the position of the wafer table WTB1 in the XY plane is the 2D heads 165 j and 164 belonging to the head units 162A and 162B facing the moving scales 39A and 39B, respectively. It is controlled by main controller 20 based on the measurement value of i (that is, two-dimensional encoder 170A, 170B). Further, the position in the Z-axis direction of wafer table WTB1 and the ⁇ y rotation (rolling) of wafer table WTB1 during exposure oppose the X-axis direction one side and the other end (movement scales 39B and 39A) on the surface of wafer table WTB1, respectively.
  • main controller 20 It is controlled by main controller 20 based on the measured values of the pair of Z heads 74 i and 76 j . Further, the rotation (pitching) of wafer table WTB1 during exposure in the ⁇ x direction is controlled by main controller 20 based on the measurement value of Y interferometer 207. The position, ⁇ y rotation, and ⁇ x rotation control (focus / leveling control of the wafer W) of the wafer table WTB1 during the exposure are performed based on the result of the focus mapping described above. Further, the position of wafer table WTB1 in the direction of five degrees of freedom excluding the Z-axis direction is also measured by interferometers 207 and 217.
  • the length measurement beam from the X interferometer 226 does not hit the reflecting surface 27e of the wafer table WTB2 during the movement of the wafer stage WST2 toward the right loading position.
  • the measurement beam from the X interferometer 226 hits the reflection surface 27e
  • the measurement beam from the X interferometer 227 starts to hit the reflection surface 27e. Therefore, main controller 20 presets the measurement value of X interferometer 227 based on the measurement value of X interferometer 226.
  • main controller 20 presets the measurement value of X interferometer 228 based on the measurement value of X interferometer 227 while the measurement beam from X interferometer 227 strikes reflecting surface 27e.
  • main controller 20 presets the measurement value of X interferometer 229 based on the measurement value of X interferometer 228 while the measurement beam from X interferometer 228 strikes reflecting surface 27e.
  • main controller 20 switches the X interferometer used for position control and drives wafer stage WST2 toward the right loading position in parallel with the step-and-scan method for wafer W1. Continues the exposure operation.
  • main controller 20 starts the Pit operation at the right loading position.
  • main controller 20 completes the Pit operation on the wafer stage. Driving of WST2 in the -X direction is started. Then, wafer stage WST2 is moved to a position shown in FIG. 64 where reference mark FM on measurement plate 30 is positioned in the field of view (detection region) of primary alignment system AL1. During this movement, the main controller 20 controls the position of the wafer table WTB2 in the XY plane from the control based on the measurement values of the interferometers 206 and 229 to the movement scales 39B and 39A of the wafer table WTB2. The control is switched to the control based on the measurement values of the 2D heads 167 p and 168 q belonging to the facing head units 162D and 162C, that is, the two-dimensional encoders 170D and 170C.
  • main controller 20 starts Y interferometer 209 and X interferometer prior to the start of wafer alignment (and other preprocessing measurements) for new wafer W2. 229 and the two-dimensional encoders 170D and 170C are reset (reset of the origin).
  • main controller 20 detects reference mark FM on measurement plate 30 of wafer stage WST2 using primary alignment system AL1. Then, main controller 20 detects the position of reference mark FM with reference to the index center of primary alignment system AL1, and associates the detection result with the measured values of encoders 170C and 170D at the time of detection in the memory.
  • main controller 20 starts scanning (scanning) of wafer stage WST2 in the + Y direction, and moves it to the alignment region as shown in FIG. Then, main controller 20 uses encoders 170C and 170D (and interferometers 209 and 229) to measure the position coordinates of wafer stage WST2, and starts EGA similar to that described above.
  • the main controller 20 uses the primary alignment system AL1, the secondary alignment systems AL2 2 and AL2 3 to detect the alignment marks attached to the three sample shot areas almost simultaneously and individually. Is shown (see the star mark in FIG. 65). At this time, the step-and-scan exposure for wafer W1 held on wafer stage WST1 is continued.
  • Main controller 20 starts scanning of wafer stage WST2 in the + Y direction, and then moves wafer stage WST2 in the + Y direction so that the detection beam of the multipoint AF system (90a, 90b) is on wafer W1.
  • both the Z heads 171 p and 173 q and the multipoint AF system (90a, 90b) are operated (turned ON), and the same focus mapping as described above is started.
  • main controller 20 moves wafer stage WST2 by a predetermined distance in the + Y direction and a predetermined distance in the + X direction based on the measurement values of encoders 170C and 170D, as shown in FIG. Position to position. Then, main controller 20 uses five alignment systems AL1, AL2 1 to AL2 4 to detect the five alignment marks almost simultaneously and individually (see the star mark in FIG. 66). The detection results of AL1, AL2 1 to AL2 4 and the measured values of encoders 170C and 170D at the time of detection are associated with each other and stored in a memory (not shown). At this time, the focus mapping on the wafer stage WST2 side and the step-and-scan exposure on the wafer W1 on the wafer stage WST1 are continued.
  • main controller 20 moves wafer stage WST by a predetermined distance in the + Y direction and a predetermined distance in the -X direction based on the measurement values of encoders 170C and 170D, and reaches the position shown in FIG. Position. Then, main controller 20 uses five alignment systems AL1, AL2 1 to AL2 4 to detect five alignment marks almost simultaneously and individually (see the star mark in FIG. 67), and the five alignment systems described above. The detection results of AL1, AL2 1 to AL2 4 and the measured values of encoders 170C and 170D at the time of detection are associated with each other and stored in a memory (not shown). At this time, the focus mapping on the wafer stage WST2 side and the step-and-scan exposure on the wafer W1 on the wafer stage WST1 are continued.
  • main controller 20 moves wafer stage WST2 by a predetermined distance in the + Y direction and a predetermined distance in the + X direction based on the measurement values of encoders 170C and 170D, and is positioned at the position shown in FIG. To do. Then, main controller 20 uses five alignment systems AL1, AL2 1 to AL2 4 to detect five alignment marks almost simultaneously and individually (see the star mark in FIG. 68), and the five alignment systems described above. The detection results of AL1, AL2 1 to AL2 4 and the measured values of encoders 170C and 170D at the time of detection are associated with each other and stored in a memory (not shown).
  • the main controller 20 presets the X interferometer 228 based on the measurement value of the X interferometer 229 at this time. To do. Thereby, thereafter, the X position of wafer table WTB2 and the rotation amount (rolling amount) in the ⁇ y direction can be measured also by X interferometer 228. At this time, the focus mapping on the wafer stage WST2 side and the step-and-scan exposure on the wafer W1 on the wafer stage WST1 are continued.
  • main controller 20 moves wafer stage WST2 by a predetermined distance in the + Y direction and a predetermined distance in the -X direction based on the measurement values of encoders 170C and 170D, and reaches the position shown in FIG. Position. Then, main controller 20 detects two alignment marks almost simultaneously and individually using two alignment systems AL1 and AL2 2 (see the star mark in FIG. 69), and the two alignment systems AL1 and AL2 are detected. The two detection results and the measurement values of the encoders 170C and 170D at the time of detection are associated with each other and stored in a memory (not shown). At this time, step-and-scan exposure for wafer W1 on wafer stage WST1 is completed.
  • the above-described focus mapping on the wafer stage WST2 side is continued.
  • the measurement beam from the X interferometer 226 starts to hit the reflecting surface 27a of the wafer table WTB1, so the main controller 20 measures the measurement value of the X interferometer 217.
  • the X interferometer 226 is preset based on (or the measured values of the encoders 170A and 170B).
  • main controller 20 uses peripheral exposure unit 51 to start peripheral scan exposure on wafer W2 (see FIG. 69).
  • the main controller 20 thereafter performs the 2D head 166. 2 , 166 1 , that is, measurement of position information of wafer stage WST2 in the XY plane based on the measurement values of encoders 170E and 170F is also started.
  • main controller 20 moves wafer stage WST1 and wafer stage WST2 to the second scrum start position shown in FIG. 70 while continuing the peripheral scan exposure.
  • encoders used for measuring positional information of wafer stage WST2 in the XY plane are switched from encoders 170C and 170D to encoders 170E and 170F.
  • main controller 20 ends the focus mapping and obtains surface position information for each detection point of the multipoint AF system (90a, 90b).
  • the data is converted into data based on the surface position information obtained by the Z heads 171 p and 173 q at the same time as described above.
  • the main controller 20 determines the measurement values of the two encoders 170C and 170D corresponding to the detection results of the plurality of alignment marks obtained so far.
  • the coordinate system defined by the measurement axes of the two encoders (two head units) is subjected to statistical calculation using the EGA method using the pre-measured baseline of the secondary alignment system AL2 n (for example, primary The arrangement (positional coordinates) of all shot regions on the wafer W1 on the XY coordinate system (alignment coordinate system) having the detection center of the alignment system AL1 as the origin is calculated.
  • the centerline of wafer table WTB2 substantially coincides with the reference axis LV 0 is, and the center line of wafer table WTB1 is, the reference axis LV
  • the wafer table WTB1 has a ⁇ Y end surface ( ⁇ Y end surface of the measurement unit 138) and a + Y end surface of the wafer table WTB2 (the + Y end surface of the FD bar 46) while being shifted from 0 to a predetermined distance (second offset amount) ⁇ X side. ) In contact with (or, for example, close proximity through a clearance of about 300 ⁇ m).
  • the ⁇ Y side end of measuring unit 138 that forms part of wafer table WTB1 and the + Y side end of FD bar 46 that forms part of wafer table WTB2 come into contact (or close proximity). Then, with the + Y side surface of wafer stage WST2 and the ⁇ Y side surface of wafer stage WST1 partially facing each other, wafer stage WST2 and wafer stage WST1 are connected via FD bar 46 and measurement unit 138. A contact (or proximity) can be made in the Y-axis direction.
  • the second offset amount is set to the same distance as the first offset amount described above.
  • the total length of measurement unit 138 of wafer table WTB1 in the Y-axis direction and the length of wafer table WTB2 in the Y-axis direction of FD bar 46 are in a state in which measurement unit 138 and FD bar 46 are in contact with wafer stage WST2. Can be prevented from contacting the wafer stage WST1 (more precisely, the + Y side end of the air slider 54 of the wafer stage WST2 and the ⁇ Y side end of the air slider 54 of the wafer stage WST1). It is set to length.
  • Main controller 20 drives wafer stage WST2 in the + Y direction based on the measurement values of encoders 170E and 170F while maintaining the above-mentioned scrum state, and at the same time, wafer stage WST1 is based on the measurement values of interferometers 207 and 226. Then, as shown by the white thick arrow in FIG. 71, the driving is performed in the + Y direction and the ⁇ X direction. Even during the movement of both wafer stages WST1 and WST2, the peripheral scan exposure is continued.
  • liquid immersion region 14 formed between tip lens 191 and wafer table WTB1 is placed on wafer table WTB1.
  • the immersion area 14 is moved from the wafer table WTB1 to the table main body 34 of the wafer table WTB2 via the measuring unit 138 of the wafer table WTB1 and the FD bar 46 of the wafer table WTB2.
  • the state of both wafer stages WST1, WST2 immediately before being transferred to is shown.
  • main controller 20 projects the projection image (aerial image) of the pair of measurement marks on reticle R projected by projection optical system PL into the aforementioned aerial image measurement device 45B including measurement plate 30 of wafer stage WST2. Measured in the same manner as described above.
  • the position of wafer table WTB2 in the XY plane is controlled based on two 2D heads 165 j and 164 i (encoders 170B and 170A) facing X scales 39A and 39B. .
  • main controller 20 presets Y interferometer 208 based on the measurement value of Y interferometer 207 immediately after the measurement beam from Y interferometer 208 starts to hit reflection surface 27b. After the preset is performed, the position of wafer table WTB1 is controlled by main controller 20 based on the measurement values of interferometers 208 and 226, as shown in FIG.
  • main controller 20 presets X interferometer 227 based on the measured value of X interferometer 228 and presets Y interferometer 207 based on the measured value of Y interferometer 209.
  • main controller 20 presets interferometers 207 and 227 based on the measurement values of encoders 170B and 170A.
  • main controller 20 measures the position information of wafer table WTB1 using interferometers 207 and 227.
  • the position of wafer table WTB2 in the XY plane is controlled based on the measurement values of encoders 170B and 170A.
  • main controller 20 moves wafer stage WST1 to the position shown in FIG. 73 in parallel with the above-described aerial image measurement operation.
  • main controller 20 uses the above-described primary alignment system AL1 to detect the reference mark FM on measurement plate 30 of wafer stage WST2 and the measurement of the aerial image described above. Based on the result, the baseline of the primary alignment system AL1 is calculated. At this time, the peripheral exposure of the wafer W2 described above is continued.
  • main controller 20 moves wafer stage WST2 to the exposure start position for wafer W2 while continuing the peripheral exposure of wafer W2, as shown in FIG. 73, and left-side loading shown in FIG. Wafer stage WST1 starts to move in the ⁇ Y direction toward the position.
  • main controller 20 starts exposure of wafer W2 in the same manner as described above. At the time when the exposure of the wafer W2 is started, the peripheral exposure is completed.
  • the measurement beam from the X interferometer 226 does not hit the reflecting surface 27a of the wafer table WTB1 during the movement of the wafer stage WST1 toward the left loading position.
  • the measurement beam from the X interferometer 226 hits the reflection surface 27a, the measurement beam from the X interferometer 217 starts to hit the reflection surface 27c. Therefore, the measurement value of the X interferometer 217 is preset based on the measurement value of the X interferometer 226.
  • main controller 20 presets the measurement value of X interferometer 218 based on the measurement value of X interferometer 217 while the measurement beam from X interferometer 217 strikes reflecting surface 27c.
  • main controller 20 presets the measurement value of X interferometer 229 based on the measurement value of X interferometer 218 while the measurement beam from X interferometer 218 strikes reflecting surface 27c.
  • main controller 20 switches the X interferometer used for position control and drives wafer stage WST1 toward the left loading position in parallel with the step-and-scan method for wafer W2. Continues the exposure operation.
  • main controller 20 starts the Pit operation at the left loading position.
  • FIG. 76 at the left loading position, as part of the Pit operation, the wafer is exchanged between the wafer transfer mechanism (not shown) and the wafer stage WST1, and in parallel with this, below the projection unit PU, A state in which the exposure of the step-and-scan method is performed on the wafer W2 held on the wafer stage WST2 is shown.
  • the main controller 20 repeatedly executes the parallel operation using the wafer stages WST1 and WST2 described above.
  • the main controller 20 exposes the wafer (W1 or W2) held on one of the wafer stages WST1 and WST2.
  • the other of wafer stages WST1 and WST2 is moved in the Y-axis direction and also in the X-axis direction, and a plurality of different alignment marks on the wafer held on the other wafer stage are aligned with alignment system AL1.
  • AL2 1 to AL2 4 are sequentially positioned in the detection area (a plurality of detection areas), and the position information of the alignment marks positioned in the detection areas of the alignment systems AL1, AL2 1 to AL2 4 is sequentially detected.
  • the other wafer stage is positioned near the detection area of alignment systems AL1, AL2 1 to AL2 4 (for example, held on the wafer stage).
  • the wafer held by the other wafer stage while moving in the Y-axis direction from the vicinity of the position where the wafer is exchanged to the exposure position (immediately below the projection unit PU, exposure area IA). It becomes possible to detect position information of a plurality of alignment marks, for example, all alignment marks. As a result, it is possible to improve throughput and improve overlay accuracy.
  • the peripheral exposure unit 51 is controlled by the main controller 20, and the shot area of the peripheral portion of the wafer held on the other wafer stage passing under the peripheral exposure unit 51 while moving toward the exposure position. At least a part of the beam is irradiated with an energy beam having substantially the same wavelength as the illumination light IL. Therefore, it is possible to improve the yield without reducing the throughput.
  • the wafer stage is performed in parallel with the exposure of the wafer (W1 or W2) held on one of the wafer stages WST1 and WST2 by the main controller 20.
  • a Pit operation that is, a wafer exchange between a wafer transfer mechanism (not shown) and the other wafer stage, a cooling operation of the wafer holder, and other preparation operations for exposure are performed. Therefore, operations such as cooling the wafer holder can be performed without reducing the throughput.
  • the main controller 20 controls the planar motor 151 that drives the wafer stages WST1 and WST2 in the XY plane, and the exposure of the wafer W1 held on the wafer stage WST1 is performed.
  • wafer stage WST1 moves to the left loading position where wafer W1 on wafer stage WST1 is exchanged along a first feedback path located on one side ( ⁇ X side) in the X-axis direction of the exposure position.
  • wafer stage WST2 is along a second feedback path in which wafer stage WST2 is located on the other side (+ X side) in the X-axis direction of the exposure position.
  • the wafer W2 is moved to the right loading position where the upper wafer W2 is exchanged. Accordingly, wiring and piping cables are attached to wafer stage WST1 from one side in the X-axis direction and wafer stage WST2 from the other side in the X-axis direction, thereby preventing the cables from twisting. Can be shortened as much as possible.
  • the main controller 20 brings the measuring unit 138 of the wafer stage WST1 and the FD bar 46 of the wafer stage WST2 close to or in contact with each other. While maintaining the scram state, wafer stage WST2 is driven in the + Y direction, and at the same time, wafer stage WST1 is driven in the + Y direction and the -X direction, and liquid immersion area 14 is transferred from wafer stage WST1 onto wafer stage WST2. Immediately after passing immersion area 14, main controller 20 sets the driving force in the + Y direction of both wafer stages WST1 and WST2 to zero at the position where measurement plate 30 of wafer stage WST2 is located directly under projection optical system PL.
  • wafer stage WST2 is stopped, and wafer stage WST1 starts to move in the ⁇ X direction, as indicated by the thick white arrow in FIG. 72, and left-side loading along the first feedback path described above.
  • main controller 20 maintains a scrum state in which measurement unit 138 of wafer stage WST2 and FD bar 46 of wafer stage WST1 are brought close to or in contact with each other, as described above.
  • Wafer stage WST1 is driven in the + Y direction and simultaneously wafer stage WST2 is driven in the + Y direction and the + X direction, and liquid immersion area 14 is transferred from wafer stage WST2 to wafer stage WST1.
  • main controller 20 sets the driving force in the + Y direction of both wafer stages WST1, WST2 to zero at the position where measurement plate 30 of wafer stage WST1 is located directly under projection optical system PL. To do.
  • wafer stage WST1 is stopped, and wafer stage WST2 starts to move in the + X direction, as indicated by the white thick arrow in FIG. 58, and the right loading position along the second feedback path described above. Move towards.
  • the movement along the second feedback path of the wafer stage WST2 to efficiently start at the first scrum start position the centerline of wafer table WTB1 substantially coincides with the reference axis LV 0 is, and wafer table WTB2 centerline of a predetermined distance from the reference axis LV 0 (first offset amount) + X side in the state where offset to, so that the scrum state of both wafer stages WST1, WST2 is started.
  • the exposure path returns to the corresponding loading position of the one wafer stage.
  • X at the start of scrum of wafer stages WS1 and WST2 so that the movement along the axis can be most efficiently started, that is, the movement path of one of the wafer stages is the shortest and the required time is the shortest.
  • An axial offset amount is defined.
  • the wafer stage WS1, WS1 and the wafer stage WS1 can be most efficiently started so that the movement of the wafer stage holding the exposed wafer along the return path toward the corresponding loading position can be started.
  • the offset amount in the X-axis direction at the start of the scram of WST2 is determined, the exposure of the next exposure target wafer can be most efficiently performed instead of or in addition to this. As described above, the offset amount in the X-axis direction at the start of scram of wafer stages WS1 and WST2 may be determined.
  • the scrum of both wafer stages that enables the most efficient start of exposure of the wafer that is the next exposure target can be called the most efficient scrum.
  • the wafer stage WST1 and WST2 since the immersion region 14 is transferred between the two wafer stages WST1 and WST2, the wafer stage WST1 and WST2 employs a Y-direction scrum that is in contact with or close to the Y-axis direction.
  • the present invention is not limited to this, and in order to transfer the immersion region 14 between both wafer stages WST1 and WST2, both wafer stages WST1 and WST2 employ an X-direction scrum that is in contact with or close to the X-axis direction. Also good.
  • both wafer stages WST1, WST2 may be offset with respect to the Y-axis direction at the start of the scrum.
  • a part of the mechanism portion projects outward from the other portions from the side surface in the Y-axis direction of wafer stages WST1 and WST2. In some cases, it can be considered. In such a case, the length of the protrusions is not in contact with a part of the other wafer stage, the dimension of the measurement unit and the FD bar in the Y-axis direction, and / or the offset amount during scrum, etc. It is desirable to set
  • the case where the wafer stage WST1 and WST2 are provided with a fixed measuring unit and a protruding part with respect to the table main body 34 such as an FD bar is not limited thereto.
  • the protrusion may be movable.
  • the projecting portion may be in a substantially horizontal state only during the scrum of both wafer stages WST1 and WST2, and may be folded when not in scrambling, that is, when not in use.
  • the measurement unit and the FD bar also serve as the protrusions.
  • the present invention is not limited to this, and dedicated fixed protrusions may be provided on the wafer stages WST1 and WST2.
  • the immersion region 14 is passed from one wafer stage to the other wafer stage, so that both wafer stages WST1 and WST2 are close to each other within a predetermined distance in the Y-axis direction.
  • wafer stage WST1 is along the first feedback path located on the ⁇ X side of the exposure position.
  • the wafer W1 on the wafer stage WST1 is moved to the first exchange position where the wafer W1 is exchanged, and the wafer W2 on the wafer stage WST2 is exchanged along the second feedback path where the wafer stage WST2 is located on the + X side of the exposure position.
  • the case of moving to the second exchange position to be performed has been described. That is, the case where the first exchange position and the second exchange position are separate has been described.
  • the present invention is not limited to this, and the first exchange position and the second exchange position may be the same.
  • the main controller 20 passes the immersion area 14 from one wafer stage to the other wafer stage after the exposure of the wafer held on one wafer stage at the exposure position is completed.
  • the WST1 and WST2 are switched between a close state (scrum state) in which the WST1 and WST2 are close to a predetermined distance or less and a separated state (scrum release state) in which the wafer stages WST1 and WST2 are separated from each other.
  • a close state in which the WST1 and WST2 are close to a predetermined distance or less
  • a separated state in which the wafer stages WST1 and WST2 are separated from each other.
  • One wafer stage separated from the wafer plane is moved to a replacement position where the wafers on both wafer stages WST1 and WST2 are replaced along a return path located on one side of the exposure position in the X-axis direction. It is good also as employ
  • one wafer stage is moved to the exchange position along a feedback path located on one side of the exposure position with respect to the X-axis direction, and the other wafer stage is located on the other side of the exposure position with respect to the X-axis direction.
  • the movement range in the X-axis direction of both wafer stages can be set narrower.
  • the wafer stages WST1 and WST2 are independently driven along the XY plane by a plane motor on the premise of the movement path of the wafer stages WST1 and WST2.
  • a plane motor on the premise of the movement path of the wafer stages WST1 and WST2.
  • the peripheral exposure unit 51 is not necessarily provided. Even in such a case, the various effects described above can be obtained.
  • the main controller 20 exposes the wafer stages WST1 and WST2 in parallel with the exposure of the wafer (W1 or W2) held on one of the wafer stages WST1 and WST2. While the other is moved in the Y-axis direction, a plurality of different alignment marks on the wafer held on the other wafer stage are detected by the alignment systems AL1, AL2 1 to AL2 4 and their positional information is only measured. good. That is, the movement path from the exposure position to the wafer exchange position may be the same in wafer stages WST1 and WST2.
  • the other of the wafer stages WST1 and WST2 is not moved in the X-axis direction, but is moved in the Y-axis direction, and a plurality of different alignment marks on the wafer held on the other wafer stage are detected. It should be done. Further, it is not necessary to perform peripheral exposure while the other wafer stage is moved in the Y-axis direction. Further, it is not necessary to drive wafer stages WST1, WST2 with a planar motor.
  • the main controller 20 controls the planar motor 151 that drives the wafer stages WST1, WST2 in the XY plane, and the exposure of the wafer W1 held on the wafer stage WST1 is performed.
  • wafer stage WST1 moves to the left loading position where wafer W1 on wafer stage WST1 is exchanged along a first feedback path located on one side ( ⁇ X side) in the X-axis direction of the exposure position.
  • wafer stage WST2 is along a second feedback path in which wafer stage WST2 is located on the other side (+ X side) in the X-axis direction of the exposure position.
  • the planar motor may be a moving coil type.
  • the measurement system 200 includes both the interferometer system 118 and the encoder system 150.
  • the measurement system is not limited to this, and the measurement system includes the interferometer system 118 and the encoder system 150. And only one of them may be included. In particular, when only an encoder system is included, the encoder system may not be a two-dimensional encoder including a 2D head.
  • the peripheral exposure unit 51 is configured by using a micromirror array.
  • the present invention is not limited to this, and an arbitrary position (region) on the wafer is used.
  • the configuration of the peripheral exposure unit is not particularly limited as long as exposure can be performed freely with light having substantially the same wavelength as the illumination light IL.
  • the peripheral exposure unit can be configured using a spatial light modulator other than the micromirror array.
  • the peripheral exposure unit can be configured using the reticle and the projection optical system PL.
  • the same pattern as that transferred to the shot area in the normal exposure may be transferred, or a different pattern may be transferred. In this case, it is preferable that the transfer pattern density, for example, is the same or not extremely different.
  • the line width may be coarse.
  • each measuring device such as the encoder head, Z head, and interferometer described in the first to fourth embodiments is merely an example, and the present invention is of course not limited thereto.
  • the number of heads each provided in the head unit is not limited to the number described above, and if there are heads on both outer sides of a plurality of mark detection systems (in the above embodiments, alignment systems AL1, AL2 1 to AL2 4 ), respectively. It does n’t matter how many. In short, when detecting a specific alignment mark on the wafer W by each of the plurality of mark detection systems, it is only necessary that at least one head can face the pair of scales.
  • the Y position of the two innermost heads among the plurality of heads on both outer sides of the plurality of mark detection systems is different from the other heads.
  • the Y position of any head may be different.
  • the Y position of an arbitrary head may be different from the Y position of another head according to the empty space.
  • all the heads may be arranged at the same Y position.
  • the number of mark detection systems is not limited to five, and there are two or more mark detection systems having different detection area positions in the second direction (the X-axis direction in each of the above embodiments). However, the number is not particularly limited.
  • the position information in the ⁇ x direction of the wafer table may be measured by the Z head.
  • An encoder system may be used in which an encoder head is provided and a scale on which a one-dimensional or two-dimensional grating (for example, a diffraction grating) is formed is disposed above the wafer table.
  • the Z head may also be disposed on the wafer table, and the surface of the scale may also be used as a reflection surface to which the measurement beam from the Z head is irradiated.
  • a head having the functions of an encoder head and a Z head, in which the Z-axis direction is the measurement direction may be used.
  • the Z head is not necessary.
  • the lower surface of the nozzle unit 32 and the lower end surface of the tip optical element of the projection optical system PL are substantially the same surface. You may arrange
  • the tip optical element in addition to the optical path on the image plane side of the tip optical element, the tip optical element The optical path on the object plane side may be filled with liquid. Further, a thin film having a lyophilic property and / or a dissolution preventing function may be formed on a part (or at least a contact surface with a liquid) or the entire surface of the tip optical element. Quartz has a high affinity with a liquid and does not require a dissolution preventing film, but fluorite preferably forms at least a dissolution preventing film.
  • pure water water
  • the present invention is not limited to this.
  • a safe liquid that is chemically stable and has a high transmittance of the illumination light IL such as a fluorine-based inert liquid
  • a fluorine-based inert liquid for example, Fluorinert (trade name of 3M, USA) can be used.
  • This fluorine-based inert liquid is also excellent in terms of cooling effect.
  • a liquid having a refractive index higher than that of pure water (with a refractive index of about 1.44), for example, 1.5 or more may be used as the liquid.
  • the liquid examples include predetermined liquids having C—H bonds or O—H bonds, such as isopropanol having a refractive index of about 1.50 and glycerol (glycerin) having a refractive index of about 1.61, hexane, heptane, decane, and the like. Or a predetermined liquid (organic solvent) or decalin (Decalin: Decahydronaphthalene) having a refractive index of about 1.60. Alternatively, any two or more of these liquids may be mixed, or at least one of these liquids may be added (mixed) to pure water.
  • predetermined liquids having C—H bonds or O—H bonds such as isopropanol having a refractive index of about 1.50 and glycerol (glycerin) having a refractive index of about 1.61, hexane, heptane, decane, and the like.
  • the liquid may be a liquid obtained by adding (mixing) a base or an acid such as H + , Cs + , K + , Cl ⁇ , SO 4 2 ⁇ , PO 4 2 ⁇ to pure water. Further, pure water may be added (mixed) with fine particles such as Al oxide.
  • These liquids can transmit ArF excimer laser light.
  • the light absorption coefficient is small, the temperature dependency is small, and the projection optical system (tip optical member) and / or the photosensitive material (or protective film (topcoat film) coated on the wafer surface is used. ) Or an antireflection film) is preferable.
  • fomblin oil may be selected.
  • the liquid a liquid having a higher refractive index with respect to the illumination light IL than that of pure water, for example, a liquid having a refractive index of about 1.6 to 1.8 may be used. It is also possible to use a supercritical fluid as the liquid.
  • the leading optical element of the projection optical system PL is made of, for example, quartz (silica) or a fluoride compound such as calcium fluoride (fluorite), barium fluoride, strontium fluoride, lithium fluoride, and sodium fluoride.
  • a single crystal material may be used, or a material having a higher refractive index than quartz or fluorite (for example, 1.6 or more) may be used.
  • Examples of the material having a refractive index of 1.6 or more include sapphire, germanium dioxide and the like disclosed in International Publication No. 2005/059617, or potassium chloride disclosed in International Publication No. 2005/059618. (Refractive index is about 1.75) or the like can be used.
  • the recovered liquid may be reused.
  • a filter that removes impurities from the recovered liquid may be provided in the liquid recovery device, the recovery pipe, or the like. desirable.
  • the exposure apparatus is an immersion type exposure apparatus.
  • the present invention is not limited to this, and is a dry type that exposes the wafer W without using liquid (water). It can also be employed in an exposure apparatus.
  • the present invention is applied to a scanning exposure apparatus such as a step-and-scan method.
  • the present invention is not limited to this, and the present invention is applied to a stationary exposure apparatus such as a stepper. You may do it.
  • the present invention can also be applied to a step-and-stitch projection exposure apparatus, a proximity exposure apparatus, or a mirror projection aligner that synthesizes a shot area and a shot area.
  • the projection optical system in the exposure apparatus of each of the above embodiments may be not only a reduction system but also an equal magnification and an enlargement system
  • the projection optical system PL is not only a refraction system but also a reflection system or a catadioptric system.
  • the projected image may be either an inverted image or an erect image.
  • the exposure area IA irradiated with the illumination light IL through the projection optical system PL is an on-axis area including the optical axis AX within the field of the projection optical system PL.
  • International Publication No. 2004/107011 pamphlet for example, International Publication No. 2004/107011 pamphlet.
  • An optical system having a plurality of reflecting surfaces and forming an intermediate image at least once (a reflecting system or a reflex system) is provided in a part thereof, and has a single optical axis. Similar to the so-called inline catadioptric system, the exposure region may be an off-axis region that does not include the optical axis AX.
  • the illumination area and the exposure area described above are rectangular in shape, but the shape is not limited to this, and may be, for example, an arc, a trapezoid, or a parallelogram.
  • the light source of the exposure apparatus of the above embodiment is not limited to the ArF excimer laser, KrF excimer laser (output wavelength 248 nm), F 2 laser (output wavelength 157 nm), Ar 2 laser (output wavelength 126 nm), Kr 2 laser It is also possible to use a pulsed laser light source such as (output wavelength 146 nm) or an ultrahigh pressure mercury lamp that emits bright lines such as g-line (wavelength 436 nm) and i-line (wavelength 365 nm). A harmonic generator of a YAG laser or the like can also be used. In addition, as disclosed in, for example, International Publication No. 1999/46835 (corresponding to US Pat. No.
  • an infrared region oscillated from a DFB semiconductor laser or fiber laser as vacuum ultraviolet light Alternatively, a single wavelength laser beam in the visible range may be amplified by, for example, a fiber amplifier doped with erbium (or both erbium and ytterbium), and harmonics converted into ultraviolet light using a nonlinear optical crystal may be used. .
  • the illumination light IL of the exposure apparatus is not limited to light having a wavelength of 100 nm or more, and light having a wavelength of less than 100 nm may be used.
  • the present invention can be suitably applied to an EUV exposure apparatus using an all-reflection reduction optical system designed under an exposure wavelength range of 5 to 15 nm, for example, 13.5 nm, and a reflective mask.
  • the present invention can be applied to an exposure apparatus using a charged particle beam such as an electron beam or an ion beam.
  • a light transmissive mask in which a predetermined light shielding pattern (or phase pattern / dimming pattern) is formed on a light transmissive substrate is used.
  • a predetermined light shielding pattern or phase pattern / dimming pattern
  • an electronic mask variable molding mask
  • an active mask or an image generator may be used.
  • a DMD Digital Micro-mirror Device
  • a spatial light modulator spatial light modulator
  • an exposure apparatus (lithography system) that forms line and space patterns on a wafer by forming interference fringes on the wafer.
  • the present invention can be applied.
  • two reticle patterns are synthesized on a wafer via a projection optical system.
  • the present invention can also be applied to an exposure apparatus that performs double exposure of one shot area on a wafer almost simultaneously by multiple scan exposures.
  • the apparatus for forming a pattern on an object is not limited to the exposure apparatus (lithography system) described above, and the present invention can be applied to an apparatus for forming a pattern on an object by, for example, an ink jet method.
  • the object (object to be exposed to which the energy beam is irradiated) in which the pattern is to be formed in each of the above embodiments is not limited to the wafer, but may be other glass plate, ceramic substrate, film member, mask blank, or the like. It can be an object.
  • the use of the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing.
  • an exposure apparatus for liquid crystal that transfers a liquid crystal display element pattern onto a square glass plate, an organic EL, a thin film magnetic head, an image sensor ( CCDs, etc.), micromachines, DNA chips and the like can also be widely applied to exposure apparatuses.
  • CCDs, etc. image sensor
  • micromachines DNA chips and the like
  • the present invention can also be applied to an exposure apparatus that transfers a circuit pattern.
  • An electronic device such as a semiconductor element includes a step of designing a function and performance of the device, a step of manufacturing a reticle based on the design step, a step of manufacturing a wafer from a silicon material, and the exposure apparatus (pattern forming apparatus) of each of the above embodiments. ),
  • a lithography step for transferring the reticle pattern to the wafer, a development step for developing the exposed wafer, an etching step for removing the exposed member other than the portion where the resist remains by etching, and etching is unnecessary. It is manufactured through a resist removal step for removing the resist, a device assembly step (including a dicing process, a bonding process, and a packaging process), an inspection step, and the like.
  • the exposure method described above is executed using the exposure apparatus of each of the above embodiments, and a device pattern is formed on the wafer. Therefore, a highly integrated device can be manufactured with high productivity. .
  • the moving body drive system of the present invention is suitable for driving a moving body along a predetermined plane.
  • the pattern forming apparatus of the present invention is suitable for forming a pattern on an object such as a wafer.
  • the exposure apparatus, exposure method, and device manufacturing method of the present invention are suitable for manufacturing electronic devices such as semiconductor elements and liquid crystal display elements.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Multimedia (AREA)
  • Environmental & Geological Engineering (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

 ウエハステージ(WST)がY軸方向に直線的に移動する間に、多点AF系(90)によりX軸方向に所定間隔で設定された複数の検出点におけるウエハ(W)表面の面位置情報が検出され、X軸方向に沿って一列に配列された複数のアライメント系(AL1、AL21~AL24)によってウエハ上の互いに異なる位置のマークがそれぞれ検出され、周辺露光システム(51)によりウエハの欠けショットの一部が露光される。これにより、マークの検出動作と面位置情報(フォーカス情報)の検出動作と周辺露光動作とを無関係に行う場合に比べてスループットを向上させることができる。

Description

露光装置、移動体駆動システム、パターン形成装置、及び露光方法、並びにデバイス製造方法
 本発明は、露光装置、移動体駆動システム、パターン形成装置、及び露光方法、並びにデバイス製造方法に係り、更に詳しくは、半導体素子、液晶表示素子などの電子デバイスを製造する際にリソグラフィ工程で用いられる露光装置、該露光装置に好適に用いることができ、エンコーダシステムを用いて移動体の位置を計測する移動体駆動システム、該移動体駆動システムを備えるパターン形成装置、及びリソグラフィ工程で用いられる露光方法、並びに前記露光装置又は露光方法を用いるデバイス製造方法に関する。
 従来、半導体素子(集積回路等)、液晶表示素子等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、ステップ・アンド・リピート方式の投影露光装置(いわゆるステッパ)、ステップ・アンド・スキャン方式の投影露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))などが、主として用いられている。
 この種の露光装置で、ウエハの露光を行うと、ウエハの周辺部に露光されない部分(すなわち、製品(チップ)として使用できない領域)が発生する。しかるに、かかる露光されない部分(領域)の存在は、パターンが形成されたウエハの表面を平坦化するために適用される、化学機械的研磨(CMP)工程において問題となる。そこで、従来においても、ウエハの周辺部で有効露光領域から一部がはみ出てしまうショット領域(以下、「周辺ショット」と言う)のうち、デバイスとして使用できない部分を露光する、周辺露光を行なうことがなされている(例えば、特許文献1参照)。
 しかしながら、レチクルのパターンをウエハ上に転写形成する露光とは別に、周辺露光を行なう場合、その周辺露光に要する時間の分だけ、スループットが低下してしまう。
 この一方、スループットを向上させる手法として、ウエハを保持するウエハステージを複数、例えば2つ設けて、その2つのウエハステージで異なる動作を同時並行的に処理する手法を採用するツインウエハステージタイプの露光装置が種々提案されている。最近では、液浸露光法を採用したツインウエハステージタイプの露光装置が提案されている(例えば、特許文献2参照)。
 しかるに、デバイスルール(実用最小線幅)は、次第に微細化しており、これに伴って露光装置には、より高精度な重ね合わせ性能が要求される。このため、ウエハアライメントの主流であるエンハンスト・グローバル・アライメント(EGA)のサンプルショット数もさらなる増加が予想され、ツインウエハステージタイプの露光装置であってもスループットの低下が懸念されている。
 また、ステッパ、スキャナ等の露光装置では、例えばウエハを保持するステージの位置計測は、レーザ干渉計を用いて行われるのが、一般的であった。しかるに、半導体素子の高集積化に伴う、パターンの微細化により、要求される性能が厳しくなり、今や、レーザ干渉計のビーム路上の雰囲気の温度変化及び/又は温度勾配の影響で発生する空気揺らぎに起因する計測値の短期的な変動が無視できなくなってきた。
 そこで、最近では、干渉計に比べて空気揺らぎの影響を受け難い高分解能のエンコーダが注目されるようになっており、該エンコーダをウエハステージ等の位置計測に用いる露光装置が、発明者らによって提案されている(例えば、特許文献3等参照)。
 しかしながら、上記特許文献3の実施形態中に記載の露光装置と同様に、ウエハステージ上面にスケール(グレーティング)を設ける場合、エンコーダヘッドの数が多いため、その配置に自由度が殆どなく、かつレイアウトが大変であった。
特開2006-278820号公報 米国特許第7,161,659号明細書 国際公開第2007/097379号パンフレット
 本発明は、第1の観点からすると、露光ビームで物体を露光する露光装置であって、前記物体を保持して互いに直交する第1軸及び第2軸を含む所定平面に沿って移動する移動体と;前記露光が行われる露光位置から前記第1軸に平行な方向に離れて配置され、前記物体に対する所定の計測を行う計測システムと;前記計測システムから前記第1軸に平行な方向に離れて配置され、前記物体の周辺のショット領域の少なくとも一部を露光する周辺露光システムと;を備える第1の露光装置である。
 これによれば、所定平面内の第1軸に平行な方向に沿って物体を保持する移動体が移動する間に、物体の周辺のショット領域の少なくとも一部が、周辺露光システムにより露光される。これにより、計測システムから露光位置へ向かう物体(移動体)の移動、又はその反対方向への物体(移動体)の移動(例えば、露光位置から物体の交換位置への移動体の移動)と並行して周辺露光を行うことができ、周辺露光を独立して行なう場合と異なりスループットを殆ど低下させることがない。
 本発明は、第2の観点からすると、露光ビームで物体を露光する露光装置であって、前記物体を保持して互いに直交する第1軸及び第2軸を含む所定平面内を移動可能な移動体と;前記露光が行われる露光位置と、前記第1軸に平行な方向に関して前記露光位置から離れて配置される前記物体の交換位置との間に設けられ、前記物体上で前記露光が行われる領域と異なる周辺領域の少なくとも一部を露光する周辺露光システムと;を備え、前記露光位置、及び前記交換位置の一方から他方への前記移動体の移動動作と並行して、前記周辺領域の露光動作の少なくとも一部が行われる第2の露光装置である。
 これによれば、露光位置、及び前記交換位置の一方から他方への前記移動体の移動動作と並行して、周辺露光システムによる周辺領域の露光動作の少なくとも一部が行われる。従って、周辺露光を独立して行なう場合と異なりスループットを殆ど低下させることがない。
 本発明は、第3の観点からすると、エネルギビームで物体を露光して前記物体上にパターンを形成する露光装置であって、物体を保持して互いに直交する第1軸及び第2軸を含む所定の平面内で移動する第1移動体と;物体を保持して前記平面内で前記第1移動体とは独立に移動する第2移動体と;前記第2軸に平行な方向に関して位置が異なる複数の検出領域を有し、前記第1及び第2移動体上にそれぞれ載置された前記物体上のマークを検出するマーク検出系と;前記第1及び第2移動体の一方に保持された物体に対する露光が行なわれるのと並行して、前記第1及び第2移動体の他方を前記第1軸に平行な方向に移動させつつ、該他方の移動体に保持された物体上の異なる複数のマークを前記マーク検出系で検出してその位置情報を計測する制御装置と;を備える第3の露光装置である。
 これによれば、制御装置により、第1及び第2移動体の一方に保持された物体に対する露光が行なわれるのと並行して、第1及び第2移動体の他方が第1軸に平行な方向に移動されつつ、該他方の移動体に保持された物体上の異なる複数のマークがマーク検出系で検出してその位置情報が計測される。従って、一方の移動体に保持された物体の露光が行われるのと並行して、他方の移動体がマーク検出系の複数の検出領域の近傍の位置(例えば移動体に保持された物体の交換が行われる位置の近傍)から露光位置へ向かって第1軸方向に関して移動する間に、その他方の移動体に保持された物体上の複数のマーク、例えばすべてのマークの位置情報を検出することが可能になる。この結果、スループットの向上と重ね合わせ精度の向上とを実現することが可能になる。
 本発明は、第4の観点からすると、エネルギビームで物体を露光して前記物体上にパターンを形成する露光装置であって、物体を保持して互いに直交する第1軸及び第2軸を含む所定の平面内で移動する第1移動体と;物体を保持して前記平面内で前記第1移動体とは独立に移動する第2移動体と;前記第1、第2の移動体を前記平面内で駆動する平面モータと;前記平面モータを制御するとともに、前記第1移動体に保持された物体の露光が終了した際に、前記第1移動体を前記露光が行われる露光位置の前記第2軸に平行な方向の一側に位置する第1帰還経路に沿って前記第1移動体上の物体の交換が行われる第1交換位置へ移動させ、かつ前記第2の移動体に保持された物体の露光が終了した際に、前記第2移動体を前記露光位置の前記第2軸に平行な方向の他側に位置する第2帰還経路に沿って前記第2移動体上の物体の交換が行われる第2交換位置へ移動させる制御装置と;を備える第4の露光装置である。
 この場合において、第1交換位置と第2交換位置は同一でも別々でも良い。
 これによれば、制御装置により、第1、第2の移動体を平面内で駆動する平面モータが制御されるとともに、第1移動体に保持された物体の露光が終了した際に、第1移動体が露光位置の第2軸に平行な方向の一側に位置する第1帰還経路に沿って第1移動体上の物体の交換が行われる第1交換位置へ移動され、かつ第2移動体に保持された物体の露光が終了した際に、第2移動体が露光位置の第2軸に平行な方向の他側に位置する第2帰還経路に沿って第2移動体上の物体の交換が行われる第2交換位置へ移動される。従って、第1移動体には、第2軸に平行な方向の一側から、第2移動体には、第2軸に平行な方向の他側から、それぞれ配線・配管用のケーブルを取り付けることで、それらのケーブルの縺れを防止することができるとともに、その長さを極力短くすることができる。
 本発明は、第5の観点からすると、エネルギビームで物体を露光して前記物体上にパターンを形成する露光装置であって、物体を保持して互いに直交する第1軸及び第2軸を含む所定の平面内で移動する第1移動体と;物体を保持して前記平面内で前記第1移動体とは独立に移動する第2移動体と;前記第1及び第2移動体を前記平面内で駆動する平面モータと;前記エネルギビームを射出する光学部材と;前記光学部材と前記第1、第2移動体の一方との間に液体を供給して液浸領域を形成する液浸装置と;前記一方の移動体に保持された物体の露光終了後、前記一方の移動体から他方の移動体に前記液浸領域を渡すため、前記第1移動体と前記第2移動体とを前記第1軸に平行な方向に関して所定距離以下に近接させる近接状態と、両移動体を離間させる離間状態との切り換えを行わせるとともに、前記他方の移動体から離間された前記一方の移動体を、前記第2軸に平行な方向に関して露光位置の一側に位置する帰還経路に沿って前記第1、第2移動体上の物体の交換が行われる交換位置へ移動させるように、前記平面モータを制御する制御装置と;を備える第5の露光装置である。
 ここで、所定距離以下に近接させる近接状態には、第1移動体と第2移動体とを第1軸に平行な方向に関して接触させる状態、すなわち第1移動体と第2移動体との離間距離が零の状態を含む。本明細書では、接触状態と明示がある場合は勿論、特に明示が無い場合でも、上記離間距離が零の状態、すなわち接触状態をも含む概念として、近接状態なる用語を用いている。
 これによれば、制御装置により、一方の移動体に保持された物体の露光終了後、一方の移動体から他方の移動体に液浸領域を渡すため、両移動体を第1軸に平行な方向に関して所定距離以下に近接させる近接状態と、両移動体を離間させる離間状態との切り換えを行わせるとともに、他方の移動体から離間された一方の移動体を、第2軸に平行な方向に関して露光位置の一側に位置する帰還経路に沿って第1、第2移動体上の物体の交換が行われる交換位置へ移動させるように、平面モータが制御される。このため、一方の移動体を第2軸に平行な方向に関して露光位置の一側に位置する帰還経路に沿って交換位置へ移動させ、他方の移動体を第2軸に平行な方向に関して露光位置の他側に位置する帰還経路に沿って交換位置へ移動させる場合などに比べて、両移動体の第2軸に平行な方向に関する移動範囲を狭く設定することができる。
 本発明は、第6の観点からすると、実質的に所定平面に沿って移動体を駆動する移動体駆動システムであって、前記所定平面に平行な面内で互いに直交する第1、第2方向を周期方向とする2次元格子を有するスケールに検出光を照射し、前記スケールからの光を受光するヘッドを有し、前記ヘッドの計測値に基づいて、前記第1、第2方向を含む前記所定平面内の少なくとも2自由度方向に関する前記移動体の位置情報を計測するエンコーダシステムと;前記エンコーダシステムの計測情報に基づいて、前記移動体を前記所定平面に沿って駆動する駆動装置と;を備える移動体駆動システムである。
 これによれば、2次元格子を有するスケールに検出光を照射し、スケールからの反射光を受光するヘッドを有し、ヘッドの計測値に基づいて、第1、第2方向を含む前記所定平面内の少なくとも2自由度方向に関する移動体の位置情報を計測するエンコーダシステムの計測情報に基づいて、駆動装置によって移動体が所定平面に沿って駆動される。従って、第1、第2方向に関する移動体の位置情報をそれぞれ計測する一次元ヘッドを複数含むエンコーダシステムを用いる場合に比べて、ヘッドの配置の自由度が格段向上し、レイアウトが容易になる。例えば、スケールを1つのみ用いることで、所定平面に平行な面内の2自由度方向に関する移動体の位置を計測することが可能になる。
 本発明は、第7の観点からすると、物体が載置され、該物体を保持して実質的に移動面に沿って移動可能な移動体と;前記物体上にパターンを生成するパターニング装置と;前記物体に対するパターン形成のため、前記移動体を駆動する本発明の移動体駆動システムと;を備えるパターン形成装置である。
 これによれば、本発明の移動体駆動システムにより精度良く駆動される移動体上の物体にパターニング装置によりパターンを生成することで、物体上に精度良くパターンを形成することが可能になる。
 本発明は、第8の観点からすると、エネルギビームの照射によって物体にパターンを形成する露光装置であって、前記物体に前記エネルギビームを照射するパターニング装置と;本発明の移動体駆動システムと;を備え、記エネルギビームと前記物体との相対移動のために、前記移動体駆動システムによる前記物体を載置する移動体の駆動を行う第6の露光装置である。
 これによれば、パターニング装置から物体に照射されるエネルギビームと前記物体との相対移動のために、本発明の移動体駆動システムにより前記物体を載置する移動体が精度良く駆動される。従って、走査露光により、物体上に精度良くパターンを形成することが可能になる。
 本発明は、第9の観点からすると、エネルギビームで物体を露光する露光装置であって、前記物体を保持可能かつ実質的に所定平面に沿って可動な移動体と;前記所定平面内で第1方向に関して前記エネルギビームが照射される露光位置と離れて計測ビームが照射される計測位置が配置され、前記物体の位置情報を計測する計測装置と;前記所定平面内で前記第1方向と直交する第2方向に関して前記移動体の両側にそれぞれ前記第1方向を長手方向としかつ2次元格子を有するスケールが配置されるとともに、前記2つのスケールにそれぞれ少なくとも1つのヘッドが対向可能かつ前記第2方向に関して位置が異なる複数のヘッドを有する一対のヘッドユニットが前記移動体と対向可能に配置され、前記一対のスケールと同時に対向する2つのヘッドの出力に基づいて、前記所定平面内の3自由度方向に関する前記移動体の位置情報を計測するエンコーダシステムと;前記計測装置により計測された前記物体の位置情報と、前記エンコーダシステムにより計測された前記移動体の位置情報とに基づいて前記移動体を駆動する駆動装置と;を備える第7の露光装置である。
 これによれば、計測装置により、所定平面内で第1方向に関して露光位置と離れて配置される、計測ビームが照射される計測位置で、移動体上の物体の位置情報が計測され、エンコーダシステムにより、2つ(一対)のスケールと同時に対向する2つのヘッドの出力に基づいて、前記所定平面内の3自由度方向に関する前記移動体の位置情報を計測され、駆動装置により、計測装置により計測された物体の位置情報と、エンコーダシステムにより計測された移動体の位置情報とに基づいて、移動体が精度良く駆動される。従って、移動体に保持された物体を高精度に露光することが可能になる。また、第1、第2方向に関する移動体の位置情報をそれぞれ計測する一次元ヘッドを複数含むエンコーダシステムを用いる場合に比べて、ヘッド等のレイアウトが容易になる。
 本発明は、第10の観点からすると、エネルギビームで物体を露光する露光装置であって、前記物体を保持可能かつ実質的に所定平面に沿って可動な移動体と;前記所定平面内で第1方向に関して前記エネルギビームが照射される露光位置と離れて計測ビームが照射される計測位置が配置され、前記物体の位置情報を計測する計測装置と;前記所定平面内で前記第1方向と直交する第2方向を長手方向としかつ2次元格子を有する一対のスケールが前記移動体と対向可能に配置されるとともに、前記一対のスケールにそれぞれ少なくとも1つのヘッドが対向可能かつ前記第1方向に関して位置が異なる複数のヘッドが、前記移動体の両側にそれぞれ配置され、前記一対のスケールと同時に対向する2つのヘッドの出力に基づいて、前記所定平面内の3自由度方向に関する前記移動体の位置情報を計測するエンコーダシステムと;前記計測装置により計測された前記物体の位置情報と、前記エンコーダシステムにより計測された前記移動体の位置情報とに基づいて前記移動体を駆動する駆動装置と;を備える第8の露光装置である。
 これによれば、計測装置により、所定平面内で第1方向に関して露光位置と離れて配置される、計測ビームが照射される計測位置で、移動体上の物体の位置情報が計測され、エンコーダシステムにより、一対のスケールと同時に対向する2つのヘッドの出力に基づいて、前記所定平面内の3自由度方向に関する前記移動体の位置情報を計測され、駆動装置により、計測装置により計測された物体の位置情報と、エンコーダシステムにより計測された移動体の位置情報とに基づいて、移動体が精度良く駆動される。従って、移動体に保持された物体を高精度に露光することが可能になる。また、第1、第2方向に関する移動体の位置情報をそれぞれ計測する一次元ヘッドを複数含むエンコーダシステムを用いる場合に比べて、移動体上のヘッドの配置が容易になる。
 本発明は、第11の観点からすると、本発明の第1ないし第8の露光装置のいずれかを用いて物体を露光することと、前記露光された物体を現像することを含む第1のデバイス製造方法である。
 本発明は、第12の観点からすると、露光ビームで物体を露光する露光方法であって、互いに直交する第1軸及び第2軸を含む所定平面に沿って移動する移動体上に前記物体を載置する工程と;前記露光が行われる露光位置から前記所定平面内の前記第1軸に平行な方向に離れて配置されるとともに前記物体に対する所定の計測を行う計測システムの、前記第1軸に平行な方向に離れて配置された周辺露光システムを用いて、前記第1軸に平行な方向に沿って前記物体が載置された移動体を移動させる間に、前記物体の周辺のショット領域の少なくとも一部を露光する工程と;を含む第1の露光方法である。
 これによれば、所定平面内の第1軸に平行な方向に沿って物体が載置された移動体が移動する間に、物体の周辺のショット領域の少なくとも一部が、周辺露光システムにより露光される。これにより、計測システムから露光位置へ向かう物体(移動体)の移動、又はその反対方向への物体(移動体)の移動(例えば、露光位置から物体の交換位置への移動体の移動)と並行して周辺露光を行うことができ、周辺露光を独立して行なう場合と異なりスループットを殆ど低下させることがない。
 本発明は、第13の観点からすると、露光ビームで物体を露光する露光方法であって、互いに直交する第1軸及び第2軸を含む所定平面内を移動可能な移動体に物体を保持させる工程と;前記露光が行われる露光位置と、前記第1軸に平行な方向に関して前記露光位置から離れて配置される前記物体の交換位置との間に設けられ、前記物体上で前記露光が行われる領域と異なる周辺領域の少なくとも一部を露光する周辺露光システムを用いて、前記露光位置、及び前記交換位置の一方から他方への前記移動体の移動動作と並行して、前記周辺領域の露光動作の少なくとも一部を行う工程と;を含む第2の露光方法である。
 これによれば、露光位置、及び前記交換位置の一方から他方への前記移動体の移動動作と並行して、周辺露光システムによる周辺領域の露光動作の少なくとも一部が行われる。従って、周辺露光を独立して行なう場合と異なりスループットを殆ど低下させることがない。
 本発明は、第14の観点からすると、エネルギビームで物体を露光して前記物体上にパターンを形成する露光方法であって、物体をそれぞれ保持して互いに直交する第1軸及び第2軸を含む所定の平面内で独立に移動する第1及び第2移動体の一方に保持された前記物体に対する露光が行なわれるのと並行して、前記第1及び第2移動体の他方を前記第1軸に平行な方向に移動させつつ、該他方の移動体に保持された物体上の異なる複数のマークを、前記第2軸に平行な方向に関して位置が異なる複数の検出領域を有するマーク検出系で検出してその位置情報を計測する工程を含む第3の露光方法である。
 これによれば、第1及び第2移動体の一方に保持された物体に対する露光が行なわれるのと並行して、第1及び第2移動体の他方を第1軸に平行な方向に移動させつつ、該他方の移動体に保持された物体上の異なる複数のマークを、第2軸に平行な方向に関して位置が異なる複数の検出領域を有するマーク検出系で検出してその位置情報を計測する。従って、一方の移動体に保持された被露物体の露光が行われるのと並行して、他方の移動体がマーク検出系の複数の検出領域の近傍の位置(例えば移動体に保持された物体の交換が行われる位置の近傍)から露光位置へ向かって第1軸方向に関して移動する間に、その他方の移動体に保持された物体上の複数のマーク、例えばすべてのマークの位置情報を検出することが可能になる。この結果、スループットの向上と重ね合わせ精度の向上とを実現することが可能になる。
 本発明は、第15の観点からすると、エネルギビームで物体を露光して前記物体上にパターンを形成する露光方法であって、物体をそれぞれ保持して互いに直交する第1軸及び第2軸を含む所定の平面内で独立に移動する第1及び第2移動体を駆動する平面モータを制御することで、前記第1移動体に保持された物体の露光が終了した際に、前記第1移動体を前記露光が行われる露光位置の前記第2軸に平行な方向の一側に位置する第1帰還経路に沿って前記第1移動体上の物体の交換が行われる第1交換位置へ移動させ、かつ前記第2移動体に保持された物体の露光が終了した際に、前記第2移動体を前記露光位置の前記第2軸に平行な方向の他側に位置する第2帰還経路に沿って前記第2の移動体上の物体の交換が行われる第2交換位置へ移動させる工程を含む第4の露光方法である。
 これによれば、第1及び第2の移動体を平面内で駆動する平面モータを制御することで、第1移動体に保持された物体の露光が終了した際に、第1移動体を露光位置の第2軸に平行な方向の一側に位置する第1帰還経路に沿って第1移動体上の物体の交換が行われる第1交換位置へ移動させ、かつ第2移動体に保持された物体の露光が終了した際に、第2移動体を露光位置の第2軸に平行な方向の他側に位置する第2帰還経路に沿って第2移動体上の物体の交換が行われる第2交換位置へ移動させる。従って、第1移動体には、第2軸に平行な方向の一側から、第2移動体には、第2軸に平行な方向の他側から、それぞれ配線・配管用のケーブルを取り付けることで、それらのケーブルの縺れを防止することができるとともに、その長さを極力短くすることができる。
 本発明は、第16の観点からすると、エネルギビームで物体を露光する露光方法であって、前記物体を移動体で保持することと;本発明の移動体駆動システムによって前記移動体を駆動して、前記物体を前記エネルギビームで露光することと;を含む第5の露光方法である。
 これによれば、本発明の移動体駆動システムにより物体を保持する移動体を精度良く駆動して、物体をエネルギビームで露光するので、物体に対する高精度な露光が可能になる。
 本発明は、第17の観点からすると、エネルギビームで物体を露光する露光方法であって、実質的に所定平面に沿って可動な移動体で物体を保持することと;前記所定平面内で第1方向に関して前記エネルギビームが照射される露光位置と離れて配置される、計測ビームが照射される計測位置で、前記移動体上の物体の位置情報を計測することと;前記所定平面内で前記第1方向と直交する第2方向に離れて前記移動体上に前記第1方向を長手方向としかつ2次元格子を有する一対のスケールが配置されるとともに、前記一対のスケールのそれぞれに少なくとも1つのヘッドが対向可能かつ前記第2方向に関して位置が異なる複数のヘッドを有する一対のヘッドユニットが前記移動体と対向可能に配置されるエンコーダシステムによって、前記所定平面内の3自由度方向に関する前記移動体の位置情報を計測することと;前記計測された位置情報と前記エンコーダシステムの計測情報とに基づいて前記移動体を駆動し、前記物体を前記エネルギビームで露光することと;を含む第6の露光方法である。
 これによれば、所定平面内で第1方向に関して露光位置と離れて配置される、計測ビームが照射される計測位置で、移動体上の物体の位置情報を計測し、エンコーダシステムによって、所定平面内の3自由度方向に関する移動体の位置情報を計測する。そして、計測された位置情報とエンコーダシステムの計測情報とに基づいて移動体を駆動して、物体をエネルギビームで露光する。従って、物体を高精度に露光することが可能になる。
 本発明は、第18の観点からすると、エネルギビームで物体を露光する露光方法であって、実質的に所定平面に沿って可動な移動体で物体を保持することと;前記所定平面内で第1方向に関して前記エネルギビームが照射される露光位置と離れて配置される、計測ビームが照射される計測位置で、前記移動体上の物体の位置情報を計測することと;前記所定平面内で前記第1方向と直交する第2方向を長手方向としかつ2次元格子を有する一対のスケールが前記移動体と対向可能に配置されるとともに、前記一対のスケールにそれぞれ少なくとも1つのヘッドが対向可能かつ前記第1方向に関して位置が異なる複数のヘッドが、前記移動体の両側にそれぞれ配置されるエンコーダシステムによって、前記所定平面内の3自由度方向に関する前記移動体の位置情報を計測することと;前記計測された位置情報と前記エンコーダシステムの計測情報とに基づいて前記移動体を駆動し、前記物体を前記エネルギビームで露光することと;を含む第7の露光方法である。
 これによれば、所定平面内で第1方向に関して露光位置と離れて配置される、計測ビームが照射される計測位置で、移動体上の物体の位置情報を計測し、エンコーダシステムによって、所定平面内の3自由度方向に関する移動体の位置情報を計測する。そして、計測された位置情報とエンコーダシステムの計測情報とに基づいて移動体を駆動して、物体をエネルギビームで露光する。従って、物体を高精度に露光することが可能になる。
 本発明は、第19の観点からすると、本発明の第1ないし第7の露光方法のいずれかにより、物体を露光してパターンを形成することと;前記パターンが形成された物体を現像することと;を含む第2のデバイス製造方法である。
第1の実施形態に係る露光装置の構成を概略的に示す図である。 ウエハステージを示す平面図である。 計測ステージを示す平面図である。 干渉計システムを説明するための図である。 ステージ装置及び各種計測装置を示す平面図である。 エンコーダシステムのヘッド、アライメント系、及び周辺露光ユニット等の配置を説明するための図である。 多点AF系、及び面位置計測システムのZヘッドの配置を説明するための図である。 周辺露光用アクティブマスクを説明するための図である。 図9(A)、及び図9(B)は、それぞれ、マイクロミラーのオン状態、及びオフ状態を説明するための図である。 図1の露光装置における制御系の主要な構成を示すブロック図である。 ウエハのショットマップを説明するための図である。 ウエハのアライメントショット領域を説明するための図である。 周辺露光の対象となる領域を説明するための図である。 ウエハステージ上のウエハに対するステップ・アンド・スキャン方式の露光が行われている状態のウエハステージ及び計測ステージの状態を示す図である。 ウエハのアンローディング時(計測ステージがSec-BCHK(インターバル)を行う位置に到達したとき)における両ステージの状態を示す図である。 ウエハのローディング時における両ステージの状態を示す図である。 干渉計によるステージサーボ制御からエンコーダによるステージサーボ制御への切り換え時(ウエハステージがPri-BCHKの前半の処理を行う位置へ移動したとき)における、両ステージの状態を示す図である。 アライメント系AL1,AL22,AL23を用いて、3つのファーストアライメントショット領域に付設されたアライメントマークを同時検出しているときのウエハステージと計測ステージとの状態を示す図である。 フォーカスキャリブレーション前半の処理が行われているときのウエハステージと計測ステージとの状態を示す図である。 アライメント系AL1,AL21~AL24を用いて、5つのセカンドアライメントショット領域に付設されたアライメントマークを同時検出しているときのウエハステージと計測ステージとの状態を示す図である。 Pri-BCHK後半の処理及びフォーカスキャリブレーション後半の処理の少なくとも一方が行われているときのウエハステージと計測ステージとの状態を示す図である。 アライメント系AL1,AL21~AL24を用いて、5つのサードアライメントショット領域に付設されたアライメントマークを同時検出しているときのウエハステージと計測ステージとの状態を示す図である。 アライメント系AL1,AL22,AL23を用いて、3つのフォースアライメントショット領域に付設されたアライメントマークを同時検出しているときのウエハステージと計測ステージとの状態を示す図である。 フォーカスマッピングが終了したときのウエハステージと計測ステージとの状態を示す図である。 図25(A)~図25(F)は、それぞれ、周辺露光の進行過程を説明するための図である。 周辺露光によって露光された全ての領域を示す図である。 第2の実施形態に係る露光装置の構成を概略的に示す図である。 ウエハステージを示す平面図である。 図27の露光装置が備えるステージ装置及び干渉計の配置を示す平面図である。 図27の露光装置が備えるステージ装置及びセンサユニットの配置を示す平面図である。 エンコーダヘッドとアライメント系の配置を示す平面図である。 第2の実施形態に係る露光装置の制御系の主要な構成を示すブロック図である。 複数のヘッドをそれぞれ含む複数のエンコーダによるウエハテーブルのXY平面内の位置計測及びヘッドの切り換え(つなぎ)について説明するための図である。 エンコーダの構成の一例を示す図である。 ウエハに対するステップ・アンド・スキャン方式の露光が行われているときのウエハステージ及び計測ステージの状態を示す図である。 ウエハのアンローディング時におけるウエハステージ及び計測ステージの状態を示す図である。 ウエハのローディング時におけるウエハステージ及び計測ステージの状態を示す図である。 干渉計によるステージサーボ制御からエンコーダによるステージサーボ制御への切り換え時における、ウエハステージ及び計測ステージの状態、並びにエンコーダヘッドの配置を示す図である。 ウエハアライメント時におけるウエハステージ及び計測ステージの状態を説明するための図である。 第3の実施形態の露光装置が備えるステージ装置及びセンサユニットの配置を示す平面図である。 第3の実施形態に係る露光装置の制御系の主要な構成を示すブロック図である。 第4の実施形態の露光装置の構成を概略的に示す図である。 図43(A)は、図42のウエハステージWST1を示す側面図、図43(B)はウエハステージWST1を示す平面図である。 図44(A)は、図42のウエハステージWST2を示す側面図、図44(B)はウエハステージWST2を示す平面図である。 図42のウエハステージ装置が備える計測システムを構成する、エンコーダシステム及び面位置計測システム等のヘッドの配置等を説明するための図である。 計測システムを構成する干渉計システムの構成を説明するための図である。 第2の実施形態の露光装置の制御系の主要な構成を示すブロック図である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その1)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その2)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その3)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その4)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その5)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その6)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その7)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その8)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その9)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その10)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その11)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その12)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その13)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その14)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その15)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その16)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その17)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その18)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その19)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その20)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その21)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その22)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その23)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その24)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その25)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その26)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その27)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その28)である。 ウエハステージWST1,WST2を用いた並行処理動作について説明ための図(その29)である。
《第1の実施形態》
 以下、本発明の第1の実施形態について、図1~図26に基づいて説明する。
 図1には、第1の実施形態の露光装置100の構成が概略的に示されている。露光装置100は、ステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。後述するように本実施形態では、投影光学系PLが設けられており、以下においては、この投影光学系PLの光軸AXと平行な方向をZ軸方向、これに直交する面内でレチクルとウエハとが相対走査される方向をY軸方向、Z軸及びY軸に直交する方向をX軸方向とし、X軸、Y軸、及びZ軸回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向として説明を行う。
 露光装置100は、照明系10、レチクルステージRST、投影ユニットPU、ウエハステージWST及び計測ステージMSTを有するステージ装置50、及びこれらの制御系等を備えている。図1において、ウエハステージWST上には、ウエハWが載置されている。
 照明系10は、例えば米国特許出願公開第2003/0025890号明細書などに開示されるように、光源と、オプティカルインテグレータを有する照度均一化光学系、及びレチクルブラインド(いずれも不図示)を有する照明光学系とを含む。照明系10は、レチクルブラインド(マスキングシステム)で規定されたレチクルR上のスリット状の照明領域IARを照明光(露光光)ILによりほぼ均一な照度で照明する。ここで、照明光ILとして、例えばArFエキシマレーザ光(波長193nm)が用いられる。
 レチクルステージRST上には、回路パターンなどがそのパターン面(図1における下面)に形成されたレチクルRが、例えば真空吸着により固定されている。レチクルステージRSTは、例えばリニアモータ等を含むレチクルステージ駆動系11(図1では不図示、図10参照)によって、XY平面内で微少駆動可能であるとともに、走査方向(図1における紙面内左右方向であるY軸方向)に所定の走査速度で駆動可能となっている。
 レチクルステージRSTのXY平面内の位置情報(θz方向の位置(以下では、適宜θz回転(若しくはθz回転量)、又はヨーイング(若しくはヨーイング量)とも記述する)の情報を含む)は、レチクルレーザ干渉計(以下、「レチクル干渉計」という)116によって、移動鏡15(実際には、Y軸方向に直交する反射面を有するY移動鏡(あるいは、レトロリフレクタ)とX軸方向に直交する反射面を有するX移動鏡とが設けられている)を介して、例えば0.25nm程度の分解能で常時検出される。レチクル干渉計116の計測値は、主制御装置20(図1では不図示、図10参照)に送られる。
 投影ユニットPUは、レチクルステージRSTの図1における下方に配置されている。投影ユニットPUは、鏡筒40と、鏡筒40内に格納された投影光学系PLと、を含む。投影光学系PLとして、例えば、Z軸方向と平行な光軸AXに沿って配列される複数の光学素子(レンズエレメント)から成る屈折光学系が用いられている。投影光学系PLは、例えば両側テレセントリックで、所定の投影倍率(例えば1/4、1/5又は1/8など)を有する。このため、照明系10によってレチクルR上の照明領域IARが照明されると、投影光学系PLの第1面(物体面)とパターン面がほぼ一致して配置されるレチクルRを通過した照明光ILにより、投影光学系PL(投影ユニットPU)を介してその照明領域IAR内のレチクルRの回路パターンの縮小像(回路パターンの一部の縮小像)が、投影光学系PLの第2面(像面)側に配置される、表面にレジスト(感応剤)が塗布されたウエハW上の前記照明領域IARに共役な領域(以下、露光領域とも呼ぶ)IAに形成される。そして、レチクルステージRSTとウエハステージWSTとの同期駆動によって、照明領域IAR(照明光IL)に対してレチクルRを走査方向(Y軸方向)に相対移動させるとともに、露光領域IA(照明光IL)に対してウエハWを走査方向(Y軸方向)に相対移動させることで、ウエハW上の1つのショット領域(区画領域)の走査露光が行われ、そのショット領域にレチクルRのパターンが転写される。すなわち、本実施形態では照明系10、レチクルR及び投影光学系PLによってウエハW上にパターンが生成され、照明光ILによるウエハW上の感応層(レジスト層)の露光によってウエハW上にそのパターンが形成される。
 本実施形態の露光装置100には、液浸方式の露光を行うために、局所液浸装置8が設けられている。局所液浸装置8は、例えば液体供給装置5、液体回収装置6(いずれも図1では不図示、図10参照)、液体供給管31A、液体回収管31B、及びノズルユニット32等を含む。ノズルユニット32は、図1に示されるように、投影光学系PLを構成する最も像面側(ウエハW側)の光学素子、ここではレンズ(以下、「先端レンズ」ともいう)191を保持する鏡筒40の下端部周囲を取り囲むように、投影ユニットPUを保持する不図示のメインフレームに吊り下げ支持されている。本実施形態では、ノズルユニット32は、図1に示されるように、その下端面が先端レンズ191の下端面とほぼ同一面に設定されている。また、ノズルユニット32は、液体Lqの供給口及び回収口と、ウエハWが対向して配置され、かつ回収口が設けられる下面と、液体供給管31A及び液体回収管31Bとそれぞれ接続される供給流路及び回収流路とを備えている。液体供給管31Aと液体回収管31Bとは、図5に示されるように、平面視で(上方から見て)X軸方向及びY軸方向に対してほぼ45°傾斜し、投影ユニットPUの中心(投影光学系PLの光軸AX、本実施形態では前述の露光領域IAの中心とも一致)を通りかつY軸と平行な直線(基準軸)LV0に関して対称な配置となっている。
 液体供給管31Aは液体供給装置5(図1では不図示、図10参照)に、液体回収管31Bは液体回収装置6(図1では不図示、図10参照)に接続されている。ここで、液体供給装置5には、液体を貯蔵するタンク、加圧ポンプ、温度制御装置、液体の流量を制御するためのバルブ等が備えられている。液体回収装置6には、回収した液体を貯蔵するタンク、吸引ポンプ、液体の流量を制御するためのバルブ等が備えられている。
 主制御装置20(図10参照)は、液体供給装置5を制御して、液体供給管31Aを介して先端レンズ191とウエハWとの間に液体Lqを供給するとともに、液体回収装置6を制御して、液体回収管31Bを介して先端レンズ191とウエハWとの間から液体Lqを回収する。このとき、主制御装置20は、供給される液体Lqの量と回収される液体Lqの量とが常に等しくなるように、液体供給装置5と液体回収装置6とを制御する。従って、先端レンズ191とウエハWとの間には、一定量の液体Lq(図1参照)が常に入れ替わって保持され、それにより液浸領域14(図14等参照)が形成される。なお、投影ユニットPUの下方に後述する計測ステージMSTが位置する場合にも、同様に先端レンズ191と計測テーブルとの間に液浸領域14を形成することができる。
 本実施形態では、上記の液体として、ArFエキシマレーザ光(波長193nmの光)が透過する純水(以下、特に必要な場合を除いて、単に「水」と記述する)を用いるものとする。なお、ArFエキシマレーザ光に対する水の屈折率nは、ほぼ1.44であり、水の中では、照明光ILの波長は、193nm×1/n=約134nmに短波長化される。
 ステージ装置50は、図1に示されるように、ベース盤12の上方に配置されたウエハステージWSTと計測ステージMST、これらのステージWST,MSTの位置情報を計測する計測システム200(図10参照)、及びステージWST,MSTを駆動するステージ駆動系124(図10参照)等を備えている。計測システム200は、図10に示されるように、干渉計システム118、エンコーダシステム150及び面位置計測システム180などを含む。
 ウエハステージWST及び計測ステージMSTは、それぞれの底面に固定された不図示の非接触軸受、例えばエアベアリングにより、数μm程度のクリアランスを介して、ベース盤12上に支持されている。また、ステージWST,MSTは、例えばリニアモータ等を含むステージ駆動系124(図10参照)によって、XY平面内で独立して駆動可能である。
 ウエハステージWSTは、ステージ本体91と、該ステージ本体91上に搭載されたウエハテーブルWTBとを含む。ウエハテーブルWTB及びステージ本体91は、例えばリニアモータ及びZ・レベリング機構(ボイスコイルモータなどを含む)(いずれも不図示)を含む駆動系によって、ベース盤12に対し、6自由度方向(X、Y、Z、θx,θy,θz)に駆動可能に構成されている。
 ウエハテーブルWTBの上面の中央には、ウエハWを真空吸着等によって保持するウエハホルダ(不図示)が設けられている。ウエハホルダ(ウエハの載置領域)の外側には、図2に示されるように、ウエハホルダよりも一回り大きな円形の開口が中央に形成され、かつ矩形状の外形(輪郭)を有するプレート(撥液板)28が設けられている。このプレート28の表面は、液体Lqに対して撥液化処理されている。なお、プレート28は、その表面の全部(あるいは一部)がウエハWの表面と同一面となるように設置されている。
 プレート28は、中央に前記開口が形成された矩形の外形(輪郭)を有する第1撥液領域28aと、該第1撥液領域28aの周囲に設けられた矩形枠状の第2撥液領域28bとを有している。なお、本実施形態では、前述の如く液体Lqとして水を用いるので、以下では第1及び第2撥液領域28a,28bをそれぞれ第1及び第2撥水板28a,28bとも呼ぶ。
 第1撥水板28aの+Y側の端部には、計測プレート30が設けられている。この計測プレート30には、中央に基準マークFMが設けられ、該基準マークFMを挟むように一対の空間像計測スリットパターン(スリット状の計測用パターン)SLが設けられている。そして、各空間像計測スリットパターンSLに対応して、それらを透過した照明光ILを、ウエハステージWSTの外部(後述する計測ステージMSTに設けられる受光系)に導くための送光系(不図示)が設けられている。
 第2撥水板28bには、その上面のX軸方向(図2における紙面内左右方向)の一側と他側の領域に、Yスケール39Y1,39Y2がそれぞれ形成されている。Yスケール39Y1,39Y2はそれぞれ、例えばX軸方向を長手方向とする格子線38が所定ピッチでY軸に平行な方向(Y軸方向)に沿って配置される、Y軸方向を周期方向とする反射型の格子(例えば回折格子)によって構成されている。
 同様に、第2撥水板28bの上面におけるY軸方向(図2における紙面内上下方向)の一側と他側の領域には、Xスケール39X1,39X2がそれぞれ形成されている。Xスケール39X1,39X2はそれぞれ、例えばY軸方向を長手方向とする格子線37が所定ピッチでX軸に平行な方向(X軸方向)に沿って配置される、X軸方向を周期方向とする反射型の格子(例えば回折格子)によって構成されている。各スケールは、例えば薄板状のガラスに上記回折格子の目盛りを、例えば138nm~4μmの間のピッチ、例えば1μmピッチで刻んで作製されている。これらのスケールは前述の撥液膜(撥水膜)で覆われている。なお、図2では、図示の便宜上から、格子のピッチは、実際のピッチに比べて格段に広く図示されている。その他の図においても同様である。また、回折格子を保護するために、撥水性を備えた低熱膨張率のガラス板で、その表面がウエハの表面と同じ高さ(面位置)になるようにして回折格子をカバーしても良い。ここで、ガラス板としては、厚さがウエハと同程度、例えば厚さ1mmのものを用いることができる。
 なお、各スケールの端付近には、後述するエンコーダヘッドとスケール間の相対位置を決めるための、不図示の位置出しパターンがそれぞれ設けられている。この位置出しパターンは例えば反射率の異なる格子線から構成され、この位置出しパターン上をエンコーダヘッドが走査すると、エンコーダの出力信号の強度が変化する。そこで、予め閾値を定めておき、出力信号の強度がその閾値を超える位置を検出する。この検出された位置を基準に、エンコーダヘッドとスケール間の相対位置を設定する。
 ウエハテーブルWTBの-Y端面,-X端面には、図2及び図4等に示されるように、後述する干渉計システムで用いられる反射面17a,反射面17bが形成されている。
 計測ステージMSTは、図1に示されるように、不図示のリニアモータ等によってXY平面内で駆動されるステージ本体92と、ステージ本体92上に搭載された計測テーブルMTBとを有している。計測ステージMSTは、不図示の駆動系によりベース盤12に対し、少なくとも3自由度方向(X、Y、θz)に駆動可能に構成されている。
 なお、図10では、ウエハステージWSTの駆動系と計測ステージMSTの駆動系とを含んで、ステージ駆動系124として示されている。
 計測テーブルMTB(及びステージ本体92)には、各種計測用部材が設けられている。この計測用部材としては、例えば、図3に示されるように、照度むらセンサ94、空間像計測器96、波面収差計測器98、照度モニタ(不図示)などが設けられている。また、ステージ本体92には、前述の一対の送光系(不図示)に対向する配置で、一対の受光系(不図示)が設けられている。本実施形態では、ウエハステージWSTと計測ステージMSTとがY軸方向に関して所定距離以内に近接した状態(接触状態を含む)において、ウエハステージWST上の計測プレート30の各空間像計測スリットパターンSLを透過した照明光ILを各送光系(不図示)で案内し、計測ステージMST内の各受光系(不図示)の受光素子で受光する、空間像計測装置45(図10参照)が構成される。
 計測テーブルMTBの-Y側端面には、図3に示されるように、フィデューシャルバー(以下、「FDバー」と略述する)46がX軸方向に延設されている。このFDバー46は、フルキネマティックマウント構造によって、計測ステージMST上にキネマティックに支持されている。FDバー46は、原器(計測基準)となるため、低熱膨張率の光学ガラスセラミックス、例えば、ショット社のゼロデュア(商品名)などがその素材として採用されている。FDバー46の長手方向の一側と他側の端部近傍には、センターラインCLに関して対称な配置で、Y軸方向を周期方向とする基準格子(例えば回折格子)52がそれぞれ形成されている。また、FDバー46の上面には、複数の基準マークMが形成されている。各基準マークMとしては、後述するプライマリアライメント系、セカンダリアライメント系によって検出可能な寸法の2次元マークが用いられている。なお、FDバー46の表面及び計測テーブルMTBの表面も撥液膜(撥水膜)で覆われている。
 計測テーブルMTBの+Y側の端面及び-X側端面には、ウエハテーブルWTBと同様の反射面19a及び反射面19bが形成されている(図3参照)。
 本実施形態の露光装置100では、図6に示されるように、前述の基準軸LV0上で、投影ユニットPUの中心(投影光学系PLの光軸AX)から-Y側に所定距離隔てた位置に検出中心を有するプライマリアライメント系AL1が設けられている。プライマリアライメント系AL1は、不図示のメインフレームの下面に固定されている。プライマリアライメント系AL1を挟んで、X軸方向の一側と他側には、基準軸LV0に関してほぼ対称に検出中心が配置されるセカンダリアライメント系AL21,AL22と、AL23,AL24とがそれぞれ設けられている。セカンダリアライメント系AL21~AL24は、不図示の可動式の支持部材を介してメインフレーム(不図示)の下面に固定されており、駆動機構601~604(図10参照)を用いて、X軸方向に関してそれらの検出領域の相対位置が調整可能となっている。なお、図6等に示されるプライマリアライメント系AL1の検出中心を通るX軸に平行な直線(基準軸)LAは、後述の干渉計127からの測長ビームB6の光軸に一致する。
 本実施形態では、各アライメント系(AL1,AL21~AL24)として、例えば画像処理方式のFIA(Field Image Alignment)系が用いられている。アライメント系AL1,AL21~AL24のそれぞれからの撮像信号は、不図示の信号処理系を介して主制御装置20に供給される。
 次に、ウエハステージWST及び計測ステージMSTの位置情報を計測する干渉計システム118(図10参照)の構成等について説明する。
 干渉計システム118は、図4に示されるように、ウエハステージWSTの位置計測用のY干渉計16、X干渉計126、127、128、及びZ干渉計43A,43B、並びに計測ステージMSTの位置計測用のY干渉計18及びX干渉計130等を含む。Y干渉計16及び3つのX干渉計126、127、128は、ウエハテーブルWTBの反射面17a,17bに、それぞれ干渉計ビーム(測長ビーム)B4(B41,B42)、B5(B51,B52)、B6、B7を照射する。そして、Y干渉計16、及び3つのX干渉計126、127、128は、それぞれの反射光を受光して、ウエハステージWSTのXY平面内の位置情報を計測し、この計測した位置情報を主制御装置20に供給する。
 ここで、例えば、X干渉計126は、投影光学系PLの光軸AX(本実施形態では前述の露光領域IAの中心とも一致)を通りかつX軸と平行な直線(基準軸LH(図5等参照))に関して対称な一対の測長ビームB51,B52を含む少なくとも3つのX軸に平行な測長ビームを反射面17bに照射する。また、Y干渉計16は、前述の基準軸LV0に関して対称な一対の測長ビームB41,B42、及びB3(図1参照)を含む少なくとも3つのY軸に平行な測長ビームを反射面17a、及び後述する移動鏡41に照射する。このように、本実施形態では、上記各干渉計として、一部(例えば干渉計128)を除いて、測長軸を複数有する多軸干渉計が用いられている。そこで、主制御装置20は、Y干渉計16と、X干渉計126又は127との計測結果に基づいて、ウエハテーブルWTB(ウエハステージWST)のX,Y位置に加え、θx方向の位置(以下、適宜、θx回転(若しくはθx回転量)、又はピッチング(若しくはピッチング量)とも記述する)、θy方向の位置(以下、適宜、θy回転(若しくはθy回転量)、又はローリング(若しくはローリング量)とも記述する)、及びθz回転(すなわちヨーイング量)をも算出することができる。
 また、図1に示されるように、ステージ本体91の-Y側の側面に、凹形状の反射面を有する移動鏡41が取り付けられている。移動鏡41は、図2からわかるように、X軸方向の長さがウエハテーブルWTBの反射面17aよりも、長く設定されている。
 移動鏡41に対向して、一対のZ干渉計43A,43Bが設けられている(図1及び図4参照)。Z干渉計43A,43Bは、移動鏡41を介して、例えば投影ユニットPUを支持するメインフレーム(不図示)に固定された固定鏡47A,47Bにそれぞれ2つの測長ビームB1,B2を照射する。そして、それぞれの反射光を受光して、測長ビームB1,B2の光路長を計測する。その結果より、主制御装置20は、ウエハステージWSTの4自由度(Y,Z,θy,θz)方向の位置を算出する。
 本実施形態では、ウエハステージWST(ウエハテーブルWTB)のXY平面内の位置(θz方向の回転情報を含む)は、主として、後述するエンコーダシステムを用いて計測される。干渉計システム118は、ウエハステージWSTがエンコーダシステムの計測領域外(例えば、図5等に示されるアンローディングポジションUP及びローディングポジションLP付近)に位置する際に、使用される。また、エンコーダシステムの計測結果の長期的変動(例えばスケールの経時的な変形などによる)を補正(較正)する場合、あるいはエンコーダシステムの出力異常時のバックアップ用などとして補助的に使用される。勿論、干渉計システム118とエンコーダシステムとを併用して、ウエハステージWST(ウエハテーブルWTB)の位置を制御することとしても良い。
 干渉計システム118のY干渉計18、X干渉計130は、図4に示されるように、計測テーブルMTBの反射面19a,19bに、干渉計ビーム(測長ビーム)を照射して、それぞれの反射光を受光することにより、計測ステージMSTの位置情報(例えば、少なくともX軸及びY軸方向の位置とθz方向の回転情報とを含む)を計測し、その計測結果を、主制御装置20に供給する。
 次に、ウエハステージWSTのXY平面内の位置情報(θz方向の回転情報を含む)を計測するエンコーダシステム150(図10参照)の構成等について説明する。エンコーダシステム150の主な構成は、例えば米国特許出願公開第2008/0088843号明細書などに開示されている。
 露光装置100では、図5に示されるように、ノズルユニット32の+X側、+Y側、-X側、及びプライマリアライメント系AL1の-Y側に、4つのヘッドユニット62A、62B、62C、及び62Dが、それぞれ配置されている。また、ヘッドユニット62C、62Aそれぞれの-Y側でかつプライマリアライメント系AL1とほぼ同一のY位置に、ヘッドユニット62E、62Fが、それぞれ設けられている。ヘッドユニット62A~62Fは、支持部材を介して、投影ユニットPUを保持するメインフレーム(不図示)に吊り下げ状態で固定されている。
 ヘッドユニット62Aは、図6に示されるように、ノズルユニット32の+X側に配置され、X軸方向に沿って前述の基準軸LH上に間隔WDで配置された複数(ここでは4個)のYヘッド652~655と、基準軸LHから-Y方向に所定距離離れたノズルユニット32の-Y側の位置に配置されたYヘッド651とを備えている。ここで、Yヘッド651,652のX軸方向の間隔もWDにほぼ等しく設定されている。ヘッドユニット62Cは、図6に示されるように、ヘッドユニット62Aと左右対称に構成され、前述の基準軸LV0に関して対称に配置されている。ヘッドユニット62Cは、Yヘッド655~651と、基準軸LV0に関して対称に配置された5つのYヘッド641~645を備えている。以下では、適宜、Yヘッド651~655、641~645を、それぞれ、Yヘッド65、64とも記述する。
 ヘッドユニット62Aは、前述のYスケール39Y1を用いて、ウエハステージWST(ウエハテーブルWTB)のY軸方向の位置(Y位置)を計測する多眼(ここでは、5眼)のYリニアエンコーダ(以下、適宜「Yエンコーダ」又は「エンコーダ」と略述する)70A(図10参照)を構成する。同様に、ヘッドユニット62Cは、前述のYスケール39Y2を用いて、ウエハステージWST(ウエハテーブルWTB)のY位置を計測する多眼(ここでは、5眼)のYエンコーダ70C(図10参照)を構成する。ここで、ヘッドユニット62C,62Aがそれぞれ備える5個のYヘッド64i,65j(i,j=1~5)のうち隣接するYヘッド(より正確には、各Yヘッドが発する計測ビームのスケール上の照射点)のX軸方向の間隔WDは、Yスケール39Y2,39Y1のX軸方向の幅(より正確には、格子線38の長さ)より僅かに狭く設定されている。従って、露光時などには、それぞれ5個のYヘッド65j,64iのうち、少なくとも各1つのヘッドが、常に、対応するYスケール39Y1,39Y2に対向する。
 ヘッドユニット62Bは、図6に示されるように、ノズルユニット32(投影ユニットPU)の+Y側に配置され、前述の基準軸LV0上にY軸方向に沿って間隔WDで配置された複数、ここでは4個のXヘッド665~668を備えている。また、ヘッドユニット62Dは、プライマリアライメント系AL1の-Y側に配置され、基準軸LV0上に間隔WDで配置された複数、ここでは4個のXヘッド661~664を備えている。以下では、適宜、Xヘッド661~668を、Xヘッド66とも記述する。
 ヘッドユニット62Bは、前述のXスケール39X1を用いて、ウエハステージWST(ウエハテーブルWTB)のX軸方向の位置(X位置)を計測する、多眼(ここでは、4眼)のXリニアエンコーダ(以下、適宜「Xエンコーダ」又は「エンコーダ」と略述する)70B(図10参照)を構成する。また、ヘッドユニット62Dは、前述のXスケール39X2を用いて、ウエハステージWST(ウエハテーブルWTB)のX位置を計測する多眼(ここでは、4眼)のXリニアエンコーダ70D(図10参照)を構成する。
 ここでヘッドユニット62B,62Dがそれぞれ備える4個Xヘッド661~664、665~668のうち、隣接するXヘッド66(より正確には、Xヘッドが発する計測ビームのスケール上の照射点)のY軸方向の間隔WDは、前述のXスケール39X1,39X2のY軸方向の幅(より正確には、格子線37の長さ)よりも狭く設定されている。従って、露光時又はウエハアライメント時などには、ヘッドユニット62B,62Dがそれぞれ備える各4つのXヘッド66、すなわち8つのXヘッド66のうち少なくとも1つのヘッドが、常に、対応するXスケール39X1又は39X2に対向する。なお、ヘッドユニット62Bの最も-Y側のXヘッド665とヘッドユニット62Dの最も+Y側のXヘッド664との間隔は、ウエハステージWSTのY軸方向の移動により、その2つのXヘッド間で切り換え(つなぎ)が可能となるように、ウエハテーブルWTBのY軸方向の幅よりも狭く設定されている。
 ヘッドユニット62Eは、図6に示されるように、セカンダリアライメント系AL21の-X側に配置され、前述の基準軸LA上に間隔WDとほぼ同一間隔で配置された3つのYヘッド671~673と、基準軸LAから+Y方向に所定距離離れたセカンダリアライメント系AL21の+Y側に配置されたYヘッド674と、を備えている。ここで、Yヘッド673,674間のX軸方向の間隔もWDと設定されている。以下では、Yヘッド671~674を、適宜、Yヘッド67とも記述する。
 ヘッドユニット62Fは、前述の基準軸LV0に関して、ヘッドユニット62Eと対称であり、上記4つのYヘッド674~671と基準軸LV0に関して対称に配置された4つのYヘッド681~684を備えている。以下では、Yヘッド681~684を、適宜、Yヘッド68とも記述する。
 後述するアライメント動作の際などには、Yスケール39Y2,39Y1にYヘッド67p,68q(p,q=1~4)のうちの少なくとも各1つがそれぞれ対向する。このYヘッド67p,68q(すなわち、これらYヘッド67p,68qによって構成されるYエンコーダ70E、70F)によってウエハステージWSTのY位置(及びθz回転)が計測される。
 また、本実施形態では、後述するセカンダリアライメント系のベースライン計測時などに、セカンダリアライメント系AL21、AL24にX軸方向で隣接するYヘッド673,682が、FDバー46の一対の基準格子52とそれぞれ対向し、その一対の基準格子52と対向するYヘッド673,682によって、FDバー46のY位置が、それぞれの基準格子52の位置で計測される。以下では、一対の基準格子52にそれぞれ対向するYヘッド673,682によって構成されるエンコーダを、Yエンコーダ70E2,70F2と呼び、これとの識別のため前述のYスケール39Y2,39Y1に対向するYヘッド67,68によって構成されるYエンコーダ70E,70Fを、Yエンコーダ70E,70Fと呼ぶ。
 上述したエンコーダ70A~70Fの計測値は、主制御装置20に供給され、主制御装置20は、エンコーダ70A~70Dのうちの3つ、又は70B、70D、70E1、70F1のうちの3つの計測値に基づいて、ウエハステージWSTのXY平面内の位置を制御するとともに、エンコーダ70E2,70F2の計測値に基づいて、FDバー46(計測ステージMST)のθz方向の回転(ヨーイング)を制御する。
 なお、図5では、計測ステージMSTの図示が省略されるとともに、その計測ステージMSTと先端レンズ191との間に保持される水Lqで形成される液浸領域が符号14で示されている。また、図5において、符号UP、LPは、基準軸LV0に関して対称に設定された、ウエハテーブルWTB上のウエハのアンロードが行われるアンローディングポジション、ウエハテーブルWTB上へのウエハのロードが行われるローディングポジションを、それぞれ示す。なお、アンローディングポジションUPとローディングポジションLPとを同一位置としても良い。
 本実施形態の露光装置100では、図5及び図7に示されるように、例えば米国特許第5,448,332号明細書などに開示されるものと同様の構成の照射系90a及び受光系90bから成る斜入射方式の多点焦点位置検出系(以下、「多点AF系」と略述する)90が設けられている。本実施形態では、一例として、前述のヘッドユニット62Eの-X端部の+Y側に照射系90aが配置され、これに対峙する状態で、前述のヘッドユニット62Fの+X端部の+Y側に受光系90bが配置されている。なお、多点AF系90は、前述した投影ユニットPUを保持するメインフレームの下面に固定されている。
 この多点AF系90(90a,90b)の複数の検出点は、被検面上でX軸方向に沿って所定間隔で配置されている。本実施形態では、複数の検出点は、例えば、1行M列(Mは検出点の総数)又は2行N列(N=M/2)のマトリックス状に配置される。図5及び図7では、それぞれ検出ビームが照射される複数の検出点が、個別に図示されず、照射系90a及び受光系90bの間でX軸方向に延びる細長い検出領域(ビーム領域)AFとして示されている。この検出領域AFは、X軸方向の長さがウエハWの直径と同程度に設定されているので、ウエハWをY軸方向に1回スキャンするだけで、ウエハWのほぼ全面でZ軸方向の位置情報(面位置情報)を計測できる。
 図7に示されるように、多点AF系90(90a,90b)の検出領域AFの両端部近傍に、基準軸LV0に関して対称な配置で、各一対のZ位置計測用の面位置センサのヘッド(以下、「Zヘッド」と略述する)72a,72b、及び72c,72dが設けられている。Zヘッド72a~72dは、不図示のメインフレームの下面に固定されている。
 Zヘッド72a~72dとしては、例えば、CDドライブ装置などで用いられる光ピックアップと同様の光学式の変位センサのヘッドが用いられる。Zヘッド72a~72dは、ウエハテーブルWTBに対し上方から計測ビームを照射し、その反射光を受光して、照射点におけるウエハテーブルWTBの面位置を計測する。なお、本実施形態では、Zヘッドの計測ビームは、前述のYスケール39Y1,39Y2を構成する反射型回折格子によって反射される構成を採用している。
 さらに、前述のヘッドユニット62A,62Cは、図6及び図7に示されるように、それぞれが備える5つのYヘッド65j,64i(i,j=1~5)と同じX位置に、ただしY位置をずらして、それぞれ5つのZヘッド76j,74i(i,j=1~5)を備えている。ここで、ヘッドユニット62A,62Cのそれぞれに属する外側の3つのZヘッド763~765,741~743は、基準軸LHから+Y方向に所定距離隔てて、基準軸LHと平行に配置されている。また、ヘッドユニット62A,62Cのそれぞれに属する最も内側のZヘッド761,745は投影ユニットPUの+Y側に、残りのZヘッド762,744はそれぞれYヘッド652,644の-Y側に、配置されている。そして、ヘッドユニット62A,62Cのそれぞれに属する5つのZヘッド76j,74iは、互いに基準軸LV0に関して対称に配置されている。なお、各Zヘッド76j,74iとしては、前述のZヘッド72a~72dと同様の光学式変位センサのヘッドが採用される。
 ヘッドユニット62A,62Cがそれぞれ備える5つのZヘッド76j,74iのうち隣接するZヘッド(より正確には、各Zヘッドが発する計測ビームのスケール上の照射点)のX軸方向の間隔は、Yヘッドの65,64のX軸方向の間隔WDと等しく設定されている。従って、露光時などには、Yヘッド65j,64iと同様に、それぞれ5個のZヘッド76j,74iのうち、少なくとも各1つが、常に、対応するYスケール39Y1,39Y2に対向する。
 上述したZヘッド72a~72d,741~745,761~765は、図10に示されるように、信号処理・選択装置160を介して主制御装置20に接続されている。主制御装置20は、信号処理・選択装置160を介してZヘッド72a~72d,741~745,761~765の中から任意のZヘッドを選択して作動状態とし、その作動状態としたZヘッドで検出した面位置情報を信号処理・選択装置160を介して受け取る。本実施形態では、Zヘッド72a~72d,741~745,761~765と、信号処理・選択装置160とを含んでウエハステージWSTのZ軸方向及びXY平面に対する傾斜方向の位置情報を計測する面位置計測システム180が構成されている。
 さらに、本実施形態の露光装置100では、図5に示されるように、多点AF系の検出領域(ビーム領域)AFとヘッドユニット62C,62Aとの間に、X軸方向に延びる周辺露光ユニット51が配置されている。周辺露光ユニット51は、不図示のメインフレームの下面に不図示の支持部材を介して吊り下げ状態で支持されている。
 周辺露光ユニット51は、照明光ILとほぼ同一波長の光を射出する不図示の光源と、該光源からの光が入射する周辺露光用アクティブマスク(以下、適宜、アクティブマスクと略述する)51a(図8参照)と、を有している。なお、光源からの光に代えて、例えば光ファイバを用いて、照明光ILをアクティブマスク51aに導いても良い。
 周辺露光ユニット51(アクティブマスク51a)は、図5に示されるように、その長さがウエハWの直径より幾分長く設定されている。アクティブマスク51aは、一例として図8に示されるように、X軸方向の両端に一対の可変成形マスクVM1,VM2を有している。
 可変成形マスクVM1,VM2のそれぞれとしては、一例として、XY平面内にマトリックス状に配置された複数のマイクロミラーMij(図9(A),図9(B)参照)を含むマイクロミラー・アレイが用いられている。このマイクロミラー・アレイは、CMOSプロセスで作られた集積回路上に、MEMS技術で可動式のマイクロミラーを形成したものである。各マイクロミラーMijは鏡面(反射面)を、所定の軸(例えばマイクロミラーの対角線に一致する軸)周りに所定角度範囲、±θ(θは例えば3度(又は12度))で傾斜させることができ、鏡面下部に設けた電極を駆動することにより「オン(ON)」(-θ)と「オフ(OFF)」(+θ)の2つの状態を持たせることができる。すなわち、各可変成形マスクは、ベース部となる基板と、該基板上に形成された可動式のマイクミラーMijと、各マイクロミラーをオン・オフする電極とを備えている。
 各マイクロミラーMijは、電極に供給される駆動信号によって、一例として、図9(A)に示される、光源からの光をウエハWに向けて反射する状態(又は姿勢)と、図9(B)に示される、光源からの光をウエハWに入射させない所定の向きに向けて反射する状態(又は姿勢)とのいずれかに設定される。以下では、前者をマイクロミラーMijのオン状態(又はオン姿勢)と呼び、後者をマイクロミラーMi,jのオフ状態(又はオフ姿勢)と呼ぶ。
 主制御装置20は、各マイクロミラーMijを個別に、オン状態(又はオン姿勢)及びオフ状態(又はオフ姿勢)のいずれかに制御する。従って、本実施形態の周辺露光ユニット51によると、ウエハWのX軸方向の中心と周辺露光ユニット51の長手方向の中心とがほぼ一致した状態で、ウエハステージWSTをY軸方向に移動させることで、ウエハWのX軸方向の両端部近傍の任意の位置を露光して任意のパターンを形成することができる。すなわち、周辺露光ユニット51は、X軸方向に関して離れた周辺露光のための2つの照射領域を形成可能であるとともに、少なくともX軸方向に関してその位置が可変である。
 図10には、露光装置100の制御系の主要な構成が示されている。この制御系は、装置全体を統括的に制御するマイクロコンピュータ(又はワークステーション)から成る主制御装置20を中心として構成されている。なお、図10においては、前述した照度むらセンサ94、空間像計測器96及び波面収差計測器98など、計測ステージMSTに設けられた各種センサが、纏めてセンサ群99として示されている。
 次に、本実施形態の露光装置100における、ウエハステージWSTと計測ステージMSTとを用いた並行処理動作について、図14~図24に基づいて説明する。なお、以下の動作中、主制御装置20によって、局所液浸装置8の液体供給装置5及び液体回収装置6の各バルブの開閉制御が前述したようにして行われ、投影光学系PLの先端レンズ191の射出面側には常時水が満たされている。しかし、以下では、説明を分かり易くするため、液体供給装置5及び液体回収装置6の制御に関する説明は省略する。また、以後の動作説明は、多数の図面を用いて行うが、図面毎に同一の部材に符号が付されていたり、付されていなかったりしている。すなわち、図面毎に、記載している符号が異なっているが、それら図面は符号の有無に関わらず、同一構成である。これまでに説明に用いた、各図面についても同様である。
 ここで、並行処理動作の説明に先立って、露光対象となるウエハW上に形成されるショット領域のサイズ及び配列、すなわちウエハWのショットマップ等について説明する。図11には、ウエハWの平面図が示されている。ウエハWのレジストが塗布された有効露光領域(図11では円形の外形の内部の領域に対応している)は、多数のショット領域Sj(図11では、j=1~76)に区画されている。そして、一例として、ショット領域Sjは、それぞれ同一のデバイス(チップ)が2個形成される2個取りのショット領域であるとする。
 本実施形態では、図12において黒塗りされている16個のショット領域(S2、S4、S6、S18、S20、S22、S24、S26、S51、S53、S55、S57、S59、S71、S73、S75)が、ウエハアライメント(EGA:Enhanced Global Alignment)のサンプルショット領域(アライメントショット領域)として、オペレータにより指定されているものとする。上記16個のサンプルショット領域のうち、3個のショット領域(S71、S73、S75)がファーストアライメントショット領域、5個のショット領域(S51、S53、S55、S57、S59)がセカンドアライメントショット領域、5個のショット領域(S18、S20、S22、S24、S26)がサードアライメントショット領域、3個のショット領域(S2、S4、S6)がフォースアライメントショット領域である。
 また、本実施形態では、図13に示されるように、ウエハWの12個の周辺ショット(S1、S7、S8、S16、S17、S27、S50、S60、S61、S69、S70、S76)における、ウエハWのエッジ側の半分の領域(S1a、S7a、S8a、S16a、S17a、S27a、S50a、S60a、S61a、S69a、S70a、S76a)がそれぞれ周辺露光の対象領域(以下、周辺露光領域と呼ぶ)となっている。
 以下で説明する、両ステージWST,MSTを用いた並行処理動作は、周辺露光に関する部分を除き、全体としては、例えば国際公開第2007/097379号パンフレット(及びこれに対応する米国特許出願公開第2008/0088843号明細書)に開示された並行処理動作と同様の手順で行われる。
 図14には、ウエハステージWST上に載置されたウエハWに対するステップ・アンド・スキャン方式の露光が行われている状態が示されている。この露光は、開始前に行われるウエハアライメント(EGA:Enhanced Global Alignment)等の結果に基づいて、ウエハW上の各ショット領域の露光のための走査開始位置(加速開始位置)へウエハステージWSTを移動するショット間移動と、各ショット領域に対してレチクルRに形成されたパターンを走査露光方式で転写する走査露光と、を繰り返すことにより行われる。また、露光は、ウエハW上の-Y側に位置するショット領域から+Y側に位置するショット領域の順で行われる。なお、投影ユニットPUとウエハWとの間に液浸領域14が形成された状態で行われる。
 上述の露光中、主制御装置20により、ウエハステージWSTのXY平面内の位置(θz方向の位置(θz回転)を含む)は、2つのYエンコーダ70A,70Cと、2つのXエンコーダ70B,70Dの一方との合計3つのエンコーダの計測結果に基づいて制御されている。ここで、2つのXエンコーダ70B,70Dは、Xスケール39X1,39X2のそれぞれに対向する2つのXヘッド66によって構成され、2つのYエンコーダ70A,70Cは、Yスケール39Y1,39Y2のそれぞれに対向するYヘッド65、64により構成される。また、ウエハステージWSTのZ位置とθy回転(ローリング)は、ウエハテーブルWTB表面のX軸方向一側と他側の端部にそれぞれ対向する、ヘッドユニット62C,62Aにそれぞれ属するZヘッド74i,76jの計測値に基づいて制御されている。ウエハステージWSTのθx回転(ピッチング)は、Y干渉計16の計測値に基づいて制御されている。なお、ウエハテーブルWTBの第2撥水板28bの表面にZヘッド74i、76jを含む3個以上のZヘッドが対向する場合には、Zヘッド74i、76j及びその他の1つのZヘッドの計測値に基づいて、ウエハステージWSTのZ軸方向の位置、θy回転(ローリング)及びθx回転(ピッチング)を制御することも可能である。いずれにしても、ウエハステージWSTのZ軸方向の位置、θy回転、及びθx回転の制御(すなわちウエハWのフォーカス・レベリング制御)は、事前に行われるフォーカスマッピングの結果に基づいて行われている。
 図14に示される、ウエハステージWSTの位置では、Xスケール39X1にはXヘッド665(図14中に丸で囲んで示されている)が対向するが、Xスケール39X2に対向するXヘッド66はない。そのため、主制御装置20は、1つのXエンコーダ70Bと2つのYエンコーダ70A,70Cを用いて、ウエハステージWSTの位置(X,Y,θz)制御を実行している。ここで、図14に示される位置からウエハステージWSTが-Y方向に移動すると、Xヘッド665はXスケール39X1から外れ(対向しなくなり)、代わりにXヘッド664(図14中に破線の丸で囲んで示されている)がXスケール39X2に対向する。そこで、主制御装置20は、1つのXエンコーダ70Dと2つのYエンコーダ70A,70Cを用いるウエハステージWSTの位置(及び速度)の制御(以下、適宜、ステージ制御と略述する)に切り換える。
 また、図14に示される位置にウエハステージWSTがあるとき、Zヘッド743,763(図14中に丸で囲んで示されている)がそれぞれYスケール39Y2,39Y1に対向している。そのため、主制御装置20は、Zヘッド743,763を用いて、ウエハステージWSTの位置(Z,θy)制御を実行している。ここで、図14に示される位置からウエハステージWSTが+X方向に移動すると、Zヘッド743,763は対応するYスケールから外れ、代わりにZヘッド744,764(図中に破線の丸で囲んで示されている)がそれぞれYスケール39Y2,39Y1に対向する。そこで、主制御装置20は、Zヘッド744,764を用いるステージ制御に切り換える。
 このように、主制御装置20は、ウエハステージWSTの位置座標に応じて、使用するエンコーダとZヘッドを絶えず切り換えて、ステージ制御を実行している。
 なお、上述の計測器類を用いたウエハステージWSTの位置計測と独立に、干渉計システム118を用いたウエハステージWSTの位置(X,Y,Z,θx,θy,θz)計測が、常時、行われている。ここで、干渉計システム118を構成するX干渉計126,127,又は128を用いてウエハステージWSTのX位置とθz回転量(ヨーイング量)が、Y干渉計16を用いてY位置、θx回転量、及びθz回転量が、Z干渉計43A,43Bを用いてY位置、Z位置、θy回転量、及びθz回転量が計測される。X干渉計126,127,及び128は、ウエハステージWSTのY位置に応じて、いずれか1つが使用される。露光中は、図14に示されるように、X干渉計126が使用される。干渉計システム118の計測結果は、ピッチング量(θx回転量)を除き、補助的に、又は、後述するバックアップの際、あるいはエンコーダシステム150及び/又は面位置計測システム180による計測が出来ないときなどにウエハステージWSTの位置制御に利用される。
 ウエハWの露光が終了すると、主制御装置20は、ウエハステージWSTをアンロードポジションUPに向けて駆動する。その際、露光中には互いに離れていたウエハステージWSTと計測ステージMSTとが、接触あるいは300μm程度の離間距離を挟んで近接して、スクラム状態に移行する。ここで、計測テーブルMTB上のFDバー46の-Y側面とウエハテーブルWTBの+Y側面とが接触あるいは近接する。このスクラム状態を保って、両ステージWST,MSTが-Y方向に移動することにより、投影ユニットPUの下に形成される液浸領域14は、計測ステージMST上に移動する。例えば図15、図16には、移動後の状態が示されている。
 ウエハステージWSTが、更に-Y方向へ移動して有効ストローク領域(ウエハステージWSTが露光時及びウエハアライメント時に移動する領域)から外れると、エンコーダシステム150を構成する全てのXヘッド、Yヘッド及び面位置計測システム180の全てのZヘッドが、ウエハテーブルWTB上の対応するスケールから外れる。そのため、エンコーダシステム150及び面位置計測システム180の計測結果に基づくステージ制御が不可能になる。そこで、主制御装置20は、エンコーダシステム150及び面位置計測システム180の計測結果に基づくステージ制御が不可能になる直前に、両システム150,180の計測結果に基づくステージ制御から干渉計システム118の計測結果に基づくステージ制御に切り換える。ここでは、3つのX干渉計126,127,128のうちX干渉計128が使用される。
 その後、図15に示されるように、ウエハステージWSTは、計測ステージMSTとのスクラム状態を解除し、アンローディングポジションUPに移動する。移動後、主制御装置20は、ウエハテーブルWTB上のウエハWをアンロードする。そして、主制御装置20は、図16に示されるように、ウエハステージWSTを+X方向に駆動してローディングポジションLPに移動させ、ウエハテーブルWTB上に次のウエハWをロードする。
 これらの動作と並行して、主制御装置20は、計測ステージMSTに支持されたFDバー46のXY平面内での位置調整と、4つのセカンダリアライメント系AL21~AL24のベースライン計測と、を行うSec-BCHK(セカンダリ・ベースライン・チェック)を実行する。Sec-BCHKはウエハ交換毎にインターバル的に行われる。ここで、FDバー46のθz回転量を計測するために、前述のYエンコーダ70E2,70F2が使用される。
 次に、主制御装置20は、図17に示されるように、ウエハステージWSTを駆動し、計測プレート30上の基準マークFMをプライマリアライメント系AL1の検出視野内に位置決めし、アライメント系AL1,AL21~AL24のベースライン計測の基準位置を決定するPri-BCHK(プライマリ・ベースライン・チェック)の前半の処理を行う。
 このとき、図17に示されるように、2つのYヘッド682,673と1つのXヘッド661(図中に丸で囲んで示されている)が、それぞれYスケール39Y1,39Y2とXスケール39X2に対向するようになる。そこで、主制御装置20は、干渉計システム118からエンコーダシステム150(エンコーダ70E1,70F1,70D)を用いたステージ制御へ切り換える。干渉計システム118は、ウエハステージWSTのθx回転量の計測を除き、再び補助的に使用される。なお、3つのX干渉計126,127,128のうちX干渉計127が使用される。
 次に、主制御装置20は、上述の3つのエンコーダの計測値に基づいて、ウエハステージWSTの位置を管理しつつ、3つのファーストアライメントショット領域に付設されたアライメントマークを検出する位置へ向けてのウエハステージWSTの+Y方向への移動を開始する。
 そして、ウエハステージWSTが図18に示される位置に到達すると、主制御装置20は、ウエハステージWSTを停止する。これに先立って、主制御装置20は、Zヘッド72a~72dの全部又は一部がウエハテーブルWTBと対向した時点又はその前の時点で、それらZヘッド72a~72dを作動させ(オンにし)、ウエハステージWSTのZ位置及び傾斜量(θy回転量)の計測を開始する。
 ウエハステージWSTの停止後、主制御装置20は、プライマリアライメント系AL1,セカンダリアライメント系AL22,AL23を用いて、3つのファーストアライメントショット領域に付設されたアライメントマークをほぼ同時にかつ個別に検出し(図18中の星マーク参照)、上記3つのアライメント系AL1,AL22,AL23の検出結果とその検出時の上記3つのエンコーダの計測値とを関連付けて不図示のメモリに格納する。
 上述のように本実施形態では、ファーストアライメントショット領域のアライメントマークの検出を行う位置で、計測ステージMSTとウエハステージWSTとの接触状態(又は近接状態)への移行が完了し、その位置から、主制御装置20によって、その接触状態(又は近接状態)での両ステージWST,MSTの+Y方向への移動(5つのセカンドアライメントショット領域に付設されたアライメントマークを検出する位置に向かってのステップ移動)が開始される。この両ステージWST,MSTの+Y方向への移動開始に先立って、主制御装置20は、図18に示されるように、多点AF系(90a,90b)の検出ビームのウエハテーブルWTBへの照射を開始する。これにより、ウエハテーブルWTB上に多点AF系の検出領域が形成される。
 そして、上記の両ステージWST,MSTの+Y方向への移動中に、図19に示される位置に両ステージWST,MSTが到達すると、主制御装置20は、基準軸LV0にウエハテーブルWTBのセンターラインが一致した状態におけるZヘッド72a,72b、72c,72dの計測値(ウエハテーブルWTBのX軸方向の一側と他側の端部における面位置情報)と、多点AF系(90a,90b)による計測プレート30表面の検出結果(面位置情報)との関係を求める、フォーカスキャリブレーション前半の処理を行う。このとき、液浸領域14は、FDバー46上面に形成されている。
 そして、両ステージWST,MSTが接触状態(又は近接状態)を保ったまま+Y方向へ更に移動し、図20に示される位置に到達すると、5つのアライメント系AL1,AL21~AL24を用いて、5つのセカンドアライメントショット領域に付設されたアライメントマークをほぼ同時にかつ個別に検出し(図20中の星マーク参照)、上記5つのアライメント系AL1,AL21~AL24の検出結果とその検出時のウエハステージWSTのXY平面内の位置を計測している3つのエンコーダの計測値とを関連付けて不図示のメモリに格納する。このとき、主制御装置20は、Xスケール39X2に対向するXヘッド662(Xリニアエンコーダ70D)及びYリニアエンコーダ70E1,70F1の計測値に基づいて、ウエハステージWSTのXY平面内の位置を制御している。
 また、主制御装置20は、上記の5つのセカンドアライメントショット領域に付設されたアライメントマークの検出の終了後、接触状態(又は近接状態)での両ステージWST,MSTの+Y方向への移動を再び開始すると同時に、図20に示されるように、Zヘッド72a~72dと多点AF系(90a,90b)とを用いて、ウエハW表面のZ軸方向に関する位置情報(面位置情報)を検出するフォーカスマッピングを開始する。
 そして、このフォーカスマッピングの開始後、図21に示される位置に、両ステージWST,MSTが、到達するまでの間に、主制御装置20は、Yリニアエンコーダ70E1,70F1によって計測される、ウエハステージWSTのY位置に応じて、周辺露光ユニット51の2つの可変成形マスクVM1,VM2を構成する各マイクロミラーMijのオン・オフを個別に制御することで、図25(A)、図25(B)、図25(C)に示されるように、周辺露光領域S70a及びS76a、S61a及びS69a、S50a及びS60aを順次露光する。この場合、主制御装置20は、周辺露光ユニット51を用いて、各周辺露光領域を全面的に露光しても良いし、所定のパターンを形成しても良い。
 そして、両ステージWST,MSTが、図21に示される計測プレート30が投影光学系PLの直下に配置される位置に到達すると、主制御装置20は、ウエハステージWSTの投影光学系PLの光軸方向に関する位置(Z位置)の制御に用いるZヘッドを、Zヘッド74i、76jに切り換えることなく、Zヘッド72a,72b、72c,72dによって計測される面位置情報を基準とする、ウエハステージWST(計測プレート30)のZ位置制御を継続した状態で、次のようなフォーカスキャリブレーション後半の処理を行う。すなわち、主制御装置20は、Zヘッド72a~72dによって計測される面位置情報を基準として、計測プレート30(ウエハステージWST)の投影光学系PLの光軸方向に関する位置(Z位置)を制御しつつ、空間像計測装置45を用いて、レチクルR、又はレチクルステージRST上の不図示のマーク板に形成された計測マークの空間像を、例えば国際公開第2005/124834号パンフレット(及びこれに対応する米国特許出願公開第2008/030715号明細書)などに開示される、Z方向スキャン計測で計測し、その計測結果に基づいて投影光学系PLのベストフォーカス位置を測定する。主制御装置20は、上記のZ方向スキャン計測中、空間像計測装置45からの出力信号の取り込みと同期して、ウエハテーブルWTBのX軸方向の一側と他側の端部における面位置情報を計測する一対のZヘッド743、763の計測値を取り込む。そして、投影光学系PLのベストフォーカス位置に対応するZヘッド743、763の値を不図示のメモリに記憶する。なお、フォーカスキャリブレーションの後半の処理で、Zヘッド72a~72dによって計測される面位置情報を基準として、計測プレート30(ウエハステージWST)の投影光学系PLの光軸方向に関する位置(Z位置)を制御するのは、このフォーカスキャリブレーションの後半の処理は、前述したフォーカスマッピングの途中で行なわれるからである。
 また、主制御装置20は、上記のフォーカスキャリブレーション後半の処理と前後して、次のようなPri-BCHKの後半の処理を行う。すなわち、主制御装置20は、投影光学系PLによって投影されたレチクルR上の一対の計測マークの投影像(空間像)を、空間像計測装置45を用いて、例えば、米国特許出願公開第2002/0041377号明細書などに開示される方法と同様に、一対の空間像計測スリットパターンSLを用いたスリットスキャン方式の空間像計測動作にて、それぞれ計測し、その計測結果(ウエハテーブルWTBのXY位置に応じた空間像強度)をメモリに記憶する。このPri-BCHKの後半の処理に際しては、ウエハテーブルWTBのXY平面内の位置は、Xスケール39X2に対向するXヘッド664(エンコーダ70D)と、Yスケール39Y1,39Y2に対向する2つのYヘッド673,682(エンコーダ70E1,70F1)(又はYヘッド65j、64i(エンコーダ70A,70C))とに基づいて制御される。
 そして、主制御装置20は、前述のPri-BCHKの前半の処理の結果とPri-BCHKの後半の処理の結果とに基づいて、プライマリアライメント系AL1のベースラインを算出する。これとともに、主制御装置20は、前述のフォーカスキャリブレーション前半の処理及び後半の処理の結果に基づいて、多点AF系(90a,90b)の代表的な検出点におけるオフセットを求め、内部メモリに格納する。そして、主制御装置20は、露光時に、フォーカスマッピングの結果得られたマッピング情報を読み出す際に、そのマッピング情報にオフセット分を加算することとしている。
 なお、図21の状態では、前述のフォーカスマッピングは続行されている。
 上記の接触状態(又は近接状態)での両ステージWST,MSTの+Y方向への移動により、ウエハステージWSTが、図22に示される位置に達すると、主制御装置20は、ウエハステージWSTをその位置で停止させるとともに、計測ステージMSTについては、そのまま+Y方向への移動を続行させる。そして、主制御装置20は、5つのアライメント系AL1,AL21~AL24を用いて、5つのサードアライメントショット領域に付設されたアライメントマークをほぼ同時にかつ個別に検出し(図22中の星マーク参照)、上記5つのアライメント系AL1,AL21~AL24の検出結果とその検出時の上記3つのエンコーダの計測値とを関連付けて内部メモリに格納する。また、この時点でも、フォーカスマッピングは続行されている。
 一方、上記のウエハステージWSTの停止から所定時間後に、計測ステージMSTとウエハステージWSTとは、接触(又は近接状態)から離間状態に移行する。この離間状態に移行後、主制御装置20は、計測ステージMSTが、露光開始まで待機する露光開始待機位置に達すると、その位置で停止させる。
 次に、主制御装置20は、3つのフォースアライメントショットに付設されたアライメントマークを検出する位置へ向けてのウエハステージWSTの+Y方向への移動を開始する。このとき、フォーカスマッピングは続行されている。一方、計測ステージMSTは、上記露光開始待機位置で待機している。
 前述のフォーカスキャリブレーションの終了後、両ステージWST,MSTが、+Y方向に移動を開始して、図23に示される位置に到達するまでの間に、主制御装置20は、Yリニアエンコーダ70E1,70F1によって計測される、ウエハステージWSTのY位置に応じて、周辺露光ユニット51の2つの可変成形マスクVM1,VM2を構成する各マイクロミラーMijのオン・オフを個別に制御することで、図25(D)、図25(E)に示されるように、周辺露光領域S17a及びS27a、S8a及びS16aを順次露光する。この場合も、主制御装置20は、周辺露光ユニット51を用いて、各周辺露光領域を全面的に露光しても良いし、所定のパターンを形成しても良い。
 そして、ウエハステージWSTが図23に示される位置に到達すると、主制御装置20は、直ちにウエハステージWSTを停止させ、プライマリアライメント系AL1,セカンダリアライメント系AL22,AL23を用いて、ウエハW上の3つのフォースアライメントショット領域に付設されたアライメントマークをほぼ同時にかつ個別に検出し(図23中の星マーク参照)、上記3つのアライメント系AL1,AL22,AL23の検出結果とその検出時の4つのエンコーダ(例えば70E1,70E2,70B,70D)のうちの3つのエンコーダの計測値とを関連付けて不図示のメモリに格納する。この時点でも、フォーカスマッピングは続行され、計測ステージMSTは、上記露光開始待機位置で待機したままである。そして、主制御装置20は、このようにして得た合計16個のアライメントマークの検出結果と対応するエンコーダの計測値とを用いて、例えば特開昭61-044429号公報などに開示される統計演算を行って、エンコーダシステムの上記4つのエンコーダ70E1,70E2,70B,70Dの計測軸で規定される座標系上におけるウエハW上の全てのショット領域の配列情報(座標値)を算出する。
 次に、主制御装置20は、ウエハステージWSTを再度+Y方向へ移動させながら、フォーカスマッピングを続行する。このウエハステージWSTの+Y方向の移動中に、主制御装置20は、Yリニアエンコーダ70E1,70F1によって計測される、ウエハステージWSTのY位置に応じて、周辺露光ユニット51の2つの可変成形マスクVM1,VM2を構成する各マイクロミラーMijのオン・オフを個別に制御することで、図25(F)に示されるように、周辺露光領域S1a及びS7aを順次露光する。この場合も、主制御装置20は、周辺露光ユニット51を用いて、各周辺露光領域を全面的に露光しても良いし、所定のパターンを形成しても良い。これにより、ウエハWの周辺露光が終了し、図26に示されるように、周辺露光領域S1a、S7a、S8a、S16a、S17a、S27a、S50a、S60a、S61a、S69a、S70a、S76aは、それぞれ露光済みの領域となる。
 そして、さらにウエハステージWSTが+Y方向に移動し、図24に示されるように、多点AF系(90a,90b)からの検出ビームがウエハW表面から外れると、フォーカスマッピングを終了する。
 その後、主制御装置20は、ウエハステージWSTを、ウエハW上のファーストショットの露光のための走査開始位置(露光開始位置)に移動させるが、その移動の途中で、ウエハステージWSTのZ位置、θy回転及びθx回転を維持したまま、ウエハステージWSTのZ位置、θy回転の制御に用いるZヘッドを、Zヘッド72a~72dから、Zヘッド74i、74jに切り換える。その切り換え後、直ちに、主制御装置20は、前述のウエハアライメント(EGA)の結果及び最新の5つのアライメント系AL1,AL21~AL24のベースライン等に基づいて、ステップ・アンド・スキャン方式の露光を、液浸露光にて行い、ウエハW上の複数のショット領域にレチクルパターンを順次転写する。以降、同様の動作が繰り返し行われる。
 以上詳細に説明したように、本実施形態の露光装置100によると、ウエハステージWSTがY軸方向に直線的に移動する間に、複数の検出点がX軸方向に所定間隔で設定される多点AF系(90a,90b)によってウエハW表面の面位置情報が検出され、X軸方向に沿って一列に検出領域が配列される複数のアライメント系AL1,AL21~AL24によってウエハW上で互いに位置が異なるアライメントマークが検出され、さらに周辺露光ユニット51によって、ウエハWの周辺露光が行なわれる。すなわち、ウエハステージWST(ウエハW)が、多点AF系(90a,90b)の複数の検出点(検出領域AF)と、複数のアライメント系AL1,AL21~AL24の検出領域と、周辺露光ユニット51の下方とを、直線的に通過するだけで、ウエハWのほぼ全面の面位置情報の検出と、ウエハW上で検出すべき全てのアライメントマーク(例えば、EGAにおけるアライメントショット領域のアライメントマーク)の検出と、ウエハWの周辺露光との3つの動作が終了する。従って、アライメントマークの検出動作と、面位置情報(フォーカス情報)の検出動作と、周辺露光動作と、を無関係に(別々に)行う場合に比べて格段スループットを向上させることができる。すなわち、周辺露光動作に要する時間を、ウエハアライメント動作時間にほぼオーバーラップさせることができるので、周辺露光動作がスループットを殆ど低下させることがない。
 また、本実施形態によると、計測の短期安定性が良好なエンコーダ70A~70F等を含むエンコーダシステム150によってウエハテーブルWTBのXY平面内の位置情報が、空気揺らぎなどの影響を受けることなく、高精度に計測されるとともに、Zヘッド72a~72d、741~745、及び761~765等を含む面位置計測システム180によってウエハテーブルWTBのXY平面に直交するZ軸方向における位置情報が、空気揺らぎなどの影響を受けることなく、高精度に計測される。この場合、エンコーダシステム150及び上記面位置計測システム180の両者とも、ウエハテーブルWTB上面を直接的に計測しているので、シンプルでかつ直接的なウエハテーブルWTB、ひいてはウエハWの位置制御が可能になる。
 また、本実施形態によると、前述したフォーカスマッピングの際に、主制御装置20により、面位置計測システム180と多点AF系(90a,90b)とが同時に作動され、多点AF系(90a,90b)の検出結果が、面位置計測システム180の計測結果を基準としたデータに換算される。従って、予めこの換算データを取得しておくことで、その後に、面位置計測システム180によってウエハテーブルWTBのZ軸方向の位置情報、及びXY平面に対する傾斜方向の位置情報を計測するのみで、ウエハWの面位置情報を取得することなく、ウエハWの面位置制御が可能になる。従って、本実施形態では、先端レンズ191とウエハW表面との間のワーキングディスタンスが狭くなっているにもかかわらず、特に支障なく、露光の際のウエハWのフォーカス・レベリング制御を精度良く実行することができる。
 また、本実施形態によると、上述の如く、ウエハテーブルWTB、ひいてはウエハWの面位置を高精度に制御できるので、面位置制御誤差に起因する露光不良の殆どない高精度な露光が可能になり、これによりパターンの像を、デフォーカスによる像ぼけを伴うことなく、ウエハW上に形成することが可能になる。
 また、本実施形態によると、Y軸方向を計測方向とする複数のYヘッド64,65のX軸方向の配置間隔は、Yスケール39Y1,39Y2のX軸方向の幅より狭く、X軸方向を計測方向とする複数のXヘッド66のY軸方向の配置間隔は、Xスケール39X1,39X2のY軸方向の幅より狭い。このため、ウエハテーブルWTB(ウエハステージWST)を移動させる際に、複数のYヘッド64,65を順次切り換えながら、Yスケール39Y1又は39Y2に検出光(ビーム)を照射するYリニアエンコーダ70A又は70Cの計測値に基づいて、ウエハテーブルWTB(ウエハステージWST)のY位置を計測することができ、これと並行して複数のXヘッド66を順次切り換えながら、Xスケール39X1又は39X2に検出光(ビーム)を照射するXリニアエンコーダ70B又は70Dの計測値に基づいて、ウエハテーブルWTB(ウエハステージWST)のX位置を計測することができる。
 また、上記実施形態では、ウエハWの露光が行なわれる露光位置(投影ユニットPU下方の液浸領域14が形成される位置)からY軸方向に離れて、アライメント系(AL1、AL21~AL4)、及び多点AF系90、並びに周辺露光ユニット51が、配置された場合について例示したが、本発明がこれに限定されるものではない。例えば、アライメント系(AL1、AL21~AL24)、及び多点AF系90の一方は上記の位置に配置されていなくても良い。かかる場合であっても、その他方の計測装置によるウエハの計測のため、ウエハステージWSTを露光位置に向かってY軸方向に移動させるのと並行して、ウエハの周辺露光とを行なうことができる。従って、周辺露光に要する時間を、他の処理時間にオーバーラップさせることができるので、スループットの向上が可能である。
 あるいは、アライメント系(AL1、AL21~AL24)、及び多点AF系(90a,90b)の両方が、上記の位置に配置されていなくても良い。ただし、この場合には、ウエハに対して何らかの計測を行う計測装置を、上記アライメント系(AL1、AL21~AL4)、及び多点AF系(90a,90b)と同様の位置に配置する。
 なお、上記実施形態では、ウエハステージWSTのY軸方向位置の計測に用いられる一対のYスケール39Y1,39Y2と、X軸方向位置の計測に用いられる一対のXスケール39X1,39X2とが、ウエハテーブルWTB上に設けられ、これに対応して、一対のヘッドユニット62A,62Cが投影光学系PLを挟んでX軸方向の一側と他側に配置され、2つのヘッドユニット62B、62Dが投影光学系PLを挟んでY軸方向の一側と他側に配置される場合について例示した。しかしながら、これに限らず、Y軸方向位置の計測用のYスケール39Y1,39Y2及びX軸方向位置の計測用のXスケール39X1,39X2のうち、少なくとも一方が一対でなく1つのみ、ウエハテーブルWTB上に設けられていても良いし、あるいは、一対のヘッドユニット62A,62C及び2つのヘッドユニット62B、62Dのうち、少なくとも一方が、1つのみ設けられていても良い。また、スケールの延設方向及びヘッドユニットの延設方向は、上記実施形態のX軸方向、Y軸方向のような直交方向に限定されるものではなく、相互に交差する方向であれば良い。
 また、上記実施形態では、ヘッドユニット62A~62Dは、所定間隔で配置された複数のヘッドを有するものとしたが、これに限らず、Yスケール又はXスケールのピッチ方向に細長く延びる領域に光ビームを射出する光源と、光ビームのYスケール又はXスケール(回折格子)からの反射光(回折光)を受光する、Yスケール又はXスケールのピッチ方向に隙間無く配列された多数の受光素子とを備えた単一のヘッドを採用しても良い。
 なお、上記実施形態では、ウエハステージWST、計測ステージMST、アライメント系(AL1、AL21~AL24)、多点AF系(90a,90b)、Zセンサ、干渉計システム118、及びエンコーダシステム(70A~70F)などの全てを備えた露光装置に本発明が適用された場合について説明したが、本発明がこれに限定されるものではない。例えば、計測ステージMSTなどが設けられていない露光装置にも、本発明は適用が可能である。本発明は、上記各構成部分のうち、ウエハステージ(移動体)とこれ以外の一部の構成部分とを備えていれば適用が可能である。すなわち、ウエハWの露光が行なわれる露光位置から離れた、上記アライメント系(AL1、AL21~AL4)、及び多点AF系(90a,90b)と同様の位置に、ウエハに対して何らかの計測を行う計測装置が設けられているのであれば、本発明を適用できる。
 なお、上記実施形態では、周辺露光ユニット51が、アライメント系(AL1、AL21~AL4)(及び多点AF系(90a,90b))の投影ユニットPU側に配置された場合について例示したが、これに限らず、周辺露光ユニットは、アライメント系(AL1、AL21~AL4)(及び多点AF系(90a,90b))のアンローディングポジションUP及びローディングポジションLP側に配置されていても良い。
 
 また、上記実施形態では、ウエハステージWSTが、ローディングポジションLPから露光位置(投影ユニットPU)に向かって進む往路で、ウエハWの周辺露光が行われる場合を例示したが、これに限らず、露光位置(投影ユニットPU)からアンローディングポジションUPに向かう復路で周辺露光が行われても良いし、あるいは、往路と復路の両方で1枚のウエハの周辺露光が行われても良い。
 また、上記実施形態では、X軸方向に関して離れた2つの周辺露光のための照射領域を照射可能な周辺露光ユニット51を用いる場合を例示したが、周辺露光ユニットの構成はこれに限定されない。ただし、周辺露光ユニットは、複数の照射領域が、上記周辺露光ユニット51と同様に、少なくともX軸方向に関してその位置が可変であることが望ましい。
 また、上記実施形態では、ウエハステージWST(ウエハW)が、多点AF系(90a,90b)の複数の検出点(検出領域AF)と、複数のアライメント系AL1,AL21~AL24の検出領域と、周辺露光ユニット51の下方とを、直線的に通過するだけで、ウエハWのほぼ全面の面位置情報の検出と、ウエハW上で検出すべき全てのアライメントマークの検出と、ウエハWの周辺露光との3つの動作が終了する場合について説明した。しかし、これに限らず、ウエハステージWST(ウエハW)のローディングポジションから露光位置までの移動と並行して周辺露光動作の少なくとも一部が行われるだけでも良い。この場合において、さらに、計測動作(マーク検出などを含む)の少なくとも一部が並行して行われる場合には、更なるスループットの向上を図ることができる。すなわち、ウエハステージWST(ウエハW)のローディングポジションから露光位置までの移動中に周辺露光動作の少なくとも一部が行われれば足り、その他のことは、必須ではない。
 また、上記実施形態では、計測システム200が、干渉計システム118とエンコーダシステム150との両方を含むものとしたが、これに限らず、計測システムは、干渉計システム118とエンコーダシステム150との一方のみを含んでいても良い。
《第2の実施形態》
 以下、本発明の第2の実施形態について、図27~図39に基づいて説明する。
 図27には、第2の実施形態の露光装置500の構成が概略的に示されている。露光装置500は、ステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。
 露光装置500は、照明系10、レチクルステージRST、投影ユニットPU、ウエハステージWST及び計測ステージMSTを有するステージ装置50、及びこれらの制御系等を備えている。図27において、ウエハステージWST上には、ウエハWが載置されている。露光装置500は、前述の第1の実施形態の露光装置100と比べて、前述のウエハテーブルWTBに代えてウエハテーブルWTB’が用いられるとともに、エンコーダシステム150の構成が相違する点を除き、第1の実施形態の露光装置100と同様に構成されている。以下では、相違点を中心として説明を行うとともに、前述した第1の実施形態と同一若しくは同等の構成部分については、同一の符号を用いるとともに、説明を簡略若しくは省略する。さらに、説明の簡略化のため、ウエハWの周辺露光及びフォーカス・レベリング制御に関連する構成等については、その説明を省略する。
 ステージ装置50は、前述の第1の実施形態と同様、図27に示されるように、ベース盤12上に配置されたウエハステージWST及び計測ステージMSTを備えている。ステージ装置50は、さらに、両ステージWST,MSTの位置情報を計測する計測システム200、及び両ステージWST,MSTを駆動するステージ駆動系124等(図27では、いずれも不図示、図32参照)を備えている。計測システム200は、図32に示されるように、干渉計システム118及びエンコーダシステム150などを含む。
 ウエハステージWSTは、ステージ本体91と、該ステージ本体91上に搭載されたウエハテーブルWTB’とを含む。ウエハテーブルWTB’及びステージ本体91は、例えばリニアモータ及びZ・レベリング機構(ボイスコイルモータなどを含む)を含む駆動系によって、ベース盤12に対し、6自由度方向(X、Y、Z、θx,θy,θz)に駆動可能に構成されている。
 ウエハテーブルWTB’の上面の中央には、ウエハWを真空吸着等によって保持するウエハホルダ(不図示)が設けられている。ウエハホルダ(ウエハの載置領域)の外側には、図28に示されるように、ウエハホルダよりも一回り大きな円形の開口が中央に形成され、かつ矩形状の外形(輪郭)を有するプレート(撥液板)28’が設けられている。プレート28’の表面は、液体Lqに対して撥液化処理されている。なお、プレート28’は、その表面の全部、あるいは一部がウエハWの表面と同一面となるように設置されている。
 プレート28’は、ウエハテーブルWTBのX軸方向の中央に位置し、その中央に上述の円形の開口が形成された矩形の外形(輪郭)を有する第1撥液領域28a’と、該第1撥液領域28a’をX軸方向に挟んでウエハテーブルWTBの+X側端部、-X側端部に位置する長方形の一対の第2撥液領域28b’と、を有する。なお、本第2の実施形態では、液浸用の液体Lqとして水を用いるので、以下では第1及び第2撥液領域28a’,28b’をそれぞれ第1及び第2撥水板28a’,28b’とも呼ぶ。
 第1撥水板28a’の+Y側の端部近傍には、基準マークFMと、該基準マークFMを挟む一対の空間像計測スリットパターン(スリット状の計測用パターン)SLとが形成された計測プレート30が設けられている。各空間像計測スリットパターンSLに対応して、それらを透過する照明光ILを、ウエハステージWST外部、具体的は、計測テーブルMTB(及びステージ本体92)に設けられた前述の受光系(不図示)に導く送光系(不図示)が設けられている。すなわち、本第2の実施形態においても、ウエハステージWSTと計測ステージMSTとがY軸方向に関して所定距離以内に近接した状態(接触状態を含む)において、ウエハステージWST上の計測プレート30の各空間像計測スリットパターンSLを透過した照明光ILを各送光系(不図示)で案内し、計測ステージMST内の各受光系(不図示)の受光素子で受光する、空間像計測装置45(図32参照)が構成される。
 一対の第2撥水板28b’には、後述のエンコーダシステムのための移動スケールが形成されている。詳述すると、一対の第2撥水板28b’には、それぞれ、移動スケール39A,39Bが形成されている。移動スケール39A,39Bはそれぞれ、例えばY軸方向を周期方向とする回折格子とX軸方向を周期方向とする回折格子とが組み合わされた、反射型の二次元回折格子によって構成されている。二次元回折格子の格子線のピッチは、Y軸方向及びX軸方向のいずれの方向についても、例えば1μmと設定されている。なお、図28では、図示の便宜のため、格子のピッチは、実際のピッチよりも大きく図示されている。その他の図においても同様である。
 なお、この場合も、回折格子を保護するために、前述と同様、撥水性を備えた、例えば低熱膨張率のガラス板でカバーすることも有効である。
 なお、各第2撥水板28b’の移動スケールの端付近には、後述するエンコーダヘッドと移動スケール間の相対位置を決めるための、前述と同様に構成された不図示の位置出しパターンがそれぞれ設けられている。
 図28に示されるように、ウエハテーブルWTB’の-Y端面,-X端面には、反射面17a,反射面17bが形成されている。図29に示されるように、干渉計システム118(図32参照)のY干渉計16、並びに3つのX干渉計126~128は、これらの反射面17a,17bにそれぞれ干渉計ビーム(測長ビーム)B41,B42,B51,B52,B6,B7等を照射する。そして、Y干渉計16、並びに3つのX干渉計126~128は、それぞれの反射光を受光して、ウエハステージWSTのXY平面内の位置情報を計測し、この計測した位置情報を主制御装置20に供給する。本第2の実施形態においても、主制御装置20は、Y干渉計16及びX干渉計126又は127の計測結果に基づいて、ウエハテーブルWTB’(ウエハステージWST)のX,Y位置に加え、θx方向の回転情報(すなわちピッチング)、θy方向の回転情報(すなわちローリング)、及びθz方向の回転情報(すなわちヨーイング)も算出することができる。
 また、図27に示されるように、ステージ本体91の-Y側の側面に、凹形状の反射面を有する移動鏡41が取り付けられている。
 干渉計システム118の一部を構成する一対のZ干渉計43A,43Bは、移動鏡41を介して、固定鏡47A,47Bにそれぞれ2つの測長ビームB1,B2を照射し、それぞれの反射光を受光して、測長ビームB1,B2の光路長を計測する。その結果より、主制御装置20は、ウエハステージWSTの4自由度(Y,Z,θy,θz)方向の位置を算出する。
 本第2の実施形態では、ウエハステージWST(ウエハテーブルWTB’)のXY平面内の位置情報(θz方向の回転情報を含む)は、主として、後述するエンコーダシステム150(図32参照)を用いて計測される。干渉計システム118は、ウエハステージWSTがエンコーダシステムの計測領域外(例えば、図30に示されるアンローディングポジションUP又はローディングポジションLP付近)に位置する際に、使用される。また、エンコーダシステムの計測結果の長期的変動(例えばスケールの経時的な変形などによる)を補正(較正)する場合、あるいはエンコーダシステムの出力異常時のバックアップ用などとして補助的に使用される。勿論、干渉計システム118とエンコーダシステムとを併用して、ウエハステージWST(ウエハテーブルWTB’)の位置を制御することとしても良い。
 なお、図32においても、ウエハステージWSTの駆動系と計測ステージMSTの駆動系とを含んで、ステージ駆動系124として示されている。
 本第2の実施形態の露光装置500では、図30及び図31に示されるように、基準軸LV0上で、光軸AXから-Y側に所定距離隔てた位置に検出中心を有するプライマリアライメント系AL1が配置されている。プライマリアライメント系AL1を挟んで、X軸方向の一側と他側には、基準軸LVに関してほぼ対称に検出中心が配置されるセカンダリアライメント系AL21,AL22と、AL23,AL24とがそれぞれ設けられている。
 次に、ウエハステージWSTのXY平面内の位置情報(θz方向の回転情報を含む)を計測するエンコーダシステム150(図32参照)の構成等について説明する。
 露光装置500では、図30に示されるように、ノズルユニット32の+X側、-X側に、一対のヘッドユニット62A’、62B’が配置されている。これらのヘッドユニット62A’、62B’は、支持部材を介して、投影ユニットPUを保持するメインフレーム(不図示)に吊り下げ状態で固定されている。
 ヘッドユニット62A’及び62B’は、図31に示されるように、それぞれ、基準軸LH上に間隔WDで配置された複数(ここでは4個)の2次元ヘッド(以下、「ヘッド」又は「2Dヘッド」と略述する)1652~1655及び1641~1644と、基準軸LHから-Y方向に所定距離離れたノズルユニット32の-Y側の位置に配置されたヘッド1651及び1645とを備えている。なお、ヘッド1651,1652間、及びヘッド1644,1645間のX軸方向の間隔もWDに設定されている。以下では、必要に応じ、ヘッド1651~1655及びヘッド1641~1645を、それぞれヘッド165及びヘッド164とも記述する。
 ヘッドユニット62A’は、前述の移動スケール39Aを用いて、ウエハステージWST(ウエハテーブルWTB’)のX軸方向の位置(X位置)及びY軸方向の位置(Y位置)を計測する多眼(ここでは、5眼)のXYリニアエンコーダ(以下、適宜「XYエンコーダ」又は「エンコーダ」と略述する)170A(図32参照)を構成する。同様に、ヘッドユニット62B’は、前述の移動スケール39Bを用いて、ウエハステージWST(ウエハテーブルWTB’)のX位置及びY位置を計測する多眼(ここでは、5眼)のXYエンコーダ170B(図32参照)を構成する。ここで、ヘッドユニット62A’,62B’がそれぞれ備える5個のヘッド165,164(より正確には、ヘッド165,164が発する計測ビーム(エンコーダビーム)の移動スケール上の照射点)のX軸方向の間隔WDは、移動スケール39A,39BのX軸方向の幅より僅かに狭く設定されている。ここで、移動スケールの幅とは、回折格子(又はその形成領域)の幅、より正確にはヘッドによる位置計測が可能な範囲を指す。
 本第2の実施形態では、さらに、図30に示されるように、ヘッドユニット62B’、62A’の-Y側に所定距離隔てて、ヘッドユニット62C’、62D’が、それぞれ設けられている。ヘッドユニット62C’及び62D’は、支持部材を介して、投影ユニットPUを保持するメインフレーム(不図示)に吊り下げ状態で固定されている。
 ヘッドユニット62C’は、図31に示されるように、セカンダリアライメント系AL21の-X側に基準軸LA上に間隔WDとほぼ同一間隔で配置された3つのヘッド1671~1673と、基準軸LAから+Y方向に所定距離離れたセカンダリアライメント系AL21の+Y側に配置されたヘッド1674と、を備えている。なお、ヘッド1673,1674間のX軸方向の間隔はWDより僅かに狭く設定されている。
 ヘッドユニット62D’は、前述の基準軸LV0に関して、ヘッドユニット62C’と対称であり、上記4つのヘッド1674~1671と基準軸LV0に関して対称に配置された4つのヘッド1681~1684を備えている。以下では、必要に応じ、ヘッド1671~1674及びヘッド1681~1684を、それぞれヘッド167及びヘッド168とも記述する。
 アライメント動作の際などには、移動スケール39B,39Aにヘッド167,168が少なくとも各1つそれぞれ対向する。すなわち、ヘッド167,168が発する計測ビーム(エンコーダビーム)のうち、少なくとも各1つの計測ビームが、常に、移動スケール39B,39Aに照射される。ヘッド167,168(すなわち、これらヘッド167,168によって構成されるXYエンコーダ170C、170D)によってウエハステージWSTのX位置、Y位置、及びθz回転が計測される。
 また、本第2の実施形態では、セカンダリアライメント系のベースライン計測時などに、セカンダリアライメント系AL21、AL24にX軸方向で隣接するヘッド1673,1682が、FDバー46の一対の基準格子52とそれぞれ対向し、その一対の基準格子52と対向するヘッド1673,1682によって、FDバー46のY位置が、それぞれの基準格子52の位置で計測される。以下では、一対の基準格子52にそれぞれ対向するヘッド1673,1682によって構成されるエンコーダをYリニアエンコーダ(適宜、「Yエンコーダ」又は「エンコーダ」とも略述する)170G,170H(図32参照)と呼ぶ。なお、Yエンコーダ170G,170Hは、エンコーダ170C、170Dを構成する一部のヘッド1673,1682が、一対の基準格子52に対向することで、2Dヘッドではなく、Yヘッドとして機能することに着目して、このように呼んでいるものである。以下においても、便宜上、XYエンコーダ170C,170Dの他に、Yエンコーダ170G,170Hが存在するものとして説明を行う。
 上述した各エンコーダは、その計測値を、主制御装置20に供給する。主制御装置20は、XYエンコーダ170A,170B、又は170C,170Dの計測値に基づいて、ウエハテーブルWTBのXY平面内の位置(θz方向の回転(ヨーイング)を含む)を制御するとともに、Yエンコーダ170G,170Hの計測値に基づいて、FDバー46(計測ステージMST)のθz方向の回転を制御する。
 図32には、露光装置500の制御系の主要な構成が示されている。この制御系は、装置全体を統括的に制御するマイクロコンピュータ(又はワークステーション)から成る主制御装置20を中心として構成されている。
 本第2の実施形態の露光装置500では、前述したようなウエハテーブルWTB’上の移動スケールの配置及び前述したようなヘッドの配置を採用したことから、図33などに例示されるように、ウエハステージWSTの有効ストローク範囲(すなわち、アライメント及び露光動作のために移動する範囲)では、必ず、移動スケール39A,39Bと、ヘッド165,164(ヘッドユニット62A’,62B’)又はヘッド168,167(ヘッドユニット62D’,62C’)と、がそれぞれ対向するようになっている。なお、図33中では、対応する移動スケールに対向したヘッドであって位置計測に用いられているヘッドが実線の丸で囲んで示されている。
 これを更に詳述すると、主制御装置20は、ウエハW上にレチクルRのパターンを転写する、ステップ・アンド・スキャン方式の露光動作中には、ヘッドユニット62A’,62B’の各5個のヘッド165,164の中から移動スケール39A、39Bにそれぞれ対向する各1つのヘッド165、164の計測値を用いて、ウエハステージWSTのXY平面内の位置及び回転(θz方向の回転)を制御する。
 また、主制御装置20は、ウエハアライメントの際には、移動スケール39A、39Bにそれぞれ対向するヘッドユニット62D’、62C’のヘッド168、167(エンコーダ170D、170C)の計測値を用いて、ウエハステージWSTのXY平面内の位置及び回転(θz方向の回転)を制御する。
 また、主制御装置20は、図33中に白抜き矢印で示されるようにウエハステージWSTをX軸方向に駆動する際、そのウエハステージWSTのX位置及びY位置を計測するヘッド165、164を、図33中に矢印e1で示されるように、隣のヘッド165、164に順次切り換える。例えば実線の丸で囲まれるヘッド1642から点線の丸で囲まれるヘッド1643へ(及び実線の丸で囲まれるヘッド1652から点線の丸で囲まれるヘッド1653へ)切り換える。すなわち、本第2の実施形態では、このヘッド165、164の切り換え(つなぎ)を円滑に行うために、前述の如く、ヘッドユニット62A’,62C’が備える隣接するヘッド165,164の間隔WDを、移動スケール39A,39BのX軸方向の幅よりも狭く設定したものである。
 次に、エンコーダ170A~170Dの構成等について、図34に拡大して示されるエンコーダ170Bを代表的に採り上げて説明する。図34では、移動スケール39Bに検出光(計測ビーム)を照射するヘッドユニット62B’の1つの2Dヘッド164が示されている。
 ヘッド164は、図34に示されるように、ウエハテーブルWTB’の上面の-X側の端部に設けられた移動スケール(移動格子)39Bに対して、レーザ光を照射する光源164aと、光源164aとの間の位置関係が固定で、移動スケール39Bで発生する回折光を集光させる固定スケール164b1,164b2及び164b3,164b4と、固定スケール164b1,164b2及び固定スケール164b3,164b4のそれぞれにて集光された回折光を干渉させるインデックススケール164cと、インデックススケール164cにて干渉した光を検出する検出器164dと、を含んでいる。また、光源164aから射出されるレーザ光の光軸がXY平面に垂直になるように、光源164aの姿勢が設計上は設定されている。
 固定スケール164b1,164b2は、Y軸方向を周期方向とする回折格子が形成されたプレートから成る透過型の位相格子である。一方、固定スケール164b3,164b4は、X軸方向を周期方向とする回折格子が形成されたプレートから成る透過型の位相格子である。インデックススケール164cは、Y軸方向を周期方向とする回折格子及びX軸方向を周期方向とする回折格子が形成された透過型の二次元格子である。また、検出器164dは、例えば4分割検出器又はCCDを含んでいる。
 固定スケール164b1は、移動スケール39BのY軸方向を周期方向とする回折格子で発生した-1次回折光を回折して+1次回折光を生成し、この+1次回折光はインデックススケール164cに向かう。また、固定スケール164b2は、移動スケール39BのY軸方向を周期方向とする回折格子で発生した+1次回折光を回折して-1次回折光を生成し、この-1次回折光はインデックススケール164cに向かう。
 ここで、固定スケール164b1,164b2で生成された+1次回折光,-1次回折光は、インデックススケール164c上の同一位置で互いに重なり合う。すなわち、+1次回折光と-1次回折光とがインデックススケール164c上で干渉する。
 一方、固定スケール164b3は、移動スケール39BのX軸方向を周期方向とする回折格子で発生した-1次回折光を回折して+1次回折光を生成し、この+1次回折光はインデックススケール164cに向かう。また、固定スケール164b4は、移動スケール39BのX軸方向を周期方向とする回折格子で発生した+1次回折光を回折して-1次回折光を生成し、この-1次回折光はインデックススケール164cに向かう。
 ここで、固定スケール164b3,164b4で生成された+1次回折光,-1次回折光は、インデックススケール164c上の同一位置で互いに重なり合う。すなわち、+1次回折光と-1次回折光とがインデックススケール164c上で干渉する。
 この場合において、光源164aから射出されるレーザ光の波長と移動スケール(移動格子)39Bのピッチとに基づいて、移動スケールの各格子で発生する回折光の回折角度が決まり、また、レーザ光の波長と固定スケール164b1~164b4のピッチを適切に決定することにより移動スケール(移動格子)39Bで発生した±1次回折光の見かけ上の折り曲げ角度が決まる。
 ここで、ヘッド164(エンコーダ170B)においては、検出器164d上に二次元的な模様(市松模様)が現れる。この二次元的な模様は、ウエハステージWSTのY軸方向位置及びX軸方向位置に応じて変化するので、この変化を、検出器164dの少なくとも一部を構成する4分割素子又はCCDなどにより測定することによって、ウエハステージWSTのY軸方向及びX軸方向の位置を計測することができる。
 なお、インデックススケール164cをZ軸を中心として微小量回転させてモアレ縞を発生させ、該モアレ縞をウエハステージWSTの計測に用いることとしても良い。
 上記の説明からわかるように、エンコーダ170Bでは、干渉計システム118の各干渉計と異なり、干渉させる2つのビームの光路長が極短くかつほぼ等しいため、空気揺らぎの影響がほとんど無視できる。その他のエンコーダ170A,170C,170Dも、エンコーダ170Bと同様にして構成されている。各エンコーダとしては、分解能が、例えば0.1nm程度のものが用いられている。
 本第2の実施形態の露光装置500では、後述する露光動作の際などに、主制御装置20により、ウエハステージWST(ウエハテーブルWTB’)のXY平面内の位置(θz方向の回転を含む)は、移動スケール39A,39Bのそれぞれに対向する2つのヘッド165、164によって構成される2つのエンコーダ170A,170Bの計測値と、各種の補正情報(この補正情報は、干渉計システム118によって計測される、エンコーダの非計測方向に関するウエハステージWSTの位置情報(傾斜情報を含む)に応じた各エンコーダのステージ位置起因誤差補正情報、移動スケールの特性情報(例えば、格子面の平面度、及び/又は格子形成誤差など)、及び移動スケールのアッベ外し量(アッベ誤差補正情報)などを含む)と、に基づいて制御される。
 ここで、ステージ位置起因誤差補正情報とは、エンコーダヘッドに対する、その非計測方向(本第2の実施形態では、X軸方向及びY軸方向以外の方向、例えばθx方向、θy方向、θz方向及びZ軸方向など)に関するウエハステージWSTの位置(ピッチング量、ローリング量、ヨーイング量、及びZ位置など)が、エンコーダの計測値に影響する度合いを示す情報である。なお、ステージ位置起因誤差補正情報は、大略次のようにして予め取得されている。
 すなわち、主制御装置20は、ウエハステージWSTを異なる複数の姿勢に変化させ、各姿勢について、干渉計システム118の計測結果に基づいてウエハステージWSTの姿勢を維持した状態で、ヘッド165、164から移動スケール39A,39Bの特定領域に検出光を照射しつつ、ウエハステージWSTをZ軸方向に所定ストローク範囲で移動させ、その移動中にエンコーダの計測結果をサンプリングする。これにより、各姿勢についての、ウエハステージWSTの移動面に直交する方向(Z軸方向)の位置に応じたエンコーダの計測値の変化情報(誤差特性曲線)が得られる。そして、主制御装置20は、このサンプリング結果、すなわち各姿勢についての、ウエハステージWSTのZ軸方向の位置に応じたエンコーダの計測値の変化情報に基づいて、所定の演算を行うことで、ウエハステージWSTの非計測方向の位置情報に応じたエンコーダの計測値の補正情報を求める。従って、簡単な方法で、非計測方向に関するヘッドと移動スケールの相対変化に起因するエンコーダの計測誤差を補正するステージ位置起因誤差補正情報を決定することができる。
 また、本第2の実施形態では、同一のヘッドユニットを構成する複数のヘッド、例えばヘッドユニット62Bを構成する複数のヘッド164について、上記の補正情報を決定する場合に、対応するスケール39Bの同一の特定領域に各ヘッド164から検出光を照射して、上述したエンコーダの計測結果のサンプリングを行い、そのサンプリング結果に基づいて、移動スケール39Bに対向する各ヘッド164(各エンコーダ)の補正情報を決定しているので、結果的に、この補正情報を用いることで、ヘッドの倒れで生じる、幾何学的な誤差も補正される。換言すれば、主制御装置20は、同一の移動スケールに対応する複数のエンコーダを対象として、前記補正情報を求めるに際し、ウエハステージWSTをZ軸方向へ移動させた際に対象とするエンコーダのヘッドの倒れで生じる、幾何学的な誤差を考慮して前記対象とするエンコーダの補正情報を求めている。従って、本第2の実施形態では、複数のヘッドの倒れ角が異なることに起因するコサイン誤差も生じることがない。また、ヘッド164に倒れが生じていなくても、例えばヘッドの光学特性(テレセントリシティなど)などに起因してエンコーダに計測誤差が生じる場合、同様に前記補正情報を求めることで、計測誤差の発生、ひいてはウエハステージWSTの位置制御精度の低下を防止することができる。すなわち本第2の実施形態では、ヘッドユニットに起因して生じるエンコーダシステムの計測誤差(以下、ヘッド起因誤差とも呼ぶ)を補償するようにウエハステージWSTが駆動される。なお、ヘッドユニットの特性情報(例えば、ヘッドの倒れ、及び/又は光学特性などを含む)に基づいて、例えばエンコーダシステムの計測値の補正情報を算出するようにしても良い。
 また、移動スケールの特性情報は、スケールの面(正確には、回折格子表面、及び回折格子がカバーガラスで覆われている場合には、そのカバーガラスの面を含む)の凹凸(傾斜を含む)、及び/又は格子形成誤差(格子ピッチ及び/又は格子線の曲がり)などの情報であり、予め計測されている。
 また、アッベ外し量とは、ウエハテーブルWTB’上の各移動スケールの面(回折格子表面)の高さ(Z位置)と、露光中心(前述の露光領域IAの中心で、本第2の実施形態では投影光学系PLの光軸AXと一致)を含む基準面の高さとの差を指す。ウエハステージWSTの基準面の高さと各移動スケールの面(回折格子表面)の高さとに誤差(又はギャップ)があると、ウエハステージWSTのXY平面と平行な軸(X軸又はY軸)回りの回転(ピッチング又はローリング)の際にエンコーダの計測値にいわゆるアッベ誤差が生じる。ここで、基準面とは、干渉計システム118で計測されるウエハステージWSTのZ軸方向の変位の基準となる面であって、Z軸方向に関するウエハW上の各ショット領域の位置合わせ(位置制御)の基準となる面(本第2の実施形態では、投影光学系PLの像面に一致)を指す。なお、アッベ外し量は、大略次のようにして予め取得されている。
 すなわち、ウエハステージWSTの駆動が行われるロット処理の開始に先立って、例えば装置の立ち上げ時などに、XY平面内におけるウエハステージWSTの位置情報を計測するエンコーダシステムの一連のキャリブレーションの1つとして、前述した各移動スケール(回折格子)表面のアッベ外し量を取得するためのキャリブレーション処理が行われる。すなわち、主制御装置20は、エンコーダシステムの移動スケール毎に、回折格子の周期方向に関するウエハステージWSTのXY平面に対する傾斜角を計測する干渉計システム118の計測値に基づいて、回折格子の周期方向に関しXY平面に対してウエハステージWSTを角度α傾斜させ、その傾斜前後のエンコーダシステムの計測値と干渉計システム118で計測される前記角度αの情報とに基づいて、回折格子表面のアッベ外し量を算出する。そして、主制御装置20は、その算出した情報を、メモリ内に記憶する。
 次に、本第2の実施形態の露光装置500における、ウエハステージWSTと計測ステージMSTとを用いた並行処理動作について、図35~図39に基づいて説明する。なお、以下の動作中、主制御装置20によって、局所液浸装置8の液体供給装置5及び液体回収装置6の各バルブの開閉制御が前述したようにして行われ、投影光学系PLの先端レンズ191の直下には常時水が満たされている。しかし、以下では、説明を分かり易くするため、液体供給装置5及び液体回収装置6の制御に関する説明は省略する。また、以後の動作説明は、多数の図面を用いて行うが、図面毎に同一の部材に符号が付されていたり、付されていなかったりしている。すなわち、図面毎に、記載している符号が異なっているが、それら図面は符号の有無に関わらず、同一構成である。これまでに説明に用いた、各図面についても同様である。
 図35には、ウエハステージWST上に載置されたウエハWに対するステップ・アンド・スキャン方式の露光が行われている状態が示されている。この露光は、開始前に行われるウエハアライメント(例えばEGA)等の結果に基づいて、ウエハW上の各ショット領域の露光のための走査開始位置(加速開始位置)へウエハステージWSTを移動するショット間移動と、各ショット領域に対してレチクルRに形成されたパターンを走査露光方式で転写する走査露光と、を繰り返すことにより行われる。また、露光は、ウエハW上の-Y側に位置するショット領域から+Y側に位置するショット領域の順で行われる。
 上述の露光動作中、主制御装置20により、ウエハステージWST(ウエハテーブルWTB’)のXY平面内の位置(θz方向の回転を含む)は、移動スケール39A,39Bのそれぞれに対向する2つのヘッド165、164によって構成される2つのエンコーダ170A,170Bの計測値と、エンコーダ計測値を補正するための前述した各種の補正情報(ステージ位置起因誤差補正情報、移動スケールの特性情報及びアッベ誤差補正情報など)と、に基づいて制御されている。また、上述の露光動作中、主制御装置20により、ウエハステージWSTのθy回転(ローリング)及びθx回転(ピッチング)は、前述のX干渉計126(又はZ干渉計43A,43B)及びY干渉計16の計測値に基づいて管理されている。なお、ウエハステージWSTのZ軸方向の位置(Z位置)、θy回転(ローリング)及びθx回転(ピッチング)の少なくとも1つ、例えばZ位置及びθy回転をその他のセンサ、例えばウエハテーブルWTB’の上面のZ位置を検出するセンサ、例えばCDドライブ装置などで用いられる光ピックアップと同様の光学式の変位センサのヘッドなどによって計測しても良い。いずれにしても、この露光中のウエハステージWST(ウエハテーブルWTB’)のZ軸方向の位置,θy回転及びθx回転の制御(ウエハWのフォーカス・レベリング制御)は、主制御装置20により、事前に計測したウエハの面位置情報の計測結果と、エンコーダシステム150及び/又は干渉計システム118の計測結果に基づいて行われる。
 上記のステップ・アンド・スキャン方式の露光動作中、ウエハステージWSTがX軸方向に移動すると、その移動に伴って、前述のヘッドの切り換えが行なわれる。このように、主制御装置20は、ウエハステージWSTの位置座標に応じて、使用するエンコーダを適宜切り換えて、ステージ制御を実行している。
 なお、上述のエンコーダシステムを用いたウエハステージWSTの位置計測と独立に、干渉計システム118を用いたウエハステージWSTの位置(X,Y,Z,θx,θy,θz)計測が、常時、行われている。例えば、X干渉計126,127,及び128は、ウエハステージWSTのY位置に応じて、いずれか1つが使用される。例えば露光中は、図35に示されるように、X干渉計126が、補助的に使用される。
 ウエハWの露光が終了すると、主制御装置20は、ウエハステージWSTをアンロードポジションUPに向けて駆動する。その際、露光中には互いに離れていたウエハステージWSTと計測ステージMSTとが、接触あるいは例えば300μm程度の離間距離を挟んで近接して、スクラム状態に移行する。ここで、計測テーブルMTB上のFDバー46の-Y側の端面とウエハテーブルWTBの+Y側の端面とが接触あるいは近接する。このスクラム状態を保って、両ステージWST,MSTが-Y方向に移動することにより、投影ユニットPUの下に形成される液浸領域14は、計測ステージMST上に移動する。
 上記のスクラム状態に移行後、ウエハステージWSTが、更に-Y方向へ移動して有効ストローク領域(ウエハステージWSTが露光及びウエハアライメント時に移動する領域)から外れると、エンコーダシステム150を構成する全てのヘッドが、ウエハテーブルWTB’上の対応する移動スケールから外れる。そのため、エンコーダシステム150の計測結果に基づくステージ制御が不可能になる。その直前に、主制御装置20は、干渉計システム118の計測結果に基づくステージ制御に切り換える。ここで、3つのX干渉計126,127,128のうちX干渉計128が使用される。
 その後、図36に示されるように、ウエハステージWSTは、計測ステージMSTとのスクラム状態を解除し、アンロードポジションUPに移動する。移動後、主制御装置20は、ウエハテーブルWTB’上のウエハWをアンロードする。そして、図37に示されるように、ウエハステージWSTを+X方向に駆動してローディングポジションLPに移動させ、ウエハテーブルWTB’上に次のウエハWをロードする。
 これらの動作と平行して、主制御装置20は、計測ステージMSTに支持されたFDバー46のXY平面内での位置調整と、4つのセカンダリアライメント系AL21~AL24のベースライン計測と、を行うSec-BCHK(セカンダリ・ベースラインチェック)を実行する。ここで、FDバー46のθz方向の回転情報を計測するために、前述のYエンコーダ170G,170Hが使用される。
 次に、主制御装置20は、ウエハステージWSTを駆動し、図38に示されるように、計測プレート30上の基準マークFMをプライマリアライメント系AL1の検出視野内に位置決めし、アライメント系AL1,AL21~AL24のベースライン計測の基準位置を決定するPri-BCHKの前半の処理を行う。
 このとき、図38に示されるように、2つのヘッド1683,1672(図中に丸で囲んで示されている)が、それぞれ移動スケール39A,39Bに対向するようになる。そこで、主制御装置20は、干渉計システム118からエンコーダシステム150(エンコーダ170D,170C)を用いたステージ制御へ切り換える。干渉計システム118は、再び補助的に使用される。なお、3つのX干渉計126,127,128のうちX干渉計127が使用される。
 その後、主制御装置20は、プライマリアライメント系AL1とセカンダリアライメント系AL21~AL24を用いて、ウエハアライメント(EGA)を実行する(図39中の星マーク参照)。
 なお、本第2の実施形態では、図39に示されるウエハアライメントを開始するまでに、ウエハステージWSTと計測ステージMSTはスクラム状態へ移行している。主制御装置20は、スクラム状態を保ちながら、両ステージWST,MSTを+Y方向に駆動する。その後、液浸領域14の水は、計測テーブルMTB上からウエハテーブルWTB’上に移動する。
 ウエハアライメント(EGA)と並行して、主制御装置20は、空間像計測装置45を用いたウエハテーブルWTB’のXY位置に対するレチクル上マークの投影像の強度分布を計測するPri-BCHK後半の処理を実行する。
 以上の作業が終了すると、主制御装置20は、両ステージWST,MSTのスクラム状態を解除する。そして、図35に示されるように、ステップ・アンド・スキャン方式の露光を行い、新しいウエハW上にレチクルパターンを転写する。以降、同様の動作が繰り返し実行される。
 以上説明したように、本第2の実施形態に係る露光装置500によると、ウエハステージWSTの上面のX軸方向の両端部に2次元格子を有する一対の移動スケール39A、39Bが設けられ、ウエハステージWSTが露光動作を行なうための移動範囲にあるとき、移動スケール39A、39Bに常に少なくとも1つのヘッド165、164が対向可能となるような一対のヘッドユニット62A’,62B’が、投影ユニットPU(ノズルユニット32)のX軸方向の両側に配置されている。これにより、ステップ・アンド・スキャン方式の露光動作中のウエハステージWSTのXY平面内の位置情報(θz方向の回転情報を含む)を、主制御装置20は、それらのヘッド165、164、すなわちエンコーダ170A、170Bを用いて高精度に計測することが可能となる。従って、本第2の実施形態によると、国際公開第2007/097379号パンフレットに実施形態として開示される露光装置に比べて、エンコーダヘッドのレイアウトが容易である。
 また、本第2の実施形態のウエハテーブルWTB’上面の+Y側の端部の領域、すなわち液浸領域14が頻繁に通過する領域には、スケールを配置しなくて良いので、その領域に対する液体の残存、あるいはゴミの付着がなどがあっても、エンコーダシステムの計測精度の低下が生じるおそれがない。
 また、本第2の実施形態に係る露光装置500によると、露光の際に、移動スケール39A,39Bのそれぞれに対向してウエハステージWSTのX軸方向、及びY軸方向、並びにθz方向の位置計測に用いられる、ヘッドユニット62A’,62B’にそれぞれ属する各5つのヘッド1651~1655,1641~1645は、X軸方向に関しては、隣接するヘッドの間隔WDを移動スケール39A,39BのX軸方向の幅(例えば76mm)を考慮した所望の間隔例えば70mmに設定し、かつ空きスペース(本第2の実施形態では、ノズルユニット32の周囲の空きスペース)に応じて最も投影ユニットPUの中心寄りに位置するヘッド1651、1645のY位置を他の(残り4つの)ヘッドと異ならせて配置している。これにより、ヘッドユニット62A’,62B’の各5つのヘッド165、164の、空きスペースに応じた配置が可能であるともに、スペース効率の向上により装置全体の小型化が可能となる。これに加え、ヘッドユニット62A’,62B’の各5つのヘッド165,164それぞれの間でつなぎ(使用ヘッドの切り換え)を支障なく行なうことが可能となる。従って、ヘッドユニット62A’,62B’をそれぞれ有するXYエンコーダ170A、170Bを含むエンコーダシステム150によって、露光の際、ウエハステージWSTのXY平面内の位置を空気揺らぎの影響を受けることなく高精度に計測することが可能になる。
 また、本第2の実施形態の露光装置500によると、主制御装置20は、露光の際などに、ウエハステージWSTを駆動するときに、エンコーダシステム150(エンコーダ170A,170B)の計測値と、各エンコーダの計測値を補正する補正情報(ステージ位置起因誤差補正情報(ヘッド起因誤差の補正情報を含む)、移動スケールの特性情報及びアッベ誤差補正情報などの少なくとも1つ)とに基づいて、ウエハステージWSTのXY平面内の位置(θz方向の回転を含む)を高精度に制御する。
 また、本第2の実施形態に係る露光装置500によると、ウエハ交換の度に行われる、前述のアライメント系のベースライン計測により得られた、最新のベースラインと、ウエハアライメント(EGA)の結果とに基づいて、ウエハW上の各ショット領域の露光のための走査開始位置(加速開始位置)へウエハステージWSTが移動されるショット間移動動作と、レチクルRに形成されたパターンを走査露光方式で各ショット領域に転写する走査露光動作とを繰り返すことにより、レチクルRのパターンをウエハW上の複数のショット領域に精度(重ね合わせ精度)良く転写することが可能になる。さらに、本第2の実施形態では、液浸露光により高解像度の露光を実現できるので、この点においても微細パターンを精度良くウエハW上に転写することが可能になる。
 さらに、本第2の実施形態に係る露光装置500では、実際には、前述の第1の実施形態と同様の位置に、周辺露光ユニット51、多点AF系(90a,90b)等が設けられている。このため、露光装置500によると、第1の実施形態の露光装置100と同様、ウエハステージWST(ウエハW)が、多点AF系(90a,90b)の複数の検出点(検出領域AF)と、複数のアライメント系AL1,AL21~AL24の検出領域と、周辺露光ユニット51の下方とを、直線的に通過するだけで、ウエハWのほぼ全面の面位置情報の検出と、ウエハW上で検出すべき全てのアライメントマーク(例えば、EGAにおけるアライメントショット領域のアライメントマーク)の検出と、ウエハWの周辺露光との3つの動作が終了する。従って、アライメントマークの検出動作と、面位置情報(フォーカス情報)の検出動作と、周辺露光動作と、を無関係に(別々に)行う場合に比べて格段スループットを向上させることができる。
 また、本第2の実施形態に係る露光装置500では、前述の第1の実施形態と同様の面位置計測システムを設けることができる。従って、前述の第1の実施形態と同様のフォーカスマッピング、及び該フォーカスマッピングの結果を用いたウエハWの面位置制御が可能になる。従って、本実施形態では、先端レンズ191とウエハW表面との間のワーキングディスタンスが狭くなっているにもかかわらず、特に支障なく、露光の際のウエハWのフォーカス・レベリング制御を精度良く実行することができる。
 また、上記第2の実施形態では、ウエハステージWST上に移動スケール39A,39B(スケール部材)が配置され、これに対向してウエハステージWSTの外部、すなわち投影ユニットPUを保持するメインフレーム(不図示)の下方にヘッドユニット62A’~62D’が配置される構成のエンコーダシステムを、露光装置500が備えている場合について説明した。しかし、これに限らず、次の第3の実施形態のように、ウエハステージWST上にエンコーダヘッドを設け、ウエハステージWSTの外部にスケール部材を設けても良い。
《第3の実施形態》
 図40には、第3の実施形態の露光装置が備えるステージ装置及びセンサユニットの配置を示す平面図が示されている。この第3の実施形態の露光装置は、前述した第2の実施形態の露光装置と比べて、エンコーダシステムの構成が異なるのみで、その他の部分の構成は、同一である。従って、以下では、相違点であるエンコーダシステムを中心として説明する。また、前述した第2の実施形態と同一若しくは同等の構成部分については、同一の符号を用いるとともに説明を省略する。
 図40に示されるように、本第3の実施形態では、ウエハテーブルWTB’の上面の一対の第2撥水板28b’上に、移動スケール39A,39Bの代わりに、2Dヘッド1721~1726、1741~1746が、反射面17bに平行な方向に関して一定間隔WDで、それぞれ設けられている。2Dヘッド1721~1726、1741~1746のそれぞれとしては、前述の2Dヘッド164,165,167,168と同様の構成のものが用いられている。2Dヘッド1721~1726と2Dヘッド1741~1746とは、ウエハテーブルWTB’のセンターラインに関して対称の配置となっている。以下では、適宜、2Dヘッド1721~1726、2Dヘッド1741~1746を、それぞれ、ヘッド172、174とも記述する。
 一方、ノズルユニット32の+X側、-X側に、それぞれ近接して、一対の固定スケール39A’、39B’が、それぞれX軸方向を長手方向として配置されている。固定スケール39A’、39B’は、図40に示されるように、それぞれ、長方形の長手方向の一端部の一側の一部に矩形状の切り欠き部が形成され、その切り欠き部と同じ形状の延設部が一端部の他側に設けられた形状を有している。この場合、固定スケール39A’は、X軸方向を長手方向としてノズルユニット32の+X側の面にほぼ接した状態で配置され、その-X端部の+Y側の一部に矩形状の切り欠き部が形成され、その切り欠き部と同じ形状の延設部が-X端部の-Y側に設けられた形状を有している。延設部は、ノズルユニット32より-Y側に幾分突出している。固定スケール39B’は、固定スケール39A’と左右対称な形状を有し、基準線LV0に関して対称に配置されている。固定スケール39A’、39B’は、投影ユニットPUを保持するメインフレーム(不図示)の裏面にXY平面に平行に固定されている。固定スケール39A’、39B’は、その長さが、前述の移動スケール39A,39Bに比べて幾分短く、その下面(-Z側の面)には、前述の反射型の二次元回折格子が形成されている。
 本第3の実施形態では、さらに、図40に示されるように、固定スケール39A’、39B’の-Y側に所定距離(例えば固定スケール39A’の幅とほぼ同一寸法)隔てて、長方形の固定スケール39D’、39C’が、それぞれX軸方向を長手方向として配置されている。固定スケール39D’、39C’は、前述の基準線LV0に関して対称な配置となっている。また、固定スケール39D’、39C’は、それぞれ、セカンダリアライメント系AL24、AL21に近接して配置されている。固定スケール39D’、39C’は、投影ユニットPUを保持するメインフレーム(不図示)の裏面にXY平面に平行に固定されている。固定スケール39D’、39C’は、その長さが、前述の固定スケール39A’、39B’に比べて幾分短く、その下面(-Z側の面)には、前述の反射型の二次元回折格子が形成されている。
 また、FDバー46の上面には、前述の一対の基準格子52に代えて、一対の2Dヘッド176が設けられている。
 2Dヘッド1721~1726は、前述の固定スケール39A’又は39D’を用いて、ウエハステージWST(ウエハテーブルWTB’)のX位置及びY位置を計測する多眼(ここでは、6眼)のXYエンコーダ170A’(図41参照)を構成する。同様に、2Dヘッド1741~1746は、前述の固定スケール39B’又は39C’を用いて、ウエハステージWST(ウエハテーブルWTB’)のX位置及びY位置を計測する多眼(ここでは、5眼)のXYエンコーダ170B’(図41参照)を構成する。
 露光動作の際などには、固定スケール39A’、39B’にヘッド172,174が少なくとも各1つそれぞれ対向する。すなわち、ヘッド172,174が発する計測ビーム(エンコーダビーム)のうち、少なくとも各1つの計測ビームが、常に、固定スケール39A’,39B’に照射される。このヘッド172,174(すなわち、これらヘッド172,174によって構成されるエンコーダ170A’、170B’)によってウエハステージWSTのX位置、Y位置、及びθz回転が計測される。
 また、アライメント動作の際などには、固定スケール39C’,39D’にヘッド174,172が少なくとも各1つそれぞれ対向する。すなわち、ヘッド174,172が発する計測ビーム(エンコーダビーム)のうち、少なくとも各1つの計測ビームが、常に、固定スケール39C’,39D’に照射される。このヘッド174,172(すなわち、これらヘッド174,172によって構成されるエンコーダ170B’、170A’)によってウエハステージWSTのX位置、Y位置、及びθz回転が計測される。
 また、本第3の実施形態では、セカンダリアライメント系のベースライン計測時などに、固定スケール39C’,39D’に、FDバー46上の一対の2Dヘッド176が対向し、その一対の2Dヘッド176によって、FDバー46のX,Y位置、及びθz回転が計測される。以下では、固定スケール39C’,39D’にそれぞれ対向する一対の2Dヘッド176によって構成されるエンコーダをエンコーダ170C’,170D’(図41参照)と呼ぶ。
 上述した4つのエンコーダ170A’~170D’は、その計測値を、主制御装置20に供給する。主制御装置20は、エンコーダ170A’,170B’の計測値に基づいて、ウエハテーブルWTB’のXY平面内の位置(θz方向の回転(ヨーイング)を含む)を制御するとともに、エンコーダ170C’,170D’の計測値に基づいて、FDバー46のX,Y、θz方向の位置を制御する。
 その他の部分の構成は、前述した第2の実施形態と同一になっている。
 このようにして構成された、本第3の実施形態の露光装置によると、前述した第2の実施形態の露光装置500と同様の、各部の制御動作が、主制御装置20によって行われ、それにより第1の実施形態と同等の効果を得ることが可能になる。
 なお、上記第2、第3の実施形態では、エンコーダヘッドとして、一例として図34に示されるような構成の2Dヘッドを用いる場合について例示したが、これに限らず、2つの1次元ヘッドを組み合わせて、2次元ヘッドを構成しても良い。すなわち、本明細書でいう2次元ヘッドは、2つの1次元ヘッドを組み合わせたものをも含む。
 上記第1~第3の実施形態では、ウエハステージと計測ステージとを備えた露光装置に本発明が適用された場合について説明したが、これに限らず、単一のウエハステージのみを備えた露光装置、あるいは例えば米国特許第6,590,634号明細書、米国特許第5,969,441号明細書、米国特許第6,208,407号明細書などに開示されているように、複数のウエハステージを備えたマルチステージ型、例えばツインステージ型の露光装置などにも本発明を適用できる。この場合、露光装置の制御装置は、2つのウエハステージの一方に保持されたウエハに対する露光が行なわれるのと並行して、他方のウエハステージを少なくともY軸方向に移動させつつ、ウエハに対するアライメント計測などの計測が行われる領域(計測ステーション)とウエハに対する露光が行われる領域(露光ステーション)との間の移動経路に配置された周辺露光ユニットを制御して、露光位置に向かって移動する途中で周辺露光ユニットの下方を通過する他方のウエハステージに保持されたウエハの周辺部のショット領域の少なくとも一部の周辺露光を行うこととすることができる。
 また、計測ステーションでの計測動作中に周辺露光動作を開始しても良い。この場合、周辺露光動作は計測動作終了後かつ露光開始前に終了する。
 なお、周辺露光ユニットを計測ステーションにアライメント系(AL1、AL2~AL25)などと一緒に配置して計測動作中に周辺露光動作を行っても良い。
 また、計測ステーションと露光ステーションとの間でのウエハステージの位置制御(周辺露光動作の少なくとも一部が行われる期間中を含む)は、いかなる計測装置を用いて行っても良いが、上記エンコーダシステム又は干渉計システムを用いて行うことが好ましい。
 また、ツインステージ型の露光装置では、周辺露光動作を往路(すなわち、計測ステーションから露光ステーションへのウエハステージの移動経路)で行っても良いし、復路(すなわち、露光ステーションから計測ステーションへ(アンローディングポジション)へのウエハステージの移動経路)で行っても良いし、1枚のウエハの周辺露光動作を往路と復路に分けて行っても良い。
 なお、上記第2、第3の実施形態を、ツインステージ型の露光装置に適用する場合、周辺露光ユニットを設けることなく、前述の2Dヘッド(2Dエンコーダ)を有するエンコーダシステムを、少なくとも一方のウエハステージの位置計測装置として採用するのみでも良い。すなわち、上記第2、第3の実施形態では、前述の2Dヘッドを有するエンコーダシステムがあれば良く、該エンコーダシステム以外の構成、シーケンス(ステージ移動と計測動作を並行して行うなど)は、任意に組み合わせて採用しても良いが、必須ではない。
 また、上記第2、第3の実施形態では、計測システム200が、干渉計システム118とエンコーダシステム150との両方を含むものとしたが、これに限らず、計測システムは、干渉計システム118とエンコーダシステム150との一方のみを含んでいても良い。
 次に、ツインステージ型の露光装置に関する本発明の第4の実施形態について説明する。
《第4の実施形態》
 以下、本発明の第4の実施形態を図42~図76に基づいて説明する。ここで、前述した第1の実施形態、及び/又は第2の実施形態と同一若しくは同等の構成部分については同一の符号を用いるとともに、その説明を簡略化し若しくは省略する。
 図42には、第4の実施形態の露光装置1000の構成が概略的に示されている。露光装置1000は、ステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。後述するように、本第4の実施形態においても、投影光学系PLが設けられているので、以下においては、この投影光学系PLの光軸AXと平行な方向をZ軸方向、これに直交する面内でレチクルとウエハとが相対走査される方向をY軸方向、Z軸及びY軸に直交する方向をX軸方向とし、X軸、Y軸、及びZ軸回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向として説明を行う。
 露光装置1000は、照明系10、照明系10からの照明光ILにより照明されるレチクルRを保持するレチクルステージRST、レチクルRから射出された照明光ILをウエハ上に照射する投影光学系PLを含む投影ユニットPU、2つのウエハステージWST1,WST2を含むステージ装置1050、局所液浸装置8、及びこれらの制御系等を備えている。ウエハステージWST1,WST2上には、ウエハW1,W2がそれぞれ保持されている。
 ステージ装置1050は、図42に示されるように、ベース盤12上に配置された2つのウエハステージWST1,WST2、両ウエハステージWST1,WST2の位置情報を計測する計測システム200(図47参照)、及びウエハステージWST1,WST2を駆動するステージ駆動系124(図47参照)等を備えている。計測システム200は、図47に示されるように、干渉計システム118、エンコーダシステム150、及び面位置計測システム180などを含む。
 ウエハステージWST1、WST2は、それぞれが備える例えばエアスライダ(後述)により、数μm程度のクリアランスを介して、ベース盤12上に浮上支持されている。そして、ウエハステージWST1、WST2は、ステージ駆動系124を構成する後述する平面モータにより、独立してベース盤12の上面(移動ガイド面)に沿ってXY平面内で駆動可能となっている。
 ウエハステージWST1は、図42及び図43(A)に示されるように、ステージ本体91Aと、ステージ本体91A上に搭載されたウエハテーブルWTB1とを含む。ステージ本体91Aは、図43(A)に示されるように、ベース盤12の内部に埋め込まれた固定子152とともに平面モータ151を構成する可動子56と、該可動子56の下半部の周囲に一体的に設けられ、複数のエアベアリングを有するエアスライダ54とを有している。
 可動子56は、例えば隣り合う磁極面の極性が互いに異なるようにマトリクス状に配列された複数の平板磁石から構成された平板状発磁体を含む磁石ユニットによって構成されている。可動子56は、厚さの薄い直方体状の形状を有している。
 一方、固定子152は、ベース盤12の内部にマトリクス状に配列された複数の電機子コイル(駆動コイル)57を有する電機子ユニットによって構成されている。電機子コイル57として、本第4の実施形態では、X駆動コイル及びY駆動コイルが設けられている。そして、複数のX駆動コイル及びY駆動コイルを含む電機子ユニットからなる固定子152と、前述の磁石ユニットからなる可動子56とによって、電磁力駆動方式(ローレンツ力駆動方式)のムービングマグネット型の平面モータ151が構成されている。
 複数の電機子コイル57は、ベース盤12の上面を構成する非磁性体から成る平板状部材58によってカバーされる。平板状部材58の上面は、ウエハステージWST1及びWST2の移動ガイド面かつエアスライダ54が備えるエアベアリングからの加圧空気の受圧面を構成する。
 ウエハテーブルWTB1は、肉厚の薄い直方体(厚い板状)の部材から成るテーブル本体34と、該テーブル本体34の+Y側の側面に取り付けられた(正確には、フルキネマティックマウント構造によって、テーブル本体34にキネマティックに支持された)FDバー46と、テーブル本体34の-Y側の側面に固定された計測部138との3部分を有している。以下では、特に必要な場合を除いて、テーブル本体34とFDバー46と計測部138とを全体としてウエハテーブルWTB1と呼ぶ。ここで、テーブル本体34は、上方から見て可動子56と同じ形状及び大きさの外形を有している。
 ウエハテーブルWTB1は、ステージ本体91Aの上に、ステージ駆動系124の一部を構成する不図示のZ・レベリング機構(例えば、ボイスコイルモータ等を含む)を介して、搭載されている。ウエハテーブルWTB1は、Z・レベリング機構により、ステージ本体91Aに対してZ軸方向、θx方向及びθy方向に微小駆動される。従って、ウエハテーブルWTB1は、平面モータ151とZ・レベリング機構とを含むステージ駆動系124(図47参照)によって、ベース盤12に対し、6自由度方向(X,Y,Z,θx,θy,θz)に駆動可能である。
 ウエハテーブルWTB1の上面の中央には、ウエハを真空吸着等によって保持するウエハホルダ(不図示)が設けられている。ウエハホルダ(ウエハの載置領域)の外側には、図43(B)に示されるように、ウエハホルダよりも一回り大きな円形の開口が中央に形成され、かつ矩形状の外形(輪郭)を有するプレート28が設けられている。プレート28の表面は、液体Lqに対して撥液化処理されている。なお、プレート28は、その表面のほぼ全部がウエハW1の表面とほぼ同一面となるように設定されている。また、FDバー46及び計測部138は、それぞれの表面がプレート28の表面とほぼ同一面となるように、テーブル本体34に取り付けられている。
 また、プレート28の+Y側端部近傍のX軸方向のほぼ中央には、長方形の開口が形成され、この開口の内部に計測プレート30が埋め込まれている。そして、計測プレート30の一対の空間像計測スリットパターンSLそれぞれの下方のウエハテーブルWTB1の内部には、対物レンズなどを含む光学系と、受光素子(例えばフォトマルチプライヤチューブなど)とを含む空間像計測装置45A(図47参照)が、上記一対の空間像計測スリットパターンSLに対応して一対設けられている。空間像計測装置45Aとしては、例えば米国特許出願公開第2002/0041377号明細書などに開示されるものと同様の構成のものが用いられている。計測プレート30は、その表面が、プレート28とほぼ同一面とされている。
 さらに、プレート28上面のX軸方向一側と他側(図43(B)における左右両側)の領域には、移動スケール39A,39Bが形成されている。移動スケール39A,39Bはそれぞれ、例えばY軸方向を周期方向とする格子とX軸方向を周期方向とする格子とが組み合わされた、反射型の二次元格子(例えば回折格子)によって構成されている。二次元格子の格子線のピッチは、Y軸方向及びX軸方向のいずれの方向についても、例えば1μmである。なお、図43(B)では、図示の便宜のため、格子のピッチは、実際のピッチよりも大きく図示されている。その他の図においても同様である。移動スケール39A,39Bは撥液膜(撥水膜)で覆われている。
 なお、回折格子を保護するために、撥水性を備えた低熱膨張率のガラス板でカバーすることも有効である。ここで、ガラス板としては、厚さがウエハと同程度、例えば厚さ1mmのものを用いることができ、そのガラス板の表面がウエハ面と同じ高さ(面位置)になるよう、テーブル本体34(ウエハテーブルWTB1)上面に設置される。
 なお、プレート28の各移動スケールの端付近には、後述するエンコーダヘッドとスケール間の相対位置を決めるための、不図示の位置出しパターンがそれぞれ設けられている。この位置出しパターンは例えば反射率の異なる格子線から構成され、この位置出しパターン上をエンコーダヘッドが走査すると、エンコーダの出力信号の強度が変化する。そこで、予め閾値を定めておき、出力信号の強度がその閾値を超える位置を検出する。この検出された位置を基準に、エンコーダヘッドとスケール間の相対位置を設定する。
 上述のように、本第4の実施形態では、プレート28そのものがスケールを構成するので、プレート28として低熱膨張率のガラス板を用いることとしている。しかし、これに限らず、格子が形成された例えば低熱膨張率のガラス板などから成るスケール部材を、局所的な伸縮が生じないように、例えば板ばね(又は真空吸着)等によりウエハテーブルWTB1の上面に固定しても良い。あるいは、ウエハテーブルWTB1を低熱膨張率の材料で形成することも可能であり、かかる場合には、移動スケールは、そのウエハテーブルWTB1の上面に直接形成しても良い。
 FDバー46は、図43(B)に示されるように、前述の第1の実施形態と同様に構成されている。FDバー46に形成された一対の基準格子52の間隔は、距離Lとされている。
 計測部138は、X軸方向を長手方向とする直方体状である。計測部138には、後述する各種計測用部材が設けられている。
 ウエハステージWST2は、図42、図44(A)及び図44(B)などに示されるように、ステージ本体91Bと、ウエハテーブルWTB2とを含んで、上述のウエハステージWST1と同様に構成されている。ウエハステージWST2は、可動子56と固定子152とから成る平面モータ151によって駆動される。
 ウエハテーブルWTB2は、図44(A)及び図44(B)に示されるように、前述のウエハテーブルWTB1と同様に、テーブル本体34と、該テーブル本体34の+Y側の側面、-Y側の側面にそれぞれ取り付けられたFDバー46と、計測部138との3部分を有している。ただし、ウエハステージWST2の計測部138が備える各種計測用部材は、ウエハステージWST1の計測部138が備える各種計測用部材と異なっている。すなわち、本第4の実施形態では、複数種類の計測用部材が、ウエハステージWST1,WST2がそれぞれ備える計測部138に分散して配置されている。なお、ウエハテーブルWTB2の計測プレート30を含んで構成される一対の空間像計測装置を、以下では、空間像計測装置45Bと記述する。
 上記の計測用部材としては、例えば、図43(B)に示される、前述と同様の照度むらセンサ94、投影光学系PLの像面上で照明光ILを受光する所定面積の受光部を有する照度モニタ97、及び図44(B)に示される、波面収差計測器98、並びに空間像計測器などを用いることができる。
 本第4の実施形態においても、計測用部材として、例えば投影光学系PLの透過率を計測する透過率計測器、及び/又は、前述の局所液浸装置8、例えばノズルユニット32(あるいは先端レンズ191)などを観察する計測器などを用いても良い。さらに、計測用部材と異なる部材、例えばノズルユニット32、先端レンズ191などを清掃する清掃部材などをいずれかのウエハステージに搭載しても良い。
 なお、本第4の実施形態においても、投影光学系PLと液体(水)Lqとを介して露光光(照明光)ILによりウエハWを露光する液浸露光が行われるのに対応して、照明光ILを用いる計測に使用される上記の照度むらセンサ94、照度モニタ97及び波面収差計測器98並びに空間像計測器では、投影光学系PL及び水を介して照明光ILを受光することとなる。また、各センサは、例えば光学系などの一部だけがウエハテーブルに搭載されていても良いし、センサ全体をウエハテーブルに配置するようにしても良い。前述の空間像計測装置45A,45Bについても同様である。
 なお、図示は省略されているが、ウエハステージWST1の-X側端部から、ベース盤12の-X側に設置されたY軸方向に移動可能な第1ケーブルシャトル(不図示)に、不図示の配線・配管用のケーブルが接続されている。同様に、ウエハステージWST2の+X側端部から、ベース盤12の+X側に設置されたY軸方向に移動可能な第2ケーブルシャトル(不図示)に、不図示の配線・配管用のケーブルが接続されている。これらのケーブルにより、両ウエハステージWST1,WST2に設けられたZ・レベリング機構、及び計測用部材などへの電力供給、及びエアスライダに対する加圧空気の供給などが行われる。
 本第4の実施形態の露光装置1000では、図42では図面の錯綜を避ける観点から図示が省略されているが、実際には、図45に示されるように、投影ユニットPUの中心(投影光学系PLの光軸AX、本第4の実施形態では前述の露光領域IAの中心とも一致)を通りかつY軸と平行な直線、すなわち基準軸LV0上で、光軸AXから-Y側に所定距離隔てた位置に検出中心を有するプライマリアライメント系AL1が配置されている。また、プライマリアライメント系AL1を挟んで、X軸方向の一側と他側には、基準軸LV0に関してほぼ対称に検出中心が配置されるセカンダリアライメント系AL21,AL22と、AL23,AL24とがそれぞれ設けられている。すなわち、5つのアライメント系AL1,AL21~AL24はその検出中心がX軸方向に関して異なる位置に、すなわちX軸方向に沿って配置されている。
 プライマリアライメント系AL1及び4つのセカンダリアライメント系AL21~AL24のそれぞれとして、例えば画像処理方式のFIA(Field Image Alignment)系が用いられている。プライマリアライメント系AL1及び4つのセカンダリアライメント系AL21~AL24のそれぞれからの撮像信号は、不図示のアライメント信号処理系を介して図47の主制御装置20に供給されるようになっている。
 次に、ウエハステージWST1及びWST2の位置情報を計測する干渉計システム118の構成等について説明する。
 ウエハテーブルWTB1の+X側の面(+X端面)及び-X側の面(-X端面)には、それぞれ、鏡面加工が施され、図43(B)に示される反射面27a、27cが形成されている。また、ウエハテーブルWTB1の+Y側の面(+Y端面)、すなわちFDバー46の+Y端面、及びウエハテーブルWTB1の-Y側の面(-Y端面)、すなわち計測部138の-Y端面には、それぞれ,反射面27b、27dが形成されている。
 同様に、ウエハテーブルWTB2の+X端面、-X端面、+Y端面(FDバーの+Y端面)、及び-Y端面(すなわち計測部の-Y端面)には、それぞれ、鏡面加工が施され、図44(B)に示される反射面27e、27g、27f、27hが形成されている。
 干渉計システム118は、図46に示されるように、4つのY干渉計206,207,208,209と、6つのX干渉計217,218,226,227,228,229と、を含む。Y干渉計206,207,208は、ベース盤12の+Y側に、X軸方向に関して異なる位置に配置されている。Y干渉計209は、ベース盤12の-Y側に、Y干渉計207に対向して、配置されている。X干渉計217,218は、ベース盤12の-X側に、Y軸方向に所定間隔で配置されている。また、X干渉計226,227,228,229はベース盤12の+X側に、Y軸方向に関して異なる位置に配置されている。このうち、X干渉計227,228は、X干渉計217,218にそれぞれ対向して配置されている。
 詳述すると、Y干渉計207は、図46に示されるように、前述の基準軸LVをY軸方向に関する実質的な測長軸とする多軸干渉計である。Y干渉計207は、Y軸に平行な少なくとも3本の測長ビームをウエハテーブルWTB1の反射面27b(又はウエハテーブルWTB2の反射面27f)に照射し、それらの反射光を受光して、各測長ビームの照射点における反射面27b(又は27f)のY軸方向の位置情報を計測する。これらの位置情報は、主制御装置20(図47参照)に送られる。主制御装置20は、Y干渉計207で計測された位置情報に基づいて、ウエハテーブルWTB1(又はWTB2)のY軸方向に関する位置(Y位置)、θz回転量(ヨーイング量)、及びθx回転量(ピッチング量)を算出する。
 Y干渉計206,208,209は、Y干渉計207と同様に、ウエハテーブルWTB1(又はWTB2)のY位置、ピッチング量、及びヨーイング量を計測するために用いられる。Y干渉計206,208は、それぞれ基準軸LVに平行なY軸方向の実質的な測長軸LV,LVを有する。また、Y干渉計209は、実質的な測長軸を、基準軸LVをとし、少なくとも3本の測長ビームをウエハテーブルWTB1の反射面27d,又はウエハテーブルWTB2の反射面27hに照射する。
 X干渉計217,227は、前述の基準軸LHをX軸方向に関する実質的な測長軸とする多軸干渉計である。すなわち、X干渉計217は、X軸に平行な複数の測長ビームを、ウエハテーブルWTB1の反射面27cに照射し、それぞれの反射光を受光して、各測長ビームの照射点における反射面27cのX軸方向の位置情報を計測する。同様に、X干渉計227は、X軸に平行な複数の測長ビームを、ウエハテーブルWTB2の反射面27eに照射し、それぞれの反射光を受光して、測長ビームの照射点における反射面27eのX軸方向の位置情報を計測する。これらの位置情報は、主制御装置20に送られる。主制御装置20は、X干渉計217、227で計測された位置情報に基づいて、それぞれ、ウエハテーブルWTB1、WTB2のX位置、及びθy回転量(ローリング量)を算出する。
 X干渉計218,228は、X干渉計217、227と同様の多軸干渉計から成り、それぞれ、ウエハテーブルWTB1、WTB2のX位置、及びθy回転量(ローリング量)を計測するために用いられる。
 残りのX干渉計226,229は、X干渉計217、227と同様の多軸干渉計から成り、ともに、ウエハテーブルWTB1及びWTB2のX位置、及びθy回転量(ローリング量)を計測するために用いられる。なお、X干渉計229は、前述の基準軸LAを測長軸とする。
 このように、Y干渉計206,207,208,209及びX干渉計217,218,226,227,228,229を含む干渉計システム118を用いることにより、ウエハテーブルWTB1、WTB2の5自由度(X,Y,θx,θy,θz)方向の位置情報を計測することができる。なお、多軸干渉計、例えば各X干渉計は、45°傾いてウエハステージWST1,WST2に設置される反射面を介して、投影ユニットPUを保持するメインフレームの一部に設置される不図示の反射面にレーザビームを照射し、ウエハステージWST1,WST2のZ位置を検出するようにしても良い。
 次に、ウエハステージWST1及びWST2のXY平面内の位置情報(θz回転の情報を含む)を計測するエンコーダシステム150の構成等について説明する。
 本第4の実施形態の露光装置1000では、図45に示されるように、前述した液浸領域14(ノズルユニット32)の+X側,-X側に、X軸方向を長手方向として、エンコーダシステム150の2つのヘッドユニット162A,162Bが配置されている。これらのヘッドユニット162A,162Bは、図45等では図面の錯綜を避ける観点から図示が省略されているが、実際には、支持部材を介して、前述した投影ユニットPUを保持するメインフレームに吊り下げ状態で固定されている。
 ヘッドユニット162B、162Aは、X軸方向に関して間隔WDで配置された複数(ここでは5つ)の2次元エンコーダヘッド(以下、2Dヘッドと略述する)164i,165j(i,j=1~5)をそれぞれ備えている。より詳細には、ヘッドユニット162B及び162Aは、それぞれ、投影ユニットPUの周辺を除いて、前述の基準軸LH上に間隔WDで配置された複数(ここでは4つ)の2Dヘッド(1641~1644、又は1652~1655)と、投影ユニットPUの周辺において、基準軸LHから-Y方向に所定距離離れた位置、すなわちノズルユニット32の-Y側の位置に配置された1つの2Dヘッド(1645、又は1651)とを備えている。ヘッドユニット162A、162Bは、後述する5つのZヘッドをもそれぞれ備えている。ここで、2Dヘッドとは、互いに直交する二軸方向、ここではX軸方向及びY軸方向に感度をもつ、すなわち直交二軸方向(X軸方向及びY軸方向)を計測方向とするエンコーダヘッドである。2Dヘッドとしては、例えば前述の第2、第3の実施形態中で採用した2Dヘッドと同様の構成の2Dヘッド(例えば図34に示されるもの)を用いることができる。
 ヘッドユニット162Aは、前述の移動スケール39Aを用いて、ウエハステージWST1,WST2のX軸方向の位置(X位置)及びY軸方向の位置(Y位置)を計測する多眼(ここでは、5眼)の2次元エンコーダ(以下、適宜「エンコーダ」と略述する)170A(図47参照)を構成する。同様に、ヘッドユニット162Bは、前述の移動スケール39Bを用いて、ウエハステージWST1,WST2のX位置及びY位置を計測する多眼(ここでは、5眼)の2次元エンコーダ170B(図47参照)を構成する。ここで、ヘッドユニット162A及び162Bがそれぞれ備える5つの2Dヘッド(164i又は165j)(すなわち、計測ビーム)のX軸方向の間隔WDは、移動スケール39A,39B(より正確には、2次元格子)のX軸方向の幅より僅かに狭く設定されている。
 また、2Dヘッド1643、1653から、-Y方向に所定距離離れた位置に、2Dヘッド1661,1662が、配置されている。2Dヘッド1661,1662は、互いに基準軸LV0に関して対称な配置で設けられている。2Dヘッド1661,1662は、実際には、支持部材を介して、前述した投影ユニットPUを保持するメインフレームに吊り下げ状態で固定されている。
 2Dヘッド1662,1661は、前述の移動スケール39A,39Bをそれぞれ用いて、ウエハステージWST1,WST2のX位置及びY位置を計測する2次元エンコーダ170E,170F(図47参照)を構成する。後述する周辺露光動作の際などに、移動スケール39B,39Aに2Dヘッド1661,1662がそれぞれ対向し、この2Dヘッド1661,1662(すなわち、2次元エンコーダ170E、170F)によってウエハステージWST1,又はWST2のX、Y位置及びθz回転量が計測される。
 本第4の実施形態では、2Dヘッド1662,1661からさらに-Y側に所定距離隔てて、ヘッドユニット162C、162Dが、それぞれ設けられている。ヘッドユニット162C及び162Dは、図45等では図面の錯綜を避ける観点から図示が省略されているが、実際には、支持部材を介して、メインフレームに吊り下げ状態で固定されている。
 ヘッドユニット162Dは、ヘッドユニット162Bに属する5つの2Dヘッド641~645と同じX位置にそれぞれ配置された5つの2Dヘッド1671~1675を備えている。より詳細には、ヘッドユニット162Dは、セカンダリアライメント系AL21の-X側に配置され、前述の基準軸LA上に間隔WDで配置された4つの2Dヘッド1671~1674と、最も内側(+X側)の2Dヘッド1674から+X側に距離WD離れ、かつ基準軸LAから-Y側に所定距離離れたセカンダリアライメント系AL21の-Y側の位置に配置された1つの2Dヘッド1675とを備えている。
 ヘッドユニット162Cは、基準軸LV0に関して、ヘッドユニット162Dと対称であり、上記5つの2Dヘッド1675~1671と基準軸LV0に関して対称に配置された5つの2Dヘッド1681~1685を備えている。後述するアライメント動作の際などには、移動スケール39B,39Aに2Dヘッド167p,168q(p,q=1~5)が少なくとも各1つそれぞれ対向し、この2Dヘッド167,168(すなわち、これら2Dヘッド167,168によって構成される2次元エンコーダ170D、170C(図47参照))によってウエハステージWST1,又はWST2のX、Y位置及びθz回転量が計測される。ここで、セカンダリアライメント系AL21、AL24にX軸方向で隣接する2Dヘッド1674、1682のX軸方向の間隔は、前述の距離Lにほぼ等しく設定されている。
 また、本第4の実施形態では、例えば、国際公開第2007/097379号パンフレットなどに開示されているSec‐BCHK(インターバル)と同様の手順で、定期的にセカンダリアライメント系AL21~AL24のベースライン計測が行われる。このセカンダリアライメント系AL21~AL24のベースライン計測時に、上記2つの2Dヘッド1674、1682が、FDバー46の一対の基準格子52とそれぞれ対向し、その一対の基準格子52と対向する2Dヘッド1674,1682によって、FDバー46のY位置が、それぞれの基準格子52の位置で計測される。以下では、一対の基準格子52にそれぞれ対向する2Dヘッド1674,1682によって構成されるエンコーダをYリニアエンコーダ(適宜、「Yエンコーダ」又は「エンコーダ」とも略述する)170G,170H(図47参照)と呼ぶ。
 上述したエンコーダ170A~170Hは、例えば0.1nm程度の分解能で、ウエハステージWST1(又はWST2)の位置座標を計測し、その計測値を主制御装置20に供給する。主制御装置20は、エンコーダ170A及び170B、又は170C及び170D、又は170E及び170Fの計測値に基づいて、ウエハステージWST1(又はWST2)のXY平面内の位置(θz回転を含む)を制御するとともに、Yエンコーダ170G,170Hの計測値に基づいて、FDバー46(ウエハステージ)のθz回転を制御する。
 本第4の実施形態では、上述した2Dヘッド164i、165j、1661、1662、167p、168qとしては、例えばX軸方向及びY軸方向に配置された2対の固定スケールを有し、各対の固定スケールで2次元格子(移動スケール39A,39B)から発生する直交2軸方向の同一次数の回折光を、それぞれ共通のインデックスケールに集光する3格子回折干渉方式のエンコーダが用いられている。ただし、これに限らず、単一のヘッドで、ウエハテーブルのXY2次元方向の位置を計測できるのであれば、如何なる構成の2Dヘッドを用いても良い。
 本第4の実施形態の露光装置1000では、図45に示されるように、照射系90a及び受光系90bから成る、多点AF系が設けられている。ここでは、一例として、前述のヘッドユニット162Dの+Y側に照射系90aが配置され、これに対峙する状態で、前述のヘッドユニット162Cの+Y側に受光系90bが配置されている。照射系90aと受光系90bとは、基準軸LV0に関して対称の配置となっている。
 図45中では、それぞれ検出ビームが照射される複数の検出点が、個別に図示されず、照射系90a及び受光系90bの間でX軸方向に延びる細長い検出領域(ビーム領域)AFとして示されている。この検出領域AFは、X軸方向の長さがウエハ(W1,W2)の直径より幾分長く設定されているので、ウエハをY軸方向に1回スキャンするだけで、ウエハのほぼ全面でZ軸方向の位置情報(面位置情報)を計測できる。また、検出領域AFは、Y軸方向に関して、液浸領域14(露光領域IA)とアライメント系(AL1、AL21,AL22,AL23,AL24)の検出領域との間に配置されているので、多点AF系とアライメント系とでその検出動作を並行して行うことが可能となっている。多点AF系は、投影ユニットPUを保持するメインフレームなどに設けられている。
 多点AF系(90a,90b)の検出領域AFのY軸方向の中心を通るX軸方向の直線LFに関して、前述の一対のヘッドユニット162C、162Dとほぼ対称な配置で、一対のヘッドユニット162E、162Fが配置されている。ヘッドユニット162E、162Fは、不図示のメインフレームの下面に固定されている。ヘッドユニット162E、162Fは、基準軸LV0に関して対称な配置となっている。ヘッドユニット162Fは、前述のヘッドユニット162Dに属する2Dヘッド1671~1675と、直線LFに関して対称に配置された5つのZヘッド1711~1715を有している。また、ヘッドユニット162Eは、前述のヘッドユニット162Cに属する2Dヘッド1681~1685と、直線LFに関して対称に配置された5つのZヘッド1731~1735を有している。この場合、Zヘッド1711~1715と、Zヘッド1735~1731とは、基準線LV0に関して対称である。
 Zヘッド1711~1715及びZヘッド1731~1735としては、ウエハテーブルWTB1又はWTB2、具体的には移動スケール39A,39Bに対し上方から光を照射し、その反射光を受光してその光の照射点におけるウエハテーブルWTB1又はWTB2表面のZ軸方向の位置情報を計測するセンサヘッド、一例としてCDドライブ装置などで用いられる光ピックアップのような構成の光学式の変位センサのヘッドが用いられている。
 さらに、前述のヘッドユニット162B,162Aは、それぞれが備える5つのYヘッド164i,165j(i,j=1~5)と同じX位置に、ただしY位置をずらして、それぞれ5つのZヘッド74i,76j(i,j=1~5)を備えている。ここで、ヘッドユニット162A,162Bのそれぞれに属する外側の4つのZヘッド762~765,741~744は、基準軸LHから+Y方向に所定距離隔てて、基準軸LHと平行に配置されている。また、ヘッドユニット162A,162Bのそれぞれに属する最も内側のZヘッド761,745は、投影ユニットPUの+Y側に、配置されている。そして、ヘッドユニット162B,162Aのそれぞれに属する5つのZヘッド74i,76j(i,j=1~5)は、互いに基準軸LV0に関して対称に配置されている。
 上述したZヘッド1711~1715、Zヘッド1731~1735、Zヘッド741~745、及びZヘッド761~765は、図47に示されるように、信号処理・選択装置160を介して主制御装置20に接続されている。主制御装置20は、信号処理・選択装置160を介してZヘッド1711~1715、Zヘッド1731~1735、Zヘッド741~745、及びZヘッド761~765の中から任意のZヘッドを選択して作動状態とし、その作動状態としたZヘッドで検出した面位置情報を信号処理・選択装置160を介して受け取る。本第4の実施形態では、Zヘッド1711~1715、Zヘッド1731~1735、Zヘッド741~745、及びZヘッド761~765と、信号処理・選択装置160とを含んでウエハテーブルWTB1(又はWTB2)のZ軸方向及びXY平面に対する傾斜方向の位置情報を計測する面位置計測システム180が構成されている。
 さらに、本第4の実施形態の露光装置1000では、図45に示されるように、前述の2Dヘッド1661,1662相互間に、X軸方向に延びる周辺露光用アクティブマスク51aを有する周辺露光ユニット51(図8参照)が配置されている。周辺露光ユニット51は、不図示のメインフレームの下面に不図示の支持部材を介して吊り下げ状態で支持されている。この周辺露光ユニット51では、周辺露光用アクティブマスクの一対の可変成形マスクVM1,VM2を構成する各マイクロミラーをON状態とOFF状態とに切り替えることで、周辺露光ユニット51の下方に位置するウエハW1(又はW2)上の周辺ショットの任意の領域を露光することができる。なお、周辺露光ユニット51の周辺露光用アクティブマスク51aを、X方向に延びる単一の可変成形マスクによって構成しても良い。また、光源からの光に代えて、例えば光ファイバを用いて、照明光ILを周辺露光用アクティブマスクに導いても良い。
 周辺露光ユニット51によると、ウエハW1又はW2のX軸方向の中心と周辺露光ユニット51の長手方向の中心とがほぼ一致した状態で、ウエハステージWST1又はWST2をY軸方向に移動させることで、ウエハW1又はW2の任意の周辺露光領域(例えば、図13の領域S1a、S7a、S8a、S16a、S17a、S27a、S50a、S60a、S61a、S69a、S70a、S76a参照)を露光して任意のパターンを形成することができる。
 図47には、露光装置1000の制御系の主要な構成が示されている。この制御系は、装置全体を統括的に制御するマイクロコンピュータ(又はワークステーション)から成る主制御装置20を中心として構成されている。なお、図47においては、前述した照度むらセンサ94、照度モニタ97及び波面収差計測器98などの各種センサが、纏めてセンサ群99として示されている。
 次に、図48~図76に基づいて、ウエハステージWST1,WST2を用いた並行処理動作について、説明する。なお、以下の動作中、主制御装置20によって、液体供給装置5と液体回収装置6が制御され、液体Lqが、投影光学系PLの先端レンズ191の直下に供給されるとともに、先端レンズ191の直下から回収され、一定量の液体Lqが先端レンズ191とウエハテーブルWTB1及び/又はWTB2との間に保持されることにより、常時、液浸領域14が形成されている。しかし、以下では、説明を分かり易くするため、液体供給装置5及び液体回収装置6の制御に関する説明は省略する。また、以後の動作説明は、多数の図面を用いて行うが、図面毎に同一の部材に符号が付されていたり、付されていなかったりしている。すなわち、図面毎に、記載している符号が異なっているが、それら図面は符号の有無に関わらず、同一構成である。これまでに説明に用いた、各図面についても同様である。なお、図48~図76において、図示の便宜上から、液浸領域14のみを図示し、投影ユニットPU(投影光学系PL)及び局所液浸装置8(ノズルユニット32)などの図示は省略されている。
 図48には、液浸領域14(投影ユニットPU)の下方において、ウエハステージWST2上に保持されたウエハW2に対して、ステップ・アンド・スキャン方式の露光が行われ、これと並行して、左側ローディングポジションにおいて、ウエハ搬送機構(不図示)とウエハステージWST1との間でウエハ交換、及びウエハホルダの冷却その他の露光のための準備作業(以下、Pit作業と呼ぶ)が完了したときの状態が示されている。このとき、ウエハテーブルWTB1の位置は、Y干渉計208とX干渉計229との計測値に基づいて、主制御装置20によって管理されている。また、このとき、ウエハテーブルWTB2のXY平面内の位置(θz方向の回転量を含む)は、ウエハテーブルWTB2の移動スケール39A、39Bにそれぞれ対向するヘッドユニット162A,162Bに属する2Dヘッド165j、164i(すなわち2次元エンコーダ170A、170B)の計測値に基づいて、主制御装置20によって制御されている。
 また、露光中のウエハテーブルWTB2のZ軸方向の位置、及びθy方向の回転(ローリング)は、ウエハテーブルWTB2表面のX軸方向一側と他側の端部(移動スケール39B、39A)にそれぞれ対向する一対のZヘッド74i,76jの計測値に基づいて、主制御装置20により制御されている。また、露光中のウエハテーブルWTB2のθx方向の回転(ピッチング)は、Y干渉計207の計測値に基づいて、主制御装置20により制御されている。この露光中のウエハテーブルWTB2のZ軸方向の位置,θy回転及びθx回転の制御(ウエハWのフォーカス・レベリング制御)は、事前に行われたフォーカスマッピングの結果に基づいて行われる。さらに、ウエハテーブルWTB2のZ軸方向を除く、5自由度方向の位置は、干渉計207、227によっても計測されている。
 上記の露光動作は、主制御装置20により、事前に行われたウエハアライメント(例えばEGA)の結果及びアライメント系AL1,AL21~AL24の最新のベースライン等に基づいて、ウエハW2上の各ショット領域の露光のための走査開始位置(加速開始位置)へウエハステージWST2が移動されるショット間移動動作と、レチクルRに形成されたパターンを走査露光方式で各ショット領域に転写する走査露光動作とを繰り返すことにより、行われる。なお、ウエハW2上の露光対象のショット領域の行数が、偶数行であり、上記の露光は、いわゆる完全交互スキャンにより、図48における左上に位置するショット領域から左下に位置するショット領域の順で行われる。
 上述のように、ウエハテーブルWTB2上のウエハW2に対するステップ・アンド・スキャン方式の露光が続行されている間に、主制御装置20により、図49に示されるようにウエハステージWST1の+X方向への駆動が開始される。そして、ウエハステージWST1は、図50に示される、計測プレート30上の基準マークFMがプライマリアライメント系AL1の視野(検出領域)内に位置決めされる位置へ移動される。この移動の途中で、主制御装置20により、ウエハテーブルWTB1のXY平面内の位置の制御が、前述の干渉計208、229の計測値に基づく制御から、ウエハテーブルWTB1の移動スケール39B,39Aに対向するヘッドユニット162D,162Cにそれぞれ属する2Dヘッド167p、168q(p,q=1~5)、すなわち2次元エンコーダ170D,170Cの計測値に基づく制御に切り換えられる。
 そして、図50に示される位置にウエハステージWST1が移動すると、主制御装置20は、新しいウエハW1に対するウエハアライメント(及びその他の前処理計測)の開始に先立って、Y干渉計209及びX干渉計229、並びに2次元エンコーダ170D,170Cのリセット(原点の再設定)を実行する。
 干渉計209,229、及び2次元エンコーダ170D,170Cのリセットが終了すると、主制御装置20は、プライマリアライメント系AL1を用いてウエハステージWST1の計測プレート30上の基準マークFMを検出する。そして、主制御装置20は、プライマリアライメント系AL1の指標中心を基準とする基準マークFMの位置を検出し、その検出結果と、検出時におけるエンコーダ170C,170Dの計測値とを対応付けてメモリに記憶する。
 次に、主制御装置20は、ウエハステージWST1の+Y方向への走査(スキャン)を開始し、図51に示されるように、アライメント領域に移動させる。そして、主制御装置20は、エンコーダ170C,170D(及び干渉計209,229)を用いて、ウエハステージWST2の位置座標を計測しつつ、エンハンスト・グローバル・アライメント(EGA)を開始する。詳述すると、主制御装置20は、ウエハステージWST1をX軸方向に移動させるとともに、Y軸方向に関してステップ移動させつつ、ステップ位置毎に、プライマリアライメント系AL1を含む少なくとも1つのアライメント系を用いて、ウエハW1上の特定の複数のショット領域(サンプルショット領域)に付設された複数のアライメントマークの一部を検出し、その検出結果と検出時におけるエンコーダ170C,170Dの計測値とを関連付けて不図示のメモリに格納する。
 図51には、プライマリアライメント系AL1,セカンダリアライメント系AL22,AL23,AL24を用いて、4つのサンプルショット領域に付設されたアライメントマークをほぼ同時にかつ個別に検出している様子が示されている(図51中の星マーク参照)。このとき、ウエハステージWST2上に保持されたウエハW2に対するステップ・アンド・スキャン方式の露光は続行されている。
 主制御装置20は、上述のウエハステージWST1の+Y方向への走査(スキャン)開始後、ウエハステージWST1が+Y方向に移動して、多点AF系(90a,90b)の検出ビームがウエハW1上に掛かり始めるまでの間に、移動スケール39B,39Aにそれぞれ対向する2つZヘッド171p,173q(例えば1713,1733)と多点AF系(90a,90b)とを共に作動させ(ONにし)、フォーカスマッピングを開始する。
 ここで、本第4の実施形態におけるフォーカスマッピングとは、Zヘッド171p,173qと多点AF系(90a,90b)とが同時に作動している状態で、ウエハステージWST1(又はWST2)が+Y方向へ進行している間に(図51~図55参照)、所定のサンプリング間隔で、Zヘッド171p,173qで計測されるウエハテーブルWTB1(又はWTB2)表面(プレート28の表面、具体的には移動スケール39B,39Aの表面)のZ軸方向に関する位置情報(面位置情報)と、多点AF系(90a,90b)で検出される複数の検出点におけるウエハW1(又はW2)表面のZ軸方向に関する位置情報(面位置情報)とを、取り込み、その取り込んだ各面位置情報と各サンプリング時のエンコーダ170C,170Dの計測値との三者を相互に対応付けて不図示のメモリに逐次格納する処理を指す。
 フォーカスマッピングの開始後、主制御装置20は、エンコーダ170C,170Dの計測値に基づいて、ウエハステージWST1を+Y方向に所定距離移動させ、かつ-X方向に所定距離移動させて、図52に示される、5つのアライメント系AL1,AL21~AL24がウエハW上の5つのサンプルショット領域に付設されたアライメントマークをほぼ同時にかつ個別に検出可能となる位置に位置決めする。そして、主制御装置20は、5つのアライメント系AL1,AL21~AL24を用いて、5つのアライメントマークをほぼ同時にかつ個別に検出し(図52中の星マーク参照)、上記5つのアライメント系AL1,AL21~AL24の検出結果とその検出時のエンコーダ170C,170Dの計測値とを関連付けて不図示のメモリに格納する。このとき、前述のウエハステージWST1側のフォーカスマッピング、及びウエハステージWST2上のウエハW2に対するステップ・アンド・スキャン方式の露光は続行されている。
 次に、主制御装置20は、エンコーダ170C,170Dの計測値に基づいて、ウエハステージWST1を+Y方向に所定距離移動させ、かつ+X方向に所定距離移動させて、図53に示される、5つのアライメント系AL1,AL21~AL24がウエハW上の5つのサンプルショット領域に付設されたアライメントマークをほぼ同時にかつ個別に検出可能となる位置に位置決めする。そして、主制御装置20は、5つのアライメント系AL1,AL21~AL24を用いて、5つのアライメントマークをほぼ同時にかつ個別に検出し(図53中の星マーク参照)、上記5つのアライメント系AL1,AL21~AL24の検出結果とその検出時のエンコーダ170C,170Dの計測値とを関連付けて不図示のメモリに格納する。このとき、前述のウエハステージWST1側のフォーカスマッピング、及びウエハステージWST2のウエハW2に対するステップ・アンド・スキャン方式の露光は続行されている。
 次に、主制御装置20は、エンコーダ170C,170Dの計測値に基づいて、ウエハステージWST1を+Y方向に所定距離移動させ、かつ-X方向に所定距離移動させて、図54に示される、5つのアライメント系AL1,AL21~AL24がウエハW上の5つのサンプルショット領域に付設されたアライメントマークをほぼ同時にかつ個別に検出可能となる位置に位置決めする。そして、主制御装置20は、5つのアライメント系AL1,AL21~AL24を用いて、5つのアライメントマークをほぼ同時にかつ個別に検出し(図54中の星マーク参照)、上記5つのアライメント系AL1,AL21~AL24の検出結果とその検出時のエンコーダ170C,170Dの計測値とを関連付けて不図示のメモリに格納する。このとき、X干渉計218からの測長ビームがウエハテーブルWTB1の反射面27cに当たり始めるので、主制御装置20は、このときのX干渉計229の計測値(又はエンコーダ170C,170Dの計測値)に基づいて、X干渉計218をプリセットする。これにより、以後、X干渉計218によってもウエハテーブルWTB1のX位置及びθy方向の回転量(ローリング量)の計測が可能になる。このとき、前述のウエハステージWST1側のフォーカスマッピング、及びウエハステージWST2上のウエハW2に対するステップ・アンド・スキャン方式の露光は続行されている。
 次に、主制御装置20は、エンコーダ170C,170Dの計測値に基づいて、ウエハステージWSTを+Y方向に所定距離移動させ、かつ+X方向に所定距離移動させて、図55に示されるアライメント系AL1,AL23がウエハW上の最後の2つのサンプルショット領域に付設されたアライメントマークをほぼ同時にかつ個別に検出可能となる位置に位置決めする。そして、主制御装置20は、2つのアライメント系AL1,AL23を用いて、2つのアライメントマークをほぼ同時にかつ個別に検出し(図55中の星マーク参照)、上記2つのアライメント系AL1,AL23の検出結果とその検出時のエンコーダ170C,170Dの計測値とを関連付けて不図示のメモリに格納する。このとき、ウエハステージWST2上のウエハW2に対するステップ・アンド・スキャン方式の露光が終了する。ただし、この時点では、前述のウエハステージWST1側のフォーカスマッピングは続行されている。ウエハW2に対する露光終了位置にウエハステージWST2が到達する前に、X干渉計226からの測長ビームがウエハテーブルWTB2の反射面27eに当たり始めるので主制御装置20は、X干渉計227の計測値(又はエンコーダ170A,170Bの計測値)に基づいて、X干渉計226をプリセットする。
 上記の露光が終了するのに先だって、主制御装置20は、周辺露光ユニット51を用いて、ウエハW1に対する走査露光方式の周辺露光(周辺スキャン露光)を開始する(図55参照)。この周辺露光が開始される時点では、図55からもわかるように、2Dヘッド1662,1661が、移動スケール39A,39Bに対向しているので、以後、主制御装置20は、2Dヘッド1662,1661、すなわち、エンコーダ170E,170Fの計測値に基づく、ウエハステージWST1のXY平面内の位置情報の計測も開始する。
 次いで、主制御装置20は、周辺スキャン露光を続行しつつ、図56に示される第1のスクラム開始位置に、ウエハステージWST2及びウエハステージWST1を移動させる。これに先立って、ウエハステージWST1のXY平面内の位置情報の計測に用いられるエンコーダは、エンコーダ170C,170Dからエンコーダ170E、170Fに切り替えられている。
 そして、ウエハステージWST1,WST2が、第1のスクラム開始位置に、到達すると、主制御装置20は、多点AF系(90a,90b)(及びZヘッド171p,173q)の作動を停止して(OFFにして)、フォーカスマッピングを終了し、多点AF系(90a,90b)の各検出点についての面位置情報を、同時に取り込んだZヘッド171p,173qによる面位置情報を基準とするデータに換算する。この場合の換算は、例えば国際公開第2007/097379号パンフレットに開示される方法と同様の方法で行われる。
 このようにして、予め上記の換算データを取得しておくことで、例えば、露光の際などには、前述のZヘッド74i、76jでウエハテーブルWTB1表面(スケール39B,39Aがそれぞれ形成された領域上の点)を計測して、ウエハテーブルWTB1のZ位置とXY平面に対する傾斜量(主としてθy回転量)を算出する。この算出したウエハテーブルWTB1のZ位置とXY平面に対する傾斜と前述の換算データを用いることで、ウエハ表面の面位置情報を実際に取得することなく、ウエハW上面の面位置制御が可能になる。
 上記のフォーカスマッピングが終了した時点では、EGAも終了しているので、主制御装置20は、それまでに得た複数のアライメントマークの検出結果と対応する上記2つのエンコーダ170C,170Dの計測値と、予め計測したセカンダリアライメント系AL2nのベースラインとを用いて、例えば米国特許第4,780,617号明細書などに開示されるEGA方式にて統計演算を行って、上記2つのエンコーダ170C,170D(2つのヘッドユニット162C,162D)の計測軸で規定される座標系(例えば、プライマリアライメント系AL1の検出中心を原点とするXY座標系(アライメント座標系))上におけるウエハW1上の全てのショット領域の配列(位置座標)を算出する。
 このように、本第4の実施形態では、主制御装置20は、ウエハステージWST1を+Y方向に移動させつつ、X軸方向にジグザグ状に往復移動させ、その移動経路上における複数箇所にウエハステージWST1を位置決めして、位置決めの都度、5つのアライメント系AL1、AL21~AL24のうちの少なくとも2つを同時に用いてアライメントマークを検出する。従って、本第4の実施形態によると、ウエハW1上の複数のサンプルショット領域におけるアライメントマークの位置情報を、単一のアライメント系によりアライメントマークを順次検出する場合などに比べて、格段に短時間で得ることができる。従って、ウエハW1上の全てのショット領域をサンプルショット領域とする場合であっても、短時間での計測が可能である。
 そして、両ウエハステージWST1、WST2が第1のスクラム開始位置に移動した状態では、ウエハテーブルWTB1のセンターラインが基準軸LV0にほぼ一致し、かつウエハテーブルWTB2のセンターラインが、基準軸LV0から所定距離(第1のオフセット量)+X側にずれた状態で、ウエハテーブルWTB2の-Y端面(計測部138の-Y端面)とウエハテーブルWTB1の+Y端面(FDバー46の+Y端面)とが接触(あるいは例えば300μm程度のクリアランスを介して近接)するスクラム状態となる。すなわち、このスクラム状態では、ウエハテーブルWTB2の一部を構成する計測部138の-Y側端とウエハテーブルWTB1の一部を構成するFDバー46の+Y側端とが接触(又は近接)することで、ウエハステージWST1の+Y側の面とウエハステージWST2の-Y側の面とが一部対向した状態で、ウエハステージWST1とウエハステージWST2とが、FDバー46及び計測部138を介して、Y軸方向に関して接触(又は近接)することができるようになっている。
 ウエハテーブルWTB2の計測部138のY軸方向の長さと、ウエハテーブルWTB1のFDバー46のY軸方向の長さとの合計は、計測部138とFDバー46とが接触した状態において、ウエハステージWST1とウエハステージWST2とが接触する(より正確には、ウエハステージWST1のエアスライダ54の+Y側端と、ウエハステージWST2のエアスライダ54の-Y側端とが接触する)のを阻止できる程度の長さに設定されている。
 主制御装置20は、上記のスクラム状態を保ったまま、エンコーダ170E,170Fの計測値に基づいて、ウエハステージWST1を+Y方向に駆動すると同時にウエハステージWST2を干渉計207,226の計測値に基づいて、図57中の白抜き太矢印で示されるように、+Y方向かつ+X方向に駆動する。この両ウエハステージWST1,WST2の移動中も、周辺スキャン露光は続行されている。
 ウエハステージWST1,WST2が、スクラム状態を保ったまま上述のそれぞれの移動方向に移動するに伴い、先端レンズ191とウエハテーブルWTB2との間に形成されていた液浸領域14は、ウエハテーブルWTB2上からウエハテーブルWTB1上へ移動する。図57には、この移動の途中で、液浸領域14がウエハテーブルWTB2上から該ウエハテーブルWTB2の計測部138、及びウエハテーブルWTB1のFDバー46を介して、ウエハテーブルWTB1のテーブル本体34上へ渡される直前の両ウエハステージWST1,WST2の状態が示されている。
 液浸領域14のウエハテーブルWTB1(テーブル本体34)上への移動が完了し、図58に示される位置(計測プレート30が投影光学系PLの直下に位置する位置)にウエハステージWST1が達すると、主制御装置20は、両ウエハステージWST1,WST2の+Y方向に関する駆動力をゼロにする。これにより、ウエハステージWST1は停止され、ウエハステージWST2は、図58中の白抜き太矢印で示されるように、+X方向への駆動が開始されることとなる。
 次に、主制御装置20は、投影光学系PLによって投影されたレチクルR上の一対の計測マークの投影像(空間像)を、ウエハステージWST1の計測プレート30を含む前述した空間像計測装置45Aを用いて計測する。例えば、前述の米国特許出願公開第2002/0041377号明細書などに開示される方法と同様に、一対の空間像計測スリットパターンSLを用いたスリットスキャン方式の空間像計測動作にて、一対の計測マークの空間像をそれぞれ計測し、その計測結果(ウエハテーブルWTB1のXY位置に応じた空間像強度)をメモリに記憶する。このレチクルR上の一対の計測マークの空間像の計測処理に際しては、ウエハテーブルWTB1のXY平面内の位置は、Xスケール39B,39Aに対向する2つの2Dヘッド164i,165j(エンコーダ170B,170A)に基づいて制御されている。
 ところで、ウエハステージWST2の+X方向への駆動開始に先立って、ウエハテーブルWTB2の反射面27fに、Y干渉計207からの測長ビームが当たっている段階で、Y干渉計206からの測長ビームも反射面27fに当たり始める。そこで、主制御装置20は、Y干渉計206からの測長ビームが反射面27fに当たり始めた直後に、Y干渉計207の計測値に基づいて、Y干渉計206をプリセットしている。このプリセットが行われた時点以後、ウエハテーブルWTB2の位置は、図58に示されるように、干渉計206、226の計測値に基づいて、主制御装置20によって制御される。
 一方、図58に示される位置に、ウエハステージWST1,WST2が移動した段階では、X干渉計217からの測長ビームがウエハテーブルWTB1の反射面27cに当たるとともに、Y干渉計207からの測長ビームがウエハテーブルWTB1の反射面27bに当たるようになる。そこで、主制御装置20は、X干渉計218の計測値に基づいて、X干渉計217をプリセットするとともに、Y干渉計209の計測値に基づいて、Y干渉計207をプリセットする。あるいは、主制御装置20は、エンコーダ170B,170Aの計測値に基づいて、干渉計207,217をプリセットする。いずれにしても、この時点以後、主制御装置20は、ウエハテーブルWTB1の位置情報を干渉計207、217を用いて計測する。勿論、ウエハテーブルWTB1のXY平面内の位置の制御は、エンコーダ170B,170Aの計測値に基づいて行われる。
 そして、主制御装置20は、上述の空間像計測動作を行うのと並行して、ウエハステージWST2を、図59に示される位置まで移動させる。
 そして、空間像計測動作が終了すると、主制御装置20は、前述のプライマリアライメント系AL1を用いてウエハステージWST1の計測プレート30上の基準マークFMを検出した際の検出結果と上記の空間像の計測結果とに基づいて、プライマリアライメント系AL1のベースラインを算出する。このとき、前述のウエハW1の周辺露光は、続行されている。
 次に、主制御装置20は、図60に示されるように、ウエハW1の周辺露光を続行しつつ、ウエハステージWST1を、ウエハW1に対する露光開始位置に移動させるとともに、図61に示される右側ローディングポジションに向けてのウエハステージWST2の-Y方向の移動を開始する。ウエハW1の露光が開始された時点では、周辺露光は終了している。
 上記のウエハW1の露光動作は、主制御装置20により、事前に行われたウエハアライメント(前述のEGA)の結果及びアライメント系AL1,AL21~AL24の最新のベースライン等に基づいて、ウエハW1上の各ショット領域の露光のための走査開始位置(加速開始位置)へウエハステージWST1が移動されるショット間移動動作と、レチクルRに形成されたパターンを走査露光方式で各ショット領域に転写する走査露光動作とを繰り返すことにより、行われる。なお、ウエハW1上の露光対象のショット領域の行数が、偶数行であり、上記の露光は、いわゆる完全交互スキャンにより、図60における右上に位置するショット領域から右下に位置するショット領域の順で行われる。
 なお、ウエハW1の露光動作中、ウエハテーブルWTB1のXY平面内の位置(θz方向の回転を含む)は、移動スケール39A、39Bにそれぞれ対向するヘッドユニット162A,162Bに属する2Dヘッド165j、164i(すなわち2次元エンコーダ170A、170B)の計測値に基づいて、主制御装置20によって制御されている。また、露光中のウエハテーブルWTB1のZ軸方向の位置、及びθy回転(ローリング)は、ウエハテーブルWTB1表面のX軸方向一側と他側の端部(移動スケール39B、39A)にそれぞれ対向する一対のZヘッド74i,76jの計測値に基づいて、主制御装置20により制御されている。また、露光中のウエハテーブルWTB1のθx方向の回転(ピッチング)は、Y干渉計207の計測値に基づいて、主制御装置20により制御されている。この露光中のウエハテーブルWTB1のZ軸方向の位置,θy回転及びθx回転の制御(ウエハWのフォーカス・レベリング制御)は、前述のフォーカスマッピングの結果に基づいて行われる。また、ウエハテーブルWTB1のZ軸方向を除く、5自由度方向の位置は、干渉計207、217によっても計測されている。
 図60からも明らかなように、右側ローディングポジションに向けてのウエハステージWST2の移動の途中で、X干渉計226からの測長ビームがウエハテーブルWTB2の反射面27eに当たらなくなるが、それに先立ち、X干渉計226からの測長ビームが反射面27eに当たっているときに、X干渉計227からの測長ビームが反射面27eに当たり始める。そこで、主制御装置20は、X干渉計226の計測値に基づいて、X干渉計227の計測値をプリセットしている。
 図60に示される位置から、さらに-Y方向にウエハステージWST2が移動すると、X干渉計228からの測長ビームが反射面27eに当たり始める。そこで、主制御装置20は、X干渉計227からの測長ビームが反射面27eに当たっている間に、X干渉計227の計測値に基づいて、X干渉計228の計測値をプリセットする。
 さらに、-Y方向にウエハステージWST2が移動すると、X干渉計229からの測長ビームが反射面27eに当たり始める。そこで、主制御装置20は、X干渉計228からの測長ビームが反射面27eに当たっている間に、X干渉計228の計測値に基づいて、X干渉計229の計測値をプリセットする。
 主制御装置20は、上述のように、位置制御に用いるX干渉計を切り替えつつ、ウエハステージWST2を、右側ローディングポジションに向かって駆動するのと並行して、ウエハW1に対するステップ・アンド・スキャン方式の露光動作を続行している。
 そして、図61に示される、右側ローディングポジションにウエハステージWST2が到達すると、主制御装置20は、右側ローディングポジションにおいて、Pit作業を開始する。
 図62には、右側ローディングポジションにおいて、Pit作業(ウエハ搬送機構(不図示)とウエハステージWST2との間でウエハ交換、及びウエハホルダの冷却その他の露光のための準備作業)が行われ、これと並行して、投影ユニットPUの下方において、ウエハステージWST1上に保持されたウエハW1に対して、ステップ・アンド・スキャン方式の露光が行われている状態が示されている。このとき、ウエハテーブルWTB2の位置は、Y干渉計206とX干渉計229との計測値に基づいて、主制御装置20によって管理されている。
 上述のように、ウエハテーブルWTB1上のウエハW1に対するステップ・アンド・スキャン方式の露光が続行されている間に、主制御装置20により、図63に示されるように、Pit作業が完了したウエハステージWST2の-X方向への駆動が開始される。そして、ウエハステージWST2は、図64に示される、計測プレート30上の基準マークFMがプライマリアライメント系AL1の視野(検出領域)内に位置決めされる位置へ移動される。この移動の途中で、主制御装置20により、ウエハテーブルWTB2のXY平面内の位置の制御が、前述の干渉計206、229の計測値に基づく制御から、ウエハテーブルWTB2の移動スケール39B,39Aに対向するヘッドユニット162D,162Cにそれぞれ属する2Dヘッド167p、168q、すなわち2次元エンコーダ170D,170Cの計測値に基づく制御に切り換えられる。
 そして、図64に示される位置にウエハステージWST2が移動すると、主制御装置20は、新しいウエハW2に対するウエハアライメント(及びその他の前処理計測)の開始に先立って、Y干渉計209及びX干渉計229、並びに2次元エンコーダ170D,170Cのリセット(原点の再設定)を実行する。
 干渉計209,229のリセットが終了すると、主制御装置20は、プライマリアライメント系AL1を用いてウエハステージWST2の計測プレート30上の基準マークFMを検出する。そして、主制御装置20は、プライマリアライメント系AL1の指標中心を基準とする基準マークFMの位置を検出し、その検出結果と、検出時におけるエンコーダ170C,170Dの計測値とを対応付けてメモリに記憶する。
 次に、主制御装置20は、ウエハステージWST2の+Y方向への走査(スキャン)を開始し、図65に示されるように、アライメント領域に移動させる。そして、主制御装置20は、エンコーダ170C,170D(及び干渉計209,229)を用いて、ウエハステージWST2の位置座標を計測しつつ、前述と同様のEGAを開始する。
 図65には、主制御装置20により、プライマリアライメント系AL1,セカンダリアライメント系AL22,AL23を用いて、3つのサンプルショット領域に付設されたアライメントマークがほぼ同時にかつ個別に検出されている様子が示されている(図65中の星マーク参照)。このとき、ウエハステージWST1上に保持されたウエハW1に対するステップ・アンド・スキャン方式の露光は続行されている。
 主制御装置20は、上述のウエハステージWST2の+Y方向への走査(スキャン)開始後、ウエハステージWST2が+Y方向に移動して、多点AF系(90a,90b)の検出ビームがウエハW1上に掛かり始めるまでの間に、Zヘッド171p,173qと多点AF系(90a,90b)とを共に作動させ(ONにし)、前述と同様のフォーカスマッピングを開始する。
 フォーカスマッピングの開始後、主制御装置20は、エンコーダ170C,170Dの計測値に基づいて、ウエハステージWST2を+Y方向に所定距離移動させ、かつ+X方向に所定距離移動させて、図66に示される位置に位置決めする。そして、主制御装置20は、5つのアライメント系AL1,AL21~AL24を用いて、5つのアライメントマークをほぼ同時にかつ個別に検出し(図66中の星マーク参照)、上記5つのアライメント系AL1,AL21~AL24の検出結果とその検出時のエンコーダ170C,170Dの計測値とを関連付けて不図示のメモリに格納する。このとき、前述のウエハステージWST2側のフォーカスマッピング、及びウエハステージWST1上のウエハW1に対するステップ・アンド・スキャン方式の露光は続行されている。
 次に、主制御装置20は、エンコーダ170C,170Dの計測値に基づいて、ウエハステージWSTを+Y方向に所定距離移動させ、かつ-X方向に所定距離移動させて、図67に示される位置に位置決めする。そして、主制御装置20は、5つのアライメント系AL1,AL21~AL24を用いて、5つのアライメントマークをほぼ同時にかつ個別に検出し(図67中の星マーク参照)、上記5つのアライメント系AL1,AL21~AL24の検出結果とその検出時のエンコーダ170C,170Dの計測値とを関連付けて不図示のメモリに格納する。このとき、前述のウエハステージWST2側のフォーカスマッピング、及びウエハステージWST1上のウエハW1に対するステップ・アンド・スキャン方式の露光は続行されている。
 次に、主制御装置20は、エンコーダ170C,170Dの計測値に基づいて、ウエハステージWST2を+Y方向に所定距離移動させ、かつ+X方向に所定距離移動させて、図68に示される位置に位置決めする。そして、主制御装置20は、5つのアライメント系AL1,AL21~AL24を用いて、5つのアライメントマークをほぼ同時にかつ個別に検出し(図68中の星マーク参照)、上記5つのアライメント系AL1,AL21~AL24の検出結果とその検出時のエンコーダ170C,170Dの計測値とを関連付けて不図示のメモリに格納する。このとき、X干渉計228からの測長ビームがウエハテーブルWTB2の反射面27eに当たり始めるので、主制御装置20は、このときのX干渉計229の計測値に基づいて、X干渉計228をプリセットする。これにより、以後、X干渉計228によってもウエハテーブルWTB2のX位置及びθy方向の回転量(ローリング量)の計測が可能になる。このとき、前述のウエハステージWST2側のフォーカスマッピング、及びウエハステージWST1上のウエハW1に対するステップ・アンド・スキャン方式の露光は続行されている。
 次に、主制御装置20は、エンコーダ170C,170Dの計測値に基づいて、ウエハステージWST2を+Y方向に所定距離移動させ、かつ-X方向に所定距離移動させて、図69に示される位置に位置決めする。そして、主制御装置20は、2つのアライメント系AL1,AL22を用いて、2つのアライメントマークをほぼ同時にかつ個別に検出し(図69中の星マーク参照)、上記2つのアライメント系AL1,AL22の検出結果とその検出時のエンコーダ170C,170Dの計測値とを関連付けて不図示のメモリに格納する。このとき、ウエハステージWST1上のウエハW1に対する、ステップ・アンド・スキャン方式の露光が終了する。ただし、この時点では、前述のウエハステージWST2側のフォーカスマッピングは続行されている。ウエハW1に対する、露光終了位置にウエハステージWST1が到達する前に、X干渉計226からの測長ビームがウエハテーブルWTB1の反射面27aに当たり始めるので主制御装置20は、X干渉計217の計測値(又はエンコーダ170A,170Bの計測値)に基づいて、X干渉計226をプリセットする。
 上記の露光終了に先だって、主制御装置20は、周辺露光ユニット51を用いて、ウエハW2に対する周辺スキャン露光を開始する(図69参照)。この周辺露光が開始される時点では、図69からもわかるように、2Dヘッド1662,1661が、移動スケール39A,39Bに対向しているので、以後、主制御装置20は、2Dヘッド1662,1661、すなわち、エンコーダ170E,170Fの計測値に基づく、ウエハステージWST2のXY平面内の位置情報の計測も開始する。
 次いで、主制御装置20は、周辺スキャン露光を続行しつつ、図70に示される第2のスクラム開始位置に、ウエハステージWST1及びウエハステージWST2を移動させる。これに先立って、ウエハステージWST2のXY平面内の位置情報の計測に用いられるエンコーダは、エンコーダ170C,170Dからエンコーダ170E、170Fに切り替えられている。
 そして、ウエハステージWST1,WST2が、第2のスクラム開始位置に到達すると、主制御装置20は、フォーカスマッピングを終了し、多点AF系(90a,90b)の各検出点についての面位置情報を、同時に取り込んだZヘッ171p,173qによる面位置情報を基準とするデータに前述と同様にして換算する。
 上記のフォーカスマッピングが終了した時点では、EGAも終了しているので、主制御装置20は、それまでに得た複数のアライメントマークの検出結果と対応する上記2つのエンコーダ170C,170Dの計測値と、予め計測したセカンダリアライメント系AL2nのベースラインとを用いて、EGA方式にて統計演算を行って、上記2つのエンコーダ(2つのヘッドユニット)の計測軸で規定される座標系(例えば、プライマリアライメント系AL1の検出中心を原点とするXY座標系(アライメント座標系))上におけるウエハW1上の全てのショット領域の配列(位置座標)を算出する。
 ここで、両ウエハステージWST1、WST2が第2のスクラム開始位置に移動した状態では、ウエハテーブルWTB2のセンターラインが基準軸LV0にほぼ一致し、かつウエハテーブルWTB1のセンターラインが、基準軸LV0から所定距離(第2のオフセット量)-X側にずれた状態で、ウエハテーブルWTB1の-Y端面(計測部138の-Y端面)とウエハテーブルWTB2の+Y端面(FDバー46の+Y端面)とが接触(あるいは例えば300μm程度のクリアランスを介して近接)するスクラム状態となる。すなわち、このスクラム状態では、ウエハテーブルWTB1の一部を構成する計測部138の-Y側端とウエハテーブルWTB2の一部を構成するFDバー46の+Y側端とが接触(又は近接)することで、ウエハステージWST2の+Y側の面とウエハステージWST1の-Y側の面とが一部対向した状態で、ウエハステージWST2とウエハステージWST1とが、FDバー46及び計測部138を介して、Y軸方向に関して接触(又は近接)することができるようになっている。ここで、第2のオフセット量は、前述の第1のオフセット量と同じ距離に定められている。
 ウエハテーブルWTB1の計測部138のY軸方向の長さと、ウエハテーブルWTB2のFDバー46のY軸方向の長さとの合計は、計測部138とFDバー46とが接触した状態において、ウエハステージWST2とウエハステージWST1とが接触する(より正確には、ウエハステージWST2のエアスライダ54の+Y側端と、ウエハステージWST1のエアスライダ54の-Y側端とが接触する)のを阻止できる程度の長さに設定されている。
 主制御装置20は、上記のスクラム状態を保ったまま、エンコーダ170E,170Fの計測値に基づいて、ウエハステージWST2を+Y方向に駆動すると同時にウエハステージWST1を干渉計207,226の計測値に基づいて、図71中の白抜き太矢印で示されるように、+Y方向かつ-X方向に駆動する。この両ウエハステージWST1,WST2の移動中も、周辺スキャン露光は続行されている。
 ウエハステージWST1,WST2が、スクラム状態を保ったまま上述のそれぞれの移動方向に移動するに伴い、先端レンズ191とウエハテーブルWTB1との間に形成されていた液浸領域14は、ウエハテーブルWTB1上からウエハテーブルWTB2上へ移動する。図71には、この移動の途中で、液浸領域14がウエハテーブルWTB1上から該ウエハテーブルWTB1の計測部138、及びウエハテーブルWTB2のFDバー46を介して、ウエハテーブルWTB2のテーブル本体34上へ渡される直前の両ウエハステージWST1,WST2の状態が示されている。
 液浸領域14のウエハテーブルWTB2(テーブル本体34)上への移動が完了し、図72に示される位置(計測プレート30が投影光学系PLの直下に位置する位置)にウエハステージWST2が達すると、主制御装置20は、両ウエハステージWST1,WST2の+Y方向に関する駆動力をゼロにする。これにより、ウエハステージWST2は停止され、ウエハステージWST1は、図72中の白抜き太矢印で示されるように、-X方向への駆動が開始されることとなる。
 次に、主制御装置20は、投影光学系PLによって投影されたレチクルR上の一対の計測マークの投影像(空間像)を、ウエハステージWST2の計測プレート30を含む前述した空間像計測装置45Bを用いて前述と同様にして計測する。この空間像の計測処理に際しては、ウエハテーブルWTB2のXY平面内の位置は、Xスケール39A,39Bに対向する2つの2Dヘッド165j,164i(エンコーダ170B,170A)に基づいて制御されている。
 ところで、ウエハステージWST1の-X方向への駆動開始に先立って、ウエハテーブルWTB1の反射面27bに、Y干渉計207からの測長ビームが当たっている段階で、Y干渉計208からの測長ビームも反射面27bに当たり始める。そこで、主制御装置20は、Y干渉計208からの測長ビームが反射面27bに当たり始めた直後に、Y干渉計207の計測値に基づいて、Y干渉計208をプリセットしている。このプリセットが行われた時点以後、ウエハテーブルWTB1の位置は、図72に示されるように、干渉計208、226の計測値に基づいて、主制御装置20によって制御される。
 一方、図72に示される位置に、ウエハステージWST1,WST2が移動した段階では、X干渉計227からの測長ビームがウエハテーブルWTB2の反射面27eに当たるとともに、Y干渉計207からの測長ビームがウエハテーブルWTB1の反射面27fに当たるようになる。そこで、主制御装置20は、X干渉計228の計測値に基づいて、X干渉計227をプリセットするとともに、Y干渉計209の計測値に基づいて、Y干渉計207をプリセットする。あるいは、主制御装置20は、エンコーダ170B,170Aの計測値に基づいて、干渉計207,227をプリセットする。いずれにしても、この時点以後、主制御装置20は、ウエハテーブルWTB1の位置情報を干渉計207、227を用いて計測する。勿論、ウエハテーブルWTB2のXY平面内の位置の制御は、エンコーダ170B,170Aの計測値に基づいて行われる。
 そして、主制御装置20は、上述の空間像計測動作を行うのと並行して、ウエハステージWST1を、図73に示される位置まで移動させる。
 そして、空間像計測が終了すると、主制御装置20は、前述のプライマリアライメント系AL1を用いてウエハステージWST2の計測プレート30上の基準マークFMを検出した際の検出結果と上記の空間像の計測結果とに基づいて、プライマリアライメント系AL1のベースラインを算出する。このとき、前述のウエハW2の周辺露光は、続行されている。
 次に、主制御装置20は、図73に示されるように、ウエハW2の周辺露光を続行しつつ、ウエハステージWST2を、ウエハW2に対する露光開始位置に移動させるとともに、図75に示される左側ローディングポジションに向けてのウエハステージWST1の-Y方向の移動を開始する。
 そして、主制御装置20は、前述と同様にして、ウエハW2に対する露光を開始する。このウエハW2の露光が開始された時点では、周辺露光は終了している。
 図74からも明らかなように、左側ローディングポジションに向けてのウエハステージWST1の移動の途中で、X干渉計226からの測長ビームがウエハテーブルWTB1の反射面27aに当たらなくなるが、それに先立ち、X干渉計226からの測長ビームが反射面27aに当たっているときに、X干渉計217からの測長ビームが反射面27cに当たり始める。そこで、X干渉計226の計測値に基づいて、X干渉計217の計測値をプリセットしている。
 図74に示される位置から、さらに-Y方向にウエハステージWST1が移動すると、X干渉計218からの測長ビームが反射面27cに当たり始める。そこで、主制御装置20は、X干渉計217からの測長ビームが反射面27cに当たっている間に、X干渉計217の計測値に基づいて、X干渉計218の計測値をプリセットする。
 さらに、-Y方向にウエハステージWST1が移動すると、X干渉計229からの測長ビームが反射面27aに当たり始める。そこで、主制御装置20は、X干渉計218からの測長ビームが反射面27cに当たっている間に、X干渉計218の計測値に基づいて、X干渉計229の計測値をプリセットする。
 主制御装置20は、上述のように、位置制御に用いるX干渉計を切り替えつつ、ウエハステージWST1を、左側ローディングポジションに向かって駆動するのと並行して、ウエハW2に対するステップ・アンド・スキャン方式の露光動作を続行している。
 そして、図75に示される、左側ローディングポジションにウエハステージWST1が到達すると、主制御装置20は、左側ローディングポジションにおいて、Pit作業を開始する。
 図76には、左側ローディングポジションにおいて、Pit作業の一部としてウエハ搬送機構(不図示)とウエハステージWST1との間でウエハ交換が行われ、これと並行して、投影ユニットPUの下方において、ウエハステージWST2上に保持されたウエハW2に対して、ステップ・アンド・スキャン方式の露光が行われている状態が示されている。
 以降、主制御装置20により、上述したウエハステージWST1,WST2を用いた並行動作が繰り返し実行される。
 以上詳細に説明したように、本第4の実施形態の露光装置1000によると、主制御装置20により、ウエハステージWST1,WST2の一方に保持されたウエハ(W1又はW2)に対する露光が行なわれるのと並行して、ウエハステージWST1,WST2の他方がY軸方向に移動されつつ、X軸方向にも移動され、該他方のウエハステージに保持されたウエハ上の異なる複数のアライメントマークがアライメント系AL1,AL21~AL24の検出領域(複数の検出領域)に順次位置決めされ、アライメント系AL1,AL21~AL24の検出領域内に位置するアライメントマークの位置情報が順次検出される。従って、一方のウエハステージWSTに保持されたウエハの露光が行われるのと並行して、他方のウエハステージがアライメント系AL1,AL21~AL24の検出領域の近傍の位置(例えばウエハステージに保持されたウエハの交換が行われる位置の近傍)から露光位置(投影ユニットPUの直下、露光領域IA)へ向かってY軸方向に関して移動する間に、その他方のウエハステージに保持されたウエハ上の複数のアライメントマーク、例えばすべてのアライメントマークの位置情報を検出することが可能になる。この結果、スループットの向上と重ね合わせ精度の向上とを実現することが可能になる。また、主制御装置20により、周辺露光ユニット51が制御され、露光位置に向かって移動する途中で周辺露光ユニット51の下方を通過する他方のウエハステージに保持されたウエハの周辺部のショット領域の少なくとも一部に照明光ILとほぼ同一波長のエネルギビームが照射される。従って、スループットを低下させることなく、歩留まりの向上を実現することが可能になる。
 また、本第4の実施形態の露光装置1000では、主制御装置20により、ウエハステージWST1,WST2の一方に保持されたウエハ(W1又はW2)に対する露光が行なわれるのと並行して、ウエハステージWST1,WST2の他方のローディングポジションにおいて、Pit作業、すなわちウエハ搬送機構(不図示)とその他方のウエハステージとの間でウエハ交換、及びウエハホルダの冷却その他の露光のための準備作業が行われる。従って、ウエハホルダの冷却などの作業を、スループットを低下させることなく、行うことができる。
 また、本第4の実施形態によると、主制御装置20により、ウエハステージWST1,WST2をXY平面内で駆動する平面モータ151が制御されるとともに、ウエハステージWST1に保持されたウエハW1の露光が終了した際に、ウエハステージWST1が露光位置のX軸方向の一側(-X側)に位置する第1帰還経路に沿ってウエハステージWST1上のウエハW1の交換が行われる左側ローディングポジションへ移動され、かつウエハステージWST2に保持されたウエハW2の露光が終了した際に、ウエハステージWST2が露光位置のX軸方向の他側(+X側)に位置する第2帰還経路に沿ってウエハステージWST2上のウエハW2の交換が行われる右側ローディングポジションへ移動される。従って、ウエハステージWST1には、X軸方向の一側から、ウエハステージWST2には、X軸方向の他側から、それぞれ配線・配管用のケーブルを取り付けることで、それらのケーブルの縺れを防止することができるとともに、その長さを極力短くすることができる。
 また、本第4の実施形態の露光装置1000では、主制御装置20は、ウエハW1の露光が終了すると、ウエハステージWST1の計測部138とウエハステージWST2のFDバー46とを近接又は接触させたスクラム状態を維持して、ウエハステージWST2を+Y方向に駆動すると同時にウエハステージWST1を+Y方向かつ-X方向に駆動して、液浸領域14をウエハステージWST1上からウエハステージWST2上へ渡す。液浸領域14を渡した直後、主制御装置20は、投影光学系PLの直下にウエハステージWST2の計測プレート30が位置する位置で、両ウエハステージWST1,WST2の+Y方向に関する駆動力をゼロにする。これにより、ウエハステージWST2は停止され、ウエハステージWST1は、図72中の白抜き太矢印で示されるように、-X方向への移動を開始し、上述の第1帰還経路に沿って左側ローディングポジションへ向かって移動する。このウエハステージWST1の第1帰還経路に沿っての移動を効率良く開始できるように、第2のスクラム開始位置では、ウエハテーブルWTB2のセンターラインが基準軸LV0にほぼ一致し、かつウエハテーブルWTB1のセンターラインが、基準軸LV0から所定距離(第2のオフセット量)-X側にずれた状態で、両ウエハステージWST1,WST2のスクラム状態が開始されるようになっている。
 一方、主制御装置20は、ウエハW2の露光が終了すると、前述と同様に、ウエハステージWST2の計測部138とウエハステージWST1のFDバー46とを近接又は接触させたスクラム状態を維持して、ウエハステージWST1を+Y方向に駆動すると同時にウエハステージWST2を+Y方向かつ+X方向に駆動して、液浸領域14をウエハステージWST2上からウエハステージWST1上へ渡す。液浸領域14を渡した直後、主制御装置20は、投影光学系PLの直下にウエハステージWST1の計測プレート30が位置する位置で、両ウエハステージWST1,WST2の+Y方向に関する駆動力をゼロにする。これにより、ウエハステージWST1は停止され、ウエハステージWST2は、図58中の白抜き太矢印で示されるように、+X方向への移動を開始し、上述の第2帰還経路に沿って右側ローディングポジションへ向かって移動する。このウエハステージWST2の第2帰還経路に沿っての移動を効率良く開始できるように、第1のスクラム開始位置では、ウエハテーブルWTB1のセンターラインが基準軸LV0にほぼ一致し、かつウエハテーブルWTB2のセンターラインが、基準軸LV0から所定距離(第1のオフセット量)+X側にずれた状態で、両ウエハステージWST1,WST2のスクラム状態が開始されるようになっている。
 上述の説明からもわかるように、本第4の実施形態の露光装置1000では、一方のウエハステージ上のウエハの露光終了後、その一方のウエハステージの対応するローディングポジションへ向かっての帰還経路に沿った移動を最も効率良く開始することができるように、すなわち、その一方のウエハステージの移動経路を最も短く、かつ所要時間が最短になるように、ウエハステージWS1,WST2のスクラム開始時のX軸方向のオフセット量が定められている。
 なお、上記第4の実施形態では、露光済みのウエハを保持するウエハステージの対応するローディングポジションへ向かっての帰還経路に沿った移動を最も効率良く開始することができるように、ウエハステージWS1,WST2のスクラム開始時のX軸方向のオフセット量が定められているものとしたが、これに代えて、あるいはこれとともに、次の露光対象であるウエハの露光の開始を最も効率良く行うことができるように、ウエハステージWS1,WST2のスクラム開始時のX軸方向のオフセット量が定められていても良い。
 一方のウエハステージ上のウエハの露光終了後、その一方のウエハステージの対応するローディングポジションへ向かっての帰還経路に沿った移動を最も効率良く開始することを可能にする両ウエハステージのスクラム、又は次の露光対象であるウエハの露光の開始を最も効率良く行うことを可能にする両ウエハステージのスクラムを、最も効率の良いスクラムと呼ぶことができる。
 また、上記第4の実施形態では、液浸領域14を両ウエハステージWST1,WST2間で受け渡すため、両ウエハステージWST1,WST2が、Y軸方向に関して接触又は近接するY方向スクラムを採用する場合について説明したが、これに限らず、液浸領域14を両ウエハステージWST1,WST2間で受け渡すため、両ウエハステージWST1,WST2が、X軸方向に関して接触又は近接するX方向スクラムを採用しても良い。この場合、両ウエハステージWST1,WST2を、スクラム開始時に、Y軸方向に関してオフセットさせても良い。
 また、上記第4の実施形態と同様にY方向スクラムを採用する場合であっても、ウエハステージWST1,WST2のY軸方向の側面から機構部の一部が他の部分より外側に突出するような場合も考えられる。このような場合には、それらの突出部がもう一方のウエハステージの一部と接触しない程度の長さに、計測部及びFDバーのY軸方向の寸法、及び/又はスクラム時のオフセット量などを設定することが望ましい。
 なお、上記第4の実施形態では、ウエハステージWST1及びWST2に固定の計測部及びFDバーなどのテーブル本体34に対する突出部が設けられる場合について説明したが、これに限らず、突出部が両ウエハステージWST1,WST2間での液浸領域の受け渡しを主目的とする場合には、この突出部は、可動であっても良い。この場合、例えば、突出部は、両ウエハステージWST1,WST2のスクラム時のみほぼ水平状態とし、スクラム時以外、すなわち非使用時には、折り畳んでおくこととしても良い。また、上記第4の実施形態では、計測部及びFDバーが突出部を兼用するものとしたが、これに限らず、専用の固定の突出部をウエハステージWST1及びWST2に設けても良い。
 なお、上記第4の実施形態では、露光終了後、一方のウエハステージから他方のウエハステージに液浸領域14を渡すため、両ウエハステージWST1,WST2をY軸方向に関して所定距離以下に近接させる近接状態(スクラム状態)と、両ウエハステージWST1,WST2を離間させる離間状態(スクラム解除状態)との切り換えを行った後、ウエハステージWST1が露光位置の-X側に位置する第1帰還経路に沿ってウエハステージWST1上のウエハW1の交換が行われる第1交換位置へ移動され、ウエハステージWST2が露光位置の+X側に位置する第2帰還経路に沿ってウエハステージWST2上のウエハW2の交換が行われる第2交換位置へ移動される場合について説明した。すなわち、第1交換位置と第2交換位置とが別々である場合について説明した。しかし、これに限らず、第1交換位置と第2交換位置とが同一であっても良い。かかる場合には、主制御装置20は、露光位置にある一方のウエハステージに保持されたウエハの露光終了後、一方のウエハステージから他方のウエハステージに液浸領域14を渡すため、両ウエハステージWST1,WST2をY軸方向に関して所定距離以下に近接させる近接状態(スクラム状態)と、両ウエハステージWST1,WST2を離間させる離間状態(スクラム解除状態)との切り換えを行わせるとともに、他方のウエハステージから離間された一方のウエハステージを、X軸方向に関して露光位置の一側に位置する帰還経路に沿って両ウエハステージWST1,WST2上のウエハの交換が行われる交換位置へ移動させるように、平面モータを制御する構成を採用することとしても良い。かかる場合には、一方のウエハステージをX軸方向に関して露光位置の一側に位置する帰還経路に沿って交換位置へ移動させ、他方のウエハステージをX軸方向に関して露光位置の他側に位置する帰還経路に沿って交換位置へ移動させる場合などに比べて、両ウエハステージのX軸方向に関する移動範囲を狭く設定することができる。
 また、上記第4の実施形態では、前述したウエハステージWST1,WST2の移動経路を前提に、ウエハステージWST1,WST2が、平面モータによりXY平面に沿って独立して駆動されるものとした。しかし、必ずしも平面モータを用いる必要はなく、移動経路によっては、リニアモータなどを用いても良い。
 なお、上記第4の実施形態では、周辺露光ユニット51は、必ずしも設けなくても良い。かかる場合であっても、上述した種々の効果を得ることができる。
 なお、上記第4の実施形態では、主制御装置20により、ウエハステージWST1,WST2の一方に保持されたウエハ(W1又はW2)に対する露光が行なわれるのと並行して、ウエハステージWST1,WST2の他方がY軸方向に移動されつつ、該他方のウエハステージに保持されたウエハ上の異なる複数のアライメントマークがアライメント系AL1,AL21~AL24によって検出され、その位置情報が計測されるのみで良い。すなわち、露光位置からウエハ交換位置への移動経路は、ウエハステージWST1,WST2で同一であっても良い。また、上記のウエハステージWST1,WST2の他方は、X軸方向へ移動されることなく、Y軸方向に移動されつつ、該他方のウエハステージに保持されたウエハ上の異なる複数のアライメントマークが検出されれば良い。また、他方のウエハステージの上記Y軸方向への移動中に周辺露光を行う必要もない。また、ウエハステージWST1,WST2を平面モータで駆動する必要もない。
 この一方、上記第4の実施形態では、主制御装置20により、ウエハステージWST1,WST2をXY平面内で駆動する平面モータ151が制御されるとともに、ウエハステージWST1に保持されたウエハW1の露光が終了した際に、ウエハステージWST1が露光位置のX軸方向の一側(-X側)に位置する第1帰還経路に沿ってウエハステージWST1上のウエハW1の交換が行われる左側ローディングポジションへ移動され、かつウエハステージWST2に保持されたウエハW2の露光が終了した際に、ウエハステージWST2が露光位置のX軸方向の他側(+X側)に位置する第2帰還経路に沿ってウエハステージWST2上のウエハW2の交換が行われる右側ローディングポジションへ移動されるのみでも良い。すなわち、ウエハステージWST1,WST2の一方に保持されたウエハ(W1又はW2)に対する露光が行なわれるのと並行して、ウエハステージWST1,WST2の他方に保持されたウエハの周辺露光は勿論、そのウエハ上の異なる複数のアライメントマークの位置情報の計測が行われなくても良い。また、平面モータは、ムービングコイル型でも良い。
 また、上記第4の実施形態では、計測システム200が、干渉計システム118とエンコーダシステム150との両方を含むものとしたが、これに限らず、計測システムは、干渉計システム118とエンコーダシステム150との一方のみを含んでいても良い。特に、エンコーダシステムのみを含む場合には、そのエンコーダシステムは、2Dヘッドを含む2次元エンコーダでなくても良い。
 なお、上記第1、第4の実施形態のそれぞれでは、マイクロミラー・アレイを用いて周辺露光ユニット51を構成した場合を例示したが、これに限らず、ウエハ上の任意の位置(領域)を照明光ILとほぼ同一波長の光で自在に露光ができるのであれば、周辺露光ユニットの構成は特に問わない。例えば、マイクロミラー・アレイ以外の空間光変調器を用いて周辺露光ユニットを構成することができる。また、レチクルと投影光学系PLとを用いて、周辺露光ユニットを構成することもできる。また、周辺露光では、通常露光でショット領域に転写されるのと同じパターンを転写することとしても良いが、異なるパターンを転写することとしても良い。この場合、例えば転写パターン密度などは同じか、極端に異ならないことが好ましい。ただし、線幅は粗くても良い。
 なお、上記第1~第4実施形態で説明した、エンコーダヘッド、Zヘッド、干渉計などの各計測装置の配置、構成などは一例に過ぎず、本発明がこれに限定されないことは勿論である。例えばヘッドユニットが、それぞれ備えるヘッドの数は上述した数に限らず、複数のマーク検出系(上記各実施形態では、アライメント系AL1、AL21~AL24)の両外側に、ヘッドがそれぞれあれば足り、その数は問わない。要は、複数のマーク検出系のそれぞれで、ウエハW上の特定のアライメントマークを検出する際に、一対のスケールに、ヘッドが少なくとも各1つ対向できれば良い。また、上記各実施形態では、複数のマーク検出系の両外側のそれぞれ複数のヘッドのうち、最も内側に位置する2つのヘッドのY位置を、他のヘッドと異ならせる場合について説明したが、これに限らず、どのヘッドのY位置を異ならせても良い。要は、空きスペースに応じて、任意のヘッドのY位置を、他のヘッドのY位置と異ならせれば良い。あるいは、複数のマーク検出系の両外側に十分な空きスペースがある場合には、全てのヘッドを同一のY位置に配置しても良い。
 また、マーク検出系(アライメント系)の数も5つに限られるものではなく、第2方向(上記各実施形態ではX軸方向)に関して検出領域の位置が異なるマーク検出系が2つ以上あることが望ましいが、その数は特に問わない。
 また、上記各実施形態において、干渉計システムを設けず、エンコーダシステムのみを設ける場合には、Zヘッドによりウエハテーブルのθx方向の位置情報をも計測可能としても良い。
 また、上記第1、第2、及び第4の実施形態のそれぞれにおいて、第3の実施形態、あるいは例えば米国特許出願公開第2006/0227309号明細書などに開示されているように、ウエハテーブルにエンコーダヘッドが設けられ、かつウエハテーブルの上方にこれに対向して一次元又は二次元の格子(例えば回折格子)が形成されたスケールが配置されるエンコーダシステムを用いても良い。この場合、Zヘッドもウエハテーブル上に配置し、上記スケールの表面をZヘッドからの計測ビームが照射される反射面として兼用しても良い。また、X軸方向及び/又はY軸方向に加えて、Z軸方向をも計測方向とする、いわばエンコーダヘッドとZヘッドとの機能を兼ね備えたヘッドを用いても良い。この場合、Zヘッドは不要となる。
 なお、上記各実施形態では、ノズルユニット32の下面と投影光学系PLの先端光学素子の下端面とがほぼ同一面であるものとしたが、これに限らず、例えばノズルユニット32の下面を、先端光学素子の射出面よりも投影光学系PLの像面(すなわちウエハ)の近くに配置しても良い。すなわち、局所液浸装置8は上述の構造に限られず、例えば、欧州特許出願公開第1420298号明細書、国際公開第2004/055803号パンフレット、国際公開第2004/057590号パンフレット、国際公開第2005/029559号パンフレット(対応米国特許出願公開第2006/0231206号明細書)、国際公開第2004/086468号パンフレット(対応米国特許出願公開第2005/0280791号明細書)、特開2004-289126号公報(対応米国特許第6,952,253号明細書)などに記載されているものを用いることができる。また、例えば国際公開第2004/019128号パンフレット(対応米国特許出願公開第2005/0248856号明細書)に開示されているように、先端光学素子の像面側の光路に加えて、先端光学素子の物体面側の光路も液体で満たすようにしても良い。さらに、先端光学素子の表面の一部(少なくとも液体との接触面を含む)又は全部に、親液性及び/又は溶解防止機能を有する薄膜を形成しても良い。なお、石英は液体との親和性が高く、かつ溶解防止膜も不要であるが、蛍石は少なくとも溶解防止膜を形成することが好ましい。
 なお、上記各実施形態では、液体として純水(水)を用いるものとしたが、本発明がこれに限定されないことは勿論である。液体としては、化学的に安定で、照明光ILの透過率が高く安全な液体、例えばフッ素系不活性液体を使用しても良い。このフッ素系不活性液体としては、例えばフロリナート(米国スリーエム社の商品名)が使用できる。このフッ素系不活性液体は冷却効果の点でも優れている。また、液体として、照明光ILに対する屈折率が、純水(屈折率は1.44程度)よりも高い、例えば1.5以上の液体を用いても良い。この液体としては、例えば、屈折率が約1.50のイソプロパノール、屈折率が約1.61のグリセロール(グリセリン)といったC-H結合あるいはO-H結合を持つ所定液体、ヘキサン、ヘプタン、デカン等の所定液体(有機溶剤)、あるいは屈折率が約1.60のデカリン(Decalin: Decahydronaphthalene)などが挙げられる。あるいは、これら液体のうち任意の2種類以上の液体が混合されたものであっても良いし、純水にこれら液体の少なくとも1つが添加(混合)されたものであっても良い。あるいは、液体としては、純水に、H、Cs、K、Cl、SO 2-、PO 2-等の塩基又は酸を添加(混合)したものであっても良い。更には、純水にAl酸化物等の微粒子を添加(混合)したものであっても良い。これら液体は、ArFエキシマレーザ光を透過可能である。また、液体としては、光の吸収係数が小さく、温度依存性が少なく、投影光学系(先端の光学部材)、及び/又はウエハの表面に塗布されている感光材(又は保護膜(トップコート膜)あるいは反射防止膜など)に対して安定なものであることが好ましい。また、F2レーザを光源とする場合は、フォンブリンオイルを選択すれば良い。さらに、液体としては、純水よりも照明光ILに対する屈折率が高い液体、例えば屈折率が1.6~1.8程度のものを使用しても良い。液体として、超臨界流体を用いることも可能である。また、投影光学系PLの先端光学素子を、例えば石英(シリカ)、あるいは、フッ化カルシウム(蛍石)、フッ化バリウム、フッ化ストロンチウム、フッ化リチウム、及びフッ化ナトリウム等のフッ化化合物の単結晶材料で形成しても良いし、石英や蛍石よりも屈折率が高い(例えば1.6以上)材料で形成しても良い。屈折率が1.6以上の材料としては、例えば、国際公開第2005/059617号パンフレットに開示される、サファイア、二酸化ゲルマニウム等、あるいは、国際公開第2005/059618号パンフレットに開示される、塩化カリウム(屈折率は約1.75)等を用いることができる。
 また、上記各実施形態で、回収された液体を再利用するようにしても良く、この場合は回収された液体から不純物を除去するフィルタを液体回収装置、又は回収管等に設けておくことが望ましい。
 なお、上記各実施形態では、露光装置が液浸型の露光装置である場合について説明したが、これに限られるものではなく、液体(水)を介さずにウエハWの露光を行うドライタイプの露光装置にも採用することができる。
 また、上記各実施形態では、ステップ・アンド・スキャン方式等の走査型露光装置に本発明が適用された場合について説明したが、これに限らず、ステッパなどの静止型露光装置に本発明を適用しても良い。また、ショット領域とショット領域とを合成するステップ・アンド・スティッチ方式の投影露光装置、プロキシミティー方式の露光装置、又はミラープロジェクション・アライナーなどにも本発明は適用することができる。
 また、上記各実施形態の露光装置における投影光学系は縮小系のみならず等倍および拡大系のいずれでも良いし、投影光学系PLは屈折系のみならず、反射系及び反射屈折系のいずれでも良いし、その投影像は倒立像及び正立像のいずれでも良い。さらに、投影光学系PLを介して照明光ILが照射される露光領域IAは、投影光学系PLの視野内で光軸AXを含むオンアクシス領域であるが、例えば国際公開第2004/107011号パンフレットに開示されるように、複数の反射面を有しかつ中間像を少なくとも1回形成する光学系(反射系又は反屈系)がその一部に設けられ、かつ単一の光軸を有する、いわゆるインライン型の反射屈折系と同様に、その露光領域は光軸AXを含まないオフアクシス領域でも良い。また、前述の照明領域及び露光領域はその形状が矩形であるものとしたが、これに限らず、例えば円弧、台形、あるいは平行四辺形などでも良い。
 なお、上記各実施形態の露光装置の光源は、ArFエキシマレーザに限らず、KrFエキシマレーザ(出力波長248nm)、F2レーザ(出力波長157nm)、Ar2レーザ(出力波長126nm)、Kr2レーザ(出力波長146nm)などのパルスレーザ光源、あるいはg線(波長436nm)、i線(波長365nm)などの輝線を発する超高圧水銀ランプなどを用いることも可能である。また、YAGレーザの高調波発生装置などを用いることもできる。この他、例えば国際公開第1999/46835号パンフレット(対応米国特許7,023,610号明細書)に開示されているように、真空紫外光としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。
 また、上記各実施形態では、露光装置の照明光ILとしては波長100nm以上の光に限らず、波長100nm未満の光を用いても良いことはいうまでもない。例えば、露光波長5~15nmの波長域、例えば13.5nmの下で設計されたオール反射縮小光学系、及び反射型マスクを用いたEUV露光装置にも本発明を好適に適用することができる。この他、電子線又はイオンビームなどの荷電粒子線を用いる露光装置にも、本発明は適用できる。
 また、上述の各実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスク(レチクル)を用いたが、このレチクルに代えて、例えば米国特許第6,778,257号明細書に開示されているように、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスク(可変成形マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれ、例えば非発光型画像表示素子(空間光変調器)の一種であるDMD(Digital Micro-mirror Device)などを含む)を用いても良い。
 また、例えば国際公開第2001/035168号パンフレットに開示されているように、干渉縞をウエハ上に形成することによって、ウエハ上にライン・アンド・スペースパターンを形成する露光装置(リソグラフィシステム)にも本発明を適用することができる。
 さらに、例えば特表2004-519850号公報(対応米国特許第6,611,316号明細書)に開示されているように、2つのレチクルパターンを投影光学系を介してウエハ上で合成し、1回のスキャン露光によってウエハ上の1つのショット領域をほぼ同時に二重露光する露光装置にも本発明を適用することができる。
 また、物体上にパターンを形成する装置は、前述の露光装置(リソグラフィシステム)に限られず、例えばインクジェット方式にて物体上にパターンを形成する装置にも本発明を適用することができる。
 なお、上記各実施形態でパターンを形成すべき物体(エネルギビームが照射される露光対象の物体)はウエハに限られるものではなく、ガラスプレート、セラミック基板、フィルム部材、あるいはマスクブランクスなど、他の物体でも良い。
 露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも本発明を適用できる。
 半導体素子などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクルを製作するステップ、シリコン材料からウエハを製作するステップ、上記各実施形態の露光装置(パターン形成装置)によりレチクルのパターンをウエハに転写するリソグラフィステップ、露光されたウエハを現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記各実施形態の露光装置を用いて前述の露光方法が実行され、ウエハ上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。
 以上説明したように、本発明の移動体駆動システムは、所定平面に沿って移動体を駆動するのに適している。また、本発明のパターン形成装置は、ウエハ等の物体上にパターンを形成するのに適している。また、本発明の露光装置、露光方法、及びにデバイス製造方法は、半導体素子及び液晶表示素子などの電子デバイスなどを製造するのに適している。

Claims (85)

  1.  露光ビームで物体を露光する露光装置であって、
     前記物体を保持して互いに直交する第1軸及び第2軸を含む所定平面に沿って移動する移動体と;
     前記露光が行われる露光位置から前記第1軸に平行な方向に離れて配置され、前記物体に対する所定の計測を行う計測システムと;
     前記計測システムから前記第1軸に平行な方向に離れて配置され、前記物体の周辺のショット領域の少なくとも一部を露光する周辺露光システムと;を備える露光装置。
  2.  請求項1に記載の露光装置において、
     前記計測動作と並行して前記周辺露光システムによる露光動作の少なくとも一部が行われる露光装置。
  3.  請求項1又は2に記載の露光装置において、
     前記計測システムは、前記第2軸に平行な方向に関して位置が異なる複数の検出領域を有するマーク検出系を含む露光装置。
  4.  請求項1~3のいずれか一項に記載の露光装置において、
     前記計測システムは、前記第2軸に平行な方向に延びる検出領域又は前記第2軸に平行な方向に関して位置が異なる複数の検出点で前記物体の前記所定平面に直交する第3軸に平行な方向の位置情報を検出する検出装置を含む露光装置。
  5.  請求項1~4のいずれか一項に記載の露光装置において、
     前記周辺露光システムは、前記移動体に保持された物体の前記第2軸に平行な方向に離れた少なくとも2箇所を同時に露光可能である露光装置。
  6.  請求項1~5のいずれか一項に記載の露光装置において、
     前記周辺露光システムは、前記所定平面と平行な面に沿ってマトリクス状に配置された複数のミラー素子を有し、各ミラー素子に入射した前記エネルギビームを所定方向へ反射する第1の状態と、前記所定方向と異なる方向へ反射する第2の状態とを切り替え可能である露光装置。
  7.  請求項1~6のいずれか一項に記載の露光装置において、
     前記周辺露光システムにより露光される前記物体の周辺のショット領域は、前記物体の有効領域から一部がはみ出るショット領域である露光装置。
  8.  請求項1~7のいずれか一項に記載の露光装置において、
     前記移動体として、物体を保持して前記所定平面内で独立に移動する第1及び第2移動体が設けられ、
     前記第1及び第2移動体の一方に保持された物体に対する露光が行なわれるのと並行して、前記第1及び第2移動体の他方を少なくとも前記第1軸に平行な方向に移動させつつ、該他方の移動体に保持された物体に対する前記所定の計測を行うとともに、前記周辺露光システムを制御して、前記露光位置に向かって移動する途中で前記周辺露光システムの下方を通過する前記他方の移動体に保持された前記物体の周辺のショット領域を露光する制御装置をさらに備える露光装置。
  9.  露光ビームで物体を露光する露光装置であって、
     前記物体を保持して互いに直交する第1軸及び第2軸を含む所定平面内を移動可能な移動体と;
     前記露光が行われる露光位置と、前記第1軸に平行な方向に関して前記露光位置から離れて配置される前記物体の交換位置との間に設けられ、前記物体上で前記露光が行われる領域と異なる周辺領域の少なくとも一部を露光する周辺露光システムと;を備え、
     前記露光位置、及び前記交換位置の一方から他方への前記移動体の移動動作と並行して、前記周辺領域の露光動作の少なくとも一部が行われる露光装置。
  10.  請求項9に記載の露光装置において、
     前記露光位置から前記第1軸に平行な方向に離れて配置され、前記物体の位置情報を計測する計測システムをさらに備え、
     前記計測動作と並行して前記周辺露光の露光動作の少なくとも一部が行われる露光装置。
  11.  請求項10に記載の露光装置において、
     前記計測システムは、前記第2軸に平行な方向に関して位置が異なる複数の検出領域を有するマーク検出系を含む露光装置。
  12.  請求項9~11のいずれか一項に記載の露光装置において、
     前記周辺露光システムは、前記第2軸に平行な方向に関して位置が異なり、かつそれぞれエネルギビームが照射される複数の照射領域を有し、前記周辺領域の異なる領域を同時に露光可能である露光装置。
  13.  請求項9~12のいずれか一項に記載の露光装置において、
     前記移動体として、それぞれ物体を保持して前記所定平面内で独立に可動な第1、第2移動体が設けられ、
     前記第1、第2移動体の一方に保持される物体の露光動作と並行して、前記第1、第2移動体の他方に保持される物体の周辺領域の露光が行われる露光装置。
  14.  エネルギビームで物体を露光して前記物体上にパターンを形成する露光装置であって、
     物体を保持して互いに直交する第1軸及び第2軸を含む所定の平面内で移動する第1移動体と;
     物体を保持して前記平面内で前記第1移動体とは独立に移動する第2移動体と;
     前記第2軸に平行な方向に関して位置が異なる複数の検出領域を有し、前記第1及び第2移動体上にそれぞれ載置された前記物体上のマークを検出するマーク検出系と;
     前記第1及び第2移動体の一方に保持された物体に対する露光が行なわれるのと並行して、前記第1及び第2移動体の他方を前記第1軸に平行な方向に移動させつつ、該他方の移動体に保持された物体上の異なる複数のマークを前記マーク検出系で検出してその位置情報を計測する制御装置と;を備える露光装置。
  15.  請求項14に記載の露光装置において、
     前記第1、第2の移動体の前記平面に実質的に平行な一面には、それぞれ、前記第1軸に平行な方向及び前記第2軸に平行な方向をそれぞれ周期方向とする2次元格子を有し、前記第1軸に平行な方向を長手方向とする格子部が一対、前記第2軸に平行な方向に関して所定間隔で配置され、
     前記第2軸に平行な方向に関して異なる位置に前記平面に実質的に平行な一面に対向して配置された複数の2次元ヘッドを有する第1ヘッド部を有し、前記一方の移動体に保持された物体の露光動作時、前記一方の移動体の前記一対の格子部にそれぞれ対向する、前記第1ヘッド部に属するヘッドの計測値に基づいて、前記一方の移動体の前記平面内の位置情報を計測するエンコーダシステムをさらに備える露光装置。
  16.  請求項15に記載の露光装置において、
     前記エンコーダシステムは、前記第2軸に平行な方向に関して異なる位置に前記平面に実質的に平行な一面に対向して配置された複数のヘッドを有する第2ヘッド部をさらに有し、前記他方の移動体に保持された物体のマークの検出時、前記他方の移動体の前記一対の格子部にそれぞれ対向する、前記第2ヘッド部に属するヘッドの計測値に基づいて、前記他方の移動体の前記平面内の位置情報をさらに計測する露光装置。
  17.  請求項14~16のいずれか一項に記載の露光装置において、
     前記第1軸に平行な方向に関して、前記複数の検出領域から離れて配置され、前記物体のマークの検出動作と並行して周辺露光を行なう周辺露光システムをさらに備える露光装置。
  18.  エネルギビームで物体を露光して前記物体上にパターンを形成する露光装置であって、
     物体を保持して互いに直交する第1軸及び第2軸を含む所定の平面内で移動する第1移動体と;
     物体を保持して前記平面内で前記第1移動体とは独立に移動する第2移動体と;
     前記第1及び第2移動体を前記平面内で駆動する平面モータと;
     前記平面モータを制御するとともに、前記第1移動体に保持された物体の露光が終了した際に、前記第1移動体を前記露光が行われる露光位置の前記第2軸に平行な方向の一側に位置する第1帰還経路に沿って前記第1移動体上の物体の交換が行われる第1交換位置へ移動させ、かつ前記第2の移動体に保持された物体の露光が終了した際に、前記第2移動体を前記露光位置の前記第2軸に平行な方向の他側に位置する第2帰還経路に沿って前記第2移動体上の物体の交換が行われる第2交換位置へ移動させる制御装置と;
     を備える露光装置。
  19.  請求項18に記載の露光装置において、
     前記エネルギビームを射出する光学部材と;
     前記光学部材と前記第1、第2移動体の一方との間に液体を供給して液浸領域を形成する液浸装置と;をさらに備え、
     前記制御装置は、前記一方の移動体に保持された物体の露光終了後、前記一方の移動体から他方の移動体に前記液浸領域を渡すため、前記第1移動体と前記第2移動体とを前記第1軸に平行な方向に関して所定距離以下に近接させる近接状態と、両移動体を離間させる離間状態との切り換えを行わせるように、前記平面モータを介して、前記第1、第2移動体を制御する露光装置。
  20.  請求項19に記載の露光装置において、
     前記第1移動体に保持された物体の露光終了後に、前記第1移動体と前記第2移動体とが近接する近接状態では、前記第1移動体は前記第2移動体に対して前記第2軸に平行な方向に関して前記露光位置の一側にずれており、
     前記第2の移動体に保持された物体の露光終了後に、前記第1の移動体と前記第2の移動体とが近接する近接状態では、前記第2移動体は前記第1移動体に対して前記第2軸に平行な方向に関して前記露光位置の他側にずれている露光装置。
  21.  エネルギビームで物体を露光して前記物体上にパターンを形成する露光装置であって、
     物体を保持して互いに直交する第1軸及び第2軸を含む所定の平面内で移動する第1移動体と;
     物体を保持して前記平面内で前記第1移動体とは独立に移動する第2移動体と;
     前記第1及び第2移動体を前記平面内で駆動する平面モータと;
     前記エネルギビームを射出する光学部材と;
     前記光学部材と前記第1、第2移動体の一方との間に液体を供給して液浸領域を形成する液浸装置と;
     前記一方の移動体に保持された物体の露光終了後、前記一方の移動体から他方の移動体に前記液浸領域を渡すため、前記第1移動体と前記第2移動体とを前記第1軸に平行な方向に関して所定距離以下に近接させる近接状態と、両移動体を離間させる離間状態との切り換えを行わせるとともに、前記他方の移動体から離間された前記一方の移動体を、前記第2軸に平行な方向に関して露光位置の一側に位置する帰還経路に沿って前記第1、第2移動体上の物体の交換が行われる交換位置へ移動させるように、前記平面モータを制御する制御装置と;を備える露光装置。
  22.  請求項21に記載の露光装置において、
     前記近接状態では、前記一方の移動体は、前記他方の移動体に対し、前記第2軸に平行な方向の前記一側にずれている露光装置。
  23.  請求項18~22のいずれか一項に記載の露光装置において、
     前記第1、第2の移動体の前記平面に実質的に平行な一面には、それぞれ、前記第1軸に平行な方向及び前記第2軸に平行な方向をそれぞれ周期方向とする2次元格子を有し、前記第1軸に平行な方向を長手方向とする格子部が一対、前記第2軸に平行な方向に関して所定間隔で配置され、
     前記露光が行なわれる露光位置の近傍で、前記第2軸に平行な方向に関して異なる位置に前記平面に実質的に平行な一面に対向して配置された複数の2次元ヘッドを有する第1ヘッド部を有し、前記露光対象の物体を保持した一方の移動体の前記一対の格子部にそれぞれ対向する、前記第1ヘッド部に属する2次元ヘッドの計測値に基づいて、前記露光位置の近傍にある前記一方の移動体の前記平面内の位置情報を計測するエンコーダシステムをさらに備える露光装置。
  24.  請求項23に記載の露光装置において、
     前記露光が行われる露光位置から前記第1軸に平行な方向に離れて配置され、前記第2軸に平行な方向に関して位置が異なる複数の検出領域を有するマーク検出系をさらに備え、
     前記エンコーダシステムは、前記複数の検出領域の近傍で、前記第2軸に平行な方向に関して異なる位置に前記平面に実質的に平行な一面に対向して配置された複数の2次元ヘッドを有する第2ヘッド部をさらに有し、前記複数の検出領域の近傍にある他方の移動体の前記一対の格子部にそれぞれ対向する、前記第2ヘッド部に属する2次元ヘッドの計測値に基づいて、前記他方の移動体の前記平面内の位置情報をさらに計測する露光装置。
  25.  実質的に所定平面に沿って移動体を駆動する移動体駆動システムであって、
     前記所定平面に平行な面内で互いに直交する第1、第2方向を周期方向とする2次元格子を有するスケールに検出光を照射し、前記スケールからの光を受光するヘッドを有し、前記ヘッドの計測値に基づいて、前記第1、第2方向を含む前記所定平面内の少なくとも2自由度方向に関する前記移動体の位置情報を計測するエンコーダシステムと;
     前記エンコーダシステムの計測情報に基づいて、前記移動体を前記所定平面に沿って駆動する駆動装置と;を備える移動体駆動システム。
  26.  請求項25に記載の移動体駆動システムにおいて、
     前記スケールと前記ヘッドとの一方は前記移動体に配置されかつ他方は前記移動体と対向可能に配置される移動体駆動システム。
  27.  請求項26に記載の移動体駆動システムにおいて、
     前記スケールは、前記所定平面に実質的に平行な前記移動体の一面に配置され、前記ヘッドは、前記スケールに対向可能に前記移動体の外部に配置されている移動体駆動システム。
  28.  請求項27に記載の移動体駆動システムにおいて、
     前記スケールは、前記移動体の前記一面に、前記第1方向を長手方向として配置され、
     前記エンコーダシステムは、前記第2方向に関して検出点が異なる位置に配置される複数の前記ヘッドを含むヘッドユニットを有し、
     前記複数のヘッドは、前記第2方向に関して前記スケールの幅より狭い間隔で前記検出点が設定されるヘッドを含む移動体駆動システム。
  29.  請求項28に記載の移動体駆動システムにおいて、
     前記スケールは、前記移動面体の前記一面に、前記第2方向に離れて一対配置され、
     前記エンコーダシステムは、前記一対のスケールと同時に対向する前記ヘッドユニットの2つのヘッドの出力に基づいて、前記移動体の前記所定平面内の3自由度方向の位置情報を計測する移動体駆動システム。
  30.  請求項29に記載の移動体駆動システムにおいて、
     前記エンコーダシステムは、前記第2方向に離れて配置され、かつ前記一対のスケールとそれぞれ少なくとも1つのヘッドが対向可能な一対の前記ヘッドユニットを有する移動体駆動システム。
  31.  請求項26に記載の移動体駆動システムにおいて、
     前記ヘッドは、前記移動体に配置され、前記スケールは、前記移動体と対向可能に配置される移動体駆動システム。
  32.  請求項31に記載の移動体駆動システムにおいて、
     前記ヘッドは、前記第1方向に関して前記移動体の異なる位置に配置され、前記スケールは、前記第2方向を長手方向として配置される移動体駆動システム。
  33.  請求項32に記載の移動体駆動システムにおいて、
     前記ヘッドは、前記第2方向に関して前記移動体の両側にそれぞれ前記第1方向に関して異なる位置に配置される移動体駆動システム。
  34.  請求項25~33のいずれか一項に記載の移動体駆動システムにおいて、
     前記駆動装置は、前記エンコーダシステムの計測情報とその計測時の前記移動体の前記第1、第2方向とは異なる方向の位置情報に応じた補正情報とに基づいて、前記移動体を前記所定平面に沿って駆動する移動体駆動システム。
  35.  請求項34に記載の移動体駆動システムにおいて、
     前記移動体の前記第1、第2方向とは異なる方向の位置情報は、前記移動体の前記所定平面に直交する方向、前記所定平面に平行な面内における回転方向、前記第1方向に平行な軸回りの回転方向、及び前記第2方向に平行な軸回りの回転方向のうちの少なくとも一方向に関する位置情報を含む移動体駆動システム。
  36.  請求項25~35のいずれか一項に記載の移動体駆動システムにおいて、
     前記駆動装置は、前記エンコーダシステムの計測誤差の発生要因となる、計測に用いられる前記ヘッドの特性情報にさらに基づいて前記移動体を駆動する移動体駆動システム。
  37.  請求項36に記載の移動体駆動システムにおいて、
     前記特性情報は、前記ヘッドの光学特性を含む移動体駆動システム。
  38.  請求項25~37のいずれか一項に記載の移動体駆動システムにおいて、
     前記駆動装置は、計測に用いられる前記ヘッドに起因して生じる前記エンコーダシステムの計測誤差を補償するように、前記所定平面内で前記移動体を駆動する移動体駆動システム。
  39.  請求項25~38のいずれか一項に記載の移動体駆動システムにおいて、
     前記駆動装置は、前記スケールの平面度に関する情報にさらに基づいて、前記移動体を駆動する移動体駆動システム。
  40.  請求項25~39のいずれか一項に記載の移動体駆動システムにおいて、
     前記駆動装置は、計測に用いられる前記ヘッドの検出点の位置情報にさらに基づいて、前記移動体を駆動する移動体駆動システム。
  41.  請求項40に記載の移動体駆動システムにおいて、
     前記駆動装置は、前記検出点の位置又は変位に起因して生じる前記エンコーダシステムの計測誤差を補償するように前記移動体を駆動する移動体駆動システム。
  42.  請求項25~41のいずれか一項に記載の移動体駆動システムにおいて、
     前記駆動装置は、前記移動体の前記所定平面に直交する第3方向の位置の基準となる基準面、及び前記スケールの格子面の前記第3方向に関する位置情報にさらに基づいて、前記移動体を駆動する移動体駆動システム。
  43.  請求項42に記載の移動体駆動システムにおいて、
     前記駆動装置は、前記基準面と前記格子面との前記第3方向の位置の差に起因して生じる前記エンコーダシステムの計測誤差を補償するように前記移動体の位置を制御する移動体駆動システム。
  44.  物体が載置され、該物体を保持して実質的に移動面に沿って移動可能な移動体と;
     前記物体上にパターンを生成するパターニング装置と;
     前記物体に対するパターン形成のため、前記移動体を駆動する請求項25~43のいずれか一項に記載の移動体駆動システムと;を備えるパターン形成装置。
  45.  エネルギビームの照射によって物体にパターンを形成する露光装置であって、
     前記物体に前記エネルギビームを照射するパターニング装置と;
     請求項25~43のいずれか一項に記載の移動体駆動システムと;を備え、
     前記エネルギビームと前記物体との相対移動のために、前記移動体駆動システムによる前記物体を載置する移動体の駆動を行う露光装置。
  46.  エネルギビームで物体を露光する露光装置であって、
     前記物体を保持可能かつ実質的に所定平面に沿って可動な移動体と;
     前記所定平面内で第1方向に関して前記エネルギビームが照射される露光位置と離れて計測ビームが照射される計測位置が配置され、前記物体の位置情報を計測する計測装置と;
     前記所定平面内で前記第1方向と直交する第2方向に関して前記移動体の両側にそれぞれ前記第1方向を長手方向としかつ2次元格子を有するスケールが配置されるとともに、前記2つのスケールにそれぞれ少なくとも1つのヘッドが対向可能かつ前記第2方向に関して位置が異なる複数のヘッドを有する一対のヘッドユニットが前記移動体と対向可能に配置され、前記一対のスケールと同時に対向する2つのヘッドの出力に基づいて、前記所定平面内の3自由度方向に関する前記移動体の位置情報を計測するエンコーダシステムと;
     前記計測装置により計測された前記物体の位置情報と、前記エンコーダシステムにより計測された前記移動体の位置情報とに基づいて前記移動体を駆動する駆動装置と;を備える露光装置。
  47.  エネルギビームで物体を露光する露光装置であって、
     前記物体を保持可能かつ実質的に所定平面に沿って可動な移動体と;
     前記所定平面内で第1方向に関して前記エネルギビームが照射される露光位置と離れて計測ビームが照射される計測位置が配置され、前記物体の位置情報を計測する計測装置と;
     前記所定平面内で前記第1方向と直交する第2方向を長手方向としかつ2次元格子を有する一対のスケールが前記移動体と対向可能に配置されるとともに、前記一対のスケールにそれぞれ少なくとも1つのヘッドが対向可能かつ前記第1方向に関して位置が異なる複数のヘッドが、前記移動体の両側にそれぞれ配置され、前記一対のスケールと同時に対向する2つのヘッドの出力に基づいて、前記所定平面内の3自由度方向に関する前記移動体の位置情報を計測するエンコーダシステムと;
     前記計測装置により計測された前記物体の位置情報と、前記エンコーダシステムにより計測された前記移動体の位置情報とに基づいて前記移動体を駆動する駆動装置と;を備える露光装置。
  48.  請求項46又は47に記載の露光装置において、
     前記エネルギビームが透過する光学部材と前記物体との間の空間に液浸領域を形成可能な液浸部材と;
     前記移動体とは独立して移動可能な可動部材と;を備え、
     前記第1方向に関して前記移動体の一側に前記可動部材を配置し、前記第1方向への前記移動体及び前記可動部材の移動によって、前記液浸領域を、前記光学部材との間に保持しつつ前記移動体と前記可動部材との間で移動する露光装置。
  49.  請求項48に記載の露光装置において、
     前記移動体と前記可動部材との間での前記液浸領域の移動時、前記移動体上で前記液浸領域が前記スケール又は前記ヘッドと接触しないように前記移動体を駆動する露光装置。
  50.  請求項48又は49に記載の露光装置において、
     前記液浸領域の移動時、前記第1方向に関して前記移動体と前記可動部材とが近接又は接触する露光装置。
  51.  請求項48~50のいずれか一項に記載の露光装置において、
     前記可動部材は、計測部材を有する計測ステージ、及び/又は前記移動体とは独立して可動かつ物体を保持可能な別の移動体を含む露光装置。
  52.  請求項48~51のいずれか一項に記載の露光装置において、
     前記可動部材は、前記第1方向に関して、前記光学部材に対して前記計測装置とは反対側に配置される露光装置。
  53.  請求項46~52のいずれか一項に記載の露光装置において、
     前記駆動装置は、前記エンコーダシステムの計測情報とその計測時の前記移動体の前記第1、第2方向とは異なる方向の位置情報に応じた補正情報とに基づいて、前記移動体を駆動する露光装置。
  54.  請求項46~53のいずれか一項に記載の露光装置において、
     前記駆動装置は、前記エンコーダシステムの計測誤差の発生要因となる前記ヘッド及び/又は前記スケールの特性情報にさらに基づいて前記移動体を駆動する露光装置。
  55.  請求項54に記載の露光装置において、
     前記特性情報は、前記ヘッドの光学特性、前記ヘッドの検出点の位置、前記2次元格子の形成誤差、及び前記スケールの平面度の少なくとも1つに関する情報を含む露光装置。
  56.  請求項46~55のいずれか一項に記載の露光装置において、
     前記駆動装置は、前記ヘッド及び/又は前記スケールに起因して生じる前記エンコーダシステムの計測誤差を補償するように前記移動体を駆動する露光装置。
  57.  請求項1~24、45~56のいずれか一項に記載の露光装置を用いて物体を露光することと、
     前記露光された物体を現像することを含むデバイス製造方法。
  58.  露光ビームで物体を露光する露光方法であって、
     互いに直交する第1軸及び第2軸を含む所定平面に沿って移動する移動体上に前記物体を載置する工程と;
     前記露光が行われる露光位置から前記所定平面内の前記第1軸に平行な方向に離れて配置されるとともに前記物体に対する所定の計測を行う計測システムの、前記第1軸に平行な方向に離れて配置された周辺露光システムを用いて、前記第1軸に平行な方向に沿って前記物体が載置された移動体を移動させる間に、前記物体の周辺のショット領域の少なくとも一部を露光する工程と;を含む露光方法。
  59.  請求項58に記載の露光方法において、
     前記計測動作と並行して前記周辺露光システムによる露光動作の少なくとも一部が行われる露光方法。
  60.  請求項58又は59に記載の露光方法において、
     前記所定の計測は、前記第2軸に平行な方向に関して位置が異なる複数の検出領域を有するマーク検出系を用いて前記物体上のマークを検出することを含む露光方法。
  61.  請求項58~60のいずれか一項に記載の露光方法において、
     前記所定の計測は、前記第2軸に平行な方向に延びる検出領域又は前記第2軸に平行な方向に関して位置が異なる複数の検出点で前記物体の前記所定平面に直交する第3軸に平行な方向の位置情報を検出することを含む露光方法。
  62.  請求項58~61のいずれか一項に記載の露光方法において、
     前記周辺露光システムは、前記移動体に保持された物体の前記第2軸に平行な方向に離れた少なくとも2箇所を同時に露光可能である露光方法。
  63.  請求項58~62のいずれか一項に記載の露光方法において、
     前記周辺露光システムは、前記所定平面と平行な面に沿ってマトリクス状に配置された複数のミラー素子を有し、各ミラー素子に入射した前記エネルギビームを所定方向へ反射する第1の状態と、前記所定方向と異なる方向へ反射する第2の状態とを切り替え可能である露光方法。
  64.  請求項58~63のいずれか一項に記載の露光方法において、
     前記周辺露光システムにより露光される前記物体の周辺のショット領域は、前記物体の有効領域から一部がはみ出るショット領域である露光方法。
  65.  露光ビームで物体を露光する露光方法であって、
     互いに直交する第1軸及び第2軸を含む所定平面内を移動可能な移動体に物体を保持させる工程と;
     前記露光が行われる露光位置と、前記第1軸に平行な方向に関して前記露光位置から離れて配置される前記物体の交換位置との間に設けられ、前記物体上で前記露光が行われる領域と異なる周辺領域の少なくとも一部を露光する周辺露光システムを用いて、前記露光位置、及び前記交換位置の一方から他方への前記移動体の移動動作と並行して、前記周辺領域の露光動作の少なくとも一部を行う工程と;を含む露光方法。
  66.  請求項65に記載の露光方法において、
     前記露光位置から前記第1軸に平行な方向に離れて配置され、前記物体の位置情報を計測する計測システムによる計測動作とも並行して前記周辺露光の露光動作の少なくとも一部が行われる露光方法。
  67.  請求項66に記載の露光方法において、
     前記計測システムは、前記第2軸に平行な方向に関して位置が異なる複数の検出領域を有するマーク検出系を含む露光方法。
  68.  請求項65~67のいずれか一項に記載の露光方法において、
     前記周辺露光システムは、前記第2軸に平行な方向に関して位置が異なり、かつそれぞれエネルギビームが照射される複数の照射領域を有し、前記周辺領域の異なる領域を同時に露光可能である露光方法。
  69.  請求項65~68のいずれか一項に記載の露光方法において、
     前記移動体として、それぞれ物体を保持して前記所定平面内で独立に可動な第1、第2移動体が設けられ、
     前記第1、第2移動体の一方に保持される物体の露光動作と並行して、前記第1、第2移動体の他方に保持される物体の周辺領域の露光が行われる露光方法。
  70.  エネルギビームで物体を露光して前記物体上にパターンを形成する露光方法であって、
     物体をそれぞれ保持して互いに直交する第1軸及び第2軸を含む所定の平面内で独立に移動する第1及び第2移動体の一方に保持された前記物体に対する露光が行なわれるのと並行して、前記第1及び第2移動体の他方を前記第1軸に平行な方向に移動させつつ、該他方の移動体に保持された物体上の異なる複数のマークを、前記第2軸に平行な方向に関して位置が異なる複数の検出領域を有するマーク検出系で検出してその位置情報を計測する工程を含む露光方法。
  71.  エネルギビームで物体を露光して前記物体上にパターンを形成する露光方法であって、
     物体をそれぞれ保持して互いに直交する第1軸及び第2軸を含む所定の平面内で独立に移動する第1及び第2移動体を駆動する平面モータを制御することで、前記第1移動体に保持された物体の露光が終了した際に、前記第1移動体を前記露光が行われる露光位置の前記第2軸に平行な方向の一側に位置する第1帰還経路に沿って前記第1移動体上の物体の交換が行われる第1交換位置へ移動させ、かつ前記第2移動体に保持された物体の露光が終了した際に、前記第2移動体を前記露光位置の前記第2軸に平行な方向の他側に位置する第2帰還経路に沿って前記第2の移動体上の物体の交換が行われる第2交換位置へ移動させる工程を含む露光方法。
  72.  請求項71に記載の露光方法において、
     前記一方の移動体に保持された物体の露光終了後、前記一方の移動体から他方の移動体に、前記エネルギビームを射出する光学部材と前記第1、第2移動体の一方との間に液体を供給することで形成された液浸領域を渡すため、前記第1移動体と前記第2移動体とを前記第1軸に平行な方向に関して所定距離以下に近接させる近接状態と、両移動体を離間させる離間状態との切り換えを行わせるように、前記平面モータを介して、前記第1、第2移動体を制御する工程をさらに含む露光方法。
  73.  請求項72に記載の露光方法において、
     前記第1移動体に保持された物体の露光終了後に、前記第1移動体と前記第2移動体とが近接する近接状態では、前記第1移動体は前記第2移動体に対して前記第2軸に平行な方向に関して前記露光位置の一側にずれており、
     前記第2移動体に保持された物体の露光終了後に、前記第1移動体と前記第2移動体とが近接する近接状態では、前記第2移動体は前記第1移動体に対して前記第2軸に平行な方向に関して前記露光位置の他側にずれている露光方法。
  74.  エネルギビームで物体を露光する露光方法であって、
     前記物体を移動体で保持することと;
     請求項25~43のいずれか一項に記載の移動体駆動システムによって前記移動体を駆動して、前記物体を前記エネルギビームで露光することと;を含む露光方法。
  75.  エネルギビームで物体を露光する露光方法であって、
     実質的に所定平面に沿って可動な移動体で物体を保持することと;
     前記所定平面内で第1方向に関して前記エネルギビームが照射される露光位置と離れて配置される、計測ビームが照射される計測位置で、前記移動体上の物体の位置情報を計測することと;
     前記所定平面内で前記第1方向と直交する第2方向に離れて前記移動体上に前記第1方向を長手方向としかつ2次元格子を有する一対のスケールが配置されるとともに、前記一対のスケールのそれぞれに少なくとも1つのヘッドが対向可能かつ前記第2方向に関して位置が異なる複数のヘッドを有する一対のヘッドユニットが前記移動体と対向可能に配置されるエンコーダシステムによって、前記所定平面内の3自由度方向に関する前記移動体の位置情報を計測することと;
     前記計測された位置情報と前記エンコーダシステムの計測情報とに基づいて前記移動体を駆動し、前記物体を前記エネルギビームで露光することと;を含む露光方法。
  76.  エネルギビームで物体を露光する露光方法であって、
     実質的に所定平面に沿って可動な移動体で物体を保持することと;
     前記所定平面内で第1方向に関して前記エネルギビームが照射される露光位置と離れて配置される、計測ビームが照射される計測位置で、前記移動体上の物体の位置情報を計測することと;
     前記所定平面内で前記第1方向と直交する第2方向を長手方向としかつ2次元格子を有する一対のスケールが前記移動体と対向可能に配置されるとともに、前記一対のスケールにそれぞれ少なくとも1つのヘッドが対向可能かつ前記第1方向に関して位置が異なる複数のヘッドが、前記移動体の両側にそれぞれ配置されるエンコーダシステムによって、前記所定平面内の3自由度方向に関する前記移動体の位置情報を計測することと;
     前記計測された位置情報と前記エンコーダシステムの計測情報とに基づいて前記移動体を駆動し、前記物体を前記エネルギビームで露光することと;を含む露光方法。
  77.  請求項75又は76に記載の露光方法において、
     前記エネルギビームが透過する光学部材と前記物体との間の空間に形成される液浸領域を介して前記物体の露光が行われ、
     前記第1方向に関して前記移動体の一側に可動部材を配置し、前記第1方向への前記移動体及び前記可動部材の移動によって、前記液浸領域を、前記光学部材との間に保持しつつ前記移動体と前記可動部材との間で移動する露光方法。
  78.  請求項77に記載の露光方法において、
     前記移動体と前記可動部材との間での前記液浸領域の移動時、前記移動体上で前記液浸領域が前記スケール又は前記ヘッドと接触しないように前記移動体を駆動する露光方法。
  79.  請求項77又は78に記載の露光方法において、
     前記液浸領域の移動時、前記第1方向に関して前記移動体と前記可動部材とが近接又は接触する露光方法。
  80.  請求項75~79のいずれか一項に記載の露光方法において、
     前記可動部材は、前記第1方向に関して、前記光学部材に対して前記計測装置とは反対側に配置される露光方法。
  81.  請求項75~80のいずれか一項に記載の露光方法において、
     前記エンコーダシステムの計測情報とその計測時の前記移動体の前記第1、第2方向とは異なる方向の位置情報に応じた補正情報とに基づいて、前記移動体を駆動する露光方法。
  82.  請求項75~81のいずれか一項に記載の露光方法において、
     前記エンコーダシステムの計測誤差の発生要因となる前記ヘッド及び/又は前記スケールの特性情報にさらに基づいて前記移動体を駆動する露光方法。
  83.  請求項82に記載の露光方法において、
     前記特性情報は、前記ヘッドの光学特性、前記ヘッドの検出点の位置、前記2次元格子の形成誤差、及び前記スケールの平面度の少なくとも1つに関する情報を含む露光方法。
  84.  請求項75~83のいずれか一項に記載の露光方法において、
     前記ヘッド及び/又は前記スケールに起因して生じる前記エンコーダシステムの計測誤差を補償するように前記移動体を駆動する露光方法。
  85.  請求項58~84のいずれか一項に記載の露光方法により、物体を露光してパターンを形成することと;
     前記パターンが形成された物体を現像することと;を含むデバイス製造方法。
PCT/JP2008/004044 2007-12-28 2008-12-29 露光装置、移動体駆動システム、パターン形成装置、及び露光方法、並びにデバイス製造方法 WO2009084244A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137022078A KR101497862B1 (ko) 2007-12-28 2008-12-29 노광 장치, 이동체 구동 시스템, 패턴 형성 장치 및 노광 방법, 그리고 디바이스 제조 방법
JP2009547917A JP5088588B2 (ja) 2007-12-28 2008-12-29 露光装置及び露光方法、並びにデバイス製造方法
KR1020137022077A KR101525342B1 (ko) 2007-12-28 2008-12-29 노광 장치, 이동체 구동 시스템, 패턴 형성 장치 및 노광 방법, 그리고 디바이스 제조 방법
CN2008800195892A CN101681809B (zh) 2007-12-28 2008-12-29 曝光装置、曝光方法以及器件制造方法
HK10104653.8A HK1137093A1 (en) 2007-12-28 2010-05-13 Exposure apparatus, exposure method and device manufacturing method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2007-340460 2007-12-28
JP2007340460 2007-12-28
JP2007340641 2007-12-28
JP2007-340641 2007-12-28
JP2008-110766 2008-04-21
JP2008110766 2008-04-21
JP2008303735 2008-11-28
JP2008-303735 2008-11-28

Publications (1)

Publication Number Publication Date
WO2009084244A1 true WO2009084244A1 (ja) 2009-07-09

Family

ID=40823980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/004044 WO2009084244A1 (ja) 2007-12-28 2008-12-29 露光装置、移動体駆動システム、パターン形成装置、及び露光方法、並びにデバイス製造方法

Country Status (7)

Country Link
US (5) US9229333B2 (ja)
JP (12) JP5088588B2 (ja)
KR (3) KR101477833B1 (ja)
CN (4) CN102540767B (ja)
HK (4) HK1137093A1 (ja)
TW (7) TWI643035B (ja)
WO (1) WO2009084244A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049557A (ja) * 2009-08-25 2011-03-10 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法
JP2011049558A (ja) * 2009-08-25 2011-03-10 Nikon Corp 露光方法及び露光装置、並びにデバイス製造方法
CN104134603A (zh) * 2013-04-30 2014-11-05 佳能株式会社 描绘装置和物品的制造方法
JP2015532726A (ja) * 2012-08-23 2015-11-12 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置、デバイス製造方法及び変位測定システム
TWI724496B (zh) * 2018-08-23 2021-04-11 荷蘭商Asml荷蘭公司 用於校正物件裝載程序的置物台設備及方法
TWI820571B (zh) * 2021-06-17 2023-11-01 日商鎧俠股份有限公司 計測裝置及計測程式

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101634893B1 (ko) 2006-08-31 2016-06-29 가부시키가이샤 니콘 이동체 구동 방법 및 이동체 구동 시스템, 패턴 형성 방법 및 장치, 노광 방법 및 장치, 그리고 디바이스 제조 방법
CN103645608B (zh) 2006-08-31 2016-04-20 株式会社尼康 曝光装置及方法、组件制造方法以及决定方法
US20080094592A1 (en) 2006-08-31 2008-04-24 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
TWI574304B (zh) 2006-09-01 2017-03-11 尼康股份有限公司 Mobile body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, component manufacturing method, and correcting method
EP2993523B1 (en) 2006-09-01 2017-08-30 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
TWI643035B (zh) 2007-12-28 2018-12-01 日商尼康股份有限公司 Exposure apparatus, exposure method, and component manufacturing method
JP2011168028A (ja) * 2010-02-22 2011-09-01 Ricoh Co Ltd 画像形成装置
CN102608861A (zh) * 2011-01-19 2012-07-25 上海华虹Nec电子有限公司 一种改善硅片周边光刻胶形貌的方法
CN102591205B (zh) * 2012-02-29 2013-07-31 清华大学 化学机械抛光传输机器人的递归优化控制系统
CN102540896B (zh) * 2012-02-29 2013-07-17 清华大学 化学机械抛光传输机器人的非线性模糊结合递归控制系统
US9958424B2 (en) * 2012-10-01 2018-05-01 Taiwan Semiconductor Manufacturing Company, Ltd. Method of identifying airborne molecular contamination source
WO2014054689A1 (ja) 2012-10-02 2014-04-10 株式会社ニコン 移動体装置、露光装置、及びデバイス製造方法
US9772564B2 (en) * 2012-11-12 2017-09-26 Nikon Corporation Exposure apparatus and exposure method, and device manufacturing method
KR102080875B1 (ko) * 2013-01-23 2020-04-16 삼성디스플레이 주식회사 스테이지 이송 장치 및 이를 이용한 스테이지 위치 측정 방법
CN104111596A (zh) * 2013-04-16 2014-10-22 上海微电子装备有限公司 用于光刻设备的全局调平的装置和方法
JP6193611B2 (ja) 2013-04-30 2017-09-06 キヤノン株式会社 描画装置、及び物品の製造方法
KR102574558B1 (ko) 2015-02-23 2023-09-04 가부시키가이샤 니콘 계측 장치, 리소그래피 시스템 및 노광 장치, 그리고 관리 방법, 중첩 계측 방법 및 디바이스 제조 방법
JP6719729B2 (ja) * 2015-02-23 2020-07-08 株式会社ニコン 基板処理システム及び基板処理方法、並びにデバイス製造方法
KR102552792B1 (ko) 2015-02-23 2023-07-06 가부시키가이샤 니콘 계측 장치, 리소그래피 시스템 및 노광 장치, 그리고 디바이스 제조 방법
CN105045042B (zh) * 2015-04-23 2017-06-16 清华大学 一种硅片台曝光区域六自由度位移测量方法
CN111812949A (zh) * 2015-09-30 2020-10-23 株式会社尼康 曝光装置及曝光方法、以及平面显示器制造方法
WO2017057587A1 (ja) * 2015-09-30 2017-04-06 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法
CN205427436U (zh) * 2016-03-23 2016-08-03 北京京东方光电科技有限公司 显示器件的对位检测设备及曝光工艺系统
NL2019071A (en) * 2016-07-07 2018-01-11 Asml Netherlands Bv An Inspection Substrate and an Inspection Method
TWI604290B (zh) * 2016-10-31 2017-11-01 智泰科技股份有限公司 具有空間位置誤差補償的數值控制工具機
JP6909021B2 (ja) * 2017-03-07 2021-07-28 キヤノン株式会社 リソグラフィ装置及び物品の製造方法
JP6945316B2 (ja) * 2017-03-24 2021-10-06 キヤノン株式会社 検出装置、パターン形成装置、取得方法、検出方法、および物品製造方法
CN106950801A (zh) * 2017-04-16 2017-07-14 合肥芯碁微电子装备有限公司 一种无掩膜激光直写光刻设备的快速边缘曝光方法
US10522557B2 (en) 2017-10-30 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Surface topography by forming spacer-like components
CN109957504B (zh) * 2017-12-14 2022-08-02 长春长光华大智造测序设备有限公司 便于初始对准的高通量基因测序仪硅片及初始对准方法
KR20190092906A (ko) 2018-01-31 2019-08-08 김믿음 칼날 배수구망
US10591815B2 (en) * 2018-06-28 2020-03-17 Applied Materials, Inc. Shifting of patterns to reduce line waviness
JP7278138B2 (ja) * 2019-04-18 2023-05-19 キヤノン株式会社 基板処理装置、物品製造方法、基板処理方法、基板処理システム、管理装置、およびプログラム
US11764111B2 (en) * 2019-10-24 2023-09-19 Texas Instruments Incorporated Reducing cross-wafer variability for minimum width resistors
CN113506746B (zh) * 2021-06-28 2024-03-19 华虹半导体(无锡)有限公司 解决超级结工艺打标区域高台阶差的方法
WO2024003608A1 (en) * 2022-06-26 2024-01-04 Nova Ltd Moving apparatus along multiple axes

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545886A (ja) * 1991-08-12 1993-02-26 Nikon Corp 角形基板の露光装置
JPH07270122A (ja) * 1994-03-30 1995-10-20 Canon Inc 変位検出装置、該変位検出装置を備えた露光装置およびデバイスの製造方法
JPH09275073A (ja) * 1996-02-05 1997-10-21 Ushio Inc ウエハ周辺露光方法および装置
JPH10163097A (ja) * 1996-11-28 1998-06-19 Nikon Corp 投影露光装置及び投影露光方法
JP2006278820A (ja) * 2005-03-30 2006-10-12 Nikon Corp 露光方法及び装置
JP2006332656A (ja) * 2005-05-24 2006-12-07 Asml Netherlands Bv 2ステージ・リソグラフィ装置及びデバイス製造方法
WO2007055237A1 (ja) * 2005-11-09 2007-05-18 Nikon Corporation 露光装置及び露光方法、並びにデバイス製造方法
JP2007129194A (ja) * 2005-09-13 2007-05-24 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
WO2007097379A1 (ja) * 2006-02-21 2007-08-30 Nikon Corporation パターン形成装置、マーク検出装置、露光装置、パターン形成方法、露光方法及びデバイス製造方法

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144429A (ja) 1984-08-09 1986-03-04 Nippon Kogaku Kk <Nikon> 位置合わせ方法、及び位置合せ装置
US4780617A (en) * 1984-08-09 1988-10-25 Nippon Kogaku K.K. Method for successive alignment of chip patterns on a substrate
KR100300618B1 (ko) * 1992-12-25 2001-11-22 오노 시게오 노광방법,노광장치,및그장치를사용하는디바이스제조방법
JPH07335529A (ja) * 1994-06-09 1995-12-22 Nikon Corp 投影露光装置
US5715064A (en) * 1994-06-17 1998-02-03 International Business Machines Corporation Step and repeat apparatus having enhanced accuracy and increased throughput
US5677758A (en) * 1995-02-09 1997-10-14 Mrs Technology, Inc. Lithography System using dual substrate stages
CN1244018C (zh) * 1996-11-28 2006-03-01 株式会社尼康 曝光方法和曝光装置
DE69735016T2 (de) * 1996-12-24 2006-08-17 Asml Netherlands B.V. Lithographisches Gerät mit zwei Objekthaltern
USRE40043E1 (en) * 1997-03-10 2008-02-05 Asml Netherlands B.V. Positioning device having two object holders
US6208407B1 (en) * 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
WO1999046835A1 (fr) 1998-03-11 1999-09-16 Nikon Corporation Dispositif a laser ultraviolet et appareil d'exposition comportant un tel dispositif a laser ultraviolet
JP2000068192A (ja) 1998-08-18 2000-03-03 Nikon Corp 露光装置、露光方法及び位置検出方法
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
TWI223734B (en) 1999-12-21 2004-11-11 Asml Netherlands Bv Crash prevention in positioning apparatus for use in lithographic projection apparatus
KR20010085493A (ko) * 2000-02-25 2001-09-07 시마무라 기로 노광장치, 그 조정방법, 및 상기 노광장치를 이용한디바이스 제조방법
US20020041377A1 (en) * 2000-04-25 2002-04-11 Nikon Corporation Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
US7561270B2 (en) * 2000-08-24 2009-07-14 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
KR20030028826A (ko) * 2000-08-29 2003-04-10 가부시키가이샤 니콘 노광방법 및 장치
JP4714403B2 (ja) 2001-02-27 2011-06-29 エーエスエムエル ユーエス,インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
JP2002280283A (ja) 2001-03-16 2002-09-27 Canon Inc 基板処理装置
TW529172B (en) * 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
JP2003037153A (ja) * 2001-07-25 2003-02-07 Nikon Corp 保持装置、ステージ装置、および露光装置ならびに半導体デバイス
WO2004012245A1 (ja) * 2002-07-31 2004-02-05 Nikon Corporation 位置計測方法、位置制御方法、露光方法及び露光装置、並びにデバイス製造方法
US7362508B2 (en) * 2002-08-23 2008-04-22 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
EP1420298B1 (en) 2002-11-12 2013-02-20 ASML Netherlands B.V. Lithographic apparatus
SG2010050110A (en) * 2002-11-12 2014-06-27 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2004053951A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 露光方法及び露光装置並びにデバイス製造方法
EP1573730B1 (en) 2002-12-13 2009-02-25 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
EP1732075A3 (en) 2002-12-19 2007-02-21 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
KR101562447B1 (ko) * 2003-02-26 2015-10-21 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
WO2004107011A1 (ja) 2003-05-06 2004-12-09 Nikon Corporation 投影光学系、露光装置及び露光方法
EP2216685B1 (en) * 2003-06-19 2012-06-27 Nikon Corporation Exposure apparatus and device manufacturing method
JP4492239B2 (ja) * 2003-07-28 2010-06-30 株式会社ニコン 露光装置及びデバイス製造方法、並びに露光装置の制御方法
JP4444920B2 (ja) 2003-09-19 2010-03-31 株式会社ニコン 露光装置及びデバイス製造方法
WO2005059617A2 (en) 2003-12-15 2005-06-30 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
JP5102492B2 (ja) 2003-12-19 2012-12-19 カール・ツァイス・エスエムティー・ゲーエムベーハー 結晶素子を有するマイクロリソグラフィー投影用対物レンズ
US7589822B2 (en) * 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US7102729B2 (en) * 2004-02-03 2006-09-05 Asml Netherlands B.V. Lithographic apparatus, measurement system, and device manufacturing method
JP2005317916A (ja) * 2004-03-30 2005-11-10 Canon Inc 露光装置及びデバイス製造方法
US7566893B2 (en) * 2004-06-22 2009-07-28 Nikon Corporation Best focus detection method, exposure method, and exposure apparatus
KR100550352B1 (ko) * 2004-07-02 2006-02-08 삼성전자주식회사 반도체 기판의 노광방법 및 이를 이용하는 노광 장치
JP4747545B2 (ja) * 2004-09-30 2011-08-17 株式会社ニコン ステージ装置及び露光装置並びにデバイス製造方法
TWI538013B (zh) * 2004-11-18 2016-06-11 尼康股份有限公司 A position measuring method, a position control method, a measuring method, a loading method, an exposure method and an exposure apparatus, and a device manufacturing method
US20060139595A1 (en) * 2004-12-27 2006-06-29 Asml Netherlands B.V. Lithographic apparatus and method for determining Z position errors/variations and substrate table flatness
KR100585170B1 (ko) * 2004-12-27 2006-06-02 삼성전자주식회사 트윈 기판 스테이지를 구비한 스캐너 장치, 이를 포함하는반도체 사진 설비 및 상기 설비를 이용한 반도체 소자의제조방법
JP4677267B2 (ja) * 2005-04-04 2011-04-27 キヤノン株式会社 平面ステージ装置及び露光装置
US7161659B2 (en) * 2005-04-08 2007-01-09 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
EP2527921A3 (en) 2005-04-28 2017-10-18 Nikon Corporation Exposure method and exposure apparatus
TWI457977B (zh) * 2005-12-28 2014-10-21 尼康股份有限公司 A pattern forming method and a pattern forming apparatus, and an element manufacturing method
TWI550688B (zh) * 2006-01-19 2016-09-21 尼康股份有限公司 液浸曝光裝置及液浸曝光方法、以及元件製造方法
CN102866591B (zh) * 2006-02-21 2015-08-19 株式会社尼康 曝光装置及方法、以及元件制造方法
EP2003680B1 (en) * 2006-02-21 2013-05-29 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US7310132B2 (en) * 2006-03-17 2007-12-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI454859B (zh) * 2006-03-30 2014-10-01 尼康股份有限公司 移動體裝置、曝光裝置與曝光方法以及元件製造方法
CN100504614C (zh) * 2006-04-14 2009-06-24 上海微电子装备有限公司 步进扫描光刻机双台交换定位系统
US7483120B2 (en) * 2006-05-09 2009-01-27 Asml Netherlands B.V. Displacement measurement system, lithographic apparatus, displacement measurement method and device manufacturing method
TWI425318B (zh) * 2006-06-09 2014-02-01 尼康股份有限公司 移動體裝置、曝光裝置和曝光方法以及元件製造方法
US20080094592A1 (en) * 2006-08-31 2008-04-24 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR101634893B1 (ko) * 2006-08-31 2016-06-29 가부시키가이샤 니콘 이동체 구동 방법 및 이동체 구동 시스템, 패턴 형성 방법 및 장치, 노광 방법 및 장치, 그리고 디바이스 제조 방법
CN103645608B (zh) * 2006-08-31 2016-04-20 株式会社尼康 曝光装置及方法、组件制造方法以及决定方法
TWI574304B (zh) * 2006-09-01 2017-03-11 尼康股份有限公司 Mobile body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, component manufacturing method, and correcting method
EP2993523B1 (en) * 2006-09-01 2017-08-30 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
CN100468212C (zh) * 2006-09-22 2009-03-11 上海微电子装备有限公司 双台定位交换系统
JP2007274881A (ja) * 2006-12-01 2007-10-18 Nikon Corp 移動体装置、微動体及び露光装置
US7903866B2 (en) * 2007-03-29 2011-03-08 Asml Netherlands B.V. Measurement system, lithographic apparatus and method for measuring a position dependent signal of a movable object
TWI643035B (zh) 2007-12-28 2018-12-01 日商尼康股份有限公司 Exposure apparatus, exposure method, and component manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545886A (ja) * 1991-08-12 1993-02-26 Nikon Corp 角形基板の露光装置
JPH07270122A (ja) * 1994-03-30 1995-10-20 Canon Inc 変位検出装置、該変位検出装置を備えた露光装置およびデバイスの製造方法
JPH09275073A (ja) * 1996-02-05 1997-10-21 Ushio Inc ウエハ周辺露光方法および装置
JPH10163097A (ja) * 1996-11-28 1998-06-19 Nikon Corp 投影露光装置及び投影露光方法
JP2006278820A (ja) * 2005-03-30 2006-10-12 Nikon Corp 露光方法及び装置
JP2006332656A (ja) * 2005-05-24 2006-12-07 Asml Netherlands Bv 2ステージ・リソグラフィ装置及びデバイス製造方法
JP2007129194A (ja) * 2005-09-13 2007-05-24 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
WO2007055237A1 (ja) * 2005-11-09 2007-05-18 Nikon Corporation 露光装置及び露光方法、並びにデバイス製造方法
WO2007097379A1 (ja) * 2006-02-21 2007-08-30 Nikon Corporation パターン形成装置、マーク検出装置、露光装置、パターン形成方法、露光方法及びデバイス製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049557A (ja) * 2009-08-25 2011-03-10 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法
JP2011049558A (ja) * 2009-08-25 2011-03-10 Nikon Corp 露光方法及び露光装置、並びにデバイス製造方法
CN104238283A (zh) * 2009-08-25 2014-12-24 株式会社尼康 曝光装置、曝光方法、以及组件制造方法
CN104698772A (zh) * 2009-08-25 2015-06-10 株式会社尼康 曝光装置、曝光方法、以及组件制造方法
JP2017045063A (ja) * 2009-08-25 2017-03-02 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法
CN104238283B (zh) * 2009-08-25 2017-04-12 株式会社尼康 曝光装置、曝光方法、以及组件制造方法
JP2015532726A (ja) * 2012-08-23 2015-11-12 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置、デバイス製造方法及び変位測定システム
US9575416B2 (en) 2012-08-23 2017-02-21 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and displacement measurement system
CN104134603A (zh) * 2013-04-30 2014-11-05 佳能株式会社 描绘装置和物品的制造方法
TWI724496B (zh) * 2018-08-23 2021-04-11 荷蘭商Asml荷蘭公司 用於校正物件裝載程序的置物台設備及方法
TWI820571B (zh) * 2021-06-17 2023-11-01 日商鎧俠股份有限公司 計測裝置及計測程式

Also Published As

Publication number Publication date
US10274831B2 (en) 2019-04-30
JP2019012292A (ja) 2019-01-24
JPWO2009084244A1 (ja) 2011-05-12
CN101681809A (zh) 2010-03-24
TW201443578A (zh) 2014-11-16
KR20130105924A (ko) 2013-09-26
CN102540767A (zh) 2012-07-04
CN102566320B (zh) 2015-01-28
JP2016075927A (ja) 2016-05-12
KR101525342B1 (ko) 2015-06-10
TWI602033B (zh) 2017-10-11
US20140362356A1 (en) 2014-12-11
HK1169861A1 (en) 2013-02-08
TW201802617A (zh) 2018-01-16
KR20100106201A (ko) 2010-10-01
JP5376266B2 (ja) 2013-12-25
JP5376268B2 (ja) 2013-12-25
TW201802616A (zh) 2018-01-16
JP2017215599A (ja) 2017-12-07
JP6332840B2 (ja) 2018-05-30
TWI547769B (zh) 2016-09-01
KR20130105925A (ko) 2013-09-26
JP2014003310A (ja) 2014-01-09
JP2014232882A (ja) 2014-12-11
JP2012209581A (ja) 2012-10-25
HK1199108A1 (zh) 2015-06-19
JP6071086B2 (ja) 2017-02-01
CN101681809B (zh) 2012-04-25
TWI643035B (zh) 2018-12-01
JP5854340B2 (ja) 2016-02-09
CN104133347A (zh) 2014-11-05
HK1137093A1 (en) 2010-07-16
JP5088588B2 (ja) 2012-12-05
TW201907243A (zh) 2019-02-16
US20180004098A1 (en) 2018-01-04
US10310384B2 (en) 2019-06-04
US9229333B2 (en) 2016-01-05
CN104133347B (zh) 2016-05-18
JP5376267B2 (ja) 2013-12-25
JP6422002B2 (ja) 2018-11-14
KR101477833B1 (ko) 2014-12-30
JP6071118B2 (ja) 2017-02-01
TW201635046A (zh) 2016-10-01
TWI563344B (ja) 2016-12-21
US9690205B2 (en) 2017-06-27
JP2012235148A (ja) 2012-11-29
CN102540767B (zh) 2015-05-20
HK1169716A1 (en) 2013-02-01
US20170255108A1 (en) 2017-09-07
JP5679130B2 (ja) 2015-03-04
JP6429047B2 (ja) 2018-11-28
JP2017201426A (ja) 2017-11-09
JP2012216870A (ja) 2012-11-08
JP2016033686A (ja) 2016-03-10
US20090268178A1 (en) 2009-10-29
TWI454851B (zh) 2014-10-01
TW200942980A (en) 2009-10-16
CN102566320A (zh) 2012-07-11
TWI640840B (zh) 2018-11-11
US20180004097A1 (en) 2018-01-04
TW201443579A (zh) 2014-11-16
JP2017083863A (ja) 2017-05-18
KR101497862B1 (ko) 2015-03-04

Similar Documents

Publication Publication Date Title
JP6422002B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP6331235B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP6218125B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JPWO2007097379A1 (ja) パターン形成装置、マーク検出装置、露光装置、パターン形成方法、露光方法及びデバイス製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880019589.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08866670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20097027565

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2009547917

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08866670

Country of ref document: EP

Kind code of ref document: A1