WO2009079886A1 - Polyamide semi-aromatique et son procédé de préparation - Google Patents

Polyamide semi-aromatique et son procédé de préparation Download PDF

Info

Publication number
WO2009079886A1
WO2009079886A1 PCT/CN2008/000009 CN2008000009W WO2009079886A1 WO 2009079886 A1 WO2009079886 A1 WO 2009079886A1 CN 2008000009 W CN2008000009 W CN 2008000009W WO 2009079886 A1 WO2009079886 A1 WO 2009079886A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
reaction
semi
diamine
salt
Prior art date
Application number
PCT/CN2008/000009
Other languages
English (en)
Chinese (zh)
Inventor
Min Cao
Shiyong Xia
Xianbo Huang
Xiangbin Zeng
Xiangan Luo
Zhenguo Shi
Jian Chen
Original Assignee
Kingfa Science & Technology Co., Ltd.
Shanghai Kingfa Science & Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kingfa Science & Technology Co., Ltd., Shanghai Kingfa Science & Technology Co., Ltd. filed Critical Kingfa Science & Technology Co., Ltd.
Publication of WO2009079886A1 publication Critical patent/WO2009079886A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes

Definitions

  • the present invention relates to the field of polyamide resin technology, and in particular to a method for preparing a semi-aromatic polyamide.
  • Aliphatic polyamides such as PA6, PA66, have excellent mechanical strength, heat resistance, chemical resistance, abrasion resistance and self-lubricity, and have low friction coefficient.
  • Applications include electronics, automotive parts, furniture. , building materials and fiber, has become one of the most important engineering plastics.
  • the semi-aromatic polyamide is a polyamide resin prepared by polycondensation of a diamine or a dicarboxylic acid having an aromatic ring and an aliphatic dicarboxylic acid or a diamine, and is one of aromatic polyamides. Since the aromatic ring is introduced into the main chain of the polyamide molecule, the heat resistance and mechanical properties are improved, the water absorption rate is lowered, and the suitable performance/price ratio is obtained, which is between the general engineering plastic nylon and the high temperature resistant engineering plastic.
  • a resin with high heat resistance between PEEK mainly used in the automotive and electrical electronics industries. With the rapid development of high technology: its applications have new breakthroughs and progress, and market demand is on the rise.
  • Semi-aromatic polyamide products currently mainly include polyamide MXD6, 6T/66, 6 ⁇ /6 ⁇ , 6 ⁇ /6 ⁇ /66, 6 ⁇ / ⁇ -5 ⁇ and 9 ⁇ .
  • polyamide MXD6 The preparation of polyamide MXD6 is disclosed in the patents JP57200420, JP58111829, EP1074585A, CN1624021A.
  • an aromatic diamine is added dropwise to the molten aliphatic dicarboxylic acid in a batch reactor while the temperature of the system is raised to remove the water formed by the condensation to carry out a polymerization reaction.
  • CN1451677A describes a polyamide MXD6 solid phase thickening method, the polyamide is preserved under specific conditions, even if the starting polyamide is used for 20 days or more from the preparation to the solid phase thickening, the prepared polyamide MXD6 has a low yellowness. .
  • the polyamide 6T copolymer is obtained by polycondensation of a dicarboxylic acid component mainly composed of terephthalic acid and isophthalic acid or adipic acid, and a diamine component mainly composed of 1,6-hexanediamine.
  • the polyamide 6T copolymer has a high amide group concentration, which results in poor chemical resistance, water absorption resistance, and melt processing stability of the polymer.
  • the addition of a large amount of the third monomer lowers the crystallinity of the polymer, and also causes a decrease in heat resistance, chemical resistance, water absorption resistance, and dimensional stability of the polymer.
  • U.S. Patents 5,158,882, 5,981,692 and US 962,628 describe terephthalic acid, isophthalic acid, 1,6-hexanedioic acid, 1,6-hexanediamine and 2-methyl-1,3-pentanediamine as main raw materials.
  • Patent US 6,140,459 describes the synthesis of a polyamide 6T copolymer by melt polymerization using terephthalic acid, 1,6-hexanediamine and another aliphatic long chain dicarboxylic acid as starting materials.
  • the late polymerization temperature exceeds the melting point of the polymer, and the residence time is too long at high temperature, and various side reactions and degradation reactions of the polymer are severe, which tends to cause the color tone of the polymer to change. Poor, mechanical strength is reduced and moldability is deteriorated.
  • No. 5,663,284 discloses a process for preparing a polyamide 6T/66 polymer by first carrying out primary polymerization in the presence of water at a reaction temperature below the melting point of the polymer, and maintaining it by replenishing water into the autoclave during discharge. Pressure, prepolymer through vented twin screw The extruder melts and thickens to obtain a high viscosity polymer. However, in order to obtain a prepolymer which satisfies the requirements for melt thickening, the prepolymerization temperature is close to the melting point of the polymer to increase the intrinsic viscosity of the prepolymer.
  • the patent US Pat. No. 6,133,406 proposes a polymerization process of a semi-aromatic polyamide: first synthesizing a low-viscosity prepolymer at a lower temperature in the presence of water, and then viscosifying the solid phase by solid phase The reaction prepares a prepolymer having a higher intrinsic viscosity, and is further thickened by twin-screw melt extrusion to obtain a polymer having a high intrinsic viscosity.
  • This route involves prepolymerization, solid phase viscosification, melt viscosification and multi-step reactions, requiring complex production steps and equipment.
  • the polyamide 9T resin after obtaining the prepolymer, can be obtained by long-term solid phase thickening, which requires the prepolymer to have a high intrinsic viscosity.
  • Polyamide 9T has high crystallinity, dimensional stability and low water absorption.
  • a semi-aromatic polyamide prepolymer having a higher intrinsic viscosity can be obtained by increasing the prepolymerization temperature or discharging water in the prepolymerization system.
  • Increasing the prepolymerization temperature leads to the occurrence of side reactions, which also increases the reaction pressure and increases the requirements on the equipment.
  • Exhausting the water in the reaction system volatilizes the unreacted diamine, resulting in a large difference between the monomer unit ratio of the prepolymer and the starting monomer charged to the reactor, and the monomeric dicarboxylic acid cannot be guaranteed.
  • the molar ratio of the diamine is balanced.
  • Patent US5663284 determines the end point of the salt formation reaction by measuring the pH value, and uses a salt to prepare a semi-aromatic polyamide.
  • an aliphatic polyamide in order to facilitate control of the molar ratio of the dicarboxylic acid, the diamine, and to remove impurities in the monomer, it is usually used to form a salt and then carry out a polycondensation reaction.
  • Method Preparing aliphatic polyamide salt, in through the first reward; neutralization reaction solvent such as water or alcohol, followed by separation, purification and drying to obtain.
  • the object of the present invention is to provide a method for preparing a semi-aromatic polyamide which solves the problem of the prior art and which uses a salt of high purity to accurately control the molar ratio of the dicarboxylic acid to the diamine.
  • a salt of high purity to accurately control the molar ratio of the dicarboxylic acid to the diamine.
  • Amide is to provide a method for preparing a semi-aromatic polyamide which solves the problem of the prior art and which uses a salt of high purity to accurately control the molar ratio of the dicarboxylic acid to the diamine.
  • a method for preparing a semi-aromatic polyamide comprising the following steps -
  • the aliphatic diamine having 4 to 14 carbon atoms in the above step (1) includes a linear aliphatic diamine, a branched aliphatic diamine or an alicyclic diamine.
  • the linear aliphatic diamine includes 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonanediamine, U0-decanediamine, 1, 11-edecyldiamine or 1,12-dodecadiamine.
  • Branched aliphatic diamines include 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine, 2,4-dimethyl-1,6-hexanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 2-methyl-1,8-octanediamine or 5 —Methyl-1,9-nonanediamine.
  • the alicyclic diamine includes cyclohexanediamine, methylcyclohexylamine or 4,4,diaminodicyclohexylmethane.
  • the semi-aromatic polyamide salt may contain one or more types of these aliphatic diamines, and the preferred aliphatic diamines are 1,6-hexanediamine, 1,9-nonanediamine, 1,10- Diamine, 2-methyl-1,5-pentanediamine, 2-methyl-1,8-octanediamine or 5-methyl-1,9-decanediamine.
  • the most preferred aliphatic diamine is 1,6-hexanediamine, 1,9-nonanediamine or 1,10-decanediamine.
  • the aromatic dicarboxylic acid in the above step (1) includes terephthalic acid, isophthalic acid, 2-methylterephthalic acid, 2,5-dichloroterephthalic acid, 2,6-nai Formic acid, 1,4 -nadicarboxylic acid, 4,4'-diphenylene or 2,2'-diphenyl.
  • the semi-aromatic polyamide salt may contain one or more types of these aromatic dicarboxylic acids.
  • Preferred aromatic dicarboxylic acids are terephthalic acid, isophthalic acid or 4,4'-diphenyl phthalic acid.
  • the most preferred aromatic dicarboxylic acid is terephthalic acid.
  • the organic solvent in the above step (1) is N-methylpyrrolidone or dimethylformamide, and the organic solvent can dissolve the aromatic dicarboxylic acid and the aliphatic diamine, but is insoluble. Since the polyamide salt is solved, the resulting semi-aromatic polyamide salt can be easily separated and purified.
  • the prepolymerization in the above step (2) is carried out by adding a semi-aromatic polyamide salt, deionized water, a blocking agent and a catalyst to an autoclave, and the reaction temperature of the prepolymerization is 200 to 280 ° C, and the reaction system pressure is 1 ⁇ 5 MPa, the reaction time is 1 to 6 hours, and the pressure is stabilized by discharging water in the system later in the reaction.
  • the preferred reaction temperature is 220 to 250 ° C; the optimum reaction time is 2 to 4 hours; and the preferred reaction system pressure is 1.5 to 3 MPa.
  • a prepolymer having an intrinsic viscosity [ ⁇ ] of 0.06 to 0.3 dl/g, preferably 0, 08 to 0.2 dl/g, which is measured in 96% sulfuric acid at 25 °C, can be obtained.
  • the catalyst includes phosphoric acid, phosphorous acid, hypophosphorous acid or a salt thereof or an ester thereof, preferably sodium phosphate, sodium phosphite, sodium hypophosphite, potassium phosphite.
  • the amount of the catalyst was 0.01 to 2 by weight. /. Preferably, it is 0.05 to 1% by weight.
  • the blocking agent includes a monocarboxylic acid or a monoamine or a mixture thereof.
  • monocarboxylic acids are preferred because monocarboxylic acids are less toxic, less volatile, and easier to handle than monoamines;
  • monocarboxylic acids include aliphatic monocarboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, and neopentyl Acid, isobutyric acid, heptanoic acid, octanoic acid, citric acid, lauric acid, stearic acid, etc.; alicyclic monocarboxylic acids such as cyproterone carboxylic acid, cyclopentanyl acetic acid, cyclohexanecarboxylic acid, etc.; Carboxylic acids such as benzoic acid, p-methylbenzoic acid, o-methylbenzoic acid, p-tert-butylbenzoic acid, salicylic acid,
  • the blocking agent may be one or more of them.
  • the most preferred monocarboxylic acid is acetic acid, propionic acid, butyric acid, lauric acid, stearic acid, benzoic acid or phenylacetic acid.
  • Monoamines include aliphatic monoamines such as ethylamine, n-propylamine, isopropylamine, n-butylamine, sec-butylamine, isobutylamine, n-amylamine, n-decylamine, dodecylamine, stearylamine, etc.; One Amine such as cyclohexylamine; aromatic monoamine such as benzene: amine p-toluidine, o-toluidine, 2,6-dimethylaniline, 3,4-dimethylaniline, o-ethylaniline, and the like.
  • the blocking agent may be one or more of them.
  • the most preferred monoamine is ethylamine, n-propylamine, n-butylamine, aniline or p-toluidine.
  • the molar amount of the blocking agent is from 0.2 to 10%, preferably from 0.5 to 5%, based on the semi-aromatic polyamide salt. Because when the amount of the blocking agent is too high, the molecular weight of the polymer is too small; when the amount of the blocking agent is too low, the molecular weight of the polymer is too large or the active end group content of the polymer is too large.
  • the amount of deionized water added in the initial stage of the prepolymerization in the above step (2) is 15 to 35 wt%. Because if the amount of water added is too small, the material will solidify during the polymerization process, the reaction will not proceed, and the product cannot be discharged from the reactor; if the amount of water added is too large, the polymerization rate will decrease, and the obtained prepolymerization will be obtained. The viscosity of the intrinsic property is also lowered, and the viscosity-increasing reaction cannot be carried out smoothly. In order to increase the reaction speed and the intrinsic viscosity of the prepolymer, a large amount of water is discharged during the polymerization, which inevitably leads to serious loss of the diamine and destruction of the monomer. Molar ratio.
  • the thickening of the prepolymer in the above step (3) can be achieved by a solid phase thickening reaction or a melt thickening reaction, and among them, a solid phase thickening method is preferred.
  • the solid phase thickening is carried out below the melting point of the polymer, and the preferred reaction temperature is 22 () to 280 ° C, and the solid phase viscosity increasing reaction time is 3 to 20 hours, preferably 5 to 15 hours;
  • the solid phase viscosity-increasing reaction is carried out under a nitrogen atmosphere or under vacuum, preferably under a nitrogen atmosphere.
  • the advantage of solid phase thickening is that the reaction temperature is low, the degradation reaction is small, and the obtained polyamide has good color tone, dimensional stability, and heat resistance.
  • melt thickening is carried out on an extrusion device with a vent; the melt thickening temperature is higher than the melting point of the prepolymer, and the preferred reaction temperature is 290 to 350 ° C; The viscosity-increasing reaction time is 1 to 8 minutes, and is selected to be ⁇ 6 minutes. The advantage of melt thickening is that the reaction time is short. After the viscosity-increasing reaction, the final product semi-aromatic polyamide is obtained.
  • the semi-aromatic polyamide obtained by the invention has an intrinsic viscosity [ ⁇ ] of 0.8 to 2.5 dl/g, preferably 1.0 to 2.0 dl/g; a terminal carboxyl group content of 15 to 80 mol/t, preferably 15 to 50 mol/t; The amino group content is 15 to 80 mol/t, preferably 15 to 50 mol/t; and the melting point is 270 to 330 ° C, preferably 290 to 330 ° C.
  • the reason for this range is preferred: when the melting point is too low, the heat resistance of the polyamide is less than that required by the present invention; and when the melting point is too high, a degradation reaction occurs during hot working.
  • the semi-aromatic polyamide of the present invention is prepared by first obtaining a high-purity semi-aromatic polyamide salt in an organic solvent to avoid semi-aromatic polyamide.
  • the loss of diamine can accurately control the molar ratio of dicarboxylic acid to diamine, obtain polyamide with high intrinsic viscosity, and purify the monomer through salt formation process, and improve semi-aromatic polyamide. Melting point, crystallinity and mechanical properties.
  • the semi-aromatic polyamide prepared by the invention has high crystallinity, intrinsic viscosity and heat-resistant temperature, good hue, low content of active end groups, good processing stability and no corrosion of the mold.
  • Antioxidants, lubricants, nucleating agents, flame retardants, colorants, plasticizers, antistatic agents may be added as needed; or may be enhanced by adding glass fibers, carbon fibers, inorganic fillers; Other polymers are blended to prepare a polymer alloy. detailed description
  • Characteristic viscosity [ ⁇ ] The logarithmic ratio of the polyamide of the concentration ⁇ /Q, 05. 0.1, 0.3 and lg/dl was measured in concentrated sulfuric acid at 25" C. The viscosity ⁇ ⁇ was measured .
  • ri inh represents the logarithmic viscosity (dl/g)
  • to represents the solvent flow time (sec)
  • represents the sample solution flow time (sec)
  • C represents the sample solution concentration (g/dl) .
  • T] inh is extrapolated to a concentration of 0 to obtain the intrinsic viscosity [ ⁇ ] of the sample.
  • the amine content of the sample end was titrated by a fully automatic potentiometric titrator. 0.5 g of the polymer, 45 ml of phenol and 3 ml of anhydrous methanol were added, and the mixture was heated under reflux. After the sample was completely dissolved, it was cooled to room temperature, and the amine group content was titrated with a standard hydrochloric acid standard solution.
  • the carboxyl group content of the sample was titrated by a fully automatic potentiometric titrator. Take 0.5g of polymer, add 50ml of o-cresol, dissolve at reflux, quickly add 400 L of formaldehyde solution after cooling, and titrate the terminal carboxyl group with the calibrated KOH-ethanol solution.
  • the melting point and heat of fusion of the sample were tested using a Perkin Elmer DSC-6 analyzer with a nitrogen atmosphere at a flow rate of 40 mL/min. During the test, first raise the temperature to 340 ° C at 10 ° C / min, hold at 340 ° C for 2 min, then cool to 50 ° C at 10 ° C / min, then raise the temperature to 34 (TC, 10 ° C / min, The endothermic peak temperature at the time is set to the melting point Tm, and the heat of fusion A Hm is calculated from the endothermic peak area at this time.
  • Crystallinity Determination of crystallinity of the polymer by X-ray diffraction method 9 The molten polymer was quenched with liquid nitrogen to prepare an amorphous sample, and the X-ray diffraction peak areas of the amorphous sample and the polymer sample were respectively s ⁇ ns 2 , The crystallinity is calculated by the following formula.
  • X e represents crystallinity (:%), 8 represents an X-ray diffraction peak area of the amorphous sample, and S 2 represents an X-ray diffraction peak area of the polymer sample.
  • Mi represents the weight of the semi-aromatic polyamide resin initially added
  • M 2 represents the weight of the nonvolatile matter
  • the prepared semi-aromatic polyamide was injection molded into a bell-shaped spline, and its tensile strength and elongation at break were tested in accordance with ASTM standards.
  • Example 2 The preparation procedure of Example 1 was repeated, except that the thickening method was changed to melt thickening, and the viscosity increasing temperature was 33 (TC). , tackifying time 5 minutes. The results are shown in Table 1.
  • Example 3 The raw materials of the same preparation procedure as in Example 1 were repeated and changed to terephthalic acid, isophthalic acid and 1J 0-decanediamine to prepare a terpene terephthalate salt and a phthalic acid diamine salt. .
  • Example 1 The preparation procedure of Example 1 was repeated, except that the starting materials were changed to terephthalic acid, 1,10-diamine, and 5-methyl-i,9-nonanediamine, thereby obtaining a terpene terephthalate salt. And 5-methyl-1,9-nonanediamine salt of terephthalic acid.
  • Example 1 The preparation procedure of Example 1 was repeated, except that the raw materials were changed to terephthalic acid, isophthalic acid and 1,6-hexanediamine, thereby preparing hexamethylenediamine terephthalate and isophthalic acid. Amine salt.
  • Example 6 The preparation step of Example 1 was repeated; the difference was that the starting materials were changed to terephthalic acid, 1,6-hexanediamine and 2-methyl-1,5-pentanediamine to obtain terephthalic acid. Diamine salt and 2-methyl-1,5-pentanediamine salt of terephthalic acid.
  • Example 1 was repeated, and the different i was changed from hydraulic to 6849 g (50% by weight based on the total weight of the reaction system). The results are shown in Table 2.
  • Example 1 was repeated except that the raw material was changed to 3323 g (20 mol) of terephthalic acid and 3446 g (: 20 mol) of decanediamine, and terephthalic acid and decanediamine were directly subjected to a prepolymerization reaction. The results are shown in Table 2.
  • Example 1 was repeated except that the starting material was changed to 2824 g (17 mol) of terephthalic acid, 498 g (3 mol) of isophthalic acid and 3446 g (20 mol) of decyl diamine, and terephthalic acid, isophthalic acid and hydrazine were added.
  • the diamine is directly subjected to a prepolymerization reaction. The results are shown in Table 2.
  • Example 1 was repeated except that the raw materials were changed to 3323 g (20 moi) of terephthalic acid and 3515 g (20.4 mol) of decanediamine, and terephthalic acid and decanediamine were directly subjected to prepolymerization. The results are shown in Table 2.

Abstract

L'invention se rapporte à un polyamide semi-aromatique et à son procédé de préparation. Le polyamide semi-aromatique de la présente invention est préparé de la manière suivante qui consiste à produire un sel d'amide très pur par réaction de neutralisation d'acides dicarboxyliques aromatiques et de diamines aliphatiques avec 4 à 14 atomes de carbone dans un solvant organique, à réaliser une polymérisation préalable du sel d'amide très pur en présence d'eau et à soumettre le prépolymère obtenu à une autre polymérisation.
PCT/CN2008/000009 2007-12-14 2008-01-02 Polyamide semi-aromatique et son procédé de préparation WO2009079886A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007100325018A CN101456949B (zh) 2007-12-14 2007-12-14 一种半芳香族聚酰胺及其制备方法
CN200710032501.8 2007-12-14

Publications (1)

Publication Number Publication Date
WO2009079886A1 true WO2009079886A1 (fr) 2009-07-02

Family

ID=40768088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000009 WO2009079886A1 (fr) 2007-12-14 2008-01-02 Polyamide semi-aromatique et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN101456949B (fr)
WO (1) WO2009079886A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851780A (zh) * 2019-01-10 2019-06-07 中国科学院理化技术研究所 一种半芳香族聚酰胺的制备方法
CN112898563A (zh) * 2021-04-14 2021-06-04 上海中化科技有限公司 间苯二甲胺型半芳香族聚酰胺及其制备方法
CN113429571A (zh) * 2021-08-19 2021-09-24 郑州大学 一种利用聚酯的酰胺化反应制备耐高温尼龙的方法
CN114163632A (zh) * 2022-01-04 2022-03-11 上海东睿化学有限公司 一种耐黄变共聚酰胺及其制备方法
CN115028831A (zh) * 2022-05-16 2022-09-09 河南华盈新材料有限公司 窄分子量分布pa6t的缩聚方法
CN115594840A (zh) * 2022-11-09 2023-01-13 四川轻化工大学(Cn) 生物基共聚透明尼龙及其制备方法
CN115651191A (zh) * 2022-12-28 2023-01-31 中化学科学技术研究有限公司 一种制备半芳香聚酰胺的方法及由该方法制备的半芳香聚酰胺
CN115678003A (zh) * 2022-11-18 2023-02-03 中国科学院化学研究所 一种高透明高韧性聚酰胺材料及其制备方法
CN115850692A (zh) * 2023-01-31 2023-03-28 富海(东营)新材料科技有限公司 耐高温尼龙及其制备方法与应用
CN116284756A (zh) * 2023-04-18 2023-06-23 南京工业大学 一种基于微反应装置制备生物基半芳香族聚酰胺的方法
CN115594840B (zh) * 2022-11-09 2024-05-17 四川轻化工大学 生物基共聚透明尼龙及其制备方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153741B (zh) * 2010-02-11 2013-11-06 上海杰事杰新材料(集团)股份有限公司 一种长碳链半芳香耐高温聚酰胺的均聚物和共聚物及其合成方法
CN102260374A (zh) * 2010-05-26 2011-11-30 东丽纤维研究所(中国)有限公司 一种含有生物质基的聚酰胺树脂
CN102477219B (zh) * 2010-11-29 2014-04-16 上海杰事杰新材料(集团)股份有限公司 一种耐高温半芳香族尼龙及其制备方法
KR20130132961A (ko) * 2010-12-27 2013-12-05 이 아이 듀폰 디 네모아 앤드 캄파니 소음 감쇠 조성물
CN102911499B (zh) * 2011-08-03 2016-02-10 上海杰事杰新材料(集团)股份有限公司 一种高稳定性抗紫外耐高温尼龙及其制备方法
CN102372921B (zh) 2011-10-10 2013-05-08 金发科技股份有限公司 一种耐热聚酰胺组合物及其应用
CN103360760B (zh) * 2012-03-27 2018-02-23 上海杰事杰新材料(集团)股份有限公司 一种半芳香族聚酰胺/有机化蒙脱土纳米复合材料及其制备方法
CN103360761B (zh) * 2012-03-27 2018-02-27 上海杰事杰新材料(集团)股份有限公司 一种半芳香族聚酰胺盐/有机化蒙脱土纳米复合材料及其制备方法
CN102617850B (zh) * 2012-03-30 2013-10-23 金发科技股份有限公司 一种耐高温尼龙及具有良好断裂韧性的尼龙复合材料
CN102660018B (zh) * 2012-05-09 2013-12-25 金发科技股份有限公司 一种耐高温尼龙/pen/pbt共聚物及其制法与应用
CN103539936B (zh) * 2012-07-03 2016-04-20 金发科技股份有限公司 一种聚酰胺、及其合成方法和应用及聚酰胺制品
CN102993437B (zh) * 2012-11-23 2014-12-24 金发科技股份有限公司 聚酰胺、其制备方法及其应用
CN103254423A (zh) * 2013-05-20 2013-08-21 金发科技股份有限公司 一种聚酰胺树脂和由其组成的聚酰胺组合物
CN104371314B (zh) * 2013-08-13 2017-10-03 骏马化纤股份有限公司 一种由石墨烯原位聚合半芳香聚酰胺树脂及其制备方法
CN103539934B (zh) * 2013-10-15 2016-06-22 南京聚隆科技股份有限公司 一种连续化共聚型半芳香族尼龙的合成方法
CN105829448B (zh) * 2013-12-20 2018-01-30 三井化学株式会社 半芳香族聚酰胺树脂组合物及其成型品
CN104098765A (zh) * 2014-06-27 2014-10-15 广东威林工程塑料有限公司 一种生物基透明半芳香聚酰胺材料的合成方法
CN104211953A (zh) * 2014-08-05 2014-12-17 金发科技股份有限公司 一种聚酰胺树脂和由其组成的聚酰胺组合物
CA3006986C (fr) * 2015-12-15 2024-01-02 Simona Percec Procede de fabrication de polyamides a base de furane par polycondensation a l'etat fondu sans solvant
CN106916294A (zh) * 2015-12-25 2017-07-04 大连理工常熟研究院有限公司 一种半芳香族透明聚酰胺的制备方法及半芳香族透明聚酰胺
CN106916297A (zh) * 2015-12-25 2017-07-04 大连理工常熟研究院有限公司 一种透明聚酰胺的制备方法及透明聚酰胺
CN107759786A (zh) * 2017-10-13 2018-03-06 金发科技股份有限公司 一种半芳香族聚酰胺及其制备方法和由其组成的聚酰胺模塑组合物
CN107903390A (zh) * 2017-10-13 2018-04-13 金发科技股份有限公司 一种半芳香族聚酰胺及其制备方法和由其组成的聚酰胺模塑组合物
CN107955162A (zh) * 2017-11-29 2018-04-24 广东聚航新材料研究院有限公司 一种无卤阻燃、高加工性pa6t聚酰胺树脂及其制备方法
CN107936245B (zh) * 2017-11-29 2020-12-11 广东聚航新材料研究院有限公司 一种永久性无卤阻燃pa10t聚酰胺树脂及其制备方法
CN108424641A (zh) * 2018-04-08 2018-08-21 中国科学院理化技术研究所 一种无规共聚增韧的半芳香族聚酰胺及其制备方法
CN109575277A (zh) * 2018-12-06 2019-04-05 浙江新力新材料股份有限公司 一种高耐热性尼龙的制备方法
CN110951248B (zh) * 2019-11-04 2022-05-17 江门市德众泰工程塑胶科技有限公司 一种黑色led支架料及制备方法
CN112480396B (zh) * 2020-10-31 2022-07-05 山东广垠新材料有限公司 半芳族聚酰胺的制备方法及制备装置
CN112646173A (zh) * 2020-12-04 2021-04-13 中仑塑业(福建)有限公司 一种半芳香族聚酰胺树脂及其制备方法
CN112680097A (zh) * 2020-12-25 2021-04-20 江门市德众泰工程塑胶科技有限公司 聚酰胺粉末涂料及其制备方法与应用
CN112920400A (zh) * 2020-12-29 2021-06-08 深圳市华盈新材料有限公司 生物基半芳香聚酰胺共聚物及其制备方法、组合物和应用
CN113072699B (zh) * 2021-03-09 2022-03-01 东莞市华盈新材料有限公司 一种低吸湿性pa10t及其合成方法
CN113185688A (zh) * 2021-03-31 2021-07-30 上海庚彩新材料科技有限公司 一种共聚酰胺及其制备方法
CN113136030A (zh) * 2021-05-14 2021-07-20 郑州大学 含单六元脂环结构单体衍生的聚酰胺及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2710636A1 (de) * 1977-03-11 1978-09-14 Bayer Ag Polyamid aus isophthalsaeure und hexamethylendiamin
CN1227232A (zh) * 1997-11-18 1999-09-01 三井化学株式会社 制备芳香聚酰胺的方法
JP2003147077A (ja) * 2001-11-14 2003-05-21 Polyplastics Co 主鎖にアダマンタン骨格を含むポリアミド樹脂及びその製造法
CN1590433A (zh) * 2001-06-05 2005-03-09 可乐丽股份有限公司 半芳香族聚酰胺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9101606A (nl) * 1991-09-24 1993-04-16 Dsm Nv Werkwijze voor de bereiding van polytetramethyleenadipamides.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2710636A1 (de) * 1977-03-11 1978-09-14 Bayer Ag Polyamid aus isophthalsaeure und hexamethylendiamin
CN1227232A (zh) * 1997-11-18 1999-09-01 三井化学株式会社 制备芳香聚酰胺的方法
CN1590433A (zh) * 2001-06-05 2005-03-09 可乐丽股份有限公司 半芳香族聚酰胺
JP2003147077A (ja) * 2001-11-14 2003-05-21 Polyplastics Co 主鎖にアダマンタン骨格を含むポリアミド樹脂及びその製造法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851780A (zh) * 2019-01-10 2019-06-07 中国科学院理化技术研究所 一种半芳香族聚酰胺的制备方法
CN112898563A (zh) * 2021-04-14 2021-06-04 上海中化科技有限公司 间苯二甲胺型半芳香族聚酰胺及其制备方法
CN112898563B (zh) * 2021-04-14 2023-09-29 上海中化科技有限公司 间苯二甲胺型半芳香族聚酰胺及其制备方法
CN113429571A (zh) * 2021-08-19 2021-09-24 郑州大学 一种利用聚酯的酰胺化反应制备耐高温尼龙的方法
CN114163632A (zh) * 2022-01-04 2022-03-11 上海东睿化学有限公司 一种耐黄变共聚酰胺及其制备方法
CN115028831B (zh) * 2022-05-16 2023-06-09 河南华盈新材料有限公司 窄分子量分布pa6t的缩聚方法
CN115028831A (zh) * 2022-05-16 2022-09-09 河南华盈新材料有限公司 窄分子量分布pa6t的缩聚方法
CN115594840A (zh) * 2022-11-09 2023-01-13 四川轻化工大学(Cn) 生物基共聚透明尼龙及其制备方法
CN115594840B (zh) * 2022-11-09 2024-05-17 四川轻化工大学 生物基共聚透明尼龙及其制备方法
CN115678003A (zh) * 2022-11-18 2023-02-03 中国科学院化学研究所 一种高透明高韧性聚酰胺材料及其制备方法
CN115651191A (zh) * 2022-12-28 2023-01-31 中化学科学技术研究有限公司 一种制备半芳香聚酰胺的方法及由该方法制备的半芳香聚酰胺
CN115850692A (zh) * 2023-01-31 2023-03-28 富海(东营)新材料科技有限公司 耐高温尼龙及其制备方法与应用
CN116284756A (zh) * 2023-04-18 2023-06-23 南京工业大学 一种基于微反应装置制备生物基半芳香族聚酰胺的方法

Also Published As

Publication number Publication date
CN101456949A (zh) 2009-06-17
CN101456949B (zh) 2012-01-18

Similar Documents

Publication Publication Date Title
WO2009079886A1 (fr) Polyamide semi-aromatique et son procédé de préparation
WO2010003277A1 (fr) Polyamide semi-aromatique et son procédé de préparation déchargeant une faible quantité d'eaux usées
CN101463130B (zh) 半芳香族聚酰胺及其低废水排放量的制备方法
CN101759853B (zh) 一种半芳香族聚酰胺的制备方法
JP5715415B2 (ja) 押出機内でポリアミドを製造する方法
TWI580709B (zh) 共聚聚醯胺樹脂、其製造方法、樹脂組成物及由該等所構成之成形品
EP2726537B1 (fr) Polyamide ramifié avec différents blocs
JP2016528312A (ja) 脂肪族又は部分芳香族ポリアミドを連続的に製造する方法
WO2011097832A1 (fr) Homopolymère et copolymère à longue chaîne de carbone, semi-aromatiques, résistant à de hautes températures, et leur procédé de synthèse
CN101759851B (zh) 一种半芳香族聚酰胺及其制备方法
JP5871243B2 (ja) 半芳香族ポリアミド
CN106147221B (zh) 玻纤增强阻燃导热半芳香共聚尼龙复合材料及其制备方法
WO2013004548A1 (fr) Polyamide ramifié
JP2000336167A (ja) 延伸性に優れたポリアミド
JP2020536134A (ja) 重合方法
CN113185688A (zh) 一种共聚酰胺及其制备方法
CN114656785B (zh) 一种高熔接痕强度聚酰胺复合材料及其制备方法和应用
JP5857391B2 (ja) Pa−410を製造するための方法およびこの方法により得られるpa−410
JP2012149238A (ja) 半芳香族ポリアミド原料の製造方法および半芳香族ポリアミドの製造方法
CN111225941A (zh) 聚酰胺共聚物、其制备方法,以及由其制成的模制件
WO2019189145A1 (fr) Résine de polyamide semi-aromatique et son procédé de production
TWI814192B (zh) 一種高熔點聚醯胺高分子之製造方法
CN115010921B (zh) 一种分子量分布窄的高分子量半芳香族聚酰胺及其连续化制备方法
JP5686625B2 (ja) 半芳香族ポリアミド
CN108250432A (zh) 导热耐高温聚酰胺复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08700569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.11.2010)

122 Ep: pct application non-entry in european phase

Ref document number: 08700569

Country of ref document: EP

Kind code of ref document: A1