E V O N I K G o l d s c h m i d t GmbH, Essen
Verfahren zur Herstellung verzweigter SiH-funktioneller PoIy- siloxane und deren Verwendung zur Herstellung SiC- und SiOC- verknüpfter, verzweigter organomodifizierter Polysiloxane
Die Erfindung betrifft ein Verfahren zur Herstellung von in der Siloxankette verzweigten organomodifizierten Polysiloxanen, bei dem ein verzweigtes Polysiloxan mit endständigen und/oder seitenständigen SiH-Funktionen in nur einem Verfahrensschritt hergestellt und mit organischen Verbindungen weiter funktiona- lisiert wird, sowie nach diesem Verfahren hergestellte ver¬ zweigte organomodifizierte Polysiloxane und deren Verwendung.
Stand der Technik:
Polyorganosiloxane werden nach dem Stand der Technik durch Hydrolyse und Kondensation ausgehend von gemischt substituier¬ ten Methyl-chlor-wasserstoff-silanen hergestellt. Eine direkte hydrolytische Kondensation von wasserstoffhaltigen Silanen, wie z. B. Dimethylmonochlorsilan oder Methyldichlorsilan, wird beispielsweise in der US 2,758,124 beschrieben. Man trennt darin die sich bei der Hydrolyse separierende Siloxanphase von der salzsauren Wasserphase ab. Da dieser Prozess anfällig für Ver¬ gelungen der Wasserstoffsiloxane ist, beschreibt die DE 11 25 180 ein verbessertes Verfahren unter Nutzung einer organischen Hilfsphase, bei dem das gebildete Wasserstoffsiloxan in einem organischen Lösungsmittel als separate Phase gelöst vorliegt und nach Abtrennung von der sauren Wasserphase und Ab- destillation des Lösungsmittels beständig gegen Vergelung ist. Eine weitere Prozessverbesserung im Hinblick auf einen minimierten Lösungsmitteleinsatz beschreibt die EP 0 967 236 und führt in ihrer Lehre aus, vorerst nur geringe Wassermengen in der hydrolytischen Kondensation der Organochlorsilane einzusetzen, so dass im ersten Schritt Chlorwasserstoff gasförmig
ausgetrieben wird und als Wertstoff unmittelbar weiteren Verwendungszwecken zugeführt werden kann.
Verzweigte organomodifizierte Polysiloxane können durch eine Vielzahl an Strukturen beschrieben werden. Generell muss unterschieden werden zwischen einer Verzweigung oder Vernetzung, die über die organischen Substituenten eingebracht wird und einer Verzweigung oder Vernetzung innerhalb der Siliconkette. Organische Vernetzer zur Verknüpfung SiH-Gruppen tragender Siloxan- gerüste sind beispielsweise α, ω-ungesättigte Diolefine, Di- vinylVerbindungen oder DiallylVerbindungen, wie beispielsweise in US 6,730,749 oder EP 0 381 318 beschrieben. Diese der Äqui- librierung nachgeschaltete Vernetzung durch Platin-katalysierte Hydrosilylierung bedeutet einen zusätzlichen Verfahrensschritt, bei dem sowohl intramolekulare Verknüpfungen als auch intermolekulare Verknüpfungen stattfinden können. Die Produkteigenschaften werden zudem stark beeinflusst von den unterschiedlichen Reaktivitäten der zu Peroxidbildung neigenden, niedermolekularen organischen difunktionellen Verbindungen.
Eine multiple Vernetzung des Siliconblocks eines organomodifi- zierten Polysiloxans mit dem organischen Blockcopolymer kann auf verschiedene Arten erfolgen. Die EP 0 675 151 beschreibt die Herstellung eines Polyethersiloxans durch Hydrosilylierung eines Wasserstoffsiloxans mit einem Unterschuss an hydroxyfunk- tionellem Allylpolyether, bei der nicht umgesetzte SiH-Funk- tionen unter Zugabe von Natriummethylat mit den Hydroxylgruppen der Polyethersubstituenten über eine SiOC-Bindung verknüpft werden. Der Molmassenaufbau führt zu einer breiten Streuung der Produkteigenschaften, wie z. B. der Viskosität. Einen ähnlichen
Ansatz zum Aufbau verzweigter Systeme beschreibt die US 4,631,208, bei der hydroxyfunktionelle Polyethersiloxane mittels Trialkoxysilanen quervernetzt werden. Beide Methoden führen zu einer intermolekularen Vernetzung der Polyether- siloxane mit sowohl schwierig zu steuerndem Molmassenaufbau als auch damit einhergehenden, unvorhersehbaren Viskositätsan-
stiegen. Man erhält bei Verfolgung der vorgenannten Methoden keine Verzweigung innerhalb des Siloxanteils bei konstanter Mo¬ lekularmasse, sondern eine Quervernetzung zu makromolekularen Multiblockcopolymeren .
Eine Verzweigung innerhalb der Siloxankette muss daher bereits bei der Herstellung des Wasserstoffsiloxans erfolgen, um die beschriebenen Nachteile der Quervernetzung zu umgehen. Verzweigungen innerhalb der Siloxankette bedingen den syn- thetischen Einbau von trifunktionellen Silanen, wie z. B. Trichlorsilanen oder Trialkoxysilanen.
Wie dem Fachmann bekannt ist, steigt die Hydrolysegeschwindig¬ keit der Organochlorsilane in folgender Reihe (C. Eaborn, Or- ganosilicon Compounds, Butterworths Scientific Publications, London I960, S. 179)
SiCl4 > RSiCl3 » R2SiCl2 > R3SiCl.
Daher besteht bei den Hydrolyse- und Kondensationsreaktionen von Trichlorsilanen eine erhöhte Tendenz zur Ausbildung hoch- vernetzter Gele im Vergleich zu den langsamer verlaufenden Hydrolyse- und Kondensationsreaktionen von difunktionellen und monofunktionellen Organochlorsilanen. Die etablierten Verfahren zur Hydrolyse und Kondensation von Dichlor- und Monochlor- silanen sind daher nicht ohne weiteres auf Trichlorsilane über¬ tragbar, sondern es müssen Umwege über Mehrstufenprozesse be- schritten werden.
Aufbauend auf diese Erkenntnis, muss auch die Herstellung von einfach verzweigten Wasserstoffsiloxanen durch Einbau von maximal einem trifunktionellen Monomer pro Siloxankette gemäß dem Stand der Technik zweistufig durchgeführt werden. In einem er¬ sten Schritt wird ein trifunktionelles, niedermolekulares Wasserstoffsiloxan durch Hydrolyse und Kondensation aus
1, 1, 3, 3-Tetramethyldisiloxan und Methyltriethoxysilan herge¬ stellt, wie z.B. die DE 37 16 372 lehrt. Erst in einem zweiten Schritt kann dann eine Äquilibrierung mit cyclischen Siloxanen zu höheren Molgewichten erfolgen, wie die DE 10 2005 004676 ausführt. Zur weiteren Umsetzung - und daher erst in einem dritten Schritt - kann das so hergestellte, einfach verzweigte Wasserstoffsiloxan nach den an sich bekannten Methoden zur Funktionalisierung SiH-Gruppen aufweisender Siloxanverbindungen mit organischen Substituenten versehen werden.
Zur Synthese mehrfach verzweigter Wasserstoffsiloxane, die per Definition mehr als ein trifunktionelles Monomer pro Siloxan- kette aufweisen, finden sich im Stand der Technik ebenfalls zweistufige Synthesen. Prinzipiell hat man die Möglichkeit von Wasserstoffsiloxanen auszugehen und die SiH-Funktionen unter Zugabe von Wasser und Edelmetallkatalysator dehydrogenativ in Silanole umzuwandeln, die anschließend wiederum mit Wasserstoffsiloxanen kondensiert werden. Beschrieben wird diese Vorgehensweise in US 6,790,451 und in EP 1 717 260. Abgesehen von den Kosten der Edelmetallkatalyse erschwert die schlechte Lagerstabilität der zu Autokondensation neigenden Silanole eine reproduzierbare, kontrollierte Prozessführung.
Eine weitere, in US 6,790,451 beschriebene Möglichkeit besteht in der Herstellung eines Copolymerisats aus Trichlormethylsilan oder Trialkoxymethylsilan mit Hexamethyldisiloxan oder Tri- methylchlorsilan, dort auch MT-Polymer genannt, welches in einem zweiten Schritt gemeinsam mit einem Polydi- methyl (methylhydrogen) siloxancopolymer äquilibriert wird. Die Herstellung solcher MT-Polymere erfordert den Einsatz starker
Basen oder starker Säuren teils in Kombination mit hohen Reaktionstemperaturen und bringt Präpolymere derart hoher Vis¬ kosität hervor, dass deren Neutralisation beträchtlich erschwert und somit die Weiterverarbeitung zu Endprodukten kon- stanter Zusammensetzung und Qualität signifikant eingeschränkt ist.
Gemäß EP 0 675 151 wird zuerst die Hydrolyse und Kondensation des SiH-freien, verzweigten Siliconpolymers in Xylol durchge¬ führt und im zweiten Schritt führt die Äquilibrierung mit Me- thylhydrogenpolysiloxan zum verzweigten Wasserstoffsiloxan. Auch hier sind zwei Verfahrensschritte zwingend erforderlich, bei denen die SiH-Funktionen erst im zweiten Schritt eingebracht werden.
Aufgabe der vorliegenden Erfindung war deshalb die Bereitstellung eines einfachen, einstufigen Verfahrens zur Herstellung verzweigter Wasserstoffsiloxane zu finden, ohne die, durch die Ausgangsstoffe eingebrachten, SiH-Funktionen in Nebenreaktionen abzubauen und dabei auf die Verwendung alipha- tischer bzw. aromatischer Lösungsmittel zur Bildung einer zusätzlichen Hilfsphase zu verzichten.
Überraschenderweise wurde nun gefunden, dass eine Kondensation und Äquilibrierung SiH-funktioneller Siloxane mit Trialkoxy- silanen unter hydrolytisch sauren Bedingungen in nur einem Schritt bei weitestgehendem Erhalt an eingebrachten SiH-Funktionen möglich ist. Dieses Ergebnis ist für den Fachmann vollkommen überraschend, da sich weder die beschriebene Vergelungs- neigung trifunktioneller Silane noch die Nebenreaktion eines säureinduzierten dehydrogenativen SiH-Abbaues (C. Eaborn, Or- ganosilicon Compounds, Butterworths Scientific Publications, London 1960, S. 200) störend bemerkbar machen.
Gegenstand der vorliegenden Erfindung ist deshalb ein Verfahren gemäß Anspruch 1 zur Herstellung von verzweigten SiH-funk- tionellen Siloxanen durch Umsetzung einer Mischung, enthaltend
a) ein oder mehrere SiH-funktionelle Siloxane, b) ein oder mehrere SiH-Funktion-freie Siloxane und c) ein oder mehrere Trialkoxysilane,
unter Zugabe von Wasser und in Anwesenheit von mindestens einem Brönstedt-sauren Katalysators, welches dadurch gekennzeichnet ist, dass die Umsetzung in einem Verfahrensschritt durchgeführt wird, sowie die so hergestellten Wasserstoffsiloxane.
Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung der so hergestellten Wasserstoffsiloxane zur Herstellung von in der Siloxankette verzweigten organomodifizierten PoIy- siloxanen sowie die so hergestellten organomodifizierten, in der Siloxankette verzweigten Polysiloxane und deren Verwendung als grenzflächenaktive Silicontenside.
Weitere Gegenstände der Erfindung sind gekennzeichnet durch die nachfolgende Beschreibung und den Inhalt der Ansprüche/Unteransprüche .
Das erfindungsgemäße Verfahren hat den Vorteil, dass verzweigte SiH-funktionelle Siloxane in einem einzigen Verfahrensschritt hergestellt werden können. Das Verfahren hat außerdem den Vorteil, dass bei der Umsetzung die SiH-Funktionen, insbesondere die endständigen SiH-Funktionen nicht oder nur zu einem geringen Anteil verloren gehen. Insbesondere der ausbleibende, vom Fachmann erwartete Abbau der endständigen SiH-Funktionen (Dimethylhydrogensiloxy-Einheiten) ist überraschend.
Das erfindungsgemäße Verfahren hat weiterhin den Vorteil, dass keine Phasentrennung erforderlich ist, bei der einerseits die wässrige Hilfsphase als Abfall zu entsorgen ist und andererseits das Produkt durch Abdestillation der verwendeten unpolaren Lösungsmittel wie beispielsweise Toluol oder Xylol aufge- reinigt werden muss. Das erfindungsgemäße Verfahren erfordert im Wesentlichen lediglich eine schonende Abdestillation der
niedrig siedenden Reaktionsprodukte, nämlich der Alkohole die aus der Hydrolyse und Kondensation hervorgehen.
Das erfindungsgemäße Verfahren hat hinsichtlich der Qualität und Lagerstabilität der Endprodukte den Vorteil, dass die er¬ findungsgemäß hergestellten verzweigten Wasserstoffsiloxane und die daraus gefertigten Folgeprodukte keine Vergelungsneigung besitzen und somit über einen längeren Zeitraum gelagert werden können, ohne dass sich die Viskosität der Produkte maßgeblich verändert.
Das erfindungsgemäße Verfahren zur Herstellung von verzweigten SiH-funktionellen Siloxanen sowie deren Verwendung zur Herstellung von in der Siloxankette verzweigten organomo- difizierten Polysiloxanen sowie deren Verwendung werden nachfolgend beispielhaft beschrieben, ohne dass die Erfindung auf diese beispielhaften Ausführungsformen beschränkt sein soll. Sind nachfolgend Bereiche, allgemeine Formeln oder Ver¬ bindungsklassen angegeben, so sollen diese nicht nur die ent- sprechenden Bereiche oder Gruppen von Verbindungen umfassen, die explizit erwähnt sind, sondern auch alle Teilbereiche und Teilgruppen von Verbindungen, die durch Herausnahme von einzelnen Werten (Bereichen) oder Verbindungen erhalten werden können. Werden im Rahmen der vorliegenden Beschreibung Doku- mente zitiert, so soll deren Inhalt vollständig zum Offen¬ barungsgehalt der vorliegenden Erfindung gehören.
Die verschiedenen Monomereinheiten der in den Formeln angegebenen Verbindungen (Siloxanketten bzw. Polyoxyalkylenkette) können untereinander blockweise aufgebaut sein oder einer statistischen Verteilung unterliegen. Die in den Formeln verwendeten Indices, insbesondere die Indices k, m, m1, n und n1 sind als statistische Mittelwerte zu betrachten. Der Verzweigungs¬ grad k ist in Übereinstimmung mit der gängigen Definition gege- ben durch die Anzahl der an drei Sauerstoffatome gebundenen Si- Atome .
Das erfindungsgemäße Verfahren zur Herstellung von verzweigten SiH-funktionellen Siloxanen durch Umsetzung einer Mischung, enthaltend
a) ein oder mehrere SiH-funktionelle Siloxane, b) ein oder mehrere SiH-Funktion-freie Siloxane und c) ein oder mehrere Trialkoxysilane,
unter Zugabe von Wasser und in Anwesenheit von mindestens einem Brönstedt-sauren Katalysator, zeichnet sich dadurch aus, dass die Umsetzung in einem (einzigen) Verfahrensschritt durchgeführt wird. Vorzugsweise werden mit dem erfindungsgemäßen Verfahren in der Siloxankette verzweigte Wasserstoffsiloxane der allgemeinen Formel (I) hergestellt,
( I )
worin n und n
1 unabhängig voneinander 0 bis 500, vorzugsweise 10 bis 200, bevorzugt 15 bis 100 sind und (n+n
1) < 500, vorzugsweise < 200, bevorzugt < 100, ist, m und m
1 unabhängig voneinander 0 bis 60, vorzugsweise 0 bis 30, bevorzugt 0,1 bis 25 sind und (m+m
1) < 60, vorzugsweise < 30, bevorzugt < 25 ist, k 1 bis 10, vorzugsweise 1 bis 5, ist,
R mindestens ein Rest aus der Gruppe linearer, cyclischer oder verzweigter, aliphatischer oder aromatischer, gesättigter oder ungesättigter Kohlenwasserstoffreste mit 1 bis zu 20 C-Atomen, vorzugsweise jedoch ein Methylrest ist, Ri unabhängig voneinander Wasserstoff oder R ist,
R2 unabhängig voneinander Wasserstoff, R oder ein mit Hetero- atomen substituierter, funktioneller, organischer, gesättigter oder ungesättigter Rest, vorzugsweise ausgesucht aus der Gruppe der Alkyl-, Chloralkyl-, Chloraryl-, Fluor- alkyl-, Cyanoalkyl-, Acryloxyaryl-, Acryloxyalkyl-, Me- thacryloxyalkyl-, Methacryloxypropyl- oder Vinyl-Reste, be¬ sonders bevorzugt ein Methyl-, Chlorpropyl-, Vinyl- oder ein Methacryloxypropyl-Rest ist,
R3 unabhängig voneinander Wasserstoff oder R ist, mit der Maßgabe, dass mindestens einer der Reste Ri, R2 oder R3 Wasserstoff ist. Vorzugsweise sind alle Reste R und alle Reste Ri bis R3, die ein Rest R sind, ein Methylrest.
Die erhaltenen verzweigten SiH-funktionellen Siloxane, vorzugs- weise die verzweigten SiH-funktionellen Siloxane der Formel (I) können solche sein, bei denen die SiH-Funktionen rein endständig, rein seitenständig oder gemischt end- und seiten¬ ständig im Siloxan angeordnet sind.
Als SiH-funktionelle Siloxane können solche eingesetzt werden, bei denen die SiH-Funktionen rein endständig, rein seitenständig oder gemischt end- und seitenständig im Siloxan ange¬ ordnet sind. Als SiH-funktionelle Siloxane können z. B. lineare Polymethylhydrogensiloxane, wie beispielsweise HMS-993 der Firma Gelest Inc., lineare Polydimethylmethylhydrogensiloxane wie beispielsweise HMS-031 und/oder HMS-071 der Firma Gelest Inc., lineare α, ω-Dihydrogenpolydimethylsiloxane, wie bei¬ spielsweise 1, 1, 3, 3-Tetramethyldisiloxan und/oder 1,1,3,3,5,5- Hexamethyltrisiloxan, höhermolekulare Oligomere, wie beispiels- weise DMS-H03 und/oder DMS-HIl der Firma Gelest Inc., cyclische Polymethylhydrogensiloxane, wie beispielsweise Tetramethyl-
cyclotetrasiloxan oder Pentamethylcyclopentasiloxan und cyc- lische Polydimethylmethylhydrogensiloxane wie beispielsweise Heptamethylcyclotetrasiloxan und/oder Nonamethylcyclo- pentasiloxan, oder Mischungen davon eingesetzt werden. Beson- ders bevorzugt werden als SiH-funktionelle Siloxane 1,1,3,3- Tetramethyldisiloxan, DMS-H03, HMS-993 (jeweils Firma Gelest Inc.) und Pentamethylcyclopentasiloxan eingesetzt.
Als SiH-Funktion-freie Siloxane können z. B. lineare PoIy- dimethylsiloxane, wie beispielsweise Hexamethyldisiloxan oder cyclische Polydimethylsiloxane, wie beispielsweise Octamethyl- cyclotetrasiloxan und/oder Decamethylcyclopentasiloxan, eingesetzt werden. Vorzugsweise werden Hexamethyldisiloxan und Decamethylcyclopentasiloxan eingesetzt .
Als Trialkyoxysilane können prinzipiell alle Trialkoxysilane eingesetzt werden. Als Trialkoxysilane können solche eingesetzt werden, bei denen die Alkoxyreste alle gleich, alle unterschiedlich oder teilweise gleich sind. Als Trialkoxysilane können insbesondere Triethoxysilane, vorzugsweise Methyltriethoxysilan, Alkyltriethoxysilane wie beispielsweise n-Propyltriethoxysilan, Isobutyltriethoxysilan,
Pentyltriethoxysilan, Hexyltriethoxysilan, Octyltriethoxysilan, Hexadecyltriethoxysilan, n-Octadecyltriethoxysilan, halogen- haltige oder pseudohalogenhaltige Alkyltrialkoxysilane, ins¬ besondere Alkyltriethoxysilane, wie beispielsweise Chlor- propyltriethoxysilan, Tridecafluoro-1, 1,2, 2-tetrahydrooctyl- triethoxysilan, Nonafluoro-1, 1,2, 2-tetrahydrohexyltriethoxy- silan, 3-Cyanopropyltriethoxysilan, Trialkoxysilane, ins- besondere Triethoxysilane mit funktionellen Gruppen, wie beispielsweise 3-Methacryloxypropyltriethoxysilan, 3-Mer- captopropyltriethoxysilan, 5- (Bicycloheptenyl) triethoxysilan, Phenyltriethoxysilan, (p-Chloromethyl)phenyltriethoxysilan, N- (3-Triethoxysilylpropyl) -4, 5-dihydroimidazol oder Dihydro-3- [3- (triethoxysilyl)propyl] furan-2, 5-dion, eingesetzt werden. Es kann vorteilhaft sein, wenn organisch funktionalisierte
Trialkoxysilane als Verzweigungseinheit eingesetzt werden (einäquilibiert werden) .
Die Anteile an kettenterminierenden Trialkylsiloxyeinheiten, insbesondere Trimethylsiloxyeinheiten (M-Einheiten) und/oder Dialkylhydrogensiloxyeinheiten, insbesondere Dimethylhydrogen- siloxyeinheiten (MH-Einheiten) , an kettenverlängernden Dialkyl- siloxyeinheiten, insbesondere Dimethylsiloxyeinheiten (D-Einheiten) und/oder Alkylhydrogensiloxyeinheiten, insbesondere Methylhydrogensiloxyeinheiten (DH-Einheiten) sowie an kettenverzweigenden Alkylsiloxyeinheiten, insbesondere Methylsiloxy- einheiten (T-Einheiten) und/oder mit funktionellen Gruppen substituierten T-Einheiten können über einen weiten Bereich variiert werden. Das molare Verhältnis der Summe aus M-Einheiten und MH-Einheiten zu T-Einheiten beträgt vorzugsweise von 3:1 bis 1:1. Übersteigt die molare Menge der T-Einheiten die der M- Einheiten, erhält man unerwünschte, makromolekulare stark ver¬ netzte Gele bis Harze.
Die Reaktionsmischung kann durch beliebiges Mischen der Komponenten erhalten werden. Vorzugsweise werden zunächst die SiH- funktionellen Siloxane, die SiH-Funktion-freien Siloxane und die gegebenenfalls substituierten Trialkoxysilane gemischt.
Vorzugsweise wird nach dem Vermischen der Ausgangsstoffe, also der SiH-funktionellen Siloxane, der SiH-Funktion-freien Siloxane und der Trialkoxysilane, mindestens ein Brönstedt-saurer Katalysator zur Katalyse der Hydrolyse und Kondensation zugegeben. Der Katalysator kann der Reaktionsmischung ganz oder teil- weise direkt zugegeben oder während der Reaktion in beliebiger
Reihenfolge zudosiert werden.
Vorzugsweise werden zunächst die Ausgangsstoffe vermischt, dann der Katalysator zugegeben und anschließend das Wasser zugefügt.
Als Brönstedt-saure Katalysatoren können die nach dem Stand der Technik bekannten Säuren (Äquilibriersäuren) für Siloxane, also Mineralsäuren, wie beispielsweise Schwefelsäure, aber auch SuI- fonsäuren, saure Tonerden oder saure Ionenaustauscherharze, wie beispielsweise die unter den Markennamen Amberlite®, Amberlyst® oder Dowex® und Lewatit® bekannten Produkte eingesetzt werden.
In dem erfindungsgemäßen Verfahren können sowohl natürliche Ionenaustauscher, wie beispielsweise Zeolithe, Montmorillonite, Attapulgite, Bentonite und andere Aluminiumsilikate sowie syn¬ thetische Ionenaustauscher eingesetzt werden. Letztere sind vorzugsweise Festkörper (meist in Körnerform) mit einer dreidimensionalen, wasserunlöslichen hochmolekularen Matrix auf der Basis von Phenol-Formaldehyd-Harzen oder Copolymerisate aus Styrol-Divinylbenzol, in die zahlreiche „Ankergruppen" unter¬ schiedlicher Acidität eingebaut sind.
Als Brönstedt-saure Katalysatoren werden in dem erfindungsge¬ mäßen Verfahren vorzugsweise solche eingesetzt, wie sie in EP 1 439 200 beschrieben sind. Diese Schrift und die in ihr als Stand der Technik zitierten Schriften werden hiermit als Referenz eingeführt und gelten als Teil des Offenbarungsgehaltes der vorliegenden Erfindung.
Es kann vorteilhaft sein, wenn in dem erfindungsgemäßen Verfahren als Katalysator mindestens eine Säure (Katalysator 1) und mindestens ein saurer (saures) Ionenaustauscher (-harz) (Ka¬ talysator 2) eingesetzt wird. Als Säure kann dabei eine Mine¬ ralsäure, vorzugsweise Schwefelsäure und/oder, vorzugsweise eine organische Sulfonsäure, vorzugsweise Trifluormethansulfon- säure eingesetzt werden. Diese Mischung wird vorzugsweise di¬ rekt der Reaktionsmischung zugegeben. Bevorzugt wird als Katalysator eine Mischung aus Trifluormethansulfonsäure und einem sulfonsauren Ionenaustauscherharz, vorzugsweise Lewatit® K 2621 (Bayer Material Science) eingesetzt.
Werden als Katalysator die zwei Katalysatoren 1 und 2 eingesetzt, so kann es vorteilhaft sein, wenn zu der Mischung an Ausgangsstoffen zunächst der Katalysator 1, vorzugsweise vollständig zugegeben wird, anschließend das Wasser zugefügt wird und erst nach der vorzugsweise vollständigen Zugabe von Wasser der Katalysator 2 zugegeben wird. Die Katalysatoren 1 und 2 können aber auch beide vor der Zugabe des Wassers den Ausgangs¬ stoffen zugegeben werden.
In dem erfindungsgemäßen Verfahren wird dem Reaktionsgemisch vorzugsweise soviel an saurem Katalysator zugegeben, dass die Menge an sauren Katalysatoren von 0,01 bis 10 Gew.-% bezogen auf die Summe der Masse an eingesetzten Ausgangsstoffen (also Summe der SiH-funktionellen Siloxane, der SiH-Funktion-freien Siloxane und der Trialkoxysilane) beträgt. Je nach Art und Kon¬ zentration des eingesetzten Katalysators können bestimmte Unterbereiche dieses Bereichs bevorzugt sein. Besonders bevor¬ zugt ist beispielsweise die Verwendung von Trifluormethan- sulfonsäure in Mengen von 0,05 Gew.-% bis 0,5 Gew.-%. Wird als Katalysator ein Ionenaustauscherharz allein eingesetzt, so beträgt die eingesetzte Masse an Katalysator vorzugsweise von 3 bis 10 Gew.-%. Wird als Katalysator eine Kombination von Mineralsäure und/oder organischen Sulfonsäure mit einem Ionenaus¬ tauscherharz eingesetzt, so beträgt die Masse an eingesetztem Ionenaustauscherharz vorzugsweise von 3 bis 6 Gew.-%.
In dem erfindungsgemäßen Verfahren werden pro Mol eingesetztem Trialkoxysilan vorzugsweise von 0,5 bis 30 Mol Wasser einge¬ setzt. Zur Hydrolyse und Kondensation werden bevorzugt 1 bis 5 Mol Wasser pro Mol trifunktionellem Trialkoxysilan eingesetzt. Das Wasser kann in einem Schritt zugegeben oder bevorzugt über einen längeren Zeitraum zudosiert werden Aufgrund der gewählten Wassermenge tritt eine Phasentrennung üblicherweise nicht auf. Gegebenenfalls kann das Wasser zur besseren Homogenisierung mit einer kleinen Menge, bezogen auf die Gesamtgewichtsmenge an Si- loxanen, eines kurzkettigen Alkohols versetzt werden, bei-
spielsweise mit Methanol oder Ethanol. Als kleine Menge ist eine Menge zu verstehen, die ausreicht das Wasser ganz oder teilweise in der Reaktionsmischung zu homogenisieren und nicht zur Bildung einer separaten Phase führt.
Die Umsetzung wird im erfindungsgemäßen Verfahren vorzugsweise bei einer Temperatur von 0° C bis 100° C durchgeführt. Vorzugs¬ weise erfolgt die Umsetzung (gleichzeitige Durchführung von Hydrolyse-, Kondensations- und Äquilibrierungsreaktionen) bei einer Temperatur von 20 bis 60 0C.
Nach Beendigung der Reaktion können die flüchtigen Nebenprodukte der Kondensation, z. B. durch schonende Vakuumdestillation entfernt werden. Falls erforderlich oder gewünscht kann eine Neutralisation, z. B. mit einem basischen Salz, vorzugsweise mit Natriumhydrogencarbonat, erfolgen.
Die so erhaltenen, erfindungsgemäßen, in der Kette verzweigten Wasserstoffsiloxane sind vorzugsweise stabile, klare, farblose Flüssigkeiten, die bevorzugt keine oder zumindest nur geringe Anteile an flüchtigen niedermolekularen Verbindungen enthalten. Die in den via Eduktgemisch eingewogenen SiH-Äquivalenten, d.h. vor der Umsetzung gemessenen und die in den nach dem erfindungsgemäßen Verfahren hergestellten Wasserstoffsiloxanen (d.h. nach der Umsetzung) gemessenen SiH-Äquivalente sind innerhalb der Analysengenauigkeit übereinstimmend, was den weitestgehen- den Erhalt der eingesetzten SiH-Funktionen belegt.
Durch das erfindungsgemäße Verfahren können in der Siloxankette verzweigte Wasserstoffsiloxane, insbesondere solche gemäß For¬ mel (I), hergestellt werden. Vorzugsweise weisen die in der Siloxankette verzweigten Wasserstoffsiloxane eine Viskosität, gemessen mit einem Rotationsviskosimeter der Marke Haake RV12 bei 25°C, von 10 bis 2000 mPa*s, bevorzugt von 15 bis 600 mPa*s, auf. Der mittlere Verzweigungsgrad der erfindungsgemäßen in der Siloxankette verzweigten Wasserstoffsiloxane beträgt
vorzugsweise 1 bis 10, bevorzugt 1 bis 5. Die erfindungsgemäßen in der Siloxankette verzweigten Wasserstoffsiloxane können zur Herstellung von in der Siloxankette verzweigten organomodifizierten Polysiloxanen verwendet werden.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Herstellung von in der Siloxankette ver¬ zweigten organomodifizierten Polysiloxanen durch vollständige oder teilweise Umsetzung der erfindungsgemäß hergestellten in der Siloxankette verzweigten Wasserstoffsiloxane, vorzugsweise Wasserstoffsiloxane der Formel (I) mit Verbindungen, die min¬ destens eine, vorzugsweise genau eine Doppelbindung pro Molekül aufweisen, durch Edelmetall-katalysierte, insbesondere Platin¬ katalysierte Hydrosilylierung. Durch diese Umsetzung werden vorzugsweise Copolymere der allgemeinen Formel (II)
erhalten, worin n und n1 unabhängig voneinander 0 bis 500, vorzugsweise 10 bis 200, insbesondere 15 bis 100 sind und (n+n1) < 500, vor¬ zugsweise < 200, insbesondere < 100 ist, m und m1 unabhängig voneinander 0 bis 60, vorzugsweise 0 bis 30, insbesondere 0,1 bis 25 sind und (m+m1) < 60, vorzugs¬ weise < 30, insbesondere < 25 ist, k l bis 10, vorzugsweise 1 bis 5 ist,
R mindestens ein Rest aus der Gruppe linearer, cyclischer oder verzweigter, aliphatischer oder aromatischer, gesättigter oder ungesättigter Kohlenwasserstoffreste mit 1 bis zu 20 C-Atomen, vorzugsweise ein Methylrest ist, wobei besonders bevorzugt alle Reste R Methylreste sind,
R4 R und/oder
CH2-CH2-CH2-O- (CH2-CH2O-) X-(CH2-CH (R' )O-)y- (SO)2-R' '
CH2-CH2-O- (CH2-CH2O-) X-(CH2-CH (R' )O-)y-R' '
CH2-RIV CH2-CH2- (O) X.-RIV
CH2-CH2-CH2-O-CH2-CH (OH) -CH2OH
H
CH2-C-C-O-C-C—CH2 H2 H2 H2 W
CH2-CH2-CH2-O-CH2-C (CH2OH) 2-CH2-CH3 ist, worin x 0 bis 100, vorzugsweise 0 bis 50, x' 0 oder 1, y 0 bis 100, vorzugsweise 0 bis 50, z 0 bis 100, vorzugsweise 0 bis 10,
R' eine gegebenenfalls substituierte, beispielsweise mit Alkylresten, Arylresten oder Halogenalkyl- oder HaIo- genarylresten substituierte, Alkyl- oder Arylgruppe mit 1 bis 12 C-Atomen ist und
R' ' einen Wasserstoffrest oder eine Alkylgruppe mit 1 bis 4 C- Atomen, eine Gruppe -C(O)-R' ' ' mit R' ' ' = Alkylrest, eine Gruppe -CH2-O-R', eine Alkylarylgruppe, wie z. B. eine Ben- zylgruppe, die Gruppe -C(O)NH-R' bedeutet,
RIV ein gegebenenfalls substituierter, z. B. mit Halogenen substituierter, Kohlenwasserstoffrest mit 1 bis 50, vorzugs¬ weise 9 bis 45, bevorzugt 13 bis 37 C-Atomen ist, SO ein Styroloxid-Rest -CH (C6H5) -CH2-O- ist,
R5 R und/oder R4 sein kann,
R6 R, R4 und/oder ein mit Heteroatomen substituierter, funktioneller, organischer, gesättigter oder ungesättigter Rest ausgesucht aus der Gruppe der Alkyl-, Chloralkyl-,
Chloraryl-, Fluoralkyl-, Cyanoalkyl-, Acryloxyaryl-, Acryl- oxyalkyl-, Methacryloxyalkyl-, Methacryloxypropyl- oder Vi- nyl-Rest sein kann, mit der Maßgabe, dass mindestens ein Substituent aus R4, R5 und R6 nicht R ist. Die verschiedenen Monomereinheiten der Siloxankette und auch der Polyoxyalkylenkette können unter¬ einander blockweise aufgebaut sein oder einer statistischen Verteilung unterliegen.
Die edelmetallkatalysierte Hydrosilylierung der erfindungsge¬ mäßen verzweigten Wasserstoffsiloxane kann z. B. wie im Stand der Technik, z. B. in EP 1 520 870, beschrieben durchgeführt werden. Die Schrift EP 1 520 870 wird hiermit als Referenz eingeführt und gilt als Teil des Offenbarungsgehaltes der vor- liegenden Erfindung.
Als Verbindungen, die zumindest eine Doppelbindung pro Molekül aufweisen, können z. B. α-Olefine, Vinylpolyoxyalkylene und/oder Allylpolyoxyalkylene eingesetzt werden. Vorzugsweise werden Vinylpolyoxyalkylene und/oder Allylpolyoxyalkylene ein¬ gesetzt. Besonders bevorzugte Vinylpolyoxyalkylene sind z. B. Vinylpolyoxyalkylene mit einem Molgewicht im Bereich von 100 g/Mol bis 5.000 g/Mol, die aus den Monomeren Propylenoxid, Ethylenoxid, Butylenoxid und/oder Styroloxid blockweise oder statistisch verteilt aufgebaut sein können und die sowohl hydroxyfunktionell als auch durch eine Methyletherfunktion oder eine Acetoxyfunktion endverkappt sein können. Besonders bevorzugte Allylpolyoxyalkylene sind z. B. Allylpolyoxyalkylene mit einem Molgewicht im Bereich von 100 g/Mol bis 5.000 g/Mol, die aus den Monomeren Propylenoxid, Ethylenoxid, Butylenoxid und/oder Styroloxid blockweise oder statistisch verteilt aufge¬ baut sein können und die sowohl hydroxyfunktionell als auch durch eine Methyletherfunktion oder eine Acetoxyfunktion endverkappt sein können. Besonders bevorzugt werden als Verbin- düngen, die zumindest eine Doppelbindung pro Molekül aufweisen,
die in den Beispielen genannten α-Olefine, Vinylpolyoxyalkylene und/oder Allylpolyoxyalkylene eingesetzt.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Herstellung von in der Siloxan- kette verzweigten organomodifizierten Polysiloxanen durch vollständige oder teilweise Umsetzung der erfindungsgemäß herge¬ stellten in der Siloxankette verzweigten Wasserstoffsiloxane, vorzugsweise Wasserstoffsiloxane der Formel (I) mit Verbin¬ dungen, die eine Hydroxylgruppe pro Molekül aufweisen, durch mit Lewissäuren katalysierte dehydrogenative Verknüpfung. Die Lewis-sauer katalysierte dehydrogenative Verknüpfung von hydro- xyfunktionellen Verbindungen an die erfindungsgemäß hergestellten verzweigten Wasserstoffsiloxane, insbesondere solche der Formel (I) kann wie im Stand der Technik beschrieben durchgeführt werden. Vorzugsweise erfolgt die dehydrogenative Ver¬ knüpfung wie in DE 10 2005 004 676 beschrieben, welche hiermit als Referenz eingeführt wird und als Teil des Offenbarungsge¬ haltes der vorliegenden Erfindung gilt.
Durch die dehydrogenative Verknüpfung werden vorzugsweise Co- polymere der allgemeinen Formel (III)
erhalten, worin
n und n1 unabhängig voneinander 0 bis 500, vorzugsweise 10 bis 200, bevorzugt 15 bis 100 sind und (n+n1) < 500, vorzugs¬ weise < 200, bevorzugt < 100 ist, m und m1 unabhängig voneinander 0 bis 60, vorzugsweise 0 bis 30, bevorzugt 0,1 bis 25 sind und (m+m1)< 60, vorzugsweise
< 30, bevorzugt < 25 ist, k 1 bis 10, vorzugsweise 1 bis 5 ist,
R mindestens ein Substituent aus der Gruppe linearer, cyc- lischer oder verzweigter, aliphatischer oder aromatischer, gesättigter oder ungesättigter Kohlenwasserstoffreste mit 1 bis zu 20 C-Atomen, vorzugsweise ein Methylrest ist, wobei besonders bevorzugt alle Reste R ein Methylrest sind, R7 R und/oder
O- (CH2-CH2O-) x- (CH2-CH (R' ) O-) y- (SO) Z-Rv wobei x, y, z, R' und SO die für Formel (II) genannten De¬ finitionen haben und
Rv einen linearen, zyklischen oder verzweigten, gesättigten oder ungesättigten, gegebenenfalls mit Heteroatomen substituierten Alkylrest darstellt, R8 R und/oder R7 sein kann,
R9 R, R7 und/oder ein mit Heteroatomen substituierter, funktioneller, organischer, gesättigter oder ungesättigter Rest ausgesucht aus der Gruppe der Alkyl-, Chloralkyl-, Chloraryl-, Fluoralkyl-, Cyanoalkyl-, Acryloxyaryl-, Acryloxyalkyl-, Methacryloxyalkyl-, Methacryloxypropyl- oder Vinyl-Reste sein kann, mit der Maßgabe, dass mindestens einer der Reste R7, R8 und R9 nicht R ist.
Als hydroxyfunktionelle Verbindungen werden vorzugsweise hy- droxyfunktionelle Polyoxyalkylene eingesetzt. Besonders bevor¬ zugte Verbindungen sind z. B. Methylpolyoxyalkenole oder Butyl- polyoxyalkenole mit einem Molgewicht im Bereich von 100 g/Mol bis 5.000 g/Mol, die aus den Monomeren Propylenoxid, Ethylen- oxid, Butylenoxid und/oder Styroloxid blockweise oder statis¬ tisch verteilt aufgebaut sein können. Besonders bevorzugt wer-
den als hydroxyfunktionelle Verbindungen die in den Beispielen genannten hydroxyfunktionellen Polyoxyalkylene eingesetzt.
Durch die Verwendung der erfindungsgemäßen, in der Siloxankette verzweigten Wasserstoffsiloxane zur Herstellung von in der Siloxankette verzweigten organomodifizierten Polysiloxane können entsprechende organomodifizierte, in der Siloxankette ver¬ zweigte Polysiloxane, insbesondere solche der Formeln (II) oder (III) erhalten werden. Diese erfindungsgemäßen bzw. erfindungs- gemäß hergestellten, in der Siloxankette verzweigten, organomodifizierten Polysiloxane können z. B. als grenzflächenaktive Silicontenside verwendet werden.
Die erfindungsgemäß beanspruchten organo- und insbesondere po- lyethermodifizierten, verzweigten Siloxane (k ≥ 1) können allein bzw. auch in Abmischung mit anderen, unverzweigten organomodifizierten Siloxanen (k < 1) als wertvolle grenzflächenaktive Wirkstoffe Eingang in technische Anwendungen finden. Insbesondere gestattet die hier beschriebene Abmischung die De- finition eines breiten Wirkspektrums solcher Tenside, die Ein¬ gang in die Herstellung von Polyurethanschäumen, z. B. als Schaumstabilisatoren, nehmen.
Es versteht sich von selbst, dass durch das Abmischen der er- findungsgemäß beanspruchten organo- und insbesondere poly- ethermodifizierten, verzweigten Siloxane (k ≥ 1) mit unverzweigten Siloxanen Gemische erhalten werden können, die wertvolle grenzflächenaktive Wirkstoffe sind, die aber, je nach Mi¬ schungsverhältnis, auch einen mittleren molekularen Ver- zweigungsgrad von > 1 aufweisen können. Auch ist es selbst¬ verständlich möglich, die erfindungsgemäß beanspruchten organo- und insbesondere polyethermodifizierten, verzweigten Siloxane (k ≥ 1) mit Silizium-freien Verbindungen, wie z. B. Lösungsmitteln, insbesondere Glykolen oder Polyethern, in weiten Be- reichen zu mischen. Auch solche Mischungen können wertvolle grenzflächenaktive Zusammensetzungen sein. Der per 29Si-NMR be-
stimmte mittlere molekulare Verzeigungsgrad ändert sich dabei naturgemäß nicht.
In den nachfolgend aufgeführten Beispielen wird die vor- liegende Erfindung beispielhaft beschrieben, ohne dass die Erfindung, deren Anwendungsbreite sich aus der gesamten Beschreibung und den Ansprüchen ergibt, auf die in den Beispielen genannten Ausführungsformen beschränkt sein soll.
Die in den Beispielen angegebenen Viskositäten sind mit einem Rotationsviskosimeter der Marke Haake RV12 bei 250C ermittelt worden. Der mittlere Verzweigungsgrad gibt die Anzahl der Verzweigungen an einem Si-Atom (die Anzahl der T-Einheiten) im Molekül, gemittelt über alle Moleküle, an.
Beispiel 1 (erfindungsgemäß) :
44,2 g (0,248 Mol) Methyltriethoxysilan (Dynasylarß MTES der Firma Evonik Degussa GmbH), 138,3 g eines α, ω-Dihydrogenpoly- dimethylsiloxans mit einem Wasserstoffgehalt von 3,09 val SiH/kg und 95,1 g Decamethylcyclopentasiloxan (erhältlich bei der Firma Gelest Inc.) wurden in einem Vierhalskolben ausgestattet mit einem KPG-Rührer, einem Innenthermometer, einem Tropftrichter und einer Destillationsbrücke unter Rühren bei Raumtemperatur vorgelegt, 0,16 ml Trifluormethansulfonsäure (erhältlich bei Sigma Aldrich) zugegeben und 30 Minuten gerührt. Innerhalb von weiteren 30 Minuten wurde unter Rühren eine Mischung aus 13,4 g deionisiertem Wasser und 20 ml Methanol zugetropft und weitere 30 Minuten gerührt. Die Re- aktionsmischung wurde für 1 Stunde auf 40 0C erwärmt und an¬ schließend wurde überschüssiges Wasser und Alkohol im Wasser¬ strahlpumpenvakuum von ca. 50 mbar für 1 Stunde bei 40 0C abdestilliert. Danach ließ man weitere 4 Stunden bei 40 0C nach¬ reagieren, rührte 5,7 g Natriumhydrogencarbonat ein und filt- riert ab. Man erhielt eine klare, farblose Flüssigkeit mit
einem Wasserstoffgehalt von 1,62 val SiH/kg (theoretischer Wert = 1,64 val SiH/kg). Mit einem NMR-Gerät der Firma Bruker, Typ DPX 400 wurde ein 29Si-NMR-Spektrum des erhaltenen Produktes aufgenommen und mit der systemimmanenten Software ausgewertet. Aus dem 29Si-NMR-Spektrum errechnete sich ein mittlerer Verzweigungsgrad von 2,0.
Beispiel 2 (erfindungsgemäß) :
44,2 g (0,248 Mol) Methyltriethoxysilan (Dynasylarß MTES der Firma Evonik Degussa GmbH), 138,3 g eines α, ω-Dihydrogenpoly- dimethylsiloxans mit einem Wasserstoffgehalt von 3,09 val SiH/kg und 95,1 g Decamethylcyclopentasiloxan (erhältlich bei der Firma Gelest Inc.) wurden in einem Vierhalskolben ausgestattet mit einem KPG-Rührer, einem Tropftrichter, einem Innenthermometer und einer Destillationsbrücke unter Rühren bei Raumtemperatur vorgelegt, 17,1 g eines vorgetrockneten sulfon- sauren Kationenaustauscherharzes (Lewatit® K 2621, 10 Gew.-% Wassergehalt - bestimmt in Anlehnung an die Karl-Fischer-Me¬ thode) zugegeben und 30 Minuten gerührt. Innerhalb von weiteren 30 Minuten wurde unter Rühren eine Mischung aus 6,7 g deioni- siertem Wasser und 10 ml Methanol zugetropft und weitere 30 Mi¬ nuten gerührt. Die Reaktionsmischung wurde für 1 Stunde auf 40 °C erwärmt und anschließend wurde überschüssiges Wasser und Alkohol im Wasserstrahlpumpenvakuum von ca. 50 mbar 1 Stunde bei 40 °C abdestilliert. Danach ließ man weitere 4 Stunden bei 40 °C nachreagieren und filtrierte ab. Es wurde eine klare, farblose Flüssigkeit mit einem Wasserstoffgehalt von 1,60 val SiH/kg (theoretischer Wert = 1,64 val SiH/kg) erhalten. Aus dem 29Si-NMR-Spektrum errechnete sich ein mittlerer Verzweigungsgrad von 1,8.
Beispiel 3 (erfindungsgemäß) :
44,2 g (0,248 Mol) Methyltriethoxysilan (Dynasylarß MTES der Firma Evonik Degussa GmbH), 138,3 g eines α, ω-Dihydrogenpoly- dimethylsiloxans mit einem Wasserstoffgehalt von
3,09 val SiH/kg und 95,1 g Decamethylcyclopentasiloxan (erhältlich bei der Firma Gelest Inc.) wurden in einem Vierhalskolben ausgestattet mit einem KPG-Rührer, einem Innenthermometer, einem Tropftrichter und einer Destillationsbrücke unter Rühren bei Raumtemperatur vorgelegt, 0,16 ml Trifluormethansulfonsäure
wurden zugegeben und es wurde 30 Minuten gerührt. Innerhalb von weiteren 30 Minuten wurde unter Rühren eine Mischung aus 13,4 g deionisiertem Wasser und 20 ml Methanol zugetropft und weitere 30 Minuten gerührt. Die Reaktionsmischung wurde für 1 Stunde auf 40 °C erwärmt und anschließend wurde überschüssiges Wasser und Alkohol im Wasserstrahlpumpenvakuum von ca. 50 mbar 1 Stunde bei 40 0C abdestilliert. Nach Neutralisation mit 5,7 g Natriumhydrogencarbonat und Filtration wurden 17,1 g des vorge¬ trockneten sulfonsauren Kationenaustauscherharzes Lewatit® K 2621 zugegeben, 4 Stunden bei 40 0C gerührt und abfiltriert. Man erhielt eine klare, farblose Flüssigkeit mit einer Visko¬ sität von 35 mPa*s und einem Wasserstoffgehalt von 1,60 val SiH/kg (theoretischer Wert = 1,64 val SiH/kg) . Aus dem 29Si-NMR- Spektrum errechnete sich ein mittlerer Verzweigungsgrad von 2,7.
Beispiel 4 (nicht erfindungsgemäß) :
44,2 g (0,248 Mol) Methyltriethoxysilan (Dynasylarß MTES der Firma Evonik Degussa GmbH) und 95,1 g Decamethylcyclopenta- siloxan (erhältlich bei der Firma Gelest Inc.) wurden in einem Vierhalskolben ausgestattet mit einem KPG-Rührer, einem Innenthermometer, einem Tropftrichter und einer Destillationsbrücke unter Rühren bei Raumtemperatur vorgelegt, 0,08 ml Trifluor- methansulfonsäure wurden zugegeben und es wurde 6 Stunden bei
50 °C gerührt. Innerhalb von 30 Minuten wurde unter Rühren eine Mischung aus 6,7 g deionisiertem Wasser und 10 ml Methanol zugetropft und weitere 30 Minuten gerührt. Die Reaktionsmischung wurde für 1 Stunde auf 40 0C erwärmt und anschließend wurde überschüssiges Wasser und Alkohol im Wasserstrahlpumpenvakuum von ca. 50 mbar 1 Stunde bei 40 0C abdestilliert. Man erhielt einen festen, transparenten Gelkuchen.
Beispiel 5 (nicht erfindungsgemäß) :
44,2 g (0,248 Mol) Methyltriethoxysilan (Dynasylarß MTES der Firma Evonik Degussa GmbH) und 95,1 g Decamethylcyclopenta- siloxan (erhältlich bei der Firma Gelest Inc.) wurden in einem Vierhalskolben ausgestattet mit einem KPG-Rührer, einem Innenthermometer, einem Tropftrichter und einer Destillationsbrücke unter Rühren bei Raumtemperatur vorgelegt, 0,08 ml Trifluor- methansulfonsäure zugegeben und 6 Stunden bei 50 0C voräqui- libriert. 138,3 g eines α, ω-Dihydrogenpolydimethylsiloxans mit einem Wasserstoffgehalt von 3,09 val SiH/kg wurden bei Raumtemperatur zugemischt und nach 30 minütigem Rühren innerhalb von 15 Minuten eine Mischung aus 6,7 g deionisiertem Wasser und 10 ml Methanol zugetropft. Nach 30 Minuten Rühren wurde eine Stunde auf 40 0C erwärmt und anschließend wurde überschüssiges Wasser und Alkohol im Wasserstrahlpumpenvakuum von ca. 50 mbar 1 Stunde bei 40 0C abdestilliert. 5,7 g Natriumhydrogencarbonat wurden eingerührt und abfiltriert. Man erhielt eine klare, farblose Flüssigkeit mit einem Wasserstoffgehalt von nur 0,92 val SiH/kg gegenüber dem berechneten Sollwert von 1,65 val
SiH/kg.
Beispiel 6 (erfindungsgemäß) :
44,6 g (0,25 Mol) Methyltriethoxysilan (Dynasylarß MTES der Firma Evonik Degussa GmbH), 139,4 g eines α, ω-Dihydrogenpoly- dimethylsiloxans mit einem Wasserstoffgehalt von 3,09 val SiH/kg und 95,8 g Decamethylcyclopentasiloxan (erhältlich bei der Firma Gelest Inc.) wurden in einem Vierhalskolben ausgestattet mit einem KPG-Rührer, einem Innenthermometer, einem Tropftrichter und einer Destillationsbrücke unter Rühren bei Raumtemperatur vorgelegt, 0,15 ml Trifluormethansulfonsäure zugegeben und 30 Minuten gerührt. Innerhalb von weiteren 30 Minuten wurde unter Rühren eine Mischung aus 6,75 g deionisiertem Wasser und 6,75 g Ethanol zugetropft und dann 15 g des vorge-
trockneten sulfonsauren Kationenaustauscherharzes Lewatit® K 2621 zugegeben (Wassergehalt wie in Beispiel 2) . Nach einstündigem Rühren bei 40 0C wurde überschüssiges Wasser und Alkohol bei 5 mbar 1 Stunde bei 40 0C abdestilliert. Das Ionenaus- tauscherharz wurde abfiltriert, 5,6 g Natriumhydrogencarbonat wurden 30 min eingerührt und abfiltriert. Man erhielt eine klare, farblose Flüssigkeit mit einer Viskosität von 23,3 mPa*s und einem Wasserstoffgehalt von 1,61 val SiH/kg (theoretischer Wert = 1,65 val SiH/kg). Aus dem 29Si-NMR-Spektrum errechnete sich ein mittlerer Verzweigungsgrad von 3,7.
Beispiel 7 (erfindungsgemäß) :
In einem 500-ml-Vierhalskolben mit angeschlossenem KPG-Rüh- rer, Rückflusskühler und Innenthermometer wurden 100 g des gemäß Beispiel 3 hergestellten verzweigten Wasserstoff- siloxans mit dem Wasserstoffgehalt von 1,60 val SiH/kg und
328,5 g eines methyl-endverkappten Allylpolyoxyalkylens mit einem mittleren Molekulargewicht von 1.502 g/Mol (bestimmt nach Jodzahl), einem Propylenoxidanteil von 58 Gew.-% und einem Ethylenoxidanteil von 42 Gew.-% unter Rühren auf
70 °C erhitzt. Es wurden 5 ppm Platin in Form eines gemäß
EP 1 520 870 modifizierten Platin (0) -Katalysators mit einer
Spritze hinzugegeben. Der gasvolumetrisch bestimmte Umsatz war nach 2,5 Stunden quantitativ. Das klare, gelbliche,
SiC-verknüpfte Produkt hatte eine Viskosität von 318 mPas .
Beispiel 8 (erfindungsgemäß) :
In einem 500-ml-Vierhalskolben mit angeschlossenem KPG-Rührer, Rückflusskühler, Tropftrichter und Innenthermometer wurden 190 g eines hydroxyfunktionellen Butylpolyoxyalkylens mit einem mittleren Molekulargewicht von 1.439 g/Mol (bestimmt nach der OH-Zahl) , einem Propylenoxidanteil von 58 % und einem Ethylen- oxidanteil von 42 % in 100 g Toluol bei 100 0C vorgelegt und
0,25 g Tris (Pentafluorophenyl) boran zugegeben. Über einen Zeitraum von 45 Minuten wurden 60 g des in Beispiel 3 beschriebenen verzweigten Wasserstoffsiloxans zugetropft. Eine deutliche Gas¬ entwicklung war zu beobachten. Nach 2 Stunden Reaktionszeit bei 100 °C war der gasvolumetrisch bestimmte Umsatz quantitativ. Die Reaktionsmischung wurde über einen Faltenfilter filtriert und das Lösungsmittel bei 70 0C und 10 mbar am Rotationsver¬ dampfer abdestilliert. Das leicht trübe Produkt hatte eine Vis¬ kosität von 219 mPa*s.
Beispiel 9 (erfindungsgemäß) :
42,1 g (0,24 Mol) Methyltriethoxysilan (Dynasylarß MTES der Firma Evonik Degussa GmbH), 25,1 g eines Polymethylhydrogen- siloxans mit einem Wasserstoffgehalt von 15,71 val SiH/kg, 126,4 g eines α, ω-Dihydrogenpolydimethylsiloxans mit einem Wasserstoffgehalt von 3,09 val SiH/kg und 82,6 g Decamethylcyc- lopentasiloxan (erhältlich bei der Firma Gelest Inc.) wurden in einem Vierhalskolben, ausgestattet mit einem KPG-Rührer, einem Innenthermometer, einem Tropftrichter und einer Destillationsbrücke unter Rühren bei Raumtemperatur vorgelegt, 0,167 ml Trifluormethansulfonsäure zugegeben und 30 Minuten gerührt. In¬ nerhalb von weiteren 30 Minuten wurde unter Rühren eine Mischung aus 6,4 g deionisiertem Wasser und 8,1 ml Ethanol zuge- tropft und weitere 30 Minuten gerührt. Die Reaktionsmischung wurde für 1 Stunde auf 40 0C erwärmt und anschließend wurde überschüssiges Wasser und Alkohol im Wasserstrahlpumpenvakuum von ca. 10 mbar 2 Stunden bei 40 0C abdestilliert. Nach Neutra¬ lisation mit 5,5 g Natriumhydrogencarbonat und Filtration wur- den 16,6 g des vorgetrockneten sulfonsauren Kationenaustauscherharzes Lewatit® K 2621 zugegeben, 4 Stunden bei 40 °C gerührt und abfiltriert. Man erhielt eine klare, farblose Flüssigkeit mit einer Viskosität von 20,8 mPa*s und einem Wasserstoffgehalt von 3,01 val SiH/kg (theoretischer Wert =
3,08 val SiH/kg) . Aus dem 29Si-NMR-Spektrum errechnete sich ein mittlerer Verzweigungsgrad von 3,05.
Beispiel 10 (erfindungsgemäß) :
In einem 500-ml-Vierhalskolben mit angeschlossenem KPG- Rührer, Rückflusskühler und Innenthermometer wurden 60 g des gemäß Beispiel 9 hergestellten verzweigten Wasserstoff- siloxans mit dem Wasserstoffgehalt von 3,01 val SiH/kg und 204,8 g eines hydroxyfunktionellen Allylpolyoxyalkylens mit einem mittleren Molekulargewicht von 848 g/Mol (bestimmt nach Jodzahl), einem Propylenoxidanteil von 26 Gew.-% und einem Ethylenoxidanteil von 74 Gew.-% unter Rühren auf 70 °C erhitzt. Es wurden 5 ppm Platin in Form eines gemäß EP 1 520 870 modifizierten Platin (0) -Katalysators mit einer Spritze hinzugegeben. Der gasvolumetrisch bestimmte Umsatz war nach 3 Stunden quantitativ. Das klare, gelbliche, SiC- verknüpfte Produkt hatte eine Viskosität von 219,0 mPa*s.
Beispiel 11 (erfindungsgemäß) :
46,7 g (0,245 Mol) Vinyltriethoxysilan (Dynasylarß VTEO der Firma Evonik Degussa GmbH), 137,7 g eines α, ω-Dihydrogenpoly- dimethylsiloxans mit einem Wasserstoffgehalt von 3,09 val SiH/kg und 92,9 g Decamethylcyclopentasiloxan (erhältlich bei der Firma Gelest Inc.) wurden in einem Vierhalskolben ausgestattet mit einem KPG-Rührer, einem Innenthermometer, einem Tropftrichter und einer Destillationsbrücke unter Rühren bei Raumtemperatur vorgelegt, 0,167 ml Trifluormethansulfon- säure zugegeben und 30 Minuten gerührt. Innerhalb von weiteren
30 Minuten wurde unter Rühren eine Mischung aus 6,6 g deionisiertem Wasser und 8,3 ml Ethanol zugetropft und weitere 30 Minuten gerührt. Die Reaktionsmischung wurde für 1 Stunde auf 40 °C erwärmt und anschließend wurde überschüssiges Wasser und Alkohol im Wasserstrahlpumpenvakuum von ca. 10 mbar 2 Stunden
bei 40 °C abdestilliert. Nach Neutralisation mit 5,5 g Natrium- hydrogencarbonat und Filtration wurden 16,6 g des vorgetrock¬ neten sulfonsauren Kationenaustauscherharzes Lewatit® K 2621 zugegeben, 4 Stunden bei 40 0C gerührt und abfiltriert. Man er- hielt eine klare, farblose Flüssigkeit mit einer Viskosität von 18,2 mPa*s und einem Wasserstoffgehalt von 1,58 val SiH/kg (theoretischer Wert = 1,635 val SiH/kg). Aus dem 29Si-NMR-Spekt¬ rum errechnete sich ein mittlerer Verzweigungsgrad von 2,4.
Beispiel 12 (erfindungsgemäß) :
57,6 g (0,231 Mol) 3-Methacryloxypropyltrimethoxysilan (Dynasy- lan® MEMO der Firma Degussa), 130,2 g eines α, ω-Dihydrogenpoly- dimethylsiloxans mit einem Wasserstoffgehalt von 3,09 val SiH/kg und 87,9 g Decamethylcyclopentasiloxan (erhältlich bei der Firma Gelest Inc.) wurden in einem Vierhalskolben ausgestattet mit einem KPG-Rührer, einem Innenthermometer, einem Tropftrichter und einer Destillationsbrücke unter Rühren bei Raumtemperatur vorgelegt, 0,165 ml Trifluormethansulfon- säure zugegeben und 30 Minuten gerührt. Innerhalb von weiteren 30 Minuten wurde unter Rühren eine Mischung aus 6,3 g deionisiertem Wasser und 8,0 ml Ethanol zugetropft und weitere 30 Mi¬ nuten gerührt. Die Reaktionsmischung wurde für 1 Stunde auf 40 °C erwärmt und anschließend wurde überschüssiges Wasser und Alkohol im Wasserstrahlpumpenvakuum von ca. 10 mbar 2 Stunden bei 40 °C abdestilliert. Nach Neutralisation mit 5,5 g Natrium- hydrogencarbonat und Filtration wurden 16,5 g des vorgetrock¬ neten sulfonsauren Kationenaustauscherharzes Lewatit® K 2621 zugegeben, 4 Stunden bei 40 0C gerührt und abfiltriert. Man er- hielt eine klare, farblose Flüssigkeit mit einer Viskosität von 23,6 mPa*s und einem Wasserstoffgehalt von 1,59 val SiH/kg (theoretischer Wert = 1,55 val SiH/kg). Aus dem 29Si-NMR-Spekt¬ rum errechnete sich ein mittlerer Verzweigungsgrad von 2,2.
Beispiel 13 (erfindungsgemäß) :
54,6 g eines Polymethylhydrogensiloxans mit einem Wasserstoff¬ gehalt von 15,71 val SiH/kg, 3,5 g (0,02 Mol) Methyltriethoxy- silan (Dynasylan® MTES der Firma Evonik Degussa GmbH), 1,3 g Hexamethyldisiloxan (erhältlich bei der Firma Gelest Inc.) und 191,9 g Decamethylcyclopentasiloxan (erhältlich bei der Firma Gelest Inc.) wurden in einem Vierhalskolben ausgestattet mit einem KPG-Rührer, einem Innenthermometer, einem Tropftrichter und einer Destillationsbrücke unter Rühren bei Raumtemperatur vorgelegt, 0,15 ml Trifluormethansulfonsäure zugegeben und 30 Minuten gerührt. Innerhalb von weiteren 30 Minuten wurde unter Rühren eine Mischung aus 0,54 g deionisiertem Wasser und 0,54 g Ethanol zugetropft und weitere 30 Minuten gerührt. Die Re- aktionsmischung wurde für 1 Stunde auf 40 0C erwärmt und an¬ schließend wurde überschüssiges Wasser und Alkohol im Wasser¬ strahlpumpenvakuum von ca. 10 mbar innerhalb von 1 Stunde bei 40 0C abdestilliert. Nach Neutralisation mit 5,0 g Natrium- hydrogencarbonat und Filtration wurden 15,0 g des vorgetrock- neten sulfonsauren Kationenaustauscherharzes Lewatit® K 2621 (Wassergehalt wie in Beispiel 2) zugegeben, 4 Stunden bei 70 0C gerührt und abfiltriert. Man erhielt eine klare, farblose Flüs¬ sigkeit mit einer Viskosität von 595,2 mPa*s und einem Wasser- stoffgehalt von 3,50 val SiH/kg (theoretischer Wert = 3,53 val SiH/kg) . Aus dem 29Si-NMR-Spektrum errechnete sich ein mittlerer Verzweigungsgrad von 3,52.
Beispiel 14 (erfindungsgemäß) :
In einem 500-ml-Vierhalskolben mit angeschlossenem KPG-Rührer, Rückflusskühler und Innenthermometer wurden 81 g des gemäß Beispiel 13 hergestellten verzweigten Wasserstoffsiloxans mit dem Wasserstoffgehalt von 3,50 val SiH/kg unter Rühren auf 70 0C erhitzt und 5 ppm Platin in Form eines gemäß EP 1 520 870 modi- fizierten Platin (0) -Katalysators mit einer Spritze hinzuge-
geben. Über einen Tropftrichter wurden stufenweise 57,8 g Hexa- decen (erhältlich bei der Firma Sigma Aldrich) und 18,4 g eines hydroxyfunktionellen Allylpolyoxyethylens mit einem mittleren Molgewicht von 409 g/Mol (bestimmt nach Jodzahl) zudosiert. Der gasvolumetrisch bestimmte Umsatz betrug nach 3 Stunden 99 %. Das leicht trübe Produkt hatte eine Viskosität von 19.640 mPa*s.
Die erfindungsgemäßen Beispiele belegen, dass mit dem erfin- dungsgemäßen Verfahren verzweigte Si-H-funktionelle Siloxane hergestellt werden können, ohne dass wesentliche Anteile der theoretisch zu erwartenden SiH-Funktionen abgebaut werden, wie dies bei den Vergleichsbeispielen der Fall ist.