EP3611214A1 - Sioc-verknüpfte, lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere - Google Patents

Sioc-verknüpfte, lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere Download PDF

Info

Publication number
EP3611214A1
EP3611214A1 EP18189072.4A EP18189072A EP3611214A1 EP 3611214 A1 EP3611214 A1 EP 3611214A1 EP 18189072 A EP18189072 A EP 18189072A EP 3611214 A1 EP3611214 A1 EP 3611214A1
Authority
EP
European Patent Office
Prior art keywords
mol
acid
reaction
polyoxyalkylene block
sioc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18189072.4A
Other languages
English (en)
French (fr)
Inventor
Wilfried Knott
Horst Dudzik
Dagmar Windbiel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Operations GmbH filed Critical Evonik Operations GmbH
Priority to EP18189072.4A priority Critical patent/EP3611214A1/de
Priority to US16/456,101 priority patent/US10954344B2/en
Priority to CA3051763A priority patent/CA3051763A1/en
Priority to CN201910752048.0A priority patent/CN110835411B/zh
Publication of EP3611214A1 publication Critical patent/EP3611214A1/de
Priority to US17/147,592 priority patent/US11905376B2/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature

Definitions

  • the invention relates to a method for producing SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers with repeating (AB) units.
  • polysiloxane-polyoxyalkylene block copolymers are added to the mixture of raw materials, which have a variety of functions and, among other things, enable the formation of a uniform pore structure and stabilize the foam formed until the reaction has ended.
  • polysiloxane-polyoxyalkylene block copolymers are suitable in the same way.
  • the polyoxyalkylene blocks and the polysiloxane block of the block copolymers must be in a balanced ratio, the structure of the two blocks also being of great importance.
  • the polyoxyalkylene block can be composed of various oxyalkylene units, primarily oxyethylene, oxypropylene and oxybutylene units. The weight ratio of these units to one another, their sequence and the molecular weight of the polyoxyalkylene block can be varied. Also of importance is the end group of the polyoxyalkylene block, which can be reactive (eg OH group) or inert (eg alkoxy group) with regard to polyurethane formation.
  • the polyoxyalkylene block can be linked to the polysiloxane block by a hydrolytically stable C-Si bond or the hydrolytically less stable CO-Si bond. Different polyoxyalkylene blocks can also be bound to the polysiloxane block.
  • the polysiloxane block can be varied in terms of the type and proportion of the Si units.
  • the siloxane block can be straight-chain or branched and have different molecular weights.
  • the polyoxyalkylene blocks can be bound to the polysiloxane block at the end and / or laterally.
  • a reaction matrix consisting of aminosiloxane, polyoxyalkylene diol and solvent is at elevated temperatures a small amount of a tertiary amine such as from the range of aromatic amines (pyridines, pyrimidines, pyridazine, pyrazine, quinoline, imidazole, etc.) and / or also from the series of cycloaliphatic amine bases (quinuclidine, diazabicyclo [2.2.2] octane, etc.), and in particular 1,8-diazabicyclo [5,4,0] -undec-7-ene and the polycondensation reaction with release of Ammonia up to the desired molecular weight build-up according to the general reaction ⁇ SiNH 2 + HOC ⁇ ⁇ ⁇ SiOC ⁇ + NH 3 .
  • a tertiary amine such as from the range of aromatic amines (pyridines, pyrimidines, pyridazine,
  • polyether siloxanes are valuable surface-active additives for the production of polyurethane foams, whereby their cell-opening effect in ether foams or open-cell rigid foams is particularly in demand.
  • Their industrial synthesis proves disadvantageous in that both the production of the amine component (hydrolysis-prone sllazane precursor) and the coupling process itself are complicated and sometimes complex. it is necessary to work with problematic connections that are not easy to handle in operational practice.
  • the molar ratio of SiH groups to alcohol groups is preferably set in the range from 1: 0.1 to 1: 0.99 molar equivalents.
  • Such a reaction in a substoichiometric ratio is said to retain a residue of unreacted Si-H function which can be mixed in a subsequent step, for example in a hydrosilylation reaction in which a silicon-carbon bond is formed To manufacture products.
  • the gas volumetric SiH value is determined by the alcoholate-induced decomposition of a sample using established methods.
  • the technical problem to be solved is to find a process for the preparation of linear SiOC-linked polydimethylsiloxane-polyoxyalkylene block copolymers, and in particular particularly those of the high-molecular type, which overcomes the difficulties discussed.
  • linear SiOC-linked polydimethylsiloxane-polyoxyalkylene block copolymers with repeating (AB) units can be prepared by carrying end-equilibrated linear, trifluoromethanesulfonic acid-bearing ⁇ , ⁇ -acetoxy groups Polydimethylsiloxane with polyether diols to implement.
  • US 3346610 is also known access to short-chain siloxanes carrying acetoxy groups, which is based on the metal halide-induced acetoxy modification of strained cyclic siloxanes by reacting them with silicone compounds containing acetoxy groups.
  • a large number of Friedel-Crafts-active metal halides act here as a catalyst, with zinc chloride being given preference.
  • the prior art thus relates to work which provides for the opening of cyclic siloxanes - in this case sometimes strained cyclosiloxanes - with reactants containing acyloxy groups, and the aim of which is to obtain defined linear short-chain siloxane species which are still to be separated by fractional distillation.
  • the molecular weight-defined, chain-pure acetoxymodified siloxane compounds synthesized in this way are not suitable for the production of organomodified siloxanes, in particular polyether siloxanes, which enter into demanding technical applications such as e.g. in the PU foam stabilization or in the defoaming of fuels, etc.
  • Active ingredients that effectively address such an area of application are always characterized by a broad oligomer distribution comprising high, medium and low molar masses, since the oligomers contained in them, depending on their molar mass and thus their diffusion behavior, very often attribute differentiated surfactant tasks in different time windows of the respective process are.
  • Acyloxy-organopolysiloxanes and in particular organosiloxanes with terminal acyloxy groups, are also known as starting materials for subsequent reactions.
  • the acyloxy groups can be hydrolyzed in a diorganosiloxane, whereupon the hydrolyzate can be dehydrated and the dehydrated hydrolyzate can be polymerized to form flowable diorganopolysiloxane.
  • These flowable polysiloxanes are suitable as starting materials for the production of viscous oils and rubbers, which can be hardened to silicone elastomers.
  • Organosiloxanes provided with terminal acyloxy groups can be obtained, for example, by reacting an alkylsiloxane and an organic acid and / or their anhydride in the presence of sulfuric acid as a catalyst. Such a process is in the U.S. Patent 2,910,496 (Bailey et al. ) described. Although in principle organosiloxanes with terminal acyloxy groups are also obtained by this process, the process has the disadvantage that the reaction product consists of a mixture of acyloxy-containing siloxanes and acyloxy group-bearing silanes of different compositions.
  • alkyl siloxane copolymers composed of M, D and T units are cleaved by the process into trimethyl-acyloxysilane, di-acyloxydimethylsiloxane and methyltriacyloxysilane.
  • Bailey thus receives a complex mixture of substances after neutralization of the sulfuric acid used as catalyst, separation of the salts and removal of water, residual acetic acid and acetic anhydride, and in no case an equilibrate, which he then subjects to fractional distillation (see example , ibid.).
  • the material identity of the fractions II and IV obtained in this way remains unclear, so that it is difficult afterwards to obtain defined products or to separate them from the mixture in high yields.
  • trifluoromethanesulfonic acid equilibrated ⁇ , ⁇ -diacetoxysiloxanes can be prepared by reacting siloxane cycles (D 4 and / or D 5 ) with acetic anhydride in the presence of trifluoromethanesulfonic acid, as is the teaching of the as yet unpublished European applications with the file number EP18172882.5 and EP18172876.7 disclosed. Following the teaching of these documents, these diacetoxysiloxanes react quickly with polyether (mono) oles at moderate temperatures and also completely to SiOC-linked polyether siloxanes of the structure type ABA.
  • Trifluoromethanesulfonic acid equilibrated ⁇ , ⁇ -diacetoxypolydimethylsiloxanes can be obtained by reacting cyclic siloxanes, in particular comprising D 4 and / or D 5 , using trifluoromethanesulfonic acid as a catalyst with acetic anhydride.
  • the trifluoromethanesulfonic acid is preferably used in amounts of 0.1 to 0.3 percent by mass, based on the reaction matrix consisting of acetic anhydride and cyclic siloxanes.
  • the reaction is preferably carried out in the temperature range from 140 to 160 ° C. and preferably in a period of 4 to 8 hours.
  • the trifluoromethanesulfonic acids, end-equilibrated ⁇ , ⁇ -diacetoxypolydimethylsiloxane are reacted with polyether diol (s) by adding a solid, liquid or gaseous base, if appropriate using inert solvents.
  • Preferred simple bases to be used according to the invention are, for example, alkali or alkaline earth carbonates and / or hydrogen carbonates and / or gaseous ammonia and / or amines.
  • bases which do not enter water into the reaction system due to their chemical composition are very particularly preferred.
  • anhydrous carbonates have priority over bicarbonates and hydrate-free bases over hydrate water-containing bases.
  • gaseous ammonia as the base is very particularly preferred according to the invention, so that the acetic acid released during the reaction is bound as ammonium acetate.
  • the amount of the solid, liquid or gaseous base introduced into the reaction system is such that it is used both for the neutralization of the trifluoromethanesulfonic acid present in the system and for the salt precipitation of the acetate groups bound to the siloxane and for the precipitation of the still in the Reaction system existing acetic anhydride and optionally free acetic acid is used.
  • the reaction is carried out at temperatures between 20 to 120 ° C., preferably between 20 and 70 ° C. over a period of 1 to 10, preferably at least over a period of 1 to 3 hours.
  • the trifluoromethanesulfonic acid, end-equilibrated ⁇ , ⁇ -diacetoxy-polydimethylsiloxane with polyether diol (s) can be initially introduced at temperatures of ⁇ 25 ° C. with stirring and then ammonia introduced (Example 2).
  • this embodiment variant which uses a large amount of ammonia, binds the acetic acid released during the reaction as ammonium acetate.
  • the reaction is preferably carried out at temperatures between 20 and 70 ° C over a period of preferably 1 to 3 hours.
  • the quality of the trifluoromethanesulfonic acid ⁇ , ⁇ -diacetoxypolydimethylsiloxane used is of decisive importance for achieving a high molecular weight SiOC-linked A (BA) n polyethersiloxane structure.
  • BA SiOC-linked A
  • end equilibrated therefore means that the equilibrium equilibrium has been reached, which is established at a temperature of 23 ° C.
  • the total cyclic content determined by gas chromatography is defined as the sum of the D 4 -, D 5 -, D 6 contents based on the siloxane matrix and determined after derivatization of the ⁇ , ⁇ -diacetoxypolydimethylsiloxanes to the corresponding ⁇ , ⁇ -diisopropoxypolydimethylsiloxanes.
  • the derivatization to the ⁇ , ⁇ -diisopropoxypolydimethylsiloxanes is deliberately chosen in order to prevent a thermally induced re-cleavage reaction of the ⁇ , ⁇ -diacetoxy-polydimethylsiloxanes which may occur under the conditions of the gas chromatographic analysis (for the re-cleavage reaction see among others J. Pola et al., Collect. Czech. Chem. Commun. 1974, 39 (5), 1169-1176 and also W. Simmler, Houben-Weyl, Methods of Organic Chemistry, Vol. VI / 2, 4th Edition, O-Metal Derivates of Organic Hydroxy Compounds p. 162 ff )).
  • the total cycle content contained therein should be defined as the sum of the content of the cyclic siloxanes comprising D 4 , D 5 and D 6, based on the siloxane matrix, preferably less than 13% by weight, particularly preferably less than 12% by weight, of the siloxane matrix consisting of ⁇ , ⁇ -diisopropoxypolydimethylsiloxanes.
  • Equilibrated ⁇ , ⁇ -diacetoxypolydimethylsiloxanes of this quality i.e. end-equilibrated ⁇ , ⁇ -diacetoxypolydimethylsiloxanes, can be very advantageous, that is to say even after a very short reaction time, by reacting siloxane cycles (in particular comprising D 4 and / or D 5 ) with acetic anhydride in the presence of Trifluoromethanesulfonic acid and acetic acid can be produced.
  • Acetic acid is preferably used in amounts of 0.4 to 3.5 percent by weight, preferably 0.5 to 3 percent by weight, more preferably 0.8 to 1.8 percent by weight, particularly preferably in amounts of 1.0 to 1.5 percent by weight the reaction matrix consisting of acetic anhydride and cyclic siloxanes was added.
  • the inventors have found that incompletely equilibrated ⁇ , ⁇ -diacetoxypolydimethylsiloxanes lead to unusable product mixtures, in particular with regard to the degree of polymerization achieved therein.
  • the reaction monitoring plays an important role.
  • the method of taking samples from the reaction matrix over the reaction time, which are then analyzed, for example, with the aid of 29 Si-NMR and / or 13 C-NMR spectroscopy, has proven successful.
  • An object of the invention is therefore a process for the preparation of SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers with repeating (AB) units by reacting polyether diols with trifluoromethanesulfonic acids, end-equilibrated ⁇ , ⁇ -diacetoxypolydimethylsiloxanes, the reaction being carried out by adding a reaction solid, liquid or gaseous base and optionally using inert solvents.
  • alkanes, cycloalkanes, alkyl aromatics, end-capped polyethers and / or emollient testers such as those derived from lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, isostearic acid, ricinoleic acid, and behenic acid, are combined with cetyl and stearyl as inert solvents -, Isostearyl, oleyl, octyldodecyl, myristyl and behenyl alcohol or glycerin, preferably myristyl myristate, used.
  • Another object of the invention are SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers prepared according to the above method.
  • Another object of the invention is the use of the compounds prepared by the process according to the invention as surface-active additives for the production of polyurethane ether foams.
  • the polyoxyalkylene block (B) of the linear block copolymers is an oxyalkylene polymer containing the repeating oxyalkylene units, here in particular the oxyethylene and propenyloxy units.
  • the weight-average molecular weight of each siloxane block (A) is between 650 to 6500 g / mol, preferably 800 to 1500 g / mol, particularly preferably 1000 to 1200 g / mol.
  • the weight average molecular weight of each polyoxyalkylene block of the invention is between 600 and 10,000 g / mol, preferably 1,000 to 5,000 g / mol.
  • the size of the individual oxyalkylene units or siloxane blocks is not necessarily uniform, but can vary as desired within the limits specified.
  • the individual polyoxyalkylene units are addition products made from at least one oxyalkylene monomer, selected from the group consisting of ethylene oxide, propylene oxide and butylene oxide tetrahydrofuran, preferably mixed products consisting of at least two monomer units, in particular from ethylene oxide and propylene oxide.
  • the polyoxyalkylene blocks essentially consist of oxyethylene units or oxypropylene units; mixed oxyethylene and oxypropylene units with an oxyethylene content of about 30 to 70 percent by weight and 70 to 30 percent by weight of oxypropylene based on the total content of oxyalkylene units in the block are preferred.
  • the total siloxane block fraction (A) in the copolymer is between 20 and 50% by weight, preferably 25 to 40% by weight, and the fraction of the polyoxyalkylene blocks is between 80 and 50% by weight.
  • the block copolymer has an average weight-average molecular weight Mw of at least 10,000 g / mol to approximately 160,000 g / mol, preferably 15,000 g / mol to approximately 100,000 g / mol, in particular 20,000 g / mol to approximately 36,000 g / mol on. The determination of the average molecular weights is based on the known methods of GPC analysis.
  • the molar ratio of ⁇ , ⁇ -diacetoxysiloxanes to polyether diols is in the range from 0.90 to 1.10, preferably in the range 0.95 to 1.05, particularly preferably in the range 0.99 to 1.01. It is readily apparent to the person skilled in the art that the degree of polymerization which can be achieved is linked to the achievement of an almost perfect stoichiometry of the reactants.
  • linear SiOC-linked polyether siloxanes produced by the process according to the invention can also be mixed with small amounts of organic amines, such as, for example, N-methylmorpholine, triisopropanolamine or triethanolamine. This corresponds to a preferred embodiment of the invention.
  • a particularly sensitive and meaningful evaluation of the compounds according to the invention is made possible by the application test, in which the copolymer obtained is introduced as a foam stabilizer in polyurethane formulations for the production of, in particular, ether foams or open-cell rigid foams. Structural deficits in the foam stabilizer are evident in the foaming in technically inadequate behavior, for example shrinkage or collapse.
  • SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers claimed by the process according to the invention can optionally be carried out with or without the Use a suitable solvent. If high-molecular and associated highly viscous SiOC-linked copolymers are aimed for, their preparation can be conveniently carried out during and after the synthesis by reacting the respective polyether diol with the respective ⁇ , ⁇ -acetoxysiloxane in a suitable solvent in order to ensure that it is easy to handle.
  • Suitable solvents are alkanes, cycloalkanes, alkyl aromatics, end-capped polyethers, but also emollient testers such as myristyl myristate and the like, with high-boiling solvents with boiling points> 120 ° C. being preferred in particular.
  • the amount of the solid, liquid or gaseous base introduced into the reaction system is preferably dimensioned according to the invention such that it is used both for the neutralization of the trifluoromethanesulfonic acid present in the system and for the salt precipitation of the acetate groups bound to the siloxane and for the precipitation of the acetic anhydride still present in the reaction system and optionally free acetic acid.
  • the reaction is carried out at temperatures between preferably 20 and 70 ° C. over a period of preferably 1 to 3 hours.
  • Another preferred embodiment according to the invention provides for base (s) to be introduced into the polyetherol or polyetherol mixture provided for the linkage with stirring before adding the trifluoromethanesulfonic acid, equilibrated ⁇ , ⁇ -diacetoxy-polydimethylsiloxane.
  • this reaction is preferably carried out at temperatures between 50 to 90 ° C. and preferably over a period of 2 to 6 hours.
  • Preferred simple bases to be used according to the invention are, for example, alkali or alkaline earth carbonates and / or hydrogen carbonates and / or gaseous ammonia and / or amines.
  • bases which do not enter water into the reaction system due to their chemical composition are very particularly preferred.
  • anhydrous carbonates have priority over bicarbonates and water-free bases over hydrate-containing bases.
  • the polyether siloxanes produced according to the invention have excellent storage stability.
  • the viscosity as a function of time is followed by sampling at a constant storage temperature, since possible degradation and / or build-up processes are manifestly manifested therein.
  • the reaction temperature for the preparation of the copolymers according to the invention should be 20 ° C. to 120 ° C., preferably 20 ° C. to 70 ° C.
  • the gas chromatograms are carried out on a GC device of the type GC 7890B from Agilent Technologies equipped with an HP-1 column; 30m x 0.32mm ID x 0.25 ⁇ m dF (Agilent Technologies No. 19091Z-413E) and hydrogen as carrier gas recorded with the following parameters: Detector: FID; 310 ° C Injector: split; 290 ° C Mode: constant flow 2 mL / min Temperature program: 60 ° C with 8 ° C / min -150 ° C with 40 ° C / min - 300 ° C 10 min.
  • the total cyclic content determined by gas chromatography is defined as the sum of the D4, D5, D6 contents based on the siloxane matrix and determined after derivatization of the ⁇ , ⁇ -diacetoxypolydimethylsiloxanes to give the corresponding ⁇ , ⁇ -diisopropoxy polydimethylsiloxanes used.
  • the derivatization to the ⁇ , ⁇ -diisopropoxy-polydimethylsiloxanes is deliberately chosen in order to prevent a thermally induced re-cleavage reaction of the ⁇ , ⁇ -diacetoxy-polydimethylsiloxanes which may occur under the conditions of the gas chromatographic analysis (for the re-cleavage reaction see among others J. Pola et al., Collect. Czech. Chem. Commun. 1974, 39 (5), 1169-1176 and also W. Simmler, Houben-Weyl, Methods of Organic Chemistry, Vol. VI / 2, 4th Edition, O-Metal Derivates of Organic Hydroxy Compounds p. 162 ff )).
  • the polyether diols used have a water content of approx. 0.2 mass% and are used without further predrying.
  • Toluene or alkylbenzene (C 10 -C 13 ) used have a water content of 0.03% by mass and are also used without predrying.
  • the OH number of the polyether diols is determined in accordance with DGF CV 17 a (53) or in accordance with Ph. Eur. 2.5.3 Method A, the hydroxyl groups of the sample to be analyzed being first acetylated with acetic anhydride in the presence of pyridine and then in a Differential titration (blank sample, taking into account the excess acetic anhydride) titrates the released acetic acid as consumption KOH in mg per gram of polyether diol.
  • the precipitated salts are separated using a pleated filter.
  • a colorless, clear liquid is isolated, the accompanying 29 Si NMR spectrum of which confirms the quantitative conversion of the ⁇ , ⁇ -diacetoxypolydimethylsiloxane into an ⁇ , ⁇ -diisopropoxypolydimethylsiloxane.
  • An aliquot of this ⁇ , ⁇ -diisopropoxypolydimethylsiloxane is removed and analyzed by gas chromatography.
  • the gas chromatogram has the following contents (data in percent by mass): D 4 D 5 D 6 Sum (D 4 - D 6 ) isopropanol 4.09% 2.62% 0.86% 7.57% 4.60%
  • the batch is allowed to cool to about 23 ° C. and the viscous copolymer dissolved in toluene is freed from the salts therein with the aid of a filter press. A colorless, clear filtrate is isolated. At reduced pressure (0.1 mbar), toluene is distilled off on a rotary evaporator.

Abstract

Die Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren mit sich wiederholenden (AB)-Einheiten durch Umsetzung von Polyetherdiolen mit trifluormethansulfonsauren, äquilibrierten α,ω-Diacetoxypolydimethyisloxanen, wird beschrieben, wobei man die Umsetzung durch Hinzufügen einer festen, flüssigen oder gasförmigen Base vornimmt gegebenenfalls unter Einsatz inerter Lösungsmittel.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren mit sich wiederholenden (AB)-Einheiten.
  • Bei der Herstellung von Polyurethanweichschäumen werden dem Gemisch der Rohstoffe Polysiloxan-Polyoxyalkylen-Blockmischpolymerisate zugesetzt, welche vielfältige Aufgaben haben und u.a. die Ausbildung eines gleichmäßigen Porengefüges ermöglichen und den gebildeten Schaum bis zur Beendigung der Reaktion stabilisieren. Jedoch sind nicht alle Polysiloxan-Polyoxyalkylen-Blockmischpolymerisate in gleicher Weise geeignet. Um als Polyurethan-Schaumstabilisatoren brauchbar zu sein, müssen die Polyoxyalkylenblöcke und der Polysiloxanblock der Blockmischpolymerisate in einem ausgewogenen Verhältnis vorliegen, wobei auch der Aufbau der beiden Blöcke von großer Bedeutung ist. Es gibt dabei für den Aufbau eines möglichst wirksamen Schaumstabilisators eine Vielzahl von Variablen sowohl für den Polyoxyalkylenblock wie für den Polysiloxanblock:
    Der Polyoxyalkylenblock kann aus verschiedenen Oxyalkyleneinheiten, vornehmlich aus Oxyethylen-, Oxypropylen- und Oxybutyleneinheiten zusammengesetzt sein. Dabei können das Gewichtsverhältnis dieser Einheiten zueinander, ihre Sequenz sowie das Molgewicht des Polyoxyalkylenblockes variiert werden. Von Bedeutung ist auch die Endgruppe des Polyoxyalkylenblockes, die in Bezug auf die Polyurethanbildung reaktiv (z.B. OH-Gruppe) oder inert (z.B. Alkoxy-Gruppe) sein kann. Der Polyoxyalkylenblock kann mit dem Polysiloxanblock durch eine hydrolytisch stabile C-Si-Bindung oder die hydrolytisch weniger stabile C-O-Si-Bindung verknüpft sein. Dabei können auch unterschiedliche Polyoxyalkylenblöcke an den Polysiloxanblock gebunden sein.
  • Der Polysiloxanblock kann in Bezug auf Art und Anteil der Si-Einheiten variiert werden. Der Siloxanblock kann geradkettig oder verzweigt sein und unterschiedliches Molekulargewicht aufweisen. Die Polyoxyalkylenblöcke können end- und/oder seitenständig an den Polysiloxanblock gebunden sein.
  • Vorhersagen über Wirksamkeit eines Polysiloxan-Polyoxyalkylen-Blockmischpolymerisates als Schaumstabilisator können nur in gewissem Maße gegeben werden. Der Fachmann ist deshalb genötigt, die Variationsmöglichkeit weitgehend empirisch zu erproben. In Anbetracht der großen, nahezu unübersehbaren Anzahl der Variationsmöglichkeiten ist das Auffinden im Sinne der Polyurethanherstellung besonders wirksamer spezieller Strukturparameter und entsprechender Blockmischpolymerisate eine sehr große Herausforderung.
  • Polysiloxan-Polyoxyalkylen-Blockmischpolymerisate, welche im durchschnittlichen Molekül unterschiedliche Polyoxyalkylenreste aufweisen, sind bereits wiederholt beschrieben worden. Aus der großen Anzahl entsprechender Veröffentlichungen sollen stellvertretend die folgenden Schriften genannt werden:
    In der DE 10 2005 039 931.2 wird ein Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren mit sich wiederholenden (AB)-Einheiten beschrieben. Gemäß diesem Verfahren werden einer aus Aminosiloxan, Polyoxyalkylendiol und Solvens bestehenden Reaktionsmatrix bei erhöhten Temperaturen eine geringe Menge eines tertiären Amins wie z.B. aus der Reihe der aromatischen Amine (Pyridine, Pyrimidine, Pyridazin, Pyrazin, Chinolin, Imidazol, etc.) und/oder auch aus der Reihe der cycloaliphatischen Aminbasen (Chinuclidin, Diazabicyclo[2,2,2]octan, etc.) und hierbei insbesondere 1,8-Diazabicyclo[5,4,0]-undec-7-en hinzugesetzt und die Polykondensationsreaktion unter Freisetzung von Ammoniak bis zum angestrebten Molekulargewichtsaufbau gemäß der allgemeinen Reaktion

            ≡ SiNH2 + HOC≡ → ≡SiOC≡ + NH3 durchgeführt.

  • Diese Verbindungen, ihre Verwendung zur Herstellung von Polyurethanschäumen sowie ein Verfahren zu ihrer Herstellung wird bereits in der US 3,836,560 beschrieben.
  • Diese Polyethersiloxane sind wertvolle grenzflächenaktive Additive zur Herstellung von PolyurethanSchaumstoffen, wobei insbesondere ihre zellöffnende Wirkung in Etherschäumen oder offenzelligen Hartschäumen gefragt ist. Nachteilig erweist sich deren industrielle Synthese dadurch, dass sowohl die mit Salzanfall befrachtete Herstellung der Aminkomponente (hydrolyseanfällige Sllazanvorstufe) als auch das Kopplungsverfahren selbst aufwändig sind und z.T. mit problematischen, in der betrieblichen Praxis nicht einfach zu handhabbaren Verbindungen gearbeitet werden muss.
  • Erstrebenswert ist es, ein einfaches, ökonomisch sinnvolles Verfahren zu entwickeln, mit dem (AB)-Blockcopolymere mit verbesserten Eigenschaften herstellbar sind.
  • In der DE 103 12 636.8 wird ein Verfahren zur Umsetzung von ≡Si(H)-Einheiten enthaltenden verzweigten Polyorganosiloxanen mit wenigstens einem Alkohol beansprucht, welches dadurch gekennzeichnet ist, dass man in einem Verfahrensschritt unter Einsatz einer oder mehrerer Elementverbindungen der III. Haupt-und/oder der 3. Nebengruppe als Katalysator in den =Si(H)-Einheiten des Polyorganosiloxans vorhandene Wasserstoffatome teilweise oder vollständig durch Alkoholatreste der eingesetzten Alkohole ersetzt.
  • Der Lehre dieser Literaturstelle folgend, lassen sich auch teilsubstituierte Polyorganosiloxane herstellen, die neben den substituierten Si-O-C-Einheiten noch nicht umgesetzte ≡Si(H)-Einheiten aufweisen. Dazu wird das Stoffmengen-Verhältnis von SiH-Gruppen zu Alkoholgruppen vorzugsweise im Bereich von 1:0,1 bis zu 1:0,99 Moläquivalenten eingestellt.
  • Durch eine derartige Umsetzung in einem unterstöchiometrischen Verhältnis soll ein Rest an nicht umgesetzter Si-H-Funktion erhalten bleiben, der in einem darauffolgenden Schritt, beispielsweise in einer Hydrosilylierungsreaktion, bei der eine Silicium-Kohlenstoff-Bindung gebildet wird, umgesetzt werden kann, um gemischte Produkte herzustellen.
  • Die EP1935922 B1 lehrt einen Zugang zu hochmolekularen linearen SiOC-verknüpften Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren mit sich wiederholenden (AB)-Einheiten durch die Umsetzung von Polyetherdiolen mit einem stöchiometrischen Überschuss α,ω-Dihydrogen-polydimethylsiloxanen in Gegenwart einer oder mehrerer Elementverbindungen der III. Haupt- und/oder der 3. Nebengruppe als Katalysator, wobei man die Reaktion nach vollständig erfolgter Umsetzung der Alkoholkomponente so lange weiterführt, bis keine =Si(H)-Gruppen gasvolumetrisch mehr nachweisbar sind. Die gasvolumetrische SiH-Wert-Bestimmung erfolgt durch die alkoholatinduzierte Zersetzung einer Probe nach etablierten Verfahren.
  • So attraktiv dieses dehydrogenative Verfahren zur SiOC-Verknüpfung gerade in Bezug auf die Vermeidung flüssiger und/ oder fester Nebenprodukte auch ist, so stellen sowohl der Einsatz kostspieliger und toxischer Katalysatoren, wie zum Beispiel Tris(pentafluorophenyl)-boran, als auch die sichere Handhabung und Entsorgung des bei der Synthese entstehenden Wasserstoffgases Nachteile dieser Technologie dar, die der Überwindung harren.
  • Somit besteht die zu lösende technische Aufgabe darin, ein Verfahren zur Herstellung linearer SiOC-verknüpfter Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymerer und hierbei ganz besonders auch derjenigen vom hochmolekularen Typ zu finden, das die diskutierten Schwierigkeiten überwindet.
  • Überraschenderweise wurde nun gefunden, dass man lineare SiOC-verknüpfte Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymere mit sich wiederholenden (AB)-Einheiten und hierbei ganz besonders auch derjenigen vom hochmolekularen Typ herstellen kann, indem man endäquilibrierte lineare, trifluormethansulfonsaure α,ω-Acetoxy-gruppen tragende Polydimethylsiloxane mit Polyetherdiolen zur Umsetzung bringt.
  • Zugänge zu Acetoxy-funktionellen Siloxanen sind in der Literatur beschrieben.
  • So ist aus etlichen Publikationen und Schutzrechtsersuchen die nicht äquilibrierende Öffnung einfacher unverzweigter Siloxanzyklen mit Acetanhydrid zu kurzkettigen, kettenterminale Acetoxygruppen tragenden Siloxanen in Gegenwart von Katalysatoren bekannt.
  • Borisov und Sviridova beschreiben die Öffnung zyklischer Dimethylsiloxane mit Acetanhydrid in Gegenwart katalytischer Mengen Eisen(III)chlorid zu kurzkettigen α,ω-Acetoxysiloxanen (S. N. Borisov, N. G.Sviridova, J. Organomet. Chem. 11 (1968), 27-33). Lewis et al. widmet sich in der US 4.066.680 der Herstellung kurzkettiger α,ω-Siloxandiole, wobei er Octamethylcyclotetrasiloxan mit Acetanhydrid an säurebehandelten Bleicherden umsetzt und die so erhaltenen Mischungen kurzkettiger α,ω-Acetoxysiloxane in alkalisch eingestelltem Wasser hydrolysiert.
  • Aus US 3346610 ist gleichfalls ist ein Zugang zu Acetoxygruppen tragenden, kurzkettigen Siloxanen bekannt, der auf der Metallhalogenid induzierten Acetoxy-Modifizierung gespannter cyclischer Siloxane beruht, indem man diese mit Acetoxygruppen enthaltenden Silikonverbindungen zur Umsetzung bringt. Eine Vielzahl Friedel-Crafts-aktiver Metallhalogenide fungiert hier als Katalysator, wobei Zinkchlorid als bevorzugt ausgelobt wird. Eine spezielle Zielsetzung der US 3.346.610 liegt in der Acetoxy-Modifizierung gespannter Diorganosiloxancyclen unter bewusster Vermeidung von Äquilibriervorgängen.
  • Der Stand der Technik bezieht sich somit auf Arbeiten, die die Öffnung cyclischer Siloxane - hierbei manchmal gespannter Cyclosiloxane - mit Acyloxygruppen enthaltenden Reaktanden vorsehen und deren Zielsetzung es ist, definierte lineare kurzkettige und das auf dem Wege der fraktionierten Destillation noch zu separierende Siloxanspezies zu gewinnen.
  • Jedoch sind die auf diesem Wege synthetisierten, Molmassen-definierten, kettenreinen Acetoxymodifizierten Siloxanverbindungen nicht geeignet für die Herstellung von organomodifizierten Siloxanen insbesondere Polyethersiloxanen, die Eingang in anspruchsvolle technische Anwendungen wie z.B. in die PU-Schaumstabilisierung oder in die Entschäumung von Kraftstoffen, etc. nehmen. Wirkstoffe, die ein derartiges Anwendungsgebiet effektiv adressieren, sind stets von einer breiten Oligomerverteilung umfassend hohe, mittlere und niedrige Molmassen gekennzeichnet, da den darin enthaltenen Oligomeren in Abhängigkeit von ihrer Molmasse und damit ihres Diffusionsverhaltens sehr oft differenzierte tensidische Aufgaben in unterschiedlichen Zeitfenstern des jeweiligen Prozesses zuzuschreiben sind.
  • Ebenfalls sind Acyloxy-organopolysiloxane und hierbei insbesondere Organosiloxane mit endständigen Acyloxygruppen als Ausgangsmaterialien für Folgereaktionen bekannt. So können beispielsweise die Acyloxygruppen in einem Diorganosiloxan hydrolysiert werden, worauf das Hydrolysat dehydratisiert und das dehydratisierte Hydrolysat unter Bildung von fließfähigem Diorganopolysiloxan polymerisiert werden kann. Diese fließfähigen Polysiloxane eignen sich als Ausgangsmaterialien für die Herstellung viskoser Öle und Kautschuke, die zu Silikonelastomeren gehärtet werden können.
  • Mit endständigen Acyloxygruppen versehene Organosiloxane können beispielsweise durch Umsetzung eines Alkylsiloxans und einer organischen Säure und/oder deren Anhydrid in Gegenwart von Schwefelsäure als Katalysator erhalten werden. Ein solches Verfahren ist in der US-Patentschrift 2 910 496 (Bailey et al. ) beschrieben. Obwohl man nach diesem Verfahren prinzipiell auch Organosiloxane mit endständigen Acyloxygruppen erhält, so haftet dem Prozess der Nachteil an, dass das Reaktionsprodukt aus einer Mischung von acyloxyhaltigen Siloxanen und Acyloxygruppen tragenden Silanen unterschiedlicher Zusammensetzung besteht. Insbesondere führt die Lehre hierzu aus, dass aus M-, D- und T-Einheiten zusammengesetzte Alkylsiloxancopolymere durch das Verfahren in Trimethyl-acyloxysilan, Di-Acyloxydimethylsiloxan und Methyltriacyloxysilan gespalten werden. Somit erhält Bailey bei der Umsetzung von Octamethylcyclotetrasiloxan mit Essigsäureanhydrid und Essigsäure nach Neutralisation der als Katalysator eingesetzten Schwefelsäure, Abtrennen der Salze und Abziehen von Wasser, restlicher Essigsäure und Acetanhydrids ein komplexes Stoffgemisch und keinesfalls ein Äquilibrat, das er dann der fraktionierten Destillation unterwirft (siehe Beispiel, ibid.). Die stoffliche Identität der dabei erhaltenen Fraktionen II und IV bleibt unklar, so dass es hiernach schwierig ist, definierte Produkte zu erhalten, beziehungsweise diese in hohen Ausbeuten vom Gemisch abzutrennen.
  • Sich auf Bailey et al. (US 2 910 496 ) beziehend, lehrt die DE-OS 1545110 (A1) (Omietanski et al. ) ein Verfahren, bei dem eine Acyloxygruppe eines Acyloxysiloxans mit der Hydroxylgruppe eines Polyoxyalkylenhydroxypolymers unter Bildung eines Siloxan-oxyalkylen-Blockmischpolymers und einer Carbonsäure umgesetzt wird, wobei die Carbonsäure aus dem Reaktionsgemisch entfernt wird. Die dort beschriebenen, lösemittel- und katalysatorfrei geführten Umsetzungen verlangen zum Teil beträchtliche Reaktionszeiten (bis zu 11,5 Stunden (Beispiel 1), sehr hohe, produktbelastende Umsetzungstemperaturen (150 bis 160°C (Beispiel 1) und das Anlegen eines Hilfsvakuums beziehungsweise das Strippen der Reaktionsmatrix mit trockenem Stickstoff über die gesamte Reaktionsdauer und erreichen trotz der harschen Umsetzungsbedingungen auf Produktstufe nicht immer vollständigen Umsatz (Beispiel 9, ibid.).
  • Aus produktionstechnischer Sicht gereichen insbesondere die Kombination aus hohen Umsetzungstemperaturen und langen Reaktionszeiten sowie die nicht vorhersehbare Produktqualität dem von Omietanski et al. beschriebenen Prozess zum Nachteil.
  • Nun wurde gefunden, dass man trifluormethansulfonsaure äquilibrierte α,ω-Diacetoxysiloxane durch die Umsetzung von Siloxancyclen (D4 und/oder D5) mit Acetanhydrid in Gegenwart von Trifluormethansulfonsäure herstellen kann, wie die Lehre der noch nicht offengelegten europäischen Anmeldungen mit den Aktenzeichen EP18172882.5 und EP18172876.7 offenbart. Der Lehre dieser Schriften folgend, reagieren diese Diacetoxysiloxane mit Polyether(mono)ole bei mäßigen Temperaturen zügig und zudem vollständig zu SiOC-verknüpften Polyethersiloxanen des Strukturtyps ABA.
  • Die Erfinder haben nun überraschenderweise gefunden, dass trifluormethansulfonsaure, äquilibrierte α,ω-Diacetoxysiloxane, und zwar insbesondere solche wie in EP18172882.5 und EP18172876.7 beschrieben, sogar eine derartig hohe Reaktivität besitzen, dass man bei deren Umsetzung mit α,ω-Polyetherdiolen zu den anspruchsvollen, hochmolekularen SiOC-verknüpften A(BA)n-Strukturen gelangt.
  • Demzufolge sind die Offenbarungsgehalte der EP18172882.5 und EP18172876.7 vollumfänglich Teil der hier vertretenen erfinderischen Lehre. Trifluormethansulfonsaure äquilibrierte α,ω-Diacetoxypolydimethylsiloxane sind dadurch erhältlich, dass man zyklische Siloxane, insbesondere umfassend D4 und/ oder D5, unter Einsatz von Trifluormethansulfonsäure als Katalysator mit Acetanhydrid umsetzt. Die Trifluormethansulfonsäure wird dabei vorzugsweise in Mengen von 0,1 bis 0,3 Massenprozent, bezogen auf die aus Acetanhydrid und zyklischen Siloxanen bestehende Reaktionsmatrix, eingesetzt. Die Umsetzung wird vorzugsweise im Temperaturbereich von 140 bis 160°C und vorzugsweise in einem Zeitraum von 4 bis 8 Stunden durchgeführt.
  • Erfindungsgemäß werden die trifluormethansulfonsauren, endäquilibrierten α,ω-Diacetoxypolydimethylsiloxan mit Polyetherdiol-(en) durch Hinzufügen einer festen, flüssigen oder gasförmigen Base zur Umsetzung gebracht gegebenenfalls unter Einsatz inerter Lösungsmittel. Bevorzugte erfindungsgemäß einzusetzende einfache Basen sind zum Beispiel Alkali- bzw. Erdalkali-Carbonate und/ oder -Hydrogencarbonate und/ oder gasförmiger Ammoniak und/ oder Amine. Der bekannten Kondensationsneigung von Acetoxysiloxanen Rechnung tragend, sind dabei ganz besonders bevorzugt solche Basen, die auf Grund ihrer chemischen Zusammensetzung kein Wasser in das Reaktionssystem eintragen. Somit haben wasserfreie Carbonate vor Hydrogencarbonaten und Hydratwasser-freie vor Hydratwasser-enthaltenden Basen jeweils den Vorzug.
  • Die Schwerlöslichkeit der Alkali- bzw. Erdalkali-Carbonate und/ oder -Hydrogencarbonate im Reaktionssystem berücksichtigend, wählt man von diesen gemäß einer bevorzugten Ausführungsform der Erfindung höhere Überschüsse, die vorzugsweise mindestens dem 2000-fachen stöchiometrischen Äquivalent der im α,ω-Diacetoxypolydimethylsiloxan enthaltenen Trifluormethansulfonsäure entsprechen.
  • Erfindungsgemäß ganz besonders bevorzugt ist die Verwendung gasförmigen Ammoniaks als Base, so dass die bei der Reaktion freiwerdende Essigsäure als Ammoniumacetat gebunden wird.
  • Die Menge der in das Reaktionssystem eingetragenen festen, flüssigen oder gasförmigen Base wird gemäß einer bevorzugten Ausführungsform der Erfindung so bemessen, dass sie sowohl für die Neutralisation der im System vorhandenen Trifluormethansulfonsäure, als auch der Salzfällung der am Siloxan gebundenen Acetatgruppen sowie der Fällung des noch im Reaktionssystem vorhandenen Acetanhydrids sowie gegebenenfalls freier Essigsäure dient. Die Reaktion wird gemäß einer bevorzugten Ausführungsform der Erfindung bei Temperaturen zwischen 20 bis 120°C, vorzugsweise zwischen 20 und 70°C über die Dauer von 1 bis 10, vorzugsweise mindestens über die Dauer von 1 bis 3 Stunden durchgeführt.
  • In einer bevorzugten Ausgestaltung der Erfindung kann man das trifluormethansulfonsaure, endäquilibrierte α,ω-Diacetoxy-polydimethylsiloxan mit Polyetherdiol-(en) bei Temperaturen von < 25°C unter Rühren vorlegen und dann Ammoniak einleiten (Beispiel 2). Diese unter starkem Ammoniakeinsatz gefahrene Ausgestaltungsvariante bindet neben im Reaktionssystem vorhandener Trifluormethansulfonsäure, Acetanhydrid und gegebenenfalls freier Essigsäure die die bei der Reaktion freiwerdende Essigsäure als Ammoniumacetat. Die Reaktion wird vorzugsweise bei Temperaturen zwischen 20 und 70°C über die Dauer von vorzugsweise 1 bis 3 Stunden durchgeführt.
  • Von entscheidender Bedeutung für das Erreichen einer hochmolekularen SiOC-verknüpften A(BA)n-Polyethersiloxanstruktur erweist sich die Qualität des eingesetzten, trifluormethansulfonsauren α,ω-Diacetoxypolydimethylsiloxans. Wie die Erfinder im Rahmen einer breit angelegten Untersuchung überraschend festgestellt haben, ist die Gewährleistung eines perfekten Äquilibrierergebnisses im α,ω-Diacetoxypolydimethylsiloxan für den Aufbau hochmolekularer SiOC-verknüpfter A(BA)n-Polyethersiloxanstruktur erforderlich. Mit dem Begriff "endäquilibriert" ist daher gemeint, dass das Äquilibriergleichgewicht erreicht worden ist, das sich bei einer Temperatur von 23°C und einem Druck von 1013,25 hPa einstellt. Als Indikator für das Erreichen des zuvor genannten Äquilibriergleichgewichtes wird der gaschromatographisch bestimmte Gesamtcylengehalt definiert als die Summe der D4-, D5-, D6-Gehalte bezogen auf die Siloxanmatrix und festgestellt nach der Derivatisierung der α,ω-Diacetoxypolydimethylsiloxane zu den entsprechenden α,ω-Diisopropoxypolydimethylsiloxanen herangezogen. Die Derivatisierung zu den α,ω-Diisopropoxypolydimethylsiloxanen wird hierbei bewusst gewählt, um eine unter den Bedingungen der gaschromatographischen Analyse gegebenenfalls erfolgende, thermisch induzierte Rückspaltungsreaktion der α,ω-Diacetoxy-polydimethylsiloxane zu verhindern (zur Rückspaltungsreaktion siehe u.a. J. Pola et al., Collect. Czech. Chem. Commun. 1974, 39(5), 1169-1176 und auch W. Simmler, Houben-Weyl, Methods of Organic Chemistry, Vol. VI/2, 4th Edition, O-Metal Derivates of Organic Hydroxy Compounds S. 162 ff)). Erfindungsgemäß soll der darin enthaltene Gesamtcyclengehalt definiert als Summe der Gehaltsanteile der zyklischen Siloxane umfassend D4, D5 und D6 bezogen auf die Siloxanmatrix bevorzugt kleiner 13 Gewichtsprozent, besonders bevorzugt kleiner 12 Gewichtsprozent an der aus α,ω-Diisopropoxypolydimethylsiloxanen bestehenden Siloxanmatrix aufweisen.
  • Äquilibrierte α,ω-Diacetoxypolydimethylsiloxane dieser Qualität, also endäquilibrierte α,ω-Diacetoxypolydimethylsiloxane, können sehr vorteilhaft, das heißt auch nach sehr kurzer Reaktionszeit, durch die Umsetzung von Siloxancyclen (insbesondere umfassend D4 und/oder D5) mit Acetanhydrid in Gegenwart von Trifluormethansulfonsäure und Essigsäure hergestellt werden. Essigsäure wird dabei vorzugsweise in Mengen von 0,4 bis 3,5 Gewichtsprozent, bevorzugt 0,5 bis 3 Gewichtsprozent, weiter bevorzugt 0,8 bis 1,8 Gewichtsprozent, besonders bevorzugt in Mengen von 1,0 bis 1,5 Gewichtsprozent bezogen auf die Reaktionsmatrix bestehend aus Acetanhydrid und zyklischen Siloxanen hinzugesetzt.
  • Die Bereitstellung von erfindungsgemäß einsetzbaren trifluormethansulfonsauren, endäquilibrierte α,ω-Diacetoxypolydimethylsiloxanen wird exemplarisch in Beispiel 1 der vorliegenden Erfindung beschrieben.
  • Die Erfinder haben festgestellt, dass unvollständig äquilibrierte α,ω-Diacetoxypolydimethylsiloxane zu nichtverwendungsfähigen Produktmischungen, insbesondere im Hinblick auf den darin erzielten Polymerisationsgrad führen.
  • Da der Polymerisationsgrad des linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren insbesondere für dessen tensidische Wirksamkeit in Polyurethan-Etherschäumen qualitätsdeterminierend ist, kommt der Reaktionsverfolgung eine wichtige Rolle zu. Erfindungsgemäß bewährt hat sich hierbei die Methode, über die Reaktionszeit hinweg Proben aus der Reaktionsmatrix zu ziehen, die man dann zum Beispiel mit Hilfe der 29Si-NMR und/ oder 13C-NMR-Spektroskopie analysiert. Die Abnahme des Integrals der für die Präsenz von Acetoxydimethylsiloxygruppen -OSi(CH3)2OCOCH3 charakteristischen Signallagen geht mit dem beabsichtigten Molmassenaufbau des A(BA)n strukturierten Copolymers einher und ist ein verlässlicher Indikator für den erzielten Reaktionsumsatz.
  • Für den Fachmann unvorhersehbar werden auf diese Weise Strukturen erhalten, die als Stabilisatoren bei der Herstellung von Polyurethanschäumen (PU-Schäume), insbesondere PU-Weichschäumen, sprunghaft bessere Eigenschaften aufweisen.
  • Ein Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren mit sich wiederholenden (AB)-Einheiten durch Umsetzung von Polyetherdiolen mit trifluormethansulfonsauren, endäquilibrierten α,ω-Diacetoxypolydimethylsiloxanen, wobei man die Umsetzung durch Hinzufügen einer festen, flüssigen oder gasförmigen Base vornimmt und das gegebenenfalls unter Einsatz inerter Lösungsmittel.
  • Gemäß einer bevorzugten Ausführungsform der Erfindung werden als inerte Lösungsmittel Alkane, Cycloalkane, Alkylaromaten, endverschlossene Polyether und/oder Emollientester, wie den von Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Ölsäure, Isostearinsäure, Ricinolsäure, und Behenilsäure hergeleiteten Estern kombiniert mit Cetyl-, Stearyl-, Isostearyl-, Oleyl-, Octyldodecyl-, Myristyl- und Behenyl-Alkohol oder Glyzerin, vorzugsweise Myristylmyristat, verwendet.
  • Ein weiterer Gegenstand der Erfindung sind SiOC-verknüpfte, lineare Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymere hergestellt gemäß obigem Verfahren.
  • Ein weiterer Gegenstand der Erfindung ist die Verwendung der gemäß dem erfindungsgemäßen Verfahren hergestellten Verbindungen als grenzflächenaktive Additive zur Herstellung von Polyurethan-Etherschäumen.
  • Weitere Gegenstände der Erfindung sind durch die Ansprüche gekennzeichnet.
  • Die Siloxanblöcke (A) der Blockcopolymeren sind gemäß einer bevorzugten Ausführungsform der Erfindung lineare Siloxanpolymere oder Ketten mit sich wiederholenden Siloxaneinheiten, die durch die Formel (-R2SiO-), wobei R = Methyl- ist, dargestellt werden können.
  • Der Polyoxyalkylenblock (B) der linearen Blockcopolymeren ist gemäß einer bevorzugten Ausführungsform der Erfindung ein Oxyalkylenpolymer enthaltend die sich wiederholenden Oxyalkyleneinheiten, hier insbesondere die Oxyethylen- und Propenyloxyeinheiten.
  • Das gewichtsmittlere Molekulargewicht jedes Siloxanblocks (A) liegt gemäß einer bevorzugten Ausführungsform zwischen 650 bis 6500 g/mol, vorzugsweise 800 bis 1500 g/mol, besonders bevorzugt bei 1000 bis 1200 g/mol.
  • Das gewichtsmittlere Molekulargewicht jedes Polyoxyalkylenblocks der erfindungsgemäß hergestellten Mischpolymeren liegt gemäß einer bevorzugten Ausführungsform zwischen 600 und 10.000 g/mol, vorzugsweise 1.000 bis 5.000 g/mol.
  • Die Größe der einzelnen Oxyalkyleneinheiten oder Siloxanblöcke ist nicht notwendigerweise einheitlich, sondern kann innerhalb der angegebenen Grenzen beliebig variieren.
  • Die einzelnen Polyoxyalkyleneinheiten sind gemäß einer bevorzugten Ausführungsform der Erfindung Additionsprodukte aus mindestens einem Oxyalkylenmonomer, ausgesucht aus der Gruppe Ethylenoxid, Propylenoxid, Butylenoxid Tetrahydrofuran, vorzugsweise Mischprodukte aus mindestens zwei Monomereinheiten, insbesondere aus Ethylenoxid und Propylenoxid.
  • Die Polyoxyalkylenblöcke bestehen gemäß einer bevorzugten Ausführungsform im Wesentlichen aus Oxyethyleneinheiten oder Oxypropyleneinheiten, bevorzugt sind gemischte Oxyethylen- und Oxypropyleneinheiten mit einem Oxyethylenanteil von etwa 30 bis 70 Gewichtsprozent und 70 bis 30 Gewichtsprozent Oxypropylenanteil bezogen auf den Gesamtgehalt an Oxyalkyleneinheiten im Block.
  • Gemäß einer bevorzugten Ausführungsform beträgt der gesamte Siloxanblockanteil (A) im Copolymer zwischen 20 und 50 Gewichtsprozent, vorzugsweise 25 bis 40 Gew.-%, und der Anteil der Polyoxyalkylenblöcke zwischen 80 und 50 Gew.-%. Das Blockcopolymer weist gemäß einer bevorzugten Ausführungsform ein mittleres gewichtsgemitteltes Molekulargewicht Mw von mindestens 10.000 g/mol bis ca. 160.000 g/mol, vorzugsweise 15.000 g/mol bis ca. 100.000 g/mol, insbesondere 20.000 g/mol bis ca. 36.000 g/mol auf. Die Ermittlung der mittleren Molekulargewichte basiert dabei auf den bekannten Methoden der GPC-Analytik.
  • Das molare Verhältnis von α,ω-Diacetoxysiloxanen zu Polyetherdiolen liegt gemäß einer bevorzugten Ausführungsform im Bereich von 0,90 bis 1,10, bevorzugt im Bereich 0,95 bis 1,05 besonders bevorzugt im Bereich 0,99 bis 1,01. Für den Fachmann erschließt sich ohne Weiteres, dass sich der erzielbare Polymerisationsgrad an das Erreichen einer nahezu perfekten Stöchiometrie der Reaktanden knüpft.
  • Das erfindungsgemäße Verfahren wird gemäß einer bevorzugten Ausführungsform ausgeführt durch Umsetzung von endäquilibrierten, Acetoxy-Si-Einheiten enthaltenden Polyorganosiloxanen der allgemeinen Formel (II)
    Figure imgb0001
    worin bedeuten:
    • R : Methylreste,
    • b : 8 bis 80, vorzugsweise 10 bis 50, besonders bevorzugt 10 bis 25, mit wenigstens einem Alkohol, der ausgewählt ist aus der Gruppe der Polyetherdiole mit der allgemeinen Formel (III)

               HO- (CnH(2n-m)R1 mO-)x-H     (III)

      enthalten, worin
      • R1 : Methyl
      • n : 2 bis 4,
      • m : 0 oder 1,
      • x : einen Wert von 1 bis 200, vorzugsweise 10 bis 100, insbesondere 35 bis 60, hat, wobei die Oxyalkylensegmente - (CnH(2n-m)R1 mO-) innerhalb eines Oxyalkylenetherrestes untereinander verschieden sein können, sowie die Reihenfolge der einzelnen Segmente -(CnH(2n-m)R1 mO-) beliebig sein kann und insbesondere Blockcopolymere, statistische Polymere sowie deren Kombinationen umfasst. Erfindungsgemäß bevorzugt sind Polyetherdiole, in denen Ethylenoxid (EO) und Propylenoxyd (PO) als Copolymerisate vorliegen. Besonders bevorzugt sind EO/PO-Copolymerisate, die blockartigen Aufbau besitzen und einen EO-Anteil von ca. 30 bis 70 Gew.-%, bezogen auf den Gesamtgehalt an Oxyalkyleneinheiten, enthalten.
  • Zur Sicherstellung erhöhter Lagerstabilität können die nach dem erfindungsgemäßen Verfahren hergestellten linearen SiOC-verknüpften Polyethersiloxane zudem noch mit kleinen Mengen organischer Amine, wie zum Beispiel N-Methylmorpholin, Triisopropanolamin oder Triethanolamin versetzt werden. Dies entspricht einer bevorzugten Ausführungsform der Erfindung.
  • Eine besonders empfindliche und aussagekräftige Bewertung der erfindungsgemäßen Verbindungen ermöglicht der anwendungstechnische Test, bei dem das gewonnene Copolymer als Schaumstabilisator in Polyurethanformulierungen zur Herstellung von insbesondere Etherschäumen oder offenzelligen Hartschäumen eingebracht wird. Strukturelle Defizite im Schaumstabilisator geben sich bei der Verschäumung in technisch unzureichendem Verhalten, also beispielsweise Schrumpf bzw. Kollaps, zu erkennen.
  • Die Herstellung der nach dem erfindungsgemäßen Verfahren beanspruchten SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren kann wahlweise mit oder ohne den Einsatz eines geeigneten Lösungsmittels erfolgen. Werden hochmolekulare und damit einhergehend hochviskose SiOC-verknüpfte Copolymere angestrebt, so kann deren Herstellung im Sinne ihrer guten Handhabbarkeit während und nach der Synthese zweckmäßigerweise durch die Umsetzung des jeweiligen Polyetherdiols mit dem jeweiligen α,ω-Acetoxysiloxan in einem geeigneten Lösungsmittel stattfinden. Geeignete Solventien sind Alkane, Cycloalkane, Alkylaromaten, endverschlossene Polyether aber auch Emollientester wie Myristylmyristat u.ä., wobei insbesondere hochsiedende Lösungsmittel mit Siedepunkten > 120°C bevorzugt sind.
  • Erfindungsgemäß wurde gefunden, dass man die zügige und vollständige Umsetzung von trifluormethansulfonsauren, äquilibrierten α,ω-Diacetoxypolydimethylsiloxanen mit Polyetherdiolen unter Vermeidung von Verfärbungen des Reaktionsproduktes in Gegenwart von Basen wie zum Beispiel Ammoniak durchführt. Der Einsatz von Ammoniak entspricht einer besonders bevorzugten Ausführungsform der Erfindung.
  • Die Menge der in das Reaktionssystem eingetragenen festen, flüssigen oder gasförmigen Base wird erfindungsgemäß dabei vorzugsweise so bemessen, dass sie sowohl für die Neutralisation der im System vorhandenen Trifluormethansulfonsäure, als auch der Salzfällung der am Siloxan gebundenen Acetatgruppen sowie der Fällung des noch im Reaktionssystem vorhandenen Acetanhydrids sowie gegebenenfalls freier Essigsäure dient. Die Reaktion wird gemäß einer bevorzugten Ausführungsform der Erfindung bei Temperaturen zwischen vorzugsweise 20 und 70°C über die Dauer von vorzugsweise 1 bis 3 Stunden durchgeführt.
  • Eine andere erfindungsgemäß bevorzugte Ausführungsform sieht vor, in dem zur Verknüpfung vorgesehenen Polyetherol respektive Polyetherolgemisch bereits unter Rühren Base(n) vorzulegen, bevor man das trifluormethansulfonsaure, äquilibrierte α,ω-Diacetoxy-polydimethylsiloxan hinzufügt.
  • Diese Reaktion wird gemäß einer bevorzugten Ausführungsform der Erfindung vorzugsweise bei Temperaturen zwischen 50 bis 90°C und vorzugsweise über die Dauer von 2 bis 6 Stunden durchgeführt.
  • Bevorzugte erfindungsgemäß einzusetzende einfache Basen sind zum Beispiel Alkali- bzw. Erdalkali-Carbonate und/ oder -Hydrogencarbonate und/ oder gasförmiger Ammoniak und/ oder Amine. Der bekannten Kondensationsneigung von Acetoxysiloxanen Rechnung tragend, sind dabei ganz besonders bevorzugt solche Basen, die auf Grund ihrer chemischen Zusammensetzung kein Wasser in das Reaktionssystem eintragen. Somit haben wasserfreie Carbonate vor Hydrogencarbonaten und Hydratwasser-freie vor Hydratwasser-enthaltenden Basen jeweils den Vorzug.
  • Überraschenderweise wurde darüber hinaus gefunden, dass die erfindungsgemäß hergestellten Polyethersiloxane eine vorzügliche Lagerstabilität besitzen. Als Kriterium zur Bewertung der Lagerstabilität der im Rahmen der erfinderischen Lehre hergestellten SiOC-verknüpften Polyethersiloxane wird bei konstant gewählter Lagertemperatur durch Probenahme die Viskosität als Funktion der Zeit verfolgt, da sich hierin mögliche Abbau- und/ oder Aufbauprozesse empfindlich manifestieren.
  • Die Reaktionstemperatur zur Herstellung der erfindungsgemäßen Copolymeren sollte gemäß einer bevorzugten Ausführungsform bei 20°C bis 120°C, bevorzugt bei 20°C bis 70°C, liegen.
  • Beispiele
  • Die folgenden Beispiele dienen dem Fachmann allein zur Erläuterung dieser Erfindung und stellen keinerlei Beschränkung des beanspruchten Verfahrens dar. Die erfindungsgemäße Bestimmung der Wassergehalte erfolgt grundsätzlich mit der Karl-Fischer-Methode in Anlehnung an DIN 51777, DGF E-III 10 und DGF C-III 13a. Die 29Si-NMR-Spektroskopie diente in allen Beispielen der Reaktionsverfolgung.
  • Die 29Si-NMR-Proben werden im Rahmen dieser Erfindung bei einer Messfrequenz von 79,49 MHz in einem Bruker Avance III Spektrometer, das mit einem Probenkopf 287430 mit 10 mm Spaltbreite ausgestattet ist, bei 22°C gelöst in CDCl3 und gegen Tetramethylsilan (TMS) als externem Standard [δ(29Si) = 0,0 ppm] gemessen.
  • Die Gaschromatogramme werden an einem GC-Gerät des Typs GC 7890B der Fa. Agilent Technologies
    ausgestattet mit einer Säule vom Typ HP-1; 30m x 0,32mm ID x 0,25µm dF (Agilent Technologies Nr. 19091Z-413E) und Wasserstoff als Trägergas mit folgenden Parametern aufgenommen: Detektor: FID; 310°C
    Injektor: Split; 290°C
    Mode: constant flow 2 mL/min
    Temperaturprogramm: 60°C mit 8°C/min -150°C mit 40°C/min - 300°C 10 min.
  • Als Indikator für das Erreichen des Äquilibriergleichgewichtes wird der gaschromatographisch bestimmte Gesamtcylengehalt definiert als die Summe der D4-, D5-, D6-Gehalte bezogen auf die Siloxanmatrix und festgestellt nach der Derivatisierung der α,ω-Diacetoxypolydimethylsiloxane zu den entsprechenden α,ω-Diisopropoxy-polydimethylsiloxanen herangezogen. Die Derivatisierung zu den α,ω-Diisopropoxy-polydimethylsiloxanen wird hierbei bewusst gewählt, um eine unter den Bedingungen der gaschromatographischen Analyse gegebenenfalls erfolgende, thermisch induzierte Rückspaltungsreaktion der α,ω-Diacetoxy-polydimethylsiloxane zu verhindern (zur Rückspaltungsreaktion siehe u.a. J. Pola et al., Collect. Czech. Chem. Commun. 1974, 39(5), 1169-1176 und auch W. Simmler, Houben-Weyl, Methods of Organic Chemistry, Vol. VI/2, 4th Edition, O-Metal Derivates of Organic Hydroxy Compounds S. 162 ff)).
  • Die eingesetzten Polyetherdiole besitzen Wassergehalte von ca. 0,2 Massen-% und werden ohne weitere Vortrocknung verwendet. Eingesetztes Toluol respektive Alkylbenzol (C10-C13) besitzen einen Wassergehalt von 0,03 Massen-% und werden ebenfalls ohne Vortrocknung verwendet.
  • Die OH-Zahl der Polyetherdiole wird gemäß DGF C-V 17 a (53), beziehungsweise gemäss Ph. Eur. 2.5.3 Method A bestimmt, wobei man zunächst die Hydroxylgruppen der zu analysierenden Probe mit Essigsäureanhydrid in Gegenwart von Pyridin acetyliert und dann im Rahmen einer Differenztitration (Blindprobe, Berücksichtigung des Acetanhydridüberschusses) die freigesetzte Essigsäure als Verbrauch KOH in mg pro Gramm Polyetherdiol titriert.
  • Beispiel 1 Herstellung eines endäquilibrierten, Acetoxy-terminierten, linearen Polydimethylsiloxans
  • In einem 1000-ml-Vierhalskolben mit KPG-Rührer, Innenthermometer und aufgesetztem Rückflusskühler werden 77,3 g (0,757 mol) Essigsäureanhydrid zusammen mit 732,8 g (1,98 mol) Dekamethylcyclopentasiloxan (D5) und 24,3 g Essigsäure (3,0 Gewichtsprozent bezogen auf die Gesamtmasse der Reaktanden) unter Rühren vorgelegt und mit 1,62 g (0,88 ml) Trifluormethansulfonsäure (0,2 Massenprozent bezogen auf den Gesamtansatz) versetzt und zügig auf 150°C erhitzt. Die zu Beginn leicht trübe Reaktionsmischung wird unter weiterem Rühren für 4 Stunden bei dieser Temperatur belassen.
  • Nach Erkalten des Ansatzes wird eine farblos-klare, leichtbewegliche Flüssigkeit isoliert, deren 29Si-NMR-Spektrum die Präsenz von Si-Acetoxygruppen in einer Ausbeute von ca. 93% bezogen auf eingesetztes Essigsäureanhydrid belegt entsprechend einem α,ω-Diacetoxypolydimethylsiloxan mit einer mittleren Gesamtkettenlänge von ca. 14.
  • Überführung des α,ω-Diacetoxypolydimethylsiloxans in das entsprechende α,ω-Diisopropoxypolydimethylsiloxan zur analytischen Charakterisierung
  • Unmittelbar nach der Synthese werden 50,0 g dieses trifluormethansulfonsauren, äquilibrierten α,ω-Diacetoxypolydimethylsiloxans in einem 250-ml-Vierhalsrundkolben ausgerüstet mit mit KPG-Rührer, Innenthermometer und aufgesetztem Rückflusskühler zusammen mit 11,3 g eines über Molekularsieb getrockneten Isopropanols unter Rühren bei 22°C vermischt. Die Reaktionsmischung wird dann durch Einleiten gasförmigen Ammoniaks (NH3) bis zur alkalischen Reaktion (feuchtes Universalindikatorpapier) beaufschlagt und dann noch 45 Minuten bei dieser Temperatur nachgerührt. Die ausgefallenen Salze werden mit Hilfe eines Faltenfilters abgetrennt.
    Isoliert wird eine farblos, klare Flüssigkeit deren begleitendes 29Si-NMR-Spektrum die quantitative Umwandlung des α,ω-Diacetoxypolydimethylsiloxans in ein α,ω-Diisopropoxypolydimethylsiloxan belegt.
    Ein Aliquot dieses α,ω-Diisopropoxypolydimethylsiloxans wird entnommen und gaschromatographisch analysiert. Das Gaschromatogramm weist folgende Gehalte (Angaben in Massenprozent) auf:
    D4 D5 D6 Summe (D4 - D6) Isopropanolgehalt
    4,09 % 2,62 % 0,86 % 7,57 % 4,60 %
  • Beispiel 2 (erfindungsgemäß)
  • In einem 250-ml Vierhalskolben, versehen mit KPG-Rührer, Kontaktthermometer und Rückflusskühler sowie einem Gaseinleitungsrohr werden 0,02 mol (36,2 g) des in Beispiel 1 hergestellten, linearen, trifluormethansulfonsauren α,ω-Acetoxysiloxans N=14 zusammen mit 0,02 mol (56,1 g) eines Polyetherdiols (Ethylenoxid-Propylenoxyd-Copolymerisat mit einer nach OH-Zahl bestimmten Molmasse von ca. 2805 g/ mol und ca. 50 Gewichtsprozent Propylenoxid-Anteil) und 92,3 g Toluol unter Rühren vorgelegt.
  • In diese homogen-klare Mischung wird bei Raumtemperatur unter weiterem Rühren für 45 Minuten ein mäßiger Strom trockenen Ammoniakgases eingeleitet. Ohne weitere Ammoniak-Beaufschlagung wird die bereits zu diesem Zeitpunkt deutlich viskosere Reaktionsmischung nun für 3 Stunden auf 70°C erhitzt.
  • Man lässt den Ansatz auf ca. 23°C abkühlen und befreit das in Toluol gelöste, viskose Copolymer mit Hilfe einer Filterpresse von den darin befindlichen Salzen. Isoliert wird ein farblos, klares Filtrat. Bei reduziertem Druck (0,1 mbar) wird Toluol an einem Rotationsverdampfer abdestilliert.
  • Das zugehörige GPC zeigt ein Mw = 108977 g/ mol und ein Mn = 44726 g/mol.

Claims (12)

  1. Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren mit sich wiederholenden (AB)-Einheiten durch Umsetzung von Polyetherdiolen mit trifluormethansulfonsauren, endäquilibrierten α,ω-Diacetoxypolydimethylsiloxanen, dadurch gekennzeichnet, dass man die Umsetzung durch Hinzufügen einer festen, flüssigen oder gasförmigen Base vornimmt gegebenenfalls unter Einsatz inerter Lösungsmittel.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das molare Verhältnis von trifluormethansulfonsauren, endäquilibrierten α,ω-Diacetoxy-polydimethylsiloxanen zu Polyetherdiolen im Bereich von 0,90 bis 1,10, bevorzugt im Bereich 0,95 bis 1,05, ganz besonders bevorzugt im Bereich 0,99 bis 1,01 liegt.
  3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Reaktion bei Temperaturen von 20°C bis 120°C, bevorzugt bei Temperaturen von 20°C bis 70°C durchgeführt wird.
  4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die einzusetzenden Basen ausgewählt sind aus den Alkali- und/ oder Erdalkali-Carbonaten und/ oder -Hydrogencarbonaten und/ oder Aminen, ganz besonders bevorzugt gasförmiger Ammoniak.
  5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als inerte Lösungsmittel Alkane, Cycloalkane, Alkylaromaten, endverschlossene Polyether und/oder Emollientester, wie den von Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Ölsäure, Isostearinsäure, Ricinolsäure, und Behenilsäure hergeleiteten Estern kombiniert mit Cetyl-, Stearyl-, Isostearyl-, Oleyl-, Octyldodecyl-, Myristyl- und Behenyl-Alkohol oder Glyzerin, vorzugsweise Myristylmyristat, verwendet werden.
  6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das gewichtsmittlere Molekulargewicht jedes Siloxanblocks(A), (-(CH3)2SiO-)b, zwischen 600 bis 6100 g/mol liegt.
  7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Polyoxyalkylenblock(B), (-CnH(2n-1)R1 mO-)c, worin R1 Methyl- darstellt, gemischte Oxyethylen- und Oxypropyleneinheiten mit einem Oxyethylenanteil von 30 bis 70 Gewichtsprozent und 70 bis 30 Gewichtsprozent Oxypropylenanteil, bezogen auf den Gesamtgehalt an Oxyalkyleneinheiten im Block, enthält.
  8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das gewichtsmittlere Molekulargewicht jedes Polyoxyalkylenblocks(B), (CnH(2n-1)R1 mO)c, worin R1 : Methyl- darstellt, zwischen 600 und 10.000 g/mol liegt.
  9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Anteil der Siloxanblöcke A im Gesamt-Copolymer zwischen 20 und 50, vorzugsweise zwischen 25 und 40 Gewichtsprozent beträgt.
  10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymer ein gewichtsmittleres Molekulargewicht von 10.000 g/mol bis 200.000 g/mol, vorzugsweise 25.000 g/mol bis 180.000 g/mol, insbesondere 40.000 g/mol bis 140.000 g/mol aufweist.
  11. SiOC-verknüpfte, lineare Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymere mit sich wiederholenden (AB)-Einheiten, hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 10.
  12. Verwendung der SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren gemäß Anspruch 11 als grenzflächenaktive Additive zur Herstellung von Polyurethan-Etherschäumen.
EP18189072.4A 2018-08-15 2018-08-15 Sioc-verknüpfte, lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere Pending EP3611214A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18189072.4A EP3611214A1 (de) 2018-08-15 2018-08-15 Sioc-verknüpfte, lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere
US16/456,101 US10954344B2 (en) 2018-08-15 2019-06-28 SiOC-bonded, linear polydimethylsiloxane-polyoxyalkylene block copolymers
CA3051763A CA3051763A1 (en) 2018-08-15 2019-08-09 Sioc-bonded, linear polydimethylsiloxane-polyoxyalkylene block copolymers
CN201910752048.0A CN110835411B (zh) 2018-08-15 2019-08-15 SiOC-键合的、线性聚二甲基硅氧烷-聚氧化烯嵌段共聚物
US17/147,592 US11905376B2 (en) 2018-08-15 2021-01-13 SiOC-bonded, linear polydimethylsiloxane-polyoxyalkylene block copolymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18189072.4A EP3611214A1 (de) 2018-08-15 2018-08-15 Sioc-verknüpfte, lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere

Publications (1)

Publication Number Publication Date
EP3611214A1 true EP3611214A1 (de) 2020-02-19

Family

ID=63363868

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18189072.4A Pending EP3611214A1 (de) 2018-08-15 2018-08-15 Sioc-verknüpfte, lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere

Country Status (4)

Country Link
US (2) US10954344B2 (de)
EP (1) EP3611214A1 (de)
CN (1) CN110835411B (de)
CA (1) CA3051763A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3865527A1 (de) * 2020-02-14 2021-08-18 Evonik Operations GmbH Herstellung von pu-schaumstoffen
EP3885096A1 (de) 2020-03-27 2021-09-29 Evonik Operations GmbH Stoffliche wiederverwertung silikonisierter flächengebilde
US11472822B2 (en) 2019-05-28 2022-10-18 Evonik Operations Gmbh Process for purifying acetoxysiloxanes
US11498996B2 (en) 2019-05-28 2022-11-15 Evonik Operations Gmbh Process for producing polyoxyalkylene polysiloxane block polymers
US11859053B2 (en) 2020-02-14 2024-01-02 Evonik Operations Gmbh SiOC-bonded, linear polydimethylsiloxane-polyoxyalkylene block copolymers

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019076552A1 (de) 2017-10-17 2019-04-25 Evonik Degussa Gmbh Zinkketoiminatkomplexe als katalysatoren zur herstellung von polyurethanen
ES2901137T3 (es) 2017-11-29 2022-03-21 Evonik Operations Gmbh Procedimiento para la producción de polietersiloxanos enlazados a SiOC ramificados en la parte de siloxano
EP3794059A1 (de) 2018-05-17 2021-03-24 Evonik Operations GmbH Lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere des strukturtyps aba
EP3794060A1 (de) 2018-05-17 2021-03-24 Evonik Operations GmbH Lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere des strukturtyps aba
EP3611214A1 (de) 2018-08-15 2020-02-19 Evonik Operations GmbH Sioc-verknüpfte, lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere
EP3663346B1 (de) 2018-12-04 2023-11-15 Evonik Operations GmbH Reaktivsiloxane
EP3744755A1 (de) * 2019-05-28 2020-12-02 Evonik Operations GmbH Verfahren zur herstellung acetoxygruppen-tragender siloxane
EP3744754A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Verfahren zur herstellung acetoxygruppen-tragender siloxane
EP3744763A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Massgeschneiderte sioc basierte polyethersiloxane
EP3744759A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Verfahren zur herstellung von im siloxanteil verzweigten sioc-verknüpften polyethersiloxanen
EP3744760A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Verfahren zur herstellung von im siloxanteil verzweigten sioc-verknüpften polyethersiloxanen
EP3744756A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Acetoxysysteme
EP3744745A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Herstellung von pu-schaumstoffen
EP3744774B1 (de) 2019-05-28 2021-09-01 Evonik Operations GmbH Verfahren zum recycling von silikonen
EP3919550A1 (de) * 2020-06-02 2021-12-08 Evonik Operations GmbH Lineare acetoxygruppen-tragende siloxane und folgeprodukte
CN111690139B (zh) * 2020-06-28 2021-11-09 威海新元化工有限公司 一种用于合成聚氟硅氧烷的中和剂及其制备方法与应用
US11732092B2 (en) 2020-10-19 2023-08-22 Evonik Operations Gmbh Upcycling process for processing silicone wastes

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2910496A (en) 1956-06-26 1959-10-27 Union Carbide Corp Process for producing acyloxysilicon compounds
US3346610A (en) 1963-08-07 1967-10-10 Union Carbide Corp Acyloxy-containing siloxanes and process therefor
DE1545110A1 (de) 1963-08-07 1969-06-26 Union Carbide Corp Verfahren zur Herstellung von Polysiloxanoxyalkylen-Blockmischpolymeren
US3836560A (en) 1971-03-08 1974-09-17 Union Carbide Corp Organosilicone polymers
US4066680A (en) 1976-10-18 1978-01-03 Sws Silicones Corporation Process for making alpha,omega-siloxanediols
DE10312636A1 (de) 2003-03-21 2004-09-30 Goldschmidt Ag Verfahren zur Umsetzung von Polyorganosiloxanen
DE102005039931A1 (de) 2005-08-24 2007-03-01 Goldschmidt Gmbh Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren
EP1935923A2 (de) * 2006-12-22 2008-06-25 Evonik Goldschmidt GmbH Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren und ihre Verwendung
EP1935922B1 (de) 2006-12-22 2013-05-08 Evonik Goldschmidt GmbH Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren und ihre Verwendung
WO2014104388A2 (en) * 2012-12-28 2014-07-03 Dow Corning Toray Co., Ltd. Curable silicone composition, cured product thereof, and optical semiconductor device
WO2014104390A2 (en) * 2012-12-28 2014-07-03 Dow Corning Toray Co., Ltd. Curable silicone composition, cured product thereof, and optical semiconductor device

Family Cites Families (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB802688A (en) * 1954-06-10 1958-10-08 Union Carbide Corp Improvements in or relating to organo-silicon compounds
DE1420493C3 (de) * 1959-10-28 1978-04-20 Th. Goldschmidt Ag, 4300 Essen Verfahren zur Herstellung von gemischt substituierten Siloxanen
US3083255A (en) 1961-06-27 1963-03-26 Ford Motor Co Battery vent plug
US3384599A (en) * 1963-08-07 1968-05-21 Union Carbide Corp Siloxane-polyol compositions and process therefor
US3594334A (en) * 1965-10-06 1971-07-20 Union Carbide Corp Surfactant mixtures for flexible polyester urethane foams
US3920587A (en) * 1972-08-11 1975-11-18 Union Carbide Corp Open-cell rigid polyether polyurethane foam
DE2431394C3 (de) * 1974-06-29 1978-10-12 Th. Goldschmidt Ag, 4300 Essen Verfahren zur Herstellung von PoIyorganosiloxanblockcopolymeren
JPS5270811A (en) * 1975-12-10 1977-06-13 Fuji Photo Film Co Ltd Magnetic recording material
DE2802668A1 (de) * 1978-01-21 1979-07-26 Bayer Ag Verfahren zur herstellung von siliciumfunktionellen polyorganosiloxanen
DE2855927A1 (de) * 1978-12-23 1980-07-24 Bayer Ag Verfahren zur herstellung von siliciumfunktionellen polyorganosiloxanen
PL121338B1 (en) * 1979-05-14 1982-04-30 Ct Badan Molekular I Makro Method of manufacture of linear siloxane oligomers containing functional acetoxy groups bonded with siliconoderzhahhikh funkcional'nye acetoksil'nye gruppy,svjazannye s kremniem
BE885473A (fr) * 1979-06-05 1981-01-16 Gen Electric Procede de preparation de polydimethylsiloxanes a terminaisons methoxy
DE2929588A1 (de) * 1979-07-21 1981-02-05 Bayer Ag Verfahren zur herstellung von polysiloxan-polyoxyalkylen-mischpolymerisaten und deren verwendung bei der herstellung von polyurethan-schaumstoffen
DE4027976C3 (de) 1990-09-04 1997-09-18 Goldschmidt Ag Th Verfahren zur Herstellung aktiver Magnesiumhydrid-Magnesium-Wasserstoff-Speichersysteme und Vorrichtung zur Durchführung des Verfahrens
DE4039278A1 (de) 1990-12-08 1992-06-11 Goldschmidt Ag Th Verfahren zur herstellung aktiver, reversibel h(pfeil abwaerts)2(pfeil abwaerts) aufnehmender magnesiumhydrid-magnesium-wasserstoff-speichersysteme
DE4116382C1 (de) 1991-05-18 1992-06-11 Th. Goldschmidt Ag, 4300 Essen, De
DE4116987C1 (de) 1991-05-24 1992-07-30 Th. Goldschmidt Ag, 4300 Essen, De
US5831103A (en) 1992-10-20 1998-11-03 Th. Goldschmidt Ag Halogen-magnesium-aluminum hydridohalides, methods for their synthesis and their use as reducing agents
DE4239246C1 (de) * 1992-11-21 1993-12-16 Goldschmidt Ag Th Verfahren zur Herstellung von SiH-Gruppen aufweisenden Organopolysiloxanen
DE4313130C1 (de) 1993-04-22 1994-05-26 Goldschmidt Ag Th Verfahren zur Herstellung von Silanen bzw. Organosiliciumhydriden durch Reduktion der entsprechenden Siliciumhalogenide bzw. Organosiliciumhalogenide
DE4320920C1 (de) 1993-06-24 1994-06-16 Goldschmidt Ag Th Silane mit hydrophilen Gruppen, deren Herstellung und Verwendung als Tenside in wäßrigen Medien
DE4330059C1 (de) 1993-09-06 1994-10-20 Goldschmidt Ag Th Silane mit hydrophilen Gruppen, deren Herstellung und Verwendung als Tenside in wäßrigen Medien
DE4336602A1 (de) 1993-10-27 1995-05-04 Goldschmidt Ag Th Verfahren zur Herstellung von Aluminiumwasserstoff (AlH¶3¶) durch Umsetzung von Magnesiumhydrid mit Aluminiumhalogenid
DE4415556C1 (de) 1994-04-27 1995-06-01 Goldschmidt Ag Th Organosilyl- bzw. Organosiloxanyl-Derivate von Glycerinethern und deren Verwendung
DE4419456A1 (de) 1994-06-03 1995-12-07 Goldschmidt Ag Th Verfahren zur Herstellung von Magnesiumhydrid
DE4446516C1 (de) 1994-12-24 1996-03-28 Goldschmidt Ag Th Verfahren zur Herstellung von ether- und halogenidfreiem Aluminiumwasserstoff
ES2140733T3 (es) 1995-05-26 2000-03-01 Goldschmidt Ag Th Proceso para la preparacion de polvo metalico amorfo a los rayos x y nanocristalino.
DE19613366A1 (de) 1996-04-03 1997-10-09 Goldschmidt Ag Th Vorrichtung zur Behandlung von Suspensionen
DE19648637A1 (de) 1996-11-25 1998-06-04 Goldschmidt Ag Th Verfahren zur Herstellung von alpha,omega-Alkenolen
US5856548A (en) 1997-05-17 1999-01-05 Th. Goldschmidt Ag Process for preparing dimethylmonochlorosilane
EP0884123B1 (de) 1997-06-10 2003-03-26 Goldschmidt AG Schäumbarer Metallkörper
DE19859759C1 (de) 1998-12-23 2000-06-29 Goldschmidt Ag Th Verfahren und Vorrichtung zur Durchführung kontinuierlicher Hydrosilylierungsreaktionen
EP1031634A1 (de) 1999-02-24 2000-08-30 Goldschmidt AG Verfahren zur Separation von Metallschmelzen unter Zugabe von Metallhydrid, insbesondere MgH2
DE50004040D1 (de) 1999-02-24 2003-11-20 Goldschmidt Ag Th Aktiviertes Magnesiummetall
CA2298240C (en) 1999-02-24 2007-08-21 Goldschmidt Ag Synergistic catalyst system and process for carrying out hydrosilylation reactions
DE19907855C1 (de) 1999-02-24 2000-09-21 Goldschmidt Ag Th Herstellung von Metallschäumen
DE10024776C1 (de) 2000-05-19 2001-09-06 Goldschmidt Ag Th Verwendung von Metallhydrid-behandeltem Zink in der metallorganischen Synthese
US6915834B2 (en) 2001-02-01 2005-07-12 Goldschmidt Ag Process for producing metal foam and metal body produced using this process
DE10104339A1 (de) 2001-02-01 2002-08-08 Goldschmidt Ag Th Verfahren zur Herstellung von Metallschaum und danach hergestellter Metallkörper
DE10104338A1 (de) 2001-02-01 2002-08-08 Goldschmidt Ag Th Herstellung flächiger, metallischer Integralschäume
WO2002068506A1 (de) 2001-02-27 2002-09-06 Goldschmidt Ag Verfahren zur aufbereitung von polyethersiloxanen
DE10123899A1 (de) 2001-05-16 2002-11-21 Goldschmidt Ag Th Verfahren zur Herstellung von Metallformteilen
ES2281521T3 (es) 2001-05-19 2007-10-01 Goldschmidt Gmbh Produccion de espumas metalicas.
DE10127716A1 (de) 2001-06-07 2002-12-12 Goldschmidt Ag Th Verfahren zur Herstellung von Metall/Metallschaum-Verbundbauteilen
DE50200338D1 (de) 2002-03-26 2004-05-13 Goldschmidt Ag Th Verwendung organofunktionell modifizierter Polysiloxane zur Herstellung von Polyurethanweichschäumen
DE10232115A1 (de) 2002-07-16 2004-02-05 Goldschmidt Ag Organopolysiloxane zur Entschäumung wässriger Systeme
DE10232908A1 (de) 2002-07-19 2004-01-29 Goldschmidt Ag Verwendung organfunktionell modifizierter, Phenylderivate enthaltender Polysiloxane als Dispergier- und Netzmittel für Füllstoffe und Pigmente in wässrigen Pigmentpasten und Farb- oder Lackformulierungen
ATE258179T1 (de) 2002-09-26 2004-02-15 Goldschmidt Ag Th Neue siloxanverbindungen und deren verwendung als homogenisierungsmittel in trennmitteln mit mattierungseffekt zur herstellung von formkörpern aus kunststoffen mit mattierten oberflächen
DE50206131D1 (de) 2002-12-21 2006-05-11 Goldschmidt Gmbh Verfahren zur Aufbereitung von Polyethersiloxanen
DE10301355A1 (de) 2003-01-16 2004-07-29 Goldschmidt Ag Äquilibrierung von Siloxanen
ATE316545T1 (de) 2003-10-04 2006-02-15 Goldschmidt Gmbh Verfahren zur herstellung von organischen siliciumverbindungen
DE102005001039B4 (de) 2005-01-07 2017-11-09 Evonik Degussa Gmbh Verfahren zur Herstellung von Äquilibrierungsprodukten von Organosiloxanen und die so erhältlichen Organopolysiloxane
DE102005039398A1 (de) 2005-08-20 2007-02-22 Goldschmidt Gmbh Verfahren zur Herstellung von Anlagerungsprodukten aus SiH-Gruppen enthaltenden Verbindungen an Olefingruppen aufweisende Reaktionspartner in wässrigen Medien
DE102005057857A1 (de) 2005-12-03 2010-02-25 Evonik Goldschmidt Gmbh Polyethermodifizierte Polysiloxane mit Blockcharakter und deren Verwendung zur Herstellung von kosmetischen Formulierungen
DE102006061353A1 (de) 2006-12-22 2008-06-26 Evonik Goldschmidt Gmbh Verfahren zur Umsetzung von Polyorganosiloxanen und deren Verwendung
US8476330B2 (en) * 2007-07-13 2013-07-02 Momentive Performance Materials Inc. Polyurethane foam containing synergistic surfactant combinations and process for making same
DE102007035646A1 (de) 2007-07-27 2009-01-29 Evonik Goldschmidt Gmbh Über SIC- und über Carbonsäureestergruppen verknüpfte lineare Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymere, ein Verfahren zur ihrer Herstellung und ihre Verwendung
DE102007055484A1 (de) 2007-11-21 2009-05-28 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von Polydimethylsiloxanen an sulfonsauren Kationenaustauscherharzen
DE102007055485A1 (de) 2007-11-21 2009-06-04 Evonik Goldschmidt Gmbh Verfahren zur Herstellung verzweigter SiH-funktioneller Polysiloxane und deren Verwendung zur Herstellung SiC- und SiOC-verknüpfter, verzweigter organomodifizierter Polysiloxane
DE102007057146A1 (de) 2007-11-28 2009-06-04 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von Polyetheralkoholen mit DMC-Katalysatoren unter Verwendung von speziellen Additiven mit aromatischer Hydroxy-Funktionalisierung
DE102007057145A1 (de) 2007-11-28 2009-06-04 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von Polyetheralkoholen mit DMC-Katalysatoren unter Verwendung von SiH-Gruppen tragenden Verbindungen als Additive
DE102008000266A1 (de) 2008-02-11 2009-08-13 Evonik Goldschmidt Gmbh Die Erfindung betrifft die Verwendung von Schaumstabilisatoren, die auf Basis nachwachsender Rohstoffe hergestellt werden, zur Herstellung von Polyurethanschäumen
DE102008000360A1 (de) 2008-02-21 2009-08-27 Evonik Goldschmidt Gmbh Neue Alkoxysilylgruppen tragende Polyetheralkohole durch Alkoxylierung epoxidfunktioneller Alkoxysilane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung
DE102008000903A1 (de) 2008-04-01 2009-10-08 Evonik Goldschmidt Gmbh Neue Organosiloxangruppen tragende Polyetheralkohole durch Alkoxylierung epoxidfunktioneller (Poly)Organosiloxane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung
DE102008002713A1 (de) 2008-06-27 2009-12-31 Evonik Goldschmidt Gmbh Neue Polyethersiloxane enthaltende Alkoxylierungsprodukte durch direkte Alkoxylierung organomodifizierter alpha, omega-Dihydroxysiloxane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung
DE102008041601A1 (de) 2008-08-27 2010-03-04 Evonik Goldschmidt Gmbh Verfahren zur Herstellung verzweigter SiH-funtioneller Polysiloxane und deren Verwendung zur Herstellung flüssiger, SiC- oder SiOC-verknüpfter, verzweigter organomodifizierter Polysiloxane
DE102008042181B4 (de) 2008-09-18 2020-07-23 Evonik Operations Gmbh Äquilibrierung von Siloxanen an wasserhaltigen sulfonsauren Kationenaustauscherharzen
DE102008043218A1 (de) 2008-09-24 2010-04-01 Evonik Goldschmidt Gmbh Polymere Werkstoffe sowie daraus bestehende Kleber- und Beschichtungsmittel auf Basis multialkoxysilylfunktioneller Präpolymerer
DE102008043245A1 (de) 2008-10-29 2010-05-06 Evonik Goldschmidt Gmbh Siliconpolyether-Copolymersysteme sowie Verfahren zu deren Herstellung durch Alkoxylierungsreaktion
DE102008043343A1 (de) 2008-10-31 2010-05-06 Evonik Goldschmidt Gmbh Silikonpolyetherblock-Copolymere mit definierter Polydispersität im Polyoxyalkylenteil und deren Verwendung als Stabilisatoren zur Herstellung von Polyurethanschäumen
DE102009022628A1 (de) 2008-12-05 2010-06-10 Evonik Goldschmidt Gmbh Verfahren zur Modifizierung von Oberflächen
WO2010063531A1 (de) 2008-12-05 2010-06-10 Evonik Goldschmidt Gmbh Neue alkoxysilylgruppen tragende polyethersiloxane sowie verfahren zu deren herstellung
DE102009002417A1 (de) 2009-04-16 2010-10-21 Evonik Goldschmidt Gmbh Verwendung organomodifizierter, im Siliconteil verzweigter Siloxane zur Herstellung kosmetischer oder pharmazeutischer Zusammensetzungen
DE102009003274A1 (de) 2009-05-20 2010-11-25 Evonik Goldschmidt Gmbh Zusammensetzungen enthaltend Polyether-Polysiloxan-Copolymere
DE102009022630A1 (de) 2009-05-25 2010-12-02 Evonik Goldschmidt Gmbh Emulsionen auf Basis Silylgruppen tragender Hydroxylverbindungen
DE102009022627A1 (de) 2009-05-25 2010-12-02 Evonik Goldschmidt Gmbh Reaktive Silylgruppen tragende Hydroxylverbindungen als Keramikbindemittel
DE102009022631A1 (de) 2009-05-25 2010-12-16 Evonik Goldschmidt Gmbh Härtbare Silylgruppen enthaltende Zusammensetzungen und deren Verwendung
DE102009034607A1 (de) 2009-07-24 2011-01-27 Evonik Goldschmidt Gmbh Neuartige Siliconpolyethercopolymere und Verfahren zu deren Herstellung
DE102009028640A1 (de) 2009-08-19 2011-02-24 Evonik Goldschmidt Gmbh Härtbare Masse enthaltend Urethangruppen aufweisende silylierte Polymere und deren Verwendung in Dicht- und Klebstoffen, Binde- und/oder Oberflächenmodifizierungsmitteln
DE102009028636A1 (de) 2009-08-19 2011-02-24 Evonik Goldschmidt Gmbh Neuartige Urethangruppen enthaltende silylierte Präpolymere und Verfahren zu deren Herstellung
DE102010001350A1 (de) 2010-01-29 2011-08-04 Evonik Goldschmidt GmbH, 45127 Neuartige lineare Polydimethylsiloxan-Polyether-Copolymere mit Amino- und/oder quaternären Ammoniumgruppen und deren Verwendung
DE102010001528A1 (de) 2010-02-03 2011-08-04 Evonik Goldschmidt GmbH, 45127 Neue Partikel und Kompositpartikel, deren Verwendungen und ein neues Verfahren zu deren Herstellung aus Alkoxysilylgruppen tragenden Alkoxylierungsprodukten
DE102010001531A1 (de) 2010-02-03 2011-08-04 Evonik Goldschmidt GmbH, 45127 Neuartige organomodifizierte Siloxane mit primären Aminofunktionen, neuartige organomodifizierte Siloxane mit quaternären Ammoniumfunktionen und das Verfahren zu deren Herstellung
DE102010002180A1 (de) 2010-02-22 2011-08-25 Evonik Goldschmidt GmbH, 45127 Stickstoffhaltige silizium-organische Pfropfmischpolymere
DE102010002178A1 (de) 2010-02-22 2011-08-25 Evonik Goldschmidt GmbH, 45127 Verfahren zur Herstellung von Amin-Amid-funktionellen Siloxanen
DE102010029723A1 (de) 2010-06-07 2011-12-08 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von organischen Siliciumverbindungen
DE102010031087A1 (de) 2010-07-08 2012-01-12 Evonik Goldschmidt Gmbh Neuartige polyestermodifizierte Organopolysiloxane
DE102010062156A1 (de) 2010-10-25 2012-04-26 Evonik Goldschmidt Gmbh Polysiloxane mit stickstoffhaltigen Gruppen
DE102011076019A1 (de) 2011-05-18 2012-11-22 Evonik Goldschmidt Gmbh Alkoxylierungsprodukte und Verfahren zu ihrer Herstellung mittels DMC-Katalysatoren
DE102011079465A1 (de) 2011-07-20 2013-01-24 Evonik Goldschmidt Gmbh Verfahren zur Reduktion von Carbonsäureestern oder -lactonen zu den entsprechenden Ethern
DE102011109540A1 (de) 2011-08-03 2013-02-07 Evonik Goldschmidt Gmbh Alkylcarbonat endverschlossene Polyethersilioxane und Verfahren zu deren Herstellung
DE102011085492A1 (de) 2011-10-31 2013-05-02 Evonik Goldschmidt Gmbh Neue aminogruppenhaltige Siloxane, Verfahren zu deren Herstellung und Anwendung
DE102011088787A1 (de) 2011-12-16 2013-06-20 Evonik Industries Ag Siloxannitrone und deren Anwendung
DE102012202521A1 (de) 2012-02-20 2013-08-22 Evonik Goldschmidt Gmbh Verzweigte Polysiloxane und deren Verwendung
DE102012202527A1 (de) 2012-02-20 2013-08-22 Evonik Goldschmidt Gmbh Zusammensetzungen enthaltend Polymere und Metallatome oder -ionen und deren Verwendung
DE102012203737A1 (de) 2012-03-09 2013-09-12 Evonik Goldschmidt Gmbh Modifizierte Alkoxylierungsprodukte, die zumindest eine nicht-terminale Alkoxysilylgruppe aufweisen und mehrere Urethangruppen enthalten und deren Verwendung
DE102012210553A1 (de) 2012-06-22 2013-12-24 Evonik Industries Ag Siliconpolyether und Verfahren zu deren Herstellung aus Methylidengruppen tragenden Polyethern
DE102013208328A1 (de) 2013-05-07 2014-11-13 Evonik Industries Ag Polyoxyalkylene mit seitenständigen langkettigen Acyloxyresten und Verfahren zu ihrer Herstellung mittels DMC-Katalysatoren
DE102013106906A1 (de) 2013-07-01 2015-01-08 Evonik Industries Ag Siloxan-Polymere mit zentralem Polysiloxan-Polymerblock mit terminalen organofunktionellen Resten umfassend Harnstoff- und/oder Carbamat-Gruppen sowie Aminosäure-Reste
DE102013106905A1 (de) 2013-07-01 2015-01-08 Evonik Industries Ag Siloxan-Polymere mit zentralem Polysiloxan-Polymerblock mit organofunktionellen Resten mit jeweils mindestens zwei bivalenten Gruppen ausgewählt aus Harnstoff- und/oder Carbamat-Gruppen und mindestens einem UV/Vis-Chromophor als Rest
DE102013213655A1 (de) 2013-07-12 2015-01-15 Evonik Industries Ag Härtbare Silylgruppen enthaltende Zusammensetzungen mit verbesserter Lagerstabilität
DE102013214081A1 (de) 2013-07-18 2015-01-22 Evonik Industries Ag Neue aminosäuremodifizierte Siloxane, Verfahren zu ihrer Herstellung und Anwendung
DE102013216787A1 (de) 2013-08-23 2015-02-26 Evonik Degussa Gmbh Guanidingruppen aufweisende semi-organische Siliciumgruppen enthaltende Verbindungen
DE102013216751A1 (de) 2013-08-23 2015-02-26 Evonik Industries Ag Modifizierte Alkoxylierungsprodukte, die Alkoxysilylgruppen aufweisen und Urethangruppen enthalten und deren Verwendung
DE102014209407A1 (de) 2014-05-19 2015-11-19 Evonik Degussa Gmbh Hoch aktive Doppelmetallcyanid-Katalysatoren und Verfahren zu deren Herstellung
DE102014209408A1 (de) 2014-05-19 2015-11-19 Evonik Degussa Gmbh Ethoxylatherstellung unter Verwendung hoch aktiver Doppelmetallcyanid-Katalysatoren
DE102014213507A1 (de) 2014-07-11 2016-01-14 Evonik Degussa Gmbh Platin enthaltende Zusammensetzung
DE102014215382A1 (de) 2014-08-05 2016-02-11 Evonik Degussa Gmbh Stickstoffhaltige Verbindungen, geeignet zur Verwendung bei der Herstellung von Polyurethanen
EP3020749B1 (de) 2014-11-12 2020-09-30 Evonik Operations GmbH Verfahren zur herstellung von platin enthaltenden zusammensetzungen
EP3029087A1 (de) 2014-12-05 2016-06-08 Evonik Degussa GmbH Verfahren zur Herstellung von niedrigviskosen Polyethersiloxanen
ES2616348T3 (es) 2015-01-28 2017-06-12 Evonik Degussa Gmbh Productos de alcoxilación modificados que presentan al menos un grupo alcoxisililo no terminal, con estabilidad aumentada al almacenamiento y dilatación mejorada y los polímeros producidos utilizando los mismos
LT3133097T (lt) 2015-08-17 2022-12-12 Evonik Operations Gmbh Elastingi poliuretano putplasčiai, pasižymintys padidintu kietumu
LT3168274T (lt) 2015-11-11 2018-09-10 Evonik Degussa Gmbh Polimerai, galintys sudaryti skersinius ryšius
LT3168273T (lt) 2015-11-11 2018-09-10 Evonik Degussa Gmbh Polimerai, galintys sudaryti skersinius ryšius
EP3380542A1 (de) 2015-11-26 2018-10-03 Evonik Degussa GmbH Bindemittelsysteme enthaltend alkoxysilylgruppen tragende präpolymere und epoxidverbindungen sowie deren verwendung
EP3202816B1 (de) 2016-02-04 2018-09-19 Evonik Degussa GmbH Alkoxysilylhaltige klebdichtstoffe mit verbessertem weiterreisswiderstand
ES2814123T3 (es) 2016-04-04 2021-03-26 Evonik Operations Gmbh Tratamiento de productos de alcoxilación catalizada de forma alcalina
CN105906810B (zh) * 2016-04-26 2019-08-06 广东标美硅氟新材料有限公司 一种有机聚硅氧烷树脂的制备方法
EP3272331B1 (de) 2016-07-22 2018-07-04 Evonik Degussa GmbH Verfahren zur herstellung von siloxanen enthaltend glycerinsubstituenten
PL3321304T3 (pl) 2016-11-15 2019-11-29 Evonik Degussa Gmbh Mieszaniny cyklicznych, rozgałęzionych siloksanów typu D/T i ich dalszych produktów
EP3351526B1 (de) 2017-01-20 2020-11-18 Evonik Operations GmbH Diisopentylterephthalat
EP3401353B1 (de) 2017-05-08 2021-06-23 Evonik Operations GmbH Mischungen zyklischer-verzweigter siloxane vom d/t-typ und deren folgeprodukte
EP3415547B1 (de) 2017-06-13 2020-03-25 Evonik Operations GmbH Verfahren zur herstellung sic-verknüpfter polyethersiloxane
EP3415548B1 (de) 2017-06-13 2020-03-25 Evonik Operations GmbH Verfahren zur herstellung sic-verknüpfter polyethersiloxane
EP3438158B1 (de) 2017-08-01 2020-11-25 Evonik Operations GmbH Herstellung von sioc-verknüpften polyethersiloxanen
US10507250B2 (en) 2017-09-08 2019-12-17 Institute Of Nuclear Energy Research, Atomic Energy Council, Executive Yuan Precursor of a histone deacetylase inhibitor PET imaging compound for tracking cerebral neurodegenerative and tumor diseases
JP7241487B2 (ja) 2017-09-25 2023-03-17 エボニック オペレーションズ ゲーエムベーハー ポリウレタン系の製造
EP3467006B1 (de) 2017-10-09 2022-11-30 Evonik Operations GmbH Mischungen zyklischer-verzweigter siloxane vom d/t-typ und deren folgeprodukte
ES2901137T3 (es) 2017-11-29 2022-03-21 Evonik Operations Gmbh Procedimiento para la producción de polietersiloxanos enlazados a SiOC ramificados en la parte de siloxano
EP3794060A1 (de) 2018-05-17 2021-03-24 Evonik Operations GmbH Lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere des strukturtyps aba
EP3794059A1 (de) 2018-05-17 2021-03-24 Evonik Operations GmbH Lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere des strukturtyps aba
EP3611214A1 (de) 2018-08-15 2020-02-19 Evonik Operations GmbH Sioc-verknüpfte, lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere
EP3744753B1 (de) 2019-05-28 2022-04-06 Evonik Operations GmbH Verfahren zur aufreinigung von acetoxysiloxanen
EP3744745A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Herstellung von pu-schaumstoffen
EP3744756A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Acetoxysysteme
EP3744754A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Verfahren zur herstellung acetoxygruppen-tragender siloxane
EP3744759A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Verfahren zur herstellung von im siloxanteil verzweigten sioc-verknüpften polyethersiloxanen
EP3744774B1 (de) 2019-05-28 2021-09-01 Evonik Operations GmbH Verfahren zum recycling von silikonen
EP3744755A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Verfahren zur herstellung acetoxygruppen-tragender siloxane
EP3744760A1 (de) 2019-05-28 2020-12-02 Evonik Operations GmbH Verfahren zur herstellung von im siloxanteil verzweigten sioc-verknüpften polyethersiloxanen
US20210015269A1 (en) 2019-07-19 2021-01-21 Evonik Operations Gmbh Shaped pu foam articles
EP3819323A1 (de) 2019-11-07 2021-05-12 Evonik Operations GmbH Druckverformungsrest
EP3865527A1 (de) 2020-02-14 2021-08-18 Evonik Operations GmbH Herstellung von pu-schaumstoffen
EP3865531A1 (de) 2020-02-14 2021-08-18 Evonik Operations GmbH Sioc-verknüpfte, lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere
EP3885096B1 (de) 2020-03-27 2024-02-14 Evonik Operations GmbH Stoffliche wiederverwertung silikonisierter flächengebilde
EP3919550A1 (de) 2020-06-02 2021-12-08 Evonik Operations GmbH Lineare acetoxygruppen-tragende siloxane und folgeprodukte
US20220348721A1 (en) 2021-04-29 2022-11-03 Evonik Operations Gmbh Process for producing endcapped, liquid siloxanes from silicone wastes

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2910496A (en) 1956-06-26 1959-10-27 Union Carbide Corp Process for producing acyloxysilicon compounds
US3346610A (en) 1963-08-07 1967-10-10 Union Carbide Corp Acyloxy-containing siloxanes and process therefor
DE1545110A1 (de) 1963-08-07 1969-06-26 Union Carbide Corp Verfahren zur Herstellung von Polysiloxanoxyalkylen-Blockmischpolymeren
US3836560A (en) 1971-03-08 1974-09-17 Union Carbide Corp Organosilicone polymers
US4066680A (en) 1976-10-18 1978-01-03 Sws Silicones Corporation Process for making alpha,omega-siloxanediols
DE10312636A1 (de) 2003-03-21 2004-09-30 Goldschmidt Ag Verfahren zur Umsetzung von Polyorganosiloxanen
DE102005039931A1 (de) 2005-08-24 2007-03-01 Goldschmidt Gmbh Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren
EP1935923A2 (de) * 2006-12-22 2008-06-25 Evonik Goldschmidt GmbH Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren und ihre Verwendung
EP1935922B1 (de) 2006-12-22 2013-05-08 Evonik Goldschmidt GmbH Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren und ihre Verwendung
WO2014104388A2 (en) * 2012-12-28 2014-07-03 Dow Corning Toray Co., Ltd. Curable silicone composition, cured product thereof, and optical semiconductor device
WO2014104390A2 (en) * 2012-12-28 2014-07-03 Dow Corning Toray Co., Ltd. Curable silicone composition, cured product thereof, and optical semiconductor device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. POLA ET AL., COLLECT. CZECH. CHEM. COMMUN., vol. 39, no. 5, 1974, pages 1169 - 1176
S. N. BORISOV; N. G.SVIRIDOVA, J. ORGANOMET. CHEM., vol. 11, 1968, pages 27 - 33
W. SIMMLER; HOUBEN-WEYL: "O-Metal Derivates of Organic Hydroxy Compounds", METHODS OF ORGANIC CHEMISTRY, vol. VI/2, pages 162 ff

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11472822B2 (en) 2019-05-28 2022-10-18 Evonik Operations Gmbh Process for purifying acetoxysiloxanes
US11498996B2 (en) 2019-05-28 2022-11-15 Evonik Operations Gmbh Process for producing polyoxyalkylene polysiloxane block polymers
EP3865527A1 (de) * 2020-02-14 2021-08-18 Evonik Operations GmbH Herstellung von pu-schaumstoffen
US11859053B2 (en) 2020-02-14 2024-01-02 Evonik Operations Gmbh SiOC-bonded, linear polydimethylsiloxane-polyoxyalkylene block copolymers
EP3885096A1 (de) 2020-03-27 2021-09-29 Evonik Operations GmbH Stoffliche wiederverwertung silikonisierter flächengebilde
US11591448B2 (en) 2020-03-27 2023-02-28 Evonik Operations Gmbh Physical reutilization of siliconized sheets

Also Published As

Publication number Publication date
US11905376B2 (en) 2024-02-20
CN110835411A (zh) 2020-02-25
US10954344B2 (en) 2021-03-23
US20210130551A1 (en) 2021-05-06
US20200055992A1 (en) 2020-02-20
CA3051763A1 (en) 2020-02-15
CN110835411B (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
EP3611214A1 (de) Sioc-verknüpfte, lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere
EP3492513B1 (de) Verfahren zur herstellung von im siloxanteil verzweigten sioc-verknüpften polyethersiloxanen
EP3865531A1 (de) Sioc-verknüpfte, lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere
WO2019219452A1 (de) Lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere des strukturtyps aba
WO2019219446A1 (de) Lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere des strukturtyps aba
EP3744759A1 (de) Verfahren zur herstellung von im siloxanteil verzweigten sioc-verknüpften polyethersiloxanen
EP3744760A1 (de) Verfahren zur herstellung von im siloxanteil verzweigten sioc-verknüpften polyethersiloxanen
EP2042542B1 (de) Verwendung linearer Siloxane und Verfahren zu deren Herstellung
EP2028213B1 (de) Verfahren zur Herstellung von verzweigten Polyorganosiloxanen
EP1935923B1 (de) Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydimethylsiloxan-Polyoxyalkylen-Blockcopolymeren und ihre Verwendung
EP1757637B1 (de) Verfahren zur Herstellung von SiOC-verknüpften, linearen Polydialkylsiloxan-Polyoxyalkylen-Blockcopolymeren
EP2289976B1 (de) Siliconpolyethercopolymere und Verfahren zu deren Herstellung
EP3744761B1 (de) Sioc basierte polyethersiloxane
EP1679335B1 (de) Siloxanblockcopolymere
EP3919550A1 (de) Lineare acetoxygruppen-tragende siloxane und folgeprodukte
EP3611215A1 (de) Verfahren zur herstellung acetoxygruppen-tragender siloxane
EP2676986A1 (de) Siliconpolyether und Verfahren zu deren Herstellung aus Methylidengruppen tragenden Polyethern
EP0630902A1 (de) Silane mit hydrophilen Gruppen, deren Herstellung und Verwendung als Tenside in wässrigen Medien
DE102005051939A1 (de) Verfahren zur Herstellung von organisch modifizierten Polyorganosiloxanen
EP3744763A1 (de) Massgeschneiderte sioc basierte polyethersiloxane
EP2182020A1 (de) Silikonpolyetherblock-Copolymere mit definierter Polydispersität im Polyoxyalkylenteil und deren Verwendung als Stabilisatoren zur Herstellung von Polyurethanschäumen
EP3744762A1 (de) Verfahren zur herstellung von polyoxyalkylen polysiloxan blockpolymerisaten
EP1460099A1 (de) Verfahren zur Umsetzung von Polyorganosiloxanen
EP3611216A1 (de) Lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere des strukturtyps aba
DE1545110B2 (de) Verfahren zur herstellung eines polysiloxanpolyoxyalkylen-blockmischpolymeren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200716

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201001

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS