EP0884123B1 - Schäumbarer Metallkörper - Google Patents

Schäumbarer Metallkörper Download PDF

Info

Publication number
EP0884123B1
EP0884123B1 EP98109728A EP98109728A EP0884123B1 EP 0884123 B1 EP0884123 B1 EP 0884123B1 EP 98109728 A EP98109728 A EP 98109728A EP 98109728 A EP98109728 A EP 98109728A EP 0884123 B1 EP0884123 B1 EP 0884123B1
Authority
EP
European Patent Office
Prior art keywords
metal
gas
blowing agent
metal powder
compacted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98109728A
Other languages
English (en)
French (fr)
Other versions
EP0884123A2 (de
EP0884123A3 (de
Inventor
Wilfried Dr. Knott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
TH Goldschmidt AG
Goldschmidt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7831969&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0884123(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by TH Goldschmidt AG, Goldschmidt GmbH filed Critical TH Goldschmidt AG
Publication of EP0884123A2 publication Critical patent/EP0884123A2/de
Publication of EP0884123A3 publication Critical patent/EP0884123A3/de
Application granted granted Critical
Publication of EP0884123B1 publication Critical patent/EP0884123B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process

Definitions

  • the invention relates to a method for manufacturing foamable metal body, the compact semi-finished product available in this way, the use of the semi-finished product for foaming a closed cell Metal body and the closed-cell cells thus obtained foam-shaped metal body.
  • EP-B-0 460 392 describes a process for the production foamable metal body with mostly closed porosity, the resulting pores evenly throughout the metal body distributed and should have a uniform size, in which a mixture of at least one metal powder and at least one gas-releasing blowing agent powder and compacted into a semi-finished product.
  • the one described here The method is characterized in that the hot compaction at a temperature above the decomposition temperature of the blowing agent takes place, the connection of the Metal powder particles are predominantly made by diffusion and at a pressure high enough to disintegrate the Prevent blowing agent so that the metal particles themselves in a fixed connection with each other and one represent gas-tight seal for the gas particles of the blowing agent.
  • DE-C-41 24 591 describes a process for the production foamable metal body by rolling a powder mixture, at which contains the powder mixture of at least one blowing agent Powder and a metal powder, in which the powder mixture is filled into a metal hollow profile and rolled.
  • the Cold pressing bodies obtainable according to this publication cannot only be heated before the rolling process, but also after individual roll passes are reheated. Here too the Cold pressed body to a temperature above the decomposition temperature of the blowing agent heated.
  • DE-A-44 26 627 relates to a metallic composite material and a process for its manufacture.
  • the metallic Composite material with a core of one or more porous Metal materials and at least one top layer made of solid Material points between the core and the top layer / top layers metallic bonds.
  • the object of the present invention is on the one hand improved process for the production of foamable metal bodies and secondly in an improvement in technical Properties of the semi-finished products as well as the closed-cell ones foam-shaped metal body compared to the prior art.
  • the first-mentioned object of the present invention is achieved by a process for producing foamable metal bodies, in which a mixture of at least one metal powder and one gas-releasing blowing agent produced and a semi-finished product is compacted.
  • the method is characterized in that a gas-releasing blowing agent containing magnesium hydride starts.
  • the chemical compound "magnesium hydride” has long been State of the art. It was used as a foaming agent for rubber materials in the US-A-3 114 724. However, in the area of manufacturing foamable metal body previously other gas-releasing blowing agents, for example titanium hydride, carbonates, hydrates or easily evaporating substances used. Meanwhile, however Magnesium hydride is no longer just a laboratory product, but also commercially available on a larger scale. A core of the present The invention thus consists of magnesium hydride to supply new use for the production of foamable metal bodies. For example, metal powder is applied thorough mixing with a small amount of magnesium hydride containing blowing agent and compacted the thus obtained Mixture, so it is possible to manufacture compacts to obtain foam-shaped metal bodies. The so available Foam-shaped metal bodies have a very homogeneous pore density distribution down to the surface areas of the molded body on which is a significant advance over foam-like Represents metal bodies with known gas-releasing Blowing agents of the prior art can be obtained
  • magnesium hydride especially autocatalytic Magnesium hydride produced, containing blowing agent metallic foam bodies have a different type Morphology as foams, for example with titanium hydride be obtained as a gas-releasing blowing agent.
  • the aluminum foam piece is in use of magnesium hydride according to the present invention in the Fig. 1 foamed significantly more uniformly.
  • the compression of the Bottom is only about 3 mm thick, while the aluminum foam according to the state of the art up to 1 cm non-foamed Material can be found at the bottom.
  • Metal foam is also the number of cells per unit volume significantly larger, preferably with regard to for the presence of small cells. Also in this foam to detect a certain irregularity in the cells, which, however, is significantly less pronounced than with the foam according to the state of the art.
  • the surface of the foam according to The present invention has more openings than that of the Foam according to the prior art. But the openings are much finer and more even.
  • one Plastic foam can be used for the purposes of the present invention speak of small, uniform blow-offs.
  • all fusible metals or metal alloys foamable in the sense of the present invention are as metal powder Aluminum and its alloys used. Accordingly it is particularly preferred that the metal powder is substantially made of aluminum, optionally with conventional alloy components, such as magnesium, copper and / or silicon.
  • Metal powder is available to the person skilled in the art in a wide variety of processes to disposal.
  • Particularly preferred in the sense of the present Invention is cold pressing, the cold isostatic Pressing, rolling, extrusion and extrusion.
  • this is preferred Compacting below the decomposition temperature of the magnesium hydride containing gas-releasing blowing agent, preferably performed at room temperature. While in the prior art usually compacting at high temperature, especially above the decomposition temperature of the gas-releasing Blowing agent was carried out in the invention Use of gas-releasing blowing agents containing magnesium hydride found that compacting even at low Temperatures is possible.
  • the mixture of metal powder and Magnesium hydride containing gas-releasing blowing agent When compacting, the mixture of metal powder and Magnesium hydride containing gas-releasing blowing agent the highest possible density can be compressed. Particularly preferred within the meaning of the present invention is the compacting in such a way that the density at least 90%, in particular at least 95% of the theoretical density of the Metal of the metal powder. This can be caused by high pressing forces can be achieved. So by applying 0.5% magnesium hydride as a blowing agent from spray-atomized spherical Aluminum (AlMgSi 6061) by cold isostatic pressing a cylinder with a pre-pressure of 450 bar accordingly a pressing force of about 10 t with a density of more than 90% of the theoretical density of aluminum can be produced.
  • AlMgSi 6061 spray-atomized spherical Aluminum
  • the amount of magnesium hydride to be used according to the invention containing gas-releasing blowing agent is usually very low.
  • the proportions of blowing agent are of the order of magnitude usually from a few tenths of a percent by weight because that compacted semi-finished product is fully compressed and propellant cannot escape.
  • Amounts of blowing agents have proven to be particularly favorable from 0.1 to 2% by weight, in particular 0.2 to 1 wt .-%, based on the metal powder, proven.
  • magnesium hydride used itself, the commercially available is.
  • known ones can also be used Metal hydrides, for example titanium hydride, carbonates, for example Calcium carbonate, potassium carbonate, sodium carbonate, Sodium bicarbonate, hydrates, for example aluminum sulfate hydrate, Alum, aluminum hydroxide or easily evaporating Substances, for example mercury compounds or powdered organic substances are used.
  • Another embodiment of the present invention comprises the semi-finished products obtainable by compacting, in which the metal particles in a relatively firm connection with each other are and an essentially gastight seal form for the gas particles of the blowing agent.
  • These semi-finished products can optionally by known methods to be formed in order to achieve the appropriate pressure and temperature conditions according to known methods to a closed cell Foam metal body. So can the foaming of the semi-finished product, if no final shape is specified is. Alternatively, the foaming can also be carried out in one partially or completely closed form, where the finished porous metal body the specified shape of the tool accepts.
  • the conditions for foaming the semi-finished products are the expert from the state of the aforementioned in the introduction Technology known.
  • Another embodiment of the present invention above also relates to those obtainable using the above method closed-cell foam-shaped metal body.

Description

Gegenstand der Erfindung ist ein Verfahren zur Herstellung schäumbarer Metallkörper, das so erhältliche kompaktierte Halbzeug, die Verwendung des Halbzeugs zum Schäumen eines geschlossenzelligen Metallkörpers sowie die so erhaltenen geschlossenzelligen schaumförmigen Metallkörper.
Aus der US-A-3 087 807 ist ein Verfahren bekannt, nach dem die Herstellung eines porösen Metallkörpers beliebiger geometrischer Form möglich ist. Danach wird eine Mischung aus einem Metallpulver und einem Treibmittel mit einem Preßdruck von wenigstens 80 MPa im ersten Schritt kalt kompaktiert. Durch anschließendes Strangpressen wird die Mischung um wenigstens 87,5 % umgeformt. Dieser hohe Umformgrad wird als notwendig erachtet, damit durch die Reibung der Teilchen aneinander während des Umformprozesses die Oxidhäute zerstört und die Metallteilchen miteinander verbunden werden. Der so hergestellte extrudierte Stab kann durch Erwärmung auf wenigstens die Schmelztemperatur des Metalls zu einem porösen Metallkörper aufgeschäumt werden. Die Aufschäumung kann in verschiedenen Formen erfolgen, so daß der fertige poröse Metallkörper die gewünschte Form aufweist. Nachteilig ist, daß dieses Verfahren aufgrund seines zweistufigen Kompaktierungsvorgangs sowie des erforderlichen, sehr hohen Umformgrades aufwendig und auf durch Strangpressen herstellbare Halbzeuge beschränkt ist. Bei dem hier offenbarten Verfahren sind nur Treibmittel verwendbar, deren Zersetzungstemperatur oberhalb der Kompaktierungstemperatur liegt, da sonst das Gas während des Extrusionsvorgang entweichen würde. Der Extrusionsvorgang nach dem hier beschriebenen Verfahren wird als notwendig erachtet, da die Verbindung der Metallteilchen durch die bei dem Extrusionsvorgang auftretenden hohen Temperaturen und die Reibung der Teilchen aneinander, d. h. durch Verschweißung der Teilchen miteinander entsteht.
Die EP-B-0 460 392 beschreibt ein Verfahren zur Herstellung schäumbarer Metallkörper mit überwiegend geschlossener Porosität, wobei die entstehenden Poren gleichmäßig im gesamten Metallkörper verteilt und eine einheitliche Größe aufweisen sollen, bei dem eine Mischung aus wenigstens einem Metallpulver und wenigstens einem gasabspaltenden Treibmittelpulver hergestellt und zu einem Halbzeug kompaktiert wird. Das hier beschriebene Verfahren ist dadurch gekennzeichnet, daß die Heißkompaktierung bei einer Temperatur oberhalb der Zersetzungstemperatur des Treibmittels stattfindet, wobei die Verbindung der Metallpulverteilchen überwiegend durch Diffusion erfolgt und bei einem Druck, der hoch genug ist, um die Zersetzung des Treibmittels zu verhindern derart, daß die Metallteilchen sich in einer festen Verbindung untereinander befinden und einen gasdichten Abschluß für die Gasteilchen des Treibmittels darstellen.
Die DE-C-41 24 591 beschreibt ein Verfahren zur Herstellung schäumbarer Metallkörper durch Walzen einer Pulvermischung, bei dem die Pulvermischung aus wenigstens einem treibmittelhaltigen Pulver und einem Metallpulver besteht, bei dem die Pulvermischung in ein Metallhohlprofil gefüllt und gewalzt wird. Der gemäß dieser Druckschrift erhältliche Kaltpreßkörper kann nicht nur vor dem Walzvorgang erwärmt werden, sondern auch nach den einzelnen Walzstichen wiedererwärmt werden. Auch hier wird der Kaltpreßkörper auf eine Temperatur oberhalb der Zersetzungstemperatur des Treibmittels erwärmt.
Die DE-A-44 26 627 betrifft einen metallischen Verbundwerkstoff und ein Verfahren zu seiner Herstellung. Der metallische Verbundwerkstoff mit einem Kern aus einem oder mehreren porösen Metallwerkstoffen und mindestens einer Deckschicht aus massivem Material weist zwischen dem Kern und der Deckschicht/Deckschichten metallische Bindungen auf.
Die Aufgabe der vorliegenden Erfindung besteht zum einen in einem verbesserten Verfahren zur Herstellung schäumbarer Metallkörper und zum anderen in einer Verbesserung der technischen Eigenschaften der Halbzeuge sowie der geschlossenzelligen schaumförmigen Metallkörper gegenüber dem Stand der Technik.
Die erstgenannte Aufgabe der vorliegenden Erfindung wird gelöst durch ein Verfahren zur Herstellung schäumbarer Metallkörper, bei dem ein Gemisch aus wenigstens einem Metallpulver und einem gasabspaltenden Treibmittel hergestellt und zu einem Halbzeug kompaktiert wird. Das Verfahren ist dadurch gekennzeichnet, daß man ein Magnesiumhydrid enthaltendes gasabspaltendes Treibmittel einsetzt.
Die chemische Verbindung "Magnesiumhydrid" ist seit langem Stand der Technik. Sie wurde als Schaummittel für gummistoffe in der US-A- 3 114 724 offenbart. Jedoch wurden im Bereich der Herstellung aufschäumbarer Metallkörper bisher andere gasabspaltende Treibmittel, beispielsweise Titanhydrid, Carbonate, Hydrate oder leicht verdampfende Stoffe eingesetzt. Mittlerweile ist jedoch Magnesiumhydrid nicht mehr nur ein Laborprodukt, sondern auch in größerem Maßstab kommerziell erhältlich. Ein Kern der vorliegenden Erfindung besteht somit darin, Magnesiumhydrid einer neuen Verwendung zur Herstellung schäumbarer Metallkörper zuzuführen. Beaufschlagt man beispielsweise Metallpulver nach gründlicher Durchmischung mit einer geringen Menge an Magnesiumhydrid enthaltendes Treibmittel und kompaktiert das so erhaltene Gemisch, so ist es möglich, Preßkörper zur Herstellung von schaumförmigen Metallkörpern zu erhalten. Die so erhältlichen schaumförmigen Metallkörper weisen eine sehr homogene Porendichteverteilung bis in die Oberflächenbereiche des Formkörpers auf, die einen wesentlichen Fortschritt gegenüber schaumförmigen Metallkörpern darstellt, die mit bekannten gasabspaltenden Treibmitteln des Standes der Technik erhalten werden.
Die mit Hilfe von Magnesiumhydrid, insbesondere autokatalytisch hergestelltem Magnesiumhydrid, enthaltendem Treibmittel hergestellten metallischen Schaumkörper weisen eine andersartige Morphologie auf, als Schäume, die beispielsweise mit Titanhydrid als gasabspaltendem Treibmittel erhalten werden.
In den Fig. 1 und 2 wird ein erfindungsgemäß hergestellter Aluminiumschaum, bei dem 0,5 Mol-% Magnesiumhydrid als gasabspaltendes Treibmittel verwendet wurde (Fig. 1), einem entsprechenden Aluminiumschaum gegenübergestellt, bei dem 0,5 Mol-% Titanhydrid als gasabspaltendes Treibmittel verwendet wurde (Fig. 2). In beiden Fällen waren die Kompaktierungsbedingungen und Schäumungsbedingungen identisch.
Der aufgeschnittene Schaum gemäß dem Stand der Technik unter Verwendung von Titanhydrid zeigt in der Fig. 2 eine starke Verdichtung der untenliegenden "Bodenzone". Die in der Schaumstruktur verteilten Zellen sind sehr ungleichmäßig. In der Hauptsache handelt es sich um grobe, zum Teil aufgestiegene Zellen. Das führt zu einer etwas zerrissenen Oberfläche des Metallstücks, wenn derartig große Gasblasen an der Oberfläche des Metallkörpers "abgeblasen" haben.
Im Gegensatz dazu ist das Aluminiumschaumstück unter Verwendung von Magnesiumhydrid gemäß der vorliegenden Erfindung in der Fig. 1 deutlich gleichmäßiger geschäumt. Die Verdichtung der Unterseite ist nur ca. 3 mm dick, während bei dem Aluminiumschaum gemäß dem Stand der Technik bis zu 1 cm ungeschäumtes Material an der Unterseite zu finden ist. Bei dem erfindungsgemäßen Metallschaum ist auch die Zahl der Zellen pro Volumeneinheit deutlich größer und zwar bevorzugterweise im Hinblick auf das Vorhandensein kleiner Zellen. Auch in diesem Schaum ist zwar eine gewisse Unregelmäßigkeit der Zellen festzustellen, die jedoch deutlich weniger ausgeprägt ist, als bei dem Schaum gemäß dem Stand der Technik. Die Oberfläche des Schaums gemäß der vorliegenden Erfindung hat mehr Öffnungen als die des Schaums gemäß dem Stand der Technik. Die Öffnungen sind aber deutlich feiner und deutlich gleichmäßiger. In Analogie zu einem Kunststoffschaum kann man im Sinne der vorliegenden Erfindung von kleinen gleichmäßigen Abbläsern sprechen.
Betrachtet man die Strukturen der Zellen innerhalb des Schaums im Vergleich der beiden Metallstücke gemäß den Fig. 1 und 2, so fällt eine Besonderheit beim Metallschaum des Standes der Technik in der Fig. 2 auf. Die Öffnungen in den "Fenstern" der Gasblasen sehen oftmals wie gerissen aus, während in dem erfindungsgemäßen Schaum der Fig. 1 derartige Stellen praktisch nicht zu erkennen sind. Dies deutet darauf hin, daß zum Zeitpunkt der Volumenänderung des Metalls die Viskosität des gemäß dem Stand der Technik geschäumten Materials geringer ist als die des erfindungsgemäß geschäumten Materials. Dies ist, ohne sich darauf festzulegen, möglicherweise darin begründet, daß Titan die Viskosität der Metallumgebung - hier Aluminium - erhöht, während Magnesium als Bestandteil des gasabspaltenden Treibmittels einen gegenteiligen Effekt bewirkt.
Bei der Betrachtung der Seitenbereiche der Metallfladenabschnitte zeigt sich, daß die gemäß dem Stand der Technik geschäumte Probe eine deutlich andere Struktur der vertikalen Flächen aufweist, als die mit Hilfe der vorliegenden Erfindung erhältlichen Aluminiumschaumkörper. Während bei den gemäß dem Stand der Technik geschäumten Körpern eine relativ ursprüngliche Struktur mit wenigen größeren Kratern zu erkennen ist (also offensichtlich geringere Volumenausdehnung in horizontaler Richtung) und teilweises Abblasen des Gases zur Seite, zeigt sich bei dem erfindungsgemäßen Aluminiumschaum eine unebene, aber gleichmäßig unebene Struktur, wie man sie bei einem verkleinerten Seifenschaum erwarten würde. Dieser Umstand ist dahingehend zu interpretieren, daß deutlich weniger Gas durch Fehler/Risse an der Seite des Körpers verloren geht und das Metall bei der Gasentwicklungstemperatur sich leichter der Schaummorphologie annähern kann. Es scheint im Falle der erfindungsgemäß geschäumten Metalle leichter zu sein, sowohl in horizontaler als auch in vertikaler Richtung eine gleichmäßige Volumenänderung zu bewirken, als bei Metallschäumen gemäß dem Stand der Technik.
Prinzipiell sind alle schmelzbaren Metalle oder Metall-Legierungen im Sinne der vorliegenden Erfindung schäumbar. Besonders bevorzugt im Sinne der vorliegenden Erfindung wird als Metallpulver Aluminium und seine Legierungen eingesetzt. Dementsprechend ist es besonders bevorzugt, daß das Metallpulver im wesentlichen aus Aluminium, gegebenenfalls mit üblichen Legierungsbestandteilen, wie beispielsweise Magnesium, Kupfer und/oder Silicium besteht.
Für das Kompaktieren der gasabspaltenden Treibmittel enthaltenden Metallpulver stehen dem Fachmann die verschiedensten Verfahren zur Verfügung. Besonders bevorzugt im Sinne der vorliegenden Erfindung ist das Kaltpressen, das kaltisostatische Pressen, das Walzen, das Strangpressen und das Extrudieren. Besonders bevorzugt im Sinne der vorliegenden Erfindung wird das Kompaktieren unterhalb der Zersetzungstemperatur des Magnesiumhydrid enthaltenden gasabspaltenden Treibmittels, vorzugsweise bei Raumtemperatur durchgeführt. Während im Stand der Technik in der Regel eine Kompaktierung bei hoher Temperatur, insbesondere oberhalb der Zersetzungstemperatur des gasabspaltenden Treibmittels durchgeführt wurde, wurde beim erfindungsgemäßen Einsatz von Magnesiumhydrid enthaltenden gasabspaltenden Treibmitteln gefunden, daß eine Kompaktierung auch bei niedrigen Temperaturen möglich ist.
Bei der Kompaktierung sollte das Gemisch aus Metallpulver und Magnesiumhydrid enthaltendem gasabspaltenden Treibmittel auf eine möglichst hohe Dichte verdichtet werden. Besonders bevorzugt im Sinne der vorliegenden Erfindung ist es, die Kompaktierung in der Weise durchzuführen, daß die Dichte wenigstens 90 %, insbesondere wenigstens 95 % der theoretischen Dichte des Metalls des Metallpulvers beträgt. Dies kann durch hohe Preßkräfte erreicht werden. So konnte durch Beaufschlagung mit 0,5 % Magnesiumhydrid als Treibmittel aus sprühverdüstem kugeligen Aluminium (AlMgSi 6061) durch kaltisostatisches Pressen ein Zylinder mit einem Preßvordruck von 450 bar entsprechend einer Preßkraft von etwa 10 t mit einer Dichte von mehr als 90 % der theoretischen Dichte von Aluminium hergestellt werden.
Die erfindungsgemäß einzusetzende Menge des Magnesiumhydrid enthaltenden gasabspaltenden Treibmittels ist üblicherweise sehr gering. So reichen Treibmittelanteile in der Größenordnung von wenigen Zehntel Gewichtsprozent üblicherweise aus, weil das kompaktierte Halbzeug vollständig verdichtet ist und Treibgas nicht entweichen kann. Als besonders günstig haben sich Treibmittelmengen von 0,1 bis 2 Gew.-%, insbesondere 0,2 bis 1 Gew.-%, bezogen auf das Metallpulver, erwiesen.
Besonders bevorzugt im Sinne der vorliegenden Erfindung wird als Magnesiumhydrid enthaltendes, gasabspaltendes Treibmittel Magnesiumhydrid selbst eingesetzt, das kommerziell erhältlich ist. Neben dem Magnesiumhydrid können aber auch an sich bekannte Metallhydride, zum Beispiel Titanhydrid, Carbonate, beispielsweise Calciumcarbonat, Kaliumcarbonat, Natriumcarbonat, Natriumbicarbonat, Hydrate, beispielsweise Aluminiumsulfathydrat, Alaun, Aluminiumhydroxid oder leicht verdampfende Stoffe, beispielsweise Quecksilberverbindungen oder pulverisierte organische Substanzen eingesetzt werden.
Eine weitere Ausführungsform der vorliegenden Erfindung umfaßt die durch das Kompaktieren erhältlichen Halbzeuge, bei denen sich die Metallteilchen in einer relativ festen Verbindung untereinander befinden und einen im wesentlichen gasdichten Abschluß für die Gasteilchen des Treibmittels bilden. Diese Halbzeuge können gegebenenfalls nach an sich bekannten Verfahren umgeformt werden, um diese bei entsprechenden Druck- und Temperaturbedingungen nach an sich bekannten Verfahren zu einem geschlossenzelligen Metallkörper aufzuschäumen. So kann das Aufschäumen des Halbzeugs frei erfolgen, wenn keine Endform vorgegeben ist. Alternativ kann das Aufschäumen aber auch in einer teilweise oder vollständig geschlossenen Form erfolgen, wobei der fertige poröse Metallkörper die vorgegebene Form des Werkzeugs annimmt. Die Bedingungen zum Aufschäumen der Halbzeuge sind dem Fachmann aus dem in der Einleitung genannten Stand der Technik bekannt. Somit besteht eine weitere Ausführungsform der vorliegenden Erfindung in der Verwendung der oben definierten Halbzeuge zum Schäumen eines geschlossenzelligen Metallkörpers durch Einwirkung von erhöhtem oder vermindertem Druck und/oder erhöhter Temperatur. Insbesondere besteht die erfindungsgemäße Ausführungsform in der Verwendung des Halbzeugs zum Ausschäumen von Hohlräumen in Formwerkzeugen.
Eine weitere Ausführungsform der vorliegenden Erfindung darüber hinaus betrifft die mit Hilfe des oben genannten Verfahrens erhältlichen geschlossenzelligen schaumförmigen Metallkörper.
Ausführungbeispiel:
Zum Einsatz gelangte ein sprühverdüstes, kugeliges Material mit der Bezeichnung AlMgSi (6061) und der folgenden Zusammensetzung:
  • Mg 0,96 % (ohne Treibmittelzusatz)
  • Cu 0,18 %
  • Si 0,5 %
  • Al Rest.
  • Beaufschlagt mit 0,5 % Magnesiumhydrid (autokatalytisch hergestellt nach EP-B-0 490 156) als gasabspaltendes Treibmittel wurden hieraus zylinderförmige Preßlinge durch kaltisostatisches Pressen hergestellt. Die Zylinder hatten einen Durchmesser von 52 mm und Höhen von 24 bzw. 32 mm. Verpreßt wurde mit einer Preßkraft von 9556 kp. Eine Dichtebestimmung belegte die Raumdichte von etwa 96 % der theoretischen Aluminiumdichte. Diese Halbzeuge wurden dann in einem auf 750 °C temperierten Ofen für 23 min aufgebacken. Die Querschnittsfläche des erhaltenen Aluminiumschaums ist in der Fig. 1 wiedergegeben.
    Vergleichsbeispiel:
    Analog zum oben genannten Ausführungsbeispiel wurde ein entsprechendes Halbzeug unter Verwendung von 0,5 Gew.-% TiH1,98 hergestellt und unter gleichen Bedingungen aufgebacken. In der Fig. 2 wird der Querschnitt des so erhaltenen Aluminiumschaums wiedergegeben.

    Claims (11)

    1. Verfahren zur Herstellung schäumbarer Metallkörper, bei denen Gemische aus wenigstens einem Metallpulver und einem gasabspaltenden Treibmittel hergestellt und zu einem Halbzeug kompaktiert werden, dadurch gekennzeichnet, daß man ein Magnesiumhydrid enthaltendes gasabspaltendes Treibmittel einsetzt.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Metallpulver im wesentlichen aus Aluminium, gegebenenfalls mit üblichen Legierungsbestandteilen besteht.
    3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Kompaktieren Kaltpressen, kaltisostatisches Pressen, Walzen, Strangpressen und/oder Extrudieren umfaßt.
    4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man das Kompaktieren unterhalb der Zersetzungstemperatur des gasabspaltenden Treibmittels, insbesondere bei Raumtemperatur durchführt.
    5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man Metallpulver und gasabspaltendes Treibmittel auf eine Dichte von wenigstens 90 %, insbesondere 95 % der theoretischen Dichte des Metalls des Metallpulvers kompaktiert.
    6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man das gasabspaltende Treibmittel in einer Menge von 0,1 bis 2 Gew.-%, insbesondere 0,2 bis 1 Gew.-%, bezogen auf das Metallpulver, einsetzt.
    7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man Magnesiumhydrid gegebenenfalls neben weiteren Metallhydriden, insbesondere Titanhydrid, Carbonaten, Hydraten und/oder leicht verdampfenden Stoffen als gasabspaltendes Treibmittel einsetzt.
    8. Kompaktiertes Halbzeug erhältlich nach einem Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 7.
    9. Verwendung des Halbzeugs gemäß Anspruch 8 zum Schäumen eines geschlossenzelligen Metallkörpers durch Einwirkung von erhöhtem oder vermindertem Druck und/oder erhöhter Temperatur.
    10. Verwendung nach Anspruch 9 zum Ausschäumen von Hohlräumen in Formwerkzeugen.
    11. Geschlossenzellige schaumförmige Metallkörper, erhältlich nach den Ansprüchen 9 oder 10.
    EP98109728A 1997-06-10 1998-05-28 Schäumbarer Metallkörper Expired - Lifetime EP0884123B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19724326 1997-06-10
    DE19724326 1997-06-10

    Publications (3)

    Publication Number Publication Date
    EP0884123A2 EP0884123A2 (de) 1998-12-16
    EP0884123A3 EP0884123A3 (de) 2001-04-04
    EP0884123B1 true EP0884123B1 (de) 2003-03-26

    Family

    ID=7831969

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98109728A Expired - Lifetime EP0884123B1 (de) 1997-06-10 1998-05-28 Schäumbarer Metallkörper

    Country Status (6)

    Country Link
    US (1) US5972285A (de)
    EP (1) EP0884123B1 (de)
    JP (1) JPH1112605A (de)
    AT (1) ATE235336T1 (de)
    DE (1) DE59807606D1 (de)
    ES (1) ES2193439T3 (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN109550963A (zh) * 2018-12-13 2019-04-02 华南理工大学 一种用于3d打印的亚微米氢化物颗粒增强铝基粉体的制备方法

    Families Citing this family (40)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AT408317B (de) * 1998-04-09 2001-10-25 Mepura Metallpulver Verfahren zur herstellung von schaummetall-formkörpern
    DE50004040D1 (de) * 1999-02-24 2003-11-20 Goldschmidt Ag Th Aktiviertes Magnesiummetall
    DE19907855C1 (de) * 1999-02-24 2000-09-21 Goldschmidt Ag Th Herstellung von Metallschäumen
    NL1014116C2 (nl) * 2000-01-19 2001-07-20 Corus Aluminium Walzprod Gmbh Werkwijze en inrichting voor het vormen van een laminaat van gecomprimeerd metaalpoeder met een schuimmiddel tussen twee metaallagen, en daarmee gevormd produkt.
    DE10024776C1 (de) 2000-05-19 2001-09-06 Goldschmidt Ag Th Verwendung von Metallhydrid-behandeltem Zink in der metallorganischen Synthese
    EP1186748A1 (de) * 2000-09-05 2002-03-13 Siemens Aktiengesellschaft Laufschaufel für eine Strömungsmaschine sowie Strömungsmaschine
    US6733722B2 (en) * 2000-09-13 2004-05-11 Neue Materialien Furth Gmbh Method for producing a moulded body from foamed metal
    DE10045494C2 (de) * 2000-09-13 2002-07-18 Neue Materialien Fuerth Gmbh Verfahren zum Herstellen eines Formkörpers aus Metallschaum
    DE10104338A1 (de) * 2001-02-01 2002-08-08 Goldschmidt Ag Th Herstellung flächiger, metallischer Integralschäume
    US6915834B2 (en) * 2001-02-01 2005-07-12 Goldschmidt Ag Process for producing metal foam and metal body produced using this process
    US6706239B2 (en) 2001-02-05 2004-03-16 Porvair Plc Method of co-forming metal foam articles and the articles formed by the method thereof
    DE10123899A1 (de) * 2001-05-16 2002-11-21 Goldschmidt Ag Th Verfahren zur Herstellung von Metallformteilen
    ES2281521T3 (es) * 2001-05-19 2007-10-01 Goldschmidt Gmbh Produccion de espumas metalicas.
    US6660224B2 (en) * 2001-08-16 2003-12-09 National Research Council Of Canada Method of making open cell material
    US7108828B2 (en) * 2001-08-27 2006-09-19 National Research Council Of Canada Method of making open cell material
    JP3706071B2 (ja) * 2002-01-15 2005-10-12 株式会社エルモ社 撮像装置
    US7067208B2 (en) * 2002-02-20 2006-06-27 Ion America Corporation Load matched power generation system including a solid oxide fuel cell and a heat pump and an optional turbine
    US6852273B2 (en) * 2003-01-29 2005-02-08 Adma Products, Inc. High-strength metal aluminide-containing matrix composites and methods of manufacture the same
    AT412876B (de) * 2003-08-05 2005-08-25 Arc Leichtmetallkompetenzzentrum Ranshofen Gmbh Schäumbares halbzeug und verfahren zur herstellung von metallteilen mit innerer porosität
    US7328831B1 (en) 2004-06-25 2008-02-12 Porvair Plc Method of making a brazed metal article and the article formed thereby
    US7699092B2 (en) * 2007-06-18 2010-04-20 Husky Injection Molding Systems Ltd. Metal-molding system and process for making foamed alloy
    US7931997B2 (en) * 2008-03-12 2011-04-26 Bloom Energy Corporation Multi-material high temperature fuel cell seals
    DE102008027798A1 (de) * 2008-06-11 2009-12-24 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Aluminiumlegierung für Metallschäume, ihre Verwendung und Verfahren zur Herstellung
    US8623569B2 (en) 2008-12-09 2014-01-07 Bloom Energy Corporation Fuel cell seals
    US20110111251A1 (en) * 2009-11-10 2011-05-12 Ken Evans Process for producing a foamed metal article and process for producing a foamable metal precursor
    CA2713560C (en) * 2010-08-23 2019-10-29 Jangofish Holdings Inc. Process and method for producing foamable metals
    US8968509B2 (en) 2013-05-09 2015-03-03 Bloom Energy Corporation Methods and devices for printing seals for fuel cell stacks
    DE102014209408A1 (de) 2014-05-19 2015-11-19 Evonik Degussa Gmbh Ethoxylatherstellung unter Verwendung hoch aktiver Doppelmetallcyanid-Katalysatoren
    PL3168273T3 (pl) 2015-11-11 2018-10-31 Evonik Degussa Gmbh Polimery utwardzalne
    PL3321304T3 (pl) 2016-11-15 2019-11-29 Evonik Degussa Gmbh Mieszaniny cyklicznych, rozgałęzionych siloksanów typu D/T i ich dalszych produktów
    EP3415547B1 (de) 2017-06-13 2020-03-25 Evonik Operations GmbH Verfahren zur herstellung sic-verknüpfter polyethersiloxane
    EP3415548B1 (de) 2017-06-13 2020-03-25 Evonik Operations GmbH Verfahren zur herstellung sic-verknüpfter polyethersiloxane
    EP3438158B1 (de) 2017-08-01 2020-11-25 Evonik Operations GmbH Herstellung von sioc-verknüpften polyethersiloxanen
    EP3467006B1 (de) 2017-10-09 2022-11-30 Evonik Operations GmbH Mischungen zyklischer-verzweigter siloxane vom d/t-typ und deren folgeprodukte
    EP3611215A1 (de) 2018-08-15 2020-02-19 Evonik Operations GmbH Verfahren zur herstellung acetoxygruppen-tragender siloxane
    EP3611214A1 (de) 2018-08-15 2020-02-19 Evonik Operations GmbH Sioc-verknüpfte, lineare polydimethylsiloxan-polyoxyalkylen-blockcopolymere
    CN110142402B (zh) * 2019-06-03 2022-01-25 东睦新材料集团股份有限公司 一种粉末冶金铝基材料及其制备方法
    CN110216276B (zh) * 2019-06-03 2022-01-25 东睦新材料集团股份有限公司 一种粉末冶金铝基材料及其制备方法
    CN110216275B (zh) * 2019-06-03 2022-01-25 东睦新材料集团股份有限公司 一种粉末冶金铝基材料及其制备方法
    DE102021126310A1 (de) * 2021-10-11 2023-04-13 HAVEL metal foam GmbH Verfahren und Vorrichtung zum Herstellen einer aufschäumbaren, bandförmigen Presspulver-Metallplatine mittels Kaltwalzen sowie Presspulver-Metallplatine

    Family Cites Families (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2895819A (en) * 1957-09-03 1959-07-21 Bjorksten Res Lab Inc Method for preparing a catalytic metal foam and use thereof
    US2974034A (en) * 1957-12-12 1961-03-07 Lor Corp Method of foaming granulated metal
    US2983597A (en) * 1959-06-11 1961-05-09 Lor Corp Metal foam and method for making
    US3087807A (en) * 1959-12-04 1963-04-30 United Aircraft Corp Method of making foamed metal
    DE1201559B (de) * 1960-02-03 1965-09-23 Dow Chemical Co Verfahren zur Herstellung von Schaummetallkoerpern
    NL273258A (de) * 1962-01-31
    US3300296A (en) * 1963-07-31 1967-01-24 American Can Co Method of producing a lightweight foamed metal
    US3297431A (en) * 1965-06-02 1967-01-10 Standard Oil Co Cellarized metal and method of producing same
    US3826303A (en) * 1970-06-26 1974-07-30 Ethyl Corp Apparatus for casting molten metal/foaming agent composition
    US3790365A (en) * 1971-06-21 1974-02-05 Ethyl Corp Method of making metal foams by sequential expansion
    US3719223A (en) * 1971-12-09 1973-03-06 Ethyl Corp Method for quietly casting foamed metal
    DE4101630A1 (de) * 1990-06-08 1991-12-12 Fraunhofer Ges Forschung Verfahren zur herstellung aufschaeumbarer metallkoerper und verwendung derselben
    DE4124591C1 (en) * 1991-01-21 1993-02-11 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De Foamable metal body prodn. with reduced density differences - by charging hollow section with mixt. of powder contg. expanding agent and metal powder, and precompacting
    DE4426627C2 (de) * 1993-07-29 1997-09-25 Fraunhofer Ges Forschung Verfahren zur Herstellung eines metallischen Verbundwerkstoffes
    DE19501659C1 (de) * 1995-01-20 1996-05-15 Daimler Benz Ag Verfahren zur Herstellung eines Metallschaumteils

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN109550963A (zh) * 2018-12-13 2019-04-02 华南理工大学 一种用于3d打印的亚微米氢化物颗粒增强铝基粉体的制备方法

    Also Published As

    Publication number Publication date
    ES2193439T3 (es) 2003-11-01
    US5972285A (en) 1999-10-26
    ATE235336T1 (de) 2003-04-15
    EP0884123A2 (de) 1998-12-16
    JPH1112605A (ja) 1999-01-19
    EP0884123A3 (de) 2001-04-04
    DE59807606D1 (de) 2003-04-30

    Similar Documents

    Publication Publication Date Title
    EP0884123B1 (de) Schäumbarer Metallkörper
    EP0460392B1 (de) Verfahren zur Herstellung aufschäumbarer Metallkörper
    DE4018360C1 (en) Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal
    EP1083013B1 (de) Herstellen von aufschäumbaren Metallkörpern und Metallschäumen
    EP1915226B1 (de) Verfahren zur pulvermetallurgischen herstellung von metallschaumstoff und von teilen aus metallschaumstoff
    EP1017864B1 (de) Legierung zum herstellen von metallschaumkörpern unter verwendung eines pulvers mit keimbildenden zusätzen
    AT406649B (de) Verfahren zur herstellung von porösen matrixmaterialien, insbesondere formkörpern, auf basis von metallen, und von halbzeug dafür
    DE4424157C2 (de) Verfahren zur Herstellung poröser metallischer Werkstoffe mit anisotropen thermischen und elektrischen Leitfähigkeiten
    EP1000690B1 (de) Verfahren zur Herstellung eines aufschäumbaren Halbzeuges sowie Halbzeug
    DE10115230C2 (de) Verfahren zur Herstellung poröser Metallkörper und Verwendung derselben
    EP2427284B1 (de) Pulvermetallurgisches verfahren zur herstellung von metallschaum
    AT413344B (de) Verfahren zur herstellung von metallschaumkörpern
    AT6727U1 (de) Verfahren zur herstellung poröser sinterformkörper
    DE102017121513A1 (de) Verfahren zum Schäumen von Metall im Flüssigkeitsbad
    DE19810979C2 (de) Aluminiumlegierung zum Herstellen von Aluminiumschaumkörpern unter Verwendung eines Pulvers mit keimbildenden Zusätzen
    DE102017121512A1 (de) Verfahren zum Schäumen von Metall mit Wärmekontakt
    DE10215086B4 (de) Aufschäumbarer Metallkörper, Verfahren zu seiner Herstellung und seine Verwendung
    WO2004073908A1 (de) Verfahren zum schäumen von sinterformkörpern mit zellstruktur
    DE1201559B (de) Verfahren zur Herstellung von Schaummetallkoerpern
    WO2019053181A1 (de) Verfahren zum schäumen von metall mit wärmekontakt
    WO2019053192A1 (de) Verfahren zur herstellung eines halbzeuges für einen verbundwerkstoff
    WO2003069002A1 (de) Aufschäumbarer metallkörper, verfahren zu seiner herstellung und seine verwendung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19980616

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE DE ES FR GB IT NL SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: GOLDSCHMIDT AG

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AKX Designation fees paid

    Free format text: AT BE DE ES FR GB IT NL SE

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RTI1 Title (correction)

    Free format text: FOAMABLE METAL BODY

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): AT BE DE ES FR GB IT NL SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59807606

    Country of ref document: DE

    Date of ref document: 20030430

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2193439

    Country of ref document: ES

    Kind code of ref document: T3

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    26 Opposition filed

    Opponent name: ALULIGHT INTERNATIONAL GMBH

    Effective date: 20031223

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: ALULIGHT INTERNATIONAL GMBH

    PLBB Reply of patent proprietor to notice(s) of opposition received

    Free format text: ORIGINAL CODE: EPIDOSNOBS3

    PLBP Opposition withdrawn

    Free format text: ORIGINAL CODE: 0009264

    PLBD Termination of opposition procedure: decision despatched

    Free format text: ORIGINAL CODE: EPIDOSNOPC1

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: GOLDSCHMIDT GMBH

    PLBM Termination of opposition procedure: date of legal effect published

    Free format text: ORIGINAL CODE: 0009276

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: GOLDSCHMIDT GMBH

    27C Opposition proceedings terminated

    Effective date: 20050210

    NLR2 Nl: decision of opposition

    Effective date: 20050210

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CJ

    Ref country code: FR

    Ref legal event code: CD

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: TD

    Effective date: 20100223

    Ref country code: NL

    Ref legal event code: SD

    Effective date: 20100223

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: PC2A

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20100611

    Year of fee payment: 13

    Ref country code: ES

    Payment date: 20100525

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20100514

    Year of fee payment: 13

    Ref country code: IT

    Payment date: 20100520

    Year of fee payment: 13

    Ref country code: DE

    Payment date: 20100521

    Year of fee payment: 13

    Ref country code: AT

    Payment date: 20100513

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20100517

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20100517

    Year of fee payment: 13

    Ref country code: GB

    Payment date: 20100519

    Year of fee payment: 13

    BERE Be: lapsed

    Owner name: *GOLDSCHMIDT A.G.

    Effective date: 20110531

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59807606

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59807606

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20111201

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20110528

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111201

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 235336

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20110528

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20120131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110528

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110528

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110528

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20130605

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110529

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110529