EP0460392B1 - Verfahren zur Herstellung aufschäumbarer Metallkörper - Google Patents
Verfahren zur Herstellung aufschäumbarer Metallkörper Download PDFInfo
- Publication number
- EP0460392B1 EP0460392B1 EP91106755A EP91106755A EP0460392B1 EP 0460392 B1 EP0460392 B1 EP 0460392B1 EP 91106755 A EP91106755 A EP 91106755A EP 91106755 A EP91106755 A EP 91106755A EP 0460392 B1 EP0460392 B1 EP 0460392B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- metal
- temperature
- metal body
- foaming agent
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/003—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1121—Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
- B22F3/1125—Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/002—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
- B22F7/004—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
- B22F7/006—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part the porous part being obtained by foaming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12479—Porous [e.g., foamed, spongy, cracked, etc.]
Definitions
- the invention relates to methods for producing foamable metal bodies and their use.
- a process for producing foamable metal bodies in which a mixture of a metal powder and a gas-releasing blowing agent powder is extruded into a body at elevated temperature and pressure.
- the compaction temperature In order to avoid the decomposition of the blowing agent, the compaction temperature must be below the decomposition temperature of the blowing agent.
- porous metal materials can be produced.
- a simple method for the production of these materials is the mixing of gas-releasing substances in molten metals.
- the blowing agent decomposes with the release of gas due to the effect of temperature. This process leads to the foaming of the molten metal.
- After completion of the process there is a foamed metal material which has an irregular, random shape.
- This material can be further processed into bodies of the desired shape by appropriate processes.
- only separation processes are suitable as processes for further processing, and therefore not every metal body can be formed from such a metal material.
- metal hydrides such as titanium hydride, carbonates, for example calcium carbonate, potassium carbonate, sodium carbonate, sodium bicarbonate, hydrates, for example aluminum sulfate hydrate, alum, aluminum hydroxide or easily evaporating substances, for example mercury compounds or pulverized organic substances, can be used as blowing agents.
- This intensely mixed powder mixture is compressed by hot pressing or hot isostatic pressing into a compact, gas-tight body. In the compacting process, it is of crucial importance according to the invention that the temperature is selected so high that the connection between the individual metal powder particles is predominantly made by diffusion.
- the temperature is above the decomposition temperature of the blowing agent. It is also essential that the pressure is chosen so high that the decomposition of the propellant is prevented and a compact body is formed in which the metal particles are in a fixed connection with one another and form a gas-tight seal for the gas particles of the propellant.
- the blowing agent particles are thus "trapped" between the interconnected metal particles, so that they only release gas in a later step of foaming. This means that blowing agents with a decomposition temperature below the compacting temperature can also be used. By applying the high pressure, these blowing agents do not decompose.
- blowing agents allows the use of blowing agents, the selection of which can only be selected on the basis of compatibility with the selected metal powder or on the basis of the efficiency of the method.
- a suitable choice of the process parameters temperature and pressure ensures that a body is produced which has a gas-tight structure.
- the fact that the propellant gas remains “trapped” between the metal particles prevents it from escaping prematurely from the compacted body. Accordingly, the amounts of blowing agent required are small. So propellant shares in the The order of magnitude of a few tenths of a percent by weight because the compacted body is completely compressed and the propellant gas cannot escape. Partial amounts of 0.2 to 1% have proven to be particularly favorable. Only the amount of blowing agent that is necessary to produce a foam structure has to be added. This leads to cost savings. It is also advantageous that, due to the selected high temperature and the application of the high pressure, the compacting process takes place in a short time.
- An advantageous feature of the method according to the invention is that after the hot compacting process has ended, both the heat and the pressure are released simultaneously.
- the still hot metal body keeps its shape even though there is no longer any pressure. This means that the metal particles form such a tight seal for the blowing agent powder particles that there is no expansion of the blowing agent, even at elevated temperature.
- the metal body produced in this way is dimensionally stable and retains its shape even at elevated temperatures and without pressure.
- the invention provides the addition of reinforcing components in the form of fibers or particles made of suitable materials, such as Ceramics before. These are advantageously added to the starting powders.
- the starting materials and the foaming parameters should be selected so that a good wetting of the reinforcement components by the metal matrix is guaranteed. It is advantageous if the fibers or particles are coated (e.g. with nickel). This ensures that the forces from the metal matrix are introduced into the particle / fiber.
- the method according to the invention provides that if the reinforcement is to be aligned along a preferred direction, this can be brought about by reshaping the foamable body. This transformation can e.g. by extrusion or rolling.
- the invention provides that two or more blowing agents with different decomposition temperatures are mixed into the metal powder. If a foamable body produced from this powder mixture is heated, the blowing agent with the lower temperature first decomposes and causes foaming. If the temperature is increased further, the blowing agent decomposes at the next higher decomposition temperature and causes further foaming. The foaming takes place in two or more stages.
- Such expandable, expandable metal bodies are used in particular, for example in fire protection.
- a particular advantage of the method according to the invention is that it is now possible to produce bodies which have a continuously or discontinuously changing density over their cross section, so-called graded materials.
- An increase in density toward the edge of the foamable body is preferred since this is where the primary stress occurs.
- a foamable body with a solid cover layer or a cover layer with a higher density offers advantages in terms of joining and joining with materials of the same or a different type. If the process of hot compacting is carried out in a mold, the powder mixture being wholly or partly surrounded by a metal or metal powder which does not contain a blowing agent, the blowing agent-free metal layers each form a solid, less porous outer layer or bottom layer or cover layer, between which there is a layer.
- foamable metal body which forms a highly porous metal foam layer after a foaming process.
- the foamable metal body produced by the process according to the invention can be used to produce a porous metal body. This is done by heating the foamable body to a temperature above the decomposition temperature of the blowing agent, which releases the same gas, and then cooling the body thus foamed. It is advantageous if the heating temperature is in the temperature range of the melting point of the metal used or above or in the solidus-liquidus interval of the alloy used.
- the heating rates of the semi-finished product during the foaming process are within normal limits, i.e. they are about 1 - 5 ° C per sec. High heating rates are not necessary because the gas cannot escape anyway. These usual heating rates are a further feature of the invention which leads to cost reduction. It goes without saying that in individual cases, e.g. to achieve small pore size, a high heating rate is advantageous.
- the inventive method further provides that after the foaming, the cooling rate must be selected so that no further foaming takes place from the inside of the body. With larger parts, the cooling rate must be chosen higher than with smaller ones, it must be adapted to the sample volume.
- a further advantageous embodiment of the method according to the invention provides that the density of the porous metal body can be varied by suitable selection of the foaming parameters time and temperature. If the foaming process is interrupted after a certain time at constant temperature, a certain density results. If the foaming process is continued for a longer time, this leads to different density values. It is important that certain limit values are observed: A maximum permissible foaming time, after which the already foamed material collapses, should be observed.
- the semi-finished product is foamed freely if no final shape is specified.
- the foaming can also take place in a mold.
- the finished porous metal body takes on the predetermined shape. It is therefore possible by the method according to the invention to also produce molded parts from porous metallic material.
- the metal body produced by foaming the semi-finished product obtained in this way has a predominantly closed porosity; the metal bodies float in the water.
- the resulting pores are evenly distributed throughout the metal body, they are also approximately uniform in size.
- the pore size can be adjusted during the foaming process by the time in which the metal foam can expand.
- the density of the porous metal body can be adapted to the requirements. As already described, this can be done not only by a suitable choice of the foaming parameters, but also by a suitable addition of the blowing agent.
- the strength and ductility of the porous metal body can be varied by selecting the parameters of temperature and time at which the foaming takes place. The two properties mentioned are influenced in any case by setting the desired pore size. It goes without saying that the properties of the finished metallic body depend above all on the choice of the starting materials.
- the deformability of the compacted semi-finished product is comparable to that of the solid starting metal.
- the semifinished product does not differ in appearance from that of the starting metal.
- the semifinished product can accordingly be processed into semifinished products of any geometry by known forming processes. It can be formed into sheets, profiles, etc. It can be used in almost any deformation process that takes the decomposition temperature into account. Only when the semi-finished product is heated to temperatures above the decomposition temperature of the blowing agent used does the foaming take place.
- a body produced according to the embodiment according to claim 6 is used to produce a porous metal body, after the foaming, a slightly porous outer layer surrounds a core made of highly porous foamed metal.
- Another use of the foamable body is the production of metal foams with a solid outer layer.
- the foamable body is first formed into a cylindrical rod by means of suitable shaping processes, this is introduced into a cylindrical tube and then foamed. This process can also be applied to other hollow profiles and molded parts. It is also possible to produce an integral foam body in that the expansion of the foamable body is hindered by solid walls.
- the pores near the surface are flattened by the internal pressure of the material foaming from the inside, and the initially highly porous outer edge of the molded part is compressed again.
- the thickness of this outer edge which has an increased density relative to the inside of the workpiece, can be controlled over the period of time in which, after contact with the walls, the material can foam further from the inside before the mold is finally cooled, whereby the foaming is stopped.
- the surface of the foamable body according to the invention or of the expanding foam is prevented by cooling from foaming as much as in the non-cooled areas.
- the cooling can be effected by suitable cooling media or by contact with cold materials.
- the cooling can act on the entire surface or only on partial areas.
- Integral foam-like metal bodies can be produced by pasting a metal foam with identical or alien materials. In addition to gluing, other joining methods and fastening methods (soldering, welding, screwing) can also be used. Finally, a metal foam can also be cast with metal melts or other materials that are initially liquid and then solidify or harden.
- a powder mixture of the composition AlMg1 with 0.2 percent by weight titanium hydride was placed in a hot pressing device and heated to a temperature of 500 ° C. under a pressure of 60 MPa. After a holding time of 30 minutes it was the sample is relieved, removed and cooled. Foaming was carried out by heating the sample in a laboratory oven preheated to 800 ° C. The density of the resulting aluminum foam was approximately 0.55 g / cm 3 .
- a powder mixture of the composition AlMg2 with 0.2 percent by weight of titanium hydride was compacted in the hot press under a pressure of 100 MPa and a temperature of 550 ° C. and relieved and removed after a holding time of 20 minutes.
- the subsequent foaming of the sample was carried out by heating the sample in a laboratory oven preheated to 800 ° C. and resulted in a foam with a density of 0.6 g / cm 3 .
- a powder mixture of pure aluminum powder and 1.5 percent by weight sodium bicarbonate (NaHCO3) was placed in a hot press device and heated to a temperature of 500 ° C. under a pressure of 150 MPa. After a holding time of 20 minutes, the sample was removed and foamed in an oven preheated to 850 ° C. The density of the resulting aluminum foam was 1.3 g / cm 3 .
- a powder mixture of pure aluminum powder and 2 weight percent aluminum hydroxide was filled in the hot press device and heated to a temperature of 500 ° C. under a pressure of 150 MPa. After a holding time of 25 minutes, the sample was removed and foamed in an oven preheated to 850 ° C. The density of the resulting aluminum foam was 0.8 g / cm 3 .
- a bronze powder of the composition 60% Cu and 40% Sn was mixed with 1% by weight of titanium hydride powder and this powder mixture was compacted at a temperature of 500 ° C. and a pressure of 100 MPa for 30 minutes. The compacted sample was then heated in an oven preheated to 800 ° C. and thereby foamed. The resulting bronze foam had a density of about 1.4 g / cm 3 .
- a mixture of 70 percent by weight copper powder and 30 percent by weight aluminum powder was mixed with 1 percent by weight titanium hydride and this powder mixture was compacted at a temperature of 500 ° C. and a pressure of 100 MPa for 20 minutes.
- the compacted sample was then opened in one 950 ° C preheated oven heated and thereby foamed.
- the density of this foamed copper alloy was less than 1 g / cm 3 .
- a layer 2 of propellant-free metal powder is poured into a hot press device 1, then a layer of propellant-containing metal powder 3 and finally again a layer 2 'of propellant-free metal powder.
- a compact 4 is obtained which, if necessary, can be shaped into a further body 5. This body can then also be foamed into a body 6.
- the blowing agent-free metal layers each form a solid, less porous bottom layer 7 or covering layer 8, between which there is a highly porous metal foam layer 9.
- FIG. 2 Another method for producing integral foams is shown in FIG. 2.
- the opening 19 of an extrusion tool 11 is initially covered by a disk made of solid metal piece 12.
- the pressing chamber of the tool is filled with metal powder 13 containing blowing agent and the powder mixture is pressurized to about 60 MPa.
- the latter is compacted by heating the tool together with the powder mixture 13.
- the pressing pressure is increased so far that the central region of the solid metal plate 12, which closes the opening 10 of the tool, flows through this opening 10 and thus releases it.
- the foamable semi-finished product 14 is pressed together with the solid material 12 through the opening 10, the solid material 12 enclosing the foamable body in the form of an outer layer 13.
- a slightly porous layer surrounds a core made of highly porous foamed metal.
- FIG. 3 shows a schematic representation of the method according to the invention and an application: a metal powder 15 is mixed intensively with a blowing agent powder 16. The mixture 17 thus obtained is compacted in a press 18 under the influence of pressure and temperature. After compacting, a semifinished product 19 is produced.
- the semifinished product 19 can be formed into a sheet 20. The sheet 20 can then be foamed to a finished porous metal body 21 by the action of temperature.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Powder Metallurgy (AREA)
- Laminated Bodies (AREA)
Description
- Die Erfindung betrifft Verfahren zur Herstellung aufschäumbarer Metallkörper und deren Verwendung.
- Aus der GB-A-939 612 ist ein Verfahren zur Herstellung aufschäumbarer Metallkörper bekannt, bei dem eine Mischung aus einem Metallpulver und einem gasabspaltenden Treibmittelpulver durch Strangpressen zu einem Körper bei erhöhter Temperatur und Druck geformt wird. Um die Zersetzung des Treibmittels zu vermeiden, muß die Kompaktierungstemperatur unterhalb der Zersetzungstemperatur des Treibmittels liegen.
- Daneben ist aus der US-PS 3087807 ein Verfahren bekannt, bei dem eine Mischung aus einem Metallpulver und einem Treibmittelpulver mit einem Preßdruck von mindestens 80 MPa im ersten Schritt kalt kompaktiert und durch anschließendes Strangpressen sie um mindestens 87,5% umgeformt wird. Dieser hohe Umformgrad ist notwendig, damit durch die Reibung der Teilchen aneinander wahrend des Umformprozesses die Oxydhäute zerstört und die Metallteilchen miteinander verbunden werden. Dieses Verfahren ist aufgrund seines zweistufigen Kompaktierungsvorganges und des hohen Umformgrades aufwendig und auf durch Strangpressen herstellbare Halbzeuge beschränkt. Bei diesem Verfahren sind nur Treibmittel verwendbar, deren Zersetzungstemperatur oberhalb der Kompaktierungstemperatur liegt.
- Daneben sind mehrere Verfahren bekannt, nach denen poröse Metallwerkstoffe hergestellt werden können. Eine einfache Methode zur Herstellung dieser Werkstoffe ist die Einmischung von gasabspaltenden Stoffen in Metallschmelzen. Durch die Temperatureinwirkung zersetzt sich das Treibmittel unter Freisetzung von Gas. Dieser Vorgang führt zur Aufschäumung der Metallschmelze. Nach Abschluß des Vorganges liegt ein aufgeschäumter Metallwerkstoff vor, welcher eine unregelmäßige, zufällige Form aufweist. Dieser Werkstoff kann durch entsprechende Verfahren zu Körpern gewünschter Form weiterverarbeitet werden. Es muß dabei jedoch beachtet werden, daß als Verfahren zur Weiterverarbeitung nur Trennverfahren in Frage kommen, und demnach nicht jeder beliebige Metallkörper aus einem solchen Metallwerkstoff geformt werden kann.
- Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung aufschäumbarer Metallkörper anzugeben, welches preisgünstig durchführbar, einfach in der Anwendung und gleichzeitig für Treibmittel mit niedriger Zersetzungstemperatur geeignet ist. Eine weitere Aufgabe der Erfindung ist es, eine Verwendung der so hergestellten aufschäumbaren Körper vorzuschlagen.
- Diese Aufgabe ist durch die in den Ansprüchen 1 und 8 angegebene Erfindung gelöst. Die Unteransprüche 2 bis 7 und 9 bis 11 stellen vorteilhafte Weiterbildungen dar.
- Danach wird zunächst eine Mischung aus einem oder mehreren Metallpulvern und einem oder mehreren gasabspaltenden Treibmittelpulvern hergestellt. Als Treibmittel können Metallhydride, wie z.B. Titanhydrid, Karbonate, z.B.Calziumcarbonat, Kaliumcarbonat, Natriumcarbonat, Natriumbicarbonat, Hydrate, z.B. Aluminiumsufathydrat, Alaun, Aluminiumhydroxid oder leicht verdampfende Stoffe, z.B. Quecksilberverbindungen oder pulverisierte organische Substanzen eingesetzt werden. Diese, intensiv durchmischte, Pulvermischung wird durch Heißpressen oder heißisostatisches Pressen zu einem kompakten, gasdichten Körper verdichtet. Bei dem Kompaktierungsvorgang ist erfindungsgemäß von ausschlaggebender Bedeutung, daß die Temperatur so hoch gewählt wird, daß die Verbindung zwischen den einzelnen Metallpulverteilchen überwiegend durch Diffusion erfolgt. Die Temperatur liegt oberhalb der Zersetzungstemperatur des Treibmittels. Weiterhin ist es wesentlich, daß der Druck so hoch gewählt wird, daß die Zersetzung des Treibmittels verhindert wird und ein kompaktierter Körper entsteht, bei dem die Metallteilchen sich in einer festen Verbindung untereinander befinden und einen gasdichten Abschluß für die Gasteilchen des Treibmittels bilden. Die Treibmittelteilchen werden also zwischen den miteinander verbundenen Metallteilchen "eingeschlossen", so daß sie erst bei einem späteren Schritt des Aufschäumens Gas frei setzen. Somit können auch Treibmittel eingesetzt werden, deren Zersetzungstempatur unterhalb der Kompaktierungstemperatur liegt. Durch die Anwendung des hohen Druckes, zersetzen sich diese Treibmittel nicht. Diese erfindungsgemäße Maßnahme erlaubt den Einsatz von Treibmitteln, deren Auswahl nur nach den Gesichtspunkten der Verträglichkeit mit dem gewählten Metallpulver bzw. nach den Gesichtspunkten der Wirtschaftlichkeit des Verfahrens gewählt werden können. Durch die geeignete Wahl der Verfahrens-Parameter Temperatur und Druck wird erreicht, daß ein Körper entsteht, welches eine gasdichte Struktur aufweist. Weiterhin wird dadurch, daß das Treibgas zwischen den Metallteilchen "eingeschlossen" bleibt, verhindert, daß es vorzeitig aus dem kompaktierten Körper entweicht. Demnach sind die erforderlichen Treibmittelmengen gering. So reichen Treibmittelanteile in der Größenordnung von wenigen Zehntel Gewichtsprozent aus, weil der kompaktierte Körper vollständig verdichtet ist und das Treibgas nicht entweichen kann. Als besonders günstig haben sich Teilmittelmengen von 0,2 bis 1% erwiesen.Es muß nur die Menge Treibmittel zugegeben werden, die zur Herstellung einer Schaumstruktur notwendig ist. Das führt zur Kostenersparnis. Weiterhin ist es vorteilhaft, daß , aufgrund der gewählten hohen Temperatur und der Anwendung des hohen Druckes der Kompaktierungsvorgang in kurzer Zeit erfolgt.
- Ein vorteilhaftes Merkmal des erfindungsgemäßen Verfahrens ist, daß nach Beendigung des Heißkompaktierungsvorganges sowohl die Wärmeeinwirkung als auch die Druckeinwirkung gleichzeitig aufgehoben werden. Der noch heiße Metallkörper behält seine Form, obwohl keine Druckeinwirkung mehr stattfindet. Das bedeutet, daß die Metallteilchen einen solchen dichten Abschluß für die Treibmittelpulverteilchen bilden, daß keine Expansion des Treibmittels, auch bei erhöhter Temperatur stattfindet. Der so hergestellte Metallkörper ist formstabil und behält seine Form auch unter erhöhter Temperatur und ohne Druckeinwirkung.
- Zur Festigkeitssteigerung der Metallkörper sieht die Erfindung die Zugabe von Verstärkungskomponenten in Form von Fasern oder Partikel aus geeigneten Materialien, wie z.B. Keramik vor. Diese werden vorteilhafterweise den Ausgangspulvern beigemischt. Dazu sollten insbesondere die Ausgangsmaterialien und die Aufschäumparameter so gewählt werden, daß eine gute Benetzung der Verstärkungskomponenten durch die Metallmatrix gewährleistet ist. Es ist vorteilhaft, wenn die Fasern bzw. Partikel beschichtet sind (z.B. mit Nickel). Dies gewährleistet, daß die Kräfte aus der Metallmatrix in die Partikel/Faser eingeleitet werden.
- Gemäß einer Ausführungsform sieht das erfindungsgemäße Verfahren vor, daß sofern eine Ausrichtung der Verstärkung entlang einer Vorzugsrichtung vorliegen soll, diese durch Umformung des aufschäumbaren Körpers bewirkt werden kann. Diese Umformung kann z.B. durch Strangpressen oder Walzen erfolgen.
- In vorteilhafter Ausgestaltung sieht die Erfindung vor, daß zwei oder mehrere Treibmittel mit unterschiedlichen Zersetzungstemperaturen dem Metallpulver zugemischt werden. Wird ein aus dieser Pulvermischung hergestellter aufschäumbarer Körper erhitzt, so zersetzt sich zunächst das Treibmittel mit der niedrigeren Temperatur und bewirkt ein Aufschäumen. Wird die Temperatur weiter erhöht, zersetzt sich das Treibmittel mit der nächsthöherer Zersetzungstemperatur und bewirkt ein weiteres Aufschäumen. Das Aufschäumen erfolgt in zwei oder mehreren Stufen. Solche stufenweise expandierenden aufschäumbaren Metallkörper finden eine besondere Anwendung, z.B. im Brandschutz.
- Ein besonderer Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß es nun möglich ist, Körper herzustellen, welche über ihren Querschnitt eine sich kontinuierlich oder diskontinuierlich verändernde Dichte aufweisen, sogenannte gradierte Werkstoffe. Dabei wird eine Zunahme der Dichte zum Rand des aufschäumbaren Körpers hin bevorzugt, da hier die primäre Beanspruchung erfolgt. Weiterhin bietet ein aufschäumbarer Körper mit einer massiven Deckschicht oder einer Deckschicht höheren Dichte Vorteile hinsichtlich des Fügens und des Verbindens mit artgleichen oder artfremden Werkstoffen. Wird der Vorgang des Heißkompaktierens in einer Form durchgeführt, wobei die Pulvermischung ganz oder teilweise durch ein treibmittelfreies Metall oder Metallpulver umgeben ist, so bilden die treibmittelfreien Metallschichten jeweils eine feste, wenig poröse Außenschicht bzw. Bodenschicht oder Deckschicht, zwischen denen sich eine Schicht befindet, welche nach einem Aufschäumvorgang eine hochporöse Metallschaumschicht bildet. Durch das Herstellen des aufschäumbaren Metallkörpers derart, daß der Pulvermischung ein treibmittelfreies Metallstück vorgelagert ist und die Pulvermischung stranggepreßt wird, entsteht ein aufschäumbarer Körper, der mit dem Massivmaterial zusammengepreßt ist und das Massivmaterial den aufschäumbaren Körper in Form einer äußeren Schicht umschließt.
- Der nach dem erfindungsgemäßen Verfahren hergestellte aufschäumbare Metallkörper kann zur Herstellung eines porösen Metallkörpers verwendet werden. Dies geschieht durch Aufheizen des aufschäumbaren Körpers auf eine Temperatur oberhalb der Zersetzungstempratur des Treibmittels, wobei derselbe Gas freisetzt, und anschließendes Abkühlen des so aufgeschäumten Körpers. Vorteilhaft ist, wenn die Aufheiztemperatur im Temperaturbereich des Schmelzpunktes des verwendeten Metalles liegt bzw. oberhalb oder im Solidus-Liquidus Intervall der verwendeten Legierung.
- Die Aufheizraten des Halbzeuges beim Aufschäumvorgang liegen in üblichen Grenzen, d.h. sie betragen etwa 1 - 5° C pro sec. Hohe Aufheizgeschwindigkeiten sind nicht notwendig, da das Gas ohnehin nicht entweichen kann. Diese üblichen Aufheizgeschwindigkeiten sind ein weiteres zur Kostensenkung führendes Merkmal der Erfindung. Selbstverständlich ist, daß in Einzelfällen, z.B. zur Erzielung kleiner Porengröße, eine hohe Aufheizgeschwindigkeit vorteilhaft ist.
- Das erfindungsgemäße Verfahren sieht weiterhin vor, daß nach dem Aufschäumen die Abkühlgeschwindigkeit so gewählt werden muß, daß kein weiterer Aufschäumvorgang vom Inneren des Körpers aus stattfindet. Bei größeren Teilen muß also die Abkühlgeschwindigkeit höher gewählt werden, als bei kleineren, sie muß dem Probenvolumen angepaßt sein.
- Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, daß durch die geeignete Wahl der Aufschäumparameter Zeit und Temperatur die Dichte des porösen Metallkörpers variiert werden kann. Wird der Aufschäumvorgang nach einer bestimmten Zeit bei konstanter Temperatur unterbrochen, so ergibt sich eine bestimmte Dichte. Wird der Aufschäumvorgang länger fortgesetzt, so führt dies zu anderen Dichtewerten. Wichtig ist, daß bestimmte Grenzwerte beachtet werden: Eine maximal zulässige Aufschäumzeit, nach deren Überschreitung das bereits aufgeschäumte Material kollabiert, soll beachtet werden.
- Das Aufschäumen des Halbzeuges erfolgt frei, wenn keine Endform vorgegeben ist. Das Aufschäumen kann auch in einer Form erfolgen. In diesem Fall nimmt der fertige poröse Metallkörper die vorgegebene Gestalt an. Es ist also nach dem erfindungsgemäßen Verfahren möglich, auch Formteile aus porösem metallischen Werkstoff herzustellen.
- Der durch das Aufschäumen des so beschaffenen Halbzeuges hergestellte Metallkörper weist eine überwiegend geschlossene Porösität auf; die Metallkörper schwimmen im Wasser. Die dabei entstehenden Poren sind gleichmäßig im gesamten Metallkörper verteilt, sie weisen auch eine annähernd einheitliche Größe auf. Die Porengröße kann während des Aufschäumvorganges durch die Zeit, in welcher der Metallschaum expandieren kann, eingestellt werden. Die Dichte des porösen Metallkörpers kann den Erfordernissen entsprechend angepaßt werden. Dies kann nicht nur, wie bereits beschrieben, durch die geeignete Wahl der Aufschäumparameter erfolgen, sondern auch durch eine geeignete Zugabe des Treibmittels. Durch die Wahl der Parameter Temperatur und Zeit, bei welchen das Aufschäumen erfolgt, kann die Festigkeit und die Duktilität des porösen Metallkörpers variiert werden. Die Beeinflussung der beiden genannten Eigenschaften geschieht ohnehin durch die Einstellung der erwünschten Porengröße. Selbstverständlich ist, daß die Eigenschaften des fertigen metallischen Körpers, vor allem von der Wahl der Ausgangsmaterialien abhängig sind.
- Das Verformungsvermögen des kompaktierten Halbzeuges ist mit dem des massiven Ausgangsmetalles vergleichbar. Auch in seinem äußeren Aussehen unterscheidet sich das Halbzeug nicht von dem des Ausgangsmetalls. Das Halbzeug kann demnach durch bekannte Umformverfahren zu Halbzeugen beliebiger Geometrien verarbeitet werden. Es kann zu Blechen, Profilen etc. umgeformt werden. Es ist nahezu jedem Verformungsverfahren zugänglich, das unter Beachtung der Zersetzungstemperatur stattfindet. Erst beim auf den Umformvorgang stattfindenden Erwärmen des Halbzeuges auf Temperaturen oberhalb der Zersetzungstemperatur des verwendeten Treibmittels erfolgt das Aufschäumen.
- Wird ein gemäß der Ausführungsform nach dem Anspruch 6 hergestellte Körper zur Herstellung eines porösen Metallkörpers verwendet, so umgibt nach dem Aufschäumen eine wenig poröse äußere Schicht einen Kern aus hochporösem geschäumten Metall. Eine weitere Verwendung des aufschäumbaren Körpers ist die Herstellung von Metallschäumen mit fester Außenschicht. Der aufschäumbare Körper wird dabei zunächst durch geeignete Umformverfahren zu einem zylindrischen Stab umgeformt, dieser in ein zylindrisches Rohr eingeführt und anschließend aufgeschäumt. Dieses Verfahren läßt sich auch auf andere Hohlprofile und Formteile übertragen. Weiterhin ist es möglich, einen Integralschaumkörper dadurch herzustellen, daß die Expansion des aufschäumbaren Körper durch feste Wandungen behindert wird. Sobald die Oberfläche eines zunächst frei expandierenden Schaumes die Wandungen berührt, werden die oberflächennahen Poren durch den inneren Druck des von Innen nachschäumenden Materials flachgedrückt und so der zunächst hochporöse äußere Rand des Formteiles wieder verdichtet. Die Dicke dieses äußeren Randes, welche eine gegenüber dem Werkstückinneren erhöhte Dichte besitzt, kann gesteuert werden über die Zeitdauer in welcher nach dem Kontakt mit den Wandungen das Material von Innen nachschäumen kann, bevor das Formte schließlich abgekühlt wird, wodurch das Nachschäumen abgebrochen wird. Schließlich sind Verfahren möglich, bei denen die Oberfläche des erfindungsgemäßen aufschäumbaren Körpers oder des expandierenden Schaumes durch Kühlung daran gehindert wird, so stark wie in den nichtgekühlten Bereichen aufzuschäumen. Dabei kann die Kühlung durch geeignete Kühlmedien oder durch Kontakt mit kalten Materialien bewirkt werden. Die Kühlung kann auf die gesamte Oberfläche oder auch nur auf Teilbereiche einwirken.
- Integralschaumartige Metallkörper lassen sich durch Bekleben eines Metallschaumes mit artgleichen oder artfremden Werkstoffen herstellen. Neben dem Kleben sind auch andere Fügeverfahren und Befestigungsverfahren (Löten, Schweißen, Anschrauben) anwendbar. Schließlich kann ein Metallschaum auch mit Metallschmelzen oder anderen, zunächst flüssigen und dann erstarrenden oder erhärtenden Materialien umgossen werden.
- In den nachfolgenden Beispielen wird der Verlauf der erfindungsgemäßen Verfahren und einer Verwendung des nach dem erfindungsgemäßen Verfahren hergestellten aufschäumbaren Körper dargestellt:
- Eine Pulvermischung der Zusammensetzung AlMg1 mit 0,2 Gewichtsprozent Titanhydrid wurde in eine Heißpreßvorrichtung gefüllt und unter einem Druck von 60 MPa auf eine Temperatur von 500°C erwärmt. Nach einer Haltezeit von 30 Minuten wurde die Probe entlastet, ausgebaut und abgekühlt. Das Aufschäumen erfolgte durch Erwärmung der Probe in einem auf 800°C vorgeheizten Laborofen. Die Dichte des entstandenen Aluminiumschaumes lag bei ca. 0,55 g/cm3.
- Eine Pulvermischung der Zusammensetzung AlMg2 mit 0,2 Gewichtsprozent Titanhydrid wurde in der Heißpreßvorrichtung unter einem Druck von 100 MPa und einer Temperatur von 550°C kompaktiert und nach einer Haltezeit von 20 Minuten entlastet und ausgebaut. Das anschließende Aufschäumen der Probe erfolgte durch Erwärmung der Probe in einem auf 800° C vorgeheizten Laborofen und führte zu einem Schaum der Dichte 0,6 g/cm3.
- Eine Pulvermischung aus Reinaluminiumpulver und 1,5 Gewichtsprozent Natriumbicarbonat (NaHCO3) wurde in eine Heißpreßvorrichtung gefüllt und unter einem Druck von 150 MPa auf eine Temperatur von 500°C erwärmt. Nach einer Haltezeit von 20 Minuten wurde die Probe ausgebaut und in einem auf 850°C vorgeheizten Ofen aufgeschäumt. Die Dichte des entstandenen Aluminiumschaums lag bei 1,3 g/cm3.
- Eine Pulvermischung aus Reinaluminiumpulver und 2 Gewichtsprozent Aluminiumhydroxid wurde in die Heißpreßvorrichtung gefüllt und unter einem Druck von 150 MPa auf eine Temperatur von 500°C erwärmt. Nach einer Haltezeit von 25 Minuten wurde die Probe ausgebaut und in einem auf 850°C vorgeheizten Ofen aufgeschäumt. Die Dichte des entstandenen Aluminiumschaums betrug 0,8 g/cm3.
- Ein Bronzepulver der Zusammensetzung 60% Cu und 40% Sn wurde mit 1 Gewichtsprozent Titanhydridpulver vermischt und diese Pulvermischung bei einer Temperatur von 500°C und einem Druck von 100 MPa 30 Minuten lang kompaktiert. Anschließend wurde die kompaktierte Probe in einem auf 800° C vorgeheizten Ofen erwärmt und dadurch aufgeschäumt. Der resultierende Bronzeschaum hatte eine Dichte von etwa 1,4 g/cm3.
- Eine Mischung aus 70 Gewichtsprozent Kupferpulver und 30 Gewichtsprozent Aluminiumpulver wurde mit 1 Gewichtsprozent Titanhydrid vermischt und diese Pulvermischung bei einer Temperatur von 500°C und einem Druck von 100 MPa 20 Minuten lang kompaktiert. Anschließend wurde die kompaktierte Probe in einem auf 950°C vorgeheizten Ofen erwärmt und dadurch aufgeschäumt. Die Dichte dieser geschäumten Kupferlegierung lag unter 1 g/cm3.
- Weitere Versuche zur Herstellung von Nickelschaum haben bereits zu ersten brauchbaren Ergebnissen geführt.
- Ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens ist in den Figuren 1 und 2 dargestellt. Es zeigen:
- Fig. 1
- das Herstellen eines aufschäumbaren Integralmetallkörpers in einer Form;
- Fig. 2
- das Herstellungsverfahren eines aufschäumbaren Integralmetallkörpers durch Strangpressen.
- Fig. 3
- eine schematische Darstellung des erfindungsgemäßen Verfahrens und dessen Verwendung;
- Wie aus Fig. 1 ersichtlich, wird in eine Heißpreßvorrichtung 1 eine Schicht 2 aus treibmittelfreiem Metallpulver eingefüllt, anschließend eine Schicht aus treibmittelhaltigem Metallpulver 3 und schließlich wiederum eine Schicht 2' aus treibmittelfreiem Metallpulver. Nach Durchführung des erfindungsgemäßen Kompaktierungsverfahrens wird ein Preßling 4 erhalten, welcher gegebenenfalls zu einem weiteren Körper 5 umgeformt werden kann. Dieser Körper kann anschließend auch zu einem Körper 6 aufgeschäumt werden. Dabei bilden die treibmittelfreien Metallschichten jeweils eine feste, wenig poröse Bodenschicht 7 bzw. Deckschicht 8, zwischen denen sich eine hochporöse Metallschaumschicht 9 befindet.
- Ein weiteres Verfahren zur Herstellung von Integralschäumen ist in Fig. 2 dargestellt. Hier wird die Öffnung 19 eines Strangpreßwerkzeuges 11 zunächst durch eine Scheibe aus massivem Metallstück 12 abgedeckt. Anschließend wird der Preßraum des Werkzeuges mit treibmittelhaltigem Metallpulver 13 gefüllt und die Pulvermischung unter einen Druck von etwa 60 MPa gesetzt. Durch Aufheizen des Werkzeuges mitsamt der Pulvermischung 13 wird die letztere verdichtet. Danach wird der Preßdruck so weit erhöht, daß der zentrale Bereich der Massivmetallplatte 12, welche die Öffnung 10 des Werkzeuges verschließt, durch diese Öffnung 10 hindurchfließt und diese so freigibt. Im weiteren Verlauf des Preßvorganges wird das aufschäumbare Halbzeug 14 gemeinsam mit dem Massivmaterial 12 durch die Öffnung 10 gepreßt, wobei das Massivmaterial 12 den aufschäumbaren Körper in Form einer äußeren Schicht 13 umschließt. Nach dem Aufschäumen dieses Verbundkörpers umgibt eine wenig poröse Schicht einen Kern aus hochporösem geschäumten Metall.
- In Fig. 3 ist eine schematische Darstellung des erfindungsgemäßen Verfahrens und eine Anwendung widergegeben: Ein Metallpulver 15 wird mit einem Treibmittelpulver 16 intensiv vermischt. Die so erhaltene Mischung 17 wird in einer Presse 18 unter Druck und Temperatureinfluß kompaktiert. Nach dem Kompaktieren entsteht ein Halbzeug 19. Das Halbzeug 19 kann beispielsweise zu einem Blech 20 umgeformt werden. Anschließend kann das Blech 20 durch Temperatureinwirkung zu einem fertigen porösen Metallkörper 21 aufgeschäumt werden.
Claims (11)
- Verfahren zur Herstellung aufschäumbarer Metallkörper, bei dem eine Mischung aus mindestens einem Metallpulver und mindestens einem gasabspaltenden Treibmittelpulver hergestellt und zu einem Halbzeug heißkompaktiert wird dadurch gekennzeichnet, daß die Heißkompaktierung bei einer Temperatur oberhalb der Zersetzungstemperatur des Treibmittels stattfindet, wobei die Verbindung der Metallpulverteilchen überwiegend durch Diffusion erfolgt und bei einem Druck, der hoch genug ist, um die Zersetzung des Treibmittels zu verhindern derart, daß die Metallteilchen sich in einer festen Verbindung untereinander befinden und einen gasdichten Abschluß für die Gasteilchen des Treibmittels darstellen.
- Verfahren nach Anspruch 1 dadurch gekennzeichnet, daß nach Beendigung des Heißkompaktierungsvorganges die Wärmeeinwirkung und die Druckeinwirkung gleichzeitig aufgehoben werden und daß die vollständige Abkühlung des metallischen Körpers ohne Druckeinwirkung erfolgt.
- Verfahren nach Anspruch 1 dadurch gekennzeichnet, daß der Pulvermischung Verstärkungskomponenten wie hochfeste Fasern, insbesondere auf keramischer Basis oder Keramikpartikel beigemischt sind.
- Verfahren nach Anspruch 3 dadurch gekennzeichnet, daß dem Schritt des Heißkompaktierens sich ein Verfahrensschritt anschließt, bei dem die Verstärkungskomponenten in einer Vorzugsrichtung ausgerichtet werden.
- Verfahren nach einem oder mehreren der vorangegangenen Ansprüche dadurch gekennzeichnet, daß mindestens zwei Treibmittelpulver mit unterschiedlichen Zersetzungstemperaturen verwendet werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Heißkompaktieren in einer Form erfolgt, wobei die Pulvermischung ganz oder teilweise durch ein treibmittelfreies Metall oder Metallpulver umgeben ist.
- Verfahren nach Anspruch 1 dadurch gekennzeichnet, daß das Heißkompaktieren durch Strangpressen erfolgt, wobei der Pulvermischung ein treibmittelfreies Metallstück vorgelagert ist.
- Verwendung des im Verfahren nach einem oder mehreren der vorangegangenen Ansprüche hergestellten metallischen Körpers zur Herstellung eines porösen Metallkörpers durch Aufheizen auf eine Temperatur oberhalb der Zersetzungstemperatur des Treibmittels und anschließendes Abkühlen des so aufgeschäumten Körpers.
- Verwendung des im Verfahren nach einem oder mehreren der vorangegangenen Ansprüche 1 bis 7 hergestellten metallischen Körpers zur Herstellung eines porösen Metallkörpers durch Aufheizen auf eine Temperatur oberhalb der Zersetzungsrtemperatur des Treibmittels im Temperaturbereich des Schmelzpunktes des verwendeten Metalles bzw. im Solidus-Liquidus Intervall der verwendeten Legierung und anschließendes Abkühlen des so aufgeschäumten Körpers.
- Verwendung des im Verfahren nach einem oder mehreren der vorangegangenen Ansprüche 1 bis 7 hergestellten metallischen Körpers zur Herstellung eines porösen Metallkörpers durch Aufheizen auf eine Temperatur oberhalb der Zersetzungstemperatur des Treibmittels, wobei beim Aufschäumen des metallischen Körpers unterschiedliche Temperatur- und Zeitwerte in Abhängigkeit von der zu erreichenden Dichte des herzustellenden Metallkörpers eingestellt und anschließendes Abkühlen des so aufgeschäumten Körpers.
- Verwendung des im Verfahren nach einem oder mehreren der vorangegangenen Ansprüche 1 bis 7 hergestellten metallischen Körpers zur Herstellung eines porösen Metallkörpers durch Aufheizen auf eine Temperatur oberhalb der Zersetzungstemperatur des Treibmittels, wobei die Aufheizgeschwindigkeit zwischen 1 und 5°C/sec beträgt und anschließendes Abkühlen des so aufgeschäumten Körpers mit einer Geschwindigkeit, die im Verhältnis zum Volumen des aufgeschäumten Körpers derart hoch ist, daß weiteres Aufschäumen abgebrochen wird.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4018360 | 1990-06-08 | ||
DE19904018360 DE4018360C1 (en) | 1990-06-08 | 1990-06-08 | Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal |
DE4101630A DE4101630A1 (de) | 1990-06-08 | 1991-01-21 | Verfahren zur herstellung aufschaeumbarer metallkoerper und verwendung derselben |
DE4101630 | 1991-01-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0460392A1 EP0460392A1 (de) | 1991-12-11 |
EP0460392B1 true EP0460392B1 (de) | 1996-09-04 |
Family
ID=25893963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91106755A Expired - Lifetime EP0460392B1 (de) | 1990-06-08 | 1991-04-26 | Verfahren zur Herstellung aufschäumbarer Metallkörper |
Country Status (6)
Country | Link |
---|---|
US (1) | US5151246A (de) |
EP (1) | EP0460392B1 (de) |
JP (1) | JP2898437B2 (de) |
AT (1) | ATE142135T1 (de) |
CA (1) | CA2044120C (de) |
DE (2) | DE4101630A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5972285A (en) * | 1997-06-10 | 1999-10-26 | Th. Goldschmidt Ag | Foamable metal articles |
DE19933870C1 (de) * | 1999-07-23 | 2001-02-22 | Schunk Sintermetalltechnik Gmb | Verfahren zur Herstellung eines metallischen Verbundwerkstoffkörpers sowie Verbundwerkstoffkörper |
CN106862572A (zh) * | 2017-01-24 | 2017-06-20 | 东莞市佳乾新材料科技有限公司 | 一种建筑用抗爆泡沫铝夹层板及其制备方法 |
Families Citing this family (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4206303C1 (de) * | 1992-02-28 | 1993-06-17 | Mepura Metallpulver Ges.M.B.H., Ranshofen, At | |
CH686413A5 (de) * | 1992-06-09 | 1996-03-29 | Matec Holding Ag | Verfahren zur Herstellung von Formteilen und Anwendung desselben. |
DE4424157C2 (de) * | 1993-07-29 | 1996-08-14 | Fraunhofer Ges Forschung | Verfahren zur Herstellung poröser metallischer Werkstoffe mit anisotropen thermischen und elektrischen Leitfähigkeiten |
DE4426627C2 (de) * | 1993-07-29 | 1997-09-25 | Fraunhofer Ges Forschung | Verfahren zur Herstellung eines metallischen Verbundwerkstoffes |
DE19651197C2 (de) * | 1995-12-15 | 1999-10-28 | Susan Dietzschold | Werkstoff zum Herstellen poröser Metallkörper |
FR2742856B1 (fr) * | 1995-12-21 | 1998-01-30 | Renault | Echangeur de chaleur pour vehicule automobile comportant une structure maillee tridimensionnelle permeable |
DE19612781C1 (de) * | 1996-03-29 | 1997-08-21 | Karmann Gmbh W | Bauteil aus metallischem Schaumwerkstoff, Verfahren zum Endformen dieses Bauteils und Vorrichtung zur Ausführung des Verfahrens |
AT406027B (de) * | 1996-04-19 | 2000-01-25 | Leichtmetallguss Kokillenbau W | Verfahren zur herstellung von formteilen aus metallschaum |
AT406649B (de) * | 1996-05-02 | 2000-07-25 | Mepura Metallpulver | Verfahren zur herstellung von porösen matrixmaterialien, insbesondere formkörpern, auf basis von metallen, und von halbzeug dafür |
DE19734394C2 (de) * | 1996-08-13 | 2003-06-18 | Friedrich Wilhelm Bessel Inst | Verfahren und Vorrichtung zur Herstellung von Metallschaum |
AT406557B (de) * | 1997-02-28 | 2000-06-26 | Machner & Saurer Gmbh | Verfahren zur herstellung von metallkörpern mit innerer porosität |
DE19709672C2 (de) * | 1997-03-11 | 1998-12-24 | Koenig & Bauer Albert Ag | Zylinder für Druckmaschinen |
DE19717066C1 (de) * | 1997-04-23 | 1998-02-26 | Daimler Benz Ag | Verfahren zum Trennen stranggepreßter Hohlprofile und Strangpreßvorrichtung |
ATE208435T1 (de) * | 1997-08-30 | 2001-11-15 | Honsel Gmbh & Co Kg | Legierung zum herstellen von metallschaumkörpern unter verwendung eines pulvers mit keimbildenden zusätzen |
DE19746164B4 (de) * | 1997-10-18 | 2005-09-15 | Volkswagen Ag | Materialverbund mit einem zumindest abschnittsweise hohlen Profil und Verwendung desselben |
DE19800008C1 (de) * | 1998-01-02 | 1999-07-08 | Karmann Gmbh W | Verfahren zum Endformen eines Bauteils mit einer Schicht aus metallischem Schaumwerkstoff |
DE19813176C2 (de) * | 1998-03-25 | 2000-08-24 | Fraunhofer Ges Forschung | Verfahren zur Herstellung von Verbundwerkstoffbauteilen |
DE19813554A1 (de) * | 1998-03-27 | 1999-09-30 | Vaw Ver Aluminium Werke Ag | Verbundblech oder -band in Sandwichstruktur sowie Verfahren zu seiner Herstellung |
JP3508604B2 (ja) * | 1998-04-08 | 2004-03-22 | 三菱マテリアル株式会社 | 高強度スポンジ状焼成金属複合板の製造方法 |
AT408317B (de) * | 1998-04-09 | 2001-10-25 | Mepura Metallpulver | Verfahren zur herstellung von schaummetall-formkörpern |
ATE216963T1 (de) * | 1998-06-09 | 2002-05-15 | M I M Huettenwerke Duisburg Ge | Verfahren zur herstellung einer verstärkung in einem hohlraum eines kfz-bauteils |
WO2000008375A1 (en) * | 1998-08-06 | 2000-02-17 | The Boc Group Plc | Hydrostatic pressure retainment system |
US6168072B1 (en) * | 1998-10-21 | 2001-01-02 | The Boeing Company | Expansion agent assisted diffusion bonding |
DE19849600C1 (de) * | 1998-10-28 | 2001-02-22 | Schunk Sintermetalltechnik Gmb | Verfahren zur Herstellung von einem metallischen Verbundwerkstoff |
DE19852277C2 (de) * | 1998-11-13 | 2000-12-14 | Schunk Sintermetalltechnik Gmb | Verfahren zur Herstellung eines metallischen Verbundwerkstoffes sowie Halbzeug für einen solchen |
DE19854175C1 (de) | 1998-11-24 | 2000-03-23 | Fritz Michael Streuber | Metallschaumfügeverfahren |
DE19854173C2 (de) | 1998-11-24 | 2000-11-23 | Fritz Michael Streuber | Metallschaumformkörper |
EP1008406A3 (de) * | 1998-12-09 | 2000-09-06 | Bayerische Motoren Werke Aktiengesellschaft | Herstellverfahren für ein mit einer Leichtmetall-Schaumstruktur ausgefülltes Hohlteil |
GB9903276D0 (en) * | 1999-02-12 | 1999-04-07 | Boc Group Plc | Reticulated foam structutes |
DE19907855C1 (de) * | 1999-02-24 | 2000-09-21 | Goldschmidt Ag Th | Herstellung von Metallschäumen |
DE19908867A1 (de) * | 1999-03-01 | 2000-09-07 | Arved Huebler | Verbundkörper sowie Verfahren zum Herstellen eines Verbundkörpers |
US6698331B1 (en) | 1999-03-10 | 2004-03-02 | Fraunhofer Usa, Inc. | Use of metal foams in armor systems |
ES2213021T3 (es) | 1999-03-10 | 2004-08-16 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Utilizacion de espumas metalicas en sistemas de blindaje. |
RU2154548C1 (ru) * | 1999-03-18 | 2000-08-20 | Арбузова Лариса Алексеевна | Способ получения пористых полуфабрикатов и готовых изделий из порошков алюминиевых сплавов (варианты) |
DE19919574A1 (de) * | 1999-04-29 | 2000-11-30 | Lucas Ind Plc | Kolben und Verfahren zur Herstellung eines solchen |
US6676896B1 (en) | 1999-05-19 | 2004-01-13 | Fraunhofer-Gesellschaft Zur Foerderung Der Angwandten Forschung E.V. | Component comprised of a composite material containing a formable metallic material and method for producing the same |
GB9912215D0 (en) * | 1999-05-26 | 1999-07-28 | Boc Group Plc | Reticulated foam structures |
DE19930982C1 (de) * | 1999-07-05 | 2001-03-08 | Honsel Ag | Verfahren zum Herstellen von Verbundblechen durch Walzen |
RU2193948C2 (ru) * | 1999-07-06 | 2002-12-10 | Лебедев Виктор Иванович | Способ получения пористого металла и изделий из него |
DE19941278A1 (de) * | 1999-08-31 | 2001-03-08 | Bernd Fischer | Struktur zur Absorption mechanischer Beanspruchungen |
DE19942916A1 (de) | 1999-09-08 | 2001-03-15 | Linde Gas Ag | Herstellen von aufschäumbaren Metallkörpern und Metallschäumen |
US6481911B1 (en) | 1999-11-24 | 2002-11-19 | Fritz Michael Streuber | Jointing method for joining preformed bodies |
US6605368B2 (en) | 1999-12-21 | 2003-08-12 | Laura Lisa Smith | Cookware vessel |
NL1014116C2 (nl) * | 2000-01-19 | 2001-07-20 | Corus Aluminium Walzprod Gmbh | Werkwijze en inrichting voor het vormen van een laminaat van gecomprimeerd metaalpoeder met een schuimmiddel tussen twee metaallagen, en daarmee gevormd produkt. |
DE10024776C1 (de) | 2000-05-19 | 2001-09-06 | Goldschmidt Ag Th | Verwendung von Metallhydrid-behandeltem Zink in der metallorganischen Synthese |
US6464933B1 (en) * | 2000-06-29 | 2002-10-15 | Ford Global Technologies, Inc. | Forming metal foam structures |
DE10045494C2 (de) * | 2000-09-13 | 2002-07-18 | Neue Materialien Fuerth Gmbh | Verfahren zum Herstellen eines Formkörpers aus Metallschaum |
DE10049058B4 (de) * | 2000-10-04 | 2005-07-28 | Honsel Gmbh & Co Kg | Herstellen von Schweißverbindungen zwischen Metallbändern, -platten, -barren und/oder -profilen |
NL1016713C2 (nl) | 2000-11-27 | 2002-05-29 | Stork Screens Bv | Warmtewisselaar en een dergelijke warmtewisselaar omvattende thermo-akoestische omvorminrichting. |
CA2344088A1 (en) * | 2001-01-16 | 2002-07-16 | Unknown | A method and an apparatus for production of a foam metal |
US6852272B2 (en) * | 2001-03-07 | 2005-02-08 | Advanced Ceramics Research, Inc. | Method for preparation of metallic and ceramic foam products and products made |
US6524522B2 (en) | 2001-03-07 | 2003-02-25 | Advanced Ceramics Research, Inc. | Method for preparation of metallic foam products and products made |
DE10127716A1 (de) * | 2001-06-07 | 2002-12-12 | Goldschmidt Ag Th | Verfahren zur Herstellung von Metall/Metallschaum-Verbundbauteilen |
RU2200647C1 (ru) * | 2001-07-17 | 2003-03-20 | Литвинцев Александр Иванович | Способ производства пористых полуфабрикатов из порошков алюминиевых сплавов |
DE10136370B4 (de) * | 2001-07-26 | 2005-03-31 | Schwingel, Dirk, Dr. | Verbundwerkstoff und daraus hergestelltes Bauteil bestehend aus einem aufgeschäumten Metallkern und massiven Deckblechen, sowie Verfahren zur Herstellung |
US6808003B2 (en) * | 2001-08-07 | 2004-10-26 | Alcoa Inc. | Coextruded products of aluminum foam and skin material |
US6660224B2 (en) * | 2001-08-16 | 2003-12-09 | National Research Council Of Canada | Method of making open cell material |
US7108828B2 (en) * | 2001-08-27 | 2006-09-19 | National Research Council Of Canada | Method of making open cell material |
US6689509B2 (en) * | 2001-09-20 | 2004-02-10 | Daramic, Inc. | Laminated multilayer separator for lead-acid batteries |
DE10161348A1 (de) * | 2001-12-13 | 2003-06-26 | Trw Automotive Safety Sys Gmbh | Fahrzeuglenkrad |
JP3805694B2 (ja) | 2002-02-15 | 2006-08-02 | 本田技研工業株式会社 | 発泡/多孔質金属の製造方法 |
DE10215086B4 (de) * | 2002-02-18 | 2004-01-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Aufschäumbarer Metallkörper, Verfahren zu seiner Herstellung und seine Verwendung |
US20040126583A1 (en) * | 2002-11-19 | 2004-07-01 | Takashi Nakamura | Foaming agent for manufacturing a foamed or porous metal |
JP4233018B2 (ja) * | 2003-01-17 | 2009-03-04 | 本田技研工業株式会社 | 発泡体を充填した閉断面構造体の製造方法 |
AT6727U1 (de) * | 2003-01-30 | 2004-03-25 | Plansee Ag | Verfahren zur herstellung poröser sinterformkörper |
EP1468765A1 (de) * | 2003-04-16 | 2004-10-20 | Corus Technology BV | Vorform für geschäumtes Platteprodukt und daraus hergestellte geschäumter Gegenstand |
US7516529B2 (en) * | 2003-12-17 | 2009-04-14 | General Motors Corporation | Method for producing in situ metallic foam components |
DE10359502A1 (de) * | 2003-12-18 | 2005-07-14 | Bayerische Motoren Werke Ag | Verfahren zur Herstellung eines dreidimensionalen, flächigen Bauteils |
US7481968B2 (en) | 2004-03-17 | 2009-01-27 | National Institute Of Advanced Industrial Science And Technology | Method for preparing a sintered porous body of metal or ceramic |
US7597840B2 (en) * | 2005-01-21 | 2009-10-06 | California Institute Of Technology | Production of amorphous metallic foam by powder consolidation |
US20060269434A1 (en) * | 2005-05-31 | 2006-11-30 | Ecer Gunes M | Process for porous materials and property improvement methods for the same |
DE102005037305B4 (de) * | 2005-08-02 | 2007-05-16 | Hahn Meitner Inst Berlin Gmbh | Verfahren zur pulvermetallurgischen Herstellung von Metallschaumstoff und von Teilen aus Metallschaumstoff |
DE102005037069B4 (de) * | 2005-08-05 | 2010-03-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Poröse Verbundwerkstoffe auf Basis eines Metalls und Verfahren zu deren Herstellung |
US20070154731A1 (en) * | 2005-12-29 | 2007-07-05 | Serguei Vatchiants | Aluminum-based composite materials and methods of preparation thereof |
DE102006009917B4 (de) * | 2006-03-03 | 2014-04-10 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Metall-Aerogel-Metallschaum-Verbundwerkstoff |
DE102006018381A1 (de) * | 2006-04-20 | 2007-10-25 | Siemens Ag | Verfahren zur Erhöhung der Steifigkeit eines einen Hohlraum aufweisenden Bauteils und danach hergestelltes Bauteil |
DE102006020860B4 (de) * | 2006-05-04 | 2008-02-07 | Alulight International Gmbh | Verfahren zur Herstellung von Verbundkörpern sowie danach hergestellte Verbundkörper |
AT504305B1 (de) * | 2006-10-05 | 2009-09-15 | H Tte Klein Reichenbach Ges M | Mehrschichtiger metallformkírper mit einer metallschaummatrix und dessen verwendung |
US20090326657A1 (en) * | 2008-06-25 | 2009-12-31 | Alexander Grinberg | Pliable Artificial Disc Endplate |
KR101111286B1 (ko) * | 2008-08-22 | 2012-03-14 | 한국생산기술연구원 | 발포체, 이 발포체의 제조장치, 이 발포체를 이용한 발포금속의 제조방법 및 발포금속 제조장치 |
DE102008044946B4 (de) * | 2008-08-29 | 2022-06-15 | Evonik Superabsorber Gmbh | Einsatz von Schaumkörpern in Oxidations-Reaktoren zur Herstellung ungesättigter Carbonsäuren |
CN102365733B (zh) | 2009-03-30 | 2015-07-01 | 株式会社德山 | 制造金属化基板的方法、金属化基板 |
WO2010116682A1 (ja) * | 2009-03-30 | 2010-10-14 | 三菱マテリアル株式会社 | アルミニウム多孔質焼結体の製造方法およびアルミニウム多孔質焼結体 |
JP5402380B2 (ja) * | 2009-03-30 | 2014-01-29 | 三菱マテリアル株式会社 | アルミニウム多孔質焼結体の製造方法 |
JP5428546B2 (ja) | 2009-06-04 | 2014-02-26 | 三菱マテリアル株式会社 | アルミニウム多孔質焼結体を有するアルミニウム複合体の製造方法 |
JP5402381B2 (ja) * | 2009-08-11 | 2014-01-29 | 三菱マテリアル株式会社 | アルミニウム多孔質焼結体の製造方法 |
DE102009040258A1 (de) | 2009-09-04 | 2011-03-24 | Jaeckel, Manfred, Dipl.-Ing. | Verfahren zur Herstellung eines zellularen Sinterformkörpers |
JP5754569B2 (ja) | 2009-10-14 | 2015-07-29 | 国立大学法人群馬大学 | 傾斜機能材料前駆体及び傾斜機能材料の製造方法、並びに傾斜機能材料前駆体及び傾斜機能材料 |
CN102783256B (zh) * | 2010-03-02 | 2015-07-01 | 株式会社德山 | 金属化基板的制造方法 |
IT1399822B1 (it) * | 2010-03-23 | 2013-05-03 | Matteazzi | Metodo per ottenere sistemi porosi |
DE102010022599B3 (de) * | 2010-05-31 | 2011-12-01 | Siemens Aktiengesellschaft | Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist |
DE102010022598B3 (de) * | 2010-05-31 | 2011-12-01 | Siemens Aktiengesellschaft | Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist |
FR2961894B1 (fr) * | 2010-06-24 | 2013-09-13 | Valeo Vision | Dispositif a echange de chaleur, notamment pour vehicule automobile |
JP2012100846A (ja) * | 2010-11-10 | 2012-05-31 | Mitsubishi Materials Corp | 多孔質インプラント素材 |
JP5720189B2 (ja) * | 2010-11-10 | 2015-05-20 | 三菱マテリアル株式会社 | 多孔質インプラント素材 |
UA112633C2 (uk) * | 2013-01-28 | 2016-10-10 | Андрій Євгенійович Малашко | Спосіб виготовлення робочого органа технологічного устаткування зі зносостійким елементом, що взаємодіє з абразивним середовищем |
US10295309B2 (en) | 2013-07-08 | 2019-05-21 | Loukus Technologies, Inc. | Core structured components and containers |
JP5825311B2 (ja) * | 2013-09-06 | 2015-12-02 | 三菱マテリアル株式会社 | アルミニウム多孔質焼結体 |
EP3155629B1 (de) * | 2014-08-06 | 2018-10-03 | Siemens Aktiengesellschaft | Elektrische einrichtung mit einer elektrischen sicherungsanordnung mit einem metallschaumstoff und verfahren zum unterbrechen eines elektrischen stromes durch die einrichtung |
DE102015205829B4 (de) * | 2015-03-31 | 2017-01-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Herstellung von geschäumten Sandwichelementen |
EP3121659B1 (de) * | 2015-07-24 | 2018-06-06 | The Swatch Group Research and Development Ltd. | Zusammenbau eines teils aus zerbrechlichem material |
US10590529B2 (en) * | 2015-11-20 | 2020-03-17 | Fourté International, Sdn. Bhd | Metal foams and methods of manufacture |
CA3006230C (en) * | 2015-12-07 | 2020-06-30 | Dynaenergetics Gmbh & Co. Kg | Shaped charge metal foam package |
CN105642898B (zh) * | 2016-01-14 | 2017-07-25 | 哈尔滨工程大学 | 一种采用激光3d打印技术制造封闭孔结构材料的方法 |
CA3044699A1 (en) | 2016-12-02 | 2018-06-07 | Polyvalor, Limited Partnership | Openly porous acoustic foam, process for manufacture and uses thereof |
DE102017100510A1 (de) * | 2017-01-12 | 2018-07-12 | Lisa Dräxlmaier GmbH | Fahrzeug-bauteil mit geschäumter elektrischer leitstruktur und herstellverfahren für ein solches |
DE102017121513A1 (de) * | 2017-09-15 | 2019-03-21 | Pohltec Metalfoam Gmbh | Verfahren zum Schäumen von Metall im Flüssigkeitsbad |
WO2019152918A1 (en) * | 2018-02-02 | 2019-08-08 | Santeri Holdings LLC | Identifiable physical form, sales instruments, and information marketplace for commodity trades |
DE102021126310A1 (de) | 2021-10-11 | 2023-04-13 | HAVEL metal foam GmbH | Verfahren und Vorrichtung zum Herstellen einer aufschäumbaren, bandförmigen Presspulver-Metallplatine mittels Kaltwalzen sowie Presspulver-Metallplatine |
CN114939674B (zh) * | 2022-05-06 | 2024-04-05 | 上海汉邦联航激光科技有限公司 | 多孔隙率泡沫铜的选区激光熔化成型方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3087807A (en) * | 1959-12-04 | 1963-04-30 | United Aircraft Corp | Method of making foamed metal |
GB939612A (en) * | 1960-02-04 | 1963-10-16 | Dow Chemical Co | Shaped metal and process for its production |
US3848666A (en) * | 1970-11-19 | 1974-11-19 | Ethyl Corp | Foamed metal bodies |
US3941182A (en) * | 1971-10-29 | 1976-03-02 | Johan Bjorksten | Continuous process for preparing unidirectionally reinforced metal foam |
US3940262A (en) * | 1972-03-16 | 1976-02-24 | Ethyl Corporation | Reinforced foamed metal |
US3929425A (en) * | 1973-02-26 | 1975-12-30 | Ethyl Corp | Foamed metal bodies |
JPS57185902A (en) * | 1981-05-11 | 1982-11-16 | Nippon Seiko Kk | Sintering method for porous body |
JPS60149739A (ja) * | 1984-08-06 | 1985-08-07 | Res Inst Iron Steel Tohoku Univ | シリコンカ−バイド繊維強化ニツケル複合材料の製造方法 |
JPH01298123A (ja) * | 1988-05-27 | 1989-12-01 | Sumitomo Electric Ind Ltd | 多孔質アルミニウム合金の製造方法 |
JPH0617524B2 (ja) * | 1988-11-08 | 1994-03-09 | 勝廣 西山 | マグネシウム―チタン系焼結合金およびその製造方法 |
US4973358A (en) * | 1989-09-06 | 1990-11-27 | Alcan International Limited | Method of producing lightweight foamed metal |
-
1991
- 1991-01-21 DE DE4101630A patent/DE4101630A1/de active Granted
- 1991-04-26 AT AT91106755T patent/ATE142135T1/de not_active IP Right Cessation
- 1991-04-26 EP EP91106755A patent/EP0460392B1/de not_active Expired - Lifetime
- 1991-04-26 DE DE59108133T patent/DE59108133D1/de not_active Expired - Lifetime
- 1991-05-31 US US07/708,350 patent/US5151246A/en not_active Expired - Lifetime
- 1991-06-06 JP JP3134868A patent/JP2898437B2/ja not_active Expired - Lifetime
- 1991-06-07 CA CA002044120A patent/CA2044120C/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5972285A (en) * | 1997-06-10 | 1999-10-26 | Th. Goldschmidt Ag | Foamable metal articles |
DE19933870C1 (de) * | 1999-07-23 | 2001-02-22 | Schunk Sintermetalltechnik Gmb | Verfahren zur Herstellung eines metallischen Verbundwerkstoffkörpers sowie Verbundwerkstoffkörper |
CN106862572A (zh) * | 2017-01-24 | 2017-06-20 | 东莞市佳乾新材料科技有限公司 | 一种建筑用抗爆泡沫铝夹层板及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US5151246A (en) | 1992-09-29 |
JP2898437B2 (ja) | 1999-06-02 |
EP0460392A1 (de) | 1991-12-11 |
JPH04231403A (ja) | 1992-08-20 |
ATE142135T1 (de) | 1996-09-15 |
DE59108133D1 (de) | 1996-10-10 |
DE4101630A1 (de) | 1991-12-12 |
CA2044120C (en) | 2001-05-01 |
DE4101630C2 (de) | 1992-04-16 |
CA2044120A1 (en) | 1991-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0460392B1 (de) | Verfahren zur Herstellung aufschäumbarer Metallkörper | |
DE4018360C1 (en) | Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal | |
EP0884123B1 (de) | Schäumbarer Metallkörper | |
EP1915226B1 (de) | Verfahren zur pulvermetallurgischen herstellung von metallschaumstoff und von teilen aus metallschaumstoff | |
WO2003000942A1 (de) | Verfahren zur herstellung von metall/metallschaum-verbundbauteilen | |
EP1017864B1 (de) | Legierung zum herstellen von metallschaumkörpern unter verwendung eines pulvers mit keimbildenden zusätzen | |
AT406649B (de) | Verfahren zur herstellung von porösen matrixmaterialien, insbesondere formkörpern, auf basis von metallen, und von halbzeug dafür | |
DE4424157C2 (de) | Verfahren zur Herstellung poröser metallischer Werkstoffe mit anisotropen thermischen und elektrischen Leitfähigkeiten | |
EP1000690B1 (de) | Verfahren zur Herstellung eines aufschäumbaren Halbzeuges sowie Halbzeug | |
DE102007006156B3 (de) | Verfahren zur Herstellung eines Verbundkörpers und Zwischenprodukt zur Herstellung eines Verbundkörpers | |
EP2427284B1 (de) | Pulvermetallurgisches verfahren zur herstellung von metallschaum | |
DE10115230C2 (de) | Verfahren zur Herstellung poröser Metallkörper und Verwendung derselben | |
WO2019053184A1 (de) | Verfahren zum schäumen von metall im flüssigkeitsbad | |
DE102017121512A1 (de) | Verfahren zum Schäumen von Metall mit Wärmekontakt | |
DE19810979C2 (de) | Aluminiumlegierung zum Herstellen von Aluminiumschaumkörpern unter Verwendung eines Pulvers mit keimbildenden Zusätzen | |
DE3421858C2 (de) | ||
EP0693564B1 (de) | Verfahren zur Herstellung von Körpern aus intermetallischen Phasen aus pulverförmigen, duktilen Komponenten | |
EP2143809B1 (de) | Metallschäume aus einer Aluminiumlegierung, ihre Verwendung und Verfahren zur Herstellung | |
DE3502504A1 (de) | Verfahren zur herstellung eines schwammartigen metallformkoerpers | |
DE10104340A1 (de) | Verfahren zur Herstellung von Mettalschaum und danach hergestellter Metallkörper | |
WO2019053181A1 (de) | Verfahren zum schäumen von metall mit wärmekontakt | |
WO2003069002A1 (de) | Aufschäumbarer metallkörper, verfahren zu seiner herstellung und seine verwendung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19920515 |
|
17Q | First examination report despatched |
Effective date: 19921117 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19960904 Ref country code: FR Effective date: 19960904 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960904 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19960904 Ref country code: DK Effective date: 19960904 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960904 Ref country code: GB Effective date: 19960904 |
|
REF | Corresponds to: |
Ref document number: 142135 Country of ref document: AT Date of ref document: 19960915 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SCHMAUDER & WANN PATENTANWALTSBUERO, INHABER KLAUS |
|
REF | Corresponds to: |
Ref document number: 59108133 Country of ref document: DE Date of ref document: 19961010 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19961204 |
|
EN | Fr: translation not filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 19960904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970430 Ref country code: BE Effective date: 19970430 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWA Free format text: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#LEONRODSTRASSE 54#80636 MUENCHEN (DE) -TRANSFER TO- FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.#HANSASTRASSE 27 C#80686 MUENCHEN (DE) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20100422 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20100426 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100623 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59108133 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20110426 |