WO2009036479A1 - Cellulosesuspension und verfahren zu deren herstellung - Google Patents

Cellulosesuspension und verfahren zu deren herstellung Download PDF

Info

Publication number
WO2009036479A1
WO2009036479A1 PCT/AT2008/000323 AT2008000323W WO2009036479A1 WO 2009036479 A1 WO2009036479 A1 WO 2009036479A1 AT 2008000323 W AT2008000323 W AT 2008000323W WO 2009036479 A1 WO2009036479 A1 WO 2009036479A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
suspension
particles
fibers
cellulosic
Prior art date
Application number
PCT/AT2008/000323
Other languages
English (en)
French (fr)
Inventor
Josef Innerlohinger
Heinrich Firgo
Helmut Schkorwaga
Original Assignee
Lenzing Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenzing Ag filed Critical Lenzing Ag
Priority to US12/679,227 priority Critical patent/US8827192B2/en
Priority to EP08782851.3A priority patent/EP2190917B1/de
Priority to JP2010525159A priority patent/JP5683954B2/ja
Priority to CN200880107855.7A priority patent/CN101821327B/zh
Publication of WO2009036479A1 publication Critical patent/WO2009036479A1/de
Priority to ZA2010/01048A priority patent/ZA201001048B/en
Priority to US14/325,554 priority patent/US20140318415A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B16/00Regeneration of cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates

Definitions

  • the present invention relates to cellulosic particles, a suspension of cellulosic particles, and a process for producing a suspension of cellulosic particles, wherein the cellulosic material is never dried between the dissolution of the cellulose and the comminution of the suspended cellulose fibers.
  • Dry cellulose powders are commercially available in a variety of sizes and in a variety of applications, such as filter aids, additives and auxiliaries in food and pharmaceuticals, chromatography material or as an additive in the building materials industry.
  • the bulk is attributable to fibrous cellulose I powder, which are obtained from pulp, wood or annual plants.
  • the lower limit of the fiber length of these fibrous cellulose powders is limited to 10-20 ⁇ m. Fiber lengths in the mm range are also used at the top, although there is already an overlap with short cut fibers.
  • Cellulose-II-powder can also be found in small numbers, with spherical fibers occurring in addition to fibrous ones. These powders are mainly made by precipitating dissolved cellulose in suitable precipitants. Spherical cellulose powders in the size range below 10 .mu.m can be produced only with great effort and therefore difficult to find on the market.
  • WO 02/57319 describes the preparation of cellulose beads by means of the NMMO method, wherein the cellulose solution before shaping different
  • Additives in larger quantities for example titanium dioxide or barium sulfate and as ion exchange materials are added.
  • the products obtained can be used as ion exchangers or catalysts.
  • titanium oxide suitable as an ion exchanger material for example for wastewater purification
  • Particularly high absorption capacities and speeds are achieved in this material by activating the titanium oxide material through a special treatment on the surface.
  • This titanium oxide material may be referred to as "substoichiometric titanium dioxide.” This means that the ratio of oxygen atoms to titanium atoms in the material is less than 2.
  • particularly functionalized titanium oxides include the so-called "doping" of titanium dioxide with iron and sulfur atoms, which have photocatalytic activity.
  • Disintegration steps in combination with a strong degradation of the cellulosic starting material by enzymes or strong acids.
  • liquid nitrogen cryoprocesses for exposing the microfibrils to cellulosic materials (Chakraborty, A., M. Sain, and M. Kortschot, Holzforschung, 2005. 59: pp. 102-107).
  • the object of the present invention to produce cellulose fibrids, the gap in the available particle size between suspended in a suspension medium nanomaterials such as whiskers or MFC in the order of less than 1 micron and the conventional dry Close powders in the order of 10 microns to a few mm and thereby have improved efficiency.
  • the production process should be characterized by simple implementation and preferably dispense with strong degradation of the cellulosic material by enzymatic or chemical treatment (especially strong acids) of the starting material, since this entails a complicated purification of the product. Also, higher concentrated ( ⁇ 10% solids) suspensions of the produced fibrids should be produced, which can still be processed well.
  • This object could be achieved by a method for producing a
  • the cellulosic material preferably always has a moisture content of at least 50%, preferably of at least 100% and particularly preferably of at least 150%. It must therefore be ensured that the cellulose never dries out during further processing, in particular during the comminution and the intervening process steps, ie there is always sufficient aqueous phase present.
  • the process according to the invention makes it possible to produce cellulose particles and suspensions which contain these particles, which have comparable properties and fields of application as the known smaller nanoparticles, but are significantly less expensive to produce.
  • An additional economic advantage is that the suspensions according to the invention can have significantly higher cellulose contents, namely up to 20% by weight instead of only about 2% by weight, as in the case of nanomaterials. This reduces the packaging and transport costs and also the use of the suspensions becomes cheaper because, for example, less suspension medium has to be removed in order to obtain a film of the cellulose particles.
  • cellulose fibers based on lyocell technology The production of cellulose fibers based on lyocell technology is known and state of the art. However, it is fundamental to the production of fibrids from fibers according to the invention that the fibers are not dried during the process and always have a correspondingly high moisture content (at least 50%, preferably at least 100% and particularly preferably at least 150%).
  • NMMO N-methylmorpholine N-oxide
  • other known solvents in which the cellulose is physically dissolved without chemical derivatization are suitable and economical for producing cellulosic fibers according to the present invention.
  • the dissolution in so-called “ionic liquids” (lonic liquids) or in other aminoxide-containing solvents should be mentioned here as well.
  • the known viscose processes are suitable and economical for the implementation of the present invention, in which the cellulose is first xanthogenated in sodium-containing medium and it is dissolved, the resulting cellulosic dope extruded and then precipitated in the precipitation bath and regenerated.
  • Auxiliaries for example stearic acid PEG esters, partially sulfated fatty alcohols, fatty alkyl ethophosphate
  • the wet fiber cables are cut by conventional means to a staple length of 2-60mm. Starting from these initial wet (short cut) fibers, the further processing takes place. Even during the production of the fibers, the properties of the fibrids obtained at the end can be determined in part. For example, the measures known to those skilled in the art would be suitable which would lead to an influence of fiber titer fiber strength, elongation or Schiingenfestmaschine if conventional textile fibers would be produced. Such measures include an appropriate selection of the pulp or the spinning conditions. While the fiber titer has an effect on the particle size in particular, its brittleness and fibrillation tendency can be influenced by the fiber strength. More brittle or lighter fibrillating fibers are easier to grind, as the milling time is shortened, less energy must be expended for grinding and also the thermal load of the particles during milling is reduced.
  • the fibers are suspended in water or a suitable other medium, this suspension should be homogeneous and flowable or pumpable.
  • the suspension is carried out by means of suitable mechanical aggregates, wherein in addition, a fibrillation of the fibers can occur. Fibrillation, ie the detachment of individual fibrils from the fiber surface, leads to a higher proportion of smaller cellulose particles in the suspension because of the resulting fine fragments. Such fines may be desirable or undesirable depending on the desired properties of the final product. Therefore, the suspending aggregate must be selected accordingly.
  • the fibers are initially only suspended, their size being largely unchanged. Subsequently, they are comminuted in a crushing step to the desired final size.
  • the fibers are already comminuted during suspension at the same time and further comminuted in a subsequent comminution step to the desired final size.
  • the fibers are already comminuted while suspending simultaneously to the desired final size.
  • a fourth variant it is possible to separate the fibers after cutting from the water and to crush these moist fibers without surrounding liquid first a granulator, a high consistency mill or a shredder and then to suspend and crush to the desired final size.
  • the fibers are already comminuted during suspension at the same time.
  • suspending aggregates are suitable, which simultaneously comminute the fibers during suspension to a length in the range between 100 .mu.m and 600 .mu.m. This length is particularly suitable for further comminution.
  • comminution to a particle size of 1 to 5 ⁇ m takes place.
  • the comminution is preferably a wet grinding.
  • the comminution is preferably carried out with a cellulose content of between 0.1 and 5.0% by weight in the suspension. At lower cellulose contents, too large mills are required, based on the amount of cellulose particles, and in addition, too large an amount of the suspension medium has to be removed after comminution. If the cellulose content is too high, the viscosity of the suspension becomes too high and too much shearing energy is introduced by the grinding movement.
  • the fineness can thus be controlled by the milling time, but it is also possible to influence the particle size by other parameters.
  • the size of the grinding media or the speed of the mill can be adjusted.
  • wet classifiers for example of the Hosokawa-Alpine Hydroplex type, if a very narrow distribution is desired.
  • the fibrids with a length of 1-5 ⁇ m and a diameter of 100-500 nm are present in a concentration of 0.1-5% by weight in the suspending medium.
  • both individual fibrids and contiguous fibrid associations can be found.
  • the fibrids sediment depending on their size and the type of stabilization.
  • a thickening of the suspension is preferably measures that cause a thickening of the suspension. This can be done either by removing a small portion of the suspension medium, for example by centrifugation, evaporation at gentle temperatures or membrane separation process or by the addition of thickeners.
  • Suitable thickening agents are known to the person skilled in the art, for example commercially available carboxymethylcellulose or glycerol.
  • dispersants or surfactants or surface-active substances to stabilize the suspension would also be possible. However, this is not preferred since, in contrast to the polymeric or polymer-like thickeners, a different class of substance is introduced into the suspension.
  • the suspensions can also be concentrated. Other methods of increasing the solids concentration are centrifuging and evaporating the liquid phase. However, it is important to note That the suspensions are not too thickened, otherwise it comes to the irreversible aggregation of fibrids.
  • the upper limit of the solids content in the suspension is dependent on the Fibridiere and is for fibrids in the size of a few microns at about 15-20% dry matter in the suspension.
  • the particles can be obtained by spray drying.
  • methods and devices for spray drying are generally known to the person skilled in the art.
  • the suspensions according to the invention can still be sprayed without problems with unusually high particle contents.
  • Suspensions with particles from the prior art are no longer readily sprayable even at levels of at most 2% by weight, since they have high viscosities and above all non-Newtonian flow behavior, which is problematic in the spray channels.
  • additives can be added in the process, which remain on or in the cellulosic particle.
  • the particles can be given additional functional properties, while surprisingly maintaining the good processing properties of the suspension.
  • These additives are during the treatment according to the invention in the wet state, such. B. in washing, suspending and crushing not removed, but remain in the cellulose particles.
  • the additives may be present in an amount of between 1 and 200% by weight, based on the amount of cellulose on or in the particle.
  • additives can already be added to the cellulose-containing spinning solution before it is precipitated. They may, for example, be selected from the group comprising pigments, inorganic substances such as, for example, titanium oxides, in particular substoichiometric titanium dioxide, barium sulfate, ion exchangers, polyethylene, polypropylene, polyesters, activated carbon, carbon black, zeolites, polymeric superabsorbents and flame retardants.
  • pigments such as, for example, titanium oxides, in particular substoichiometric titanium dioxide, barium sulfate, ion exchangers, polyethylene, polypropylene, polyesters, activated carbon, carbon black, zeolites, polymeric superabsorbents and flame retardants.
  • additives can be applied to the precipitated cellulose fibers before or after cutting. Suitable devices for this purpose are known in the art. Additives can also be added before, during or after the comminution process in the suspension according to the invention. In this case they are mainly distributed on the surface or in the outer layers of the cellulosic particles. In this case, the additives may be, for example, lubricants, dyes or cyclodextrins. This influences either the processing properties in the process according to the invention or thereafter or functional properties of the particles, such as, for example, increased absorption capacity for certain substances.
  • the subject matter of the present invention is also a suspension containing 0.01 to 20% by weight, preferably 0.1 to 10% by weight, of cellulosic particles prepared according to the invention, the cellulosic particles never being dried during their preparation. They form a homogeneous film when dried from the mother suspension.
  • the preparation of this suspension can be carried out according to the method of the invention described above. So far, no physical characterization method has been found that captures the unique properties of this suspension and the particles it contains.
  • the suspension according to the invention can be clearly recognized by the film formation behavior described here, which is unique to a suspension consisting of cellulosic particles.
  • Previously known cellulosic particles form homogeneous films only with targeted application of elevated temperatures, pressures or additional solvents (see, for example, Endo et al., Polymer Journal (32) 2, 182-185 (2000).
  • Figure 1 shows a film prepared from commercial, dry cellulose powder by suspending, spreading the suspension on a glass slide followed by drying.
  • the film is very grainy and inhomogeneous, as already visible to the naked eye.
  • Fig. 2 shows a film prepared by spreading a suspension of the invention on a glass slide followed by drying. This film is very homogeneous, as can be seen with the naked eye.
  • Fig. 3 shows the same film prepared from the suspension according to the invention from Fig. 2 under the electron microscope. Even at this magnification, it can be seen that the film is very homogeneous.
  • fibrids are dried, then brought into suspension again and then dried again, a film also results, although this is not so homogeneous, but clearly coarse-grained and more prone to cracking.
  • the dried fibrids behave like commercially available dry cellulose powders when used for film formation from suspension.
  • the present invention also cellulosic particles with a
  • Water content of 80 to 99.9 wt.% Characterized in that they were never dried during their production. They form a homogeneous film when dried from the mother suspension.
  • the particles described here can, as already described above, contain a large proportion of additives.
  • the additives may be present in the particles in an amount of between 1 and 200% by weight, based on the amount of cellulose, and may be distributed either in the entire particle or mainly or completely on its surface or in the outer layers.
  • the present invention also provides a use of cellulosic particles having a water content of 80 to 99.9 wt.%, which can be prepared by the method described above, for the preparation of homogeneous films.
  • An advantage of using the fibrids of the invention for film formation compared to the prior art methods described above is the very simple implementation.
  • the film is produced simply by gently drying the fibrid suspension.
  • pressure and temperature can be applied during film formation. Above all, a higher temperature speeds up the drying process. This is done for example by blowing with heated gas, radiant heat or direct contact with heated surfaces.
  • the application of a higher Pressure in particular results in a denser film and is achieved, for example, by pressing between surfaces or rollers.
  • the determination of the particle size was carried out with a laser diffraction meter.
  • 6 mm long lyocell fibers were produced with a single fiber titer of 1, 3dtex.
  • the spinning solution was first extruded in a dry-wet spinning process through an air gap in a precipitation bath, the gel filaments formed withdrawn from the precipitation bath and cut after a washing step in the wet state. After cutting, the water-suspended fibers were ground in a Valley Beater (Lorentzen & Wettre). The suspension contained 2.5% cellulose and the grinding time was 150 min.
  • the second grinding was carried out in a stirred ball mill of the manufacturer Drais-Werke with 1000 ml Mahlraumvolumen and zirconia balls with 0.9-1, 1mm diameter first for three hours at 2000 rpm and then for another hour at 3000 rpm.
  • the suspension thus obtained then thickened for 15 hours at 6O 0 C in a drying oven to 7% cellulose.
  • the suspension was viscous and there was no phase separation even after prolonged standing.
  • the suspension was easily diluted again with water to a low cellulose content. By thickening (and diluting) the suspension, there was no noticeable (irreversible) aggregation of the fibrids.
  • the length of the fibrids ranged from 1-8 ⁇ m (laser diffraction, microscopy).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

Die vorliegende Erfindung betrifft cellulosische Partikel, eine Suspension cellulosischer Partikel sowie ein Verfahren zur Herstellung einer Suspension cellulosischer Partikel, wobei das cellulosische Material zwischen dem Auflösen der Cellulose und der Zerkleinerung der suspendierten CeIIulosefasern niemals getrocknet wird.

Description

Cellulosesuspension und Verfahren zu deren Herstellung
Die vorliegende Erfindung betrifft cellulosische Partikel, eine Suspension cellulosischer Partikel sowie ein Verfahren zur Herstellung einer Suspension cellulosischer Partikel, wobei das cellulosische Material zwischen dem Auflösen der Cellulose und der Zerkleinerung der suspendierten Cellulosefasern niemals getrocknet wird.
Trockene Cellulosepulver sind kommerziell in den unterschiedlichsten Größen erhältlich und in einer Vielzahl von Anwendungen zu finden, wie zum Beispiel als Filterhilfsmittel, Zusatz- und Hilfsstoffe in Lebensmitteln und Pharmazeutika, Chromatographiematerial oder auch als Additiv in der Baustoffindustrie. Der Großteil entfällt dabei auf faserige Cellulose-I-Pulver, die aus Zellstoff, Holz oder Einjahrespflanzen gewonnen werden. Die Untergrenze der Faserlänge dieser fasrigen Cellulosepulver ist hierbei auf 10-20μm limitiert. Nach oben hin finden auch Faserlängen im mm-Bereich Anwendung, wobei hier schon eine Überschneidung zu Kurzschnittfasern besteht.
In geringer Anzahl sind auch Cellulose-Il-Pulver zu finden, wobei hier neben faserigen auch sphärische Pulver vorkommen. Diese Pulver werden hauptsächlich durch Ausfällen von aufgelöster Cellulose in geeigneten Fällungsmitteln hergestellt. Sphärische Cellulosepulver im Größenbereich unterhalb 10μm sind nur mit größerem Aufwand herstellbar und daher schwer am Markt zu finden.
Beispielsweise beschreibt die WO 02/57319 die Herstellung von Celluloseperlen mittels des NMMO-Verfahrens, wobei der Celluloselösung vor dem Verformen verschiedene
Zusatzstoffe in größeren Mengen, beispielsweise Titandioxid oder Bariumsulfat sowie als lonentauscher wirkende Materialien zugegeben werden. Die erhaltenen Produkte können als lonentauscher oder Katalysatoren eingesetzt werden.
Die Herstellung eines als lonentauschermaterial beispielsweise zur Abwasserreinigung geeigneten Titanoxides wird in US 6,919,029 beschrieben. Besonders hohe Absorptionskapazitäten und -geschwindigkeiten werden bei diesem Material dadurch erreicht, dass das Titanoxidmaterial durch eine spezielle Behandlung an der Oberfläche aktiviert wird. Dieses Titanoxidmaterial kann als „unterstöchiometrisches Titandioxid" bezeichnet werden. Das bedeutet, dass das Verhältnis der Sauerstoffatome zu den Titanatomen im Material kleiner als 2 ist. Zur näheren Beschreibung dieser Oberflächenaktivierung wird auf die Beschreibung in der US 6,919,029 verwiesen. Weitere Möglichkeiten zur Herstellung von besonders funktionalisierten Titanoxiden bestehen im sogenannten „Dotieren" von Titandioxid mit Eisen- und Schwefel-Atomen. Diese Verbindungen weisen eine photokatalytische Aktivität auf.
Cellulosische Materialen im nm-Bereich finden in letzter Zeit ebenfalls verstärkt Beachtung. Dabei kann man zwischen den starren kristallinen Whiskers (De Souza Lima, M. M. and R. Borsali, Macromolecular Rapid Communications, 2004. 25: p. 771-787) und der flexiblen MFC (Microfibrillated Cellulose) (Herrick, F.W., et al., Journal of Applied Polymer Science: Applied Polymer Symposium, 1983. 37: p. 797-813) bzw. (Turbak, A.F., F.W. Snyder, and K.R. Sandberg, Journal of Applied Polymer Science: Applied Polymer Symposium, 1983. 37: p. 815-827) unterscheiden. Beide Partikelarten sind im Größenbereich kleiner bzw. um 1 μm angesiedelt und liegen aufgrund ihrer Herstellungsverfahren als Suspensionen bzw. Gele mit nur geringem Cellulosegehalt vor. Die Herstellung erfolgt großteils durch einen oder mehrere mechanische
Desintegrationsschritte (Ultraschall, Homogenisator,...) in Kombination mit einem starken Abbau des cellulosischen Ausgangsmaterials durch Enzyme oder starke Säuren.
Ebenfalls in der Literatur beschrieben sind Cryoverfahren mit Hilfe von flüssigem Stickstoff zur Freilegung der Microfibrillen aus cellulosischen Materialien (Chakraborty, A., M. Sain, and M. Kortschot, Holzforschung, 2005. 59: p. 102-107).
Eine alternative Methode zur Herstellung von Cellulose-Nanofasern ist das Elektrospinnverfahren (Kulpinski, P., Journal of Applied Polymer Science, 2005. 98(4): p. 1855-1859), das allerdings auch erheblichen Aufwandes bedarf.
Der Hauptanwendungsbereich dieser nanostrukturierten Materialien ist zurzeit vor allem die Verstärkung von Verbundmaterialien (Favier, V., H. Chanzy, and J. Y. Cavaille, Macromolecules, 1999. 28: p. 6365-6357).
Als weitere spezielle Anwendung der oben beschriebenen Cellulose Partikel sind in der Literatur auch Filme bzw. Membranen beschrieben. Oft werden die cellulosischen Materialien dabei aber im Verbund mit anderen Substanzen eingesetzt und/oder die Herstellung der Filme ist mit erheblichem Aufwand verbunden. Beispiele sind zu finden in (Fendler, A., et al., Characterization of barrier properties of composites of HDPE and purified cellulose fibers. Cellulose, 2007. in press. doi: 10.1007/s10570-007-9136-x), (Liu, H. and Y.-L. Hsieh, Ultrafine Fibrous Cellulose Membranes from Electrospinning of Cellulose Acetate. Journal of Polymer Science: Part B: Polymer Physics, 2002. 40: p. 2119-2129.) oder (Sanchez-Garcia, M.D., E. Gimenez, and J. M. Lagaron, Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polymers, 2007. in press. doi: 10.1016/j.carbpol.2007.05.041 ).
Gegenüber dem bekannten Stand der Technik bestand die Aufgabe der vorliegenden Erfindung daher darin, Cellulose-Fibride herzustellen, die die Lücke in der verfügbaren Teilchengröße zwischen den in einem Suspensionsmedium suspendierten Nanomaterialien wie beispielsweise Whiskers oder MFC in der Größenordnung kleiner als 1 μm und den konventionellen trockenen Pulvern in der Größenordung zwischen 10μm bis einigen mm schließen und dabei eine verbesserte Wirtschaftlichkeit aufweisen.
Weiters sollte sich das Herstellungsverfahren durch einfache Durchführung auszeichnen und bevorzugt auf starken Abbau des cellulosischen Materials durch enzymatische oder chemische Behandlung (v. a. starke Säuren) des Ausgangsmaterials verzichten, da dies eine aufwendige Reinigung des Produkts nach sich zieht. Auch sollten höher konzentrierte (~10% Festsubstanz) Suspensionen der hergestellten Fibride herstellbar sein, die sich noch gut verarbeiten lassen.
Diese Aufgabe konnte gelöst werden durch ein Verfahren zur Herstellung einer
Suspension cellulosischer Partikel mit folgenden Schritten:
• Auflösen von Cellulose, um eine cellulosehaltige Spinnlösung zu erhalten,
• Extrudieren der cellulosehaltigen Lösung, • Ausfällen der Cellulose, wobei Cellulosefasern erhalten werden,
• Schneiden der ausgefällten Cellulosefasern,
• Suspendieren der geschnittenen Cellulosefasern und
• Zerkleinerung der suspendierten Cellulosefasern, wobei das cellulosische Material zwischen dem Auflösen der Cellulose und der Zerkleinerung der suspendierten Cellulosefasern niemals getrocknet wird.
Mit diesem Verfahren lassen sich mit einer gegenüber dem Stand der Technik verringerten Anzahl an Verfahrensschritten, kürzerer Gesamtverweilzeit im Verfahren und verringertem Energieaufwand cellulosische Partikel mit hervorragenden Eigenschaften herstellen. Bevorzugt weist das cellulosische Material stets eine Feuchte von mindestens 50 %, bevorzugt von mindestens 100 % und besonders bevorzugt von mindestens 150% auf. Daher ist darauf zu achten, dass die Cellulose auch während der Weiterverarbeitung, insbesondere während der Zerkleinerung und den dazwischen liegenden Verfahrensschritten nie austrocknet, also stets genügend wässerige Phase vorhanden ist.
Im Vergleich zum Stand der Technik können mit dem erfindungsgemäßen Verfahren Cellulosepartikel und Suspensionen, die diese Partikel enthalten, hergestellt werden, die vergleichbare Eigenschaften und Anwendungsbereiche wie die bekannten kleineren Nanopartikel aufweisen, aber bedeutend kostengünstiger herzustellen sind. Ein zusätzlicher wirtschaftlicher Vorteil besteht darin, dass die erfindungsgemäß hergestellten Suspensionen deutlich höhere Cellulosegehalte aufweisen können, nämlich bis zu 20 Gew.% anstelle von nur ca. 2 Gew.% wie im Falle der Nanomaterialien. Dadurch sinken die Verpackungs- und Transportkosten und auch die Verwendung der Suspensionen wird günstiger, da beispielsweise weniger Suspensionsmedium entfernt werden muss, um einen Film aus den Cellulosepartikeln zu erhalten.
Die Herstellung von Cellulosefasern auf Basis der Lyocell-Technologie ist bekannt und Stand der Technik. Grundlegend zur erfindungsgemäßen Erzeugung von Fibriden aus Fasern ist dabei jedoch, dass die Fasern während des Prozesses nicht getrocknet werden und stets einen entsprechend hohen Feuchtigkeitsgehalt (mindestens 50 %, bevorzugt mindestens 100 % und besonders bevorzugt mindestens 150%) aufweisen.
Das bekannteste und bereits in kommerziellem Maßstab eingesetzte Lösungsmittel in der Lyocell-Technologie ist wässriges N-Methylmorpholin-N-Oxid (NMMO). Aber auch weitere bekannte Lösungsmittel, in denen die Cellulose ohne chemische Derivatisierung physikalisch gelöst wird, sind zur Herstellung von cellulosischen Fasern gemäß der vorliegenden Erfindung geeignet und wirtschaftlich. Insbesondere soll hier das Auflösen in sogenannten „ionischen Flüssigkeiten" (lonic Liquids) oder in anderen aminoxidhaltigen Lösungsmitteln genannt werden. Ebenso sind auch die bekannten Viskose-Verfahren zur Umsetzung der vorliegenden Erfindung geeignet und wirtschaftlich, in denen die Cellulose zunächst in natronlaugehaltigem Medium xanthogeniert und dabei aufgelöst wird, die dabei erzeugte cellulosehaltige Spinnlösung extrudiert und anschließend im Fällbad ausgefällt und regeneriert wird. Auf die feuchten Fasern können Hilfsstoffe (z. B. Stearinsäure-PEG-Ester, teilsulfatierte Fettalkohole, Fettalkylethophosphat) aufgebracht sein, die die Weiterverarbeitung erleichtern, beispielsweise durch Verbesserung der Mahlfähigkeit.
Die feuchten Faserkabel werden mit herkömmlichen Mitteln auf eine Stapellänge von 2- 60mm geschnitten. Ausgehend von diesen initialfeuchten (Kurzschnitt)-Fasern erfolgt die weitere Verarbeitung. Bereits bei der Herstellung der Fasern lassen sich die Eigenschaften der am Ende erhaltenen Fibride zum Teil bestimmen. Dafür sind beispielsweise die dem Fachmann bekannten Maßnahmen geeignet, die zu einer Beeinflussung von Fasertiter Faserfestigkeit, Dehnung oder Schiingenfestigkeit führen würden, wenn herkömmliche textile Fasern hergestellt werden würden. Solche Maßnahmen sind unter anderem eine entsprechende Auswahl des Zellstoffs bzw. der Spinnbedingungen. Während sich der Fasertiter insbesondere auf die Partikelgröße auswirkt, lässt sich über die Faserfestigkeit deren Sprödigkeit und Fibrillierneigung beeinflussen. Sprödere bzw. leichter fibrillierende Fasern lassen sich besser mahlen, da die Mahldauer verkürzt wird, weniger Energie zum Mahlen aufgewendet werden muß und auch die thermische Belastung der Partikel beim Mahlen verringert wird.
Zunächst werden die Fasern in Wasser oder einem geeigneten anderen Medium suspendiert, wobei diese Suspension homogen und fließ- bzw. pumpfähig sein soll. Ein Fasergehalt im Bereich von 4-6% atro, d.h. bezogen auf absolut trockene Cellulose, hat sich dabei als am besten geeignet erwiesen. Die Suspendierung erfolgt mittels geeigneter mechanischer Aggregate, wobei zusätzlich auch eine Fibrillation der Fasern eintreten kann. Eine Fibrillation, also das Ablösen einzelner Fibrillen von der Faseroberfläche, führt wegen der so entstehenden feinen Bruchstücke zu einem höheren Anteil an kleineren Cellulosepartikeln in der Suspension. Ein solcher Feinkornanteil kann je nach angestrebten Eigenschaften des Endprodukts erwünscht oder unerwünscht sein. Daher muss das Suspendieraggregat entsprechend ausgewählt werden.
Für die weiteren Verfahrensschritte sind mehrere Varianten möglich:
In einer ersten Variante werden die Fasern zunächst nur suspendiert, wobei ihre Größe weitgehend unverändert erhalten bleibt. Anschließend werden sie in einem Zerkleinerungsschritt auf die gewünschte Endgröße zerkleinert.
In einer zweiten Variante werden die Fasern bereits beim Suspendieren gleichzeitig auf zerkleinert und in einem anschließenden Zerkleinerungsschritt weiter auf die gewünschte Endgröße zerkleinert. In einer dritten Variante werden die Fasern bereits beim Suspendieren gleichzeitig auf die gewünschte Endgröße zerkleinert.
In einer vierten Variante ist es möglich, die Fasern nach dem Schneiden vom Wasser abzutrennen und diese feuchten Fasern ohne umgebende Flüssigkeit zunächst ein einer Schneidmühle, einer Hochkonsistenzmühle oder einem Schredder zu zerkleinern und anschließend zu suspendieren und auf die gewünschte Endgröße zu zerkleinern.
Generell lässt sich sagen, dass die meisten Geräte, die in der Zellstoffzerkleinerung bzw. Aufarbeitung eingesetzt werden, auch zur Herstellung einer Fasersuspension entsprechend dieser Erfindung geeignet sind. Als geeignet zur Suspendierung der Fasern haben sich unter anderem folgende Geräte herausgestellt: Ultra Turax mit Schneidkόpf, Jokro-Mühle, Valley Beater und Refiner.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden die Fasern bereits beim Suspendieren gleichzeitig zerkleinert. Hierfür sind besonders solche Suspendieraggregate geeignet, die die Fasern beim Suspendieren gleichzeitig auf eine Länge im Bereich zwischen 100μm und 600μm zerkleinern. Diese Länge ist für eine weitere Zerkleinerung besonders geeignet.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt nach dem Suspendieren eine Zerkleinerung auf eine Partikelgröße von 1 bis 5 μm. Die Zerkleinerung ist bevorzugt eine Nassmahlung.
Die Zerkleinerung wird bevorzugt mit einem Cellulosegehalt zwischen 0,1 und 5,0 Gew.% in der Suspension durchgeführt. Bei geringeren Cellulosegehalten werden, bezogen auf die Menge der Cellulosepartikel, zu große Mühlen benötigt und außerdem muss nach der Zerkleinerung eine zu große Menge des Suspensionsmediums entfernt werden. Wenn der Cellulosegehalt zu hoch ist, wird die Viskosität der Suspension zu hoch und durch die Mahlbewegung wird zu viel Scherenergie eingebracht.
Auch hier ist es wieder möglich, Additive - zur Unterstützung der Zerkleinerung bzw. zur Stabilisierung der Fibride im umgebenden Medium - zuzusetzen. Die Nassvermahlung erfolgt in Mühlen, mit denen die gewünschte Endfeinheit (1-5μm) erreichbar ist. Dabei handelt es sich bevorzugt um unterschiedliche Rührwerkskugelmühlen (Scheibenrührwerk, Stiftrührwerk,... )• Eingeschränkt können auch andere Mühlen wie (Doppel-)Konusmühlen verwendet werden.
Um die gewünschten Partikeleigenschaften, insbesondere die Endfeinheit zu erreichen, ist es im allgemeinen notwendig, die Suspension während der Nassmahlung im Kreislauf zu führen, so dass das Mahlgut die Mühle mehrmals passieren kann. Die Feinheit lässt sich somit über die Mahldauer steuern, aber auch über andere Parameter ist eine Beeinflussung der Partikelgröße möglich. So können die Größe der Mahlkörper oder die Drehzahl der Mühle angepasst werden.
Im Anschluss an die Mahlung ist noch eine Klassierung der Fibride mittels Nassklassierer, beispielsweise vom Typ Hosokawa-Alpine Hydroplex möglich, wenn eine sehr enge Verteilung gewünscht wird.
Am Ende der Mahlung liegen die Fibride mit einer Länge von 1-5μm und einem Durchmesser von 100-500nm in einer Konzentration von 0,1-5 Gew. % im suspendierenden Medium vor. Dabei sind sowohl einzelne Fibride als auch zusammenhängende Fibrid-Verbände zu finden. Die Fibride sedimentieren in Abhängigkeit von ihrer Größe und der Art der Stabilisierung.
Zur Stabilisierung der Suspension, falls diese gewünscht wird, dienen bevorzugt Maßnahmen, die eine Verdickung der Suspension bewirken. Dies kann entweder durch das Entfernen eines kleinen Teils des Suspensionsmediums, beispielsweise durch Zentrifugieren, Eindampfen bei schonenden Temperaturen oder Membrantrennverfahren oder durch die Zugabe von Verdickungsmitteln erfolgen. Geeignete Verdickungsmittel sind dem Fachmann bekannt, beispielsweise handelsübliche Carboxymethylcellulose oder Glycerin. Grundsätzlich wäre auch der Einsatz von Dispergiermitteln oder Tensiden bzw. oberflächenaktiven Substanzen zur Stabilisierung der Suspension möglich. Dies ist jedoch nicht bevorzugt, da dadurch im Gegensatz zu den polymeren oder polymerartigen Verdickungsmitteln eine andere Substanzklasse in die Suspension eingebracht wird.
Aber auch wenn die erfindungsgemäßen Cellulosepartikel in der Suspension sedimentieren, kommt es im Allgemeinen zu keiner Äggregation und der Fibrid- Niederschlag lässt sich leicht wieder aufschütteln. Durch dieses Sedimentieren in Verbindung mit Dekantieren des Überstandes lassen sich die Suspensionen auch aufkonzentrieren. Weitere Methoden zur Erhöhung der Feststoffkonzentration sind Zentrifugieren und Abdampfen der flüssigen Phase. Dabei ist jedoch darauf zu achten, dass die Suspensionen nicht zu sehr eingedickt werden, da es sonst doch noch zur irreversiblen Aggregation der Fibride kommt. Die Obergrenze des Feststoffgehalts in der Suspension ist von der Fibridgröße abhängig und liegt für Fibride in der Größe von einigen μm bei etwa 15-20% Trockensubstanz in der Suspension.
Aus der erfindungsgemäßen Suspension können die Partikel durch Sprühtrocknen erhalten werden. Verfahren und Vorrichtungen zum Sprühtrocknen sind dem Fachmann zwar grundsätzlich bekannt. Überraschend ist jedoch, dass sich die erfindungsgemäßen Suspensionen mit ungewöhnlich hohen Partikelgehalten noch problemlos versprühen lassen. Suspensionen mit Partikeln aus dem Stand der Technik sind bereits bei Gehalten von maximal 2 Gew.% nicht mehr gut versprühbar, da sie hohe Viskositäten und vor allem ein nicht-Newtonsches Fließverhalten aufweisen, das in den Sprühkanälen problematisch ist.
Bei der Sprühtrocknung bleiben die Einzelfibride zwar erhalten, verlieren aber charakteristische Eigenschaften. Die Sprühtrocknung wäre jedoch interessant, um feinste faserige Cellulosepulver zu erhalten, welche über Trockenmahlung nicht zugänglich sind.
Erfindungsgemäß können im Verfahren Zusatzstoffe zugefügt werden, die auf oder in dem cellulosischen Partikel verbleiben. Damit können den Partikeln zusätzliche funktionelle Eigenschaften verliehen werden, wobei überraschenderweise die guten Verarbeitungseigenschaften der Suspension erhalten bleiben. Diese Zusatzstoffe werden während der erfindungsgemäßen Behandlung im feuchten Zustand, wie z. B. beim Auswaschen, Suspendieren und Zerkleinern nicht entfernt, sondern verbleiben in den Cellulosepartikeln. Die Zusatzstoffe können in einer Menge zwischen 1 und 200 Gew.% bezogen auf die Cellulosemenge auf oder in dem Partikel enthalten sein.
Diese Zusatzstoffe können bereits zur cellulosehaltigen Spinnlösung hinzugefügt werden, bevor sie ausgefällt wird. Sie können beispielsweise ausgewählt sein aus der Gruppe, umfassend Pigmente, anorganische Substanzen wie beispielsweise Titanoxide, insbesondere unterstöchiometrisches Titandioxid, Bariumsulfat, Ionenaustauscher, Polyethylen, Polypropylen, Polyester, Aktivkohle, Ruß, Zeolithe, polymere Superabsorber und Flammschutzmittel.
Ebenso können Zusatzstoffe auf die ausgefällten Cellulosefasem vor oder nach dem Schneiden aufgegeben werden. Geeignete Vorrichtungen hierfür sind dem Fachmann bekannt. Zusatzstoffe können auch vor, während oder nach dem Zerkleinerungsvorgang in der erfindungsgemäßen Suspension zugegeben werden. In diesem Fall sind sie hauptsächlich an der Oberfläche bzw. in den äußeren Schichten der cellulosischen Partikel verteilt. In diesem Fall kann es sich bei den Zusatzstoffen beispielsweise um Avivagen, Farbstoffe oder Cyclodextrine handeln. Damit werden entweder die Verarbeitungseigenschaften im erfindungsgemäßen Verfahren oder danach oder funktionelle Eigenschaften der Partikel wie beispielsweise erhöhte Absorptionsfähigkeit für bestimmte Substanzen beeinflusst.
Gegenstand der vorliegenden Erfindung ist auch eine Suspension, enthaltend 0,01 bis 20 Gew. %, bevorzugt 0,1 bis 10 Gew. % erfindungsgemäß hergestellte cellulosische Partikel, wobei die cellulosischen Partikel während ihrer Herstellung niemals getrocknet wurden. Sie bilden beim Eintrocknen aus der Muttersuspension einen homogenen Film. Die Herstellung dieser Suspension kann nach dem oben beschriebenen erfindungsgemäßen Verfahren erfolgen. Bisher konnte keine physikalische Charakterisierungsmethode gefunden werden, die die einzigartigen Eigenschaften dieser Suspension und der in ihr enthaltenen Partikel erfasst. Die erfindungsgemäße Suspension kann jedoch eindeutig am hier beschriebenen Filmbildungsverhalten erkannt werden, das für eine aus cellulosischen Partikeln bestehende Suspension einzigartig ist. Bisher bekannte cellulosische Partikel bilden homogene Filme nur unter gezielter Anwendung erhöhter Temperaturen, Drücke oder zusätzlicher Lösungsmittel aus (siehe beispielsweise Endo et al., Polymer Journal (32) 2, 182-185 (2000).
Grundlegende Charakteristik der beschriebenen Fibide ist, dass sie aus einer
Celluloselösung gewonnen werden und während des gesamten Herstellungsprozesses stets ausreichend feucht sind. Es handelt sich also um sogenannte niemals getrocknete Partikel. Es haben sich noch keine irreversiblen Wasserstoffbrücken zwischen den OH- Gruppen der Cellulosemoieküle ausgebildet. Deshalb neigen die beschriebenen Suspensionen beim Eintrocknen zur Bildung eines homogenen, dichten Films, da die OH- Gruppen sich noch frei arrangieren können.
Fig.1 zeigt einen Film, der aus handelsüblichem, trockenem Cellulosepulver durch Suspendieren, Aufstreichen der Suspension auf einen Objektträger aus Glas und anschließendes Trocknen hergestellt wurde. Der Film ist sehr grobkörnig und inhomogen, wie bereits mit bloßem Auge erkennbar ist. Fig. 2 zeigt einen Film, der durch Aufstreichen einer erfindungsgemäßen Suspension auf einen Objektträger aus Glas und anschließendes Trocknen hergestellt wurde. Dieser Film ist sehr homogen, wie mit bloßem Auge erkannt werden kann.
Fig. 3 zeigt den gleichen, aus der erfindungsgemäßen Suspension hergestellten Film aus Fig. 2 unter dem Elektronenmikroskop. Auch bei dieser Vergrößerung ist zu erkennen, dass der Film sehr homogen ist.
Trocknet man die Fibride, bringt sie anschließend erneut in Suspension und trocknet sie dann wieder ein, so ergibt sich zwar auch ein Film, dar allerdings nicht so homogen, sondern deutlich grobkörniger ist und stärker zur Rissbildung neigt. Die eingetrockneten Fibride verhalten sich so wie handelsübliche trockene Cellulosepulver, wenn man sie zur Filmbildung aus Suspension heranzieht.
Gegenstand der vorliegenden Erfindung sind auch cellulosische Partikel mit einem
Wassergehalt von 80 bis 99,9 Gew.%, dadurch gekennzeichnet, dass sie während ihrer Herstellung niemals getrocknet wurden. Sie bilden beim Eintrocknen aus der Muttersuspension einen homogenen Film.
Die hier beschriebenen Partikel können, wie oben bereits beschrieben, einen großen Anteil an Zusatzstoffen enthält. Die Zusatzstoffe können in einer Menge zwischen 1 und 200 Gew.% bezogen auf die Cellulosemenge in den Partikeln enthalten sein, wobei sie entweder im gesamten Partikel oder hauptsächlich bzw. vollständig an dessen Oberfläche bzw. in den äußeren Schichten verteilt sein können.
Gegenstand der vorliegenden Erfindung ist auch eine Verwendung der cellulosischen Partikel mit einem Wassergehalt von 80 bis 99,9 Gew.%, die nach dem oben beschriebenen Verfahren hergestellt werden können, zur Herstellung homogener Filme.
Ein Vorteil der Verwendung der erfindungsgemäßen Fibride zur Filmbildung im Vergleich zu den oben beschriebenen Verfahren aus dem Stand der Technik ist die sehr einfache Durchführung. Die Filmherstellung geschieht einfach durch schonendes Eintrocknen der Fibridsuspension. Zusätzlich kann bei der Filmbildung auch Druck und Temperatur angewendet werden. Eine höhere Temperatur beschleunigt vor allem die Eintrocknung. Dies wird beispielsweise durch Anblasen mit erhitztem Gas, Strahlungswärme oder direkten Kontakt mit erhitzten Oberflächen erfolgen. Die Anwendung eines höheren Druckes ergibt insbesondere einen dichteren Film und wird beispielsweise durch Pressen zwischen Flächen oder Walzen erreicht.
Im Folgenden werden bevorzugte Ausführungsformen der Erfindung anhand von Beispielen beschrieben. Die Erfindung ist jedoch nicht auf diese Ausführungsformen beschränkt, sondern umfasst auch alle anderen Ausführungsformen, die auf dem gleichen erfinderischen Konzept beruhen.
Die Bestimmung der Partikelgröße erfolgte mit einem Laserbeugungsmessgerät.
Beispiel 1
Nach einem an sich bekannten Verfahren unter Verwendung von NMMO wurden 6mm lange Lyocellfasem mit einem Einzelfasertiter von 1 ,3dtex hergestellt. Dabei wurde die Spinnlösung in einem Trocken-Nass-Spinnverfahren zunächst durch einen Luftspalt in ein Fällbad extrudiert, die gebildeten Gelfäden aus dem Fällbad abgezogen und nach einer Waschstufe in nassem Zustand geschnitten. Nach dem Schneiden wurden die in Wasser suspendierten Fasern in einem Valley Beater (Lorentzen & Wettre) vermählen. Die Suspension enthielt dabei 2,5% Cellulose und die Mahldauer betrug 150 min. Die zweite Mahlung erfolgte in einer Rührwerkskugelmühle des Herstellers Drais-Werke mit 1000 ml Mahlraumvolumen und mit Zirkonoxidkugeln mit 0,9-1 ,1mm Durchmesser zunächst drei Stunden lang bei 2000 rpm und anschließend noch eine Stunde lang bei 3000 rpm. Die so erhaltene Suspension wurde anschließend für 15 Stunden bei 6O0C im Trockenschrank auf 7% Cellulose eingedickt. Die Suspension war dickflüssig und es kam auch bei längerem Stehen zu keiner Phasenseparation. Die Suspension ließ sich problemlos wieder mit Wasser auf einen niederen Cellulosegehalt verdünnen. Durch Eindicken (und Verdünnen) der Suspension kam es zu keiner merklichen (irreversiblen) Aggregation der Fibride. Die Länge der Fibride lag im Bereich 1-8μm (Laserbeugung, Mikroskopie).
Beispiel 2
8g der geschnittenen, feuchten Fasern (Cellulosegehalt 30% atro) aus Beispiel 1 (6mm, 1 ,3dtex) wurden mit einem Glasstab in 60ml Wasser eingerührt. Diese Suspension wurde zusammen mit 300g Zirkonoxidkugeln (1 ,1 -1 ,4mm Durchmesser) in ein Edelstahlbecherglas geleert. Mit einem Scheibenrührwerk (IKA RE166) wurde die
Suspension 2 Stunden lang mit 3000 rpm gemahlen. Die Fibridsuspension wurde mittels Sieb von den Mahlkugeln abgetrennt. Die Fibride waren länger als jene in Beispiel 1. Es waren zwar auch Fibride mit 1 μm Länge vorhanden, jedoch lag der Mittelwert der Länge bei etwa 10μm und es waren Fibride mit bis zu 40μm Länge zu finden.
Beispiel 3
15g nicht avivierte, nicht getrocknete Viskosefasern (1 ,3dtex, 38mm Schnittlänge) aus einer kommerziellen Produktionsanlage mit einem Cellulosegehalt von 35% (atro) wurden in einem Labormixer mit Sternmesser vorzerkleinert und aufgefasert. Von der auf diese Weise vorbehandelten Probe wurden 2g Fasern durch Rühren mit einem Glasstab in 80ml Wasser dispergiert. Diese Suspension wurde mit 300g Zirkonoxidkugeln (0,9-1 , 1 mm Durchmesser) in einem Edelstahlbecherglas vermischt und anschließend mit einen Scheibenrührwerk (IKA RE166) bei 3000 rpm 3 Stunden lang gemahlen. Die Abtrennung der Mahlkugeln von der Fibridsuspension erfolgte mittels Sieb. Die erhaltenen Fibride waren von vergleichbarer Größe wie jene aus Beispiel 1 mit Längen im Bereich 2-12μm (Laserbeugung).

Claims

Patentansprüche:
1. Verfahren zur Herstellung einer Suspension cellulosischer Partikel durch Auflösen von Cellulose, um eine cellulosehaltige Spinnlösung zu erhalten, Extrudieren der cellulosehaltigen Lösung, Ausfällen der Cellulose, wobei Cellulosefasern erhalten werden, Schneiden der ausgefällten Cellulosefasern,
Suspendieren der geschnittenen Cellulosefasern und Zerkleinerung der suspendierten Cellulosefasern, gekennzeichnet dadurch, dass das cellulosische Material zwischen dem Auflösen der Cellulose und der Zerkleinerung der suspendierten Cellulosefasern niemals getrocknet wird.
2. Verfahren gemäß Anspruch 1 , wobei das cellulosische Material stets eine
Feuchte von mindestens 50 %, bevorzugt von mindestens 100 % und besonders bevorzugt von mindestens 150 % aufweist.
3. Verfahren gemäß Anspruch 1 oder 2, wobei die Fasern beim Suspendieren gleichzeitig zerkleinert werden.
4. Verfahren gemäß Anspruch 3, wobei die Fasern beim Suspendieren gleichzeitig auf eine Länge im Bereich zwischen 100μm und 600μm zerkleinert werden
5. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei nach dem Suspendieren eine Zerkleinerung, bevorzugt eine Nassmahlung auf eine Partikelgröße von 1 bis 5 μm erfolgt.
6. Verfahren gemäß Anspruch 1 , wobei die Suspension während der Nassmahlung im Kreislauf geführt wird.
7. Verfahren gemäß Anspruch 1 , wobei die Fasern nach der Zerkleinerung in einem Nassklassierer klassiert werden.
8. Verfahren gemäß Anspruch 1 , wobei die Zerkleinerungen mit einem
Cellulosegehalt zwischen 0,1 und 5,0 Gew.% in der Suspension durchgeführt werden.
9. Verfahren gemäß Anspruch 1 , in dem Zusatzstoffe zugefügt werden, die auf oder in dem cellulosischen Partikel verbleiben.
10. Verfahren gemäß Anspruch 1, wobei der Celluloselösung vor dem Ausfällen 1 bis 200 Gew.% Zusatzstoffe, bezogen auf die Cellulosemenge, ausgewählt aus der Gruppe, umfassend Pigmente, Titanoxide, insbesondere unterstöchiometrisches Titandioxid, Bariumsulfat, Ionenaustauscher, Polyethylen, Polypropylen, Polyester, Aktivkohle, polymere Superabsorber und Flammschutzmittel zugegeben werden.
11. Suspension, enthaltend 0,01 bis 20 Gew. %, bevorzugt 0,1 bis 10 Gew. % cellulosische Partikel, dadurch gekennzeichnet, dass die cellulosischen Partikel während ihrer Herstellung niemals getrocknet wurden.
12. Suspension gemäß Anspruch 11, wobei die in der Suspension enthaltenen cellulosischen Partikel einen großen Anteil an Zusatzstoffen enthalten.
13. Suspension gemäß Anspruch 11 , wobei die in der Suspension enthaltenen cellulosischen Partikel 1 bis 200 Gew.%, bezogen auf die Cellulosemenge, inkorporierte Zusatzstoffe, ausgewählt aus der Gruppe, umfassend Pigmente, Titanoxide, insbesondere unterstöchiometrisches Titandioxid, Bariumsulfat, Ionenaustauscher, Polyethylen, Polypropylen, Polyester, Aktivkohle, polymere Superabsorber und Flammschutzmittel enthalten.
14. Cellulosische Partikel mit einem Wassergehalt von 80 bis 99,9 Gew.%, dadurch gekennzeichnet, dass sie während ihrer Herstellung niemals getrocknet wurden.
15. Partikel gemäß Anspruch 14, wobei die Partikel einen großen Anteil an Zusatzstoffen enthalten.
16. Partikel gemäß Anspruch 14, wobei die Partikel 1 bis 200 Gew.%, bezogen auf die Cellulosemenge, inkorporierte Zusatzstoffe, ausgewählt aus der Gruppe, umfassend Pigmente, Titanoxide, insbesondere unterstöchiometrisches Titandioxid, Bariumsulfat, Ionenaustauscher, Polyethylen, Polypropylen, Polyester, Aktivkohle, polymere Superabsorber und Flammschutzmittel enthalten.
PCT/AT2008/000323 2007-09-21 2008-09-12 Cellulosesuspension und verfahren zu deren herstellung WO2009036479A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/679,227 US8827192B2 (en) 2007-09-21 2008-09-12 Cellulose suspension and processes for its production
EP08782851.3A EP2190917B1 (de) 2007-09-21 2008-09-12 Cellulosesuspension und verfahren zu deren herstellung
JP2010525159A JP5683954B2 (ja) 2007-09-21 2008-09-12 セルロース懸濁液およびその製造方法
CN200880107855.7A CN101821327B (zh) 2007-09-21 2008-09-12 纤维素悬浮液及其制备方法
ZA2010/01048A ZA201001048B (en) 2007-09-21 2010-02-12 Cellulose suspension and method for the production thereof
US14/325,554 US20140318415A1 (en) 2007-09-21 2014-07-08 Cellulose suspension and processes for its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1497/2007 2007-09-21
AT0149707A AT505904B1 (de) 2007-09-21 2007-09-21 Cellulosesuspension und verfahren zu deren herstellung

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/679,227 A-371-Of-International US8827192B2 (en) 2007-09-21 2008-09-12 Cellulose suspension and processes for its production
US14/325,554 Division US20140318415A1 (en) 2007-09-21 2014-07-08 Cellulose suspension and processes for its production

Publications (1)

Publication Number Publication Date
WO2009036479A1 true WO2009036479A1 (de) 2009-03-26

Family

ID=40158631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2008/000323 WO2009036479A1 (de) 2007-09-21 2008-09-12 Cellulosesuspension und verfahren zu deren herstellung

Country Status (8)

Country Link
US (2) US8827192B2 (de)
EP (1) EP2190917B1 (de)
JP (2) JP5683954B2 (de)
KR (1) KR101631650B1 (de)
CN (1) CN101821327B (de)
AT (1) AT505904B1 (de)
WO (1) WO2009036479A1 (de)
ZA (1) ZA201001048B (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011079331A1 (de) 2009-12-28 2011-07-07 Lenzing Ag Funktionalisierter cellulosischer formkörper und verfahren zu seiner herstellung
WO2011160145A1 (de) 2010-06-23 2011-12-29 Lenzing Ag Verwendung von cellulose in tabletten
WO2012033223A1 (ja) * 2010-09-10 2012-03-15 株式会社カネカ 多孔質粒子の製造方法、多孔質粒子、吸着体、およびタンパク質の精製方法
US20120178856A1 (en) * 2009-09-03 2012-07-12 Lenzing Ag Cellulose fibers with an enhanced metering capability, processes for their production and their use to reinforce compound materials
JP2014510845A (ja) * 2011-03-08 2014-05-01 エスエーピーピーアイ ネザーランズ サーヴィシーズ ビー.ヴイ 中性及びアニオン変性セルロースの乾式紡糸方法及び該方法を用いて製造される繊維
CN116479670A (zh) * 2023-04-17 2023-07-25 深圳中农秸美科技股份有限公司 一种组合酶-光酶多步酶解分离植物秸秆纤维组分的工艺

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT505904B1 (de) * 2007-09-21 2009-05-15 Chemiefaser Lenzing Ag Cellulosesuspension und verfahren zu deren herstellung
JP5055314B2 (ja) * 2009-02-27 2012-10-24 株式会社日立製作所 セルロース/樹脂複合体及びその製造方法
AT512601B1 (de) * 2012-03-05 2014-06-15 Chemiefaser Lenzing Ag Verfahren zur Herstellung einer Cellulosesuspension
US9422641B2 (en) 2012-10-31 2016-08-23 Kimberly-Clark Worldwide, Inc. Filaments comprising microfibrillar cellulose, fibrous nonwoven webs and process for making the same
US11034817B2 (en) 2013-04-17 2021-06-15 Evrnu, Spc Methods and systems for processing mixed textile feedstock, isolating constituent molecules, and regenerating cellulosic and polyester fibers
AT515174B1 (de) * 2013-10-15 2019-05-15 Chemiefaser Lenzing Ag Cellulosesuspension, Verfahren zu ihrer Herstellung und Verwendung
US10661261B2 (en) 2015-03-13 2020-05-26 The Research Foundation For The State University Of New York Metal oxide nanofibrous materials for photodegradation of environmental toxins
SI3303697T1 (sl) * 2015-06-01 2020-02-28 E.I. Du Pont De Nemours And Company Fibridi poli ALFA-1,3-glukana in njegove uporabe ter postopki za izdelavo fibridov poli ALFA-1,3-glukana
CN108441983B (zh) * 2016-05-27 2021-03-26 深圳歌力思服饰股份有限公司 一种高性能的纳米纤维素/甲壳素复合纤维及其制备方法
JP6243991B1 (ja) * 2016-10-27 2017-12-06 大王製紙株式会社 パルプ繊維前処理装置、セルロースナノファイバーの製造装置及びセルロースナノファイバーの製造方法
CN107460759B (zh) * 2017-08-18 2020-12-22 华南理工大学 一种纳米纤维素悬浮液的快速纯化方法
WO2020073010A1 (en) * 2018-10-05 2020-04-09 North Carolina State University Cellulosic fiber processing
CN109467811A (zh) * 2018-10-23 2019-03-15 青岛国恩科技股份有限公司 一种电路板支架用聚丙烯复合材料及其制备方法
CN113737304A (zh) * 2021-09-13 2021-12-03 赛得利(中国)纤维有限公司 一种涡流纺用纤维素纤维及其制备方法
WO2024080299A1 (ja) * 2022-10-14 2024-04-18 旭化成株式会社 セルロース繊維、及び該セルロース繊維を用いた製品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824105A2 (de) * 1996-08-12 1998-02-18 Lenzing Aktiengesellschaft Celulosepartikel
WO1999036603A1 (en) * 1998-01-15 1999-07-22 Acordis Kelheim Gmbh Manufacture of cellulosic particles
WO1999036604A1 (en) * 1998-01-15 1999-07-22 Acordis Kelheim Gmbh Methods of manufacturing and collecting cellulosic particles
WO2002057319A2 (de) * 2001-01-19 2002-07-25 Thüringisches Institut für Textil-und Kunststoff-Forschung E.V. Verfahren zur herstellung von regulären, monodispersen celluloseperlen und ihre verwendung

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3141875A (en) * 1961-03-15 1964-07-21 Fmc Corp Crystallite aggregates disintegrated in acid medium
US4179416A (en) * 1972-11-24 1979-12-18 Avtex Fibers Inc. Alloy rayon fibers having dispersed therein an amide polymer and a polyacrylic acid salt
DE2311180C3 (de) * 1973-03-07 1982-02-25 Chemiefaser Lenzing AG, 4860 Lenzing, Oberösterreich Verfahren zur Herstellung flammfester Celluloseregeneratfasern
US4474949A (en) * 1983-05-06 1984-10-02 Personal Products Company Freeze dried microfibrilar cellulose
US5827797A (en) * 1989-08-28 1998-10-27 Cass; Richard B. Method for producing refractory filaments
JPH0523119A (ja) * 1991-07-15 1993-02-02 Asahi Chem Ind Co Ltd 粉状可食体およびその水懸濁液
JPH0598589A (ja) * 1991-10-01 1993-04-20 Oji Paper Co Ltd セルロース粒子微細繊維状粉砕物の製造方法
AT400581B (de) * 1993-10-19 1996-01-25 Chemiefaser Lenzing Ag Verfahren zur herstellung von lösungen von cellulose
JPH07150474A (ja) * 1993-11-25 1995-06-13 Asahi Chem Ind Co Ltd セルロ−スシ−トの製造方法
GB9412501D0 (en) * 1994-06-22 1994-08-10 Courtaulds Fibres Holdings Ltd Manufacture of fibre
GB9412500D0 (en) * 1994-06-22 1994-08-10 Courtaulds Fibres Holdings Ltd Fibre manufacture
CA2213230C (en) * 1995-02-21 2005-11-08 Tfm Handels-Aktiengesellschaft Cellulose particles, method for producing them and their use
US5948905A (en) * 1995-03-31 1999-09-07 Akzo Nobel Nv Method of producing in water-containing celluose solutions in water-containing tertiary amine N-oxides
SE9502522D0 (sv) * 1995-07-07 1995-07-07 Eka Nobel Ab A process for the production of paper
US6235392B1 (en) * 1996-08-23 2001-05-22 Weyerhaeuser Company Lyocell fibers and process for their preparation
JP4083814B2 (ja) * 1996-12-24 2008-04-30 旭化成ケミカルズ株式会社 水性懸濁状組成物及び水分散性乾燥組成物
AT404846B (de) * 1997-06-16 1999-03-25 Chemiefaser Lenzing Ag Zusammensetzung enthaltend feine feststoffteilchen
JPH11196786A (ja) * 1998-01-07 1999-07-27 Asahi Chem Ind Co Ltd 球状可食体
TW408153B (en) * 1998-01-09 2000-10-11 Asahi Chemical Ind Cellulose-containing composite, process for its preparation and use thereof
AT406588B (de) * 1998-09-29 2000-06-26 Chemiefaser Lenzing Ag Verfahren zur herstellung cellulosischer fasern
DE10137171A1 (de) * 2001-07-31 2003-02-13 Stockhausen Chem Fab Gmbh Verfahren zur Herstellung von cellulosischen Formkörpern mit superabsorbierenden Eigenschaften
US6919029B2 (en) * 2002-02-14 2005-07-19 Trustees Of Stevens Institute Of Technology Methods of preparing a surface-activated titanium oxide product and of using same in water treatment processes
US7399377B2 (en) * 2003-01-02 2008-07-15 Weyerhaeuser Co. Process for singulating cellulose fibers from a wet pulp sheet
US6844066B2 (en) * 2003-05-19 2005-01-18 Rayonier Products And Financial Services Company Superabsorbent cellulosic fiber and method of making same
AU2003273105A1 (en) * 2003-06-30 2005-01-13 Hyosung Corporation A jomogeneous cellulose solution and high tenacity lyocell multifilament using the same
BRPI0417436A (pt) * 2003-12-12 2007-03-06 Voith Paper Patent Gmbh processo para moagem de fibras de papel ou fibras de celulose suspensas em água
US7985855B2 (en) * 2004-06-30 2011-07-26 Shin-Etsu Chemical Co., Ltd. Method for modifying fibers
US8383529B2 (en) * 2004-07-01 2013-02-26 Asahi Kasei Kabushiki Kaisha Cellulose nonwoven fabric
AT501931B1 (de) * 2004-12-10 2007-08-15 Chemiefaser Lenzing Ag Cellulosestapelfaser und ihre verwendung
FI122815B (fi) * 2005-04-18 2012-07-13 Cerefi Oy Menetelmä lignoselluloosamateriaalien ja niistä saatujen jakeiden fraktioimiseksi
DE102005024433A1 (de) * 2005-05-24 2006-02-16 Zimmer Ag Verfahren und Vorrichtung zum Schneiden von NMMO-haltigen Spinnfäden sowie für Zellulose-Stapelfasern
JP5248314B2 (ja) * 2005-06-03 2013-07-31 メッツォ ペーパー インコーポレイテッド 木材の機械解繊のための方法と装置
CN101248225B (zh) * 2005-08-26 2011-02-09 大和纺织株式会社 防燃性人造丝纤维及其制造方法
WO2007125152A1 (en) * 2006-04-28 2007-11-08 Metso Paper, Inc. Device and method for defibration of wood
US7390566B2 (en) * 2006-06-30 2008-06-24 Weyerhaeuser Company Viscose product
US7998313B2 (en) * 2006-12-07 2011-08-16 Georgia-Pacific Consumer Products Lp Inflated fibers of regenerated cellulose formed from ionic liquid/cellulose dope and related products
US8177938B2 (en) * 2007-01-19 2012-05-15 Georgia-Pacific Consumer Products Lp Method of making regenerated cellulose microfibers and absorbent products incorporating same
AT505905B1 (de) * 2007-09-21 2009-05-15 Chemiefaser Lenzing Ag Cellulosepulver und verfahren zu seiner herstellung
AT505904B1 (de) * 2007-09-21 2009-05-15 Chemiefaser Lenzing Ag Cellulosesuspension und verfahren zu deren herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824105A2 (de) * 1996-08-12 1998-02-18 Lenzing Aktiengesellschaft Celulosepartikel
WO1999036603A1 (en) * 1998-01-15 1999-07-22 Acordis Kelheim Gmbh Manufacture of cellulosic particles
WO1999036604A1 (en) * 1998-01-15 1999-07-22 Acordis Kelheim Gmbh Methods of manufacturing and collecting cellulosic particles
WO2002057319A2 (de) * 2001-01-19 2002-07-25 Thüringisches Institut für Textil-und Kunststoff-Forschung E.V. Verfahren zur herstellung von regulären, monodispersen celluloseperlen und ihre verwendung

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120178856A1 (en) * 2009-09-03 2012-07-12 Lenzing Ag Cellulose fibers with an enhanced metering capability, processes for their production and their use to reinforce compound materials
WO2011079331A1 (de) 2009-12-28 2011-07-07 Lenzing Ag Funktionalisierter cellulosischer formkörper und verfahren zu seiner herstellung
WO2011160145A1 (de) 2010-06-23 2011-12-29 Lenzing Ag Verwendung von cellulose in tabletten
WO2012033223A1 (ja) * 2010-09-10 2012-03-15 株式会社カネカ 多孔質粒子の製造方法、多孔質粒子、吸着体、およびタンパク質の精製方法
JP2014510845A (ja) * 2011-03-08 2014-05-01 エスエーピーピーアイ ネザーランズ サーヴィシーズ ビー.ヴイ 中性及びアニオン変性セルロースの乾式紡糸方法及び該方法を用いて製造される繊維
CN116479670A (zh) * 2023-04-17 2023-07-25 深圳中农秸美科技股份有限公司 一种组合酶-光酶多步酶解分离植物秸秆纤维组分的工艺

Also Published As

Publication number Publication date
JP2014240497A (ja) 2014-12-25
AT505904A4 (de) 2009-05-15
AT505904B1 (de) 2009-05-15
JP2010539301A (ja) 2010-12-16
CN101821327A (zh) 2010-09-01
US20140318415A1 (en) 2014-10-30
EP2190917A1 (de) 2010-06-02
CN101821327B (zh) 2015-07-22
KR20100069694A (ko) 2010-06-24
EP2190917B1 (de) 2018-08-22
KR101631650B1 (ko) 2016-06-17
US8827192B2 (en) 2014-09-09
ZA201001048B (en) 2012-05-30
US20110028608A1 (en) 2011-02-03
JP6099605B2 (ja) 2017-03-22
JP5683954B2 (ja) 2015-03-11

Similar Documents

Publication Publication Date Title
EP2190917B1 (de) Cellulosesuspension und verfahren zu deren herstellung
AT518612B1 (de) Polysaccharid-Suspension, Verfahren zu ihrer Herstellung und ihre Verwendung
AT505905B1 (de) Cellulosepulver und verfahren zu seiner herstellung
DE3047351C2 (de)
DE69731986T2 (de) Zusammensetzung von Nanofibrillen von Cellulose mit carboxylierter Cellulose mit hohem Substitutionsgrad
EP2981639B1 (de) Polysaccharidfaser mit erhöhtem fibrillationsvermögen und verfahren zu ihrer herstellung
AT511624B1 (de) Cellulose ii suspension, deren herstellung und daraus gebildete strukturen
DE2052224A1 (de) Faserprodukt aus regenerierter Cellulose und Verfahren zu dessen Her stellung
DE19500249A1 (de) Mikroklassifizierte Cellulose und ein Verfahren zu ihrer Herstellung
WO2013131113A1 (de) Verfahren zur herstellung einer cellulosesuspension
EP3428327B1 (de) Celluloseacetatfasern, celluloseacetatzusammensetzung und verfahren zur herstellung davon
Carvalho et al. Polystyrene/cellulose nanofibril composites: fiber dispersion driven by nanoemulsion flocculation
EP3058023B1 (de) Cellulosesuspension, verfahren zu ihrer herstellung und verwendung
CH648071A5 (en) Micro-fibrillated cellulose and process for producing it
EP2636774B1 (de) Cellulosische Regeneratfasern und Verfahren zu deren Herstellung
Motaung et al. Effects of mechanical fibrillation on cellulose reinforced poly (ethylene oxide)
Kadokawa Preparation and applications of chitin nanofibers/nanowhiskers
Dufresne Preparation of cellulose nanocomposites
JP7263099B2 (ja) セルロース繊維組成物、及びその製造方法
DE102021127514A1 (de) β-POLYGLUCOSID-BASIERTE BIOPOLYMER-VERBUNDWERKSTOFFE
Feizi et al. Investigation of Nano structure’s morphology extracted from walnut shell using hydrolysis acid and ball milling methods

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880107855.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08782851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008782851

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1332/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010525159

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107008421

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12679227

Country of ref document: US