WO2012033223A1 - 多孔質粒子の製造方法、多孔質粒子、吸着体、およびタンパク質の精製方法 - Google Patents

多孔質粒子の製造方法、多孔質粒子、吸着体、およびタンパク質の精製方法 Download PDF

Info

Publication number
WO2012033223A1
WO2012033223A1 PCT/JP2011/070757 JP2011070757W WO2012033223A1 WO 2012033223 A1 WO2012033223 A1 WO 2012033223A1 JP 2011070757 W JP2011070757 W JP 2011070757W WO 2012033223 A1 WO2012033223 A1 WO 2012033223A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
adsorbent
particles
solution
porous
Prior art date
Application number
PCT/JP2011/070757
Other languages
English (en)
French (fr)
Inventor
優 平野
鈴木 康之
健登 金谷
彰久 神田
鈴木 琢磨
義和 河井
健一郎 森尾
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US13/821,836 priority Critical patent/US20130172538A1/en
Priority to EP11823691.8A priority patent/EP2626381A4/en
Priority to JP2012533053A priority patent/JP5785553B2/ja
Publication of WO2012033223A1 publication Critical patent/WO2012033223A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • C08B1/003Preparation of cellulose solutions, i.e. dopes, with different possible solvents, e.g. ionic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3804Affinity chromatography
    • B01D15/3809Affinity chromatography of the antigen-antibody type, e.g. protein A, G, L chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • B01J20/3274Proteins, nucleic acids, polysaccharides, antibodies or antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0482Elimination of a frozen liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/12Sanitary use, e.g. diapers, napkins or bandages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a method for producing porous particles, a porous particle produced by the method, an adsorbent containing the porous particle, and a method for purifying protein using the adsorbent. is there.
  • Porous particles are widely used as carriers for various chromatographic adsorbents and affinity adsorbents, for example.
  • affinity adsorbents have been used as medical adsorbents and antibody drug purifier adsorbents because they can efficiently purify target substances and reduce the concentration of unwanted substances.
  • an adsorbent for the treatment of rheumatism, hemophilia, dilated cardiomyopathy an adsorbent in which protein A is immobilized on a porous carrier as an affinity ligand has attracted attention (for example, Non-Patent Document 1, Non-Patent Document). 2, Non-Patent Document 3).
  • an adsorbent in which protein A is immobilized on a porous carrier has attracted attention as an adsorbent for purifying antibody drugs that can specifically adsorb immunoglobulin (IgG).
  • Patent Documents 1 and 2 disclose a porous cellulose carrier in which protein A is immobilized on a porous cellulose carrier.
  • Ionic liquids that are non-volatile and have characteristics of becoming liquid in a wide temperature range have attracted attention.
  • Ionic liquids are mainly applied as functional solvents and solvents for ionic devices, and as solvents for biological materials such as polypeptides.
  • this ionic liquid also dissolves cellulose, and has been applied to the production of fibers (Patent Document 4).
  • JP-A-1-278534 Japanese Patent Laid-Open No. 11-158202 WO2008 / 146906 JP 2008-248466 A
  • An object of the present invention is to provide a method for safely and simply producing porous cellulose particles that can be used as adsorbents of various substances without using a highly toxic solvent such as a calcium thiocyanate solution. Further, the present invention provides a porous particle produced by the method, an adsorbent comprising the porous particle and capable of safely and efficiently purifying high-purity protein, and a protein purification method using the adsorbent. It is also intended to provide.
  • the present inventors have conducted intensive research to solve the above problems. As a result, by dissolving cellulose in an ionic liquid and bringing it into contact with a specific solvent, amorphous porous particles with an appropriate size and appropriate pores are produced safely and efficiently as a protein adsorbent material.
  • the present invention has been completed by finding out what can be done.
  • the method for producing porous particles according to the present invention comprises a step of preparing a solution containing cellulose and an ionic liquid; a step of preparing a dispersion by dispersing the cellulose solution in a liquid incompatible with the ionic liquid; and the dispersion
  • the method includes a step of solidifying the liquid by contacting with an alcohol or an aqueous alcohol solution to obtain porous particles.
  • the step of preparing the cellulose solution of the method of the present invention water and / or alcohol is added, and the amount of water and / or alcohol added is 2% by weight or more and 20% by weight based on the total amount with the ionic liquid.
  • the following is preferable.
  • Such an embodiment makes it possible to control the internal structure of the porous particles. More specifically, the pore diameter of the porous particles can be made more uniform by adding a poor solvent for cellulose to the solution.
  • the temperature of the cellulose solution it is preferable to adjust the temperature of the cellulose solution to 0 ° C. or higher and 70 ° C. or lower. If the said temperature is 0 degreeC or more, the solubility of the cellulose with respect to an ionic liquid will become high, and the viscosity of a cellulose solution will become low and it will become easy to prepare a dispersion liquid. Moreover, if the said temperature is 70 degrees C or less, at the time of preparation of a cellulose solution or a dispersion liquid, it will become difficult for solvents other than an ionic liquid to volatilize.
  • the dispersion and the alcohol or the alcohol aqueous solution are brought into contact at 10 ° C. or higher.
  • the temperature is preferably 10 ° C. or higher.
  • porous particles according to the present invention are produced by the above-described method of the present invention.
  • the adsorbent according to the present invention includes the porous particle according to the present invention and an affinity ligand, wherein the affinity ligand is immobilized on the porous particle.
  • the partition coefficient of a plurality of proteins packed in a column and having a molecular weight equal to or higher than the target adsorbent is measured, and K av is plotted on the vertical axis and the logarithm of molecular weight is plotted on the horizontal axis.
  • K av is plotted on the vertical axis and the logarithm of molecular weight is plotted on the horizontal axis.
  • K av k ⁇ ln (MW) + b (I) [ Wherein K av represents a partition coefficient, MW represents the molecular weight of the protein, and b represents a constant] If the value of k in the formula (I) is ⁇ 0.1 or less, the specific surface area in terms of the molecular weight of the adsorbed substance is increased, so that more excellent adsorption ability is exhibited.
  • a target adsorbed substance measured by packing in a column particularly porous particles having an IgG Kav of 0.3 or more is preferable.
  • K av is 0.3 or more, the specific surface area in the molecular weight of the adsorbed substance becomes large, and it is possible to adsorb efficiently.
  • the exclusion limit molecular weight is preferably 10 3 or more and 10 9 or less. If the exclusion limit molecular weight is within this range, many useful proteins can be purified using the porous particles and the adsorbent according to the present invention.
  • the adsorbent of the present invention preferably has an introduction amount of affinity ligand of 1 mg to 1000 mg per mL of porous particles. If the introduction amount is 1 mL or more, sufficient adsorption ability can be ensured more reliably. On the other hand, it may be difficult to introduce an excessive amount of the affinity ligand to the carrier, and the productivity may be lowered. Therefore, the introduction amount is preferably 1000 mg or less.
  • the cellulose content in the porous particles and the adsorbent according to the present invention is preferably 2% by weight or more and 50% by weight or less.
  • the cellulose content is 2% by weight or more, an adsorbent that does not cause compaction can be obtained even if purification is performed at a large scale and a high linear velocity.
  • the cellulose content is 50% by weight or less, it is possible to secure sufficient pores through which the purification object can be passed.
  • the porous particles that are the carrier of the adsorbent of the present invention are preferably those that are cross-linked. Since the crosslinked porous particles are excellent in strength, they can withstand use under high linear speed or high pressure.
  • the compressive stress at 10% compression of the porous particles and adsorbent according to the present invention is preferably 0.01 MPa or more and 3 MPa or less.
  • the compressive stress is 0.01 MPa or more, even if liquid is passed at a high linear velocity, consolidation becomes difficult.
  • the said compressive stress is 3 Mpa or less, brittleness will be improved and generation
  • the volume average particle size of the porous particles and the adsorbent according to the present invention is preferably 1 ⁇ m or more and 2000 ⁇ m or less. When the volume average particle size is 20 ⁇ m or more, consolidation is less likely to occur, and when the volume average particle size is 1000 ⁇ m or less, the amount of adsorption of the target product can be increased.
  • protein A is preferable.
  • the method for purifying a protein according to the present invention comprises a step of filling the above-mentioned adsorbent of the present invention into a column; a step of passing a solution containing a crude protein into the column through the adsorbent filled in the column; Including a step of passing through the liquid.
  • the method of the present invention it is not necessary to use a conventionally used calcium thiocyanate solution, and cellulose porous particles can be produced more safely and at low cost.
  • the ionic liquid used in place of the calcium thiocyanate solution in the method of the present invention and the liquid that is incompatible with the ionic liquid can be separated and recovered after use, and can be reused, the method of the present invention is industrial. Suitable for mass production.
  • the method of the present invention makes it possible to provide cellulose porous particles that can be used as a carrier for adsorbents of various substances.
  • the viscosity of the dispersion of the cellulose solution depends on the liquid that is incompatible with the ionic liquid, so that the apparent viscosity during operation of the high-concentration cellulose solution can be kept low, and handling properties are greatly improved. can do.
  • porous cellulose particles obtained by the method of the present invention are very useful as a carrier for adsorbents such as proteins.
  • 4 is a SEM photograph of the surface of cellulose particles of the present invention obtained in Comparative Example 1.
  • 2 is a high magnification SEM photograph of FIG. 1.
  • 2 is a SEM photograph in which the cellulose particles of the present invention obtained in Comparative Example 1 are cleaved.
  • 4 is a high magnification SEM photograph of FIG. 3.
  • 3 is an XRD pattern of cellulose particles obtained from Comparative Examples 1 to 3.
  • 2 is a SEM photograph of the surface of the cellulose particle of the present invention obtained in Example 1.
  • 7 is a high magnification SEM photograph of FIG. 6.
  • 2 is an SEM photograph obtained by cleaving the cellulose particles of the present invention obtained in Example 1.
  • 9 is a high magnification SEM photograph of FIG.
  • FIG. 2 is a SEM photograph of the surface of cellulose particles of the present invention obtained in Example 2. It is a high magnification SEM photograph of FIG. 2 is a SEM photograph in which the cellulose particles of the present invention obtained in Example 2 are cleaved. 13 is a high magnification SEM photograph of FIG. 4 is a SEM photograph of the surface of cellulose particles of the present invention obtained in Example 3. It is a high magnification SEM photograph of FIG. 4 is an SEM photograph in which the cellulose particles of the present invention obtained in Example 3 are cleaved. It is a high magnification SEM photograph of FIG. 3 is an XRD pattern of cellulose particles obtained from Comparative Example 1 and Examples 1 to 3. FIG.
  • 3 is an XRD pattern of cellulose particles obtained from Examples 3 to 5.
  • 4 is a SEM photograph in which the cellulose particles of the present invention obtained in Example 7 are cleaved.
  • FIG. 21 is a high-magnification SEM photograph of FIG. 20.
  • 4 is a SEM photograph of the surface of cellulose particles of the present invention obtained in Example 8.
  • 4 is a SEM photograph of the surface of cellulose particles of the present invention obtained in Example 9.
  • 2 is a SEM photograph of the surface of cellulose particles of the present invention obtained in Example 10.
  • 3 is an XRD pattern of cellulose particles obtained from Examples 8 to 10.
  • Solution preparation process In the manufacturing method according to the present invention, first, a solution containing cellulose and an ionic liquid is prepared.
  • An ionic liquid is generally an ionic compound that is liquid at a normal pressure of less than 100 ° C.
  • the cation portion of the ionic liquid include pyridinium, imidazolium and imidazole, and examples of the acyclic cation include alkyl quaternary ammonium and alkyl quaternary phosphor cation.
  • the counter anion of the cation moiety is selected from the group consisting of halogen ions, pseudohalogen ions, organic halide ions that are organic compounds containing halogen, carboxylate, and the like.
  • Carboxylates include acetate, citrate, maleate, maleate, formate, and oxylate
  • halogen ions include chloride, bromide, zinc chloride / choline chloride
  • organic halide ions include tetrafluoroboric acid. Ions, hexafluorophosphate ions, CF 3 SO 2 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , CF 3 CO 2 ⁇ , 3-methyl-N-butyl-pyridinium chloride and benzyldimethyl (tetradec) ammonium chloride. It is done.
  • any cellulose that can be dissolved in an ionic liquid can be used as the cellulose that can be used in the present invention.
  • one or more selected from regenerated cellulose, crystalline cellulose (microcrystalline cellulose), and cellulose acetate can be used.
  • crystalline cellulose having an average degree of polymerization of about 100 or more and 700 or less is preferable.
  • the average degree of polymerization is 100 or more, the strength of the obtained porous particles can be made sufficient.
  • the average degree of polymerization is too high, the viscosity of the cellulose solution may become excessively high, and therefore the average degree of polymerization is preferably 700 or less.
  • the average polymerization degree is more preferably 100 or more and 500 or less, further preferably 150 or more and 350 or less, and particularly preferably 200 or more and 300 or less. Among them, crystalline cellulose of about 300 is preferable.
  • addition of a poor solvent and operation at high temperature are effective in order to reduce the viscosity of a cellulose solution.
  • the amount of cellulose used is not particularly limited and may be adjusted as appropriate. For example, it is preferably 2% by weight or more and 50% by weight or less with respect to 100% by weight of the cellulose solution.
  • concentration is 2% by weight or more, an adsorbent that does not cause compaction can be obtained by the method of the present invention even if purification is performed at a large scale or a high linear velocity.
  • concentration is 50% by weight or less, it is possible to secure sufficient pores through which the purification object can be passed. Further, if the concentration is too high, the viscosity of the solution may become excessively high and the operability may be deteriorated. Therefore, the concentration is preferably 50% by weight or less.
  • the concentration is preferably 3% by weight or more, more preferably 4% by weight or more, particularly preferably 5% by weight or more, more preferably 30% by weight or less, still more preferably 20% by weight or less, and 15% by weight.
  • the following are particularly preferred:
  • the method for preparing the solution is not particularly limited, and a conventional method may be used.
  • the cellulose and the ionic liquid may be simply mixed and heated or stirred until the cellulose is sufficiently dissolved.
  • the internal structure of the porous particles can be controlled by adding at least one selected from water and / or alcohol to such an extent that cellulose does not precipitate. More specifically, the pore diameter of the porous particles can be made more uniform by adding a poor solvent for cellulose to the solution.
  • the alcohol concentration may be appropriately adjusted.
  • the amount of water and / or alcohol added may be appropriately adjusted within a range in which cellulose does not precipitate at room temperature, for example, 2% by weight or more based on the total amount of water and / or alcohol and ionic liquid to be added, It can be 20% by weight or less.
  • the addition amount is 2% by weight or more, the effect of uniformizing the pore diameter of the porous particles can be more reliably exhibited.
  • the amount added is preferably 20% by weight or less, and more preferably 15% by weight or less.
  • cellulose In dissolving cellulose in an ionic liquid, it may be heated. However, since a general ionic liquid is liquid at less than 100 ° C., the temperature is preferably less than 100 ° C. More preferably, it is set to 50 ° C. or higher and 90 ° C. or lower. In order to facilitate dissolution, cellulose may be refined in advance.
  • the cellulose solution is preferably adjusted to a temperature of 0 ° C. or higher and 70 ° C. or lower before or during dispersion in a liquid that is incompatible with the ionic liquid. If the said temperature is 0 degreeC or more, the solubility of the cellulose with respect to an ionic liquid will become high, and the viscosity of a cellulose solution will become low and it will become easy to prepare a dispersion liquid. Moreover, if the said temperature is 70 degrees C or less, at the time of preparation of a cellulose solution or a dispersion liquid, it will become difficult for solvents other than an ionic liquid to volatilize.
  • liquid that is not compatible with the ionic liquid a liquid that requires 1000 mL or more to dissolve 1 g or 1 mL of the used ionic liquid at 25 ° C. is preferable.
  • Such liquid depends on the type of ionic liquid used, but for example, hexane, ethyl acetate, linear saturated fatty acid having 6 to 12 carbon atoms, unsaturated fatty acid having 16 to 24 carbon atoms, melting point of 100 ° C.
  • animal and vegetable oils and fats hydrogenated animal and vegetable oils, fractionated oils obtained by fractionating and refining the high melting point fraction of animal and vegetable oils and fats, saturated fatty acid triglycerides, edible waxes, microalgae derived oils and fats, microbial oils and fats, Examples thereof include medium chain fatty acid triglycerides and unsaturated fatty acid triglycerides.
  • the fats and oils used in the present invention are not particularly limited as long as the melting point is 100 ° C. or lower.
  • Microbial oils and fats such as palm low melting point fraction, fish oil low melting point fraction and shea fat low melting point fraction obtained by fractional purification of these low melting point fractions; medium chain fatty acid triglycerides such as tricaprylin and tricaprin; trio Examples include unsaturated fatty acid triglycerides such as lane and trilinol; partial glycerides such as monoglycerides and diglycerides; fatty acids such as oleic acid, linoleic acid, linolenic acid, arachidonic acid, icosapentaenoic acid, and docosahexaenoic acid.
  • the liquid that is not compatible with the ionic liquid may be used alone or in combination of two or more.
  • a mixed solvent of saturated fatty acids having different carbon numbers a mixed solvent of unsaturated fatty acids having different carbon numbers, and a mixed solvent of saturated fatty acids and unsaturated fatty acids can be exemplified.
  • a surfactant may be used.
  • the surfactant include N-acyl-L-glutamate triethanolamine, sodium N-acyl-L-glutamate, alkyldiaminoethylglycine hydrochloride, dimethicone copolyol, polyoxyethylene octylphenyl ether, polyoxyethylene stearyl.
  • the surfactant is preferably a medium chain fatty acid triglyceride.
  • the cellulose solution is dispersed in the liquid to form droplets of the cellulose solution.
  • the amount of the liquid incompatible with the ionic liquid and the amount of the cellulose solution used is not particularly limited and may be adjusted as appropriate.
  • the liquid: cellulose solution 98: 2 to 50:50 (volume ratio) can be used.
  • the volume ratio is preferably 97: 3 to 70:30, more preferably 97: 3 to 80:20.
  • the method for dispersing the cellulose solution is not particularly limited.
  • the cellulose solution can be uniformly dispersed in a liquid that is incompatible with the ionic liquid by stirring using a stirring blade or stirring using a homogenizer.
  • a static mixer can also be used.
  • the dispersion is coagulated by bringing it into contact with alcohol or an aqueous alcohol solution to obtain porous particles.
  • porous particles made of cellulose can be obtained by extracting the ionic liquid in the droplets, insolubilizing and condensing the cellulose.
  • Examples of the alcohol used in the step include methanol, ethanol, 1-propanol, 2-propanol, n-butanol, isobutanol, 2-butanol, sec-butanol, 2-methyl-2-propanol (tert-butanol), 1- Pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-2-butanol, 1-hexanol, 2 -C 1-6 alcohols such as hexanol and 3-hexanol.
  • the concentration of the aqueous alcohol solution is not particularly limited and may be adjusted as appropriate.
  • the inventors surprisingly found that the larger the volume ratio of water in the aqueous alcohol solution, the larger the pores of the porous particles, and the larger the volume ratio of alcohols, the greater the sphericity of the porous particles. And it discovered that it became amorphous. From these viewpoints, the ratio is more preferably 70:30 to 10:90, further preferably 50:50 to 10:90, and particularly preferably 40:60 to 20:80.
  • the method for contacting the dispersion with the alcohol or the aqueous alcohol solution is not particularly limited, and the dispersion may be added in whole or in part to the alcohol or aqueous alcohol, or the whole or part of the dispersion in the alcohol or aqueous alcohol. May be added.
  • alcohol or an aqueous alcohol solution is stirred, and the dispersion is gradually added thereto.
  • the amount of alcohol or an aqueous alcohol solution used is not particularly limited, and an amount sufficient for extracting the ionic liquid may be used.
  • the volume ratio with respect to the dispersion may be 1 or more and 5 or less.
  • the temperature at the time of contact is not particularly limited, and is preferably not less than the melting point of the ionic liquid and not more than the boiling point of the alcohol used. If the temperature is lower than the melting point of the ionic liquid, the ionic liquid may not be easily released from the cellulose particles. On the other hand, when the boiling point is higher than the boiling point of the alcohol, the cost increases because a reflux device is required. As the said temperature, 10 to 60 degreeC is preferable, 25 to 60 degreeC is more preferable, 40 to 55 degreeC is especially preferable. Note that the porosity of the coagulated cellulose particles is surprisingly affected by the temperature of the cellulose solution and the alcohol or alcohol aqueous solution, and the higher the solution temperature, the larger the pore size of the cellulose particles. Also in this respect, it is preferable to set the temperature within the above-mentioned preferable range.
  • the pore diameter of the porous cellulose particles is preferably, for example, a maximum diameter of 200 to 1500 mm and an average diameter of 100 to 400 mm.
  • the average diameter is more preferably 140 mm or more and 400 mm or less, and further preferably 200 mm or more and 400 mm or less.
  • the cellulose particles obtained above are porous, and the size and hardness of the pores can be controlled by changing the cellulose concentration, the dispersion temperature, and the cellulose-insoluble liquid.
  • the recovery means is not particularly limited, and general solid-liquid separation means such as filtration and centrifugation can be used.
  • the obtained porous particles may be washed with water or alcohols and then dried under reduced pressure to remove ionic liquid or cellulose-insoluble liquid remaining in the pores. Good.
  • the used ionic liquid can be recovered by evaporating the cellulose-insoluble liquid from the liquid after solid-liquid separation.
  • crosslinking step The porous particles obtained by the method of the present invention can be further increased in strength by a crosslinking agent.
  • a crosslinking agent there are no particular limitations on the cross-linking agent and the cross-linking reaction conditions, and it can be carried out using known techniques.
  • examples of the crosslinking agent include halohydrins such as epichlorohydrin, epibromohydrin, dichlorohydrin; bifunctional bisepoxides (bisoxiranes); polyfunctional polyepoxides (polyoxiranes).
  • the size of the porous particles is not particularly limited, but is generally preferably about 1 ⁇ m or more and 2 mm or less.
  • the volume average particle size is preferably 20 ⁇ m or more and 1000 ⁇ m or less. If the volume average particle diameter of the porous particles is 20 ⁇ m or more, compaction is less likely to occur, and 1000 ⁇ m or less is preferable because the amount of adsorption of the purification target when used as a carrier for the purification adsorbent is increased. .
  • the volume average particle size of the porous particles is more preferably 20 ⁇ m or more, further preferably 30 ⁇ m or more, particularly preferably 50 ⁇ m or more, most preferably 60 ⁇ m or more, more preferably 500 ⁇ m or less, further preferably 250 ⁇ m or less, 125 ⁇ m. The following is particularly preferable, and 95 ⁇ m or less is most preferable.
  • the volume average particle diameter can be obtained by measuring the particle diameters of 100 randomly selected porous particles.
  • the particle size of each porous particle can be measured using a particle size measurement software such as Image Pro Plus manufactured by Media Cybernetics, by taking a micrograph of each porous particle and storing it as electronic data. it can.
  • the size of the porous particles can be adjusted by, for example, the stirring strength at the time of dispersion or the contact between the dispersion and alcohol or an alcohol aqueous solution, the type of surfactant, and the like.
  • Affinity ligand means a molecule or compound that interacts with a specific target substance and has a specific affinity. For example, when an antibody is the target adsorbing substance, antigens and proteins that interact specifically, peptides having antibody binding activity, and the like can be mentioned.
  • affinity ligand that can be used for the adsorbent of the present invention, and various affinity ligands are immobilized using a porous support activated to immobilize the desired affinity ligand.
  • immobilization methods include cyanogen bromide method, trichlorotriazine method, epoxy method, tresyl chloride method, excess method as shown in Tables 8 and 1 and Tables 8 and 2 of Non-Patent Document 3.
  • Various immobilization methods can be mentioned.
  • the adsorbent of the present invention can be used as an adsorbent for purification, but it can also be used as an adsorbent for purifying antibody pharmaceuticals that has attracted attention in recent years.
  • the affinity ligand for use in adsorbents for antibody drug purification is not particularly limited. For example, antigens and proteins highly specific to antibodies, protein G, protein L and their variants, antibody binding activity And amino group-containing ligands such as peptides.
  • an adsorbent capable of specifically adsorbing and eluting immunoglobulin (especially IgG) an adsorbent in which protein A is immobilized on a porous carrier as an affinity gand has been attracting attention.
  • Protein A that can be used in the present invention is not particularly limited, and natural products, genetically modified products, and the like can be used without limitation. Further, it may be an antibody binding domain and a variant thereof, a fusion protein or the like.
  • molecular weight fractionation and fractionation using various chromatographic and membrane separation techniques such as ion exchange chromatography, hydrophobic interaction chromatography, gel filtration chromatography, and hydroxyapatite chromatography from bacterial cell extracts or culture supernatants.
  • Protein A produced by combining and / or repeating purification methods selected from techniques such as fractional precipitation can also be used.
  • protein A obtained by the method described in International Patent Publication WO2006 / 004067, US Patent Publication US515151350, WO2003 / 080655, Japanese Patent Application Laid-Open No. 2006-304633, and Japanese Patent Application No. 2009-071766 is preferable.
  • the method for introducing protein A into the porous particles as an affinity ligand can be selected from the various immobilization methods described above, but more preferably the formyl group contained in the porous particles and the amino group of protein A This is a method of immobilization utilizing the reaction with. For example, there is a method described in Patent Document 1.
  • the amount of the affinity ligand introduced into the adsorbent of the present invention is not particularly limited, and can be, for example, 1 mg or more and 1000 mg or less per mL of the porous carrier. If the said ratio is 1 mg or more, since the adsorption amount with respect to a refinement
  • the introduction amount of the affinity ligand is preferably 2 mg or more, more preferably 4 mg or more, particularly preferably 5 mg or more, more preferably 500 mg or less, further preferably 250 mg or less, particularly preferably 200 mg or less, per mL of the porous carrier. 100 mg or less is most preferable.
  • porous particles are used as a porous carrier for the adsorbent.
  • the pore size is one of the important factors. For example, if the pore diameter is smaller than the target adsorbing substance, it can be adsorbed only on the surface of the adsorbent carrier, and the adsorbed amount may be low. On the other hand, if the pore diameter is too large, the specific surface area becomes small and the amount of adsorption may be reduced. For this reason, a porous carrier having a pore size suitable for the target adsorbing substance is preferable.
  • K av is the gel phase partition coefficient, and is calculated from the elution or retention volume V R (also expressed as V e ), the void volume V o and the column geometric volume V c for a given size molecule by the following equation.
  • the variable is independent of the column.
  • K av (V R ⁇ V 0 ) / (V t ⁇ V 0 ) (See, for example, “Handbook of Process Chromatography, A Guide to Optimization, Scale-Up and validation” (1997) Academic Press, San Diego. Gal Soff & 0-66.
  • the reason for using the K av value instead of the accurate value of the pore diameter is that the pore diameter is accurately measured when the porous particles are dispersed in a solvent for a column chromatography to form a wet state like a gel. This is because the estimated pore diameter measured in the dry state does not accurately reflect the wet pore diameter.
  • an affinity ligand is immobilized on a porous carrier having a linear slope of ⁇ 0.1 or less in the molecular weight region above the molecular weight of the target adsorbent.
  • the adsorption amount can be improved. That is, when the formula (I) is established in a molecular weight region equal to or higher than the molecular weight of the target adsorbing substance, an adsorbent in which an affinity ligand is immobilized on a porous carrier where k ⁇ ⁇ 0.1 is preferable.
  • K av k ⁇ ln (MW) + b (I) [Wherein, k represents the slope, MW represents the molecular weight of the marker at the time of K av measurement, and b represents a constant]
  • k represents the slope
  • MW represents the molecular weight of the marker at the time of K av measurement
  • b represents a constant
  • the smaller the k the larger the specific surface area in the molecular weight of the adsorbed material, and the adsorption amount can be improved. Therefore, preferably k ⁇ ⁇ 0.15, more preferably k ⁇ ⁇ 0.20, further preferably k ⁇ ⁇ 0.30, and particularly preferably ⁇ 5.0 ⁇ k ⁇ ⁇ 0.35.
  • Kav in the molecular weight of the target adsorbing substance is 0.3 or more. If the K av in the molecular weight of the target adsorbing substance is 0.3 or more, the specific surface area in the molecular weight of the adsorbing substance becomes large and it is possible to adsorb efficiently. As K av , 0.55 or more is more preferable, 0.65 or more is more preferable, and 0.75 or more is particularly preferable. Further, K av is preferably 0.94 or less. If K av is greater than 0.94, the resin content decreases and the strength of the adsorbent may be reduced.
  • the exclusion limit molecular weight of the porous carrier is preferably larger than the molecular weight of the target adsorbing substance. However, if the pore size is large and the exclusion limit molecular weight is much larger than the molecular weight of the target adsorbing substance, the adsorption efficiency is lowered.
  • the molecular weight of the protein 10 3 or more when used as a purification adsorbent for often object adsorbent material is a protein, generally, the molecular weight of the protein 10 3 or more, because it is about 10 8 or less, the exclusion limit molecular weight 10 3 or more, 10 It is preferable to set it to about 9 or less. For example, if IgG is the target adsorbing substance, the exclusion limit molecular weight is preferably set to about 10 6 or more and 10 8 or less.
  • the exclusion limit molecular weight can be determined using a conventionally known method. For example, since the exclusion limit molecular weight is a molecular weight when K av is 0, it can be obtained by the following formula (II) in which 0 is substituted for K av in the above formula (I).
  • Exclusion limit molecular weight exp ( ⁇ b / k) (II)
  • K av and exclusion limit molecular weight it is preferable to use a compound that is not adsorbed on the adsorbent, and measurement is performed using porous particles before immobilizing the ligand. Is more preferable.
  • measure using an adsorbent measure using a compound equivalent to the molecular weight of the target adsorbed substance, or measure using a compound around the molecular weight of the target adsorbed substance, and measure the two points. It is necessary to devise such as predicting by connecting with.
  • the marker compound used for a measurement is a compound similar to the target adsorption substance.
  • a synthetic polymer such as polystyrene and a protein have different volumes in the measurement solution even with the same molecular weight. Therefore, for example, when the target adsorbing substance is an antibody, it is preferable to use a protein as the marker compound.
  • a high-concentration cellulose solution can be prepared, and according to the above-described method of the present invention, porous particles having a high cellulose content that cannot be obtained by a conventional method can be produced.
  • an adsorbent that does not cause consolidation is obtained.
  • the cellulose content per packed volume of the adsorbent of the present invention is not particularly limited, but is preferably 2% by weight or more and 50% by weight or less. A cellulose content of 2% by weight or more per packed volume is preferable because an adsorbent that does not cause compaction can be obtained even if purification is performed at a large scale and a high linear velocity.
  • the cellulose content per filling volume is 50% by weight or less because sufficient pores through which the purification object can be passed can be secured.
  • the cellulose content per filling volume is more preferably 3% by weight or more, further preferably 4% by weight or more, more preferably 25% by weight or less, and further preferably 15% by weight or less.
  • the cellulose content per filling volume can be determined as follows according to the following formula (III). That is, sedimentation is performed until the volume of the porous particles does not decrease, and the amount of the porous particles is adjusted so that the volume of the porous particles becomes 1 mL. The particles are dried at 105 ° C. for 12 hours, and the dry weight percent per mL of gel, ie, the cellulose content, can be determined from the dry weight (g) per filled volume.
  • the compressive stress at 5% compression is 0.005 MPa or more, 1 MPa or less, the compressive stress at 10% compression is 0.01 MPa or more, 3 MPa or less, and the compressive stress at 15% compression is 0. The thing of 0.03 MPa or more and 5 MPa or less is preferable. If the compressive stress at 5% compression of the adsorbent is 0.005 MPa or higher, the compressive stress at 10% compression is 0.01 MPa or higher, and the compressive stress at 15% compression is 0.03 MPa or higher, the line speed is high.
  • the compressive stress at 5% compression of the adsorbent is 1 MPa or less, the compressive stress at 10% compression is 3 MPa or less, and the compressive stress at 15% compression is 5 MPa or less, the brittleness is improved and the generation of fine particles is improved. Since it can suppress, it is preferable.
  • the compression stress at the time of 5% compression means the stress when the adsorbent is compressed and the volume is reduced by 5% from the initial volume
  • the compression stress at the time of 10% compression means that the adsorbent is compressed
  • the stress when the volume is reduced by 10% from the initial volume and the compression stress at the time of 15% compression are stresses when the adsorbent is compressed and the volume is reduced by 15% from the initial volume.
  • the initial volume is a volume in a state in which the slurry containing the adsorbent is allowed to settle and filled until the adsorbent does not decrease in volume while being vibrated.
  • the compression stress at the time of compression can be measured by the following method.
  • An adsorbent in which an affinity ligand is immobilized on a porous carrier having these physical properties is expected to efficiently adsorb a target adsorbing substance at a large scale and at a high linear velocity.
  • the adsorbed amount of the object of the adsorbent of the present invention is preferably 1 mg or more per 1 mL of the adsorbent. If the amount of adsorption of the target product is 1 mg or more per 1 mL of the adsorbent, it is preferable because purification can be performed efficiently. Moreover, if the adsorption amount of the target object is 1000 mg or less per 1 mL of the adsorbent, it is preferable because the adsorbed target object is easily eluted from the adsorbent.
  • the adsorption amount of the target product of the adsorbent is more preferably 5 mg or more, more preferably 10 mg or more, particularly preferably 20 mg or more, most preferably 30 mg or more, and more preferably 500 mg or less, per mL of the adsorbent. 300 mg or less is more preferable, 250 mg or less is particularly preferable, and 200 mg or less is most preferable.
  • the amount of adsorption of the target object can be determined as follows.
  • the method for obtaining the amount of adsorption of the target object is not particularly limited, but can be obtained by a static adsorption amount or a dynamic adsorption amount.
  • 70 mg of the target adsorbed substance is added to 35 mL of a pH 7.4 phosphate buffer with respect to 0.5 mL of the adsorbent substituted with a pH 7.4 phosphate buffer (manufactured by Sigma). It can be determined by contacting the solution dissolved in (Sigma) and stirring the mixture at 25 ° C. for 2 hours, and then measuring the amount of the target substance to be adsorbed in the supernatant.
  • Solution preparation pH 7.4 phosphate buffer (manufactured by Sigma) as solution A, pH 3.5 35 mM sodium acetate (prepared with acetic acid, sodium acetate, RO water, manufactured by Wako Pure Chemical Industries, Ltd.), C 1M acetic acid (prepared with acetic acid and RO water manufactured by Wako Pure Chemical Industries, Ltd.), 1 mg / mL human polyclonal IgG solution (prepared with Baxter Gamma Guard and A solution), E solution 6M urea, F As a solution, a 0.2 vol% surfactant (polyoxyethylene (20) sorbitan monolaurate manufactured by Wako Pure Chemical Industries, Ltd.) was added as a solution, and 2M tris (hydroxymethyl) amino was used as a neutralization solution. Prepare methane (prepared with Sigma Tris (hydroxymethyl) aminomethane and RO water) and degas each solution before use.
  • AKTAexplorer100 manufactured by GE Healthcare Bioscience
  • a 22 ⁇ m mesh is attached to a column having a diameter of 0.5 cm and a height of 15 cm.
  • 3 mL is added and filled with a 20% ethanol aqueous solution (prepared with ethanol and RO water manufactured by Wako Pure Chemical Industries, Ltd.) for 1 hour at a linear velocity of 400 cm / h.
  • a 15 ml collection tube is set in the fraction collector, and the eluate collection tube is previously filled with a neutralizing solution.
  • each solution is passed in the order of solution F, solution B, solution A, solution C, solution E at a linear speed of 300 cm / h, and 3 times the amount of the adsorbent. This liquid passing cycle is repeated any number of times.
  • the adsorbent of the present invention can be used for purification of various objects such as proteins using affinity chromatography, various purification methods as shown in Non-Patent Document 3, therapeutic adsorbents and medical kimonos. Can do.
  • the purification method and the treatment method are not particularly limited, and non-patent documents 1, 2, and 3 and other known methods can be suitably used.
  • the purification method using the purification adsorbent of the present invention preferably uses a column having a diameter of 0.5 cm or more and a height of 3 cm or more. If the diameter is 0.5 cm or more and the height is 3 cm or more, purification can be performed efficiently.
  • the column size is preferably 2000 cm or less in diameter and 5000 cm or less in height. More preferably, the column has a diameter of 2 cm or more and 400 cm or less, a height of 5 cm or more and 400 cm or less, more preferably a diameter of 5 cm or more and 300 cm or less, and a height of 8 cm or more and 200 cm or less, particularly preferably a diameter of 10 cm or more. 250 cm or less and a height of 12 cm or more and 100 cm or less, and most preferably a diameter of 20 cm or more and 150 cm or less and a height of 15 cm or more and 50 cm or less.
  • Treatment and purification using the adsorbent of the present invention preferably includes a step of passing liquid at a linear speed of 10 cm / h or more. It is preferable to have a step of passing liquid at a linear velocity of 10 cm / h or more because treatment and purification can be performed efficiently. In view of the accuracy of treatment and purification and the durability of the apparatus, treatment and purification using the adsorbent of the present invention are preferably performed at a linear velocity of 5000 cm / h or less.
  • the refining linear velocity is preferably 50 cm / h or more, more preferably 100 cm / h or more, particularly preferably 200 cm / h or more, most preferably 300 cm / h or more, and more preferably 3000 cm / h or less, more preferably 1500 cm / H or less is more preferable, 1000 cm / h or less is particularly preferable, and 750 cm / h or less is most preferable.
  • the volume of the porous particles at the time of reaction preparation in producing the adsorbent according to the present invention is a tapping volume unless otherwise specified.
  • the tapping volume is a volume in a state in which a slurry of porous particles and RO water is put into a measuring container and is allowed to settle until the volume is not further reduced while applying vibration.
  • the volume of the porous particles in the functional group content is a tapping volume unless otherwise specified.
  • the porous particle became insufficient in each test, it manufactured by the same method and added.
  • Test Example 1 Formyl group content measurement Porous particles (4 mL) substituted with 0.1 M phosphate buffer at pH 8 were brought into contact with 0.1 M phosphate buffer solution (2 mL) at pH 8 in which phenylhydrazine was dissolved. For 1 hour. Subsequently, the absorbance at the absorption maximum near 278 nm of the supernatant of the reaction solution was measured by UV measurement, and the formyl group content was estimated as the amount of adsorption of phenylhydrazine obtained by this to the porous particles.
  • the amount of phenylhydrazine input is 3 times the expected formyl group content, and when the amount of adsorption to the porous particles is 15% or less, or 45% or more with respect to the amount of phenylhydrazine input, The input amount of phenylhydrazine was reviewed and the measurement was performed again.
  • Test Example 2 Partition coefficient (K av ) measurement (1) Column packing Porous particles were dispersed in RO water and deaerated for 1 hour. The degassed porous particles were packed in a column (GE Healthcare Japan, Tricorn 10/300) at a linear velocity of 105 cm / h. Thereafter, an eluate having a pH of 7.5 (129 mL) was passed through the column at a linear velocity of 26 cm / h.
  • K av (V R ⁇ V 0 ) / (V t ⁇ V 0 ) (5) Maximum diameter The K av of each marker and the logarithm of the molecular weight were plotted, and the slope and intercept of the following formula were determined from the portion showing linearity.
  • K av k ⁇ Ln (molecular weight) + b
  • the molecular weight when K av was 0, that is, the exclusion limit molecular weight was determined from the determined slope and intercept.
  • the exclusion limit molecular weight was substituted into the following correlation equation between the diameter and molecular weight of the globular protein in the neutral buffer, and the obtained value was used as the maximum diameter of the pores of the sample particles.
  • Diameter of globular protein in neutral buffer ( ⁇ ) 2.523 ⁇ molecular weight 0.3267 (6) Average pore diameter The molecular weight corresponding to the maximum K av / 2 of the portion showing linearity is substituted into the correlation equation between the diameter and molecular weight of the globular protein in the neutral buffer solution, and the obtained value is used as the pore size of the sample particle. The average diameter was used.
  • the target adsorbing substance When measuring the K av of the adsorbent with respect to the target adsorbing substance, the target adsorbing substance is adsorbed and there is a possibility that accurate measurement cannot be performed. Accordingly, the K av of the adsorbent with respect to the target adsorbed substance is obtained by measuring the K av of two or more proteins having molecular weights close to those of the target adsorbed substance and calculating them from the data. For example, when the target adsorbing substance is IgG, K av is obtained from ferritin and albumin data.
  • Test Example 3 Average Particle Diameter Measurement The median diameter was measured using a laser diffraction / scattering particle size distribution analyzer (LA-950, manufactured by Horiba), and the average particle diameter was determined.
  • LA-950 laser diffraction / scattering particle size distribution analyzer
  • Test Example 4 Static Binding Capacity Measurement 70 mg human polyclonal IgG (Nichiyaku gamma globulin Nichiyaku 1500 mg / 10 mL, 0.467 mL) with respect to 0.5 mL of the adsorbent substituted with pH 7.4 phosphate buffer (manufactured by Sigma) ) Is dissolved in a phosphate buffer (manufactured by Sigma) pH 7.4 and brought into contact with a solution made up to a total volume of 35 mL. After stirring at 25 ° C. for 2 hours, the decrease in IgG in the supernatant is measured. Determined by
  • Liquid A pH 7.4 phosphate buffer (manufactured by Sigma)
  • Solution B 35 mM sodium acetate at pH 3.5M (prepared with acetic acid, sodium acetate, RO water manufactured by Nacalai Tesque)
  • Liquid C 1M acetic acid (prepared with acetic acid and RO water manufactured by Nacalai Tesque)
  • D liquid 1 mg / mL human polyclonal IgG solution (prepared with 1500 mg / 10 mL gamma globulin NICHIYAKU manufactured by NICHIYAKU and A liquid)
  • Liquid E 6M urea (prepared with urea and RO water manufactured by Kanto Chemical Co., Inc.) Each solution was degassed before use.
  • AKTAexplorer 100 manufactured by GE Healthcare Bioscience
  • a 22 ⁇ m mesh was attached to a column having a diameter of 0.5 cm and a height of 15 cm, and the adsorbent of the present invention was attached.
  • 3 mL of each was added and filled with a 20% ethanol aqueous solution (adjusted with ethanol and RO water manufactured by Wako Pure Chemical Industries, Ltd.) for 1 hour at a linear velocity of 450 cm / h.
  • a 15 ml collection tube was set in the fraction collector, and the eluate collection tube was previously filled with a neutralizing solution.
  • Test Example 6 Compressive Stress Measurement A 50 vol% slurry of porous particles or adsorbent was put into a glass graduated cylinder having an inner diameter of 15 mm. While vibrating the glass graduated cylinder, settle and fill until the volume of the porous particles or adsorbent does not decrease, and adjust the amount of the porous particles or adsorbent so that the volume of the porous particles or adsorbent is 4 mL. It was adjusted. The volume at this time was defined as the initial volume.
  • the microscopic images of the obtained particles were analyzed using commercially available image analysis processing software (manufactured by Motic, motor images plus), and the average aspect ratio was measured.
  • the average aspect ratio was obtained by measuring the long and short axes of the particles in the image to calculate the aspect ratio of each particle, and further calculating the average thereof. Further, the median diameter was measured using a laser diffraction / scattering particle size distribution measuring device (LA-950, manufactured by Horiba), and the average particle size was obtained. As a result, it was proved that cellulose particles having an average particle diameter of 104.0 ⁇ m and an average aspect ratio of 1.10 were obtained, which were fine and close to a true sphere.
  • the hardness of the cellulose particles was evaluated by measuring the compressive strength using a compressive strength tester (manufactured by SIMADZU, EZ-TEST). As a result, when the volume was compressed by 10%, a stress of 0.042 Mpa was exhibited, and it was revealed that it had an appropriate hardness.
  • the pores of the obtained cellulose particles were replaced with 2-methyl-2-propanol, freeze-dried, and then analyzed with a scanning electron microscope (S-800, manufactured by Hitachi, Ltd., hereinafter referred to as “SEM”). did. As a result, it was confirmed that the cellulose particles were porous particles as shown in FIGS.
  • the dried cellulose particles were analyzed by powder X-ray diffraction (XRD, Rigaku MiniFlex II, the same applies hereinafter). The results are shown in FIG. As shown in FIG. 5, it was confirmed that there was crystallinity.
  • Comparative Example 2 Cellulose particles were precipitated under the same conditions and method as in Comparative Example 1 except that the cellulose concentration was 10.0% by weight. As a result, cellulose particles having an average particle diameter of 121.4 ⁇ m and an average aspect ratio of 1.12 were obtained. Moreover, when the cellulose volume was compressed 10%, it showed a stress of 0.015 Mpa. The obtained particles were the same porous particles as in Comparative Example 1.
  • Comparative Example 3 Cellulose particles were precipitated under the same conditions and method as in Comparative Example 1 except that the cellulose concentration was 7.0% by weight. As a result, cellulose particles having an average particle diameter of 104.0 ⁇ m and an average aspect ratio of 1.10 were obtained. Moreover, when the cellulose volume was compressed 10%, the stress of 0.004 Mpa was shown. The obtained particles were the same porous particles as in Comparative Example 1.
  • FIG. 5 shows the results of analyzing the cellulose particles of Comparative Examples 1 to 3 by XRD. Since the crystallinity can be confirmed in all, it can be determined that the cellulose particles obtained from water have crystallinity.
  • the lower layer became MCT
  • the upper layer became a two-layer solution of methanol, water, 1-ethyl-3-methylimidazolium acetate and MCT.
  • the precipitated cellulose was sunk in the upper layer.
  • the cellulose was recovered, it was true spherical cellulose particles having an average particle diameter of 98.5 ⁇ m and an average aspect ratio of 1.07. Further, as shown in the SEM photographs of FIGS. 6 to 9, the particles are porous.
  • the lower layer became MCT
  • the upper layer became a two-layer liquid of methanol, water, 1-ethyl-3-methylimidazolium acetate and MCT.
  • the precipitated cellulose was sunk in the upper layer.
  • the cellulose was recovered, it was true spherical cellulose particles having an average particle diameter of 97.3 ⁇ m and an average aspect ratio of 1.07. Further, as shown in the SEM photographs of FIGS. 10 to 13, the particles are porous.
  • Example 3 Cellulose particles were precipitated under the same conditions and method as in Comparative Example 1 except that the cellulose insoluble liquid was methanol. The cellulose droplet dispersion was added to methanol, and the cellulose was precipitated and allowed to stand. As a result, the lower layer became a two-layer solution of MCT, the upper layer was methanol, 1-ethyl-3-methylimidazolium acetate, and MCT. . The precipitated cellulose was sunk in the upper layer. When the cellulose was recovered, it was true spherical cellulose particles having an average particle diameter of 60.4 ⁇ m and an average aspect ratio of 1.07.
  • the particles are porous.
  • FIG. 18 shows the results of XRD analysis of the cellulose particles of Comparative Example 1 and Examples 1 to 3, and it can be determined that the cellulose particles other than Comparative Example 1 using water as a coagulating liquid are amorphous.
  • Example 4 Cellulose was precipitated under the same conditions and method as in Example 3 except that the cellulose concentration was 10.0% by weight. As a result, true spherical cellulose particles having an average particle diameter of 54.23 ⁇ m and an average aspect ratio of 1.07 were obtained. When the cellulose volume was compressed 10%, it showed a stress of 0.027 Mpa.
  • Example 5 Cellulose was precipitated under the same conditions and method as in Example 3 except that the cellulose concentration was 7.0% by weight. As a result, true spherical cellulose particles having an average particle diameter of 60.36 ⁇ m and an average aspect ratio of 1.07 were obtained.
  • FIG. 19 shows the results of analyzing the cellulose particles of Examples 3 to 5 by XRD, and all were amorphous cellulose particles.
  • Example 6 Cellulose particles were precipitated under the same conditions and method as in Comparative Example 1 except that the cellulose concentration was 12.0% by weight and the cellulose insoluble liquid was ethanol. As a result, true spherical cellulose particles having an average particle diameter of 87.44 ⁇ m and an average aspect ratio of 1.07 were obtained. When ethanol was used, the solution was not separated into two layers, unlike when water or methanol was used.
  • the obtained cellulose particles were amorphous. From FIG. 5 and FIG. 19, it was found that the crystallinity of the cellulose particles became amorphous when alcohols were used as the cellulose insoluble liquid, regardless of the cellulose solution concentration, and showed crystallinity when water was used. . Further, the crystallinity of the cellulose particles could be controlled by the type of the cellulose insoluble liquid.
  • Example 7 Crystalline cellulose (5.80 g) was dissolved in 1-ethyl-3-methylimidazolium acetate (52.18 g) at 70 ° C. to prepare a 10.0 wt% solution. 50 mL of this cellulose solution was weighed and added to 950 mL of MCT which was stirred at a speed of 100 rpm with an H-shaped blade having a blade diameter of 70 mm in a cylindrical container having an inner diameter of 113 mm and dispersed. The solution temperature of the dispersion was 40 ° C., and passed through a static mixer (manufactured by Fujikin Co., Ltd., Dispersion 1.5A) at a rate of 1 L / min. To precipitate the cellulose.
  • a static mixer manufactured by Fujikin Co., Ltd., Dispersion 1.5A
  • MCT medium chain fatty acid triglyceride
  • FIG. 25 shows the results of XRD analysis of the cellulose particles of Examples 8 to 10, all of which were amorphous cellulose particles.
  • Cellulose particles were obtained under the same conditions as in Example 9 except that it was added to 400 mL of the cellulose insoluble liquid. As a result of analysis by SEM, it was confirmed that the obtained cellulose particles were the same porous particles as in Example 9. Result of obtaining the diameter of pores of the obtained porous cellulose particles by the above-mentioned K av measurements, the maximum pore diameter of the porous cellulose particles 362A, an average diameter of 201A.
  • the inclination k was -0.222.
  • the K av measured using IgG was 0.80.
  • the exclusion limit molecular weight was 4.2 ⁇ 10 6 .
  • the obtained cellulose particles were amorphous.
  • the average particle size was 90 ⁇ m.
  • Cellulose particles were obtained under the same conditions as in Example 9 except that it was added to 400 mL of the cellulose insoluble liquid. As a result of analysis by SEM, it was confirmed that the obtained cellulose particles were the same porous particles as in Example 9. Result of obtaining the diameter of pores of the obtained porous cellulose particles by the above-mentioned K av measurements, the maximum pore diameter of the porous cellulose particles 261A, average diameter was determined to 184A.
  • the inclination k was -0.380.
  • the K av measured using IgG was 0.86.
  • the exclusion limit molecular weight was 1.5 ⁇ 10 6 .
  • the obtained cellulose particles were amorphous.
  • the average particle size was 90 ⁇ m.
  • Cellulose particles were obtained under the same conditions as in Example 9 except that the content was 8.0% by weight.
  • SEM As a result of analysis by SEM, it was confirmed that the obtained cellulose particles were the same porous particles as in Example 8.
  • the maximum pore diameter of the porous cellulose particles 1020A, average diameter was determined to 306A.
  • the inclination k was -0.117.
  • the K av measured using IgG was 0.79.
  • the exclusion limit molecular weight was 1.0 ⁇ 10 8 .
  • the obtained cellulose particles were amorphous.
  • the average particle size was 94 ⁇ m.
  • the maximum pore diameter of the porous cellulose particles 1340A, average diameter was 353A.
  • the inclination k was ⁇ 0.102.
  • the K av measured using IgG was 0.78.
  • the exclusion limit molecular weight was 2.3 ⁇ 10 8 .
  • Example 15 Production of Crosslinked Porous Particles From the cellulose porous particles obtained in Example 8, coarse porous particles were removed using a sieve having an opening of 125 ⁇ m, and then excessively small using a sieve having an opening of 53 ⁇ m. The porous particles were removed.
  • RO water was added to 11.0 mL of the porous cellulose particles A after the classification operation to make 16.5 mL, and this was transferred to a 50 mL centrifuge tube. To this, 3.86 mL of 4N NaOH (manufactured by Nacalai Tesque and prepared with RO water) was added, and the temperature was raised to 40 ° C. in a hybridization oven (MHS-2000, manufactured by Tokyo Riken Kikai Co., Ltd.).
  • MHS-2000 manufactured by Tokyo Riken Kikai Co., Ltd.
  • RO water is added to the obtained crosslinked porous particles to make the total volume 10 times the volume of the crosslinked porous particles, and sealed with two pieces of aluminum foil, and autoclave (manufactured by Tommy, high-pressure sterilizer ES-315) And heated at 120 ° C. for 1 hour. After being allowed to cool to room temperature, it was washed with 5 times or more volume RO water of the porous particles on a glass filter (manufactured by Shibata 11GP100) to obtain autoclaved porous particles B in which the epoxy groups were changed to glyceryl groups. .
  • RO water is added to the obtained crosslinked porous particles to make the total volume 10 times the volume of the crosslinked porous particles, put into a glass Erlenmeyer flask (300 mL), sealed with two aluminum foils, and autoclaved (TOMY The mixture was heated at 120 ° C. for 60 minutes using a high pressure sterilizer ES-315). After cooling to room temperature, it was washed with 5 times or more volume of RO water of porous particles on a glass filter (manufactured by Shibata 11GP100) to obtain autoclaved porous particles C.
  • RO water is added to the obtained crosslinked porous particles to make the total volume 10 times the volume of the crosslinked porous particles, put into a glass Erlenmeyer flask (300 mL), sealed with two aluminum foils, and autoclaved (TOMY The mixture was heated at 120 ° C. for 60 minutes using a high pressure sterilizer ES-315). After allowing to cool to room temperature, it was washed with RO water at least 5 times the volume of the porous particles on a glass filter (manufactured by Shibata 11GP100) to obtain crosslinked porous particles D.
  • Example 16 Production of Adsorbent Body To 11.0 mL of the crosslinked porous particles D obtained in Example 15, RO water was added to make a total volume of 17.0 mL, put into a 50 mL centrifuge tube, and this was brought to 25 ° C. Were mounted on a mix rotor (mix rotor MR-3 manufactured by ASONE) and stirred. Next, 6.0 mL of an 8.64 mg / mL sodium periodate aqueous solution in which sodium periodate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in RO water was prepared, and the porous particles D were previously added. In addition to the tube, the mixture was stirred at 25 degrees for 1 hour.
  • Mix rotor MR-3 manufactured by ASONE
  • the filtrate was washed with RO water until the electric conductivity of the filtrate was 1 ⁇ S / cm or less on a glass filter (11GP100 manufactured by Shibata) to obtain a formyl group-crosslinked porous carrier E.
  • the electrical conductivity of the washing filtrate was measured with a conductivity meter (manufactured by EUTECH INSTRUMENTS, ECTester 10 Pure +).
  • the formyl group content was 20.17 ⁇ mol per 1 mL of the porous particles E.
  • the obtained formyl group cross-linked porous carrier E (9.0 mL) was buffered with 0.5 M trisodium citrate (manufactured by Kanto Chemical Co., Ltd.) + 0.15 M sodium chloride (manufactured by Kanto Chemical Co., Ltd.) at a pH of 11 with a glass filter (11 GP100 manufactured by Shibata). Replaced with 30 mL.
  • 0.5M sodium citrate + 0.15M saline buffer at pH 8 the substituted formyl group-containing porous carrier was placed in a centrifuge tube, and the liquid volume was adjusted to a total volume of 14.0 mL.
  • the pH of the reaction solution was adjusted to 5.0 with 2.4N citric acid (prepared with citric acid and RO water manufactured by Kanto Chemical Co., Ltd.), and then mixed at 6 ° C. for 4 hours.
  • the mixture was stirred using a rotor (mix rotor MR-3 manufactured by ASONE).
  • 0.39 mL of 5.5% aqueous dimethylamine borane (DMAB) solution (adjusted with dimethylamine borane manufactured by Kishida Chemical Co., Ltd. and RO water) was added and stirred at 6 ° C for 1 hour, and then the reaction temperature was raised to 25 ° C.
  • the mixture was allowed to react for 18 hours at 25 ° C.
  • the porous carrier was washed with 3 times volume RO water of the porous carrier on a glass filter (Shibata 11GP100). Subsequently, 3 times volume of 0.1N citric acid monohydrate (prepared with citric acid monohydrate and RO water manufactured by Kanto Chemical Co., Inc.) was added, and 0.1N citric acid monohydrate was added to the porous carrier. Was added to make the total volume 30 mL or more, put into a centrifuge tube, and washed with acid while stirring at 25 ° C. for 30 minutes.
  • 0.1N citric acid monohydrate prepared with citric acid monohydrate and RO water manufactured by Kanto Chemical Co., Inc.
  • the porous carrier is washed with 3 times volume RO water of the porous carrier on a glass filter (Shibata 11GP100), and then 3 times volume of 0.05M sodium hydroxide + 1M sodium sulfate aqueous solution. (Prepared with Nacalai Tesque sodium hydroxide, Kanto Chemical sodium sulfate and RO water) was added. Next, 0.05 M sodium hydroxide + 1 M sodium sulfate aqueous solution was added to the porous carrier to make the total volume 30 mL or more, put into a centrifuge tube, and washed with alkali while stirring at room temperature for 30 minutes.
  • the porous carrier was washed on a glass filter (Shibata 11GP100) with 20 times volume RO water of the porous carrier.
  • 0.1N citric acid monohydrate prepared with citric acid + RO water manufactured by Kanto Chemical Co., Inc.
  • the washing filtrate was washed with water until the conductivity of the washing filtrate was 1 ⁇ S / cm or less to obtain an adsorbent F on which the target protein A was immobilized.
  • the conductivity of the washing filtrate was measured with a conductivity meter (EUTECH INSTRUMENTS, ECTester 10 Pure +).
  • human polyclonal IgG (manufactured by NICHIYAKU, gamma globulin NICHIYAKU 1500 mg / 10 mL) was selected, and as a result of measuring the static binding capacity, it was 83.9 mg / mL adsorbent.
  • the IgG adsorption capacity (5% dynamic binding capacity) at a linear speed of 300 cm / h was 29.8 mg / mL adsorbent.
  • the IgG adsorption capacity (5% dynamic binding capacity) at a linear speed of 150 cm / h was 36.0 mg / mL adsorbent.
  • Example 17 Production of adsorbent Adsorbent with protein A immobilized in the same manner as described in Examples 15 to 16 except that the cellulose porous particles obtained in Example 9 were used. Got. As a result of measuring the static binding capacity of the obtained adsorbent, it was 85.9 mg / mL adsorbent. As a result of obtaining the dynamic adsorption amount, the IgG dynamic adsorption amount (5% dynamic binding capacity) at a linear speed of 300 cm / h was 6.9 mg / mL adsorbent.
  • Example 18 An adsorbent on which protein A was immobilized was obtained in the same manner as described in Examples 15 to 16, except that the cellulose porous particles obtained in Example 10 were used. As a result of measuring the static binding capacity of the obtained adsorbent, it was 49.3 mg / mL adsorbent. As a result of obtaining the dynamic adsorption amount, the IgG dynamic adsorption amount (5% dynamic binding capacity) at a linear speed of 300 cm / h was 1.6 mg / mL adsorbent.
  • Example 19 An adsorbent on which protein A was immobilized was obtained in the same manner as described in Examples 15 to 16, except that the cellulose porous particles obtained in Example 11 were used. As a result of measuring the static binding capacity of the obtained adsorbent, it was 79.3 mg / mL adsorbent. As a result of obtaining the dynamic adsorption amount, the IgG dynamic adsorption amount (5% dynamic binding capacity) at a linear speed of 300 cm / h was 9.3 mg / mL adsorbent.
  • Example 20 Using the cellulose porous particles obtained in Example 12, an adsorbent on which protein A was immobilized was obtained in the same manner as described in Examples 15 to 16. As a result of measuring the static binding capacity of the obtained adsorbent, it was 58.9 mg / mL adsorbent. As a result of obtaining the dynamic adsorption amount, the IgG dynamic adsorption amount (5% dynamic binding capacity) at a linear speed of 300 cm / h was 1.6 mg / mL adsorbent.
  • Example 21 Using the cellulose porous particles obtained in Example 13, an adsorbent on which protein A was immobilized was obtained by the same method as that described in Examples 15 to 16. As a result of measuring the static binding capacity of the obtained adsorbent, it was 83.9 mg / mL adsorbent. As a result of obtaining the dynamic adsorption amount, the IgG dynamic adsorption amount (5% dynamic binding capacity) at a linear speed of 300 cm / h was 12.8 mg / mL.

Abstract

 本発明の目的は、様々な物質の吸着体として利用可能な多孔質のセルロース粒子を、チオシアン酸カルシウム溶液など毒性が高い溶媒を使わず安全かつ簡便に製造する方法を提供することである。また、本発明は、当該方法で製造された多孔質粒子、当該多孔質粒子を含み、純度の高いタンパク質を安全かつ効率的に精製できる吸着体と、当該吸着体を用いたタンパク質の精製方法を提供することも目的とする。本発明に係る多孔質粒子の製造方法は、セルロースおよびイオン液体を含む溶液を調製する工程;当該セルロース溶液をイオン液体と相溶しない液体に分散させて分散液を調製する工程;および、当該分散液を、アルコールまたはアルコール水溶液と接触させることにより凝固させて多孔質粒子を得る工程を含むことを特徴とする。

Description

多孔質粒子の製造方法、多孔質粒子、吸着体、およびタンパク質の精製方法
 本発明は、多孔質粒子を製造するための方法、当該方法で製造された多孔質粒子、当該多孔質粒子を含む吸着体、および当該吸着体を用いてタンパク質を精製するための方法に関するものである。
 多孔質粒子は、例えば各種クロマトグラフィー用吸着体やアフィニティー吸着体などの担体として広く用いられている。なかでもアフィニティー吸着体は、効率よく目的物を精製でき、不要物濃度を低減できることから、医療用吸着体や抗体医薬品精製用吸着体として利用されてきている。
 特に、リウマチ、血友病、拡張型心筋症の治療用吸着体として、プロテインAをアフィニティーリガンドとして多孔質担体に固定化した吸着体が注目されている(例えば、非特許文献1、非特許文献2、非特許文献3)。また、プロテインAが多孔質担体に固定化された吸着体は、免疫グロブリン(IgG)を特異的に吸着できる抗体医薬品精製用吸着体としても注目されている。
 多糖類は産業的に容易に得ることが可能であり、また生体に対する安全性も高いことから、医療用の多孔質担体の材料として広く用いられている。例えば、多孔質セルロース担体は、機械的強度が比較的高く、リガンドの結合に利用しうるヒドロキシル基を多数有し、非特異吸着も少なく、合成高分子系の担体などに比べて安全性が高いなどの優れた点を有していることが知られている(特許文献1~2)。例えば、多孔質セルロース担体にプロテインAを固定化した吸着体が特許文献3に開示されている。
 しかし、セルロースを溶解できる溶媒はほとんどなく、セルロース多孔質粒子は、一般的に、チオシアン酸カルシウム溶液など毒性が高い溶媒にセルロースを溶解して製造されているが、このような溶媒は腐食性や安全性の面で取扱いが困難である。
 一方で、近年、不揮発性かつ広い温度域で液体となる特徴を持つイオン液体が注目されている。イオン液体は、主に機能性溶媒やイオニクスデバイスの溶媒として、また、ポリペプチドなど生体由来材料の溶媒として適用されている。近年、このイオン液体は、セルロースも溶解することがわかり、繊維の製造などに適用されている(特許文献4)。
特開平1-278534号公報 特開平11-158202号公報 WO2008/146906 特開2008-248466号公報
Annals of the  New  York  Academy of Sciences, 2005, Vol.1051, pp.635-646 American Heart  Journal, Vol.152, No.4, 2006 「アフィニティークロマトグラフィー」笠井献一ら著,東京化学同人,1991年
 本発明の目的は、様々な物質の吸着体として利用可能な多孔質のセルロース粒子を、チオシアン酸カルシウム溶液など毒性が高い溶媒を使わず安全かつ簡便に製造する方法を提供することである。また、本発明は、当該方法で製造された多孔質粒子、当該多孔質粒子を含み、純度の高いタンパク質を安全かつ効率的に精製できる吸着体と、当該吸着体を用いたタンパク質の精製方法を提供することも目的とする。
 本発明者らは、上記課題を解決すべく鋭意研究を行った。その結果、イオン液体にセルロースを溶解させた上で特定の溶媒と接触させることにより、タンパク質吸着体の材料として適度な大きさと適度な孔を有するアモルファス状の多孔質粒子を安全かつ効率的に製造できることを見出して、本発明を完成した。
 本発明に係る多孔質粒子の製造方法は、セルロースおよびイオン液体を含む溶液を調製する工程;当該セルロース溶液をイオン液体と相溶しない液体に分散させて分散液を調製する工程;および、当該分散液を、アルコールまたはアルコール水溶液と接触させることにより凝固させて多孔質粒子を得る工程を含むことを特徴とする。
 本発明方法のセルロース溶液の調製工程においては、水および/またはアルコールを添加し、且つ当該水および/またはアルコールの添加量を、イオン液体との合計量に対して2重量%以上、20重量%以下にすることが好ましい。かかる態様により、多孔質粒子の内部構造を制御することが可能になる。より具体的には、当該溶液にセルロースの貧溶媒を加えることにより、多孔質粒子の孔径をより均一化することが可能になる。
 本発明方法では、セルロース溶液の温度を0℃以上、70℃以下に調整することが好ましい。当該温度が0℃以上であれば、イオン液体に対するセルロースの溶解度が高くなり、また、セルロース溶液の粘度が低くなって分散液が調製し易くなる。また、当該温度が70℃以下であれば、セルロース溶液や分散液の調製時においてイオン液体以外の溶媒が揮発し難くなる。
 また、分散液とアルコールまたはアルコール水溶液とを10℃以上で接触させることが好ましい。理由は明らかではないが、本発明者らは、分散液とアルコールまたはアルコール水溶液とを接触させる際の温度を高くすればするほど得られる多孔質粒子の細孔径が大きくなることを見出した。従って、当該温度としては10℃以上が好ましい。
 本発明に係る多孔質粒子は、上記本発明方法で製造されたものであることを特徴とする。
 また、本発明に係る吸着体は、上記本発明に係る多孔質粒子とアフィニティーリガンドとを含み、アフィニティーリガンドが多孔質粒子に固定化されていることを特徴とする。
 本発明に係る多孔質粒子および吸着体としては、カラムに充填し、目的吸着物質以上の分子量を有する複数のタンパク質の分配係数を測定し、縦軸にKav、横軸に分子量の対数をプロットし、式(I)が成り立つ部分においてk≦-0.1であるものが好適である。
  Kav=k・ln(MW)+b   (I)
[式中、Kavは分配係数を示し、MWはタンパク質の分子量を示し、bは定数を示す]
 式(I)におけるkの値が-0.1以下であれば、吸着物質の分子量における比表面積
は大きくなるので、より優れた吸着能が発揮される。
 また、カラムに充填して測定した目的吸着物質、特にIgGのKavが0.3以上である多孔質粒子が好適である。Kavが0.3以上であれば、吸着物質の分子量における比表面積は大きくなり、効率よく吸着することが可能である。
 本発明に係る多孔質粒子および吸着体において、排除限界分子量としては103以上、109以下が好ましい。排除限界分子量がこの範囲にあれば、本発明に係る多孔質粒子および吸着体を用いて、多くの有用タンパク質の精製が可能になる。
 本発明吸着体としてはアフィニティーリガンドの導入量が、多孔質粒子1mL当たり1mg以上、1000mg以下であるものが好ましい。当該導入量が1mL以上であれば、十分な吸着能をより確実に確保することができる。一方、過剰量のアフィニティーリガンドを担体へ導入することは難しい場合があり、生産性が落ちるおそれがあり得るので、当該導入量としては1000mg以下が好適である。
 本発明に係る多孔質粒子および吸着体におけるセルロース含量としては、2重量%以上、50重量%以下が好ましい。セルロース含量が2重量%以上であれば、大スケール、高線速で精製を行っても圧密化を生じない吸着体が得られる。また、セルロース含量が50重量%以下であると、精製目的物を通すことができる十分な孔を確保することができる。
 本発明吸着体の担体である多孔質粒子としては、架橋されているものが好適である。架橋されている多孔質粒子は強度に優れているため、高線速下や高圧力下の使用にも耐えることができる。
 本発明に係る多孔質粒子および吸着体の10%圧縮時の圧縮応力としては、0.01MPa以上、3MPa以下が好ましい。当該圧縮応力が0.01MPa以上であれば、高線速下で通液しても、圧密化し難くなる。また、当該圧縮応力が3MPa以下であれば、脆性が改善され、微粒子発生がより確実に抑制される。
 本発明に係る多孔質粒子および吸着体の体積平均粒径としては、1μm以上、2000μm以下が好ましい。体積平均粒径が20μm以上であれば、圧密化がより起こり難くなり、1000μm以下であれば、目的物の吸着量がより大きくなり得る。
 本発明吸着体のアフィニティーリガンドとしては、プロテインAが好ましい。
 本発明に係るタンパク質の精製方法は、上記本発明吸着体をカラムに充填する工程;当該カラムに粗タンパク質を含む溶液をカラムに充填された吸着体に通液する工程;および、溶離液をカラムに通液する工程を含むことを特徴とする。
 本発明方法によれば、従来使用されていたチオシアン酸カルシウム溶液などを用いる必要が無く、より安全且つ低コストでセルロース多孔質粒子を製造することができる。また、本発明方法においてチオシアン酸カルシウム溶液の代わりに用いられるイオン液体、および当該イオン液体と相溶しない液体は、使用後に分離回収が可能であり、再利用できるので、本発明方法は工業的な大量生産にも適する。
 また、本発明方法によれば、セルロース多孔質粒子の硬度や内部構造などを変化させることも可能であり、特に、アモルファス状のセルロース多孔質粒子が得られる。よって、本発明方法により、様々な物質の吸着体の担体として利用可能なセルロース多孔質粒子を提供することが可能となる。
 さらに本発明方法では、セルロース溶液の分散液の粘度は、イオン液体と相溶しない液体に依存するため、高濃度のセルロース溶液の操作時の見かけ粘度を低く抑えることができ、取扱性を大きく改善することができる。
 また、本発明方法で得られるセルロース多孔質粒子は、タンパク質などの吸着体の担体として非常に有用である。
比較例1により得られた本発明のセルロース粒子表面のSEM写真である。 図1の高倍率SEM写真である。 比較例1により得られた本発明のセルロース粒子を割断したSEM写真である。 図3の高倍率SEM写真である。 比較例1~3より得られたセルロース粒子のXRDパターンである。 実施例1により得られた本発明のセルロース粒子表面のSEM写真である。 図6の高倍率SEM写真である。 実施例1により得られた本発明のセルロース粒子を割断したSEM写真である。 図8の高倍率SEM写真である。 実施例2により得られた本発明のセルロース粒子表面のSEM写真である。 図10の高倍率SEM写真である。 実施例2により得られた本発明のセルロース粒子を割断したSEM写真である。 図12の高倍率SEM写真である。 実施例3により得られた本発明のセルロース粒子表面のSEM写真である。 図14の高倍率SEM写真である。 実施例3により得られた本発明のセルロース粒子を割断したSEM写真である。 図16の高倍率SEM写真である。 比較例1および実施例1~3より得られたセルロース粒子のXRDパターンである。 実施例3~5より得られたセルロース粒子のXRDパターンである。 実施例7により得られた本発明のセルロース粒子を割断したSEM写真である。 図20の高倍率SEM写真である。 実施例8により得られた本発明のセルロース粒子表面のSEM写真である。 実施例9により得られた本発明のセルロース粒子表面のSEM写真である。 実施例10により得られた本発明のセルロース粒子表面のSEM写真である。 実施例8~10より得られたセルロース粒子のXRDパターンである。
 以下、本発明方法を実施の順番に従って説明する。
 (1) 溶液調製工程
 本発明に係る製造方法では、まず、セルロースおよびイオン液体を含む溶液を調製する。
 イオン液体とは、一般に、常圧100℃未満で液体であるイオン化合物である。イオン液体のカチオン部分の例は、ピリジニウム、イミダゾリウムおよびイミダゾール等が挙げられ、非環状カチオンとしては、アルキル第4級アンモニウムおよびアルキル第4級リンカチオン等が挙げられる。カチオン部分の対アニオンは、ハロゲンイオン、擬ハロゲンイオン、ハロゲンを含む有機化合物である有機ハロゲン化物イオンおよびカルボキシレート等からなる群より選択される。カルボキシレートとしては、アセテート、シトレート、マレート、マレエート、ホルメートおよびオキシレートが挙げられ、ハロゲンイオンとしては、クロリド、ブロミド、亜鉛クロリド/コリンクロリドが挙げられ、有機ハロゲン化物イオンとしては、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、CF3SO2 -、(CF3SO22-、CF3CO2 -、3-メチル-N-ブチル-ピリジニウムクロリドおよびベンジルジメチル(テトラデシ)アンモニウムクロリドが挙げられる。
 本発明に使用可能なセルロースとしては、イオン液体に溶解するものであれば、いかなるものでも用いることができる。例えば、再生セルロース、結晶性セルロース(microcrystalline cellulose)、酢酸セルロースから選択される1種以上を用いることができる。特に、平均重合度が100以上、700以下程度の結晶性セルロースが好ましい。平均重合度が100以上であれば、得られる多孔質粒子の強度を十分なものとすることができる。一方、平均重合度が高過ぎると、セルロース溶液の粘度が過剰に高くなり得るため、平均重合度としては700以下が好ましい。より好ましい平均重合度は100以上、500以下、さらに好ましくは150以上、350以下、特に好ましくは200以上、300以下であり、中でも300程度の結晶性セルロースが良好である。なお、平均重合度の高いものを用いる場合には、貧溶媒の添加や、高温での操作がセルロース溶液の粘度を下げるために有効である。
 セルロースの使用量は特に制限されず、適宜調整すればよい。例えば、セルロース溶液100重量%に対して2重量%以上、50重量%以下が好ましい。当該濃度が2重量%以上であれば、本発明方法により、大スケールや高線速で精製を行っても圧密化を生じない吸着体が得られる。また、当該濃度が50重量%以下であると、精製目的物を通すことができる十分な孔を確保することができる。また、当該濃度が高過ぎると溶液の粘度が過剰に高くなって操作性が悪くなるおそれがあり得るので、当該濃度としては50重量%以下が好適である。当該濃度としては、3重量%以上がより好ましく、4重量%以上がさらに好ましく、5重量%以上が特に好ましく、また、30重量%以下がより好ましく、20重量%以下がさらに好ましく、15重量%以下が特に好ましい。
 溶液の調製方法は特に制限されず、常法を用いればよい。例えば、単にセルロースとイオン液体を混合し、セルロースが十分に溶解されるまで加温したり攪拌したりすればよい。
 セルロースおよびイオン液体を含む溶液は、セルロースが析出しない程度でさらに水および/またはアルコールより選択される1種以上を添加することにより、多孔質粒子の内部構造を制御することが可能になる。より具体的には、当該溶液にセルロースの貧溶媒を加えることにより、多孔質粒子の孔径をより均一化することが可能になる。
 なお、アルコール水溶液を添加する場合、アルコール濃度は適宜調整すればよいが、例えば、水:アルコール類=80:20~5:95(体積比)とすることができる。
 水および/またはアルコールの添加量は、常温でセルロースが析出しない範囲で適宜調整すればよいが、例えば、添加すべき水および/またはアルコールとイオン液体との合計量に対して2重量%以上、20重量%以下とすることができる。当該添加量が2重量%以上であれば、多孔質粒子の孔径の均一化効果をより確実に発揮することができる。一方、当該添加量が多過ぎるとセルロースが析出する可能性があり得るので、当該添加量は20重量%以下とすることが好ましく、15重量%以下がより好ましい。
 セルロースをイオン液体に溶解するに当たっては、加温してもよい。ただし、一般的なイオン液体は100℃未満で液体であるため、温度は100℃未満とすることが好ましい。より好ましくは、50℃以上、90℃以下とする。また、溶解を容易にするために、セルロースを事前に微細化しておいてもよい。
 (2) 分散化工程
 次に、得られたセルロース溶液をイオン液体と相溶しない液体に分散させ、分散液を調製する。
 上記セルロース溶液は、イオン液体と相溶しない液体に分散させる前または分散中に、その温度を0℃以上、70℃以下に調整することが好ましい。当該温度が0℃以上であれば、イオン液体に対するセルロースの溶解度が高くなり、また、セルロース溶液の粘度が低くなって分散液が調製し易くなる。また、当該温度が70℃以下であれば、セルロース溶液や分散液の調製時においてイオン液体以外の溶媒が揮発し難くなる。
 イオン液体と相溶しない液体としては、使用したイオン液体1gまたは1mLを25℃で溶解するのに1000mL以上を要する液体が好ましい。かかる液体としては、使用するイオン液体の種類などにもよるが、例えば、ヘキサン、酢酸エチル、炭素数6~12の直鎖状飽和脂肪酸、炭素数16~24の不飽和脂肪酸、融点が100℃以下の動植物油脂類、水素添加動植物油、動植物油脂類やその水素添加物の高融点画分を分別精製した分別油、飽和脂肪酸トリグリセリド類、食用ワックス類、微細藻類由来油脂類、微生物油脂類、中鎖脂肪酸トリグリセリド類、不飽和脂肪酸トリグリセリド類などを挙げることができる。本発明で用いられる油脂は、融点が100℃以下であれば特に限定されない。例えば、パーム油、シア脂、サル脂、イリッペ脂、豚脂、牛脂、ナタネ油、米油、落花生油、オリーブ油、コーン油、大豆油、シソ油、綿実油、ヒマワリ油、月見草油、ゴマ油、サフラワー油、ヤシ油、カカオ脂、パーム核油、魚油等の動植物油脂類;パーム硬化油、パーム極度硬化油、ナタネ硬化油、ナタネ極度硬化油、大豆硬化油、豚脂硬化油、魚油硬化油等の水素添加動植物油;動植物油脂類やその水素添加物の高融点画分を分別精製した、ヤシ分別油、パーム核油分別油、パーム分別油、カカオ脂分別油、シア脂分別油、豚脂分別油、大豆硬化油分別油、魚油硬化油分別油等の分別油;トリステアリン、トリパルミチン、トリラウリン等の飽和脂肪酸トリグリセリド類;これらのモノグリセリド、ジグリセリド、脂肪酸等の部分グリセリド類;ミツロウ、キャンデリラロウ、米ぬかロウ等の食用ワックス類;ワカメ油やコンブ油等の海藻由来油脂類;スピルリナ抽出油等の微細藻類由来油脂類;酵母抽出油やモルティエラ属抽出油等の微生物油脂類;これらの低融点画分を分別精製したパーム低融点画分、魚油低融点画分、シア脂低融点画分等の分別油;トリカプリリン、トリカプリン等の中鎖脂肪酸トリグリセリド類;トリオレイン、トリリノール等の不飽和脂肪酸トリグリセリド類;これらのモノグリセリド、ジグリセリド等の部分グリセリド類;オレイン酸、リノール酸、リノレン酸、アラキドン酸、イコサペンタエン酸、ドコサヘキサエン酸等の脂肪酸類を挙げることができる。
 イオン液体と相溶しない液体は、1種のみ単独で用いてもよく、2種以上を混合して用いてもよい。2種以上を混合する場合の例としては、炭素数の異なる飽和脂肪酸の混合溶媒、炭素数の異なる不飽和脂肪酸の混合溶媒、飽和脂肪酸と不飽和脂肪酸の混合溶媒を挙げることができる。
 イオン液体と相溶しない液体中にイオン液体を分散させるために、界面活性剤を用いてもよい。界面活性剤としては、例えば、N-アシル-L-グルタミン酸トリエタノールアミン、N-アシル-L-グルタミン酸ナトリウム、塩酸アルキルジアミノエチルグリシン液、ジメチコンコポリオール、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、モノステアリン酸グリセリン、モノステアリン酸プロピレングリコール、モノステアリン酸ポリオキシエチレングリセリン、モノステアリン酸ポリオキシエチレンソルビタン、モノウリン酸ポリエチレングリコールなどを挙げることができる。セルロースへの着色抑制や溶液粘性などの観点から、界面活性剤としては中鎖脂肪酸トリグリセリド類が好ましい。
 セルロース溶液を上記液体に分散させることにより、セルロース溶液の液滴を形成させる。イオン液体と相溶しない液体とセルロース溶液の使用量は特に制限されず適宜調整すればよいが、例えば、上記液体:セルロース溶液=98:2~50:50(体積比)とすることができる。当該体積比としては、97:3~70:30が好ましく、97:3~80:20がより好ましい。
 セルロース溶液の分散方法は特に限定しないが、例えば攪拌翼を用いた攪拌やホモジナイザーを用いた攪拌により、イオン液体と相溶しない液体中にセルロース溶液を均一に分散させることが可能である。さらに静止型ミキサーも用いることができる。
 (3) 凝固工程
 次に、上記分散液を、アルコールまたはアルコール水溶液と接触させることにより凝固させて、多孔質粒子とする。当該工程により、液滴中のイオン液体を抽出し、セルロースを不溶化して凝縮させることにより、セルロースからなる多孔質粒子を得ることができる。
 当該工程で用いるアルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、n-ブタノール、イソブタノール、2-ブタノール、sec-ブタノール、2-メチル-2-プロパノール(tert-ブタノール)、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、2-メチル‐2‐ブタノール、3‐メチル‐2‐ブタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノールなどのC1-6アルコール類を挙げることができる。
 アルコール水溶液の濃度も特に制限されず、適宜調整すればよいが、例えば、水:アルコール類=80:20~5:95(体積比)とすることができる。また、本発明者らは、驚くべきことに、アルコール水溶液における水の体積比が大きいほど多孔質粒子の細孔が大きくなり、アルコール類の体積比が大きいほど多孔質粒子の真球度が大きく且つアモルファス状になることを見出した。これらの観点から、当該割合としては、70:30~10:90がより好ましく、50:50~10:90がさらに好ましく、40:60~20:80が特に好ましい。
 上記分散液とアルコールまたはアルコール水溶液との接触方法は特に制限されず、分散液はアルコールまたはアルコール水溶液を全量または一部ずつ添加してもよいし、アルコールまたはアルコール水溶液へ全量または一部ずつ分散液を添加してもよい。好適には、アルコールまたはアルコール水溶液を攪拌しておき、ここへ分散液を徐々に添加する。
 アルコールまたはアルコール水溶液の使用量は特に制限されず、イオン液体を抽出するに十分量を用いればよいが、例えば、分散液に対する体積比で1以上、5以下とすることができる。
 接触時の温度も特に制限されず、イオン液体の融点以上、使用するアルコールの沸点以下とすることが好ましい。当該温度をイオン液体の融点以下にすると、セルロース粒子中からイオン液体が放出されにくくなるおそれがあり得る。一方、アルコールの沸点以上にすると、還流装置が必要となるなどコストが上がってしまう。当該温度としては、10℃以上、60℃以下が好ましく、25℃以上、60℃以下がより好ましく、40℃以上、55℃以下が特に好ましい。なお、凝固したセルロース粒子の多孔性は、驚くべきことにセルロース溶液とアルコールまたはアルコール水溶液の温度に影響を受け、溶液温度が高いほどセルロース粒子の細孔径は大きくなる。この点でも、当該温度を上記好適範囲にすることが好ましい。
 なお、セルロース多孔質粒子の細孔径としては、例えば、最大径で200Å以上、1500Å以下、平均径で100Å以上、400Å以下が好ましい。平均径としては、140Å以上、400Å以下がより好ましく、200Å以上、400Å以下がさらに好ましい。
 以上で得られるセルロース粒子は多孔質であり、その孔の大きさや硬度などは、セルロース濃度、分散液温度、セルロース非溶解性の液体を変えることで制御することが可能である。
 (4) 回収工程
 次に、得られた多孔質粒子を回収すればよい。回収手段は特に制限されず、濾過や遠心分離など一般的な固液分離手段を用いることができる。
 得られた多孔質粒子は、必要であれば、孔内に残留しているイオン液体やセルロース非溶解性液体を除去するために、水やアルコール類で洗浄した後、減圧下、乾燥してもよい。
 また、使用したイオン液体は、固液分離後の液体からセルロース非溶解性液体を蒸発させることで回収可能である。
 (5) 架橋工程
 上記本発明方法で得られた多孔質粒子は、架橋剤にて強度をさらに増すことが可能である。架橋剤や架橋反応条件に特に限定は無く、公知の技術を用いて行うことができる。例えば架橋剤としては、エピクロロヒドリン、エピブロモヒドリン、ジクロロヒドリンなどのハロヒドリン;2官能性ビスエポキシド(ビスオキシラン);多官能性ポリエポキシド(ポリオキシラン)を挙げることができる。
 多孔質粒子の大きさは特に限定されるものではないが、一般的に1μm以上、2mm以下程度が好ましい。例えば、精製用吸着体の担体として場合、体積平均粒径は20μm以上、1000μm以下が好ましい。多孔質粒子の体積平均粒径が20μm以上であれば、圧密化が起こり難いため好ましく、1000μm以下であれば精製用吸着体の担体に用いた場合の精製目的物の吸着量が大きくなるため好ましい。多孔質粒子の体積平均粒径としては、20μm以上がより好ましく、30μm以上がさらに好ましく、50μm以上が特に好ましく、60μm以上が最も好ましく、また、500μm以下がより好ましく、250μm以下がさらに好ましく、125μm以下が特に好ましく、95μm以下が最も好ましい。体積平均粒径は、ランダムに選んだ100個の多孔質粒子の粒径を測定して求めることができる。個々の多孔質粒子の粒径は、個々の多孔質粒子の顕微鏡写真を撮影して電子データとして保存し、メディアサイバネティックス社製のイメージプロプラスなどの粒径測定ソフトウェアを用いて測定することができる。或いは、レーザ回折/散乱式粒子径分布測定装置を用いて測定することもできる。なお、多孔質粒子の大きさは、例えば、分散時や、分散液とアルコールまたはアルコール水溶液との接触時における攪拌強度や界面活性剤の種類などによって調節することが可能である。
 次に、上記で得られたセルロース多孔質粒子を担体として用い、吸着体を製造する方法について説明する。
 (6) アフィニティーリガンドの固定化工程
 タンパク質の吸着体を製造するには、目的吸着物質に対して親和性の高いアフィニティーリガンドを、上記セルロース多孔質粒子に固定化する。
 アフィニティーリガンドとは、特定の目的物質と相互作用し、特異的に親和力を有し得る分子または化合物を意味する。例えば、抗体が目的吸着物質である場合、特異的に相互作用する抗原やタンパク質、抗体結合活性を有するペプチド等を挙げることができる。
 本発明の吸着体のために用いることができるアフィニティーリガンドに特に限定は無く、所望のアフィニティーリガンドを固定化するために活性化された多孔質担体を用いて、様々なアフィニティーリガンドを固定化することができる。固定化方法としては、例えば非特許文献3の表8・1、表8・2、図8・15に示されるような、臭化シアン法、トリクロロトリアジン法、エポキシ法、トレシルクロリド法、過ヨウ素酸酸化法、ジビニルスルホン酸法、ベンゾキノン法、カルボニルジイミダゾール法、アシルアジド法等を用いてアミノ基含有リガンドを固定化する方法;エポキシ法、ジアゾカップリング法等を用いて水酸基含有リガンドを固定化する方法;エポキシ法、トレシルクロリド法、ジビニルスルホン酸法等を用いて、チオール基含有リガンドを固定化する方法;アミノ化担体にカルボン酸含有リガンドやホルミル基含有リガンドを固定化する方法等の様々な固定化方法を挙げることができる。
 本発明の吸着体は、精製用吸着体として用いることが可能であるが、近年注目されている抗体医薬品精製用吸着体としても用いることが可能である。抗体医薬品精製用吸着体などに用いられる場合のアフィニティーリガンドとしては、特に限定は無いが、例えば、抗体に特異性の高い抗原やタンパク質や、プロテインG、プロテインLやそれら変異体、抗体結合活性を有するペプチド等のアミノ基含有リガンドを挙げることができる。
 特に、免疫グロブリン(特にIgG)を特異的に吸着、溶出できる吸着体として、プロテインAをアフィニティーガンドとして多孔質担体に固定化した吸着体が注目されている。本発明に用いることができるプロテインAには特に限定は無く、天然物、遺伝子組み換え物等を制限なく使用することができる。また、抗体結合ドメイン及びその変異体を含むもの、融合蛋白質等であってもよい。また、菌体抽出物もしくは培養上清より、イオン交換クロマトグラフィー、疎水性相互作用クロマトグラフィー、ゲルろ過クロマトグラフィー、ヒドロキシアパタイトクロマトグラフィー等の各種クロマトグラフィー及び膜分離技術を用いた分子量分画、分画沈殿法等の手法から選択される精製法を組合せ、および/または繰り返すことにより製造された、プロテインAを用いることもできる。特に、国際公開特許公報WO2006/004067や米国特許公報US5151350、WO2003/080655、特開2006-304633、特願2009-071766に記載されている方法で得られたプロテインAであることが好ましい。
 プロテインAをアフィニティーリガンドとして多孔質粒子に導入する方法としては、前述の様々な固定化方法から選択することができるが、より好ましいのは多孔質粒子が含有するホルミル基と、プロテインAのアミノ基との反応を利用して固定化を行う方法である。例えば、特許文献1に記載の方法がある。
 本発明の吸着体のアフィニティーリガンドの導入量は、特に制限されないが、例えば、多孔質担体1mL当り、1mg以上、1000mg以下とすることができる。当該割合が1mg以上であれば、精製目的物に対する吸着量が大きくなるため好ましく、1000mg以下であれば、製造コストを抑制できるため好ましい。アフィニティーリガンドの導入量としては、多孔質担体1mL当り、2mg以上がより好ましく、4mg以上がさらに好ましく、5mg以上が特に好ましく、また、500mg以下がより好ましく、250mg以下がさらに好ましく、200mg以下が特に好ましく、100mg以下が最も好ましい。
 以下に、多孔質粒子を吸着体のための多孔質担体として利用する場合の好ましい物性について説明する。
 多孔質粒子を吸着体のために用いる場合、その細孔径が重要な要素の一つとなる。例えば、目的吸着物質よりも細孔径が小さいと、吸着体担体の表面でしか吸着することができず、吸着量が低いおそれがある。また、細孔径が大き過ぎると比表面積が小さくなり、吸着量が低くなるおそれがある。このため、目的吸着物質に適した細孔径を持つ多孔質担体が好ましい。
 多孔質粒子の細孔径に関する物性の一つにKavがある。Kavとはゲル相分配係数をいい、所定の大きさの分子に対する溶出または保持容量VR(Veとも表される)、空隙容量Voおよびカラムの幾何容量Vcから次式で算出される、カラムとは独立した変数である。
 Kav=(VR-V0)/(Vt-V0
(例えば、“Handbook of Process Chromatography,A Guide to Optimization,Scale-Up and validation”(1997)Academic Press,San Diego.Gail Sofer & Lars Hagel eds.ISBN0-12-654266-X,p.368参照)
 細孔径の正確な値などではなく、Kav値を用いる理由は、カラムクロマトグラフィーのため多孔質粒子を溶媒に分散してゲルのような湿潤状態とした場合、細孔径を正確に測定するのが困難であり、また、乾燥状態で測定された推定細孔径が湿潤状態の細孔径を正確には反映しないためである。
 縦軸にKav、横軸に分子量の対数をプロットした際に、目的吸着物質の分子量以上の分子量領域での直線の傾きが-0.1以下である多孔質担体にアフィニティーリガンドを固定化することで、吸着量の向上が可能である。即ち、目的吸着物質の分子量以上の分子量領域において式(I)が成り立つとき、k≦-0.1である多孔質担体にアフィニティーリガンドを固定化した吸着体であることが好ましい。
      Kav=k・ln(MW)+b    (I)
[式中、kは傾きを示し、MWはKav測定時のマーカーの分子量を示し、bは定数を示す]
 式(I)において、kがより小さい方が、吸着物質の分子量における比表面積は大きくなり、吸着量の向上が可能である。そのため、好ましくはk≦-0.15、より好ましくはk≦-0.20、さらに好ましくはk≦-0.30、特に好ましくは-5.0≦k≦-0.35である。
 また、目的吸着物質の分子量におけるKavが0.3以上であることが好ましい。目的吸着物質の分子量におけるKavが0.3以上であれば、吸着物質の分子量における比表面積は大きくなり、効率よく吸着することが可能である。Kavとしては、0.55以上がより好ましく、0.65以上がさらに好ましく、0.75以上が特に好ましい。また、Kavが0.94以下であることが好ましい。Kavが0.94より大きいと、樹脂含量が少なくなり、吸着体の強度が下がる恐れがある。
 多孔質担体の排除限界分子量は、目的吸着物質の分子量よりも大きいことが好ましい。しかし、細孔径が大きく、排除限界分子量が目的吸着物質の分子量より遥かに大きい場合、吸着効率が低下する。例えば、精製用吸着体として用いる場合、目的吸着物質がタンパク質であることが多く、一般的に、タンパク質の分子量は103以上、108以下程度であるため、排除限界分子量を103以上、109以下程度に設定することが好ましい。例えば、IgGを目的吸着物質とするならば排除限界分子量を106以上、108以下程度に設定するのが好ましい。
 排除限界分子量は、従来公知の方法を用いて求めることができる。例えば、排除限界分子量はKavが0のときの分子量であるので、上記式(I)のKavに0を代入した下記式(II)により求めることができる。
      排除限界分子量=exp(-b/k)    (II)
 Kavや排除限界分子量など細孔径に関する物性を正確に測定するためには、吸着体に吸着しない化合物を用いて測定するのが好ましく、リガンドを固定化する前の多孔質粒子を用いて測定するのがより好ましい。吸着体を用いて測定する場合、目的吸着物質の分子量と同等の化合物を用いて測定したり、目的吸着物質の分子量前後の化合物を用いてそれぞれ測定し、測定して得られた2点を直線で結んで予測する等の工夫が必要となる。また、測定に用いるマーカー化合物は、目的吸着物質と類似の化合物であることが好ましい。例えば、ポリスチレンのような合成ポリマーとタンパク質とでは、同じ分子量でも測定溶液中での体積が異なる。よって、例えば、目的吸着物質が抗体の場合は、マーカー化合物としてタンパク質を用いることが好ましい。
 イオン液体を用いれば、高濃度のセルロース溶液を調製可能であり、上記の本発明方法によれば、従来の方法では得られなかったセルロース含量の高い多孔質粒子が製造可能である。一般に、樹脂含量が高いと圧密化を生じない吸着体が得られる。本発明の吸着体の充填体積あたりのセルロース含量に特に限定は無いが、2重量%以上、50重量%以下であることが好ましい。充填体積あたりのセルロース含量が2重量%以上であれば、大スケール、高線速で精製を行っても圧密化を生じない吸着体が得られるため好ましい。また、充填体積あたりのセルロース含量が50重量%以下であると、精製目的物を通すことができる十分な孔を確保することができるため好ましい。また、充填体積あたりのセルロース含量としては、3重量%以上がより好ましく、4重量%以上がさらに好ましく、また、25重量%以下がより好ましく、15重量%以下がさらに好ましい。充填体積あたりのセルロース含量は、下記式(III)に従って、以下のとおり求めることができる。即ち、多孔質粒子体積が減少しなくなるまで沈降させて充填し、多孔質粒子体積が1mLとなるよう多孔質粒子量を調整する。この粒子を105℃で12時間乾燥させ、充填体積当たりの乾燥重量(g)から、ゲル1mL当たりの乾燥重量パーセント、つまりセルロース含量を求めることができる。
 セルロース含量(%)=[乾燥重量(g)/充填体積(mL)]×100 (III)
 本発明の吸着体としては、5%圧縮時の圧縮応力が0.005MPa以上、1MPa以下、10%圧縮時の圧縮応力が0.01MPa以上、3MPa以下、および15%圧縮時の圧縮応力が0.03MPa以上、5MPa以下のものが好ましい。吸着体の5%圧縮時の圧縮応力が0.005MPa以上、10%圧縮時の圧縮応力が0.01MPa以上、および15%圧縮時の圧縮応力が0.03MPa以上であれば、高線速で通液しても圧密化を生じない吸着体が得られやすいため好ましい。また、吸着体の5%圧縮時の圧縮応力が1MPa以下、10%圧縮時の圧縮応力が3MPa以下、および15%圧縮時の圧縮応力が5MPa以下であれば、脆性が改善され、微粒子発生が抑制できるため好ましい。ここで、5%圧縮時の圧縮応力とは、吸着体が圧縮されて、初期体積より体積が5%減少した時の応力、10%圧縮時の圧縮応力とは、吸着体が圧縮されて、初期体積より体積が10%減少した時の応力、15%圧縮時の圧縮応力とは、吸着体が圧縮されて、初期体積より体積が15%減少した時の応力である。初期体積とは、吸着体を含むスラリーに振動を与えながら、吸着体の体積が減少しなくなるまで沈降させて充填した状態の体積である。圧縮時の圧縮応力は、以下の方法で測定しうるものである。
 1) 吸着体へ全体積が2倍となるように水を加えてスラリーとし、当該スラリーを内径15mmのガラス製メスシリンダーに投入する。
 2) ガラス製メスシリンダーに振動を与えながら、吸着体の体積が減少しなくなるまで沈降させて充填し、吸着体の体積が約4mLとなるよう吸着体の量を調整する。この時の体積を初期体積とする。
 3) 金属製ピストン(メスシリンダーの内壁と摩擦を生じず、且つ吸着体が漏れないように加工したもの)を、20N用ロードセルを装着したオートグラフ(SHIMADZU社製,EZ-TEST)に取り付ける。
 4) 吸着体の120vol%に相当する位置にピストンの底面を合わせる。
 5) 気泡が入らないように、試験速度5mm/minでピストンを下降させ、多孔質担体を圧縮して体積を減少させる。
 6) 所定の点の圧縮応力を測定する。
 これらの物性を有する多孔質担体にアフィニティーリガンドを固定化した吸着体は、大スケールで且つ高線速で、目的吸着物質を効率良く吸着することが期待される。
 本発明の吸着体の、目的物の吸着量は、吸着体1mLあたり1mg以上であることが好ましい。目的物の吸着量が、吸着体1mLあたり1mg以上であれば、効率よく精製が行えるため好ましい。また目的物の吸着量が、吸着体1mLあたり1000mg以下であれば、吸着した目的物を吸着体から溶出しやすいため好ましい。より好ましい吸着体の、目的物の吸着量は、吸着体1mLあたり、5mg以上がより好ましく、10mg以上がさらに好ましく、20mg以上が特に好ましく、30mg以上が最も好ましく、また、500mg以下がより好ましく、300mg以下がさらに好ましく、250mg以下が特に好ましく、200mg以下が最も好ましい。
 目的物の吸着量は、以下のようにして求めることができる。目的物の吸着量の求め方としては、特に限定は無いが、静的吸着量や動的吸着量によって求めることができる。例えば、静的吸着量を測定する場合は、pH7.4のリン酸バッファー(シグマ社製)で置換した吸着体0.5mLに対し、70mgの目的吸着物質を35mLのpH7.4のリン酸バッファー(シグマ社製)に溶解させた溶液を接触させ、25℃で2時間攪拌した後、上清中の吸着目的物質の減少量を測定することにより求めることができる。
 また、吸着目的物質の動的吸着量と目的物中にリークしたリガンドの濃度を求める方法の一例を以下に述べる。
 (1) 溶液作製
 A液としてpH7.4リン酸バッファー(シグマ社製)、B液としてpH3.5の35mM酢酸ナトリウム(和光純薬工業社製の酢酸、酢酸ナトリウム、RO水で調製)、C液として1M酢酸(和光純薬工業社製酢酸とRO水で調製)、D液として1mg/mLのヒトポリクローナルIgG溶液(バクスター社製ガンマガードとA液で調製)、E液として6M尿素、F液としてA液に対して0.2vol%の界面活性剤(和光純薬工業社製ポリオキシエチレン(20)ソルビタンモノラウレート)を添加した液、中和液として2Mのトリス(ヒドロキシメチル)アミノメタン(シグマ社製トリス(ヒドロキシメチル)アミノメタンとRO水で調製)を調製し、各溶液を使用前に脱泡する。
 (2) 充填と準備
 カラムクロマトグラフィー用装置として、AKTAexplorer100(GEヘルスケアバイオサイエンス社製)を用い、直径0.5cm、高さ15cmのカラムに22μmのメッシュを取り付け、本発明の吸着体をそれぞれ3mL入れ、線速400cm/hで20%エタノール水溶液(和光純薬工業社製エタノールとRO水で調製)を1時間通液して充填する。フラクションコレクターに15mlの採取用チューブをセットし、溶出液の採取用チューブについては、あらかじめ中和液を入れておく。
 (3) 洗浄
 必要に応じて、F液、B液、A液、C液、E液の順に、各液を線速300cm/hで吸着体の3倍量を通液する。この通液サイクルを任意の回数、繰り返す。
 (4) IgG精製
 A液を線速300cm/hで9mL通液し、次いでD液をUVをモニターしながら、IgGが10%破過するまで線速300cm/hで通液する。次いで、A液を線速300cm/hで30mL通液し、B液を線速300cm/hで30mL通液してIgGを溶出させる。次にC液を線速300cm/hで9mL、E液を線速300cm/hで9mL通液する。吸着体の充填終了後からの操作をさらに2回繰り返すことにより、溶出液中のIgG量とIgG中にリークしたリガンドの濃度を求めることができる。
 本発明の吸着体は、アフィニティークロマトグラフィーを用いたタンパク質などの各種目的物の精製や、非特許文献3に示されるような各種精製方法や、治療用吸着体や医療用着体に利用することができる。精製方法や治療方法には特に限定は無く、非特許文献1、2、3や、その他公知の方法を好適に用いる事ができる。
 さらに、本発明の精製用吸着体を用いた精製方法は、直径0.5cm以上および高さ3cm以上のカラムを用いることが好ましい。直径が0.5cm以上および高さ3cm以上であれば、精製を効率よく行うことができる。また、精製の精度や効率の観点から、カラムの大きさは直径2000cm以下および高さ5000cm以下であることが好ましい。より好ましいカラムの大きさは直径2cm以上、400cm以下、高さ5cm以上、400cm以下であり、さらに好ましくは直径5cm以上、300cm以下および高さ8cm以上、200cm以下であり、特に好ましくは直径10cm以上、250cm以下および高さ12cm以上100cm以下であり、最も好ましくは直径20cm以上、150cm以下および高さ15cm以上、50cm以下である。
 本発明の吸着体を用いた治療や精製は、線速10cm/h以上で通液する工程を有することが好ましい。線速10cm/h以上で通液する工程を有していれば、治療や精製を効率よく行うことができるため好ましい。また治療や精製の精度や装置の耐久性の観点から、本発明の吸着体を用いた治療や精製は、線速5000cm/h以下で行うことが好ましい。精製の線速としては、50cm/h以上がより好ましく、100cm/h以上がさらに好ましく、200cm/h以上が特に好ましく、300cm/h以上が最も好ましく、また、3000cm/h以下がより好ましく、1500cm/h以下がさらに好ましく、1000cm/h以下が特に好ましく、750cm/h以下が最も好ましい。
 以下、本発明の実施例を示すが、本発明はこれら実施例に限定されるものではない。
 なお、本発明に係る吸着体を製造する際における反応仕込み時の多孔質粒子の体積は、特に記載が無い限りタッピング体積である。タッピング体積は、多孔質粒子とRO水のスラリーを計量容器に投入し、振動を与えながらこれ以上体積が減少しなくなるまで沈降させた状態の体積である。また、官能基含量における多孔質粒子の体積は、特に記載が無い限り、タッピング体積である。なお、各試験において多孔質粒子が足りなくなった場合は、同じ方法で製造して追加した。
 まず各多孔質粒子の物性の測定条件を示す。
 試験例1 ホルミル基含量測定
 pH8の0.1Mリン酸バッファーで置換した多孔質粒子(4mL)と、フェニルヒドラジンを溶解したpH8の0.1Mリン酸バッファー溶液(2mL)とを接触させ、40℃で1時間攪拌した。次いで、UV測定により反応液の上清の278nm付近の吸収極大の吸光度を測定し、これにより得られたフェニルヒドラジンの多孔質粒子への吸着量として、ホルミル基含量を見積もった。この時、フェニルヒドラジンの投入量は予想ホルミル基含量の3倍モルとし、フェニルヒドラジンの投入量に対して、多孔質粒子への吸着量が15%以下、または45%以上であった場合は、フェニルヒドラジンの投入量を見直し、再度測定を行うものとした。
 試験例2 分配係数(Kav)測定
 (1) カラム充填
 多孔質粒子をRO水に分散させ、1時間脱気した。脱気した多孔質粒子を、線速105cm/hでカラム(GEヘルスケア・ジャパン社製,Tricorn 10/300)に充填した。その後、pH7.5の溶出液(129mL)を線速26cm/hでカラムに通液した。
 (2) マーカー添加
 マーカーとして次のものを用いた。
 ・Blue Dextran 2000(Pharmacia FIne Chemicals社製) 
 ・Low Density Lipoprotein(SIGMA社製),MW3,000,000 
 ・Thyroglobulin(SIGMA社製),MW660,000
 ・フェリチン(SIGMA社製),MW440,000
 ・Aldolase(SIGMA社製),MW158,000
 ・IgG ヒト由来(SIGMA社製),MW115,000
 ・Bovine Serum Albumin(Wako社製),MW6,700
 ・Cytochrome C(Wako社製),MW12,400
 ・Bacitracin (Wako社製),MW1,400
 前記溶出液を線速26cm/hでカラムに通液しながら、上記マーカーをpH7.5のバッファーにて5mg/mLに薄めたものを、各々12μLずつ注入した。なお、マーカーの濃度は都度微調整した。
 (3) 測定
 測定器として、DGU-20A3、SCL-10A、SPD-10A、LC-10AD、SIL-20AC、CTO-10AC(それぞれSHIMADZU社製)を用い、測定ソフトウェアとして、LCSolutionを用いた。液量測定には50mLメスシリンダーを用いた。
 マーカー注入と同時にUVモニターおよび液量の測定を開始し、
 1)ブルーデキストランの最初のピークに対応する液量をV0(mL)とした。
 2)各マーカーのピークに対応する液量をVR(mL)とした。
 3)カラム内の多孔質粒子のトータルボリュームをVt(mL)とした。
 (4) 算出
 各マーカーの分配係数(Kav)を次式で算出した。
     Kav=(VR-V0)/(Vt-V0
 (5)最大径
 各マーカーのKavと該分子量の対数をプロットし、直線性を示す部分から下記式の傾きと切片を求めた。
     Kav=k×Ln(分子量)+b
 次いで求めた傾きと切片からKavが0の時の分子量、つまり排除限界分子量を求めた。次に中性緩衝液中の球状タンパク質の直径と分子量の下記相関式に排除限界分子量を代入し、求まった値を試料粒子の孔の最大径とした。
 球状タンパク質の中性緩衝液中の直径(Å)=2.523×分子量0.3267
 (6)平均孔径
 直線性を示す部分の最大Kav/2に相当する分子量を前記中性緩衝液中の球状タンパク質の直径と分子量の相関式に代入し、求まった値を試料粒子の孔の平均径とした。
 なお、吸着体の目的吸着物質に対するKavを測定する場合、目的吸着物質が吸着されてしまい、正確な測定ができなくなるおそれがある。よって、吸着体の目的吸着物質に対するKavは、目的吸着物質と近い分子量を有する2種以上のタンパク質のKavを測定し、それらのデータから計算で求めるものとする。例えば、目的吸着物質がIgGの場合、フェリチンとアルブミンのデータからKavを求める。
 試験例3 平均粒子径測定
 レーザ回折/散乱式粒子径分布測定装置(堀場社製LA-950)を用いてメジアン径を測定し、平均粒子径とした。
 試験例4 静的結合容量測定
 pH7.4のリン酸バッファー(シグマ社製)で置換した吸着体0.5mLに対し、70mgのヒトポリクローナルIgG(ニチヤク社製ガンマグロブリンニチヤク1500mg/10mL,0.467mL)をpH7.4のリン酸バッファー(シグマ社製)に溶解させて全量を35mLとした溶液を接触させ、25℃で2時間撹拝した後、上清中のIgGの減少量を測定することにより求めた。
 試験例5 動的結合容量測定
 (1)溶液作成
 以下の溶液を調製した。
  A液:pH7.4リン酸バッファー(シグマ製)
  B液:pH3.5Mの35mM酢酸ナトリウム(ナカライテスク社製の酢酸、酢酸ナトリウム、RO水で調製)
  C液:1M酢酸(ナカライテスク社製の酢酸とRO水で調製)
  D液:1mg/mLのヒトポリクローナルIgG溶液(ニチヤク社製ガンマグロブリンニチヤク1500mg/10mLとA液で調製)
  E液:6M尿素(関東化学社製の尿素とRO水で調製)
 各溶液は、使用前に脱泡した。
 (2)充填、準備
 カラムクロマトグラフィー用装置として、AKTAexplorer 100(GEヘルスケアバイオサイエンス社製)を用い、直径0.5cm、高さ15cmのカラムに22μmのメッシュを取り付け、本発明の吸着体をそれぞれ3mL入れ、線速450cm/hで20%エタノール水溶液(和光純薬工業社製エタノールとRO水で調整)を1時間通液して充填した。フラクションコレクターに15mlの採取用チューブをセットし、溶出液の採取用チューブについては、あらかじめ中和液を入れておいた。
 (3)IgG精製
 A液を線速300cm/hで9mL通液し、次いでD液を、UVをモニターしながら、IgGが10%破過するまで線速300cm/hで通液した。次いで、A液を線速300cm/hで30mL通液し、B液を線速300cm/hで30mL通液してIgGを溶出させた。次にC液を線速300cm/hで9mL,E液を線速300cm/hで9mL通液した。
 試験例6 圧縮応力測定
 内径15mmのガラス製メスシリンダーに多孔質粒子または吸着体の50vol%のスラリーを投入した。ガラス製メスシリンダーに振動を与えながら、多孔質粒子または吸着体の体積が減少しなくなるまで沈降させて充填し、多孔質粒子または吸着体の体積が4mLとなるよう多孔質粒子または吸着体量を調整した。この時の体積を初期体積とした。金属製ピストン(メスシリンダーの内壁と摩擦を生じず、且つ多孔質粒子または吸着体が溶出しないように加工したもの)を、20N用ロードセルを装着したオートグラフ(SHIMADZU社製,EZ-TEST)に取り付けた。多孔質粒子または吸着体の120vol%に相当する位置にピストンの底面を合わせた。気泡が入らないように、試験速度5mm/minでピストンを下降させ、多孔質粒子または吸着体を圧縮して体積を減少させ、任意の点の圧縮応力を測定した。
 比較例1
 1-エチル-3-メチルイミダゾリウムアセテート(シグマ・アルドリッチ社製,20g)に結晶性セルロース(2.73g)を70℃にて溶解させ、12.0重量%溶液を調製した。このセルロース溶液から15mLを量り取り、ホモジナイザー(HSIANGTAI社製,HG-200)により4000rpmの速度で攪拌されている中鎖脂肪酸トリグリセリド(MCT)(理研ビタミン社製,アクターM-2,脂肪酸組成:C8が100%,85mL)に添加した。5分間攪拌してMCT中にセルロース溶液を分散させた。当該分散液を、300rpmの速度で攪拌している25℃の水へ徐々に添加し、セルロースを固化させた。静置して液相を分離させたところ、上層がMCT、下層が水と1-エチル-3-メチルイミダゾリウムアセテートの二層溶液となった。セルロースは下層に沈降した。
 セルロースを回収し、メタノールで洗浄した後、水で洗浄した。マイクロスコープ(キーエンス社製,デジタルマイクロスコープVH-6200)で観察したところ、粒子状のセルロースが得られていた。
 得られた粒子の顕微鏡画像を市販の画像解析処理ソフト(Motic社製,motic images plus)を用いて解析し、平均アスペクト比を測定した。平均アスペクト比は、画像中における粒子の長軸と短軸を測定して各粒子のアスペクト比を算出し、さらにそれらの平均を計算することにより求めた。また、レーザ回折/散乱式粒子径分布測定装置(堀場社製LA-950)を用いてメジアン径を測定し、平均粒子径とした。その結果、平均粒子径は104.0μm、平均アスペクト比は1.10と、微細で且つ真球に近いセルロース粒子が得られていることが証明された。
 また、圧縮強度試験機(SIMADZU社製,EZ-TEST)を用い、圧縮強度を測定することで、セルロース粒子の硬度を評価した。その結果、体積が10%圧縮されたとき0.042Mpaの応力を示し、適度な硬度を有していることが明らかとなった。
 さらに、得られたセルロース粒子の孔内を2-メチル-2-プロパノールで置換し、凍結乾燥後、走査型電子顕微鏡(日立製作所社製,S-800,以下「SEM」と称する)にて解析した。その結果、セルロース粒子は図1~4に示したような多孔性の粒子であることが確認された。
 また、乾燥させたセルロース粒子を粉末X線回折(XRD,RigakuMiniFlexII,以下同じ)により解析した。結果を図5に示す。図5のとおり、結晶性があることが確認された。
 比較例2
 セルロース濃度を10.0重量%とする以外は比較例1と同様の条件および方法でセルロース粒子を析出させた。その結果、平均粒子径が121.4μm、平均アスペクト比1.12のセルロース粒子が得られた。また、セルロース体積が10%圧縮されたとき0.015Mpaの応力を示した。得られた粒子は、比較例1と同様の多孔質粒子だった。
 比較例3
 セルロース濃度を7.0重量%とする以外は比較例1と同様の条件および方法でセルロース粒子を析出させた。その結果、平均粒子径が104.0μm、平均アスペクト比1.10のセルロース粒子が得られた。また、セルロース体積が10%圧縮されたとき0.004Mpaの応力を示した。得られた粒子は、比較例1と同様の多孔質粒子だった。図5に比較例1から比較例3のセルロース粒子をXRDで解析した結果を示すが、いずれも結晶性が確認できるので、水より得られたセルロース粒子は結晶性をもつと判断できる。
 実施例1
 セルロース濃度を12.0重量%、セルロース非溶解性液体をメタノール:水=7:3の混合溶媒とした以外は比較例1と同様の条件および方法でセルロース粒子を析出させた。セルロースを析出させた後、静置したところ、下層がMCT、上層がメタノールと水と1-エチル-3-メチルイミダゾリウムアセテートとMCTの二層溶液となった。析出したセルロースは上層に沈んでいた。セルロースを回収したところ、平均粒子径98.5μm、平均アスペクト比1.07の真球状セルロース粒子であった。また、図6~9のSEM写真のとおり、当該粒子は多孔質なものである。
 実施例2
 セルロース濃度を12.0重量%、セルロース非溶解性液体をメタノール:水=9:1の混合溶媒とした以外は比較例1と同様の条件および方法でセルロース粒子を析出させた。セルロースを析出させた後、静置したところ、下層がMCT、上層がメタノールと水と1-エチル-3-メチルイミダゾリウムアセテートとMCTの二層液体となった。析出したセルロースは上層に沈んでいた。セルロースを回収したところ、平均粒子径97.3μm、平均アスペクト比1.07の真球状セルロース粒子であった。また、図10~13のSEM写真のとおり、当該粒子は多孔質なものである。
 実施例3
 セルロース非溶解性液体をメタノールとした以外は比較例1と同様の条件および方法でセルロース粒子を析出させた。メタノールにセルロース液滴分散液を添加し、セルロースを析出させた後、静置したところ、下層がMCT、上層がメタノールと1-エチル-3-メチルイミダゾリウムアセテートとMCTの二層溶液となった。析出したセルロースは上層に沈んでいた。セルロースを回収したところ、平均粒子径60.4μm、平均アスペクト比1.07の真球状セルロース粒子であった。
 セルロース体積が10%圧縮されたとき0.053Mpaの応力を示した。
 また、図14~17のSEM写真のとおり、当該粒子は多孔質なものである。
 凍結乾燥後、XRDで解析したところ、得られたセルロース粒子はアモルファスであった。図18に比較例1および実施例1から実施例3のセルロース粒子をXRDで解析した結果を示すが、凝固液として水を用いた比較例1のセルロース粒子以外はアモルファスであると判断できる。
 使用溶媒を回収し、エバポレーターでメタノールを蒸発させたところ、1-エチル-3-メチルイミダゾリウムアセテートとMCTが分離した。MCTを取り除き、1-エチル-3-メチルイミダゾリウムアセテートの体積と重量を測定した結果、1-エチル-3-メチルイミダゾリウムアセテートの濃度は98%と判断できた。このように高純度のイオン液体は、十分に再利用することができる。
 実施例4
 セルロース濃度を10.0重量%とする以外は実施例3と同様の条件および方法でセルロースを析出させた。その結果、平均粒子径54.23μm、平均アスペクト比1.07の真球状セルロース粒子が得られた。セルロース体積が10%圧縮されたとき0.027Mpaの応力を示した。
 実施例5
 セルロース濃度を7.0重量%とする以外は実施例3と同様の条件および方法でセルロースを析出させた。その結果、平均粒子径60.36μm、平均アスペクト比1.07の真球状セルロース粒子が得られた。図19に実施例3から実施例5のセルロース粒子をXRDで解析した結果を示すが、いずれもアモルファスのセルロース粒子であった。
 実施例6
 セルロース濃度を12.0重量%とし、セルロース非溶解性液体をエタノールとした以外は比較例1と同様の条件および方法でセルロース粒子を析出させた。その結果、平均粒子径87.44μm、平均アスペクト比1.07の真球状セルロース粒子が得られた。なお、エタノールを用いた場合は、水やメタノールを用いた場合とは異なり、溶液は二層に分離しなかった。
 セルロース体積が10%圧縮されたとき0.026Mpa の応力を示した。
 凍結乾燥後、XRDで解析したところ、得られたセルロース粒子はアモルファスであった。図5と図19より、セルロース粒子の結晶性はセルロース溶液濃度によらず、セルロース非溶解性液体にアルコール類を用いた場合はアモルファスとなり、水を用いた場合は結晶性を示すことが分かった。また、セルロース粒子の結晶性はセルロース非溶解性液体の種類により制御可能であった。
 実施例7
 1-エチル-3-メチルイミダゾリウムアセテート(52.18g)に結晶性セルロース(5.80g)を70℃にて溶解させ、10.0重量%溶液を調製した。このセルロース溶液から50mLを量り取り、内径113mmの円筒型容器中、翼径70mmのH型翼にて100rpmの速度で攪拌されている950mLのMCTに添加し、分散させた。分散液の溶液温度を40℃とし、1L/minの速度で静止型ミキサー(フジキン社製,分散君1.5A)を通し、セルロース非溶解性液体であるメタノール:水=9:1の混合溶媒に添加し、セルロースを析出させた。メタノール:水=9:1の混合溶媒は、内径143.5mmの円筒型容器中、翼径64.2mmのフラットタービン翼にて300rpmの速度で攪拌し、溶液量は2000mL、溶液温度は25℃とした。セルロースを回収し、メタノールで洗浄した後、水で洗浄した。比較例1と同様にマイクロスコープで観察したところ、平均粒子径86.3μm、平均アスペクト比1.07のセルロース粒子が得られていた。また、図20~21のSEM写真のとおり、当該粒子は多孔質なものである。
 実施例8
 1-エチル-3-メチルイミダゾリウムアセテート(シグマ・アルドリッチ社)20gにメタノール:水=7:3の混合溶液を2.22g加えた溶液に、結晶性セルロースを2.73g溶解した。当該溶液のセルロース濃度は、10.9重量%である。このセルロース溶液から15mLを量り取り、400rpmの速度で攪拌されている50℃の中鎖脂肪酸トリグリセリド(MCT)(製品名:アクターM-2、理研ビタミン(株)、脂肪酸組成はC8が100%)85mLに添加した。30分間攪拌し、MCT中にセルロース溶液を分散させた後、300rpmで攪拌している50℃のメタノール:水=7:3の混合溶媒400mLにセルロース液滴分散液を添加し、セルロースを固化させた。
 30分攪拌した後セルロースを回収し、セルロース粒子をエタノールで洗浄した後、水で洗浄した。次いで125μmのメッシュを用いて分級を行い、大きい粒子径のものを除去した。次いで53μmのメッシュを用いて分級を行い、小さい粒子径のものを除去した。得られた回収したセルロース粒子の一部を2-メチル-2-プロパノールで置換し、凍結乾燥後、走査型電子顕微鏡(日立製作所S-4800、以下SEMと称する)にて解析した。その結果、セルロース粒子は図22に示したような多孔質の粒子であることが確認された。
 取得したセルロース多孔質粒子の細孔径を上述のKav測定法にて求めた結果、本セルロース多孔質粒子の最大細孔径は725Å、平均径は271Åであった。また傾きkは-0.153であった。IgGを用いて測定したKavは0.86であった。また、排除限界分子量は3.5×107であった。乾燥させたセルロース粒子を粉末X線回折(XRD、RigakuMiniFlexII、以下同じ)により解析したところ、アモルファスのパターンを示した。平均粒子径は94μmであった。
 実施例9
 MCT温度を25℃、メタノール:水=7:3の混合溶媒の温度を25℃とする以外は実施例8と同様の条件でセルロース粒子を得た。SEMにて解析した結果、得られたセルロース粒子は図23に示したような多孔性の粒子であることが確認された。取得したセルロース多孔質粒子の細孔径を上述のKav測定法にて求めた結果、本セルロース多孔質粒子の最大細孔径は350Å、平均径は194Åであった。また傾きkは-0.266であった。IgGを用いて測定したKavは0.93であった。また、排除限界分子量は3.8×106であった。平均粒子径は88μmであった。
 実施例10
 MCT温度を10℃、メタノール:水=7:3の混合溶媒の温度を10℃とする以外は実施例8と同様の条件でセルロース粒子を得た。SEMにて解析した結果、得られたセルロース粒子は図24に示したような多孔性の粒子であることが確認された。平均粒子径は83μmであった。図25に実施例8~10のセルロース粒子をXRDで解析した結果を示すが、いずれもアモルファスのセルロース粒子であった。
 実施例11
 1-エチル-3-メチルイミダゾリウムアセテート(シグマ・アルドリッチ社)20gにメタノール:水=6:4の混合溶液を2.22g加えたことと、セルロース液滴分散液をメタノール:水=6:4のセルロース非溶解性液体400mLに添加した以外は実施例9と同様の条件でセルロース粒子を得た。SEMにて解析した結果、得られたセルロース粒子は実施例9と同様の多孔性の粒子であることが確認された。取得したセルロース多孔質粒子の細孔径を上述のKav測定法にて求めた結果、本セルロース多孔質粒子の最大細孔径は362Å、平均径は201Åであった。また傾きkは-0.222であった。IgGを用いて測定したKavは0.80であった。また、排除限界分子量は4.2×106であった。XRDで解析したところ、得られたセルロース粒子はアモルファスであった。平均粒子径は90μmであった。
 実施例12
 1-エチル-3-メチルイミダゾリウムアセテート(シグマ・アルドリッチ社)20gにメタノール:水=9:1の混合溶液を2.22g加えたことと、セルロース液滴分散液をメタノール:水=9:1のセルロース非溶解性液体400mLに添加した以外は実施例9と同様の条件でセルロース粒子を得た。SEMにて解析した結果、得られたセルロース粒子は実施例9と同様の多孔性の粒子であることが確認された。取得したセルロース多孔質粒子の細孔径を上述のKav測定法にて求めた結果、本セルロース多孔質粒子の最大細孔径は261Å、平均径は184Åと求められた。また傾きkは-0.380であった。IgGを用いて測定したKavは0.86であった。また、排除限界分子量は1.5×106であった。XRDで解析したところ、得られたセルロース粒子はアモルファスであった。平均粒子径は90μmであった。
 実施例13
 1-エチル-3-メチルイミダゾリウムアセテート(シグマ・アルドリッチ社)20gにメタノール:水=7:3の混合溶液を2.22g加えた溶液に、結晶性セルロースを1.93g溶解させ、セルロース濃度を8.0重量%とした以外は実施例9と同様の条件でセルロース粒子を得た。SEMにて解析した結果、得られたセルロース粒子は実施例8と同様の多孔性の粒子であることが確認された。取得したセルロース多孔質粒子の細孔径を上述のKav測定法にて求めた結果、本セルロース多孔質粒子の最大細孔径は1020Å、平均径は306Åと求められた。また傾きkは-0.117であった。IgGを用いて測定したKavは0.79であった。また、排除限界分子量は1.0×108であった。XRDで解析したところ、得られたセルロース粒子はアモルファスであった。平均粒子径は94μmであった。
 実施例14
 1-エチル-3-メチルイミダゾリウムアセテート18.0gに結晶性セルロースを2.00g溶解させ、セルロース濃度を10.0重量%とした。このセルロース溶液から15mLを量り取り、400rpmの速度で攪拌されている25℃のMCT85mLに添加した。30分間攪拌し、MCT中にセルロース溶液を分散させた後、300rpmで攪拌している25℃のメタノール:水=7:3の混合溶媒400mLにセルロース液滴分散液を添加し、セルロースを固化させた。
 30分攪拌した後セルロースを回収し、セルロース粒子をエタノールで洗浄した後、水で洗浄した。
 取得したセルロース多孔質粒子の細孔径を上述のKav測定法にて求めた結果、本セルロース多孔質粒子の最大細孔径は1340Å、平均径は353Åであった。また、傾きkは-0.102であった。IgGを用いて測定したKavは0.78であった。また、排除限界分子量は2.3×108であった。
 実施例15 架橋多孔質粒子の製造
 実施例8にて得られたセルロース多孔質粒子から、目開き125μmの篩を用いて粗大多孔質粒子を除去し、次いで、目開き53μmの篩を用いて過小多孔質粒子を除去した。かかる分級操作後の11.0mLのセルロース多孔質粒子AにRO水を加えて、16.5mLとし、これを50mLの遠沈管に移した。ここに4NNaOH(ナカライテスク社製とRO水で調製)を3.86mL加え、ハイブリダイゼーションオーブン(東京理化学機器製 MHS-2000)中にて、40度に昇温させた。ここに架橋剤としてグリセロールポリグリシジルエーテルを含有するデナコールEX-314(ナガセケムテック社製)を1.77g投入し、40℃で4時間攪拌した。反応終了後、グラスフィルター(シバタ製 11GP100)上で吸引濾過しながら、多孔性粒子の20倍体積量以上のRO水で洗浄し、架橋多孔質粒子を得た。
 得られた架橋多孔質粒子にRO水を加えて、全量を架橋多孔質粒子の10倍体積量とし、アルミ箔2枚で封をして、オートクレーブ(トミー社製、高圧滅菌器ES-315)を用いて、120℃で1時間加温した。室温まで放冷した後、グラスフィルター(シバタ製 11GP100)上で多孔質粒子の5倍体積量以上のRO水で洗浄し、エポキシ基がグリセリル基に変化したオートクレーブ済みの多孔質粒子Bを得た。
 次いで、このオートクレーブ済みの多孔質粒子B(10mL)にRO水を加えて16.5mLとし、これを50mLの遠沈管に移した。これに4N-NaOH(ナカライテスク社製とRO水で調製)を3.86mL加え、ハイブリダイゼーションオーブン(東京理化学機器製 MHS-2000)中で40℃に昇温させた。ここにデナコールEX-314(ナガセケムテック社製)を1.77g投入し40度で4時間攪拌した。反応終了後、グラスフィルター(シバタ製 11GP100)上で吸引濾過しながら、多孔質粒子の20倍体積量以上のRO水で洗浄し、架橋多孔質粒子を得た。
 得られた架橋多孔質粒子にRO水を加えて、全量を架橋多孔質粒子の10倍体積量とし、ガラス製三角フラスコ(300mL)に入れ、アルミ箔2枚で封をして、オートクレーブ(トミー社製、高圧滅菌器ES-315)を用いて120℃で60分間加温した。室温まで放冷した後、グラスフィルター(シバタ製 11GP100)上で多孔質粒子の5倍体積量以上のRO水で洗浄し、オートクレーブ済みの多孔質粒子Cを得た。
 さらに、このオートクレーブ済みの多孔質粒子C(10.5mL)にRO水を加えて15.8mLとし、これを50mLの遠沈管に移した。これに4N-NaOH(ナカライテスク社製とRO水で調製)を2.68mL加え、ハイブリダイゼーションオーブン(東京理化学機器製 MHS-2000)中で40℃に昇温させた。ここにデナコールEX-314(ナガセケムテック社製)を1.69g投入し40℃で4時間攪拌した。反応終了後、グラスフィルター(シバタ製 11GP100)上で吸引濾過しながら、多孔質粒子の20倍体積量以上のRO水で洗浄し、架橋多孔質粒子を得た。
 得られた架橋多孔質粒子にRO水を加えて、全量を架橋多孔質粒子の10倍体積量とし、ガラス製三角フラスコ(300mL)に入れ、アルミ箔2枚で封をして、オートクレーブ(トミー社製、高圧滅菌器ES-315)を用いて120℃で60分間加温した。室温まで放冷した後、グラスフィルター(シバタ製 11GP100)上で多孔質粒子の5倍体積量以上のRO水で洗浄し、架橋多孔質粒子Dを得た。
 実施例16 吸着体の製造
 実施例15にて得られた架橋多孔質粒子D、11.0mLに、RO水を加えて全量を17.0mLとし、50mLの遠沈管に入れ、これを25℃にてミックスローター(アズワン社製 ミックスローターMR-3)上に取り付けた後、攪拌した。次に、過ヨウ素酸ナトリウム(和光純薬工業社製)をRO水に溶解させた、8.64mg/mLの過ヨウ素酸ナトリウム水溶液を6.0mL作成し、先程多孔質粒子Dを入れた遠沈管に加え、25度で1時間攪拌した。反応後、グラスフィルター(シバタ製 11GP100)上で、濾液の電気伝導度が1μS/cm以下となるまでRO水で洗浄し、ホルミル基架橋多孔質担体Eを得た。洗浄濾液の電気伝導度は、導電率計(EUTECH INSTRUMENTS社製、ECTester10 Pure+)で測定した。得られた多孔質粒子Eのホルミル基含量を前述の方法で測定した結果、ホルミル基含量は多孔質粒子E1mLあたり20.17μmolであった。
 得られたホルミル基架橋多孔質担体E(9.0mL)をグラスフィルター(シバタ製 11GP100)でpH11の0.5Mクエン酸三ナトリウム(関東化学社製)+0.15M食塩(関東化学社製)バッファー30mLで置換した。pH8の0.5Mクエン酸ナトリウム+0.15M食塩バッファーを用い、置換後のホルミル基含有多孔質担体を、遠沈管に入れ、総体積量14.0mLとなるように液量を調整した。ここに、国際公開特許公報WO2006/004067に記載の方法で作製されたプロテインAの濃度が、67.58mg/mLのプロテインA含有溶液(カネカ社製PNXL30)を5.327g加えた後、6℃にて、0.08NNaOH(ナカライテスク社製とRO水で調製)を用いて、pHを12に調整した後、6度にて23時間、ミックスローター(アズワン社製 ミックスローターMR-3)を用い、攪拌させながら反応させた。
 23時間反応後、反応液のpHが5.0になるように2.4Nクエン酸(関東化学社製クエン酸とRO水で調製)を用いてpH調整した後、6℃で4時間、ミックスローター(アズワン社製 ミックスローターMR-3)を用いて、攪拌させた。引き続き、5.5%ジメチルアミンボラン(DMAB)水溶液(キシダ化学社製ジメチルアミンボランとRO水で調整)を0.39mL加えて、6℃で1時間攪拌した後、反応温度を25℃に上昇させ、25℃で18時間、ミックスローター(アズワン社製 ミックスローターMR-3)を用いて攪拌しながら反応させた。反応後、反応液の278nm付近の吸収極大のUV吸光度を測定した結果、アフィニティーリガンドであるプロテインAの導入量が、多孔質担体1mLあたり、28.93mgであることがわかった。
 反応後の多孔質担体をグラスフィルター(シバタ製 11GP100)上で、多孔質担体の3倍体積量のRO水で洗浄した。次いで、3倍体積量の0.1Nクエン酸一水和物(関東化学社製クエン酸一水和物とRO水で調製)を加え、当該多孔質担体に0.1Nクエン酸一水和物を加えて全量を30mL以上とし、遠沈管に入れ、25℃で30分間攪拌しながら、酸洗浄を行った。
 酸洗浄後、多孔質担体をグラスフィルター(シバタ製11GP100)上で、多孔質担体の3倍体積量のRO水で洗浄し、次いで、3倍体積量の0.05M水酸化ナトリウム+1M硫酸ナトリウム水溶液(ナカライテスク製水酸化ナトリウム、関東化学社製硫酸ナトリウム及びRO水で調製)を加えた。次に、当該多孔質担体に、0.05M水酸化ナトリウム+1M硫酸ナトリウム水溶液を加えて全量を30mL以上とし、遠沈管に入れ、室温で30分間攪拌しながら、アルカリ洗浄を行った。
 アルカリ洗浄後、多孔質担体をグラスフィルター(シバタ製 11GP100)上で、多孔質担体の20倍体積量のRO水で洗浄した。次に、多孔質担体の3倍量の0.1Nクエン酸一水和物(関東化学社製クエン酸+RO水で調製)を加え、濾液が中性になっていることを確認した後、RO水を用いて、洗浄濾液の電導度が1μS/cm以下になるまで洗浄し、目的とするプロテインAを固定化した吸着体Fを得た。洗浄濾液の電導度は導電率計(EUTECH INSTRUMENTS社製、ECTester10 Pure+)で測定した。
 得られた吸着体の目的物としてヒトポリクローナルIgG(ニチヤク製、ガンマグロブリンニチヤク1500mg/10mL)を選択し、静的結合容量を測定した結果、83.9mg/mL吸着体であった。また動的結合容量を求めた結果、線速300cm/hでのIgG吸着容量(5%ダイナミックバインディングキャパシティー)は、29.8mg/mL吸着体であった。また線速150cm/hでのIgG吸着容量(5%ダイナミックバインディングキャパシティー)は、36.0mg/mL吸着体であった。
 実施例17 吸着体の製造
 実施例9にて得られたセルロース多孔性粒子を用いた以外は、実施例15~16に記載された方法と同様の方法にて、プロテインAを固定化した吸着体を得た。得られた吸着体の静的結合容量を測定した結果、85.9mg/mL吸着体であった。また、動的吸着量を求めた結果、線速300cm/hでのIgG動的吸着量(5%ダイナミックバインディングキャパシティー)は、6.9mg/mL吸着体であった。
 実施例18
 実施例10にて得られたセルロース多孔性粒子を用いた以外は、実施例15~16に記載された方法と同様の方法にて、プロテインAを固定化した吸着体を得た。得られた吸着体の静的結合容量を測定した結果、49.3mg/mL吸着体であった。また、動的吸着量を求めた結果、線速300cm/hでのIgG動的吸着量(5%ダイナミックバインディングキャパシティー)は、1.6mg/mL吸着体であった。
 実施例19
 実施例11にて得られたセルロース多孔性粒子を用いた以外は、実施例15~16に記載された方法と同様の方法にて、プロテインAを固定化した吸着体を得た。得られた吸着体の静的結合容量を測定した結果、79.3mg/mL吸着体であった。また、動的吸着量を求めた結果、線速300cm/hでのIgG動的吸着量(5%ダイナミックバインディングキャパシティー)は、9.3mg/mL吸着体であった。
 実施例20
 実施例12にて得られたセルロース多孔性粒子を用い、実施例15~16に記載された方法と同様の方法にて、プロテインAを固定化した吸着体を得た。得られた吸着体の静的結合容量を測定した結果、58.9mg/mL吸着体であった。また、動的吸着量を求めた結果、線速300cm/hでのIgG動的吸着量(5%ダイナミックバインディングキャパシティー)は、1.6mg/mL吸着体であった。
 実施例21
 実施例13にて得られたセルロース多孔性粒子を用い、実施例15~16に記載された方法と同様の方法にて、プロテインAを固定化した吸着体を得た。得られた吸着体の静的結合容量を測定した結果、83.9mg/mL吸着体であった。また、動的吸着量を求めた結果、線速300cm/hでのIgG動的吸着量(5%ダイナミックバインディングキャパシティー)は、12.8mg/mLであった。

Claims (17)

  1.  多孔質粒子を製造するための方法であって、
     セルロースおよびイオン液体を含む溶液を調製する工程;
     当該セルロース溶液をイオン液体と相溶しない液体に分散させて分散液を調製する工程;および
     当該分散液を、アルコールまたはアルコール水溶液と接触させることにより凝固させて多孔質粒子を得る工程を含むことを特徴とする製造方法。
  2.  セルロース溶液の調製工程において、水および/またはアルコールを添加し、且つ当該水および/またはアルコールの添加量を、イオン液体との合計量に対して2重量%以上、20重量%以下にする請求項1に記載の製造方法。
  3.  セルロース溶液の温度を0℃以上、70℃以下に調整する請求項1または2に記載の製造方法。
  4.  分散液とアルコールまたはアルコール水溶液とを10℃以上で接触させる請求項1~3のいずれかに記載の製造方法。
  5.  請求項1~4のいずれかに記載の方法で製造されたものであることを特徴とする多孔質粒子。
  6.  カラムに充填し、目的吸着物質以上の分子量を有する複数のタンパク質の分配係数を測定し、縦軸にKav、横軸に分子量の対数をプロットし、式(I)が成り立つ部分においてk≦-0.1である請求項5に記載の多孔質粒子。
      Kav=k・ln(MW)+b   (I)
    [式中、Kavは分配係数を示し、MWはタンパク質の分子量を示し、bは定数を示す]
  7.  カラムに充填して測定した目的吸着物質のKavが0.3以上である請求項6に記載の多孔質粒子。
  8.  カラムに充填して測定したIgGのKavが0.3以上である請求項6に記載の多孔質粒子。
  9.  排除限界分子量が103以上、109以下である請求項5~8のいずれかに記載の多孔質粒子。
  10.  請求項1~4のいずれかに記載の製造方法で製造された多孔質粒子または請求項5~9のいずれかに記載の多孔質粒子とアフィニティーリガンドとを含み、アフィニティーリガンドが多孔質粒子に固定化されていることを特徴とする吸着体。
  11.  アフィニティーリガンドの導入量が、多孔質粒子1mL当たり1mg以上、1000mg以下である請求項10に記載の吸着体。
  12.  セルロース含量が2重量%以上、50重量%以下である請求項10または11に記載の吸着体。
  13.  多孔質粒子が架橋されているものである請求項10~12のいずれかに記載の吸着体。
  14.  10%圧縮時の圧縮応力が0.01MPa以上、3MPa以下である請求項10~13のいずれかに記載の吸着体。
  15.  体積平均粒径が1μm以上2000μm以下である請求項10~14のいずれかに記載の吸着体。
  16.  アフィニティーリガンドがプロテインAである請求項10~15のいずれかに記載の吸着体。
  17.  請求項10~16のいずれかに記載の吸着体をカラムに充填する工程;
     当該カラムに粗タンパク質を含む溶液をカラムに充填された吸着体に通液する工程;および
     溶離液をカラムに通液する工程を含むことを特徴とするタンパク質の精製方法。
PCT/JP2011/070757 2010-09-10 2011-09-12 多孔質粒子の製造方法、多孔質粒子、吸着体、およびタンパク質の精製方法 WO2012033223A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/821,836 US20130172538A1 (en) 2010-09-10 2011-09-12 Method for producing porous particles, porous particles, adsorbent body, and method for purifying protein
EP11823691.8A EP2626381A4 (en) 2010-09-10 2011-09-12 PROCESS FOR PRODUCING POROUS PARTICLES, POROUS PARTICLES, ABSORBENT BODY AND PROCESS FOR PURIFYING PROTEIN
JP2012533053A JP5785553B2 (ja) 2010-09-10 2011-09-12 多孔質粒子の製造方法、多孔質粒子、吸着体、およびタンパク質の精製方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010203774 2010-09-10
JP2010-203774 2010-09-10
JP2010-234060 2010-10-18
JP2010234060 2010-10-18

Publications (1)

Publication Number Publication Date
WO2012033223A1 true WO2012033223A1 (ja) 2012-03-15

Family

ID=45810811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070757 WO2012033223A1 (ja) 2010-09-10 2011-09-12 多孔質粒子の製造方法、多孔質粒子、吸着体、およびタンパク質の精製方法

Country Status (4)

Country Link
US (1) US20130172538A1 (ja)
EP (1) EP2626381A4 (ja)
JP (1) JP5785553B2 (ja)
WO (1) WO2012033223A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087202A (ja) * 2010-10-19 2012-05-10 Jsr Corp セルロース粒子の製造方法、及び、セルロース粒子
JP2014163758A (ja) * 2013-02-22 2014-09-08 Asahi Kasei Fibers Corp 蛍光色素化合物を含むセルロース微粒子
JP2014205787A (ja) * 2013-04-12 2014-10-30 株式会社Kri 多糖類多孔質体の製造方法
WO2015029790A1 (ja) * 2013-09-02 2015-03-05 Jnc株式会社 多孔性セルロース粒子の製造方法および多孔性セルロース粒子
WO2015056680A1 (ja) * 2013-10-15 2015-04-23 株式会社カネカ 多孔質セルロースビーズの製造方法
WO2015056681A1 (ja) * 2013-10-15 2015-04-23 株式会社カネカ 多孔質セルロースビーズの製造方法およびそれを用いた吸着体
WO2015137170A1 (ja) * 2014-03-12 2015-09-17 富士フイルム株式会社 セルロース多孔質粒子の製造方法及びセルロース多孔質粒子
JPWO2014038686A1 (ja) * 2012-09-10 2016-08-12 株式会社カネカ 吸着体
WO2016167268A1 (ja) * 2015-04-15 2016-10-20 株式会社カネカ 多孔質セルロースビーズの製造方法およびそれを用いた吸着体
WO2017073626A1 (ja) * 2015-10-30 2017-05-04 東レ株式会社 エーテル系セルロース誘導体微粒子
WO2020004604A1 (ja) * 2018-06-29 2020-01-02 日揮触媒化成株式会社 多孔質セルロース粒子とその製造方法、および化粧料

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11021588B2 (en) 2014-07-22 2021-06-01 Daicel Corporation Method for producing porous cellulose medium
CN105542217B (zh) * 2016-01-19 2019-01-29 青岛科技大学 一种具有梯度孔状结构的纤维素凝胶系材料及其制备方法
CN111286049A (zh) * 2020-03-02 2020-06-16 青岛科技大学 一种纤维素多孔球晶微球及其制备方法
CN115125030B (zh) * 2022-08-11 2023-06-27 东北石油大学 一种聚乙二醇多孔离子液体及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211342A (ja) * 1985-03-15 1986-09-19 Asahi Chem Ind Co Ltd 高分子超微粒子の製法
CN1470552A (zh) * 2003-06-16 2004-01-28 东华大学 一种纳米级纤维素颗粒的制备方法
WO2008067942A1 (en) * 2006-12-08 2008-06-12 Dow Global Technologies Inc. Production of cellulose nanoparticles
WO2008084854A1 (ja) * 2007-01-12 2008-07-17 Asahi Kasei Fibers Corporation セルロース微粒子並びにその分散液及び分散体
JP2008266401A (ja) * 2007-04-18 2008-11-06 Nisshinbo Ind Inc セルロース成形体およびその製造方法
WO2009021687A1 (en) * 2007-08-10 2009-02-19 Dow Global Technologies Inc. Nanoparticles of amorphous cellulose
WO2009036479A1 (de) * 2007-09-21 2009-03-26 Lenzing Ag Cellulosesuspension und verfahren zu deren herstellung
WO2009036480A1 (de) * 2007-09-21 2009-03-26 Lenzing Ag Cellulosepulver und verfahren zu seiner herstellung
WO2009101111A1 (de) * 2008-02-11 2009-08-20 Basf Se Verfahren zur herstellung poröser strukturen aus synthetischen polymeren
JP2010195996A (ja) * 2009-02-27 2010-09-09 Hitachi Ltd セルロース/樹脂複合体及びその製造方法
JP2011214003A (ja) * 2010-03-19 2011-10-27 Kaneka Corp セルロース多孔質粒子の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435217A (en) * 1982-04-22 1984-03-06 Venture Innovations, Inc. Concentrated hydrophilic polymer suspensions
JPH0730202B2 (ja) * 1986-10-11 1995-04-05 ダイセル化学工業株式会社 球状粒子の製造法
JP2646463B2 (ja) * 1992-01-08 1997-08-27 鐘紡株式会社 架橋多孔性イオン交換セルロース微粒子の製造方法
DE19755352C1 (de) * 1997-12-14 1999-06-24 Thueringisches Inst Textil Verfahren zur Herstellung von regulären, porösen Perlcellulosen aus Celluloselösungen und die Verwendung der Perlcellulosen
KR101370200B1 (ko) * 2005-12-23 2014-03-05 바스프 에스이 용융 이온액 기재 용액계, 그의 제조 및 재생 탄수화물의제조를 위한 용도
US8153782B2 (en) * 2007-02-14 2012-04-10 Eastman Chemical Company Reformation of ionic liquids

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211342A (ja) * 1985-03-15 1986-09-19 Asahi Chem Ind Co Ltd 高分子超微粒子の製法
CN1470552A (zh) * 2003-06-16 2004-01-28 东华大学 一种纳米级纤维素颗粒的制备方法
WO2008067942A1 (en) * 2006-12-08 2008-06-12 Dow Global Technologies Inc. Production of cellulose nanoparticles
WO2008084854A1 (ja) * 2007-01-12 2008-07-17 Asahi Kasei Fibers Corporation セルロース微粒子並びにその分散液及び分散体
JP2008266401A (ja) * 2007-04-18 2008-11-06 Nisshinbo Ind Inc セルロース成形体およびその製造方法
WO2009021687A1 (en) * 2007-08-10 2009-02-19 Dow Global Technologies Inc. Nanoparticles of amorphous cellulose
WO2009036479A1 (de) * 2007-09-21 2009-03-26 Lenzing Ag Cellulosesuspension und verfahren zu deren herstellung
WO2009036480A1 (de) * 2007-09-21 2009-03-26 Lenzing Ag Cellulosepulver und verfahren zu seiner herstellung
WO2009101111A1 (de) * 2008-02-11 2009-08-20 Basf Se Verfahren zur herstellung poröser strukturen aus synthetischen polymeren
JP2010195996A (ja) * 2009-02-27 2010-09-09 Hitachi Ltd セルロース/樹脂複合体及びその製造方法
JP2011214003A (ja) * 2010-03-19 2011-10-27 Kaneka Corp セルロース多孔質粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2626381A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087202A (ja) * 2010-10-19 2012-05-10 Jsr Corp セルロース粒子の製造方法、及び、セルロース粒子
JPWO2014038686A1 (ja) * 2012-09-10 2016-08-12 株式会社カネカ 吸着体
JP2014163758A (ja) * 2013-02-22 2014-09-08 Asahi Kasei Fibers Corp 蛍光色素化合物を含むセルロース微粒子
JP2014205787A (ja) * 2013-04-12 2014-10-30 株式会社Kri 多糖類多孔質体の製造方法
WO2015029790A1 (ja) * 2013-09-02 2015-03-05 Jnc株式会社 多孔性セルロース粒子の製造方法および多孔性セルロース粒子
CN105518059A (zh) * 2013-09-02 2016-04-20 捷恩智株式会社 多孔性纤维素粒子的制造方法及多孔性纤维素粒子
CN105518059B (zh) * 2013-09-02 2019-01-01 捷恩智株式会社 多孔性纤维素粒子的制造方法、多孔性纤维素粒子及色谱法用填充剂
US11685793B2 (en) 2013-09-02 2023-06-27 Jnc Corporation Method for producing porous cellulose particles, and porous cellulose particles
WO2015056681A1 (ja) * 2013-10-15 2015-04-23 株式会社カネカ 多孔質セルロースビーズの製造方法およびそれを用いた吸着体
WO2015056680A1 (ja) * 2013-10-15 2015-04-23 株式会社カネカ 多孔質セルロースビーズの製造方法
JPWO2015056680A1 (ja) * 2013-10-15 2017-03-09 株式会社カネカ 多孔質セルロースビーズの製造方法
JPWO2015056681A1 (ja) * 2013-10-15 2017-03-09 株式会社カネカ 多孔質セルロースビーズの製造方法およびそれを用いた吸着体
US10189007B2 (en) 2013-10-15 2019-01-29 Kaneka Corporation Method for producing porous cellulose beads and adsorbent employing same
WO2015137170A1 (ja) * 2014-03-12 2015-09-17 富士フイルム株式会社 セルロース多孔質粒子の製造方法及びセルロース多孔質粒子
JP2015187255A (ja) * 2014-03-12 2015-10-29 富士フイルム株式会社 セルロース多孔質粒子の製造方法及びセルロース多孔質粒子
WO2016167268A1 (ja) * 2015-04-15 2016-10-20 株式会社カネカ 多孔質セルロースビーズの製造方法およびそれを用いた吸着体
JPWO2016167268A1 (ja) * 2015-04-15 2018-02-08 株式会社カネカ 多孔質セルロースビーズの製造方法およびそれを用いた吸着体
JPWO2017073626A1 (ja) * 2015-10-30 2017-11-30 東レ株式会社 エーテル系セルロース誘導体微粒子
WO2017073626A1 (ja) * 2015-10-30 2017-05-04 東レ株式会社 エーテル系セルロース誘導体微粒子
WO2020004604A1 (ja) * 2018-06-29 2020-01-02 日揮触媒化成株式会社 多孔質セルロース粒子とその製造方法、および化粧料
JPWO2020004604A1 (ja) * 2018-06-29 2021-08-02 日揮触媒化成株式会社 多孔質セルロース粒子とその製造方法、および化粧料
JP7269239B2 (ja) 2018-06-29 2023-05-08 日揮触媒化成株式会社 多孔質セルロース粒子とその製造方法、および化粧料
US11806421B2 (en) 2018-06-29 2023-11-07 Jgc Catalysts And Chemicals Ltd. Porous-cellulose particles and production method thereof, and cosmetic

Also Published As

Publication number Publication date
US20130172538A1 (en) 2013-07-04
EP2626381A4 (en) 2014-01-15
JP5785553B2 (ja) 2015-09-30
EP2626381A1 (en) 2013-08-14
JPWO2012033223A1 (ja) 2014-01-20

Similar Documents

Publication Publication Date Title
JP5785553B2 (ja) 多孔質粒子の製造方法、多孔質粒子、吸着体、およびタンパク質の精製方法
US10457705B2 (en) Carrier for ligand immobilization
JP6212617B2 (ja) 多孔質セルロースビーズの製造方法
Monier et al. Preparation of cross-linked chitosan/glyoxal molecularly imprinted resin for efficient chiral resolution of aspartic acid isomers
JP6506554B2 (ja) 吸着体、及びそれを用いた精製方法
JP2003524403A (ja) 内材を充填した泡状物質
WO2016167268A1 (ja) 多孔質セルロースビーズの製造方法およびそれを用いた吸着体
JP6440320B2 (ja) 多孔質セルロースビーズの製造方法およびそれを用いた吸着体
JP2012126796A (ja) 架橋高分子粒子の製造方法、及び、架橋高分子粒子
WO2019220866A1 (ja) 多孔質セルロースビーズおよび吸着体の製造方法
JP6442409B2 (ja) 多孔質セルロースビーズの製造方法
CN1062739A (zh) 改进的纤维素色谱载体
WO2018186222A1 (ja) 多孔質セルロースビーズおよび吸着体
WO2016063702A1 (ja) 多糖類モノリス構造体の製造方法
JP2021161246A (ja) 多孔質セルロースビーズの製造方法
Barnes et al. Microscopic analysis of four commercial column packings uncoated and coated with a thin alginate ester film
JP2011072883A (ja) 吸着体およびそれを用いた精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823691

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012533053

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13821836

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011823691

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011823691

Country of ref document: EP