WO2009021906A1 - Nanostrukturierte polymere auf basis von konjugierten dienen - Google Patents

Nanostrukturierte polymere auf basis von konjugierten dienen Download PDF

Info

Publication number
WO2009021906A1
WO2009021906A1 PCT/EP2008/060416 EP2008060416W WO2009021906A1 WO 2009021906 A1 WO2009021906 A1 WO 2009021906A1 EP 2008060416 W EP2008060416 W EP 2008060416W WO 2009021906 A1 WO2009021906 A1 WO 2009021906A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymers
molecular weight
polymer
conjugated dienes
hydrocarbon radical
Prior art date
Application number
PCT/EP2008/060416
Other languages
English (en)
French (fr)
Inventor
Heike Kloppenburg
Thomas Gross
Alex Lucassen
Dave Hardy
Original Assignee
Lanxess Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxess Deutschland Gmbh filed Critical Lanxess Deutschland Gmbh
Priority to JP2010520538A priority Critical patent/JP5568473B2/ja
Priority to RU2010109059/05A priority patent/RU2475503C2/ru
Priority to AT08787012T priority patent/ATE529273T1/de
Priority to KR1020107005705A priority patent/KR101162430B1/ko
Priority to EP08787012A priority patent/EP2181000B1/de
Priority to CN200880108638XA priority patent/CN101808833B/zh
Priority to US12/672,697 priority patent/US9079981B2/en
Priority to BRPI0815391-4A priority patent/BRPI0815391B1/pt
Publication of WO2009021906A1 publication Critical patent/WO2009021906A1/de
Priority to ZA2010/01079A priority patent/ZA201001079B/en
Priority to HK10108370.1A priority patent/HK1142040A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/34Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths

Definitions

  • the present invention relates to nanostructured diene polymers, their preparation and their use.
  • conjugated dienes or on the basis of conjugated dienes and vmylaromati see compounds with particularly suitable organic or inorganic compounds (coupled), in particular the processing properties and the physical and dynamic properties, especially those related to the rolling resistance of tires , be improved.
  • linkage-coupling agents for the rubbers mentioned in addition to a wide variety of organic compounds having corresponding groups capable of linking to the living polymers, such as epoxide groups (DE-A 19 857 768), isocyanate groups, aldehyde groups, keto groups, ester groups, and the like Halogemd phenomenon, especially corresponding silicon or Zmn Verbmditch (EP-A 0 890 580 and EP-A 0 930 318) used, such as their halides, sulfides or amines.
  • DE-A 19 803 039 describes rubber compositions for high-performance tire treads whose underlying rubbers have been partially coupled with tin, phosphorus, gallium or silicon compounds.
  • linking agents used hitherto are in some cases associated with still considerable disadvantages, for example that these lead to end group modification in diene polymerizations catalyzed by rare earths, in particular by neodymium-containing systems, and thus are not suitable as couplers. It is an object of the present invention to provide nanostructured diene polymers which have a good processing behavior and, due to their nanostructured polymer content, an improved property profile of rubber compounds
  • the present invention relates to nanostructured polymers based on conjugated dienes, obtainable by polymerization of conjugated dienes with catalysts of the
  • Polymers have a bimodal molecular weight distribution, in which the high molecular weight fraction has an average molecular weight of greater than 2,000,000 g / mol, preferably greater than 5,000,000 g / mol, the amount of high molecular weight fractions based on the entire polymer in the range of 1% to 20%, preferably 3 to 15%, the gel content of the entire polymer is ⁇ 1% and the
  • conjugated dienes it is possible to use all known dienes which are customary for the preparation of corresponding polymer anions.
  • dienes which are customary for the preparation of corresponding polymer anions.
  • the catalysts used are preferably compounds of the rare earth metals, as described in more detail in EP-B 011184 or EP-A 1245600. Also possible are all known for the polymerization Ziegler-Natta catalysts, such as those based on titanium, cobalt , Vanadium or nickel compounds as well as compounds of rare earth metals. The said Ziegler-Natta catalysts can be used both individually and in admixture with each other.
  • Ziegler-Natta catalysts based on compounds of the rare earth metals, such as cerium, lanthanum, praseodymium, gadolinium or neodymium compounds which are soluble in hydrocarbons, are preferably used.
  • the corresponding salts of the rare earth metals are particularly preferably used as Ziegler-Natta catalysts, such as neodymium carboxylates, in particular neodymium neodecanoate, neodymium octanoate, neodymium naphthenate, neodymium 2,2-diethylhexanoate or neodymium 2,2-diethylheptanoate , as well as the corresponding salts of lanthanum or praseodymium.
  • the usable Ziegler-Natta catalysts also comprise catalyst systems based on metallocenes, such as in the following literature: EP-A 919 574, EP-A 1025136 and EP-
  • Nanocouplers used are those compounds which react with the polymers, couple in part to the polymer and form nanostructures in a subsequent reaction. wherein the average molecular weight of these nanoparticles increased by at least a factor of 5, preferably by a factor of 7.
  • Preferred nanocouplers are oligomeric silicates of the formula
  • X an alcoholate of the formula OR, where R is a saturated or partially unsaturated aliphatic hydrocarbon radical having 1 to 30 carbon atoms, a cyclohephatic hydrocarbon radical having 5 to 30 carbon atoms or an aromatic hydrocarbon radical having 6 to 30 carbon atoms and
  • n is a number greater than 0, preferably greater than 1 and particularly preferably greater than 2.
  • R is methyl, ethyl, vinyl, propyl, iso-propyl, butyl, pentyl, hexyl, octyl and their isomers.
  • ohgomeren silicates are commercially available and are preferably formed by condensation of Siliciumtetraalkoholaten and can be defined compounds or
  • Oligomeric silicates are available, for example, under the trade name Dynasil® 40 from Degussa.
  • nanocouplers are those compounds containing groups with acidic hydrogen, as it is for example NH groups, OH groups or COOH groups.
  • the amount of nanocouplers used depends on the desired degree of modification.
  • the ratio of nanocoplers to polymers in the range of 0.001 to 10 g: 100 g, in particular 0.01 to 6 g to 100 g.
  • the reaction to form these nanostructures may be in one or more stages. It is particularly preferred that the nanocoupler in a first reaction to the living
  • Polymer group is attached and m agglomerated in a second stage, together with other modified polymer groups to the described nanostructures.
  • agglomeration occurs during workup of the polymer, such as during the stripping process, when the polymer comes into contact with, for example, water.
  • the nanocouplers can react with one another at this point. This can be done, for example, by the free groups of nanocopters, to which no polymer groups are bound, reacting with one another and thus connecting two or more nanocompacts, which in turn can each carry one or more polymer groups.
  • the invention also provides a method for the production of nanostructured
  • X is an alcoholate of the formula OR, where R is a saturated or partially unsaturated aliphatic hydrocarbon radical having 1 to 30 carbon atoms, a cycloaliphatic hydrocarbon radical having 5 to 30 carbon atoms or an aromatic hydrocarbon radical having 6 to 30 carbon atoms and
  • n is a number greater than 0, preferably greater than 1 and particularly preferably greater than 2, and
  • the amount of nanocoplers used to polymers in the range of 0.001 to 10 g to 100 g hegt.
  • the nanocoupler reacts with the polymers by firstly modifying the end group of the living polymer and furthermore by condensing the nanocoupler in a subsequent stage into relatively high molecular weight structures
  • the nanostructured polymers according to the invention are prepared in successive steps. First, the polydiene is prepared, which is then reacted with one or more of the nanocopples defined above, which can then, for example, react under condensation to form nanostructured polymers. Depending on the desired properties of the polymers to be produced, these nanocomplexes can be of any desired type
  • the polymerization of the conjugated dienes is generally carried out by reacting a catalyst system with the respective diene to form the diene polymers.
  • the polymerization of the conjugated dienes is preferably carried out in the presence of the abovementioned Ziegler-Natta catalysts by customary processes (see EP-B 011184 or EP-A
  • the erfmdungshiele process in the presence of inert, aprotic solvents is carried out.
  • inert aprotic solvents may be paraffinic hydrocarbons, such as isomeric pentanes, hexanes, heptanes, octanes, decanes, 2,4-trimethylpentane, cyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane or 1,4-
  • Dimethylcyclohexane or aromatic hydrocarbons, such as benzene, toluene, ethylbenzene, xylene, diethylbenzene or propylbenzene. These solvents may be used singly or in combination. Preferred are cyclohexane and n-hexane.
  • the amount of solvents can vary within a wide range. It is usually about 300 to 1500 parts by weight per 100 parts by weight of total monomers.
  • the Polyme ⁇ sationstemperatur can vary within wide ranges and expresses in general in the range from 0 0 C to 200 0 C, preferably at 40 0 C to 130 ° C.
  • the reaction time also varies in wide ranges from several minutes to several hours.
  • the polymerization is carried out within a period of about 30 minutes to 8 hours, preferably 1 to 4 hours. It can be used both at normal pressure and at elevated pressure (1 to
  • the preparation of the polymers according to the invention can be carried out both in discontinuous and in continuous operation.
  • the continuous mode of operation is a reactor cascade consisting of several, preferably at least 2, in particular 2 to 5, m series connected reactors.
  • the polymerization preferably takes place until complete conversion of the dienes used.
  • the diene polymerization depending on the desired Polymer properties prematurely interrupt, for example, the conversion of about 80% of the monomers.
  • the unreacted diene can be separated, for example, by a flash distillation (flash stage).
  • the polymerization mixture obtained in the polymerization is mixed with the nanocopters mentioned.
  • aprotic organic solvent or solvent mixture in which the diene polymers were also prepared. It is of course also possible to change the solvent or to add the nanocoplers in another solvent.
  • Aprotic organic solvents are for example: pentanes, hexanes, Heptanes, cyclohexane, methylcyclopentane, benzene,
  • Toluene ethylbenzene, preferably hexanes, cyclohexane, toluene, most preferably hexane.
  • polar organic compounds which can serve, for example, as solvents of the nanocopper.
  • interfering compounds which could impair the attachment of the nanocopper to the polymer are preferably absent.
  • interfering compounds are e.g. Carbon dioxide, oxygen, water, alcohols, organic and inorganic acids.
  • reaction of the diene polymers with the nanocopters is preferably carried out in situ without intermediate isolation of the polymers, the diene polymers after the polymerization, optionally by a flash distillation (flash stage) without further
  • the amount of nanocouplers used depends on the desired degree of modification.
  • the ratio of nanocoplers to polymers in the range of 0.001 to 10 g: 100 g, in particular 0.01 to 6 g to 100 g.
  • the reaction with the nanocopters is usually carried out at temperatures which correspond approximately to the temperatures of the polyme ⁇ sationsre surgeon. This means that the reaction at temperatures from about 0 0 C to 200 0 C, preferably 40 0 C is performed to 130 ° C.
  • the reaction can also be carried out at atmospheric pressure and at elevated pressure (1 to 10 bar).
  • the reaction time is preferably relatively short. It is in the range of about 1 minute to about 1
  • the now end-group-modified polymers are combined into nanostructures by bringing the reaction mixture into contact with water, preferably. This can be done by separately adding water to the polymer solution or by introducing steam during the stripping process. It is also possible to add other protic reagents in addition to or prior to the addition of the water, such as
  • antioxidants are added to the reaction mixture before the nanostructured polymer is isolated.
  • the separation of the polymer according to the invention can be carried out in a customary manner, for example by steam distillation or flocculation with a suitable flocculating agent, such as alcohols.
  • a suitable flocculating agent such as alcohols.
  • the flocculated polymer is then removed from the resulting medium by, for example, centrifuging or extruding. Residual solvent and other volatiles may be removed from the isolated polymer by heating, optionally under reduced pressure or in a forced air stream.
  • the molecular weight of the nanostructured polymers of the present invention can vary widely.
  • the number average molecular weight (Mn) of the entire polymer ranges from about 100,000 to about 500,000 g / mol, the molecular weight having a bimodal distribution and wherein the high molecular weight fraction is increased by at least a factor of 5, preferably by a factor of 8 and more preferably by a factor of 10 compared with the low molecular weight fraction m of the average molecular weight, and the high molecular weight fraction in the GPC analysis has an average molar mass of greater than 2,000,000 g / mol, preferably greater than 5,000,000 g / mol.
  • the amount of high molecular weight fractions based on the total polymer is in the range of 1% to 20%, preferably 3 to 15%.
  • Bimodality of the polymers of the invention after coupling recognizable In the molecular weight distribution, the bimodality is shown by two separate peaks separated by a minimum. The integral separates both peaks according to the molecular weight distribution through a turnaround point in the curve. This becomes particularly clear in comparison to FIG. 3, which shows the curve of the comparative polymer without nanocoupler. In this example, the molecular weight distribution shows only one peak and the integral is continuously increasing, so that no bimodality is present.
  • the nanostructured polymer according to the invention has the same solubility behavior as an unmodified polymer.
  • the gel content of the polymer is less than 1%.
  • the polymers of the invention preferably have a content of 1,2-bonds (vinyl content) of 0.3 to 1 wt .-%, preferably 0.4 to 0.8 wt .-%.
  • Compounding components such as fillers, dye, pigments, softening agent] and reinforcing agent.
  • the known rubber auxiliaries and crosslinking agents can be added.
  • the nanostructured polymers according to the invention can be used in a known manner for the production of vulcanized materials or rubber moldings of all kinds.
  • the invention additionally relates to the use of the nanostructured polymers according to the invention for the production of tires and tire components, golf balls and technical rubber articles and rubber-reinforced plastics, such as e.g. ABS and HEPS plastics.
  • the polymerizations were carried out under exclusion of air and moisture under nitrogen.
  • the solvent used was dry and oxygen-free technical hexane.
  • the polymerization was carried out according to the batch size in a 21 to 201 volume autoclave.
  • the sales determinations were made gravimetrically; In this case, the polymer solutions after sampling (still with solvent and monomer) and after drying (at 65 0 C in a vacuum oven) were weighed.
  • the Mooney measurement ML 1 + 4 (100) was preheated at an instrument from Alpha with the large rotor after one minute for 4 minutes carried out at 100 0 C.
  • DIBAH diisobutylaluminum hydride in hexane
  • EASC ethylaluminum sesquichloride in hexane
  • Neodymium versatate and a solution of Neodymversatat in hexane (NdV, Nd (O 2 Ci 0 H 19 ) 3 ) was added. It is then heated to 73 0 C flow temperature. After the start of the reaction, the reaction is complete after 60 minutes and a polymer sample is drawn. Subsequently, the modifying reagent is added with 100 mL of hexane through a burette with stirring.
  • reaction is stopped by addition of 20 mL of water, stabilized with 2.6 g of Irganox 1520L dissolved in 100 mL of hexane.
  • Example 1 the polymer is water-containing ethanol is then precipitated and dried at 6O 0 C in a vacuum drying cabinet with about 10 L.
  • Example 2 the polymer is worked up in a laboratory stripper and dried at 60 0 C in a vacuum oven.
  • Table 1 the polymer is worked up in a laboratory stripper and dried at 60 0 C in a vacuum oven.
  • the polymers according to the invention are distinguished by a marked increase in the Mooney viscosity after coupling, which is evidenced by the increase in molecular weight, as illustrated by way of example in FIGS. 1 and 2 for examples 2 and 4.
  • FIGS. 1 and 2 show the relative proportion of the polymers m relative to the molar mass m g / mol.
  • FIG. 1 shows the molar mass distribution m Example 2 after the coupling and FIG. 2 shows the molar masses distribution m Example 4 after the coupling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Die vorliegende Erfindung betrifft nanostrukturierte Dien-Polymere, deren Herstellung sowie deren Verwendung.

Description

Nanostrukturierte Polymere auf Basis von konjugierten Dienen
Die vorliegende Erfindung betrifft nanostrukturierte Dien-Polymere, deren Herstellung sowie deren Verwendung.
Vor allem für den Einsatz im Reifenbau werden lebende, z.T. Alkali-termimerte Polymere, auf
Basis von konjugierten Dienen oder auf Basis von konjugierten Dienen und vmylaromati sehen Verbindungen mit besonders dafür geeigneten organischen oder anorganischen Verbindungen verknüpft (gekoppelt), wobei insbesondere die Verarbeitungseigenschaften sowie die physikalischen und dynamischen Eigenschaften, insbesondere solche, die im Zusammenhang mit dem Rollwiderstand bei Reifen stehen, verbessert werden.
Als Verknüpfungs-ZKopplungsmittel für die genannten Kautschuke werden in der Technik neben den verschiedensten organischen Verbindungen mit entsprechenden, zur Verknüpfung mit den lebenden Polymeren fähigen Gruppierungen, wie Epoxidgruppen (DE-A 19 857 768), Iso- cyanatgruppen, Aldehydgruppen, Ketogruppen, Estergruppen sowie Halogemdgruppen, vor allem entsprechende Silicium- oder Zmn-Verbmdungen (EP-A 0 890 580 und EP-A 0 930 318) eingesetzt, wie deren Halogenide, Sulfide oder Amme. In DE-A 19 803 039 sind Kautschuk- Zusammensetzungen für Hochleistungs-Reifen-Laufflächen beschrieben, deren zugrunde liegenden Kautschuke teilweise mit Zinn-, Phosphor-, Gallium- oder Sihcium-Verbmdungen gekoppelt wurden.
Ebenfalls bekannt smd verschiedene Methoden zur Endgruppenfunktionalisierung von Polydienen.
Bei dem durch neodymhaltige Systeme katalysierten Polybutadien finden beispielsweise Epoxide, substituierte Ketoverbindungen aus der Gruppe der Ketone, Aldehyde oder Säurederivate, substituierte Isocyanate, Verwendung, wie z.B. m US A 4906706 beschrieben. Bekannt ist ebenfalls die Wirkungsweise der Endgruppenmodifizierung mit zweifach funktionahsierten Reagenzien. Diese reagieren mit der polaren funktionellen Gruppe mit dem Polydien und bauen mit einer zweiten polaren funktionellen Gruppe im Molekül eine Wechselwirkung zum Füllstoff auf, wie beispielsweise m WO 01/34658 oder US-A 6992147 beschrieben.
Die bisher verwendeten Verknüpfungsmittel sind zum Teil mit noch erheblichen Nachteilen verbunden, so z.B. dass diese bei durch Seltene Erden, insbesondere durch Neodymhaltige Systeme katalysierten Dien Polymerisationen zu einer Endgruppenmodifizierung führen und somit als Koppler nicht geeignet smd. Aufgabe der vorliegenden Erfindung war es nun, nanostruktunerte Dien-Polymere bereitzustellen, die eine gutes Verarbeitungsverhalten und durch ihren nanostruktuπerten Polymeranteil ein verbessertes Eigenschaftsprofil m Kautschukcompounds besitzen
Gegenstand der vorhegenden Erfindung smd nanostruktunerte Polymere auf Basis von konjugierten Dienen, erhältlich durch Polymerisation konjugierter Diene mit Katalysatoren der
Seltenen Erden und anschließender Umsetzung mit einem Nanokoppler, wobei die erhaltenen
Polymere eine bimodale Molmassenverteilung besitzen, bei dem der hochmolekulare Anteil eine mittlere Molmasse von größer als 2 000.000 g/mol, bevorzugt größer als 5.000.000 g/mol besitzt, die Menge der hochmolekularen Anteile bezogen auf das gesamte Polymer im Bereich von 1% bis 20%, bevorzugt 3 bis 15% liegt, der Gelgehalt des gesamten Polymeren <1% beträgt und der
Gehalt an 1 ,2-Vmylemheiten bezogen auf das Polymere zwischen 0,3 und 1 Gew.-% beträgt.
Als konjugierte Diene können alle bekannten Diene eingesetzt werden, die für die Herstellung entsprechender Polymeranionen üblich sind. Beispielsweise sind zu nennen: 1,3-Butadien, 2,3- Dimethyl-l,3-butadien, 3-Butyl-l,3-octadien, Isopren, Piperylen, 1,3-Hexadien, 1,3-Octadien, 2- und/oder Phenyl-1 ,3-butadien, bevorzugt 1 ,3-Butadien und Isopren, sowie Mischungen derselben.
Als Katalysatoren werden dabei vorzugsweise Verbindungen der Seltenen Erdmetalle eingesetzt, wie beispielsweise näher beschrieben in EP-B 011184 oder EP-A 1245600. Ebenfalls möglich sind alle für die Polymerisation bekannten Ziegler-Natta-Katalysatoren, wie beispielsweise solche auf Basis von Titan-, Kobalt-, Vanadium- oder Nickel-Verbmdungen sowie auf Basis von Verbmdun- gen der Seltenen Erdmetalle. Die genannten Ziegler-Natta-Katalysatoren können sowohl einzeln als auch im Gemisch untereinander eingesetzt werden.
Bevorzugt werden Ziegler-Natta-Katalysatoren auf Basis von Verbindungen der Seltenen Erdmetalle eingesetzt, wie Cer-, Lanthan-, Praseodym-, Gadolinium- oder Neodymverbindungen, die m Kohlenwasserstoffen löslich smd. Besonders bevorzugt werden die entsprechenden Salze der Seltenen Erdmetalle als Ziegler-Natta-Katalysatoren eingesetzt, wie Neodym-carboxylate, insbesondere Neodym-neodecanoat, Neodymoctanoat, Neodymnaphthenat, Neodym-2,2-diethyl- hexanoat oder Neodym-2,2-diethyl-heptanoat, sowie die entsprechenden Salze des Lanthans oder Praseodyms, Weiterhin umfassen die einsetzbaren Ziegler-Natta-Katalysatoren auch Katalysatorsysteme auf Basis von Metallocenen, wie z.B. m folgender Literatur beschrieben: EP-A 919 574, EP-A 1025136 und EP-A 1078939.
Als Nanokoppler werden solche Verbindungen eingesetzt, die mit den Polymeren reagieren, zum Teil an das Polymer ankoppeln und m einer nachgelagerten Reaktion Nanostrukturen bilden, wobei sich die mittlere Molmasse dieser Nanoteilchen mindestens um den Faktor 5, bevorzugt um den Faktor 7 erhöht.
Bevorzugte Nanokoppler sind oligomere Silikate der Formel
X3 - Si - (O - Si X2X - X5
wobei
X = ein Alkoholat der Formel OR ist, wobei R ein gesättigter oder teilweise ungesättiger ahphatischer Kohlenwasserstoffrest mit 1 bis 30 C-Atomen, em cycloahphatischer Kohlenwasserstoffrest mit 5 bis 30 C-Atomen oder em aromatischer Kohlenwasserstoffrest mit 6 bis 30 C-Atomen und
n eine Zahl größer 0, bevorzugt großer 1 und besonders bevorzugt größer 2 ist.
Beispiele für bevorzugte Nanokoppler der genannten Art sind
(RO)3Si-O-Si(OR)33
(RO)3SI-O-SI(OR)2-O-SI(OR)3,
(RO)3SI-O-SI(OR)2-O-SI(OR)2-O-SI(OR)3, (RO)3SI-O-SI(OR)2-O-SI(OR)2-O-SI(OR)2-O-SI(OR)3,
(RO)3SI-O-SI(OR)2-O-SI(OR)2-O-SI(OR)2-O- SI(OR)2-O-SI(OR)3 oder
(RO)3SI-O-SI(OR)2-O-SI(OR)2-O-SI(OR)2-O- SI(OR)2-O- SI(OR)2-O-SI(OR)3
mit R gleich Methyl, Ethyl, Vinyl, Propyl, iso-Propyl, Butyl, Pentyl, Hexyl, Octyl und ihren Isomeren. Diese ohgomeren Silikate sind handelsüblich und werden vorzugsweise durch Kondensation von Siliciumtetraalkoholaten gebildet und können definierte Verbindungen oder
Gemische von Verbindungen mit unterschiedlichem Kondensationsgrad sein
Oligomere Silikate sind zum Beispiel unter dem Handelnamen Dynasil® 40 der Firma Degussa erhältlich.
Weniger geeignet sind solche Verbindungen, die Gruppen mit acidem Wasserstoff enthalten, wie er zum Beispiel NH-Gruppen, OH-Gruppen oder COOH-Gruppen enthalten ist. Die Menge der eingesetzten Nanokoppler richtet sich nach dem gewünschten Modifizierungsgrad. Bevorzugt liegt das Verhältnis von Nanokoppler zu Polymeren im Bereich von 0,001 bis 10 g : 100 g, insbesondere 0,01 bis 6 g zu 100 g.
Die Reaktion zur Ausbildung dieser Nanostrukturen kann m einer oder mehreren Stufen erfolgen. Besonders bevorzugt ist, dass der Nanokoppler in einer ersten Reaktion an die lebende
Polymergruppe angebunden wird und m einer zweiten Stufe unter Zusammenlagerung mit anderen modifizierten Polymergruppen zu den beschriebenen Nanostrukturen agglomeriert.
Bevorzugt erfolgt die Agglomeration während der Aufarbeitung des Polymeren, wie zum Beispiel während des Strippprozesses, wenn das Polymer zum Beispiel mit Wasser in Kontakt kommt. Die Nanokoppler können in einer bevorzugten Ausführungsform an dieser Stelle miteinander reagieren. Das kann zum Beispiel geschehen, indem die freien Gruppen der Nanokoppler, an denen keine Polymergruppen gebunden smd, miteinander reagieren und damit zwei oder mehrere Nanokoppler miteinander verbinden, die ihrerseits jeweils eine oder mehrere Polymergruppen tragen können.
Gegenstand der Erfindung ist zudem em Verfahren zur Herstellung von nanostruktunerten
Polymeren auf Basis von konjugierten Dienen, dadurch gekennzeichnet, dass man zunächst in Gegenwart von inerten organischen, aprotischen Lösungsmitteln und in Gegenwart eines Katalysators der Seltenen Erden konjugierte Diene polymeπsiert, die nach der Polymerisation erhaltenen Polymere auf Basis der genannten Monomeren mit Nanokopplem der Formel
X3 - Si - (O -~ Si X2)n ~ X
umsetzt, wobei
X ein Alkoholat der Formel OR, wobei R ein gesättigter oder teilweise ungesättiger aliphatischer Kohlenwasserstoffrest mit 1 bis 30 C- Atomen, em cycloaliphati scher Kohlenwasserstoffrest mit 5 bis 30 C-Atomen oder em aromatischer Kohlenwasserstoffrest mit 6 bis 30 C-Atomen ist und
n ein Zahl größer 0, bevorzugt größer 1 und besonders bevorzugt größer 2 ist und
die Menge der eingesetzten Nanokoppler zu Polymeren im Bereich von 0,001 bis 10 g zu 100 g hegt.
Bei dem erfindungsgemäßen Verfahren reagiert der Nanokoppler mit den Polymeren, indem der Nanokoppler zuerst die Endgruppe des lebenden Polymeren modifiziert und weiterhin der Nanokoppler in einer nachfolgenden Stufe zu höhermolekularen Strukturen kondensiert Die Herstellung der erfindungsgemäßen nanostrukturierten Polymere erfolgt m aufeinander folgenden Schritten. Zuerst wird das Polydien hergestellt, welches danach mit einem oder mehreren der vorstehend definierten Nanokoppler umgesetzt wird, die dann zum Beispiel unter Kondensation zu nanostrukturierten Polymeren reagieren können. Diese Nanokoppler können je nach den gewünschten Eigenschaften der herzustellenden Polymeren zu jedem beliebigen
Zeitpunkt der Polymerisation zugegeben werden.
Die Polymerisation der konjugierten Diene wird im Allgemeinen so durchgeführt, dass ein Katalysatorsystem mit dem jeweiligen Dien umgesetzt wird, um die Dienpolymere zu bilden.
Die Polymerisation der konjugierten Diene wird vorzugsweise m Gegenwart der bereits genannten Ziegler-Natta-Katalysatoren nach gängigen Verfahren durchgeführt (siehe EP-B 011184 oder EP-
A 1245600).
Vorzugsweise wird das erfmdungsgemäße Verfahren in Gegenwart von inerten, aprotischen Lösungsmitteln durchgeführt. Solche inerte aprotische Lösungsmittel können paraffimsche Kohlenwasserstoffe sein, wie isomere Pentane, Hexane, Heptane, Octane, Decane, 2,4- Trimethylpentan, Cyclopentan, Cyclohexan, Methylcyclohexan, Ethylcyclohexan oder 1,4-
Dimethylcyclohexan, oder aromatische Kohlenwasserstoffe, wie Benzol, Toluol, Ethylbenzol, Xylol, Diethylbenzol oder Propylbenzol. Diese Lösungsmittel können einzeln oder in Kombination verwendet werden. Bevorzugt sind Cyclohexan und n-Hexan.
Die Menge an Lösungsmitteln kann in einem weiten Bereich variieren. Sie beträgt üblicherweise etwa 300 bis 1500 Gew.-Teile pro 100 Gew.-Teile Gesamtmonomere.
Die Polymeπsationstemperatur kann in weiten Bereichen schwanken und hegt im Allgemeinen im Bereich von 00C bis 2000C, bevorzugt bei 400C bis 130°C. Die Reaktionszeit schwankt ebenfalls in breiten Bereichen von einigen Minuten bis zu einigen Stunden. Üblicherweise wird die Polymerisation innerhalb einer Zeitspanne von etwa 30 Minuten bis zu 8 Stunden, bevorzugt 1 bis 4 Stunden, durchgeführt. Sie kann sowohl bei Normaldruck, als auch bei erhöhtem Druck (1 bis
10 bar) durchgeführt werden.
Die Herstellung der erfindungsgemäßen Polymere kann sowohl in diskontinuierlicher als auch in kontinuierlicher Fahrweise erfolgen. Bevorzugt ist die kontinuierliche Fahrweise m emer Reaktorkaskade, bestehend aus mehreren, bevorzugt mindestens 2, insbesondere 2 bis 5, m Reihe geschalteten Reaktoren.
Die Polymerisation erfolgt bevorzugt bis zum vollständigen Umsatz der eingesetzten Diene. Selbstverständlich ist es auch möglich, die Dienpolymerisation in Abhängigkeit der gewünschten Polymereigenschaften vorzeitig zu unterbrechen, beispielsweise beim Umsatz von ca. 80 % der Monomeren. Nach der Dienpolymeπsation kann das nicht umgesetzte Dien beispielsweise durch eine Entspannungsdestillation (Flashstufe) abgetrennt werden.
Zur Reaktion mit dem Nanokoppler wird die bei der Polymerisation erhaltene Polymeπsationsrnischung mit den genannten Nanokopplern vermischt.
Dies wird bevorzugt im gleichen aprotischen organischen Lösungsmittel oder Lösungsmittelgemisch durchgeführt, in dem auch die Dienpolymere hergestellt wurden Selbstverständlich ist es auch möglich, das Lösungsmittel zu wechseln oder die Nanokoppler in einem anderen Lösungsmittel zuzugeben Als aprotische organische Lösungsmittel kommen beispielsweise m Betracht: Pentane, Hexane, Heptane, Cyclohexan, Methylcyclopentan, Benzol,
Toluol, Ethylbenzol, bevorzugt Hexane, Cyclohexan, Toluol, ganz besonders bevorzugt Hexan. Weiterhin ist es auch möglich, polare organische Verbindungen zuzugeben, die beispielsweise als Lösemittel des Nanokopplers dienen können.
Bei der Reaktion ist darauf zu achten, dass störende Verbindungen, die die Anbindung des Nanokopplers an das Polymer beeinträchtigen könnten, bevorzugt nicht vorhanden sind. Solche störenden Verbindungen sind z.B. Kohlendioxid, Sauerstoff, Wasser, Alkohole, organische und anorganische Säuren.
Die Umsetzung der Dienpolymere mit den Nanokopplern wird vorzugsweise ohne Zwischenisolierung der Polymere in situ durchgeführt, wobei die Dienpolymere nach der Polymerisation, gegebenenfalls durch eine Entspannungsdestillation (Flashstufe) ohne weitere
Zwischenbehandlung mit den Nanokopplern umgesetzt werden.
Die Menge der eingesetzten Nanokoppler richtet sich nach dem gewünschten Modifizierungsgrad. Bevorzugt liegt das Verhältnis von Nanokoppler zu Polymeren im Bereich von 0,001 bis 10 g : 100 g, insbesondere 0,01 bis 6 g zu 100 g.
Die Reaktion mit den Nanokopplern wird üblicherweise bei Temperaturen durchgeführt, die in etwa den Temperaturen der Polymeπsationsreaktion entsprechen. Dies bedeutet, dass die Reaktion bei Temperaturen von etwa 00C bis 2000C, vorzugsweise 400C bis 130°C durchgeführt wird. Die Reaktion kann ebenfalls bei Normaldruck als auch bei erhöhtem Druck (1 bis 10 bar) durchgeführt werden.
Die Reaktionszeit ist vorzugsweise relativ kurz. Sie liegt im Bereich von etwa 1 Minute bis etwa 1
Stunde. Nach der Reaktion mit den Nanokopplem werden die nunmehr endgruppenmodifizierten Polymere zu Nanostrukturen verbunden, indem man die Reaktionsmischung bevorzugt mit Wasser m Kontakt bringt. Das kann durch eine separate Zugabe von Wasser zu der Polymerlösung oder durch Einleiten von Wasserdampf während des Strippprozesses erfolgen. Es ist auch möglich, zusätzlich mit oder vor der Zugabe des Wassers andere protische Reagenzien zuzugeben, wie
Alkohole oder Carbonsäuren. Darüber hinaus ist es von Vorteil, wenn der Reaktionsmischung Antioxidantien zugesetzt werden, bevor das nanostruktuπerte Polymer isoliert wird.
Weiterhin ist es möglich, die in Gegenwart der Ziegler-Natta-Katalysatoren erhaltenen und mit den Nanokopplem umgesetzten Polymere m bekannter Weise zu isolieren, zu reinigen und anschließend aufzuarbeiten.
Die Abtrennung des erfindungsgemäßen Polymers kann in üblicher Weise etwa durch Wasserdampfdestillation oder Ausflockung mit einem geeigneten Ausflockungsmittel, wie Alkoholen erfolgen. Das ausgeflockte Polymer wird dann beispielsweise durch Zenrπfugieren oder Extrudieren aus dem resultierenden Medium entfernt. Restliches Lösungsmittel und andere flüchtige Bestandteile lassen sich durch Erwärmen, gegebenenfalls unter vermindertem Druck oder in einem Gebläseluftstrom, aus dem isolierten Polymer entfernen.
Das Molekulargewicht der erfindungsgemäßen nanostrukturierten Polymere kann in weiten Bereichen variieren Für die üblichen Anwendungen der erfindungsgemäßen Polymere liegt das mittlere Zahlenmittel des Molekulargewichts (Mn) des gesamten Polymeren im Bereich von etwa 100.000 bis etwa 500.000 g/mol, wobei das Molekulargewicht eine bimodale Verteilung besitzt und wobei der hochmolekulare Anteil gegenüber dem niedermolekularen Anteil m der mittleren Molmasse mindestens um den Faktor 5, bevorzugt um den Faktor 8 und besonders bevorzugt um den Faktor 10 erhöht ist und der hochmolekulare Anteil in der GPC-Analytik eine mittlere Molmasse von größer als 2.000.000 g/mol, bevorzugt größer als 5.000.000 g/mol besitzt. Die Menge der hochmolekularen Anteile bezogen auf das gesamte Polymer liegt im Bereich von 1 % bis 20%, bevorzugt 3 bis 15%.
Anhand der Figuren 1 und 2 wird die Erfindung näher erläutert. In diesen wird der relative Anteil der Polymeren m Relation zur Molmasse in g/mol dargestellt. Die durchgehende Linie beschreibt die Molmassenverteilung über der Molmasse. Die gestrichelte Linie ist das dazu gehörende Integral. Aus beiden Grafiken ist anhand der Beispiele 2 (Figur 1) und 4 (Figur 2) sehr gut die
Bimodalität der erfindungsgemäßen Polymere nach der Kopplung erkennbar. In der Molmassenverteilung zeigt sich die Bimodalität durch zwei separate Peaks, die durch ein Minimum voneinander getrennt sind. Das Integral trennt beide Peaks entsprechend zur Molmassenverteilung durch einen Umschlagpunkt im Kurvenverlauf. Dies wird besonders deutlich im Vergleich zu Figur 3, die die Kurve des Vergleichspolymers ohne Nanokoppler zeigt. In diesem Beispiel zeigt die Molmassen Verteilung nur einen Peak und das Integral verläuft stetig ansteigend, so dass keine Bimodalität vorhanden ist.
Des Weiteren ist ersichtlich, dass nach der Kopplung der hochmolekulare Peak mit Molmassen oberhalb von 5.000.000 g/mol deutlich oberhalb des Grenzwertes von 2.000.000 g/mol liegt.
Das erfindungsgemäße nanostrukturierte Polymer weist das gleiche Löslichkeitsverhalten wie ein unmodifizierten Polymer auf. Der Gelgehalt des Polymeren liegt unter 1%. Die erfindungsgemäßen Polymere besitzen vorzugsweise einen Gehalt an 1,2 -Bindungen (Vinylgehalt) von 0,3 bis 1 Gew.-%, vorzugsweise 0,4 bis 0,8 Gew.-%.
Selbstverständlich können den erfindungsgemäßen Polymeren noch die üblichen
Compoundierkomponenten, wie Füllstoffe, Farbstoff, Pigmente, Erweichungsmitte] und Verstärkungsmittel, zugesetzt werden. Darüber hinaus können die bekannten Kautschukhilfsmittel und Vernetzungsmittel zugesetzt werden.
Die erfindungsgemäßen nanostrukturierte Polymere können in bekannter Weise zur Herstellung von Vulkan i säten bzw. Kautschukformkörpern aller Art verwendet werden.
Beim Einsatz der erfindungsgemäßen nanostrukturierten Polymere in Reifenmischungen konnte eine deutliche Verbesserung der dynamischen Compoundeigenschaften erhalten werden.
Gegenstand der Erfindung ist zudem die Verwendung der erfindungsgemäßen nanostrukturierten Polymere zur Herstellung von Reifen und Reifenbauteilen, Golfbällen und technischen Gummiartikeln sowie kautschukverstärkten Kunststoffen, wie z.B. ABS- und HEPS-Kunststoffen.
Die nachfolgenden Beispiele und Figuren dienen der Erläuterung der Erfindung, ohne dabei limitierend zu wirken.
Beispiele
Die Polymerisationen wurden unter Ausschluss von Luft und Feuchtigkeit unter Stickstoff durchgeführt. Als Lösemittel wurde trockenes und sauerstofffreies technisches Hexan verwendet. Die Polymerisation wurde entsprechend der Ansatzgröße in einem Autoklav mit 21 bis 201- Volumen durchgeführt.
Die Umsatzbestimmungen erfolgten gravimetrisch; dabei wurden die Polymerlösungen nach der Probennahme (noch mit Lösemittel und Monomer) und nach der Trocknung (bei 65 0C im Vakuumtrockenschrank) gewogen.
Die Mooney-Messung ML 1+4 (100) wurde an einem Gerät der Firma Alpha mit dem großen Rotor nach einer Minute vorheizen über 4 min bei 1000C durchgeführt.
Beispiel 1-4
hi einem getrockneten und mit Stickstoff überlagerten 201-Stahlreaktor werden zu einer Lösung von 13 Gew.-% 1,3 -Butadien in technischem Hexan unter Rühren eine Lösung von Diisobutylaluminiumhydrid in Hexan (DIBAH; Al(C4Hg)2H), eine Lösung von Ethylaluminiumsesquichlorid in Hexan (EASC, Al3(C2Hs)3Cl3) in äquimolarer Menge zum
Neodymversatat und eine Lösung von Neodymversatat in Hexan (NdV, Nd(O2Ci 0H19)3) zugegeben. Anschließend wird auf 730C Vorlauftemperatur hochgeheizt. Nach dem Start der Reaktion ist die Umsetzung nach 60 min beendet und eine Polymerprobe wird gezogen. Anschließend wird das Modifizierungsreagenz mit 100 mL Hexan über eine Bürette unter Rühren zugegeben.
Die eingesetzten Mengen, der verwendete Nanokoppler und die Mooneywerte der einzelnen Polymerproben vor und nach der Kopplung sind in Tabelle 1 angegeben.
Nach einer Stunde Reaktionszeit wird die Reaktion durch Zusatz von 20 mL Wasser gestoppt, mit 2,6 g Irganox 1520L gelöst in 100 mL Hexan stabilisiert.
Im Beispiel 1 wird das Polymer anschließend mit ca. 10 L wasserhaltigem Ethanol ausgefällt und bei 6O0C im Vakuumtrockenschrank getrocknet.
In den Beispiel 2 bis 5 wird das Polymer im Laborstripper aufgearbeitet und bei 600C im Vakuumtrockenschrank getrocknet. Tabelle 1:
Figure imgf000011_0001
Dynasil 40. Ethyl-polysihcat (sihcic ester) der Firma Degussa,
(OEt)5-Si-(O-Si(OEt)2)Ii-OEt mit n - 2 bis 3, SiOrGehalt= 40-42%
Die erfindungsgemäßen Polymere zeichnen sich durch einen starken Anstieg der Mooneyviskosität nach der Kopplung aus, was eindeutig der Anstieg der Molmasse belegt, wie dies exemplarisch m den Figuren 1 und 2 für die Beispielen 2 und 4 dargestellt wird.
In den Figuren 1 und 2 wird der relative Anteil der Polymeren m Relation zur Molmasse m g/mol dargestellt.
Figur 1 stellt die Molmassenverteilung m Beispiel 2 nach der Kopplung dar und Figur 2 die Molmassen Verteilung m Beispiel 4 nach der Kopplung.
Aus beiden Grafiken ist sehr gut die Bimodalität erkennbar (durchgezogene Linie). Des Weiteren ist ersichtlich, dass der hochmolekulare Peak bei Molmassen über 3.000.000 g/mol beginnt und mit mittleren Molmassen oberhalb von 5.000.000 g/mol deutlich oberhalb des Grenzwertes von 2.000.000 g/mol hegt (gestrichelte Linie).
Gegenbeispiel 6-7
Die Versuche 6 und 7 wurden wie in Beispiel 2 beschrieben durchgeführt. Statt des Nanokopplers wurde SiCl4 als Modifizierungsagenz eingesetzt. Das Polymer zeigte nach der Modifizierung keinen Mooneyanstieg. Die Mooney-Relax-Werte nach 30 sec lagen nach der Modifizierung bei beiden Versuchen mit unter 5 % im Bereich der nicht gekoppelten Polymere. Die Molmasse zeigt nach der Umsetzung mit SiCl4 keine Bimodalität. Figur 3 stellt die Molmassenverteilung in Beispiel 7 nach der Umsetzung mit SiCl4 dar. SiCl4 zeigte keine Wirksamkeit als Nanokoppler.
Tabelle 2
Figure imgf000013_0001
Gegenbeispiel 8, Beispiel 9-10
Für das Gegenbeispiel 8 wurde Buna™ CB24 der Firma Lanxess Deutschland GmbH eingesetzt. Für die Beispiele 9 und 10 wurden die Polymere der Beispiele 2 und 5 eingesetzt. Bei vergleichbarer Mooneyviskosität der Compounds konnte bei den erfindungsgemäßen Beispielen 9 und 10 gegenüber dem Gegenbeispiel 8 der We iterreißwider stand erheblich verbessert werden. Für die Mischungsstudien wurden folgende Substanzen eingesetzt:
Figure imgf000014_0001
Tabelle 3

Claims

Patentansprüche
1 Nanostrukturierte Polymere auf Basis von konjugierten Dienen, erhältlich durch
Polymerisation konjugierter Diene mit Katalysatoren der Seltenen Erden und anschließender Umsetzung mit einem Nanokoppler, wobei die erhaltenen Polymere eine bimodale Molmassenverteilung besitzen, bei dem der hochmolekulare Anteil eine mittleren Molmasse von größer als 2.000.000 g/mol besitzt, die Menge der hochmolekularen Anteile bezogen auf das gesamte Polymer im Bereich von 1% bis 20% hegt und der Gelgehalt des gesamten Polymeren <1% beträgt und der Gehalt an 1,2- Vmylemheiten bezogen auf das Polymere zwischen 0,3 und 1 Gew -% beträgt.
2 Nanostruktuπerte Polymere nach Anspruch 1, dadurch gekennzeichnet, dass sie als konjugierte Diene 1,3-Butadien, 2,3-Dimethyl-l,3-butadien, 3-Butyl-l,3-octadien, Isopren, Piperylen, 1,3-Hexadien, 1,3-Octadien und/oder 2-Phenyl- 1,3 -butadien enthalten.
3. Nanostruktuπerte Polymere nach Anspruch 2, dadurch gekennzeichnet, dass als Nanokoppler sind oligomere Silikate der Formel
X3 - Si - (O - Si Xa)n - X
vorhanden sind,
wobei
X ein Alkoholat der Formel OR, wobei R ein gesättigter oder teilweise ungesättiger ahphatischer Kohlenwasserstoffrest mit 1 bis 30 C-Atomen, ein cycloahphati scher Kohlenwasserstoffrest mit 5 bis 30 C-Atomen oder ein aromatischer Kohlenwasserstoffrest mit 6 bis 30 C-Atomen ist und
n eine Zahl größer 0 ist.
4 Verfahren zur Herstellung von nanostruktuπerten Polymeren auf Basis von konjugierten
Dienen, dadurch gekennzeichnet, dass man zunächst m Gegenwart von inerten organischen, aprotischen Lösungsmitteln und in Gegenwart eines Katalysators der
Seltenen Erden konjugierte Diene polymeπsiert, die nach der Polymerisation erhaltenen
Polymere auf Basis der genannten Monomeren mit Nanokopplern der Formel
X3 - Si - (O - Si X2)n- X
umsetzt, wobei X ein Alkoholat der Formel OR, wobei R ein gesättigter oder teilweise ungesättiger aliphatischer Kohlenwasserstoffrest mit 1 bis 30 C-Atomen, ein cycloaliphati scher Kohlenwasserstoffrest mit 5 bis 30 C-Atomen oder ein aromatischer Kohlenwasserstoffrest mit 6 bis 30 C-Atomen ist und
n ein Zahl größer 0 ist und
die Menge der eingesetzten Nanokoppler zu Polymeren im Bereich von 0,001 bis 10 g zu 100 g liegt.
5. Verwendung der nanostrukturierten Polymere nach Anspruch 1 bis 4 zur Herstellung von Reifen und Reifenbauteilen, Golfbällen und technischen Gummiartikeln sowie kautschuk- verstärkten Kunststoffen, wie ABS- und HIPS-Kunststoffen.
PCT/EP2008/060416 2007-08-16 2008-08-07 Nanostrukturierte polymere auf basis von konjugierten dienen WO2009021906A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2010520538A JP5568473B2 (ja) 2007-08-16 2008-08-07 共役ジエンをベースとするナノ構造化ポリマー
RU2010109059/05A RU2475503C2 (ru) 2007-08-16 2008-08-07 Наноструктурированные полимеры на основе сопряженных диенов
AT08787012T ATE529273T1 (de) 2007-08-16 2008-08-07 Nanostrukturierte polymere auf basis von konjugierten dienen
KR1020107005705A KR101162430B1 (ko) 2007-08-16 2008-08-07 공액 디엔 기재의 나노구조형 중합체
EP08787012A EP2181000B1 (de) 2007-08-16 2008-08-07 Nanostrukturierte polymere auf basis von konjugierten dienen
CN200880108638XA CN101808833B (zh) 2007-08-16 2008-08-07 基于共轭二烯的纳米结构的聚合物
US12/672,697 US9079981B2 (en) 2007-08-16 2008-08-07 Nanostructed polymers on the basis of conjugated dienes
BRPI0815391-4A BRPI0815391B1 (pt) 2007-08-16 2008-08-07 Polímeros nanoestruturados à base de dienos conjugados e processo de fabricação
ZA2010/01079A ZA201001079B (en) 2007-08-16 2010-02-15 Nanostructured polymers on the basis of conjugated dienes
HK10108370.1A HK1142040A1 (en) 2007-08-16 2010-09-03 Nanostructured polymers on the basis of conjugated dienes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007038439.6 2007-08-16
DE102007038439A DE102007038439A1 (de) 2007-08-16 2007-08-16 Nanostrukturierte Polymere auf Basis von konjugierten Dienen

Publications (1)

Publication Number Publication Date
WO2009021906A1 true WO2009021906A1 (de) 2009-02-19

Family

ID=40130581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/060416 WO2009021906A1 (de) 2007-08-16 2008-08-07 Nanostrukturierte polymere auf basis von konjugierten dienen

Country Status (14)

Country Link
US (1) US9079981B2 (de)
EP (1) EP2181000B1 (de)
JP (1) JP5568473B2 (de)
KR (1) KR101162430B1 (de)
CN (1) CN101808833B (de)
AT (1) ATE529273T1 (de)
BR (1) BRPI0815391B1 (de)
DE (1) DE102007038439A1 (de)
HK (1) HK1142040A1 (de)
RU (1) RU2475503C2 (de)
SA (1) SA08290508B1 (de)
TW (1) TWI450928B (de)
WO (1) WO2009021906A1 (de)
ZA (1) ZA201001079B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013064434A1 (en) * 2011-11-03 2013-05-10 Lanxess Deutschland Gmbh Ndbr wet masterbatch
KR101407756B1 (ko) 2010-02-19 2014-06-16 란세스 도이치란트 게엠베하 바이모달 네오디뮴-촉매화 폴리부타디엔

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310186B2 (ja) * 2009-03-26 2013-10-09 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体及びゴム組成物
US9758646B2 (en) 2011-11-03 2017-09-12 Arlanxeo Deutschland Gmbh NdBR wet masterbatch
HUE025588T2 (en) 2012-02-29 2016-05-30 Trinseo Europe Gmbh Production Process of Dene Polymers
DE102013209929B4 (de) * 2012-05-28 2017-09-21 Beijing Research Institute Of Chemical Industry, China Petroleum & Chemical Corporation Polyisopren, Herstellungsverfahren davon, Polyisopren-Kautschukverbindungen und Vulkanisat davon
RU2561704C2 (ru) * 2013-03-25 2015-09-10 Общество с ограниченной ответственностью "Научно-производственная фирма "Белагроспецмаш" Резиновая смесь преимущественно для пневмошин и пневмошина из нее
RU2662541C2 (ru) 2013-10-16 2018-07-26 Арланксео Дойчланд Гмбх Функционализированные полимерные композиции
BR112019009441B1 (pt) * 2016-11-15 2023-05-09 Zeon Corporation Látex de poli-isopreno sintético, método para produção do látex de poli-isopreno sintético, composição de látex, artigo formado por película, e, estrutura de embalagem
EP3366709A1 (de) 2017-02-24 2018-08-29 ARLANXEO Deutschland GmbH In-chain-phosphin- und -phosphoniumhaltige dienpolymere
JP7101813B2 (ja) * 2018-11-01 2022-07-15 エルジー・ケム・リミテッド 有機溶媒含有混合溶液から有機溶媒を分離する方法
EP4098667A4 (de) 2020-01-29 2023-11-15 Public Joint Stock Company "Sibur Holding" (PJSC "Sibur Holding") Verfahren zur herstellung von modifizierten polydienen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503204A (en) * 1980-02-25 1985-03-05 The General Tire & Rubber Company Solution polymerization
EP1095952A1 (de) * 1999-10-28 2001-05-02 Bayer Ag Katalysator auf Basis von Verbindungen der Seltenen Erdmetalle
WO2001034658A1 (en) * 1999-11-12 2001-05-17 Bridgestone Corporation Modified polymers prepared with lanthanide-based catalysts
US20050137338A1 (en) * 2003-12-19 2005-06-23 Halasa Adel F. Synthetic polyisoprene rubber

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2848964A1 (de) 1978-11-11 1980-05-22 Bayer Ag Katalysator, dessen herstellung und verwendung zur loesungspolymerisation von butadien
DE3205993A1 (de) * 1982-02-19 1983-09-01 Bayer Ag, 5090 Leverkusen Verwendung von siloxanen zur modifizierung von hochmolekularen p-polyphenylensulfiden, hochmolekulare modifizierte p-polyphenylensulfide, ihre verwendung in abmischung mit polycarbonaten und/oder polyestern und/oder polyestercarbonaten sowie die verwendung dieser abmischungen als formkoerper
JP2595539B2 (ja) * 1987-05-29 1997-04-02 日本合成ゴム株式会社 新規な共役ジエン系重合体の製造方法
US4906706A (en) 1986-09-05 1990-03-06 Japan Synthetic Rubber Co., Ltd. Modified conjugated diene polymer and process for production thereof
GB9112419D0 (en) * 1991-06-10 1991-07-31 Shell Int Research Process for polymer preparation
JP3711598B2 (ja) * 1995-10-19 2005-11-02 住友化学株式会社 変性ジエン系重合体ゴムの製造方法
US6008295A (en) 1997-07-11 1999-12-28 Bridgestone Corporation Diene polymers and copolymers incorporating partial coupling and terminals formed from hydrocarboxysilane compounds
DE19746266A1 (de) 1997-10-20 1999-04-22 Bayer Ag Katalysator auf Basis von Verbindungen der seltenen Erdmetalle für die Polymerisation von ungesättigten organischen Verbindungen
US6300450B1 (en) 1997-11-25 2001-10-09 Ube Industries, Ltd. Conjugated diene compound polymerization catalyst process for the preparation of conjugated diene polymer in the presence thereof and polybutadiene thus prepared
GB2333298B (en) 1997-12-13 1999-09-01 Taiwan Synthetic Rubber Corp Rubber for a high-performance tire tread
DE69906398T2 (de) 1998-01-21 2003-12-11 The Goodyear Tire & Rubber Co., Akron Verfahren zur Herstellung von mit Zinn gekoppelten Kautschukpolymeren
GB2344593A (en) 1998-12-07 2000-06-14 Taiwan Synthetic Rubber Corp Coupled polymers
DE19939842A1 (de) 1999-08-23 2001-03-01 Bayer Ag Verfahren zur Copolymerisation von konjugierten Diolefinen (Dienen) und vinylaromatischen Monomeren mit Katalysatoren der Seltenen Erden sowie die Verwendung der Copolymerisate in Kautschukmischungen für Reifenanwendungen
RU2179526C2 (ru) * 1999-11-29 2002-02-20 Институт катализа им. Г.К. Борескова СО РАН Способ получения твердофазных наноструктурированных материалов
DE10115106A1 (de) 2001-03-27 2002-10-10 Bayer Ag Blockcopolymerisat auf Basis von konjugierten Diolefinen und polaren Monomeren
EP1449857B1 (de) * 2001-11-27 2010-10-13 Bridgestone Corporation Polymer auf basis von konjugierten dienen, herstellungsverfahren dafür und dieses enthaltende kautschukzusammensetzungen
CN1302032C (zh) * 2004-01-17 2007-02-28 中国石化北京燕化石油化工股份有限公司 热敏性共聚物胶乳、其制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503204A (en) * 1980-02-25 1985-03-05 The General Tire & Rubber Company Solution polymerization
EP1095952A1 (de) * 1999-10-28 2001-05-02 Bayer Ag Katalysator auf Basis von Verbindungen der Seltenen Erdmetalle
WO2001034658A1 (en) * 1999-11-12 2001-05-17 Bridgestone Corporation Modified polymers prepared with lanthanide-based catalysts
US20050137338A1 (en) * 2003-12-19 2005-06-23 Halasa Adel F. Synthetic polyisoprene rubber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101407756B1 (ko) 2010-02-19 2014-06-16 란세스 도이치란트 게엠베하 바이모달 네오디뮴-촉매화 폴리부타디엔
WO2013064434A1 (en) * 2011-11-03 2013-05-10 Lanxess Deutschland Gmbh Ndbr wet masterbatch
WO2013066329A1 (en) * 2011-11-03 2013-05-10 Lanxess Deutschland Gmbh NdBR WET MASTERBATCH
RU2621812C2 (ru) * 2011-11-03 2017-06-07 Арланксео Дойчланд Гмбх Скд-н влажный концентрат

Also Published As

Publication number Publication date
TWI450928B (zh) 2014-09-01
DE102007038439A1 (de) 2009-02-19
ZA201001079B (en) 2011-04-28
KR20100043276A (ko) 2010-04-28
JP2010536945A (ja) 2010-12-02
CN101808833A (zh) 2010-08-18
KR101162430B1 (ko) 2012-07-04
ATE529273T1 (de) 2011-11-15
TW200927820A (en) 2009-07-01
EP2181000A1 (de) 2010-05-05
HK1142040A1 (en) 2010-11-26
RU2010109059A (ru) 2011-09-27
JP5568473B2 (ja) 2014-08-06
BRPI0815391B1 (pt) 2020-06-16
US20110230624A1 (en) 2011-09-22
CN101808833B (zh) 2012-01-18
RU2475503C2 (ru) 2013-02-20
EP2181000B1 (de) 2011-10-19
SA08290508B1 (ar) 2012-02-22
US9079981B2 (en) 2015-07-14
BRPI0815391A2 (pt) 2015-02-10

Similar Documents

Publication Publication Date Title
EP2181000B1 (de) Nanostrukturierte polymere auf basis von konjugierten dienen
EP0046862B1 (de) Verfahren zur Herstellung von verzweigten Blockcopolymerisaten und Verwendung derselben
DE3889624T2 (de) Blockierung von Polydienen.
DE69507213T2 (de) Dienpolymere mit funktionellen Gruppen, ihre Herstellung und ihre Verwendung in für Laufflächen geeignete mit Kieselsäure verstärkte Gummimischungen
EP0026916B1 (de) Verfahren zur Herstellung von Mischungen linearer Dreiblockcopolymerisate sowie Formteile aus diesen
DE1745258A1 (de) Polymerisate
DE3309821A1 (de) Verfahren zur modifizierung eines ungesaettigten polymerkautschuks
DE69112144T2 (de) Hydroxylierung von Kautschuk in fester Phase.
WO2009021917A1 (de) Modifizierte polymere auf basis von konjugierten dienen oder von konjugierten dienen und vinylaromatischen verbindungen, ein verfahren zu deren herstellung sowie deren verwendung
DE3033175C2 (de) Polybutadienkautschukzusammensetzungen
DE1224045B (de) Verfahren zur Herstellung von Blockmischpolymerisaten
DE10315274A1 (de) Verfahren zur Herstellung eines modifizierten Polymerkautschuks
DE3735403A1 (de) Verzweigte copolymerisate und verfahren zu ihrer herstellung
DE69809981T2 (de) Reifenlauffläche welche gekuppeltes SIBR enthält
WO2018130703A1 (de) Polybutadiene, deren herstellung und verwendung
DE69124869T2 (de) Hydriertes und verzweigtes Blockcopolymer und Verfahren zur Herstellung
EP1319673A1 (de) Polymere, die durch funktionelle Gruppen modifiziert sind
WO2002008300A1 (de) Verfahren zur herstellung von di- oder trifunktionellen initiatorsystemen auf lithiumbasis sowie deren verwendung
WO2009033997A1 (de) Funktionalisierte russhaltige kautschuke
EP1283220A1 (de) Gekoppelte und mit elektrophilen Gruppen modifizierte Dien-Polymere
WO2009021905A1 (de) Gekoppelte und heteroatome enthaltende modifizierte polymere auf basis von konjugierten dienen
EP1398329A1 (de) Hochverzweigte Dien-Polymere
DD236321A1 (de) Verfahren zur selektiven butadienpolymerisation aus c tief 4 fraktion
DE4001822C2 (de) Kautschukmasse für Reifen-Laufflächen
DE10217800B4 (de) Gekoppelte und mit elektrophilen Gruppen modifizierte Dien-Polymere, Verfahren zur Herstellung und Verwendung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880108638.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08787012

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008787012

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010520538

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1040/DELNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107005705

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010109059

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12672697

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0815391

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100217