RU2475503C2 - Наноструктурированные полимеры на основе сопряженных диенов - Google Patents

Наноструктурированные полимеры на основе сопряженных диенов Download PDF

Info

Publication number
RU2475503C2
RU2475503C2 RU2010109059/05A RU2010109059A RU2475503C2 RU 2475503 C2 RU2475503 C2 RU 2475503C2 RU 2010109059/05 A RU2010109059/05 A RU 2010109059/05A RU 2010109059 A RU2010109059 A RU 2010109059A RU 2475503 C2 RU2475503 C2 RU 2475503C2
Authority
RU
Russia
Prior art keywords
polymers
polymer
molecular weight
carbon atoms
hydrocarbon residue
Prior art date
Application number
RU2010109059/05A
Other languages
English (en)
Other versions
RU2010109059A (ru
Inventor
Хайке КЛОППЕНБУРГ
Томас ГРОСС
Алекс ЛУКАССЕН
Дейв ХАРДИ
Original Assignee
ЛЕНКСЕСС Дойчланд ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ЛЕНКСЕСС Дойчланд ГмбХ filed Critical ЛЕНКСЕСС Дойчланд ГмбХ
Publication of RU2010109059A publication Critical patent/RU2010109059A/ru
Application granted granted Critical
Publication of RU2475503C2 publication Critical patent/RU2475503C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/34Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Изобретение относится к наноструктурированным полимерам, их получению и применению. Наноструктурированные полимеры на основе сопряженных диенов получают в присутствии катализаторов на основе соединений редкоземельных металлов с последующим взаимодействием с наносочленяющим агентом. Полученные полимеры обладают бимодальным молекулярно-массовым распределением При этом высокомолекулярный компонент имеет среднюю молекулярную массу более 2000000 г/моль и количество от 1 до 20 мас.% в пересчете на полимер. Содержание геля в полимере составляет менее 1%, и содержание 1,2-виниловых звеньев в пересчете на полимер составляет от 0,3 до 1 мас.%. Полимеры по изобретению обладают хорошими технологическими свойствами, резиновые смеси на их основе имеют улучшенный комплекс свойств и улучшенное сопротивление раздиру. 3 н. и 2 з.п. ф-лы, 3 ил., 3 табл., 10 пр.

Description

Изобретение относится к наноструктурированным диеновым полимерам, а также к их получению и применению.
Молекулы «живущих» полимеров на основе сопряженных диенов или на основе сопряженных диенов и винилароматических соединений, например «живущих» полимеров с содержащими щелочной металл концевыми группами, соединяют друг с другом (сочленяют) посредством особенно пригодных для этой цели органических или неорганических соединений (сочленяющих агентов), причем соответствующие сочлененные полимеры используют прежде всего в шинной промышленности, поскольку они обладают улучшенными технологическими свойствами и позволяют улучшить физические и динамические характеристики шин, в особенности те, от которых зависит сопротивление качению.
В качестве средств сочленения молекул (сочленяющих агентов) для указанных каучуков помимо самых разных органических соединений, содержащих способные присоединяться к «живущим» полимерам группировки, например эпоксидные группы (немецкая заявка на патент DE-A 19857768), изоцианатные группы, альдегидные группы, кетогруппы, сложно-эфирные группы, а также галогенидные группы, техническое применение прежде всего находят соответствующие соединения кремния или олова, в частности галогениды, сульфиды или амины (см. европейские заявки на патент ЕР-А 0890580 и ЕР-А 0930318). Так, например, в немецкой заявке на патент DE-A 19803039 описаны резиновые смеси для изготовления протекторов высокоскоростных шин на основе каучуков, макромолекулы которых частично сочленены посредством соединений олова, фосфора, галлия или кремния.
Кроме того, известны различные методы снабжения полидиенов концевыми функциональными группами. Для функционализации полибутадиенов, получаемых в присутствии неодимсодержащих каталитических систем, используют, например, эпоксиды, замещенные кетосоединения, выбранные из группы, включающей кетоны, альдегиды и производные кислот, а также замещенные изоцианаты (см., например, заявку США на патент US-A 4906706). Известен также принцип модифицирования полидиенов концевыми группами, предусматривающий использование реагентов с двумя разными функциональными группами. Одна из полярных функциональных групп подобного реагента взаимодействует с полидиеном, в то время как другая полярная функциональная группа взаимодействует с наполнителем (см., например, международную заявку WO 01/34658 или заявку США на патент US-A 6992147).
Известным средствам сочленения полимерных молекул присущи некоторые существенные недостатки. Так, например, в случае полимеризации диенов, катализируемой соединениями редкоземельных металлов, прежде всего содержащими неодим каталитическими системами, подобные средства обусловливают модифицирование концевых групп образующегося полимера, а следовательно, они непригодны для использования в качестве сочленяющих агентов.
В основу настоящего изобретения была положена задача предложить наноструктурированные диеновые полимеры, которые обладают хорошими технологическими свойствами и в связи с присутствием в них наноструктурированного компонента придают резиновым смесям улучшенный комплекс свойств.
Объектом настоящего изобретения являются наноструктурированные полимеры на основе сопряженных диенов, которые могут быть получены полимеризацией сопряженных диенов в присутствии катализаторов на основе соединений редкоземельных металлов и последующим взаимодействием с наносочленяющим агентом, причем полученные полимеры обладают бимодальным молекулярно-массовым распределением, в соответствии с которым высокомолекулярный компонент обладает средней молекулярной массой более 2000000 г/моль, предпочтительно более 5000000 г/моль, количество высокомолекулярного компонента в пересчете на общий полимер составляет от 1 до 20%, предпочтительно от 3 до 15%, содержание геля в общем полимере составляет менее 1% и содержание 1,2-виниловых звеньев в пересчете на полимер составляет от 0,3 до 1% мас.
Пригодными сопряженными диенами согласно изобретению являются любые известные диены, которые обычно используют для получения полимерных анионов. Примерами пригодных сопряженных диенов являются 1,3-бутадиен, 2,3-диметил-1,3-бутадиен, 3-бутил-1,3-октадиен, изопрен, пиперилен, 1,3-гексадиен, 1,3-октадиен и/или 2-фенил-1,3-бутадиен, предпочтительно 1,3-бутадиен и изопрен, а также смеси указанных диенов.
При этом в качестве катализаторов предпочтительно используют соединения редкоземельных металлов, например катализаторы, подробно описанные в европейской заявке на патент ЕР-В 011184 или ЕР-А 1245600. Для полимеризации можно использовать также любые известные катализаторы Циглера-Натта, например катализаторы на основе соединений титана, кобальта, ванадия или никеля, а также на основе соединений редкоземельных металлов. Указанные катализаторы Циглера-Натта можно использовать по отдельности или в смеси друг с другом.
Предпочтительными являются катализаторы Циглера-Натта на основе соединений редкоземельных металлов, в частности растворимых в углеводородах соединений церия, лантана, празеодима, гадолиния или неодима. В качестве катализаторов Циглера-Натта особенно предпочтительно используют соответствующие соли редкоземельных металлов, в частности карбоксилаты неодима, прежде всего неодеканоат неодима, октаноат неодима, нафтенат неодима, 2,2-диэтилгексаноат неодима или 2,2-диэтилгептаноат неодима, а также соответствующие соли лантана или празеодима. Кроме того, к используемым согласно изобретению катализаторам Циглера-Натта относятся также каталитические системы на основе металлоценов, описанные, например, в европейских заявках на патент ЕР-А 919574, ЕР-А 1025136 и ЕР-А 1078939.
В качестве наносочленяющих агентов используют соединения, которые взаимодействуют с полимерами, частично присоединяются к ним и на последующей реакционной стадии образуют наноструктуры, причем средняя молекулярная масса образующихся наночастиц возрастает, по меньшей мере, в пять раз, предпочтительно в семь раз.
Предпочтительными наносочленяющими агентами являются олигомерные силикаты формулы:
X3-Si-(O-SiX2)n-X,
в которой
Х означает алкоголят формулы OR, причем R означает насыщенный или частично ненасыщенный алифатический углеводородный остаток с 1-30 атомами углерода, циклоалифатический углеводородный остаток с 5-30 атомами углерода или ароматический углеводородный остаток с 6-30 атомами углерода, и
n означает число более 0, предпочтительно более 1, особенно предпочтительно более 2.
Примерами предпочтительных наносочленяющих агентов указанного типа являются соединения формул:
(RO)3Si-O-Si(OR)3,
(RO)3Si-O-Si(OR)2-O-Si(OR)3,
(RO)3Si-O-Si(OR)2-O-Si(OR)2-O-Si(OR)3,
(RO)3Si-O-Si(OR)2-O-Si(OR)2-O-Si(OR)2-O-Si(OR)3,
(RO)3Si-O-Si(OR)2-O-Si(OR)2-O-Si(OR)2-O-Si(OR)2-O-Si(OR)3 или
(RO)3Si-O-Si(OR)2-O-Si(OR)2-O-Si(OR)2-O-Si(OR)2-O-Si(OR)2-O-Si(OR)3,
в которых остаток R означает метил, этил, винил, пропил, изопропил, бутил, пентил, гексил, октил или соответствующие изомеры. Указанные олигомерные силикаты представляют собой коммерчески доступные продукты, предпочтительно получаемые конденсацией тетраалкоголятов кремния, и могут являться определенными соединениями или смесями соединений с разной степенью конденсации.
К пригодным олигомерным силикатам относится, например, продукт, выпускаемый фирмой Degussa под торговым названием Dynasil® 40.
Менее пригодными являются соединения, содержащие группы с кислым атомом водорода, например NH-группы, гидроксильные или карбоксильные группы.
Количество используемых наносочленяющих агентов зависит от требуемой степени модифицирования полимера. Предпочтительно используют от 0,001 до 10 г, прежде всего от 0,01 до 6 г наносочленяющего агента на 100 г полимера.
Указанные наноструктуры можно формировать в одну или несколько стадий. В особенно предпочтительном варианте на первой стадии молекулы наносочленяющего агента присоединяют к молекулам «живущего» полимера и на второй стадии модифицированные макромолекулы соединяют друг с другом, получая наноструктуры.
Сочленение модифицированных макромолекул предпочтительно реализуют в процессе переработки полимера, например, при контактировании полимера с водой в процессе его отпаривания. При этом в предпочтительном варианте группы наносочленяющего агента могут взаимодействовать друг с другом. Подобное взаимодействие может протекать, например, таким образом, что свободные (не присоединенные к молекулам полимера) группы наносочленяющего агента взаимодействуют друг с другом, а следовательно, друг с другом соединяются две или более группы наносочленяющего агента, которые, в свою очередь, соответственно могут быть присоединены к одной или нескольким молекулам полимера.
Другим объектом настоящего изобретения является способ получения наноструктурированных полимеров на основе сопряженных диенов, отличающийся тем, что сначала в присутствии инертных органических апротонных растворителей и катализатора на основе соединений редкоземельных металлов осуществляют полимеризацию сопряженных диенов и полученные полимеры на основе указанных мономеров взаимодействуют с наносочленяющими агентами формулы:
X3-Si-(O-SiX2)n-X,
в которой
Х означает алкоголят формулы OR, причем R означает насыщенный или частично ненасыщенный алифатический углеводородный остаток с 1-30 атомами углерода, циклоалифатический углеводородный остаток с 5-30 атомами углерода или ароматический углеводородный остаток с 6-30 атомами углерода, и
n означает число более 0, предпочтительно более 1, особенно предпочтительно более 2,
причем используют от 0,001 до 10 г наносочленяющего агента на 100 г полимера.
Взаимодействие наносочленяющего агента с полимером в соответствии с предлагаемым в изобретении способом реализуют таким образом, что сначала концевые группы «живущего» полимера модифицируют наносочленяющим агентом, а затем осуществляют конденсацию групп наносочленяющего агента, приводящую к образованию высокомолекулярных структур.
Синтез предлагаемых в изобретении наноструктурированных полимеров осуществляют на последовательно реализуемых стадиях. Сначала получают полидиен, который затем подвергают взаимодействию с одним или несколькими указанными выше наносочленяющими агентами, причем группы наносочленяющих агентов могут вступать, например, в реакцию конденсации, приводящую к образованию наноструктурированных полимеров. В зависимости от требуемых свойств подлежащих получению полимеров подобные наносочленяющие агенты можно вводить в реакционную систему в любой момент времени.
Полимеризацию сопряженных диенов в общем случае осуществляют таким образом, чтобы каталитическая система вступала во взаимодействие с диеном, приводящее к образованию диенового полимера.
Полимеризацию сопряженных диенов предпочтительно осуществляют в присутствии указанных выше катализаторов Циглера-Натта известными методами (см. европейскую заявку на патент ЕР-В 011184 или ЕР-А 1245600).
Предлагаемый в изобретении способ предпочтительно осуществляют в присутствии инертных апротонных растворителей. В качестве инертных апротонных растворителей можно использовать парафиновые углеводороды, такие как изомерные пентаны, гексаны, гептаны, октаны, деканы, 2,4-триметилпентан, циклопентан, циклогексан, метилциклогексан, этил-циклогексан или 1,4-диметилциклогексан, или ароматические углеводороды, такие как бензол, толуол, этилбензол, ксилол, диэтилбензол или пропилбензол. Указанные растворители можно использовать по отдельности или в смеси друг с другом. Предпочтительными растворителями являются циклогексан и н-гексан.
Количество растворителей можно варьировать в широких пределах. Обычно оно составляет примерно от 300 до 1500 мас.ч. на 100 мас.ч. общих мономеров.
Температуру полимеризации можно варьировать в широких пределах, причем в общем случае она находится в интервале от 0 до 200°С, предпочтительно от 40 до 130°С. Время реакции также может колебаться в широких пределах и составляет от нескольких минут до нескольких часов. Полимеризацию обычно осуществляют в течение промежутка времени, составляющего от 30 минут до 8 часов, предпочтительно от 1 до 4 часов. Полимеризацию можно осуществлять как при нормальном, так и при повышенном давлении (от 1 до 10 бар).
Предлагаемые в изобретении полимеры можно получать как в периодическом, так и в непрерывном режиме. Предпочтительным является непрерывный синтез полимеров, реализуемый в каскаде, состоящем из нескольких, предпочтительно, по меньшей мере, двух, прежде всего от 2 до 5, последовательно соединенных реакторов.
Полимеризацию предпочтительно осуществляют до полного превращения исходных диенов. В зависимости от требуемых свойств полимера полимеризацию, очевидно, можно также прекращать, например, при конверсии мономеров, составляющей около 80%. Непревращенный диен после полимеризации можно удалять, например, путем равномерной дистилляции (равновесная стадия).
С целью реализации взаимодействия полимера с наносочленяющим агентом полученную в результате полимеризации реакционную смесь смешивают с указанными выше наносочленяющими агентами.
Указанное взаимодействие предпочтительно осуществляют в апротонном органическом растворителе, аналогичном используемому для получения диенового полимера, или в смесях подобных растворителей. Очевидно, можно использовать также другие растворители или вводить наносочленяющий агент в другой растворитель. К пригодным апротонным органическим растворителям относятся, например, пентаны, гексаны, гептаны, циклогексан, метилциклопентан, бензол, толуол или этилбензол, предпочтительно гексаны, циклогексан или толуол, еще более предпочтительно гексан. Наряду с этим можно добавлять также полярные органические соединения, которые могут служить, например, растворителями для наносочленяющего агента.
При реализации указанного взаимодействия предпочтительно должны отсутствовать способные помешать ему соединения. К подобным соединениям относятся, например, диоксид углерода, кислород, вода, спирты, а также органические и неорганические кислоты.
Взаимодействие диеновых полимеров с наносочленяющими агентами предпочтительно осуществляют без промежуточного выделения полимеров in situ, причем диеновые полимеры после полимеризации взаимодействуют с наносочленяющими агентами без дополнительной промежуточной обработки при необходимости в процессе равномерной дистилляции.
Количество используемого наносочленяющего агента зависит от необходимой степени модифицирования. Предпочтительно используют от 0,001 до 10 г, прежде всего от 0,01 до 6 г, наносочленяющего агента на 100 г полимера.
Взаимодействие диеновых полимеров с наносочленяющими агентами обычно реализуют при температуре, примерно идентичной температуре полимеризации. Речь при этом идет о примерном температурном интервале от 0 до 200°С, предпочтительно от 40 до 130°С. Взаимодействие указанных реагентов можно осуществлять также как при нормальном, так и при повышенном давлении (от 1 до 10 бар).
Предпочтительным является относительно кратковременное взаимодействие указанных реагентов. Время взаимодействия составляет примерно от одной минуты до одного часа.
С целью приводящего к формированию наноструктур сочленения макромолекул с концевыми группами, образующихся в результате модифицирования диенового полимера наносочленяющими агентами, предпочтительно реализуют контакт соответствующей реакционной смеси с водой. Подобный контакт может быть реализован путем отдельной подачи воды к раствору полимера или путем пропускания водяного пара через раствор полимера (отпаривания полимера). Одновременно с подачей воды или перед ней в раствор полимера можно дополнительно вводить также другие протонные реагенты, такие как спирты или карбоновые кислоты. Кроме того, предпочтительным является введение в реакционную смесь антиоксидантов, которое осуществляют перед выделением наноструктурированного полимера.
Возможными являются также выполняемые известными методами выделение, очистка и последующая переработка полимеров, полученных в присутствии катализаторов Циглера-Натта и подвергнутых взаимодействию с наносочленяющими агентами.
Выделение предлагаемого в изобретении полимера можно осуществлять обычными методами, например дистилляцией с водяным паром или флокуляцией посредством пригодного коагулянта, например спирта. Коагулированный полимер может быть выделен из соответствующей среды, например, центрифугированием или экструдированием. Остаточный растворитель и другие летучие компоненты могут быть удалены путем нагревания выделенного полимера при необходимости при пониженном давлении или продувки воздухом.
Молекулярную массу предлагаемых в изобретении наноструктурированных полимеров можно варьировать в широких пределах. В случае если они предназначены для обычных сфер применения, среднечисленная молекулярная масса (Mn) общего полимера находится в примерном интервале от 100000 до 500000 г/моль, причем подобный полимер характеризуется бимодальным молекулярно-массовым распределением, средняя молекулярная масса высокомолекулярного компонента, по меньшей мере, в пять, предпочтительно в восемь, особенно предпочтительно в десять, раз превышает среднюю молекулярную массу низкомолекулярного компонента и по результатам анализа методом гельпроникающей хроматографии превышает 2000000 г/моль, предпочтительно 5000000 г/моль. Содержание высокомолекулярных компонентов в пересчете на общий полимер составляет от 1 до 20%, предпочтительно от 3 до 15%.
Приведенные на фиг.1 и 2 кривые служат для более подробного пояснения настоящего изобретения. На фиг.1 и 2 показаны относительные содержания обладающих разной молекулярной массой (г/моль) полимерных фракций. Сплошные кривые описывают распределение полимеров по молекулярной массе. Пунктирные кривые описывают соответствующее интегральное молекулярно-массовое распределение. Кривые относятся к полимерам из примера 2 (фиг.1) и примера 4 (фиг.2) и наглядно иллюстрируют достигаемое благодаря сочленению бимодальное молекулярно-массовое распределение предлагаемых в изобретении полимеров. Бимодальность предлагаемых в изобретении полимеров проявляется в виде двух разделенных минимумом отдельных пиков. Минимуму между пиками на кривых молекулярно-массового распределения соответствует перегиб на интегральных кривых. Бимодальность предлагаемых в изобретении полимеров особенно очевидна при рассмотрении приведенных на фиг.3 кривых молекулярно-массового распределения для сравнительного полимера, полученного без использования наносочленяющего агента. На приведенной на фиг.3 кривой молекулярно-массового распределения наблюдается единственный пик, в то время как соответствующая интегральная кривая характеризуется непрерывным подъемом, что свидетельствует об отсутствии бимодальности.
Кроме того, из рассмотрения соответствующих кривых следует, что молекулярная масса получаемого благодаря сочленению макромолекул высокомолекулярного компонента (пик, превышающий 5000000 г/моль) существенно выше предельного значения молекулярной массы (2000000 г/моль).
Растворимость предлагаемых в изобретении наноструктурированных полимеров аналогична растворимости соответствующих немодифицированных полимеров. Содержание геля в наноструктурированном полимере составляет менее 1%. При этом предпочтительное содержание 1,2-связей (винильных групп) находится в интервале от 0,3 до 1% мас., предпочтительно от 0,4 до 0,8% мас.
К предлагаемым в изобретении полимерам, очевидно, можно добавлять обычные компоненты резиновых смесей, такие как наполнители, красители, пигменты, пластификаторы и усилители. К ним можно добавлять также известные ингредиенты резиновых смесей и сшивающие агенты.
Предлагаемые в изобретении наноструктурированные полимеры можно использовать для осуществляемого известными методами изготовления каучуковых вулканизатов и соответствующих формованных изделий любого типа.
При использовании предлагаемых в изобретении наноструктурированных полимеров в резиновых смесях, предназначенных для производства шин, удается значительно улучшить динамические свойства соответствующих композиций.
Объектом настоящего изобретения является также применение предлагаемых в изобретении наноструктурированных полимеров для изготовления шин и деталей шин, мячей для игры в гольф и резиновых технических изделий, а также усиленных каучуком полимеров, например, таких как сополимеры на основе акрилонитрила, бутадиена и стирола и ударопрочный полистирол.
Приведенные ниже примеры служат для пояснения настоящего изобретения и не ограничивают его объема.
Примеры
Полимеризацию осуществляли под азотом в условиях, исключающих доступ воздуха и влаги. В качестве растворителя использовали сухой и освобожденный от кислорода технический гексан. Полимеризацию осуществляли в автоклаве, рабочий объем которого в зависимости от загрузки составлял от 2 до 20 литров.
Конверсию определяли гравиметрически, для чего образцы полимерного раствора взвешивали непосредственно после отбора (они содержали растворитель и мономер), а также после сушки, которую осуществляли при 65°С в вакуумном сушильном шкафу.
Вязкость по Муни ML 1+4 (100) измеряли в снабженном массивным ротором приборе фирмы Alpha в течение 4 минут при 100°С (образцы подвергали предварительному одноминутному нагреванию).
Примеры 1-4
К раствору 1,3-бутадиена в техническом гексане концентрацией 13% мас., загруженному в сухой и заполненный азотом стальной реактор объемом 20 литров, при перемешивании добавляют раствор диизобутилалюминийгидрида в гексане [DIBAH; Al(C4H9)2H], раствор этилалюминийсесквихлорида в гексане [EASC, Al22Н5)3Cl3] в эквимолярном количестве к версатату неодима и раствор версатата неодима в гексане [NdV, Nd(O2C10H19)3]. Реакционную смесь нагревают до 73°С. По завершении полимеризации (через 60 минут с момента ее начала) отбирают образец полимера. Затем при перемешивании из бюретки добавляют раствор модифицирующего реагента в 100 мл гексана.
Тип и количество используемого наносочленяющего агента, а также вязкость полимерных образцов по Муни до и после сочленения приведены в таблице 1.
По истечении одного часа реакцию прекращают путем добавления 20 мл воды и продукты реакции стабилизируют путем добавления 2,6 г растворенного в 100 мл гексана стабилизатора Irganox 1520L.
В примере 1 полимер осаждают 10 литрами содержащего воду этанола и сушат при 60°С в вакуумном сушильном шкафу.
В примерах 2-5 полимер выделяют на лабораторном испарителе и сушат при 60°С в вакуумном сушильном шкафу.
Таблица 1
Пример 1 2 3 4 5
Гексан [г] 1480 8500 8500 8500 8500
1,3-Бутадиен [г] 250 1300 1300 1300 1300
DIBAH 20% [мл] 4,0 21,6 21,6 21,6 21,6
EASC 20% [мл] 0,6 2,5 2,5 2,5 2,5
NdV 8,8% [мл] 0,6 2,8 2,8 2,8 2,8
Dynasil 40*) {г] 0,2 13 26 39 65
До сочленения:
ML 1+4 (100) [ед. Муни] 25 32 33 34 35
ML-Relax 30 с [%] 4,4 5,4 5,4 5,4
Mn [г/моль] 169500 144900 132200
Mw [г/моль] 495400 430200 485800
Mz [г/моль] 1778000 1329000 1657000
После сочленения:
ML 1+4 (100) [ед. Муни] 32 39 44 44 50
ML-Relax 30 с [%] 6,0 8,2 9,4 8,1
Mn [г/моль] 179700 164500 202700
Mw [г/моль] 803400 701900 932500
Mz [г/моль] 4087000 5798000 6478000
*) Dynasil 40: этилполисиликат (эфир кремния) фирмы Degussa формулы (OEt)3-Si-(O-Si(OEt)2)n-OEt, в которой n означает число от 2 до 3, с содержанием SiO2 от 40 до 42%.
В результате сочленения вязкость по Муни предлагаемых в изобретении полимеров значительно возрастает, что однозначно согласуется с показанным на фиг.1 и 2 ростом молекулярной массы образцов из примеров 2 и 4.
На фиг.1 и 2 показаны относительные содержания обладающих разной молекулярной массой (г/моль) полимерных фракций.
На фиг.1 и 2 показано молекулярно-массовое распределение полимеров после сочленения соответственно для примеров 2 и 4.
Сплошные кривые на фиг.1 и 2 служат отличным подтверждением бимодального молекулярно-массового распределения соответствующих полимеров. Кроме того, началу высокомолекулярного пика соответствует область значений молекулярной массы выше 3000000 г/моль, причем средние значения молекулярной массы, составляющие более 5000000 г/моль, значительно превышают предельное значение 2000000 г/моль (пунктирная кривая).
Сравнительные примеры 6 и 7
Примеры 6 и 7 выполняют аналогично примеру 2. При этом в качестве модифицирующего агента вместо наносочленяющего агента используют SiCl4. Подобное модифицирование полимера не сопровождается ростом вязкости по Муни. Показатель релаксации (Mooney-Relax) обоих модифицированных полимеров по истечении 30 секунд составляет менее 5%, то есть соответствует полимерам без сочленения. При модифицировании полимеров посредством SiCl4 бимодальное молекулярно-массовое распределение отсутствует. На фиг.3 приведено молекулярно-массовое распределение модифицированного SiCl4 полимера из примера 7. Таким образом, SiCl4 не обладает действием наносочленяющего агента.
Таблица 2
Сравнительный пример 6 7
Гексан [г] 8500 8500
1,3-Бутадиен [г] 1300 1300
DIBAH 20% [мл] 21,6 21,6
EASC 20% [мл] 2,5 2,5
NdV 8,8% [мл] 2,8 2,8
SiCl4 [г] 13 39
До сочленения:
ML 1+4 (100) [ед. Муни] 29 28
ML-Relax 30 с [%] 6,3 6,3
После сочленения:
ML 1+4 (100) [ед. Муни] 30 29
ML-Relax 30 с [%] 4,5 4,8
Сравнительный пример 8 и примеры 9-10
В сравнительном примере 8 используют синтетический каучук Buna™ СВ24 фирмы Lanxess Deutschland GmbH. В примерах 9 и 10 используют полимеры из примеров 2 и 5.
При сравнимых значениях вязкости по Муни резиновые смеси из примеров 9 и 10 на основе предлагаемых в изобретении полимеров в отличие от сравнительного примера 8 характеризуются значительно более высоким сопротивлением раздиранию.
Для изготовления резиновых смесей использовали следующие материалы.
Торговое название Фирма-изготовитель
Buna™ CB24 (нефункционализованный полибутадиен) Lanxess Deutschland GmbH
Ultrasil 7000 6R (диоксид кремния) KMF Laborchemie Handels GmbH
Si 69 (силан) Degussa Hüls AG
Corax N 234 (сажа) KMF Laborchemie Handels GmbH
Enerthene 1849-1 (масло) BP Oil Deutschland GmbH
Цинковые белила литопон (диоксид цинка) Grillo Zinkoxid GmbH
EDENOR С 18 98-100 (стеариновая кислота) Cognis Deutschland GmbH
Vulkanox® 4020/LG (стабилизатор) Bayer AG Brunsbüttel
Vulkanox® HS/LG (стабилизатор) Bayer Elastomeres S.A.
Vulkacit® CZ/C (компонент каучука) Bayer AG Antwerpen
Vulkacit® D/C (компонент каучука) Bayer AG Leverkusen
Измельченная сера 90/95 Chancel Deutsche Solvay-Werke
Таблица 3
Пример/сравнительный пример*) 8*) 9 10
Buna® CB 24 100
Полимер из примера 2 100
Полимер из примера 5 100
Сажа (IRB 7, тип N330) 60 60 60
EDENOR C 18 98-100 2 2 2
Enerthene 1849-1 15 15 15
Vulkazit® NZ/EGC 0,9 0,9 0,9
Измельченная сера 90/95 Chancel 1,5 1,5 1,5
Оксид цинка (IRM 91, фирма U.S. Zinc) 3 3 3
Вязкость по Муни ML 1+4 (100°С)
ML 1+4 [ед. Муни] 79 71 81
MDR (160°C, 30 мин)
S' (минимум) [дНм] 3,24 3,09 3,5
S' (максимум) [дНм] 20,9 17,85 17,76
t 10 [с] 239 253 243
t 95 [с] 777 775 772
Образцы: Graves DIN 53515
Среднее значение сопротивления раздиру [Н/мм] 33 72 65

Claims (5)

1. Наноструктурированные полимеры на основе сопряженных диенов, которые могут быть получены полимеризацией сопряженных диенов в присутствии катализаторов на основе соединений редкоземельных металлов и последующим взаимодействием с наносочленяющим агентом, причем полученные полимеры обладают бимодальным молекулярно-массовым распределением, в соответствии с которым высокомолекулярный компонент обладает средней молекулярной массой более 2000000 г/моль, количество высокомолекулярного компонента в пересчете на весь полимер составляет от 1 до 20%, содержание геля во всем полимере составляет менее 1% и содержание 1,2-виниловых звеньев в пересчете на полимер составляет от 0,3 до 1 мас.%.
2. Наноструктурированные полимеры по п.1, отличающиеся тем, что в качестве сопряженных диенов они содержат 1,3-бутадиен, 2,3-диметил-1,3-бутадиен, 3-бутил-1,3-октадиен, изопрен, пиперилен, 1,3-гексадиен, 1,3-октадиен и/или 2-фенил-1,3-бутадиен.
3. Наноструктурированные полимеры по п.2, отличающиеся тем, что наносочленяющим агентом является олигомерный силикат формулы:
X3-Si-(O-SiX2)n-X,
в которой X означает алкоголят формулы OR, причем R означает насыщенный или частично ненасыщенный алифатический углеводородный остаток с 1-30 атомами углерода, циклоалифатический углеводородный остаток с 5-30 атомами углерода или ароматический углеводородный остаток с 6-30 атомами углерода, и
n означает число более 0.
4. Способ получения наноструктурированных полимеров на основе сопряженных диенов, отличающийся тем, что сначала в присутствии инертных органических апротонных растворителей и катализатора на основе соединений редкоземельных металлов осуществляют полимеризацию сопряженных диенов, и полученные полимеры на основе указанных мономеров взаимодействуют с наносочленяющими агентами формулы:
X3-Si-(O-SiX2)n-X,
в которой Х означает алкоголят формулы OR, причем R означает насыщенный или частично ненасыщенный алифатический углеводородный остаток с 1-30 атомами углерода, циклоалифатический углеводородный остаток с 5-30 атомами углерода или ароматический углеводородный остаток с 6-30 атомами углерода, и
n означает число более 0, и
количество использованного наносочленяющего агента лежит в пределах от 0,001 до 10 г на 100 г полимера.
5. Применение наноструктурированных полимеров по одному из пп.1-3 для изготовления шин и деталей шин, мячей для игры в гольф и резиновых технических изделий, а также усиленных каучуком полимеров, таких как сополимеры на основе акрилонитрила, бутадиена и стирола, и ударопрочный полистирол.
RU2010109059/05A 2007-08-16 2008-08-07 Наноструктурированные полимеры на основе сопряженных диенов RU2475503C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007038439.6 2007-08-16
DE102007038439A DE102007038439A1 (de) 2007-08-16 2007-08-16 Nanostrukturierte Polymere auf Basis von konjugierten Dienen
PCT/EP2008/060416 WO2009021906A1 (de) 2007-08-16 2008-08-07 Nanostrukturierte polymere auf basis von konjugierten dienen

Publications (2)

Publication Number Publication Date
RU2010109059A RU2010109059A (ru) 2011-09-27
RU2475503C2 true RU2475503C2 (ru) 2013-02-20

Family

ID=40130581

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010109059/05A RU2475503C2 (ru) 2007-08-16 2008-08-07 Наноструктурированные полимеры на основе сопряженных диенов

Country Status (14)

Country Link
US (1) US9079981B2 (ru)
EP (1) EP2181000B1 (ru)
JP (1) JP5568473B2 (ru)
KR (1) KR101162430B1 (ru)
CN (1) CN101808833B (ru)
AT (1) ATE529273T1 (ru)
BR (1) BRPI0815391B1 (ru)
DE (1) DE102007038439A1 (ru)
HK (1) HK1142040A1 (ru)
RU (1) RU2475503C2 (ru)
SA (1) SA08290508B1 (ru)
TW (1) TWI450928B (ru)
WO (1) WO2009021906A1 (ru)
ZA (1) ZA201001079B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154112A1 (ru) 2020-01-29 2021-08-05 Публичное Акционерное Общество "Сибур Холдинг" (Пао "Сибур Холдинг") Способ получения модифицированных полидиенов

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310186B2 (ja) * 2009-03-26 2013-10-09 Jsr株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体及びゴム組成物
EP2363303A1 (de) * 2010-02-19 2011-09-07 LANXESS Deutschland GmbH Bimodales NdBR
WO2013066329A1 (en) * 2011-11-03 2013-05-10 Lanxess Deutschland Gmbh NdBR WET MASTERBATCH
US9758646B2 (en) 2011-11-03 2017-09-12 Arlanxeo Deutschland Gmbh NdBR wet masterbatch
CN104136238B (zh) 2012-02-29 2017-07-04 盛禧奥欧洲有限责任公司 产生二烯聚合物的方法
CN103450378B (zh) * 2012-05-28 2016-04-27 中国石油化工股份有限公司 一种聚异戊二烯及其制备方法和聚异戊二烯混炼胶和硫化胶
RU2561704C2 (ru) * 2013-03-25 2015-09-10 Общество с ограниченной ответственностью "Научно-производственная фирма "Белагроспецмаш" Резиновая смесь преимущественно для пневмошин и пневмошина из нее
SG11201602766WA (en) 2013-10-16 2016-05-30 Arlanxeo Deutschland Gmbh Functionalized polymer composition
EP3543261B1 (en) * 2016-11-15 2023-09-06 Zeon Corporation Synthetic polyisoprene latex
EP3366709A1 (en) 2017-02-24 2018-08-29 ARLANXEO Deutschland GmbH In-chain phosphine- and phosphonium- containing diene-polymers
KR102417008B1 (ko) 2018-11-01 2022-07-07 주식회사 엘지화학 유기용매 함유 혼합용액으로부터 유기용매의 분리방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450266A (en) * 1982-02-19 1984-05-22 Bayer Aktiengesellschaft Use of siloxanes for the modification of high molecular weight p-polyphenylene sulphides
US4503204A (en) * 1980-02-25 1985-03-05 The General Tire & Rubber Company Solution polymerization
RU2083573C1 (ru) * 1991-06-10 1997-07-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ получения 2-этокси-2-метил-4-этил-1,3-диоксолана, 2-этокси-2-метил-4-этил-1,3-диоксолан, способ получения структурно-модифицированных полимеров и структурно-модифицированный полимер
DE19803039A1 (de) * 1997-12-13 1999-07-08 Taiwan Synthetic Rubber Corp Kautschuk-Zusammensetzung für eine Hochleistungs-Reifen-Lauffläche
EP1095952A1 (de) * 1999-10-28 2001-05-02 Bayer Ag Katalysator auf Basis von Verbindungen der Seltenen Erdmetalle
WO2001034658A1 (en) * 1999-11-12 2001-05-17 Bridgestone Corporation Modified polymers prepared with lanthanide-based catalysts
RU2179526C2 (ru) * 1999-11-29 2002-02-20 Институт катализа им. Г.К. Борескова СО РАН Способ получения твердофазных наноструктурированных материалов
US20050137338A1 (en) * 2003-12-19 2005-06-23 Halasa Adel F. Synthetic polyisoprene rubber

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2848964A1 (de) 1978-11-11 1980-05-22 Bayer Ag Katalysator, dessen herstellung und verwendung zur loesungspolymerisation von butadien
US4906706A (en) 1986-09-05 1990-03-06 Japan Synthetic Rubber Co., Ltd. Modified conjugated diene polymer and process for production thereof
JP2595539B2 (ja) * 1987-05-29 1997-04-02 日本合成ゴム株式会社 新規な共役ジエン系重合体の製造方法
JP3711598B2 (ja) * 1995-10-19 2005-11-02 住友化学株式会社 変性ジエン系重合体ゴムの製造方法
US6008295A (en) 1997-07-11 1999-12-28 Bridgestone Corporation Diene polymers and copolymers incorporating partial coupling and terminals formed from hydrocarboxysilane compounds
DE19746266A1 (de) 1997-10-20 1999-04-22 Bayer Ag Katalysator auf Basis von Verbindungen der seltenen Erdmetalle für die Polymerisation von ungesättigten organischen Verbindungen
US6300450B1 (en) 1997-11-25 2001-10-09 Ube Industries, Ltd. Conjugated diene compound polymerization catalyst process for the preparation of conjugated diene polymer in the presence thereof and polybutadiene thus prepared
ES2195452T3 (es) 1998-01-21 2003-12-01 Goodyear Tire & Rubber Proceso de fabricacion de polimeros elastomericos acoplados con estaño.
US6136921A (en) 1998-12-07 2000-10-24 Taiwan Synthetic Rubber Corperation Coupled polymers and process for preparing the same
DE19939842A1 (de) 1999-08-23 2001-03-01 Bayer Ag Verfahren zur Copolymerisation von konjugierten Diolefinen (Dienen) und vinylaromatischen Monomeren mit Katalysatoren der Seltenen Erden sowie die Verwendung der Copolymerisate in Kautschukmischungen für Reifenanwendungen
DE10115106A1 (de) 2001-03-27 2002-10-10 Bayer Ag Blockcopolymerisat auf Basis von konjugierten Diolefinen und polaren Monomeren
CN100334118C (zh) * 2001-11-27 2007-08-29 株式会社普利司通 共轭二烯聚合物、其制备方法和包含该共轭二烯聚合物的橡胶组合物
CN1302032C (zh) * 2004-01-17 2007-02-28 中国石化北京燕化石油化工股份有限公司 热敏性共聚物胶乳、其制备方法及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503204A (en) * 1980-02-25 1985-03-05 The General Tire & Rubber Company Solution polymerization
US4450266A (en) * 1982-02-19 1984-05-22 Bayer Aktiengesellschaft Use of siloxanes for the modification of high molecular weight p-polyphenylene sulphides
RU2083573C1 (ru) * 1991-06-10 1997-07-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ получения 2-этокси-2-метил-4-этил-1,3-диоксолана, 2-этокси-2-метил-4-этил-1,3-диоксолан, способ получения структурно-модифицированных полимеров и структурно-модифицированный полимер
DE19803039A1 (de) * 1997-12-13 1999-07-08 Taiwan Synthetic Rubber Corp Kautschuk-Zusammensetzung für eine Hochleistungs-Reifen-Lauffläche
EP1095952A1 (de) * 1999-10-28 2001-05-02 Bayer Ag Katalysator auf Basis von Verbindungen der Seltenen Erdmetalle
WO2001034658A1 (en) * 1999-11-12 2001-05-17 Bridgestone Corporation Modified polymers prepared with lanthanide-based catalysts
RU2179526C2 (ru) * 1999-11-29 2002-02-20 Институт катализа им. Г.К. Борескова СО РАН Способ получения твердофазных наноструктурированных материалов
US20050137338A1 (en) * 2003-12-19 2005-06-23 Halasa Adel F. Synthetic polyisoprene rubber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154112A1 (ru) 2020-01-29 2021-08-05 Публичное Акционерное Общество "Сибур Холдинг" (Пао "Сибур Холдинг") Способ получения модифицированных полидиенов

Also Published As

Publication number Publication date
WO2009021906A1 (de) 2009-02-19
RU2010109059A (ru) 2011-09-27
CN101808833A (zh) 2010-08-18
SA08290508B1 (ar) 2012-02-22
JP2010536945A (ja) 2010-12-02
ATE529273T1 (de) 2011-11-15
KR20100043276A (ko) 2010-04-28
KR101162430B1 (ko) 2012-07-04
EP2181000A1 (de) 2010-05-05
BRPI0815391A2 (pt) 2015-02-10
TW200927820A (en) 2009-07-01
CN101808833B (zh) 2012-01-18
JP5568473B2 (ja) 2014-08-06
TWI450928B (zh) 2014-09-01
US9079981B2 (en) 2015-07-14
BRPI0815391B1 (pt) 2020-06-16
EP2181000B1 (de) 2011-10-19
US20110230624A1 (en) 2011-09-22
DE102007038439A1 (de) 2009-02-19
HK1142040A1 (en) 2010-11-26
ZA201001079B (en) 2011-04-28

Similar Documents

Publication Publication Date Title
RU2475503C2 (ru) Наноструктурированные полимеры на основе сопряженных диенов
US12037432B2 (en) Method for preparing modified and conjugated diene-based polymer and modified and conjugated diene-based polymer prepared using the same
JP6553866B2 (ja) 官能化ポリマー、ゴム組成物及び空気入りタイヤ
FR2850657A1 (fr) Procede de production d'un caoutchouc de polymere de diene modifie et composition de caoutchouc ainsi obtenue
JP4097688B2 (ja) 変性共役ジエン系重合体ゴム及びそれを含むゴム組成物
EP3312205B1 (en) Polymer compound, method for preparing modified conjugated diene-based polymer by using same, and modified conjugated diene-based polymer
US11319394B2 (en) Both terminal-modified conjugated diene-based polymer and method for preparing the same
EP3357943B1 (en) Modified conjugated diene-based polymer and method of preparing the same
EP3971238B1 (en) Modifying agent and modified conjugated diene polymer prepared by using the same
EP3919532A1 (en) Modified conjugated diene-based polymer, method for producing same, and rubber composition comprising same
JP5437765B2 (ja) タイヤ用ゴム組成物及びスタッドレスタイヤ
EP3885379A1 (en) Modifying agent, modified conjugated diene-based polymer including same and method for preparing polymer
EP3950747B1 (en) Modified conjugated diene-based polymer and rubber composition including the same
EP3925991B1 (en) Modified conjugated diene-based polymer, method for preparing the same and rubber composition including the same
US12110353B2 (en) Modified conjugated diene-based polymer, method for preparing the same and rubber composition including the same
JP7345958B2 (ja) 変性共役ジエン系重合体およびそれを含むゴム組成物
EP3345945B1 (en) Modified monomer, modified conjugated diene-based polymer comprising same, and method for preparing same
TW200925166A (en) Coupled modified polymers containing heteroatoms and based on conjugated dienes
EP3916027A1 (en) Modified conjugated diene-based polymer, method for producing same, and rubber composition comprising same
EP4079806A1 (en) Oil-extended modified conjugated diene-based polymer, method for preparing same, and rubber composition comprising same

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20170502