WO2009012825A1 - Hochfrequenzstromversorgungsanordnung, insbesondere eine plasmaversorgungseinrichtung und verfahren zum betreiben einer hochfrequenzstromversorgungseinrichtung - Google Patents
Hochfrequenzstromversorgungsanordnung, insbesondere eine plasmaversorgungseinrichtung und verfahren zum betreiben einer hochfrequenzstromversorgungseinrichtung Download PDFInfo
- Publication number
- WO2009012825A1 WO2009012825A1 PCT/EP2008/002657 EP2008002657W WO2009012825A1 WO 2009012825 A1 WO2009012825 A1 WO 2009012825A1 EP 2008002657 W EP2008002657 W EP 2008002657W WO 2009012825 A1 WO2009012825 A1 WO 2009012825A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- line
- power supply
- output network
- frequency power
- supply arrangement
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32018—Glow discharge
- H01J37/32045—Circuits specially adapted for controlling the glow discharge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R21/00—Arrangements for measuring electric power or power factor
- G01R21/06—Arrangements for measuring electric power or power factor by measuring current and voltage
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R23/00—Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
- G01R23/02—Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/003—Constructional details, e.g. physical layout, assembly, wiring or busbar connections
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5383—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/38—Impedance-matching networks
- H03H7/40—Automatic matching of load impedance to source impedance
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
- H05B41/2806—Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without electrodes in the vessel, e.g. surface discharge lamps, electrodeless discharge lamps
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Definitions
- High-frequency power supply arrangement in particular a plasma supply device and method for operating a high-frequency power supply device
- the invention relates to a
- High-frequency power supply arrangement in particular a plasma supply device, for generating an output power> 500 W at an output frequency> 3 MHz with at least one inverter connected to a DC power supply having at least one switching element whose reference potential is in time with the high frequency, in particular in the range of a fundamental frequency , changes, and at least one source network.
- a plasma supply arrangement also called a plasma supply device, is used for the plasma power supply, ie for the power supply of plasma processes.
- the plasma supply device operates at a fundamental frequency which, when used as a plasma power supply, may deviate only slightly from a nominal value. Typical fundamental frequencies are 3.39 MHz, 13.56 MHz, 27 MHz, 40 MHz, 62 MHz.
- the inverter which has the at least one switching element, generates from the DC signal of the DC power supply an alternating signal which changes its sign periodically with the fundamental frequency.
- the at least one switching element is switched back and forth in the cycle of the fundamental frequency between a conducting and a non-conducting state.
- the output network generates a sinusoidal output signal substantially from the inverter signal generated at the predetermined fundamental frequency.
- a plasma is a special state of matter that is generated from a gas.
- Each gas basically consists of atoms and / or molecules. In a plasma, this gas is largely ionized. This means that by supplying energy, the atoms or molecules are split into positive and negative charge carriers, ie ions and electrons.
- a plasma is suitable for machining workpieces, since the electrically charged particles are chemically highly reactive and can also be influenced by electric fields. The charged particles can be accelerated by means of an electric field to a workpiece, where they can detach individual atoms from the workpiece upon impact. The Dissolved atoms can be removed via gas flow (etching) or deposited on other workpieces as a coating (production of thin films).
- Application is such a processing by means of a plasma, especially when extremely thin layers, especially in the range of less atomic layers to be processed.
- Typical applications are semiconductor technology (coating, etching, etc.), flat screens (similar to semiconductor technology), solar cells (similar to semiconductor technology), architectural glass coating (heat protection, glare control, etc.), storage media (CD, DVD, hard disks), decorative layers (colored glass, etc.) and tool hardening. These applications have high demands on accuracy and process stability.
- a plasma can also be used to excite lasers, in particular gas lasers.
- a workpiece machining plasma is typically ignited and maintained in a plasma chamber. This is usually a noble gas, eg. As argon, passed at low pressure in the plasma chamber. Via electrodes and / or antennas, the gas is exposed to an electric field. A plasma is created or ignited when several conditions are met. First of all, a small number of free charge carriers must be present, with the free electrons, which are always available to a very limited extent, usually being used.
- the free charge carriers are accelerated so much by the electric field that they impact on atoms or molecules of the Gases release additional electrons, resulting in positively charged ions and other negatively charged electrons.
- the other free charge carriers are in turn accelerated and generate more ions and electrons upon impact. It uses an avalanche effect.
- the constant generation of ions and electrons counteract natural recombination, ie electrons are attracted by ions and recombine to electrically neutral atoms or molecules. Therefore, an ignited plasma must constantly be supplied with energy in order to maintain it.
- Plasma power supplies must be as small as possible so that they can be placed close to the plasma discharges in the application. You should work as accurately as possible and accurate and have the lowest possible losses in order to achieve high efficiency. Another requirement is the lowest possible manufacturing costs and high ease of maintenance. If possible, plasma power supplies should do without mechanically driven components, in particular fans are undesirable because of their limited life and the risk of contamination. Furthermore, plasma power supplies should simultaneously be as reliable as possible, not overheat and have a long service life.
- the output network has at least one inverter-side terminal and one load-side terminal. Connections on the inverter side are also called primary connections, those on the load side secondary connections. A power train from one of the ports to a second port on the same side is called Designated output network line. This second connection can also be on a HF-moderate mass.
- the output of the inverter carrying the AC signal may be connected to a first inverter side terminal of the output network. From there can be a cable train within the
- Output network directly or via other components lead to one end of a primary winding of an output transformer. From the other end of the primary winding, another line can lead directly or via further components to a second inverter-side connection of the output network. This line from the first inverter side terminal via the primary winding to the second inverter side terminal of the output network constitutes an output network line in the sense of the invention.
- the design of the inverter as known in the art half-bridge circuit requires two switching elements, for example two MOSFET transistors, one of which is connected to the positive and the other to the negative pole of the DC power supply.
- the two transistors are driven complementary to the fundamental frequency, the alternating signal thus alternately has the positive and the negative potential of the DC power supply.
- the second primary terminal may be connected via a capacitor to at least one pole of the DC power supply and thus represents the high frequency mass.
- the inverter may have another half-bridge connected to this second primary terminal and in push-pull to the half-bridge at first primary connection is operated. When using one half-bridge at each of the two primary connections one speaks of a full-bridge circuit.
- the driving of the MOSFET transistors takes place via the gate-source voltage, wherein the source terminal can be regarded as the voltage reference point of this component.
- N-channel MOSFETs have advantages over P-channel MOSFETs, it is preferable to use N-channel MOSFETs for both switching elements of a half-bridge.
- the source terminals of the N-channel MOSFETs connected to the negative terminal of the DC power supply (bottom switch) are at a quiet negative potential, since in these the drain terminals have the alternating signal with the fundamental frequency of the plasma power supply device and to the respective primary terminal the output network are connected, while the source terminals are connected directly to the negative pole of the DC power supply.
- the N-channel MOSFETs Topic Switch
- the source terminals are connected to the output network line of the output network and carry the AC signal.
- the control relative to the source terminal with its fast changing high Potential difference must be made, the gate drives of these transistors and possibly necessary for the gate drives components as a driver and their drive power supply must be relative to this high-frequency reference potential.
- a false gate-source voltage caused by the rapid potential change can easily lead to half-bridge instabilities and to the destruction of components.
- electrical measurements for monitoring for example, internal temperature sensors of the MOSFETs or their driver stages, the source terminal as a reference potential and thus also have a strong RF potential.
- Object of the present invention is to provide a high-frequency power supply arrangement that meets the requirements for a plasma power supply and ensures a secure supply, control or monitoring of those switching elements or other components whose reference point is exposed to rapid potential changes.
- an RF power supply arrangement of the type mentioned above, wherein a companion an electrical component, which is located on a reference potential with strong temporal changes, with one of temporal changes of a voltage potential, in particular at the fundamental frequency, free or at least largely connects free access point.
- the component may be part of the inverter or connected to it, for example a driver or a measuring device.
- the companion line connects an electrical component, such as the inverter, whose reference point is at a potential of the output network line of the output network with strong temporal changes, with one of temporal
- the companion line may be located in proximity to the output network line of the output network, which means that both lines are spaced apart and capacitive in the coupling area alone by the capacitance between the two lines and by the inductances of the lines Lines are inductively coupled together.
- the support line is thus in the area of the output network line. It runs at least in sections along the output network line.
- the accompanying line can be guided parallel to the output network line, with it twisted or arranged bifilar.
- the magnetic field lines of a magnetic field which form around the output network line due to the current flowing through them, as completely as possible to surround the accompanying line, whereby a high magnetic coupling is achieved.
- the support line may be surrounded or enclosed spatially or area by the output network line.
- the output network line may be made planar with the companion line in the middle of the output network line.
- the companion line may be enclosed by a tubular exit network conduit.
- the companion line can have a much smaller dimension than the output network line.
- the escort line may have an access point near a location of the source network line that is of temporal
- the inverter has two half-bridges, which drive the primary winding of the output transformer in opposite directions, the access point of the accompanying line can be close to the middle of the primary winding.
- the access point of the accompanying line can be close to the middle of the primary winding.
- it can be tapped and connected to a center of the DC power supply of the inverter, which is formed by two capacitors connected in series with the terminals of the DC Power supply lie.
- the reference points have a strongly changing potential, can go from access points in the vicinity of the center tap of the primary winding of each a separate Begleitwicklung, which is based on the course of the primary winding.
- the companion line may be routed isolated from the output network line in the middle of the structure.
- the support line can be enclosed by the output network line.
- the accompaniment line may be arranged on another layer of a multilayer printed circuit board parallel to the output network line.
- the output network line and the trunks may be capacitively connected beyond their own capacity. This can be done via at least one discrete capacitor.
- the capacitor can be switched low induction. An increase of the capacitive coupling can be achieved if in each case one capacitor is arranged at several locations. This may occur near the high frequency quiescent point on the center tap of the primary winding, in the vicinity of the switching element, e.g. B. a MOSFET, or over the entire extent of the common path at any point in each case the same distance from the output network line and support line or primary winding and Begleitwicklung done.
- the accompanying line can be guided by at least one, a magnetic field increasing component of the output transformer.
- a particularly good inductive coupling is achieved.
- the support team can work together with a
- the output network line for this purpose.
- the device is a driver for a top-switching MOSFET
- the first pole of the drive power source may be connected to the access point of the companion line, the second pole to the center tap of the output network line.
- the drive power source remains at a high frequency quiet potential.
- a common-mode choke between the drive power supply source and the driver itself can be dispensed with in this circuit arrangement.
- all the top-switch drivers as a group can share a common one
- Such companion lines may also carry the drive signals from the drivers to the switching elements.
- the associated drivers can be on a high frequency remain quiet potential, while the reference points of the associated switching elements are at a rapidly changing potential.
- a driver power supply source per said group is sufficient.
- electrical signals of a temperature measurement or a specific state can be evaluated with a circuit which is at ground potential or at least at a high-frequency quiet potential.
- the inverter can also be designed as a half-bridge, wherein the access point of the accompanying line which is largely free from changes over time of an electrical potential can be located in the vicinity of the high-frequency-quiet end of the output network line. If a primary connection is connected directly or via a capacitor to ground or to a pole of the DC power supply and thus high frequency quiet, the access point of the support line may be in its vicinity.
- Figure 1 high frequency power supply arrangement with central feed
- FIG. 3 exemplary embodiment of a driver control of a switching transistor with a central feed
- FIG. 4 Illustration of the output network according to FIG. 3
- FIG. 5 exemplary embodiment of a driver control for a switching transistor with central feed in a full bridge
- FIG. 6 shows an exemplary embodiment of a gate drive for a switching transistor with center feed in a full bridge
- FIG. 7 exemplary embodiment of a driver control for switching transistors in a half-bridge
- Figure 8 embodiment of a gate drive for switching transistors in a half-bridge
- FIG. 1 shows a high frequency power supply arrangement as used for the power supply for plasma processes. Output powers of more than s 500 W are generated at a frequency> 3 MHz.
- High-frequency power supply arrangement consists of a controller 1, which leads to a signal transformer 2.
- the signal transformer 2 causes a galvanic separation of the control signals from the high voltage.
- This signal transformer 2 is lo connected to a full bridge module 3, wherein in the
- Full bridge module 3 in addition to two half bridges 5 and 6 drivers 7, 8, 9, 10 for the half-bridge transistors 11, 12 and 13, 14 are integrated.
- the full-bridge module 3 operating as an inverter is led to an output network 15, which in turn is connected via an i5 measuring device 17 to an external load (not shown) via the output terminal 28.
- the controller 1 controls the four primary windings of the signal transmitter 2 with a fundamental frequency of, for example, 2.339 MHz.
- the secondary windings are connected to the inputs of the drivers 7, 8, 9, 10;
- the first branch of the signal transformer consists of the primary winding 18 and the secondary winding 19, which is connected to the input of the driver 7.
- the signal transmitter can also be realized in such a way that it works with optical signals.
- Each half bridge 5, 6 contains two MOS transistors formed as 0 transistors 11, 12 and 13, 14, wherein the transistors 11 and 13 (Top Switch) with a positive DC voltage 20 and the transistors 12 and 14 (bottom switch) are connected to a negative DC voltage 21.
- the gate of each transistor 11, 12 and 13, 14 is connected to the output of a driver 7, 8, 9, 10, respectively.
- the driver 9 switches the transistor 13 as a function of the basic frequency provided by the controller 1. The same is done by the driver 10 to the transistor 14. It is always at most one transistor 13, 14 of the half-bridge 6 conductive, while the other is locked. This mode of operation applies in phase also for the drivers 7 and 8 and the transistors 11, 12 of the half-bridge 5.
- a high-frequency alternating signal is generated from the DC voltage, which periodically changes its sign with the fundamental frequency.
- This alternating signal is fed from the half-bridge 5 via a first inductance 26 to the primary winding 23 of the output transformer 23, 24.
- the output signal of the second half-bridge 6 also leads via a second inductance 22 to the primary winding 23 of the output transformer 23, 24 of the output network 15.
- the secondary winding 24 of the output transformer 23, 24 outputs the high-frequency signal via an impedance matching element with the capacitors 54 and 55 and the inductance 27 to an output terminal 28 connected to an external load.
- a current measurement 29 in the secondary winding 24 of the output transformer 23, 24 and the measuring device 17 are connected to the controller 1.
- the primary winding 23 of the output transformer 23, 24 has a center tap 30, whereby the primary winding 23 is divided into two primary winding halves 23a and 23b.
- the center tap 30 leads via a third inductance 31 to the center 32 of a capacitive voltage divider 33, 34, which is arranged between the positive DC voltage connection 20 and the negative DC voltage connection 21.
- the two capacitors 33, 34 of the voltage divider operate as bypass capacitors for the half bridges 5 and 6. By these bypass capacitors 33, 34 current peaks when switching the transistors 11, 12, 13, 14 are compensated. At the same time thus voltage dips in the DC power supply with their terminals 20, 21 are prevented.
- the first, second and third inductors 26, 22, 31 are only responsible for the switching behavior of the transistors and can also be replaced by direct connections depending on the design of the transistors.
- Connections are on a high-frequency restless point and the reference potential compared to the mass of the RF power supply between relatively high potentials, often a few hundred volts, with the fundamental frequency jumps back and forth, and the reference potential of the associated driver 7, 9.
- the electrical potentials of the driver power supply lines to the driver 7 and 9 relative to the reference potential of each connected top switch transistor 11 and 13 have no temporal changes.
- the secondary winding 53 of the transformer in the drive power supply source 51 is connected to the power-in connection 43 of the driver 7.
- the second terminal of the secondary winding 53 of the drive power supply source 51 leads to the power ground terminal 49 via the second half 4b of the common mode throttle.
- the common-mode choke with the two halves 4a and 4b is required because the parasitic coupling capacitances of the transformer 52, 53, which supplies the driver 7 with operating voltage, are not arbitrarily small and high-frequency currents from the high-frequency potential driver 7 via the transformer 52, 53 to the supply circuit of the primary winding 52 to be avoided.
- Figure 3 the principle of the accompaniment on full bridge module 3 is to be explained in principle.
- Center tap 30 of the primary winding 23 are used to supply the operating voltage to the driver 7 of the top-switch transistor 11. Also, the driver 9 of the second top-switching transistor 13 can be supplied in this way operating voltage.
- this companion line 35 leads from a driver power supply terminal 45 near the center tap 30 to the access point 30a, following the geometry of the upper half turns 23a of the primary 23 of the output transformer 23, 24 and the first inductor 26 to the driver 7.
- the accompaniment line 35 is connected to the power-in terminal 43 of the driver 7.
- the driver 9 of the second half-bridge 6 uses the same drive power source.
- the companion line 36 is identical to the companion line 35 up to the access point 30a, but then follows the geometry of the turns of the lower half 23b of the primary winding 23 of the output transformer 23, 24 and leads to the driver 9.
- the accompaniment line 36 is connected to the power In port 44 of the driver 9 connected.
- the second accompanying line 36 follows the
- Output network line 38 in particular the lower half 23b of the primary winding 23.
- Accompanying line 36 and the lower half 23b of the primary winding 23 can be guided parallel or bifilar, whereby both are magnetically coupled together.
- Each of the accompaniment lines 35, 36 is connected to the respective trailing output network line 37, 38 via a plurality of capacitors. So are the accompaniment 35 and the
- High frequency line 37 via the capacitors 39 and 40 connected.
- the companion line 36 and the high frequency line 38 are coupled via the capacitors 41 and 42.
- the second potential of the drive power supply source is connected to the midpoint 32 and passes from there via the third inductor 31 to the center tap 30 of the primary winding 23. At the two ends of the primary winding 23, however, this potential is shifted by the respectively prevailing high frequency potential thereon also the transistors 12 and 13 are located with their source terminals.
- FIG. 4 once again shows the exact wiring of the output transformer 23, 24 of the output network 15.
- the switching elements are not shown.
- the high frequency output network line 37 which also includes the primary winding half 23a
- the high frequency output network line 38 which also includes the primary winding half 23b, extends from the primary terminal 56a for the first Alternating signal from the first half-bridge via the primary winding 23 and from this to the primary terminal 56b for the alternating signal from the second half-bridge.
- the accompanying lines 35, 36 are already performed separately from the terminals 45, 46.
- the two terminals 45, 46 may be connected to a common pole of the drive power source not shown in this drawing.
- the capacitors 58, 59 block the driver power supply terminals 45, 46 from the midpoint 32, which may be connected to the other pole of the driver power source.
- the accompanying line 35 leads from the terminal 45 in the vicinity of the center tap 30 and further as a bifilar companion winding of the upper half 23a of the primary winding 23 to the power-in port 47 of the driver 7 of the half-bridge 5.
- the accompaniment line 36 leads from the terminal 46 also in the Proximity of the center tap 30 and then further as a bifilar companion winding of the lower half 23b of the primary winding 23 to the power-in terminal 48 of the driver 9 of the second half-bridge 6th
- capacitors 40, 41 are provided between each of the center tap 30 and the nearby companion lines 35, 36 to keep these three lines at this point high frequency similarly quiet.
- FIG. 5 shows how the top-switch drivers 7 and 9 can be operated with only one driver power supply source 51.
- Driver power source 51 leads as a common line of later dividing lines 35, 36 to the access point 30a and branches there.
- the first companion line 35 to the driver power supply follows from the access point 30a to the geometry of the winding 23a to the power-in terminal 43 of the driver 7.
- the second trace 36 to the driver power supply follows from the access point 30a to the geometry of the winding 23b to the power-in. Terminal 44 of the driver 9.
- Driver power source 51 leads via the center 32 with the capacitors 33, 34 to the center tap 30 of the primary winding 23 of the output transformer 23, 24 and the two halves 23a, 23b of the primary winding 23 and the further path of the output network lines 37, 38 to the Source terminals of the two top-switch transistors 11 and 13 and to the power-ground terminals of the driver 7 and 9.
- the driver power supply source 57 feeds the high frequency moderately quiet bottom switch drivers 8, 10 in a conventional manner. Since no common mode chokes are included in the driver power supply lines of the top switch drivers 7, 9, the common reasons otherwise necessary for symmetry reasons. Mode chokes in the driver power supply lines for the bottom switch drivers.
- the drivers 7, 9 are at a high-frequency-steady potential, while the associated top-switch transistors 11, 13 are at a strongly changing potential.
- the accompaniment lines 60, 61 are not used here for the drive power supply, but directly for the gate drive of the top-switch transistors 11, 13.
- the accompaniment line 61 comes from the output of the driver 7, follows as a companion winding the spatial structures of the upper half 23a of the primary winding 23 and leads to the gate terminal of the transistor 11.
- the accompaniment line 60 comes from the output of the driver 9, follows the spatial structures the winding half 23b and leads to the gate terminal of the transistor 13.
- the ground line of the driver 7, 9 is via the center 32 at the center tap 30 of the primary winding 23 is connected.
- the source terminals of the top-switch transistors 11, 13 are connected to the respective ends of the primary winding halves 23a, 23b.
- one output of the drive power supply source 51 for the driver 7 is connected via the accompaniment line 35 to the driver power supply directly to the power-in terminal of the driver 7, which drives the gate G of the transistor 11.
- the other terminal of the drive power supply source 51 leads to a point 30b at which the primary winding 23 forms the center of the DC supply via the capacitors 33, 34 and thus is grounded to high frequency.
- the other terminal of the primary winding 23 is connected via the output network line 37 to the source terminal S of the transistor 11 and also to the power ground terminal of the driver 7.
- At the drain terminal D of the transistor 11 is the positive pole 20 of the DC power supply, the negative 21 pole at the source S of the bottom-switch transistor 12 and the power-in terminal of the transistor 12 driving driver 8 is located.
- the accompanying line 35 and the output network line 37 are galvanically isolated, but close together. This applies in particular in the region of the primary winding 23, where the companion line 35 is designed as a companion winding.
- the driver 7 is at a high frequency quiet potential and is connected directly to its drive power supply source 51, the power ground terminal of the driver 7 is directly connected to the terminal 30b of the primary winding 23 passing through the capacitors 33, 34 high frequency to ground.
- the accompanying line 61 which serves for the gate drive here, leads from the control output of the driver 7 in spatial proximity to the primary winding 23 of the output transformer 23, 24 to the gate terminal G of the transistor 11.
- the other terminal of the primary winding 23 leads via the output network line 37 to the source terminal S of the transistor 11 and is thus at high RF potential.
- FIG. 9 shows the different layers of a multilayer printed circuit board, namely a lower layer 64, a first inner layer 65, a second inner layer 66 and an upper layer 67.
- This multilayer printed circuit board forms the output network and carries planar transformers and inductors.
- Transistors formed switching elements 11, 12, 13, 14 and their drivers 7, 8, 9, 10 are arranged outside the circuit board.
- the output network line 37, 38, 23a, 23b leads from the plated-through terminal 56a first through a ferrite 68, whereby the first inductance 26 is formed. In the vicinity of the ferrite 69, it forms the first half 23a of the primary winding 23. After passing through the center tap 30 formed by a via pad, the output network line forms the other half 23b of the primary winding 23 on the layer 65.
- the output network line 38 finally leaves the vicinity of the ferrite 69 and, when passing through the ferrite 70, forms the second inductor 22 before changing back to the layer 64 with the plated through primary connection 56b.
- the center tap 30 formed by plated-through holes is also connected to the line 31 on the layer 66, which leads to the center of the DC power supply 32, which is formed by a plated-through printed circuit board connection.
- the line 31 is not formed as a third inductor.
- the secondary winding 24 of the output transformer 23, 24 begins on the layer 67 at the ground terminal in the bore 76, leads as a conductor 74 also through the ferrite 69, changes in the für. michsfeld 71 first to the layer 64 with the conductor 72 and the layer 66 with the Conductor 73, the für. michsfeld 75 finally on the layer 66, again passes through the ferrite 69 and terminates in für. michsfeld 78, where parallel tracks 79 and 80 on the layers 64 and 67 through the ferrite 77 to provide the inductance 27. These two tracks terminate in the output port 28, which is formed by a bore. From fürkombuchsfeld 78, the capacitors 54 and from the end of the tracks at the bore 28, the capacitors 55 are each connected to ground. The capacitors 54, 55 and the inductor 27 form the impedance matching network. The ferrites each cause an amplification of the high-frequency magnetic field.
- the companion lines 35, 36 are routed as drive power supply lines for the top-switch drivers 7, 9 in the middle of the output network line 37, 38, 23a, 23b.
- the companion line 35 for the drive power supply of the top-switch driver 7 begins on layer 67 at the terminal 45, to which the external drive power supply source 51, not shown here, is connected.
- the accompaniment line 35 first leads on the layer 67 parallel to the height of the line 31 to an access point 81, which is formed by a through-hole in the spatial vicinity of the center tap 30.
- the via 82 leads the companion line 35 to the layer 66, from where the via 83 provides the terminal 47 to which the power-in terminal of the top-switch driver 7 external to the circuit board is connected.
- the companion line 36 for the drive power supply of the top switch driver 9 also begins on layer 67 at port 46, which is also connected to the external drive power source 51.
- the accompanying line 36 leads parallel to the height of the line 31 to an access point 84, which passes through a through-hole in the spatial vicinity of the center tap 30 is formed.
- the accompaniment line changes to the position 65 and runs as an accompanying line 36 isolated in the middle of the output network line 38, in particular in the region of the ferrite 69 is a Begleitwicklung the primary winding half 23b and comes -5 to the vicinity of the primary port 56b.
- the via 85 leads the companion line 36 to the layer 66, from where the via 86 provides the connection 48 to which the top switch driver 9 located outside the circuit board is connected.
- the two points at the access points 81, 84 are blocked with respect to the center tap 30 with the capacitors 40, 41 and thus the last high-frequency last quiet spots before the accompaniment lines 35, 36 continue their path as Begleitwicklept in the middle of the output network line 37, 38.
- Both terminals 45, 46 may be connected to the same pole of the same drive power source.
- the second pole of the driver power supply source may then be connected to the midpoint 32 20, which via the line 31 to the
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
- Inverter Devices (AREA)
- Amplifiers (AREA)
- Drying Of Semiconductors (AREA)
- Control Of Amplification And Gain Control (AREA)
- Chemical Vapour Deposition (AREA)
- Dc-Dc Converters (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Arc Welding In General (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Nozzles (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Generation Of Surge Voltage And Current (AREA)
Abstract
Die Erfindung betrifft eine Hochfrequenzstromversorgungsanordnung, insbesondere eine Plasmaversorgungseinrichtung zur Erzeugung einer Ausgangsleistung > 500W und einer Ausgangsfrequenz 3 MHz mit mindestens einem an eine DC-Stromversorgung (20, 21) angeschlossenen Inverter (3), welcher mindestens ein schaltendes Element (11, 12, 13, 14) aufweist und einem Ausgangsnetzwerk (15). Bei einer Hochfrequenzstromversorgungsanordnung, welche den Anforderungen für eine Plasmastromversorgung genügt und eine sichere Ansteuerung auch derjenigen schaltenden Elemente gewährleistet, deren Bezugspunkt schnellen Potentialwechseln ausgesetzt ist, verbindet eine Begleitleitung (35, 36) ein elektrisches Bauteil (7, 9, 57) über eine von zeitlichen Veränderungen eines Spannungspotentials weitgehend freien Einspeisung (30) des Ausgangsnetzwerkes (15) mit dem Inverter (3).
Description
Hochfrequenzstromversorgungsanordnung, insbesondere eine Plasmaversorgungseinrichtung und Verfahren zum Betreiben einer Hochfrequenzstromversorgungseinrichtung
Die Erfindung betrifft eine
Hochfrequenzstromversorgungsanordnung, insbesondere eine Plasmaversorgungseinrichtung, zur Erzeugung einer Ausgangsleistung >500 W bei einer Ausgangsfrequenz > 3 MHz mit mindestens einem an eine DC-Stromversorgung angeschlossenen Inverter, der zumindest ein schaltendes Element aufweist, dessen Bezugspotential sich im Takt der Hochfrequenz, insbesondere im Bereich einer Grundfrequenz, ändert, und mindestens einem Ausgangsnetzwerk.
Eine derartige HF-Stromversorgungsanordnung, auch Plasmaversorgungseinrichtung genannt, wird zur Plasmastromversorgung, d. h. zur Stromversorgung von Plasmaprozessen eingesetzt. Die Plasmaversorgungseinrichtung arbeitet bei einer Grundfrequenz, die bei dessen Einsatz als Plasmastromversorgung nur geringfügig von einem Sollwert abweichen darf. Typische Grundfrequenzen sind 3,39 MHz, 13,56 MHz, 27 MHz, 40 MHz, 62 MHz. Der Inverter, der das zumindest eine schaltende Element aufweist, generiert aus dem DC-Signal der DC-Stromversorgung ein Wechselsignal, welches periodisch mit der Grundfrequenz sein Vorzeichen ändert. Dazu wird das zumindest eine schaltende Element im Takt der Grundfrequenz zwischen einem leitenden und einem nichtleitenden Zustand hin- und hergeschaltet. Das Ausgangsnetzwerk generiert aus dem durch den Inverter generierten Wechselsignal ein sinusförmiges Ausgangssignal im Wesentlichen bei der vorgegebenen Grundfrequenz.
Bei einem Plasma handelt es sich um einen besonderen Aggregatzustand, der aus einem Gas erzeugt wird. Jedes Gas besteht grundsätzlich aus Atomen und/oder Molekülen. Bei einem Plasma ist dieses Gas zu einem Großteil ionisiert. Dies bedeutet, dass durch Zufuhr von Energie die Atome bzw. Moleküle in positive und negative Ladungsträger, also in Ionen und Elektronen, aufgespaltet werden. Ein Plasma eignet sich zur Bearbeitung von Werkstücken, da die elektrisch geladenen Teilchen chemisch hochgradig reaktiv und zudem durch elektrische Felder beeinflussbar sind. Die geladenen Teilchen können mittels eines elektrischen Feldes auf ein Werkstück beschleunigt werden, wo sie beim Aufprall einzelne Atome aus dem Werkstück herauslösen können. Die
herausgelösten Atome können über Gasfluss abtransportiert werden (Ätzen) oder auf anderen Werkstücken als Beschichtung abgelagert werden (Herstellung von Dünnfilmen). Anwendung findet eine solche Bearbeitung mittels eines Plasmas vor allem dann, wenn extrem dünne Schichten, insbesondere im Bereich weniger Atomlagen, bearbeitet werden sollen. Typische Anwendungen sind Halbleitertechnik (Beschichten, Ätzen, etc.), Flachbildschirme (ähnlich Halbleitertechnik), Solarzellen (ähnlich Halbleitertechnik), Architekturglasbeschichtung (Wärmeschutz, Blendschutz, etc.), Speichermedien (CD, DVD, Festplatten), dekorative Schichten (farbige Gläser, etc.) und Werkzeughärtung. Diese Anwendungen haben hohe Anforderungen an Genauigkeit und Prozessstabilität.
Weiterhin kann ein Plasma auch zur Anregung von Lasern, insbesondere Gaslasern dienen.
Um aus einem Gas ein Plasma zu generieren, muss ihm Energie zugeführt werden. Das kann auf unterschiedliche Weise, beispielsweise über Licht, Wärme oder elektrische Energie erfolgen. Ein Plasma zur Bearbeitung von Werkstücken wird typischerweise in einer Plasmakammer gezündet und aufrechterhalten. Dazu wird in der Regel ein Edelgas, z. B. Argon, mit niedrigem Druck in die Plasmakammer geleitet. Über Elektroden und/oder Antennen wird das Gas einem elektrischen Feld ausgesetzt. Ein Plasma entsteht bzw. wird gezündet, wenn mehrere Bedingungen erfüllt sind. Zunächst muss eine geringe Anzahl von freien Ladungsträgern vorhanden sein, wobei zumeist die stets in sehr geringem Maß vorhandenen freien Elektronen genutzt werden. Die freien Ladungsträger werden durch das elektrische Feld so stark beschleunigt, dass sie beim Aufprall auf Atome oder Moleküle des
Edelgases weitere Elektronen herauslösen, wodurch positiv geladene Ionen und weitere negativ geladene Elektronen entstehen. Die weiteren freien Ladungsträger werden wiederum beschleunigt und erzeugen beim Aufprall weitere Ionen und Elektronen. Es setzt ein Lawineneffekt ein. Der ständigen Erzeugung von Ionen und Elektronen wirkt die natürliche Rekombination entgegen, d. h. Elektronen werden von Ionen angezogen und rekombinieren zu elektrisch neutralen Atomen bzw. Molekülen. Deshalb muss einem gezündeten Plasma beständig Energie zugeführt werden, um dieses aufrecht zu erhalten.
Plasmastromversorgungen müssen möglichst kleine Abmessungen besitzen, damit sie in der Anwendung nah an den Plasmaentladungen angeordnet werden können. Sie sollen möglichst wiederholgenau und exakt arbeiten und möglichst geringe Verluste aufweisen, um einen hohen Wirkungsgrad zu realisieren. Eine weitere Anforderung sind möglichst geringe Herstellungskosten und hohe Wartungsfreundlichkeit. Nach Möglichkeit sollen Plasmastromversorgungen ohne mechanisch angetriebene Bauteile auskommen, insbesondere sind Lüfter aufgrund ihrer begrenzten Lebensdauer und der Gefahr von Verschmutzungen unerwünscht. Weiter sollen Plasmastromversorgungen gleichzeitig möglichst zuverlässig sein, sich nicht überhitzen und eine lange Betriebsdauer aufweisen.
Das Ausgangsnetzwerk hat zumindest einen inverterseitigen Anschluss und einen lastseitigen Anschluss. Anschlüsse auf der Inverterseite werden auch Primäranschlüsse, solche auf der Lastseite Sekundäranschlüsse genannt. Ein Leistungszug von einem der Anschlüsse zu einem zweiten Anschluss derselben Seite wird als
Ausgangsnetzwerkleitung bezeichnet. Dieser zweite Anschluss kann auch auf einer HF-mäßigen Masse liegen. Beispielsweise kann der Ausgang des Inverters, der das Wechselsignal führt, an einen ersten inverterseitigen Anschluss des Ausgangsnetzwerks angeschlossen sein. Von dort kann ein Leitungszug innerhalb des
Ausgangsnetzwerks direkt oder über weitere Bauelemente zu einem Ende einer Primärwicklung eines Ausgangsübertragers führen. Vom anderen Ende der Primärwicklung kann ein weiterer Leitungszug direkt oder über weitere Bauelemente zu einem zweiten inverterseitigen Anschluss des Ausgangsnetzwerks führen. Diese Leitung vom ersten inverterseitigen Anschluss über die Primärwicklung zum zweiten inverterseitigen Anschluss des Ausgangsnetzwerks stellt eine Ausgangsnetzwerkleitung im Sinne der Erfindung dar.
Die Ausgestaltung des Inverters als dem Fachmann bekannte Halbbrückenschaltung erfordert zwei schaltende Elemente, zum Beispiel zwei MOSFET-Transistoren, von denen der eine mit dem positiven und der andere mit dem negativen Pol der DC- Stromversorgung verbunden ist. Die beiden Transistoren werden mit der Grundfrequenz komplementär angesteuert, das Wechselsignal weist damit abwechselnd das positive und das negative Potential der DC-Stromversorgung auf.
Der zweite Primäranschluss kann über einen Kondensator an mindestens einen Pol der DC-Stromversorgung angeschlossen werden und stellt damit die hochfrequenzmäßige Masse dar. Alternativ dazu kann der Inverter eine weitere Halbbrücke haben, die an diesem zweiten Primäranschluss angeschlossen sind und die im Gegentakt zu der Halbbrücke am ersten Primäranschluss
betriebenen wird. Bei der Verwendung von jeweils einer Halbbrücke an jedem der beiden Primäranschlüsse spricht man von einer Vollbrückenschaltung.
Die Ansteuerung der MOSFET-Transistoren erfolgt über die Gate- Source-Spannung, wobei der Source-Anschluss als der spannungsmäßige Bezugspunkt dieses Bauteils angesehen werden kann.
Weil N-Kanal-MOSFETs Vorteile gegenüber P-Kanal-MOSFETs haben, nimmt man vorzugsweise N-Kanal-MOSFETs für beide schaltende Elemente einer Halbbrücke.
Die Source-Anschlüsse der mit dem negativen Anschluss der DC- Stromversorgung verbundenen N-Kanal-MOSFETs (Bottom Switch) liegen auf einem ruhigen negativen Potential, da bei diesen die Drain-Anschlüsse das Wechselsignal mit der Grundfrequenz der Plasmastromversorgungseinrichtung aufweisen und an den jeweiligen Primäranschluss des Ausgangsnetzwerks angeschlossen sind, während die Source-Anschlüsse direkt mit dem negativen Pol der DC-Stromversorgung verbunden sind.
Die mit dem positiven Anschluss der DC-Stromversorgung verbundenen N-Kanal-MOSFETs (Top Switch) müssen jedoch so geschaltet werden, dass deren jeweiliger Drain-Anschluss an den Pluspol der DC-Stromversorgung angeschlossen ist. Damit sind die Source-Anschlüsse an die Ausgangsnetzwerkleitung des Ausgangsnetzwerkes angeschlossen und führen das Wechselsignal. Da auch bei diesen Transistoren die Ansteuerung relativ zum Source-Anschluss mit seinem schnell wechselnden hohen
Potentialunterschied erfolgen muss, müssen auch die Gate- Ansteuerungen dieser Transistoren und eventuell für die Gate- Ansteuerungen notwendige Bauteile als Treiber und deren Treiberstromversorgung relativ zu diesem hochfrequenten Bezugspotential erfolgen. Eine durch den schnellen Potentialwechsel bedingte falsche Gate-Source-Spannung kann leicht zu Instabilitäten der Halbbrücke und zur Zerstörung von Bauelementen führen. Auch elektrische Messwerte zur Überwachung, beispielsweise von internen Temperatursensoren der MOSFETs oder ihrer Treiberstufen, können den Source-Anschluss als Bezugspotential haben und weisen damit ebenfalls ein starkes HF-Potential auf.
Aufgabe der vorliegenden Erfindung ist es, eine Hochfrequenzstromversorgungsanordnung bereitzustellen, die den genannten Anforderungen für eine Plasmastromversorgung genügt und eine sichere Versorgung, Ansteuerung oder Überwachung auch derjenigen schaltenden Elemente oder weiterer Bauteile gewährleistet, deren Bezugspunkt schnellen Potentialwechseln ausgesetzt ist.
Erfindungsgemäß wird die Aufgabe durch eine HF- Stromversorgungsanordnung der eingangs genannten Art gelöst, wobei eine Begleitleitung ein elektrisches Bauteil, das sich auf einem Bezugspotential mit starken zeitlichen Änderungen befindet, mit einem von zeitlichen Veränderungen eines Spannungspotentials, insbesondere bei der Grundfrequenz, freien oder zumindest weitgehend freien Zugangspunkt verbindet. Das Bauteil kann Bestandteil des Inverters oder mit diesem verbunden sein, z.B. ein Treiber oder eine Messeinrichtung.
Die Begleitleitung verbindet ein elektrisches Bauteil, beispielsweise des Inverters, dessen Bezugspunkt auf einem Potential der Ausgangsnetzwerkleitung des Ausgangsnetzwerkes mit starken zeitlichen Veränderungen liegt, mit einem von zeitlichen
5 Veränderungen eines Potentials weitgehend freien Zugangspunkt, der sich im Bereich, also in räumlicher Nähe eines hochfrequenzmäßig ruhigen Punktes der Ausgangsnetzwerkleitung des Ausgangsnetzwerkes befinden kann. An der Stelle, an der die Ausgangsnetzwerkleitung des Ausgangsnetzwerks an das Bauteil lo angeschlossen ist und dessen Bezugspunkt dadurch ein gegenüber der DC-Stromversorgung oder der Gerätemasse stark wechselndes Potential aufweist, weist auch die Begleitieitung dieses stark wechselnde Potential auf. An der Stelle, an der die Ausgangsnetzwerkleitung des Ausgangsnetzwerks i5 hochfrequenzmäßig ruhig ist, weist auch die Begleitleitung wenig oder kein HF-Potential auf. Die Stärke des Hochfrequenzpotentials wird über die Wegstrecke der Begleitleitung durch induktive und kapazitive Kopplung an die Ausgangsnetzwerkleitung abgebaut. 0 Der Vorteil der Erfindung besteht darin, dass man das Bauteil, dessen Bezugspunkt ein zeitlich ständig veränderliches Bezugspotential hat, von einem hochfrequenzmäßig relativ ruhigen Zugangspunkt über die Begleitleitung elektrisch versorgen, steuern oder überwachen kann. 5
Die Begleitleitung kann zu der Ausgangsnetzwerkleitung des Ausgangsnetzwerks in räumlicher Nähe angeordnet sein, was bedeutet, dass beide Leitungen voneinander beabstandet sind und im Kopplungsbereich allein schon durch die Kapazität zwischen deno beiden Leitungen kapazitiv und durch die Induktivitäten der
Leitungen induktiv miteinander gekoppelt sind. Die Begleitleitung befindet sich also im Bereich der Ausgangsnetzwerkleitung. Sie verläuft zumindest abschnittsweise entlang der Ausgangsnetzwerkleitung.
So kann die Begleitleitung parallel zur Ausgangsnetzwerkleitung geführt sein, mit ihr verdrillt oder bifilar angeordnet sein. Dabei sollen sich die magnetischen Feldlinien eines Magnetfeldes, die sich um die Ausgangsnetzwerkleitung auf Grund des durch sie fließenden Stromes bilden, möglichst vollständig auch die Begleitleitung umschließen, wodurch eine hohe magnetische Kopplung erreicht wird.
Die Begleitleitung kann räumlich oder flächig von der Ausgangsnetzwerkleitung umgeben oder umschlossen sein.
Beispielsweise kann die Ausgangsnetzwerkleitung planar ausgeführt sein, wobei die Begleitleitung in der Mitte der Ausgangsnetzwerkleitung ausgeführt ist. Alternativ kann die Begleitleitung von einer rohrförmigen Ausgangsnetzwerkleitung umschlossen sein.
Die Begleitleitung kann eine wesentlich kleinere Dimension haben als die Ausgangsnetzwerkleitung.
Das meiste Hochfrequenzpotential der Ausgangsnetzwerkleitung fällt an der Primärwicklung des Ausgangsübertragers ab, die der Hauptfunktionsteil der Ausgangsnetzwerkleitung ist. Hier kann die Begleitleitung als Begleitwicklung ausgeführt sein. Da Begleitwicklung und Primärwicklung genau dieselbe geometrische
Form annehmen, unterliegen sie denselben hochfrequenten magnetischen Einflüssen.
Die Begleitleitung kann einen Zugangspunkt in der Nähe einer Stelle der Ausgangsnetzwerkleitung haben, die von zeitlichen
Veränderungen des Hochfrequenzpotentials weitgehend frei ist. Weist der Inverter zwei Halbbrücken auf, die die Primärwicklung des Ausgangsübertragers gegenläufig treiben, kann der Zugangspunkt der Begleitleitung in der Nähe der Mitte der Primärwicklung liegen. Um die Mitte der Primärwicklung definiert abzublocken und damit hochfrequenzmäßig ruhig zu halten, kann sie mit einer Anzapfung versehen sein und mit einem Mittelpunkt der DC-Stromversorgung des Inverters verbunden sein, welcher durch zwei Kondensatoren gebildet ist, die in Serie zu den Anschlüssen der DC- Stromversorgung liegen.
Zu den schaltenden Elementen einer jeden Halbbrücke, deren Bezugspunkte ein stark wechselndes Potential aufweisen, kann von Zugangspunkten in der Nähe der Mittelanzapfung der Primärwicklung aus jeweils eine eigene Begleitwicklung gehen, die sich am Verlauf der Primärwicklung orientiert.
Ist die Ausgangsnetzwerkleitung als ganzes oder teilweise als planare Struktur auf einer Leiterplatte ausgeführt, kann die Begleitleitung von der Ausgangsnetzwerkleitung isoliert in der Mitte der Struktur geführt sein. Die Begleitleitung kann dabei von der Ausgangsnetzwerkleitung umschlossen sein. Die Begleitleitung kann auf einer weiteren Lage einer mehrlagigen Leiterplatte parallel zur Ausgangsnetzwerkleitung angeordnet sein.
Die Ausgangsnetzwerkleitung und die Begleitleitungen können über ihre Eigenkapazität hinaus kapazitiv miteinander verbunden sein. Dies kann über mindestens einen diskreten Kondensator erfolgen. Der Kondensator kann induktionsarm geschaltet sein. Eine Erhöhung der kapazitiven Kopplung kann erzielt werden, wenn jeweils ein Kondensator an mehreren Stellen angeordnet ist. Dies kann in der Nähe des hochfrequenzmäßig ruhigen Punktes an der Mittelanzapfung der Primärwicklung, in der Nähe des schaltenden Elementes, z. B. eines MOSFETs, oder über die gesamte Ausdehnung des gemeinsamen Weges an beliebigen Stellen jeweils gleicher Wegstrecke von Ausgangsnetzwerkleitung und Begleitleitung bzw. Primärwicklung und Begleitwicklung erfolgen.
Darüber hinaus kann die Begleitleitung durch mindestens ein, ein Magnetfeld erhöhendes Bauteil des Ausgangsübertragers geführt sein. Dadurch wird eine besonders gute induktive Kopplung erreicht. Die Begleitleitung kann gemeinsam mit einer
Ausgangsnetzwerkleitung durch das Magnetfeld erhöhende Element geführt sein.
Erfordert die elektrische Versorgung, Steuerung oder Beobachtung des Bauteils mehrere Anschlüsse, so können entsprechend mehrere Begleitleitungen in der beschriebenen Weise entlang der Ausgangsnetzwerkleitung geführt werden. Bei bestimmten Schaltungen und bestimmten Signalen, beispielsweise bei der
Stromversorgung des Bauteils, bietet es sich auch an, alternativ zu einer zweiten Begleitleitung die Ausgangsnetzwerkleitung für diesen Zweck mit zu benutzen.
Ist das Bauteil zum Beispiel ein Treiber für einen Top-Switch- MOSFET, kann der erste Pol der Treiberstromversorgungsquelle an den Zugangspunkt der Begleitleitung, der zweite Pol an die Mittelanzapfung der Ausgangsnetzwerkleitung angeschlossen werden. So erfolgt die Treiberstromversorgung für den einen Pol über die Begleitleitung, für den zweiten Pol über die Ausgangsnetzwerkleitung. Die Treiberstromversorgungsquelle bleibt dabei auf einem hochfrequenzmäßig ruhigen Potential. Auf eine Common-Mode-Drossel zwischen der Treiberstromversorgungsquelle und dem Treiber selbst kann bei dieser Schaltungsanordnung verzichtet werden.
Sind mehrere solcher Halb- oder Vollbrückenschaltungen in einer Plasmaversorgungseinrichtung vorhanden, können alle Top-Switch- Treiber als Gruppe von einer gemeinsamen
Treiberstromversorgungs-quelle gespeist werden, da alle Zugangspunkte der Begleitleitungen auf einem hochfrequenzmäßig ruhigen Potential liegen. Da auch die Common-Mode-Drosseln in allen Treiberstromversorgungsleitungen wegfallen können, kann ebenso die Gruppe Bottom-Switch-Treiber direkt von einer gemeinsamen Treiberstromversorgungsquelle gespeist werden; die aus Symmetriegründen hier vorher ebenfalls erforderlichen Common-Mode-Drosseln können gleichfalls wegfallen. Damit werden Kosten und Platz eingespart werden. Bisher wurde für jeden Treiber eine eigene Treiberstromversorgungsschaltung mit galvanischer Trennung vorgesehen.
Solche Begleitleitungen können auch die Ansteuersignale von den Treibern zu den schaltenden Elementen führen. Bei dieser Variante können die zugehörigen Treiber auf einem hochfrequenzmäßig
ruhigen Potential bleiben, während sich die Bezugspunkte der zugehörigen schaltenden Elemente auf einem stark wechselnden Potential befinden. Auch bei dieser Schaltungsvariante genügt eine Treiberstromversorgungsquelle je genannter Gruppe.
In einer anderen Weiterbildung der Erfindung werden Messsignale, die von den Bauteilen auf dem hochfrequent wechselnden Potential, z. B. den Top-Switch-Treibern oder den zugehörigen schaltenden Elementen stammen, zu einer hochfrequenzmäßig ruhigen Stelle geführt. Auf diese Weise können beispielsweise elektrische Signale einer Temperaturmessung oder eines bestimmten Zustandes mit einer Schaltung ausgewertet werden, die auf Massepotential oder zumindest auf einem hochfrequenzmäßig ruhigen Potential liegt.
Der Inverter kann auch als Halbbrücke ausgebildet sein, wobei der von zeitlichen Veränderungen eines elektrischen Potentials weitgehend freie Zugangspunkt der Begleitleitung in der Nähe des hochfrequenzmäßig ruhigen Endes der Ausgangsnetzwerkleitung liegen kann. Ist ein Primäranschluss direkt oder über einen Kondensator an Masse oder an einen Pol der DC-Stromversorgung angeschlossen und damit hochfrequenzmäßig ruhig, so kann der Zugangspunkt der Begleitleitung in dessen Nähe sein.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Einige davon sollen anhand der in der Zeichnung dargestellten Figuren näher erläutert werden.
Es zeigt:
Figur 1: Hochfrequenzstromversorgungsanordnung mit Mitteleinspeisung
Figur 2: Ansteuerung eines schaltenden Transistors sowie eine Treiberstromversorgung nach dem Stand der Technik
Figur 3: Ausführungsbeispiel einer Treiberansteuerung eines schaltenden Transistors mit Mitteleinspeisung
Figur 4: Darstellung des Ausgangsnetzwerkes gemäß Figur 3
Figur 5: Ausführungsbeispiel einer Treiberansteuerung für einen schaltenden Transistor mit Mitteleinspeisung in einer Vollbrücke
Figur 6: Ausführungsbeispiel einer Gateansteuerung für einen schaltenden Transistor mit Mitteleinspeisung in einer Vollbrücke
Figur 7: Ausführungsbeispiel einer Treiberansteuerung für schaltende Transistoren in einer Halbbrücke
Figur 8: Ausführungsbeispiel einer Gate-Ansteuerung für schaltende Transistoren in einer Halbbrücke
Figur 9: Lagen einer mehrlagigen Leiterplatte mit einer Mitteleinspeisung und bifilar geführten Treiberstromversorgungsleitungen leiche Merkmale sind mit gleichen Bezugszeichen gekennzeichnet.
In Figur 1 ist eine Hochfrequenzstromversorgungsanordnung dargestellt, wie sie zur Stromversorgung für Plasmaprozesse Verwendung findet. Dabei werden Ausgangsleistungen von mehr als s 500 W bei einer Frequenz > 3 MHz erzeugt. Die
Hochfrequenzstromversorgungsanordnung besteht aus einer Steuerung 1, welche an einen Signalübertrager 2 führt. Der Signalübertrager 2 bewirkt eine galvanische Trennung der Steuersignale von der Hochspannung. Dieser Signalübertrager 2 ist lo mit einem Vollbrückenmodul 3 verbunden, wobei in das
Vollbrückenmodul 3 neben zwei Halbbrücken 5 und 6 Treiber 7, 8, 9, 10 für die Halbbrückentransistoren 11, 12 und 13, 14 integriert sind. Das als Inverter arbeitende Vollbrückenmodul 3 ist an ein Ausgangsnetzwerk 15 geführt, das wiederum über eine i5 Messeinrichtung 17 mit einer externen, nicht weiter dargestellten Last über den Ausgangsanschluss 28 verbunden ist.
Die Steuerung 1 steuert die vier Primärwicklungen des Signalübertragers 2 mit einer Grundfrequenz von beispielsweise 2o 3,39 MHz an. Die Sekundärwicklungen sind an die Eingänge der Treiber 7, 8, 9, 10 angeschlossen; insbesondere besteht der erste Zweig des Signalübertragers aus der Primärwicklung 18 und der Sekundärwicklung 19, welche an den Eingang des Treibers 7 angeschlossen ist.
25
Der Signalübertrager kann auch so realisiert sein, dass er mit optischen Signalen arbeitet.
Jede Halbbrücke 5, 6 enthält zwei als MOSFETs ausgebildete 0 Transistoren 11, 12 bzw. 13, 14, wobei die Transistoren 11 und 13
(Top Switch) mit einer positiven Gleichspannung 20 und die Transistoren 12 und 14 (Bottom Switch) mit einer negativen Gleichspannung 21 verbunden sind. Das Gate jedes Transistors 11, 12 bzw. 13, 14 ist mit jeweils dem Ausgang eines Treibers 7, 8, 9, 10 verbunden.
Der Treiber 9 schaltet den Transistor 13 in Abhängigkeit der von der Steuerung 1 bereitgestellten Grundfrequenz. Dasselbe erfolgt durch den Treiber 10 mit dem Transistor 14. Dabei ist immer höchstens ein Transistor 13, 14 der Halbbrücke 6 leitend, während der andere gesperrt ist. Diese Arbeitsweise gilt phasenverschoben auch für die Treiber 7 und 8 und die Transistoren 11, 12 der Halbbrücke 5.
Somit wird aus der Gleichspannung ein hochfrequentes Wechselsignal erzeugt, welches mit der Grundfrequenz periodisch sein Vorzeichen ändert. Dieses Wechselsignal wird von der Halbbrücke 5 über eine erste Induktivität 26 an die Primärwicklung 23 des Ausgangsübertragers 23, 24 geführt. Das Ausgangssignal der zweiten Halbbrücke 6 führt über eine zweite Induktivität 22 ebenfalls an die Primärwicklung 23 des Ausgangsübertragers 23, 24 des Ausgangsnetzwerkes 15. Die Sekundärwicklung 24 des Ausgangsübertragers 23, 24 gibt das Hochfrequenzsignal über ein Impedanzanpassungsglied mit den Kondensatoren 54 und 55 sowie der Induktivität 27 an einen Ausgangsanschluss 28 weiter, der mit einer externen Last verbunden ist.
Eine Strommessung 29 in der Sekundärwicklung 24 des Ausgangsübertragers 23, 24 sowie die Messeinrichtung 17 sind mit der Steuerung 1 verbunden.
Die Primärwicklung 23 des Ausgangsübertragers 23, 24 weist eine Mittelanzapfung 30 auf, wodurch die Primärwicklung 23 in zwei Primärwicklungshälften 23a und 23b unterteilt ist. Die Mittelanzapfung 30 führt über eine dritte Induktivität 31 an den Mittelpunkt 32 eines kapazitiven Spannungsteilers 33, 34, der zwischen dem positiven Gleichspannungsanschluss 20 und dem negativen Gleichspannungsanschluss 21 angeordnet ist. Die beiden Kondensatoren 33, 34 des Spannungsteilers arbeiten als Bypasskondensatoren für die Halbbrücken 5 und 6. Durch diese Bypasskondensatoren 33, 34 werden Stromspitzen beim Schalten der Transistoren 11, 12, 13, 14 ausgeglichen. Gleichzeitig werden somit Spannungseinbrüche in der DC-Stromversorgung mit ihren Anschlüssen 20, 21 verhindert.
Die erste, zweite und dritte Induktivität 26, 22, 31 sind nur für das Schaltverhalten der Transistoren verantwortlich und können je nach Ausführung der Transistoren auch durch direkte Verbindungen ersetzt sein.
In der beschriebenen Inverter-Anordnung als Halb- oder Vollbrücke gibt es schaltende Elemente mit schwankendem („floating") Referenzpotential. Das bedeutet, dass das Bezugspotential nicht immer zeitlich konstant gegenüber den beiden Potentialen der DC- Stromversorgung 50 ist. Bei der in Figur 1 beschriebenen Schaltung trifft dies auf die Transistoren 11 und 13 zu, deren Source-
Anschlüsse auf einem hochfrequenzmäßig unruhigen Punkt liegen und deren Bezugspotential gegenüber der Masse der HF- Stromversorgung zwischen relativ hohen Potentialen, oftmals einigen hundert Volt, mit der Grundfrequenz hin- und herspringt, sowie auf das Bezugspotential der zugehörigen Treiber 7, 9. Für ein
ordnungsgemäßes Funktionieren der Treiber sollen die elektrischen Potentiale der Treiberstromversorgungsleitungen am Treiber 7 bzw. 9 gegenüber dem Bezugspotential des jeweils angeschlossenen Top- Switch-Transistors 11 bzw. 13 keine zeitlichen Veränderungen aufweisen.
In Figur 2 ist diese an sich bekannte Schaltung nur für die Treiberstromversorgung des Top-Switch-Treibers 7 näher beschrieben. Weiterhin sind nur die Vollbrückentransistoren 11, 12, 13, 14 und die Primärwicklung 23 und Sekundärwicklung 24 des Ausgangsübertragers 23, 24 des Ausgangsnetzwerkes 15 angedeutet. Es sind somit nur die für das Verständnis der Erfindung wesentlichen Elemente dargestellt.
Über einen Gleichrichter und die erste Hälfte 4a der Common-Mode- Drossel ist die Sekundärwicklung 53 des Transformators in der Treiberstromversorgungsquelle 51 mit dem Power-In-Anschluss 43 des Treibers 7 verbunden. Der zweite Anschluss der Sekundärwicklung 53 der Treiberstromversorgungsquelle 51 führt über die zweite Hälfte 4b der Common-Mode-Drossel an den Power- Ground-Anschluss 49.
Die Common-Mode-Drossel mit den beiden Hälften 4a und 4b ist erforderlich, da die parasitären Koppelkapazitäten des Transformators 52, 53, der den Treiber 7 mit Betriebspannung versorgt, nicht beliebig klein sind und Hochfrequenzströme von dem auf Hochfrequenzpotential liegenden Treiber 7 über den Transformator 52, 53 zur Versorgungsschaltung der Primärwicklung 52 vermieden werden sollen.
Mit Hilfe von Figur 3 soll das Prinzip der Begleitleitung am Vollbrückenmodul 3 prinzipiell erläutert werden. Für jede Halbbrücke 5, 6 ist eine Begleitleitung 35, 36 zur Versorgung der Treiber 7, 9 vorgesehen. Die Begleitleitung 35 sowie die Ausgangsnetzwerkleitung mit der hochfrequenzmäßig ruhigen
Mittelanzapfung 30 der Primärwicklung 23 werden dazu genutzt, um die Betriebsspannung an den Treiber 7 des Top-Switch-Transistors 11 zu führen. Auch dem Treiber 9 des zweiten Top-Switch- Transistors 13 kann auf diese Weise Betriebsspannung zugeführt werden.
Für die Halbbrücke 5 führt diese Begleitleitung 35 von einem Anschluss 45 der Treiberstromversorgungsquelle aus in der Nähe der Mittelanzapfung 30 zum Zugangspunkt 30a, folgt der Geometrie der Windungen der oberen Hälfte 23a der Primärwicklung 23 des Ausgangsübertragers 23, 24 und denen der ersten Induktivität 26 und führt an den Treiber 7. Im Knotenpunkt 47 ist die Begleitleitung 35 an den Power-In-Anschluss 43 des Treibers 7 angeschlossen.
Begleitleitung 35 und die obere Hälfte 23a der Primärwicklung 23 können dabei parallel oder bifilar geführt sein, wodurch beide magnetisch miteinander verkoppelt sind.
Der Treiber 9 der zweiten Halbbrücke 6 nutzt dieselbe Treiberstromversorgungsquelle. Die Begleitleitung 36 ist bis zum Zugangspunkt 30a identisch mit der Begleitleitung 35, folgt aber dann der Geometrie der Windungen der unteren Hälfte 23b der Primärwicklung 23 des Ausgangsübertragers 23, 24 und führt an den Treiber 9. Im Knotenpunkt 48 ist die Begleitleitung 36 an den Power-In-Anschluss 44 des Treibers 9 angeschlossen.
Die zweite Begleitleitung 36 folgt dabei der
Ausgangsnetzwerkleitung 38, insbesondere der unteren Hälfte 23b der Primärwicklung 23. Begleitleitung 36 und die untere Hälfte 23b der Primärwicklung 23 können dabei parallel oder bifilar geführt sein, wodurch beide magnetisch miteinander gekoppelt sind.
Jede der Begleitleitungen 35, 36 ist mit der jeweilig mitlaufenden Ausgangsnetzwerkleitung 37, 38 über mehrere Kondensatoren verbunden. So sind die Begleitleitung 35 und die
Hochfrequenzleitung 37 über die Kondensatoren 39 und 40 verbunden. Die Begleitleitungsleitung 36 und die Hochfrequenzleitung 38 sind über die Kondensatoren 41 und 42 gekoppelt.
Das zweite Potential der Treiberstromversorgungsquelle ist an den Mittelpunkt 32 angeschlossen und gelangt von dort über die dritte Induktivität 31 auf die Mittelanzapfung 30 der Primärwicklung 23. An den beiden Enden der Primärwicklung 23 ist dieses Potential jedoch um das dort jeweils herrschende Hochfrequenzpotential verschoben, auf dem sich auch die Transistoren 12 bzw. 13 mit ihren Source-Anschlüssen befinden.
In Figur 4 ist noch einmal die genaue Beschaltung des Ausgangsübertragers 23, 24 des Ausgangsnetzwerkes 15 dargestellt. Die schaltenden Elemente sind nicht dargestellt. Die Hochfrequenz-Ausgangsnetzwerkleitung 37, die auch den Primärwicklungshälfte 23a umfasst, sowie die Hochfrequenz- Ausgangsnetzwerkleitung 38, die auch den Primärwicklungshälfte 23b umfasst, erstreckt sich vom Primäranschluss 56a für das
Wechselsignal von der ersten Halbbrücke über die Primärwicklung 23 und von dieser an den Primäranschluss 56b für das Wechselsignal von der zweiten Halbbrücke.
In dieser Schaltungsausführung sind die Begleitleitungen 35, 36 schon von den Anschlüssen 45, 46 aus getrennt geführt. Die beiden Anschlüsse 45, 46 können an einen gemeinsamen Pol der in dieser Zeichnung nicht gezeigten Treiberstromversorgungsquelle angeschlossen sein. Die Kondensatoren 58, 59 blocken die Treiberstromversorgungsanschlüsse 45, 46 gegen den Mittelpunkt 32, der am anderen Pol der Treiberstromversorgungsquelle angeschlossen sein kann, ab.
Die Begleitleitung 35 führt vom Anschluss 45 in die Nähe der Mittelanzapfung 30 und weiter als bifilare Begleitwicklung der oberen Hälfte 23a der Primärwicklung 23 zum Power-In-Anschluss 47 des Treibers 7 der Halbbrücke 5. Analog führt die Begleitleitung 36 vom Anschluss 46 ebenfalls in die Nähe der Mittelanzapfung 30 und dann weiter als bifilare Begleitwicklung der unteren Hälfte 23b der Primärwicklung 23 zum Power-In-Anschluss 48 des Treibers 9 der zweiten Halbbrücke 6.
Zwischen der Ausgangsnetzwerkleitung 37, 38 und den beiden Begleitleitungen 35 und 36 der Treiberstromversorgung sind an verschiedenen Stellen Koppelkapazitäten installiert. So sind in der Nähe des Power-In-Anschlusses 47 des Treibers 7 der ersten Halbbrücke 5 Kondensatoren 39 zwischen der Begleitleitung 35 und dem Primäranschluss 56a, der das Ausgangssignal der ersten Halbbrücke 5 führt, geschaltet. Mindestens ein weiterer Kondensator 42 liegt zwischen dem Anschluss 48 des Power-In-Anschlusses des
Treibers 9 der Halbbrücke 6 und dem Primäranschluss 56b, der das Ausgangssignal der zweiten Halbbrücke 6 führt. Die Kapazitäten 54, 55 und die Induktivität 27 sind Bestandteil des Impedanzanpassungsgliedes zwischen der Sekundärwicklung 24 und dem Ausgang 28 (Fig. 1).
Weitere Kondensatoren 40, 41 sind zwischen jeweils der Mittelanzapfung 30 und den in der Nähe verlaufenden Begleitleitungen 35, 36 vorgesehen, um diese drei Leitungen an dieser Stelle hochfrequenzmäßig ähnlich ruhig zu halten.
In Figur 5 ist dargestellt, wie die Top-Switch-Treiber 7 und 9 mit nur einer Treiberstromversorgungsquelle 51 betrieben werden können.
Der eine Anschluss der gemeinsamen
Treiberstromversorgungsquelle 51 führt als gemeinsame Leitung der sich später aufteilenden Leitungen 35, 36 zum Zugangspunkt 30a und verzweigt sich dort. Die erste Begleitleitung 35 zur Treiberstromversorgung folgt vom Zugangspunkt 30a an der Geometrie der Wicklung 23a zu dem Power-In-Anschluss 43 des Treibers 7. Die zweite Begleitleitung 36 zur Treiberstromversorgung folgt vom Zugangspunkt 30a an der Geometrie der Wicklung 23b zu dem Power-In-Anschluss 44 des Treibers 9.
Der andere Anschluss der gemeinsamen
Treiberstromversorgungsquelle 51 führt über den Mittelpunkt 32 mit den Kondensatoren 33, 34 an die Mittelanzapfung 30 der Primärwicklung 23 des Ausgangsübertragers 23, 24 und über die beiden Hälften 23a, 23b der Primärwicklung 23 und über den weiteren Weg der Ausgangsnetzwerkleitungen 37, 38 zu den
Source-Anschlüssen der beiden Top-Switch-Transistoren 11 und 13 und zu den Power-Ground-Anschlüssen der Treiber 7 und 9.
Durch diese Schaltung wird die Spannungsversorgung der Gates der Top-Switch-Transistoren 11 und 13 wesentlich vereinfacht, da nur noch eine Treiberstromversorgungsquelle 51 für alle Top-Switch- Treiber 7, 9 benötigt wird.
Die Treiberstromversorgungsquelle 57 speist die hochfrequenzmäßig ruhigen Bottom-Switch-Treiber 8, 10 auf herkömmliche Art. Da in den Treiberstromversorgungsleitungen der Top-Switch-Treiber 7, 9 keine Common-Mode-Drosseln enthalten sind, entfallen auch die sonst aus Symmetriegründen notwendigen Common-Mode-Drosseln in den Treiberstromversorgungsleitungen für die Bottom-Switch- Treiber.
In der Schaltungsvariante der Figur 6 befinden sich die Treiber 7, 9 auf einem hochfrequenzmäßig ruhigen Potential, während sich die zugehörigen Top-Switch-Transistoren 11, 13 auf einem stark wechselnden Potential befinden. Die Begleitleitungen 60, 61 werden hier nicht für die Treiberstromversorgung, sondern direkt für die Gateansteuerung der Top-Switch-Transistoren 11, 13 verwendet.
Die Begleitleitung 61 kommt vom Ausgang des Treibers 7, folgt als Begleitwicklung den räumlichen Strukturen der oberen Hälfte 23a der Primärwicklung 23 und führt zum Gate-Anschluss des Transistors 11. In äquivalenter Weise kommt die Begleitleitung 60 vom Ausgang des Treibers 9, folgt den räumlichen Strukturen der Wicklungshälfte 23b und führt zum Gate-Anschluss des Transistors 13. Die Masseleitung der Treiber 7, 9 ist über den Mittelpunkt 32 an
die Mittelanzapfung 30 der Primärwicklung 23 angeschlossen. Die Source-Anschlüsse der Top-Switch-Transistoren 11, 13 sind an die jeweiligen Enden der Primärwicklungshälften 23a, 23b angeschlossen.
Im Nachfolgenden soll die Führung einer Begleitleitung als Treiberstromversorgung 35 oder Gatesteuerleitung 61 beim Einsatz nur einer Halbbrücke näher beschrieben werden.
In Figur 7 ist der eine Ausgang der Treiberstromversorgungsquelle 51 für den Treiber 7 über die Begleitleitung 35 zur Treiberstromversorgung direkt mit dem Power-In-Anschluss des Treibers 7 verbunden, welcher das Gate G des Transistors 11 ansteuert. Der andere Anschluss der Treiberstromversorgungsquelle 51 führt zu einem Punkt 30b, an dem die Primärwicklung 23 über die Kondensatoren 33, 34 den Mittelpunkt der DC-Versorgung bildet und damit hochfrequenzmäßig auf Masse liegt. Der andere Anschluss der Primärwicklung 23 ist über die Ausgangsnetzwerkleitung 37 mit dem Source-Anschluss S des Transistors 11 und außerdem mit dem Power-Ground-Anschluss des Treibers 7 verbunden. Am Drain- Anschluss D des Transistors 11 liegt der positive Pol 20 der DC- Stromversorgung, deren negativer 21 Pol an der Source S des Bottom-Switch-Transistors 12 und dem Power-In-Anschluss des den Transistor 12 ansteuernden Treibers 8 liegt. Die Begleitleitung 35 und die Ausgangsnetzwerkleitung 37 sind dabei galvanisch getrennt, aber nah beieinander geführt. Dies gilt insbesondere im Bereich der Primärwicklung 23, wo die Begleitleitung 35 als Begleitwicklung ausgebildet ist.
In der alternativen Schaltungsausführung gemäß Figur 8 befindet sich der Treiber 7 auf einem hochfrequenzmäßig ruhigen Potential und ist direkt an seine Treiberstromversorgungsquelle 51 angeschlossen, der Power-Ground-Anschluss des Treibers 7 ist direkt mit dem Anschluss 30b der Primärwicklung 23 verbunden, der durch die Kondensatoren 33, 34 hochfrequenzmäßig auf Masse liegt. Die Begleitleitung 61, die hier zur Gateansteuerung dient, führt vom Steuerausgang des Treibers 7 in räumlicher Nähe zur Primärwicklung 23 des Ausgangsübertragers 23, 24 an den Gate- Anschluss G des Transistors 11.
Der andere Anschluss der Primärwicklung 23 führt über die Ausgangsnetzwerkleitung 37 zum Source-Anschluss S des Transistors 11 und liegt somit auf hohem HF-Potential.
In der Figur 9 sind die unterschiedlichen Lagen einer mehrlagigen Leiterplatte dargestellt, nämlich eine untere Lage 64, eine erste innere Lage 65, eine zweite innere Lage 66 und eine obere Lage 67. Diese mehrlagige Leiterplatte bildet das Ausgangsnetzwerk und trägt planar ausgeführte Transformatoren und Induktivitäten. Die als
Transistoren ausgebildeten schaltenden Elemente 11, 12, 13, 14 und ihre Treiber 7, 8, 9, 10 sind außerhalb der Leiterplatte angeordnet.
Die Ausgangsnetzwerkleitung 37, 38, 23a, 23b führt vom durchkontaktierten Anschluss 56a zunächst durch einen Ferrit 68, wodurch die erste Induktivität 26 ausgebildet wird. In der Umgebung des Ferrits 69 bildet sie die erste Hälfte 23a der Primärwicklung 23. Nach Passieren der Mittelanzapfung 30, die aus einem Durchkontaktierungsfeld gebildet ist, bildet die Ausgangsnetzwerkleitung die andere Hälfte 23b der Primärwicklung
23 auf der Lage 65. Die Ausgangsnetzwerkleitung 38 verlässt schließlich die Umgebung des Ferrits 69 und bildet bei der Durchführung durch den Ferrit 70 die zweite Induktivität 22, bevor sie mit dem durchkontaktierten Primäranschluss 56b zurück zur Lage 64 wechselt.
An die durch Durchkontaktierungen gebildete Mittelanzapfung 30 ist ebenfalls die Leitung 31 auf der Lage 66 angeschlossen, die zum Mittelpunkt der DC-Stromversorgung 32 führt, die durch einen durchkontaktierten Leiterplattenanschluss gebildet wird. In diesem Ausführungsbeispiel ist die Leitung 31 nicht als dritte Induktivität ausgebildet.
Die Sekundärwicklung 24 des Ausgangsübertragers 23, 24 beginnt auf der Lage 67 am Masseanschluss in der Bohrung 76, führt als Leiterbahn 74 ebenfalls durch den Ferrit 69, wechselt bei dem Durchkontaktierungsfeld 71 zunächst auf die Lage 64 mit der Leiterbahn 72 und die Lage 66 mit der Leiterbahn 73, beim Durchkontaktierungsfeld 75 endgültig auf die Lage 66, führt abermals durch den Ferrit 69 und endet im Durchkontaktierungsfeld 78, wo parallele Leiterbahnen 79 und 80 auf den Lagen 64 und 67 durch den Ferrit 77 für die Bildung der Induktivität 27 sorgen. Diese beiden Leiterbahnen enden in dem Ausgangsanschluss 28, der durch eine Bohrung gebildet wird. Vom Durchkontaktierungsfeld 78 sind die Kondensatoren 54 und vom Ende der Leiterbahnen bei der Bohrung 28 sind die Kondensatoren 55 jeweils nach Masse geschaltet. Die Kondensatoren 54, 55 und die Induktivität 27 bilden das Impedanzanpassungsnetzwerk.
Die Ferrite bewirken jeweils eine Verstärkung des hochfrequenten Magnetfeldes.
Bei dieser planaren Ausgestaltung werden die Begleitleitungen 35, 36 als Treiberstromversorgungsleitungen für die Top-Switch-Treiber 7, 9 in der Mitte der Ausgangsnetzwerkleitung 37, 38, 23a, 23b geführt.
Die Begleitleitung 35 für die Treiberstromversorgung des Top- Switch-Treibers 7 beginnt auf Lage 67 beim Anschluss 45, an den die hier nicht gezeigte externe Treiberstromversorgungsquelle 51 angeschlossen ist. Die Begleitleitung 35 führt zunächst auf der Lage 67 höhenparallel zur Leitung 31 zu einem Zugangspunkt 81, der durch eine Durchkontaktierung in räumlicher Nähe der Mittelanzapfung 30 gebildet wird. Dort wechselt sie auf die Lage 64 und verläuft als Begleitleitung isoliert in der Mitte der Ausgangsnetzwerkleitung 37, ist insbesondere im Bereich des Ferrits 69 eine Begleitwicklung der Primärwicklungshälfte 23a und kommt bis in die Nähe des Primäranschlusses 56a. Die Durchkontaktierung 82 führt die Begleitleitung 35 auf die Lage 66, von wo aus die Durchkontaktierung 83 den Anschluss 47 bereitstellt, an den der Power-In-Anschluss des außerhalb der Leiterplatte befindlichen Top- Switch -Treibers 7 angeschlossen ist.
Die Begleitleitung 36 für die Treiberstromversorgung des Top- Switch-Treibers 9 beginnt ebenfalls auf Lage 67 beim Anschluss 46, der auch an die externe Treiberstromversorgungsquelle 51 angeschlossen ist. Die Begleitleitung 36 führt höhenparallel zur Leitung 31 zu einem Zugangspunkt 84, der durch eine Durchkontaktierung in räumlicher Nähe der Mittelanzapfung 30
gebildet wird. Dort wechselt die Begleitleitung auf die Lage 65 und verläuft als Begleitleitung 36 isoliert in der Mitte der Ausgangsnetzwerkleitung 38, ist insbesondere im Bereich des Ferrits 69 eine Begleitwicklung der Primärwicklungshälfte 23b und kommt -5 bis in die Nähe des Primäranschlusses 56b. Die Durchkontaktierung 85 führt die Begleitleitung 36 auf die Lage 66, von wo aus die Durchkontaktierung 86 den Anschluss 48 bereitstellt, an den der außerhalb der Leiterplatte befindliche Top-Switch-Treiber 9 angeschlossen ist.
10
Die beiden Stellen bei den Zugangspunkten 81, 84 sind gegenüber der Mittelanzapfung 30 mit den Kondensatoren 40, 41 abgeblockt und damit die hochfrequenzmäßig letzten ruhigen Stellen, bevor die Begleitleitungen 35, 36 ihren Weg als Begleitwicklungen in der Mitte i5 der Ausgangsnetzwerkleitung 37, 38 fortsetzen.
Beide Anschlüsse 45, 46 können an denselben Pol derselben Treiberstromversorgungsquelle angeschlossen sein. Der zweite Pol der Treiberstromversorgungsquelle kann dann an den Mittelpunkt 32 20 angeschlossen sein, der über die Leitung 31 mit dem
Durchkontaktierungsfeld der Mittelanzapfung 30 verbunden ist. Die Kondensatoren 58, 59 blocken die Begleitleitungen 35, 36 bei den Anschlüssen 45, 46 gegen den Mittelpunkt 32 ab.
Claims
1. Hochfrequenzstromversorgungsanordnung, insbesondere eine 5 Plasmaversorgungseinrichtung zur Erzeugung einer
Ausgangsleistung > 500 W und einer Ausgangsfrequenz > 3 MHz mit mindestens einem an eine DC-Stromversorgung angeschlossenen Inverter, der zumindest ein schaltendes Element aufweist, dessen Bezugspotential sich im Takt der lo Hochfrequenz ändert, und mindestens einem Ausgangsnetzwerk
dadurch gekennzeichnet, dass
eine Begleitleitung (35, 36; 60, 61) ein elektrisches Bauteil i5 (7, 9, 11, 13), das sich auf einem Bezugspotential mit starken zeitlichen Änderungen befindet, mit einer von zeitlichen Veränderungen eines Spannungspotentials weitgehend freien Zugangspunkt (30a, 45, 46) verbindet.
20 2. Hochfrequenzstromversorgungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Begleitleitung (35, 36; 60, 61) im Bereich einer Ausgangsnetzwerkleitung (37, 38, 23, 23a, 23b) angeordnet ist, an welcher im Betrieb ein Hochfrequenzstrom fließt.
25
3. Hochfrequenzstromversorgungsanordnung nach Anspruch 2, dadurch gekennzeichnet, dass die Begleitleitung (35, 36, 60, 61) im Bereich einer Wicklung der Ausgangsnetzwerkleitung (37, 38, 23, 23a, 23b) als Begleitwicklung ausgebildet ist.
30
4. Hochfrequenzstromversorgungsanordnung nach Anspruch 3, dadurch gekennzeichnet, dass die Begleitleitung (35, 36; 60, 61) im Bereich einer Primärwicklung (23) eines Ausgangsübertragers (23, 24) des Ausgangsnetzwerkes (15) als Begleitwicklung
5 ausgebildet ist
5. Hochfrequenzstromversorgungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Begleitleitung (35, 36, 60, 61) mit der Ausgangsnetzwerkleitung lo (37, 38, 23, 23a, 23b) verdrillt ist.
6. Hochfrequenzstromversorgungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Begleitleitung (35, 36; 60, 61) parallel zu der i5 Ausgangsnetzwerkleitung (37, 38, 23, 23a, 23b) angeordnet ist.
7. Hochfrequenzstromversorgungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Begleitleitung (35, 36; 60, 61) bifilar zu der
20 Ausgangsnetzwerkleitung (37, 38, 23, 23a, 23b) angeordnet ist.
8. Hochfrequenzstromversorgungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Begleitleitung (35, 36; 60, 61) räumlich oder flächig von der
25 Ausgangsnetzwerkleitung umgeben oder umschlossen ist.
9. Hochfrequenzstromversorgungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ausgangsnetzwerkleitung (37, 38, 23, 23a, 23b) planar ausgeführt ist, wobei die Begleitleitung (35, 36, 60, 61) in der Mitte der Ausgangsnetzwerkleitung (37, 38) ausgeführt ist.
10. Hochfrequenzstromversorgungsanordnung nach einem der 5 vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die
Begleitleitung (35, 36, 60, 61) von einer rohrförmigen Ausgangsnetzwerkleitung (37, 38, 23, 23a, 23b) umschlossen ist.
lo 11. Hochfrequenzstromversorgungsanordnung nach einem der Ansprüche, dadurch gekennzeichnet, dass sie auf einer mehrlagigen Leiterplatte (64, 65, 66, 67) angeordnet ist, wobei die Begleitleitung (35, 36, 60, 61) auf einer parallelen Lage im Bereich der Hochfrequenzleitung (37, 38, 23, 23a, 23b) i5 angeordnet ist.
12. Hochfrequenzstromversorgungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Begleitleitung (35, 36, 60, 61) durch ein, ein Magnetfeld
20 erhöhendes Bauteil (69) des Ausgangsübertragers (23, 24) geführt ist.
13. Hochfrequenzstromversorgungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die
25 Begleitleitung (35, 36) eine Treiberstromversorgungsleitung ist, die den Treiberversorgungsstrom einer Treiberstromversorgungsquelle (51) entlang der Ausgangsnetzwerkleitung (37, 38, 23, 23a, 23b) zu einem Treiber (7, 9) des schaltenden Elementes (11, 13) des Inverters so (3) führt.
14. Hochfrequenzstromversorgungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Zugangspunkt (30a) der Begleitleitung (35, 36, 60, 61) in der 5 Nähe des von zeitlichen Veränderungen eines elektrischen
Potentials weitgehend freien Punktes (Mittelanzapfung 30, 30b) der Primärwicklung (23) des Ausgangsübertragers (23, 24) des Ausgangsnetzwerkes (15) ist.
lo 15. Hochfrequenzstromversorgungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Inverter (3) zwei Halbbrücken (5, 6) aufweist und der Zugangspunkt (30a, 81, 84) der Begleitleitung im Bereich der Mittelanzapfung (30) der Primärwicklung (23) des i5 Ausgangsübertragers (23, 24) ausgebildet ist.
16. Hochfrequenzstromversorgungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ausgangsnetzwerkleitung (37, 38, 23, 23a, 23b) und die
20 Begleitleitung (35, 36, 60, 61) kapazitiv miteinander verbunden sind.
17. Hochfrequenzstromversorgungsanordnung nach einem der vorhergehenden Ansprüche 15, dadurch gekennzeichnet, dass
25 die Ausgangsnetzwerkleitung (37, 38, 23, 23a, 23b) und die
Begleitleitung (35, 36, 60, 61) über mindesten einen diskreten Kondensator (39, 40, 41, 42) kapazitiv gekoppelt sind.
18. Hochfrequenzstromversorgungsanordnung nach einem der
30 vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für mindestens zwei Treiber (7-10), die sich auf zeitlich ändernden elektrischen Potentialen (7, 9) befinden, eine gemeinsame Treiberstromversorgungsquelle (51) vorgesehen ist.
5 19. Hochfrequenzstromversorgungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine als Steuerleitung ausgebildete Begleitleitung (60, 61) über den Zugangspunkt (30a, 81, 84) direkt an einen Steueranschluss (G) eines schaltenden Elementes (11, 13) des Inverters (3) führt.
10
20. Hochfrequenzstromversorgungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine als Messleitung ausgebildete Begleitleitung (35, 36, 60, 61) ein i5 elektrisches Bauteil, das sich auf einem Bezugspotential mit starken zeitlichen Änderungen befindet, über den Zugangspunkt (30a, 81, 84) mit einer Messeinrichtung verbindet, die sich auf einem hochfrequenzmäßig ruhigen Potential befindet.
20 21. Hochfrequenzstromversorgungsanordnung nach einem der vorhergehenden Ansprüche7 dadurch gekennzeichnet, dass der Inverter (3) als Halbbrücke (5) ausgebildet ist, wobei der Zugangspunkt (30a) der Begleitleitung (35) im Bereich eines hochfrequenzmäßig ruhigen Punkts (30b) der
25 Ausgangsnetzwerkleitung (23, 37) liegt.
22. Verfahren zum Betreiben einer
Hochfrequenzstromversorgungsanordnung, insbesondere einer Plasmastromversorgung, mit einer Treiberstromversorgung für 30 einen Treiber in einem Inverter, bei welchem das Bezugspotential eines in dem Inverter enthaltenen schaltenden Elementes gegenüber Masse auf einem Hochfrequenzpotential liegt,
dadurch gekennzeichnet, dass
der Versorgungsstrom des Treibers in einen von einem Hochfrequenzpotential freien Zugangspunkt eines Ausgangsnetzwerkes über eine Begleitleitung eingespeist wird.
23. Verfahren nach Anspruch 22 dadurch gekennzeichnet, dass die Begleitleitung im Bereich einer Ausgangsnetzwerkleitung geführt wird.
24. Verfahren nach Anspruch 22 oder 23 dadurch gekennzeichnet, dass die Begleitleitung und die Ausgangsnetzwerkleitung magnetisch gekoppelt werden.
25. Verfahren nach einem der Ansprüche 22 - 24, dadurch gekennzeichnet, dass die Begleitleitung und die Ausgangsnetzwerkleitung elektrisch kapazitiv gekoppelt werden.
26. Verfahren zum Betreiben einer Hochfrequenzstromversorgungsanordnung, insbesondere einer
Plasmastromversorgung, mit einem Treiber in einem Inverter, bei welchem das Bezugspotential eines in dem Inverter enthaltenen schaltenden Elementes gegenüber Masse zwischen unterschiedlichen Potentialen hin und her springt, dadurch gekennzeichnet, dass
ein Treiberausgangssignal für das schaltende Element in einen von einem zeitlich veränderlichen elektrischen Potential weitgehend freien Zugangspunkt eines Ausgangsnetzwerkes über eine Begleitleitung eingespeist wird.
27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, dass die Begleitleitung im Bereich einer Ausgangsnetzwerkleitung geführt wird.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010517277A JP5371978B2 (ja) | 2007-07-23 | 2008-04-03 | 高周波電流供給装置、とりわけプラズマ給電装置および高周波電流供給装置の駆動方法 |
EP08748861A EP2097921B1 (de) | 2007-07-23 | 2008-04-03 | Hochfrequenzstromversorgungsanordnung, insbesondere eine plasmaversorgungseinrichtung und verfahren zum betreiben einer hochfrequenzstromversorgungseinrichtung |
US12/178,414 US8154897B2 (en) | 2007-07-23 | 2008-07-23 | RF power supply |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US95139207P | 2007-07-23 | 2007-07-23 | |
US60/951,392 | 2007-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009012825A1 true WO2009012825A1 (de) | 2009-01-29 |
Family
ID=39321543
Family Applications (15)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2007/001775 WO2009012735A1 (de) | 2007-07-23 | 2007-10-04 | Plasmaversorgungseinrichtung |
PCT/EP2007/011263 WO2009012803A1 (de) | 2007-07-23 | 2007-12-20 | Verfahren zur ansteurung zumindest eines inverters in einer plasmaleistungsversorgungseinrichtung und plasmaleistungsversorgungseinrichtung |
PCT/EP2007/011264 WO2009012804A1 (de) | 2007-07-23 | 2007-12-20 | Verfahren zur ermittelung der wellenlaufzeit zwischen zumindest einem inverter in einer plasmaleistungsversorgungseinrichtung und einer an diese angeschlossenen last und plasmaleistungsversorgungseinrichtung |
PCT/EP2008/002657 WO2009012825A1 (de) | 2007-07-23 | 2008-04-03 | Hochfrequenzstromversorgungsanordnung, insbesondere eine plasmaversorgungseinrichtung und verfahren zum betreiben einer hochfrequenzstromversorgungseinrichtung |
PCT/EP2008/002660 WO2009012826A1 (de) | 2007-07-23 | 2008-04-03 | Hochfrequenzleistungsversorgungsanordnung, insbesondere eine plasmaversorgungseinrichtung und verfahren zum betreiben einer hochfrequenzleistungsversorgungsanordnung |
PCT/EP2008/004650 WO2009012848A1 (de) | 2007-07-23 | 2008-06-11 | Verfahren und anordnung zur messung von parametern einer plasmaversorgungseinrichtung |
PCT/EP2008/004651 WO2009012849A1 (de) | 2007-07-23 | 2008-06-11 | Plasmaversorgungseinrichtung und verfahren zum betrieb einer vollbrücke einer plasmaversorgungseinrichtung |
PCT/EP2008/005241 WO2009012863A1 (de) | 2007-07-23 | 2008-06-27 | Messverfahren und messeinrichtung für eine plasmaversorgungseinrichtung |
PCT/EP2008/005313 WO2009012866A1 (en) | 2007-07-23 | 2008-06-30 | Plasma supply device |
PCT/EP2008/005318 WO2009012868A1 (de) | 2007-07-23 | 2008-06-30 | Plasmaversorgungseinrichtung |
PCT/EP2008/005314 WO2009012867A2 (en) | 2007-07-23 | 2008-06-30 | Plasma supply device |
PCT/EP2008/005991 WO2009012973A2 (de) | 2007-07-23 | 2008-07-22 | Verfahren zum schutz von hochfrequenzverstärkern einer plasmaversorgungseinrichtung und plasmaversorgungseinrichtung |
PCT/EP2008/005987 WO2009012969A2 (de) | 2007-07-23 | 2008-07-22 | Plasmaversorgungsanordnung |
PCT/EP2008/005980 WO2009012966A1 (de) | 2007-07-23 | 2008-07-22 | Verfahren zum betrieb einer plasmaversorgungseinrichtung und plasmaversorgungseinrichtung |
PCT/EP2008/005992 WO2009012974A1 (de) | 2007-07-23 | 2008-07-22 | Verfahren zum schutz von hochfrequenzverstärkern einer plasmaversorgungseinrichtung und plasmaversorgungseinrichtung |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2007/001775 WO2009012735A1 (de) | 2007-07-23 | 2007-10-04 | Plasmaversorgungseinrichtung |
PCT/EP2007/011263 WO2009012803A1 (de) | 2007-07-23 | 2007-12-20 | Verfahren zur ansteurung zumindest eines inverters in einer plasmaleistungsversorgungseinrichtung und plasmaleistungsversorgungseinrichtung |
PCT/EP2007/011264 WO2009012804A1 (de) | 2007-07-23 | 2007-12-20 | Verfahren zur ermittelung der wellenlaufzeit zwischen zumindest einem inverter in einer plasmaleistungsversorgungseinrichtung und einer an diese angeschlossenen last und plasmaleistungsversorgungseinrichtung |
Family Applications After (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/002660 WO2009012826A1 (de) | 2007-07-23 | 2008-04-03 | Hochfrequenzleistungsversorgungsanordnung, insbesondere eine plasmaversorgungseinrichtung und verfahren zum betreiben einer hochfrequenzleistungsversorgungsanordnung |
PCT/EP2008/004650 WO2009012848A1 (de) | 2007-07-23 | 2008-06-11 | Verfahren und anordnung zur messung von parametern einer plasmaversorgungseinrichtung |
PCT/EP2008/004651 WO2009012849A1 (de) | 2007-07-23 | 2008-06-11 | Plasmaversorgungseinrichtung und verfahren zum betrieb einer vollbrücke einer plasmaversorgungseinrichtung |
PCT/EP2008/005241 WO2009012863A1 (de) | 2007-07-23 | 2008-06-27 | Messverfahren und messeinrichtung für eine plasmaversorgungseinrichtung |
PCT/EP2008/005313 WO2009012866A1 (en) | 2007-07-23 | 2008-06-30 | Plasma supply device |
PCT/EP2008/005318 WO2009012868A1 (de) | 2007-07-23 | 2008-06-30 | Plasmaversorgungseinrichtung |
PCT/EP2008/005314 WO2009012867A2 (en) | 2007-07-23 | 2008-06-30 | Plasma supply device |
PCT/EP2008/005991 WO2009012973A2 (de) | 2007-07-23 | 2008-07-22 | Verfahren zum schutz von hochfrequenzverstärkern einer plasmaversorgungseinrichtung und plasmaversorgungseinrichtung |
PCT/EP2008/005987 WO2009012969A2 (de) | 2007-07-23 | 2008-07-22 | Plasmaversorgungsanordnung |
PCT/EP2008/005980 WO2009012966A1 (de) | 2007-07-23 | 2008-07-22 | Verfahren zum betrieb einer plasmaversorgungseinrichtung und plasmaversorgungseinrichtung |
PCT/EP2008/005992 WO2009012974A1 (de) | 2007-07-23 | 2008-07-22 | Verfahren zum schutz von hochfrequenzverstärkern einer plasmaversorgungseinrichtung und plasmaversorgungseinrichtung |
Country Status (6)
Country | Link |
---|---|
US (11) | US8129653B2 (de) |
EP (6) | EP2097920B1 (de) |
JP (3) | JP5606312B2 (de) |
AT (2) | ATE497251T1 (de) |
DE (11) | DE112007003667A5 (de) |
WO (15) | WO2009012735A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011087106A1 (de) | 2011-11-25 | 2013-05-29 | Hüttinger Elektronik Gmbh + Co. Kg | Hochfrequenz-Klasse-D-MOSFET-Verstärkermodul |
DE102011087807A1 (de) * | 2011-12-06 | 2013-06-06 | Hüttinger Elektronik Gmbh + Co. Kg | Ausgangsnetzwerk für eine Plasmaversorgungseinrichtung |
CN107450645A (zh) * | 2017-09-07 | 2017-12-08 | 武汉驭波科技有限公司 | 射频电源 |
US20210274630A1 (en) * | 2019-04-16 | 2021-09-02 | Atmospheric Plasma Solutions, Inc. | Waveform detection of states and faults in plasma inverters |
US20230363078A1 (en) * | 2019-04-16 | 2023-11-09 | Atmospheric Plasma Solutions, Inc. | Waveform detection of states and faults in plasma inverters |
Families Citing this family (135)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10161743B4 (de) * | 2001-12-15 | 2004-08-05 | Hüttinger Elektronik GmbH & Co. KG | Hochfrequenzanregungsanordnung |
EP2097920B1 (de) * | 2007-07-23 | 2017-08-09 | TRUMPF Hüttinger GmbH + Co. KG | Plasmaversorgungseinrichtung |
JP5171520B2 (ja) * | 2008-09-30 | 2013-03-27 | 日立オートモティブシステムズ株式会社 | 電力変換装置 |
GB2473598B (en) * | 2009-07-30 | 2013-03-06 | Pulse Electronics Avionics Ltd | Transient differential switching regulator |
DE102010002754B4 (de) * | 2010-03-11 | 2012-07-12 | Hüttinger Elektronik Gmbh + Co. Kg | Plasmaversorgungsanordnung mit Quadraturkoppler |
JP5565086B2 (ja) * | 2010-05-14 | 2014-08-06 | 日本電気株式会社 | 送信装置および送信装置の制御方法 |
DE102010031568B4 (de) | 2010-07-20 | 2014-12-11 | TRUMPF Hüttinger GmbH + Co. KG | Arclöschanordnung und Verfahren zum Löschen von Arcs |
AU2010361598B2 (en) * | 2010-09-30 | 2014-08-07 | Interdigital Vc Holdings, Inc. | Method and apparatus for encoding geometry patterns, and method and apparatus for decoding geometry patterns |
DE202010014176U1 (de) * | 2010-10-11 | 2012-01-16 | Tigres Dr. Gerstenberg Gmbh | Vorrichtung zum Behandeln von Oberflächen mit Entladungsüberwachung |
GB2491550A (en) * | 2011-01-17 | 2012-12-12 | Radiant Res Ltd | A hybrid power control system using dynamic power regulation to increase the dimming dynamic range and power control of solid-state illumination systems |
FR2971886B1 (fr) * | 2011-02-21 | 2014-01-10 | Nanotec Solution | Dispositif et procede d'interconnexion de systemes electroniques a des potentiels de reference differents |
FR2976724B1 (fr) * | 2011-06-16 | 2013-07-12 | Nanotec Solution | Dispositif pour generer une difference de tension alternative entre des potentiels de reference de systemes electroniques. |
EP2549645A1 (de) | 2011-07-21 | 2013-01-23 | Telefonaktiebolaget LM Ericsson (publ) | Transformatorfilteranordnung |
GB201116299D0 (en) * | 2011-09-21 | 2011-11-02 | Aker Subsea Ltd | Condition monitoring employing cross-correlation |
US8903009B2 (en) * | 2012-01-06 | 2014-12-02 | Broadcom Corporation | Common-mode termination within communication systems |
DE102012200702B3 (de) * | 2012-01-19 | 2013-06-27 | Hüttinger Elektronik Gmbh + Co. Kg | Verfahren zum Phasenabgleich mehrerer HF-Leistungserzeugungseinheiten eines HF-Leistungsversorgungssystems und HF-Leistungsversorgungssystem |
US9279722B2 (en) | 2012-04-30 | 2016-03-08 | Agilent Technologies, Inc. | Optical emission system including dichroic beam combiner |
WO2014049818A1 (ja) * | 2012-09-28 | 2014-04-03 | 三洋電機株式会社 | 電力変換装置 |
US9082589B2 (en) * | 2012-10-09 | 2015-07-14 | Novellus Systems, Inc. | Hybrid impedance matching for inductively coupled plasma system |
DE102013100617B4 (de) * | 2013-01-22 | 2016-08-25 | Epcos Ag | Vorrichtung zur Erzeugung eines Plasmas und Handgerät mit der Vorrichtung |
US9536713B2 (en) * | 2013-02-27 | 2017-01-03 | Advanced Energy Industries, Inc. | Reliable plasma ignition and reignition |
JP6177012B2 (ja) * | 2013-06-04 | 2017-08-09 | 株式会社ダイヘン | インピーダンス整合装置 |
DE102013106702B4 (de) * | 2013-06-26 | 2017-08-31 | Sma Solar Technology Ag | Verfahren und Vorrichtung zum Erkennen eines Lichtbogens |
EP2849204B1 (de) * | 2013-09-12 | 2017-11-29 | Meyer Burger (Germany) AG | Plasmaerzeugungsvorrichtung |
CN109873621B (zh) | 2013-11-14 | 2023-06-16 | 鹰港科技有限公司 | 高压纳秒脉冲发生器 |
US10978955B2 (en) | 2014-02-28 | 2021-04-13 | Eagle Harbor Technologies, Inc. | Nanosecond pulser bias compensation |
US11539352B2 (en) | 2013-11-14 | 2022-12-27 | Eagle Harbor Technologies, Inc. | Transformer resonant converter |
US10020800B2 (en) | 2013-11-14 | 2018-07-10 | Eagle Harbor Technologies, Inc. | High voltage nanosecond pulser with variable pulse width and pulse repetition frequency |
US9706630B2 (en) | 2014-02-28 | 2017-07-11 | Eagle Harbor Technologies, Inc. | Galvanically isolated output variable pulse generator disclosure |
US10892140B2 (en) | 2018-07-27 | 2021-01-12 | Eagle Harbor Technologies, Inc. | Nanosecond pulser bias compensation |
DE102013226537B4 (de) | 2013-12-18 | 2022-12-29 | TRUMPF Hüttinger GmbH + Co. KG | Leistungsversorgungssystem mit mehreren Verstärkerpfaden sowie Verfahren zur Anregung eines Plasmas |
DE102013226511B4 (de) * | 2013-12-18 | 2016-12-15 | TRUMPF Hüttinger GmbH + Co. KG | Leistungsversorgungssystem und Verfahren zur Erzeugung einer Leistung |
US9641095B1 (en) * | 2014-02-21 | 2017-05-02 | Pai Capital Llc | Power converter output stage using heat dissipating bus bars |
US10483089B2 (en) * | 2014-02-28 | 2019-11-19 | Eagle Harbor Technologies, Inc. | High voltage resistive output stage circuit |
US9952297B2 (en) * | 2014-05-08 | 2018-04-24 | Auburn University | Parallel plate transmission line for broadband nuclear magnetic resonance imaging |
US11051369B2 (en) | 2014-10-21 | 2021-06-29 | Ultraflex International, Inc. | Radio frequency heating apparatus using direct-digital radio frequency power control and fine-tune power control |
US10624158B2 (en) | 2014-10-21 | 2020-04-14 | Ultraflex International Inc. | Radio frequency heating apparatus using direct-digital radio frequency power control and fine-tune power control |
TWI574296B (zh) * | 2014-12-04 | 2017-03-11 | 萬機科技股份有限公司 | 功率輸出產生系統與適用於週期性波形之方法 |
US10049857B2 (en) * | 2014-12-04 | 2018-08-14 | Mks Instruments, Inc. | Adaptive periodic waveform controller |
DE102015212220A1 (de) | 2015-06-30 | 2017-01-05 | TRUMPF Hüttinger GmbH + Co. KG | Hochfrequenzverstärkeranordnung |
DE102015212232B4 (de) * | 2015-06-30 | 2020-03-05 | TRUMPF Hüttinger GmbH + Co. KG | Leistungscombiner zur Kopplung von Hochfrequenzsignalen und Leistungscombineranordnung mit einem solchen Leistungscombiner |
DE102015212152B4 (de) | 2015-06-30 | 2018-03-15 | TRUMPF Hüttinger GmbH + Co. KG | Nicht lineare Hochfrequenzverstärkeranordnung |
DE102015212247A1 (de) * | 2015-06-30 | 2017-01-05 | TRUMPF Hüttinger GmbH + Co. KG | Hochfrequenzverstärkeranordnung |
US10386962B1 (en) | 2015-08-03 | 2019-08-20 | Apple Inc. | Reducing touch node electrode coupling |
CN105116217A (zh) * | 2015-09-02 | 2015-12-02 | 盐城工学院 | 基于单片机的微弱信号频率和相位自动检测系统及其检测方法 |
CN105137246B (zh) * | 2015-09-21 | 2018-02-02 | 华中科技大学 | 重复频率脉冲下的金属化膜电容器的寿命测试方法 |
US11452982B2 (en) | 2015-10-01 | 2022-09-27 | Milton Roy, Llc | Reactor for liquid and gas and method of use |
EP4226999A3 (de) | 2015-10-01 | 2023-09-06 | Milton Roy, LLC | Plasmareaktor für flüssigkeit und gas und zugehörige verfahren |
US10882021B2 (en) | 2015-10-01 | 2021-01-05 | Ion Inject Technology Llc | Plasma reactor for liquid and gas and method of use |
US10187968B2 (en) * | 2015-10-08 | 2019-01-22 | Ion Inject Technology Llc | Quasi-resonant plasma voltage generator |
DE102015220847A1 (de) * | 2015-10-26 | 2017-04-27 | TRUMPF Hüttinger GmbH + Co. KG | Verfahren zur Impedanzanpassung einer Last an die Ausgangsimpedanz eines Leistungsgenerators und Impedanzanpassungsanordnung |
US10046300B2 (en) | 2015-12-09 | 2018-08-14 | Ion Inject Technology Llc | Membrane plasma reactor |
DE102015226149A1 (de) * | 2015-12-21 | 2017-06-22 | Robert Bosch Gmbh | Antriebselektronik für einen Antrieb |
US9577516B1 (en) | 2016-02-18 | 2017-02-21 | Advanced Energy Industries, Inc. | Apparatus for controlled overshoot in a RF generator |
CN106026702B (zh) * | 2016-05-23 | 2019-10-25 | 安徽省金屹电源科技有限公司 | 一种大功率直流等离子体电源 |
DE102016110141A1 (de) * | 2016-06-01 | 2017-12-07 | TRUMPF Hüttinger GmbH + Co. KG | Verfahren und Vorrichtung zum Zünden einer Plasmalast |
US11004660B2 (en) | 2018-11-30 | 2021-05-11 | Eagle Harbor Technologies, Inc. | Variable output impedance RF generator |
US10903047B2 (en) | 2018-07-27 | 2021-01-26 | Eagle Harbor Technologies, Inc. | Precise plasma control system |
US11430635B2 (en) | 2018-07-27 | 2022-08-30 | Eagle Harbor Technologies, Inc. | Precise plasma control system |
CN109564485B (zh) | 2016-07-29 | 2022-04-01 | 苹果公司 | 具有多电源域芯片配置的触摸传感器面板 |
WO2018148182A1 (en) | 2017-02-07 | 2018-08-16 | Eagle Harbor Technologies, Inc. | Transformer resonant converter |
EP3813259B1 (de) * | 2017-03-31 | 2022-10-26 | Eagle Harbor Technologies, Inc. | Resistive hochspannungsendstufenschaltung |
WO2019003345A1 (ja) * | 2017-06-28 | 2019-01-03 | 株式会社日立国際電気 | 高周波電源装置及びそれを用いたプラズマ処理装置 |
EP3616235B1 (de) * | 2017-07-07 | 2024-10-09 | Advanced Energy Industries, Inc. | Inter-period-steuerungssystem für plasmastromversorgungssystem und betriebsverfahren dafür |
US11651939B2 (en) * | 2017-07-07 | 2023-05-16 | Advanced Energy Industries, Inc. | Inter-period control system for plasma power delivery system and method of operating same |
US11615943B2 (en) * | 2017-07-07 | 2023-03-28 | Advanced Energy Industries, Inc. | Inter-period control for passive power distribution of multiple electrode inductive plasma source |
WO2019012038A1 (en) * | 2017-07-13 | 2019-01-17 | Abb Schweiz Ag | SEMICONDUCTOR POWER MODULE GRID PILOT HAVING A COMMON MODE IN-MODE STOP COIL |
JP6902167B2 (ja) | 2017-08-25 | 2021-07-14 | イーグル ハーバー テクノロジーズ, インク.Eagle Harbor Technologies, Inc. | ナノ秒パルスを使用する任意波形の発生 |
US10510575B2 (en) | 2017-09-20 | 2019-12-17 | Applied Materials, Inc. | Substrate support with multiple embedded electrodes |
WO2019067268A1 (en) | 2017-09-29 | 2019-04-04 | Apple Inc. | MULTIMODAL TOUCH CONTROL DEVICE |
WO2019067267A1 (en) | 2017-09-29 | 2019-04-04 | Apple Inc. | TACTILE DETECTION WITH MULTIPLE POWER DOMAINS |
US20190108976A1 (en) * | 2017-10-11 | 2019-04-11 | Advanced Energy Industries, Inc. | Matched source impedance driving system and method of operating the same |
KR102644960B1 (ko) | 2017-11-29 | 2024-03-07 | 코멧 테크놀로지스 유에스에이, 인크. | 임피던스 매칭 네트워크 제어를 위한 리튜닝 |
DE102018204587B4 (de) | 2018-03-26 | 2019-10-24 | TRUMPF Hüttinger GmbH + Co. KG | Verfahren zur Zündung eines Plasmas in einer Plasmakammer und Zündschaltung |
US10555412B2 (en) | 2018-05-10 | 2020-02-04 | Applied Materials, Inc. | Method of controlling ion energy distribution using a pulse generator with a current-return output stage |
CN110504149B (zh) * | 2018-05-17 | 2022-04-22 | 北京北方华创微电子装备有限公司 | 射频电源的脉冲调制系统及方法 |
US10515781B1 (en) * | 2018-06-13 | 2019-12-24 | Lam Research Corporation | Direct drive RF circuit for substrate processing systems |
DE102018116637A1 (de) | 2018-07-10 | 2020-01-16 | TRUMPF Hüttinger GmbH + Co. KG | Leistungsversorgungseinrichtung und Betriebsverfahren hierfür |
US10607814B2 (en) | 2018-08-10 | 2020-03-31 | Eagle Harbor Technologies, Inc. | High voltage switch with isolated power |
US11302518B2 (en) | 2018-07-27 | 2022-04-12 | Eagle Harbor Technologies, Inc. | Efficient energy recovery in a nanosecond pulser circuit |
US11222767B2 (en) | 2018-07-27 | 2022-01-11 | Eagle Harbor Technologies, Inc. | Nanosecond pulser bias compensation |
US11532457B2 (en) | 2018-07-27 | 2022-12-20 | Eagle Harbor Technologies, Inc. | Precise plasma control system |
EP3605115A1 (de) | 2018-08-02 | 2020-02-05 | TRUMPF Huettinger Sp. Z o. o. | Lichtbogendetektor zur detektion von lichtbögen, plasmasystem und verfahren zur detektion von lichtbögen |
CN112805920A (zh) | 2018-08-10 | 2021-05-14 | 鹰港科技有限公司 | 用于rf等离子体反应器的等离子体鞘控制 |
US11728137B2 (en) * | 2018-08-17 | 2023-08-15 | Lam Research Corporation | Direct frequency tuning for matchless plasma source in substrate processing systems |
US11016616B2 (en) | 2018-09-28 | 2021-05-25 | Apple Inc. | Multi-domain touch sensing with touch and display circuitry operable in guarded power domain |
WO2020068107A1 (en) * | 2018-09-28 | 2020-04-02 | Lam Research Corporation | Systems and methods for optimizing power delivery to an electrode of a plasma chamber |
US11476145B2 (en) | 2018-11-20 | 2022-10-18 | Applied Materials, Inc. | Automatic ESC bias compensation when using pulsed DC bias |
CN113906677A (zh) | 2019-01-08 | 2022-01-07 | 鹰港科技有限公司 | 纳秒脉冲发生器电路中的高效能量恢复 |
WO2020154310A1 (en) | 2019-01-22 | 2020-07-30 | Applied Materials, Inc. | Feedback loop for controlling a pulsed voltage waveform |
US11508554B2 (en) | 2019-01-24 | 2022-11-22 | Applied Materials, Inc. | High voltage filter assembly |
CA3136810A1 (en) * | 2019-04-16 | 2020-10-22 | Atmospheric Plasma Solutions, Inc. | Waveform detection of states and faults in plasma inverters |
KR20210149894A (ko) * | 2019-04-30 | 2021-12-09 | 램 리써치 코포레이션 | 듀얼 주파수, 직접 구동 유도 결합 플라즈마 소스 |
US11527385B2 (en) | 2021-04-29 | 2022-12-13 | COMET Technologies USA, Inc. | Systems and methods for calibrating capacitors of matching networks |
US11114279B2 (en) * | 2019-06-28 | 2021-09-07 | COMET Technologies USA, Inc. | Arc suppression device for plasma processing equipment |
US11107661B2 (en) | 2019-07-09 | 2021-08-31 | COMET Technologies USA, Inc. | Hybrid matching network topology |
US11596309B2 (en) | 2019-07-09 | 2023-03-07 | COMET Technologies USA, Inc. | Hybrid matching network topology |
JP2022546488A (ja) | 2019-08-28 | 2022-11-04 | コメット テクノロジーズ ユーエスエー インコーポレイテッド | 高出力低周波数コイル |
TWI778449B (zh) | 2019-11-15 | 2022-09-21 | 美商鷹港科技股份有限公司 | 高電壓脈衝電路 |
CN114762079A (zh) | 2019-12-02 | 2022-07-15 | 朗姆研究公司 | 射频辅助等离子体生成中的阻抗变换 |
KR20230150396A (ko) | 2019-12-24 | 2023-10-30 | 이글 하버 테크놀로지스, 인코포레이티드 | 플라즈마 시스템을 위한 나노초 펄서 rf 절연 |
US11830708B2 (en) | 2020-01-10 | 2023-11-28 | COMET Technologies USA, Inc. | Inductive broad-band sensors for electromagnetic waves |
US11887820B2 (en) | 2020-01-10 | 2024-01-30 | COMET Technologies USA, Inc. | Sector shunts for plasma-based wafer processing systems |
US12027351B2 (en) | 2020-01-10 | 2024-07-02 | COMET Technologies USA, Inc. | Plasma non-uniformity detection |
US11670488B2 (en) | 2020-01-10 | 2023-06-06 | COMET Technologies USA, Inc. | Fast arc detecting match network |
US11521832B2 (en) | 2020-01-10 | 2022-12-06 | COMET Technologies USA, Inc. | Uniformity control for radio frequency plasma processing systems |
US11961711B2 (en) | 2020-01-20 | 2024-04-16 | COMET Technologies USA, Inc. | Radio frequency match network and generator |
US11605527B2 (en) | 2020-01-20 | 2023-03-14 | COMET Technologies USA, Inc. | Pulsing control match network |
DE102020104090A1 (de) * | 2020-02-17 | 2021-08-19 | Comet Ag | Hochfrequenzverstärker-Anordnung für einen Hochfrequenzgenerator |
US11994542B2 (en) | 2020-03-27 | 2024-05-28 | Lam Research Corporation | RF signal parameter measurement in an integrated circuit fabrication chamber |
JP2021164289A (ja) * | 2020-03-31 | 2021-10-11 | 株式会社京三製作所 | D級フルブリッジ増幅器のドライバ装置 |
US11462389B2 (en) | 2020-07-31 | 2022-10-04 | Applied Materials, Inc. | Pulsed-voltage hardware assembly for use in a plasma processing system |
US11373844B2 (en) | 2020-09-28 | 2022-06-28 | COMET Technologies USA, Inc. | Systems and methods for repetitive tuning of matching networks |
US11798790B2 (en) | 2020-11-16 | 2023-10-24 | Applied Materials, Inc. | Apparatus and methods for controlling ion energy distribution |
US11901157B2 (en) | 2020-11-16 | 2024-02-13 | Applied Materials, Inc. | Apparatus and methods for controlling ion energy distribution |
US12057296B2 (en) | 2021-02-22 | 2024-08-06 | COMET Technologies USA, Inc. | Electromagnetic field sensing device |
US11495470B1 (en) | 2021-04-16 | 2022-11-08 | Applied Materials, Inc. | Method of enhancing etching selectivity using a pulsed plasma |
US11948780B2 (en) | 2021-05-12 | 2024-04-02 | Applied Materials, Inc. | Automatic electrostatic chuck bias compensation during plasma processing |
US11791138B2 (en) | 2021-05-12 | 2023-10-17 | Applied Materials, Inc. | Automatic electrostatic chuck bias compensation during plasma processing |
US11967483B2 (en) | 2021-06-02 | 2024-04-23 | Applied Materials, Inc. | Plasma excitation with ion energy control |
US20220399185A1 (en) | 2021-06-09 | 2022-12-15 | Applied Materials, Inc. | Plasma chamber and chamber component cleaning methods |
US11810760B2 (en) | 2021-06-16 | 2023-11-07 | Applied Materials, Inc. | Apparatus and method of ion current compensation |
US11569066B2 (en) | 2021-06-23 | 2023-01-31 | Applied Materials, Inc. | Pulsed voltage source for plasma processing applications |
US11776788B2 (en) | 2021-06-28 | 2023-10-03 | Applied Materials, Inc. | Pulsed voltage boost for substrate processing |
US11923175B2 (en) | 2021-07-28 | 2024-03-05 | COMET Technologies USA, Inc. | Systems and methods for variable gain tuning of matching networks |
US11476090B1 (en) | 2021-08-24 | 2022-10-18 | Applied Materials, Inc. | Voltage pulse time-domain multiplexing |
US12106938B2 (en) | 2021-09-14 | 2024-10-01 | Applied Materials, Inc. | Distortion current mitigation in a radio frequency plasma processing chamber |
US11657980B1 (en) | 2022-05-09 | 2023-05-23 | COMET Technologies USA, Inc. | Dielectric fluid variable capacitor |
US12040139B2 (en) | 2022-05-09 | 2024-07-16 | COMET Technologies USA, Inc. | Variable capacitor with linear impedance and high voltage breakdown |
US11972924B2 (en) | 2022-06-08 | 2024-04-30 | Applied Materials, Inc. | Pulsed voltage source for plasma processing applications |
US12051549B2 (en) | 2022-08-02 | 2024-07-30 | COMET Technologies USA, Inc. | Coaxial variable capacitor |
US12111341B2 (en) | 2022-10-05 | 2024-10-08 | Applied Materials, Inc. | In-situ electric field detection method and apparatus |
DE102023104960A1 (de) * | 2023-02-28 | 2024-08-29 | TRUMPF Hüttinger GmbH + Co. KG | Impedanzanpassungsbaustein, Impedanzanpassungsschaltung, Plasmaprozessversorgungssystem und Plasmaprozesssystem |
DE102023104958A1 (de) | 2023-02-28 | 2024-08-29 | TRUMPF Hüttinger GmbH + Co. KG | Impedanzanpassungsbaustein, Impedanzanpassungsschaltung, Plasmaprozessversorgungssystem und Plasmaprozesssystem |
CN117559779B (zh) * | 2023-11-23 | 2024-07-09 | 深圳市恒运昌真空技术股份有限公司 | 一种射频电源的推挽式并联驱动输出系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5363020A (en) * | 1993-02-05 | 1994-11-08 | Systems And Service International, Inc. | Electronic power controller |
US6365868B1 (en) * | 2000-02-29 | 2002-04-02 | Hypertherm, Inc. | DSP based plasma cutting system |
Family Cites Families (130)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT944469B (it) * | 1971-12-29 | 1973-04-20 | Honeywell Inf Systems | Circuito di pilotaggio a trasforma tore interruttore |
DE2519845C3 (de) * | 1975-05-03 | 1978-06-08 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Schaltungsanordnung zur Zusammenführung von Hochfrequenzleistungsanteilen |
US4215392A (en) * | 1978-12-19 | 1980-07-29 | Ncr Corporation | Inverter power supply |
JPS5582967A (en) * | 1978-12-19 | 1980-06-23 | Hitachi Cable Ltd | Measuring method for electric signal wave-form using optical-fiber |
US4489271A (en) * | 1979-01-15 | 1984-12-18 | Riblet Gordon P | Reflection coefficient measurements |
JPS5836169A (ja) * | 1981-08-28 | 1983-03-03 | Fuji Electric Co Ltd | サイリスタ監視装置 |
US4490684A (en) * | 1983-01-03 | 1984-12-25 | Motorola, Inc. | Adaptive quadrature combining apparatus |
JPS59202715A (ja) * | 1983-04-30 | 1984-11-16 | Shimadzu Corp | Icp分析用高周波電源装置 |
US6229718B1 (en) * | 1984-10-05 | 2001-05-08 | Ole K. Nilssen | Parallel-resonant bridge inverter |
US4701176A (en) * | 1985-09-06 | 1987-10-20 | Kimberly-Clark Corporation | Form-fitting self-adjusting disposable garment with fixed full-length fasteners |
US4656434A (en) * | 1986-02-03 | 1987-04-07 | Raytheon Company | RF power amplifier with load mismatch compensation |
US4733137A (en) * | 1986-03-14 | 1988-03-22 | Walker Magnetics Group, Inc. | Ion nitriding power supply |
US4701716A (en) * | 1986-05-07 | 1987-10-20 | Rca Corporation | Parallel distributed signal amplifiers |
JP2723516B2 (ja) * | 1987-04-30 | 1998-03-09 | ファナック 株式会社 | レーザ発振装置 |
JPS6450396A (en) * | 1987-08-20 | 1989-02-27 | Nippon Denshi Shomei Kk | Lighting device of fluorescent discharge lamp |
US4758941A (en) * | 1987-10-30 | 1988-07-19 | International Business Machines Corporation | MOSFET fullbridge switching regulator having transformer coupled MOSFET drive circuit |
US4860189A (en) * | 1988-03-21 | 1989-08-22 | International Business Machines Corp. | Full bridge power converter circuit |
ATE83067T1 (de) * | 1988-04-05 | 1992-12-15 | Heidenhain Gmbh Dr Johannes | Zeitbereichsreflektometriemessverfahren sowie anordnung zu dessen durchfuehrung. |
DE3906308A1 (de) | 1989-02-28 | 1990-09-20 | Gore W L & Ass Gmbh | Flachkabelspirale |
US4910452A (en) | 1989-05-16 | 1990-03-20 | American Telephone And Telegraph Company, At&T Bell Laboratories | High frequency AC magnetic devices with high efficiency |
US4980810A (en) * | 1989-05-25 | 1990-12-25 | Hughes Aircraft Company | VHF DC-DC power supply operating at frequencies greater than 50 MHz |
DE3942509A1 (de) * | 1989-12-22 | 1991-06-27 | Hirschmann Richard Gmbh Co | Hochfrequenzschaltung |
US5222246A (en) * | 1990-11-02 | 1993-06-22 | General Electric Company | Parallel amplifiers with combining phase controlled from combiner difference port |
US5598327A (en) * | 1990-11-30 | 1997-01-28 | Burr-Brown Corporation | Planar transformer assembly including non-overlapping primary and secondary windings surrounding a common magnetic flux path area |
GB2252208B (en) * | 1991-01-24 | 1995-05-03 | Burr Brown Corp | Hybrid integrated circuit planar transformer |
US5195045A (en) * | 1991-02-27 | 1993-03-16 | Astec America, Inc. | Automatic impedance matching apparatus and method |
US5392018A (en) * | 1991-06-27 | 1995-02-21 | Applied Materials, Inc. | Electronically tuned matching networks using adjustable inductance elements and resonant tank circuits |
KR950000906B1 (ko) | 1991-08-02 | 1995-02-03 | 니찌덴 아넬바 가부시기가이샤 | 스퍼터링장치 |
US5225687A (en) * | 1992-01-27 | 1993-07-06 | Jason Barry L | Output circuit with optically coupled control signals |
US5523955A (en) * | 1992-03-19 | 1996-06-04 | Advanced Energy Industries, Inc. | System for characterizing AC properties of a processing plasma |
KR930021034A (ko) * | 1992-03-31 | 1993-10-20 | 다니이 아끼오 | 플라즈마발생방법 및 그 발생장치 |
US5418707A (en) * | 1992-04-13 | 1995-05-23 | The United States Of America As Represented By The United States Department Of Energy | High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs |
DE4244107C2 (de) * | 1992-12-24 | 1996-02-08 | Hirschmann Richard Gmbh Co | Hochfrequenz-Übertrager |
JPH0732078B2 (ja) * | 1993-01-14 | 1995-04-10 | 株式会社アドテック | 高周波プラズマ用電源及びインピーダンス整合装置 |
US5635762A (en) | 1993-05-18 | 1997-06-03 | U.S. Philips Corporation | Flip chip semiconductor device with dual purpose metallized ground conductor |
US5434527A (en) * | 1993-10-25 | 1995-07-18 | Caterpillar Inc. | Gate drive circuit |
US5438498A (en) * | 1993-12-21 | 1995-08-01 | Raytheon Company | Series resonant converter having a resonant snubber |
US5424691A (en) * | 1994-02-03 | 1995-06-13 | Sadinsky; Samuel | Apparatus and method for electronically controlled admittance matching network |
US5435881A (en) * | 1994-03-17 | 1995-07-25 | Ogle; John S. | Apparatus for producing planar plasma using varying magnetic poles |
US5563775A (en) * | 1994-06-16 | 1996-10-08 | Reliance Comm/Tech Corporation | Full bridge phase displaced resonant transition circuit for obtaining constant resonant transition current from 0° phase angle to 180° phase angle |
KR0157885B1 (ko) * | 1995-07-08 | 1999-03-20 | 문정환 | 전원 공급 감지 회로 |
US5810963A (en) * | 1995-09-28 | 1998-09-22 | Kabushiki Kaisha Toshiba | Plasma processing apparatus and method |
US6794301B2 (en) * | 1995-10-13 | 2004-09-21 | Mattson Technology, Inc. | Pulsed plasma processing of semiconductor substrates |
JP3163318B2 (ja) * | 1995-10-24 | 2001-05-08 | 長野日本無線株式会社 | 誘導性素子用コアおよび誘導性素子 |
US5875103A (en) * | 1995-12-22 | 1999-02-23 | Electronic Measurements, Inc. | Full range soft-switching DC-DC converter |
US5689215A (en) * | 1996-05-23 | 1997-11-18 | Lam Research Corporation | Method of and apparatus for controlling reactive impedances of a matching network connected between an RF source and an RF plasma processor |
US5882492A (en) * | 1996-06-21 | 1999-03-16 | Sierra Applied Sciences, Inc. | A.C. plasma processing system |
JP3736096B2 (ja) * | 1997-06-12 | 2006-01-18 | 株式会社日立製作所 | 照明用点灯装置及びこれを用いたランプ |
US6329757B1 (en) * | 1996-12-31 | 2001-12-11 | The Perkin-Elmer Corporation | High frequency transistor oscillator system |
JPH10215160A (ja) * | 1997-01-31 | 1998-08-11 | Matsushita Electric Ind Co Ltd | 保護機能付半導体スイッチング回路および溶接機および切断機 |
JP3733675B2 (ja) | 1997-01-31 | 2006-01-11 | 東芝ライテック株式会社 | インバータ装置、放電灯点灯装置及び照明装置 |
US5869817A (en) * | 1997-03-06 | 1999-02-09 | General Mills, Inc. | Tunable cavity microwave applicator |
SE521212C2 (sv) * | 1997-06-11 | 2003-10-14 | Abb Ab | Anordning för avkänning av läckage av kylvätska vid en högspänningsomriktarstation |
JP3674283B2 (ja) * | 1997-12-26 | 2005-07-20 | 富士電機ホールディングス株式会社 | 絶縁形電力変換装置 |
US5944942A (en) * | 1998-03-04 | 1999-08-31 | Ogle; John Seldon | Varying multipole plasma source |
US6038142A (en) | 1998-06-10 | 2000-03-14 | Lucent Technologies, Inc. | Full-bridge isolated Current Fed converter with active clamp |
US6313584B1 (en) * | 1998-09-17 | 2001-11-06 | Tokyo Electron Limited | Electrical impedance matching system and method |
JP3049427B2 (ja) | 1998-10-21 | 2000-06-05 | 株式会社ハイデン研究所 | 正負パルス式高周波スイッチング電源 |
DE19927368A1 (de) * | 1999-06-16 | 2000-12-21 | Merten Kg Pulsotronic | Vorrichtung zum Ausscheiden von Metallteilen |
US6166598A (en) * | 1999-07-22 | 2000-12-26 | Motorola, Inc. | Power amplifying circuit with supply adjust to control adjacent and alternate channel power |
WO2001008288A2 (en) | 1999-07-22 | 2001-02-01 | Eni Technology, Inc. | Power supplies having protection circuits |
US7180758B2 (en) * | 1999-07-22 | 2007-02-20 | Mks Instruments, Inc. | Class E amplifier with inductive clamp |
US6469919B1 (en) * | 1999-07-22 | 2002-10-22 | Eni Technology, Inc. | Power supplies having protection circuits |
US6160449A (en) * | 1999-07-22 | 2000-12-12 | Motorola, Inc. | Power amplifying circuit with load adjust for control of adjacent and alternate channel power |
JP3654089B2 (ja) * | 1999-10-26 | 2005-06-02 | 松下電工株式会社 | 電源装置 |
JP2001185443A (ja) * | 1999-12-22 | 2001-07-06 | Hitachi Ltd | 薄膜コンデンサ |
TW507256B (en) * | 2000-03-13 | 2002-10-21 | Mitsubishi Heavy Ind Ltd | Discharge plasma generating method, discharge plasma generating apparatus, semiconductor device fabrication method, and semiconductor device fabrication apparatus |
US6297696B1 (en) * | 2000-06-15 | 2001-10-02 | International Business Machines Corporation | Optimized power amplifier |
US6344768B1 (en) * | 2000-08-10 | 2002-02-05 | International Business Machines Corporation | Full-bridge DC-to-DC converter having an unipolar gate drive |
US7294563B2 (en) * | 2000-08-10 | 2007-11-13 | Applied Materials, Inc. | Semiconductor on insulator vertical transistor fabrication and doping process |
US6494986B1 (en) * | 2000-08-11 | 2002-12-17 | Applied Materials, Inc. | Externally excited multiple torroidal plasma source |
US7037813B2 (en) * | 2000-08-11 | 2006-05-02 | Applied Materials, Inc. | Plasma immersion ion implantation process using a capacitively coupled plasma source having low dissociation and low minimum plasma voltage |
US7320734B2 (en) * | 2000-08-11 | 2008-01-22 | Applied Materials, Inc. | Plasma immersion ion implantation system including a plasma source having low dissociation and low minimum plasma voltage |
US6246599B1 (en) * | 2000-08-25 | 2001-06-12 | Delta Electronics, Inc. | Constant frequency resonant inverters with a pair of resonant inductors |
AU2002243742A1 (en) * | 2001-02-01 | 2002-08-12 | Di/Dt, Inc. | Isolated drive circuitry used in switch-mode power converters |
JP2002237419A (ja) * | 2001-02-08 | 2002-08-23 | Eiwa:Kk | プレーナートランス |
DE10107609A1 (de) | 2001-02-17 | 2002-08-29 | Power One Ag Uster | Spannungsversorgungsmodul |
US6741446B2 (en) * | 2001-03-30 | 2004-05-25 | Lam Research Corporation | Vacuum plasma processor and method of operating same |
US6657394B2 (en) * | 2001-04-06 | 2003-12-02 | Eni Technology, Inc. | Reflection coefficient phase detector |
JP2003125586A (ja) * | 2001-10-15 | 2003-04-25 | Amada Eng Center Co Ltd | プラズマ発生用電源装置 |
CN1305353C (zh) * | 2001-12-10 | 2007-03-14 | 东京毅力科创株式会社 | 高频电源及其控制方法、和等离子体处理装置 |
DE10161743B4 (de) * | 2001-12-15 | 2004-08-05 | Hüttinger Elektronik GmbH & Co. KG | Hochfrequenzanregungsanordnung |
US6946847B2 (en) * | 2002-02-08 | 2005-09-20 | Daihen Corporation | Impedance matching device provided with reactance-impedance table |
DE10211609B4 (de) * | 2002-03-12 | 2009-01-08 | Hüttinger Elektronik GmbH & Co. KG | Verfahren und Leistungsverstärker zur Erzeugung von sinusförmigen Hochfrequenzsignalen zum Betreiben einer Last |
US6972972B2 (en) * | 2002-04-15 | 2005-12-06 | Airak, Inc. | Power inverter with optical isolation |
US6703080B2 (en) | 2002-05-20 | 2004-03-09 | Eni Technology, Inc. | Method and apparatus for VHF plasma processing with load mismatch reliability and stability |
JP3635538B2 (ja) | 2002-07-05 | 2005-04-06 | 株式会社京三製作所 | プラズマ発生用直流電源装置 |
JP3641785B2 (ja) | 2002-08-09 | 2005-04-27 | 株式会社京三製作所 | プラズマ発生用電源装置 |
US7025895B2 (en) * | 2002-08-15 | 2006-04-11 | Hitachi High-Technologies Corporation | Plasma processing apparatus and method |
JP3700785B2 (ja) * | 2002-12-03 | 2005-09-28 | オリジン電気株式会社 | 電力変換装置 |
US6971851B2 (en) * | 2003-03-12 | 2005-12-06 | Florida Turbine Technologies, Inc. | Multi-metered film cooled blade tip |
US7563748B2 (en) | 2003-06-23 | 2009-07-21 | Cognis Ip Management Gmbh | Alcohol alkoxylate carriers for pesticide active ingredients |
US7573000B2 (en) * | 2003-07-11 | 2009-08-11 | Lincoln Global, Inc. | Power source for plasma device |
US7403400B2 (en) * | 2003-07-24 | 2008-07-22 | Harman International Industries, Incorporated | Series interleaved boost converter power factor correcting power supply |
WO2005015964A1 (ja) * | 2003-08-07 | 2005-02-17 | Hitachi Kokusai Electric Inc. | 基板処理装置及び基板処理方法 |
US6992902B2 (en) * | 2003-08-21 | 2006-01-31 | Delta Electronics, Inc. | Full bridge converter with ZVS via AC feedback |
US7244343B2 (en) | 2003-08-28 | 2007-07-17 | Origin Electric Company Limited | Sputtering apparatus |
JP2005086622A (ja) * | 2003-09-10 | 2005-03-31 | Nec Engineering Ltd | 電力合成・分配器 |
DE10342611A1 (de) * | 2003-09-12 | 2005-04-14 | Hüttinger Elektronik Gmbh + Co. Kg | 90° Hybrid zum Splitten oder Zusammenführen von Hochfrequenzleistung |
JP2005092783A (ja) * | 2003-09-19 | 2005-04-07 | Rohm Co Ltd | 電源装置およびそれを備える電子機器 |
US7755300B2 (en) * | 2003-09-22 | 2010-07-13 | Mks Instruments, Inc. | Method and apparatus for preventing instabilities in radio-frequency plasma processing |
KR100877304B1 (ko) * | 2003-11-27 | 2009-01-09 | 가부시키가이샤 다이헨 | 고주파 전력 공급 시스템 |
US6909617B1 (en) * | 2004-01-22 | 2005-06-21 | La Marche Manufacturing Co. | Zero-voltage-switched, full-bridge, phase-shifted DC-DC converter with improved light/no-load operation |
EP1733467A1 (de) * | 2004-03-12 | 2006-12-20 | MKS Instruments, Inc. | Steuerschaltung für ein schaltnetzteil |
CN1906837B (zh) * | 2004-03-18 | 2011-02-23 | 三井物产株式会社 | 直流-直流转换器 |
WO2005094138A1 (ja) | 2004-03-29 | 2005-10-06 | Mitsubishi Denki Kabushiki Kaisha | プラズマ発生用電源装置 |
DE102004024805B4 (de) * | 2004-05-17 | 2015-11-12 | TRUMPF Hüttinger GmbH + Co. KG | Verfahren und Regelanordnung zur Regelung der Ausgangsleistung einer HF-Verstärkeranordnung |
US7512422B2 (en) * | 2004-05-28 | 2009-03-31 | Ixys Corporation | RF generator with commutation inductor |
US7214934B2 (en) * | 2004-07-22 | 2007-05-08 | Varian Australia Pty Ltd | Radio frequency power generator |
JP4035568B2 (ja) * | 2004-11-29 | 2008-01-23 | 株式会社エーイーティー | 大気圧大面積プラズマ発生装置 |
JP2006165438A (ja) * | 2004-12-10 | 2006-06-22 | Nec Tokin Corp | プリント基板 |
US7138861B2 (en) * | 2004-12-29 | 2006-11-21 | Telefonaktiebolaget L M Ericsson (Publ) | Load mismatch adaptation in coupler-based amplifiers |
KR101121418B1 (ko) * | 2005-02-17 | 2012-03-16 | 주성엔지니어링(주) | 토로이드형 코어를 포함하는 플라즈마 발생장치 |
EP1701376B1 (de) * | 2005-03-10 | 2006-11-08 | HÜTTINGER Elektronik GmbH + Co. KG | Vakuumplasmagenerator |
US6996892B1 (en) * | 2005-03-24 | 2006-02-14 | Rf Micro Devices, Inc. | Circuit board embedded inductor |
US7173467B2 (en) | 2005-03-31 | 2007-02-06 | Chang Gung University | Modified high-efficiency phase shift modulation method |
JP2006296032A (ja) * | 2005-04-07 | 2006-10-26 | Sumitomo Electric Ind Ltd | 電力変換器 |
US7477711B2 (en) * | 2005-05-19 | 2009-01-13 | Mks Instruments, Inc. | Synchronous undersampling for high-frequency voltage and current measurements |
DE102005046921A1 (de) * | 2005-09-30 | 2007-04-12 | Siemens Ag | Schaltungsanordnung zur Stromüberwachung |
EP1783904B1 (de) * | 2005-10-17 | 2008-04-16 | HÜTTINGER Elektronik GmbH + Co. KG | HF-Plasmaversorgungseinrichtung |
JP2007124007A (ja) * | 2005-10-25 | 2007-05-17 | Sumitomo Electric Ind Ltd | 電力変換器及び電圧制御方法 |
US7353771B2 (en) * | 2005-11-07 | 2008-04-08 | Mks Instruments, Inc. | Method and apparatus of providing power to ignite and sustain a plasma in a reactive gas generator |
JP2007151331A (ja) * | 2005-11-29 | 2007-06-14 | Mitsubishi Electric Corp | 電力変換装置 |
EP2097920B1 (de) * | 2007-07-23 | 2017-08-09 | TRUMPF Hüttinger GmbH + Co. KG | Plasmaversorgungseinrichtung |
DE102007055010A1 (de) * | 2007-11-14 | 2009-05-28 | Forschungsverbund Berlin E.V. | Verfahren und Generatorschaltung zur Erzeugung von Plasmen mittels Hochfrequenzanregung |
US7679341B2 (en) * | 2007-12-12 | 2010-03-16 | Monolithic Power Systems, Inc. | External control mode step down switching regulator |
CN101488712B (zh) * | 2008-01-15 | 2011-01-26 | 天钰科技股份有限公司 | 电压转换器 |
US8298625B2 (en) * | 2008-01-31 | 2012-10-30 | Applied Materials, Inc. | Multiple phase RF power for electrode of plasma chamber |
US7872523B2 (en) * | 2008-07-01 | 2011-01-18 | Mks Instruments, Inc. | Radio frequency (RF) envelope pulsing using phase switching of switch-mode power amplifiers |
US9362089B2 (en) * | 2010-08-29 | 2016-06-07 | Advanced Energy Industries, Inc. | Method of controlling the switched mode ion energy distribution system |
-
2007
- 2007-10-04 EP EP07817617.9A patent/EP2097920B1/de active Active
- 2007-10-04 WO PCT/DE2007/001775 patent/WO2009012735A1/de active Application Filing
- 2007-10-04 DE DE112007003667T patent/DE112007003667A5/de not_active Withdrawn
- 2007-10-04 JP JP2010517262A patent/JP5606312B2/ja not_active Expired - Fee Related
- 2007-12-20 EP EP07856986A patent/EP2174339B1/de not_active Not-in-force
- 2007-12-20 DE DE112007003213.8T patent/DE112007003213B4/de not_active Expired - Fee Related
- 2007-12-20 AT AT07856986T patent/ATE497251T1/de active
- 2007-12-20 WO PCT/EP2007/011263 patent/WO2009012803A1/de active Application Filing
- 2007-12-20 WO PCT/EP2007/011264 patent/WO2009012804A1/de active Application Filing
- 2007-12-20 DE DE502007006404T patent/DE502007006404D1/de active Active
-
2008
- 2008-04-03 WO PCT/EP2008/002657 patent/WO2009012825A1/de active Application Filing
- 2008-04-03 WO PCT/EP2008/002660 patent/WO2009012826A1/de active Application Filing
- 2008-04-03 JP JP2010517277A patent/JP5371978B2/ja active Active
- 2008-04-03 DE DE112008000106.5T patent/DE112008000106B4/de active Active
- 2008-04-03 EP EP08748861A patent/EP2097921B1/de active Active
- 2008-06-11 WO PCT/EP2008/004650 patent/WO2009012848A1/de active Application Filing
- 2008-06-11 DE DE112008000105.7T patent/DE112008000105B4/de not_active Expired - Fee Related
- 2008-06-11 DE DE112008000092.1T patent/DE112008000092B4/de active Active
- 2008-06-11 WO PCT/EP2008/004651 patent/WO2009012849A1/de active Application Filing
- 2008-06-27 WO PCT/EP2008/005241 patent/WO2009012863A1/de active Application Filing
- 2008-06-27 DE DE112008000115.4T patent/DE112008000115B4/de active Active
- 2008-06-30 DE DE112008000120.0T patent/DE112008000120B4/de active Active
- 2008-06-30 WO PCT/EP2008/005313 patent/WO2009012866A1/en active Application Filing
- 2008-06-30 AT AT08784577T patent/ATE545945T1/de active
- 2008-06-30 WO PCT/EP2008/005318 patent/WO2009012868A1/de active Application Filing
- 2008-06-30 WO PCT/EP2008/005314 patent/WO2009012867A2/en active Application Filing
- 2008-06-30 EP EP08784577A patent/EP2174337B1/de active Active
- 2008-06-30 DE DE112008000107T patent/DE112008000107A5/de not_active Withdrawn
- 2008-07-02 US US12/166,963 patent/US8129653B2/en active Active
- 2008-07-22 US US12/177,809 patent/US8466622B2/en not_active Expired - Fee Related
- 2008-07-22 EP EP12004116A patent/EP2511940A3/de not_active Withdrawn
- 2008-07-22 WO PCT/EP2008/005991 patent/WO2009012973A2/de active Application Filing
- 2008-07-22 WO PCT/EP2008/005987 patent/WO2009012969A2/de active Application Filing
- 2008-07-22 DE DE112008000095.6T patent/DE112008000095B4/de active Active
- 2008-07-22 US US12/177,818 patent/US8222885B2/en active Active
- 2008-07-22 DE DE112008000104.9T patent/DE112008000104B4/de active Active
- 2008-07-22 EP EP08784945A patent/EP2174338B1/de active Active
- 2008-07-22 WO PCT/EP2008/005980 patent/WO2009012966A1/de active Application Filing
- 2008-07-22 JP JP2010517313A patent/JP5631208B2/ja active Active
- 2008-07-22 WO PCT/EP2008/005992 patent/WO2009012974A1/de active Application Filing
- 2008-07-23 US US12/178,414 patent/US8154897B2/en active Active
- 2008-07-23 US US12/178,372 patent/US8357874B2/en active Active
-
2010
- 2010-01-11 US US12/685,142 patent/US8436543B2/en active Active
- 2010-01-12 US US12/686,023 patent/US8421377B2/en active Active
- 2010-01-14 US US12/687,483 patent/US8482205B2/en active Active
- 2010-01-22 US US12/692,246 patent/US8643279B2/en active Active
-
2013
- 2013-03-21 US US13/848,319 patent/US8866400B2/en active Active
-
2014
- 2014-01-14 US US14/154,400 patent/US20140125315A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5363020A (en) * | 1993-02-05 | 1994-11-08 | Systems And Service International, Inc. | Electronic power controller |
US6365868B1 (en) * | 2000-02-29 | 2002-04-02 | Hypertherm, Inc. | DSP based plasma cutting system |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011087106A1 (de) | 2011-11-25 | 2013-05-29 | Hüttinger Elektronik Gmbh + Co. Kg | Hochfrequenz-Klasse-D-MOSFET-Verstärkermodul |
WO2013075706A2 (de) | 2011-11-25 | 2013-05-30 | Hüttinger Elektronik Gmbh + Co. Kg | Hochfrequenz-klasse-d-mosfet-verstärkermodul |
DE102011087807A1 (de) * | 2011-12-06 | 2013-06-06 | Hüttinger Elektronik Gmbh + Co. Kg | Ausgangsnetzwerk für eine Plasmaversorgungseinrichtung |
DE102011087807B4 (de) * | 2011-12-06 | 2015-11-12 | TRUMPF Hüttinger GmbH + Co. KG | Ausgangsnetzwerk für eine Plasmaversorgungseinrichtung und Plasmaversorgungseinrichtung |
CN107450645A (zh) * | 2017-09-07 | 2017-12-08 | 武汉驭波科技有限公司 | 射频电源 |
US20210274630A1 (en) * | 2019-04-16 | 2021-09-02 | Atmospheric Plasma Solutions, Inc. | Waveform detection of states and faults in plasma inverters |
US11641709B2 (en) * | 2019-04-16 | 2023-05-02 | Atmospheric Plasma Solutions, Inc. | Waveform detection of states and faults in plasma inverters |
US20230363078A1 (en) * | 2019-04-16 | 2023-11-09 | Atmospheric Plasma Solutions, Inc. | Waveform detection of states and faults in plasma inverters |
US11974385B2 (en) | 2019-04-16 | 2024-04-30 | Atmospheric Plasma Solutions, Inc. | Waveform detection of states and faults in plasma inverters |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2097921B1 (de) | Hochfrequenzstromversorgungsanordnung, insbesondere eine plasmaversorgungseinrichtung und verfahren zum betreiben einer hochfrequenzstromversorgungseinrichtung | |
EP1968188B1 (de) | Klasse-D Verstärkeranordnung | |
EP3579409B1 (de) | Hochfrequenzverstärkeranordnung | |
DE10161743B4 (de) | Hochfrequenzanregungsanordnung | |
EP1701376A1 (de) | Vakuumplasmagenerator | |
DE102011123093B4 (de) | Integrierte schaltkreisbaugruppen mit reduzierter parasitärer schleifeninduktivität sowie verfahren zu deren herstellung und deren betrieb | |
EP3361836A1 (de) | Niederinduktive halbbrückenanordnung | |
DE4302056A1 (de) | Resonanter Wechselrichter | |
DE3942560C2 (de) | Hochfrequenz-Generator für einen Plasma erzeugenden Verbraucher | |
WO2002015375A1 (de) | Energieversorgungseinheit zur übertragung von hilfsenergie für eine elektrische anordnung | |
DE212009000146U1 (de) | Modul für eine Plasmaversorgungseinrichtung und Plasmaversorgungseinrichtung | |
DE102011087807B4 (de) | Ausgangsnetzwerk für eine Plasmaversorgungseinrichtung und Plasmaversorgungseinrichtung | |
DE212009000140U1 (de) | Plasmaversorgungseinrichtung | |
DE102019202728A1 (de) | Schaltungsanordnung zur Ansteuerung einer elektrischen Maschine | |
DE102010063046A1 (de) | Verfahren zur Bestimmung der Verzögerung bei der Ansteuerung eines Halbleiterschalters | |
DE102009010753B4 (de) | Verfahren zur Bestimmung des Schaltzeitpunkts eines Halbleiterschalters | |
AT524691B1 (de) | G leichspannungswandler | |
DE102014221568A1 (de) | Transformator und Verfahren zum Betrieb eines Transformators | |
DE102018203167A1 (de) | Spannungswandler | |
EP2760103A1 (de) | Symmetrieren von Kondensatorspannungen in einer Reihenschaltung von Kondensatoren | |
DE202010016732U1 (de) | Plasmaversorgungseinrichtung | |
DE102017208111A1 (de) | Oszillatorschaltung zur induktiven Energieübertragung | |
DE102016202509A1 (de) | Vertikaler Aufbau einer Halbbrücke | |
EP1033807A1 (de) | Energiewandler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08748861 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008748861 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010517277 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |