WO2008133342A1 - ポリカ-ボネ-ト樹脂組成物 - Google Patents

ポリカ-ボネ-ト樹脂組成物 Download PDF

Info

Publication number
WO2008133342A1
WO2008133342A1 PCT/JP2008/058298 JP2008058298W WO2008133342A1 WO 2008133342 A1 WO2008133342 A1 WO 2008133342A1 JP 2008058298 W JP2008058298 W JP 2008058298W WO 2008133342 A1 WO2008133342 A1 WO 2008133342A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
resin composition
formula
represented
Prior art date
Application number
PCT/JP2008/058298
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Miyake
Masami Kinoshita
Mizuho Saito
Katsuhiko Hironaka
Eiichi Kitazono
Akimichi Oda
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to CN2008800133557A priority Critical patent/CN101668813B/zh
Priority to US12/597,135 priority patent/US8008381B2/en
Priority to EP08740966A priority patent/EP2141202B1/en
Priority to JP2009511923A priority patent/JP5323688B2/ja
Priority to KR1020097020460A priority patent/KR101460825B1/ko
Publication of WO2008133342A1 publication Critical patent/WO2008133342A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • C08G64/0216Aliphatic polycarbonates saturated containing a chain-terminating or -crosslinking agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/186Block or graft polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/305General preparatory processes using carbonates and alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Definitions

  • the present invention relates to a resin composition containing a polycarbonate resin. More specifically, the present invention relates to a bright resin composition containing a polycarbonate resin made from a biogenic material and having excellent heat resistance, heat stability, moldability, transparency and hue.
  • Polycarbonate resin is a polymer in which aromatic or aliphatic dioxy compounds are linked by carbonic acid ester.
  • polycarbonate resin obtained from 2,2-bis (4-hydroxyphenyl) propane commonly known as bisphenol A
  • PC-A 2,2-bis (4-hydroxyphenyl) propane
  • Polycarbonate resins are generally manufactured using raw materials obtained from petroleum resources.
  • there is concern about the exhaustion of petroleum resources and there is a demand for the practical use of polycarbonate resins using biogenic substances such as plants. Yes.
  • polycarbonate resin strength S using ether diol obtained from carbohydrates as a raw material has been studied. For example, the following formula (a)
  • the ether diol shown in is easily made from sugars and starch. There are three known stereoisomers of this ether diol. Specifically, the following formula (b)
  • isosorbide 6-dianhydro 1-D-sorbitol
  • Isosorbide, isomannide and isoidid are obtained from D-glucose, D-mannose and L-idose, respectively.
  • isosorbide can be obtained by hydrogenating D-glucose and then dehydrating it using an acid catalyst. So far, among the above-mentioned ether diols, in particular, the ability to incorporate into polypolyone using mainly isosorbide as a monomer has been studied. In particular, isosorbide homopolypone is described in Patent Documents 1 and 2 and Non-Patent Documents 1 and 2, respectively.
  • Patent Document 1 proposes a homopolycarbonate resin having a melting point of 20 ° C. obtained by a melt transesterification method.
  • Non-Patent Document 1 also discloses a homopolyester having a glass transition temperature of 16.6 ° C obtained by a melt transesterification method using zinc acetate as a catalyst.
  • a strong Ponate resin has been proposed.
  • This polycarbonate resin has a thermal decomposition temperature (5% weight loss temperature) of 283 ° C., and its thermal stability is not sufficient.
  • Non-Patent Document 2 proposes a method of producing a homopolycarbonate resin by interfacial polymerization using isosorbide bischloroformate. However, the resulting polystrength polyester resin has a glass transition temperature of 144 ° C and is not sufficiently heat resistant.
  • Patent Document 2 proposes a polycarbonate resin having a glass transition temperature of 170 ° C or higher.
  • Patent Document 1 British Patent Application Publication No. 1079686
  • Patent Document 2 International Publication No. 2007/013463 Pamphlet
  • Non-Patent Document 1 "Jou rna l o f App l i e d Po l i e m e Sci enc e", 2002, Vol. 86, p. 872—880
  • Non-Patent Document 2 “Macro omo 1 e c u 1 e s”, 1996, Vol. 29, p. 8077-8082 Disclosure of the Invention
  • an object of the present invention is to provide a resin composition excellent in heat resistance, thermal stability, moldability, hue and transparency. Another object of the present invention is to provide a molded article comprising a resin composition.
  • the present inventor has developed a polyphenol-based resin derived from a saccharide (component A), a heat stabilizer (S component), a phosphorus heat stabilizer (PS) and a hindered phenol heat stabilizer (HS), It was found that a resin composition excellent in heat resistance, thermal stability, hue, and transparency can be obtained by containing at least one compound selected from the group consisting of:
  • At least one compound selected from the group consisting of a nitrogen-containing basic compound, an alkali metal compound, and an alkaline earth metal compound is used as a polymerization catalyst. And found that a carbohydrate-derived polycarbonate resin (component A) having excellent heat resistance, heat stability and moldability can be obtained. Further, when this polycarbonate resin (component A) contains at least one compound selected from the group consisting of a phosphorus-based heat stabilizer (PS) and a hindered phenol-based heat stabilizer (HS) as a heat stabilizer, The present inventors have found that a resin composition having excellent properties, thermal stability, hue, and transparency can be obtained.
  • PS phosphorus-based heat stabilizer
  • HS hindered phenol-based heat stabilizer
  • a resin composition excellent in releasability can be obtained without adding a separate release agent by substituting the terminal of a carbohydrate-derived polycarbonate resin (component A) with a group having a specific structure.
  • the present invention is based on the fact that 100 parts by weight of a polycarbonate resin (component A) mainly containing a repeating unit represented by the following formula (1) is phosphorous heat stabilizer (PS) and hindered phenol heat stability.
  • this invention is a molded article which consists of this resin composition.
  • the polycarbonate resin (component A) used in the present invention is mainly represented by the following formula (1)
  • the repeating unit represented by these is contained.
  • Content of repeating unit represented by formula (1) Is preferably 90 to 100 mol%, more preferably 95 to 100 mol%, and still more preferably 98 to 100 mol%.
  • Particularly preferred is a homopolypolyester resin consisting only of repeating units of the formula (1).
  • the repeating unit represented by the formula (1) is a unit derived from isosorbide (1, 4; 3, 6-dianhydro-D-sorbi) ⁇ ).
  • the other repeating unit is preferably a unit derived from an aliphatic diol or an aromatic bisphenol.
  • the content of other repeating units is preferably 10 to 0 mol%, more preferably 5 to 0 mol%, still more preferably 2 to 0 mol%.
  • the aliphatic diol an aliphatic diol having 2 to 20 carbon atoms is preferable, and an aliphatic diol having 3 to 15 carbon atoms is more preferable. Specific examples include 1,3-propanediol and 1,4-butanediol.
  • Aromatic bisphenols include 2,2-bis (4-hydroxyphenyl) propane (commonly known as “bisphenol A”), 1,1 bis (4-hydroxyphenyl) cyclohexane, 1,1 Bis (4-hydroxyphenyl) 1,3,5,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) 1,4-methylpentane, 1,1 And bis (4-hydroxyphenyl) decane.
  • Polycarbonate resin (component A) has a lower limit of the specific viscosity at 20 ° C of a solution of 0.7 g of resin dissolved in 100 ml of methylene chloride, preferably 0.20, more preferably 0.22.
  • the upper limit is preferably 0.45 force S, more preferably 0.37, and still more preferably 0.34.
  • the specific viscosity is lower than 0.20, it becomes difficult to give the molded product obtained from the resin composition of the present invention sufficient mechanical strength.
  • the specific viscosity is higher than 0.445, the melt fluidity becomes too high and the melting temperature having the fluidity necessary for molding becomes higher than the decomposition temperature, which is not preferable.
  • the specific viscosity is preferably 0.20 to 0.45.
  • Polycarbonate resin (component A) has a melt viscosity measured at 250 ° C at 250 ° C with a share rate of 60 0 se C— 1 0.4X 1 0 3 ⁇ 2. Is preferably in the range of 4X 10 3 P a ⁇ s, more preferably within a range of 0. 4X 10 3 ⁇ 1. 8X 1 0 3 Pa ⁇ s. When the melt viscosity is within this range, the mechanical strength is excellent, and when molding using the resin composition of the present invention, there is no generation of silver during molding, which is good.
  • the lower limit of the glass transition temperature (Tg) of the polystrength Ponate resin (component A) is preferably 150 ° C, more preferably 155 ° C, and the upper limit is preferably 200 ° C, more preferably 190 ° C. ° C, more preferably 168 ° C, and particularly preferably 165 ° C or less.
  • the glass transition temperature (Tg) is preferably 150 to 200 ° C. When Tg is less than 150 ° C, the heat resistance (particularly heat resistance due to moisture absorption) is poor, and when it exceeds 200 ° C, the melt fluidity during molding using the resin composition of the present invention is poor. Tg is measured by DSC (model DSC291 0) manufactured by TA Instrunumes.
  • the lower limit of the 5% weight loss temperature (Td) of the polycarbonate resin (component A) is preferably 330 ° C, more preferably 340 ° C, more preferably 350 ° C, and the upper limit is preferably 400 ° C. More preferably, it is 390 ° C, and more preferably 380 ° C.
  • the 5% weight loss temperature (Td) is preferably 330 to 400 ° C. It is preferable that the 5% weight loss temperature is within the above range since there is almost no decomposition of the resin when molding using the resin composition of the present invention.
  • the 5% weight loss temperature (Td) is measured with a TGA (model TGA2950) manufactured by TA I n s t r ume nts.
  • the content of biogenic substances measured according to ASTM D6866 05 of polycarbonate resin (component A) is 50 to 100%, preferably 70 to 100%, more preferably 83 to 100%, and still more preferably. Is 84-100%. (Terminal group)
  • the polystrength Ponate resin (component A) used in the present invention is represented by the following formula (2) or The ability to contain end groups represented by (3)
  • R 1 is an alkyl group having 4 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, a perfluoroalkyl group having 4 to 30 carbon atoms, or Following formula (4)
  • the number of carbon atoms of the alkyl group for R 1 is preferably 4-22, more preferably 8-22.
  • the alkyl group include a hexyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a pendedecyl group, a hexadecyl group, and a octadecyl group.
  • the number of carbon atoms of the aralkyl group of R 1 is preferably 8-20, more preferably 10-20.
  • Examples of the aralkyl group include benzyl group, phenethyl group, methylbenzyl group, 2-phenylpropane-2-yl group, and diphenylmethyl group.
  • the number of carbon atoms of the perfluoroalkyl group of R 1 is preferably 4-20.
  • 4,4,5,5,6,6,7,7,7-nonafluoro-heptyl group, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9 , 9, 9—Tride decafluoronyl group, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 11 Ndecyl group can be mentioned.
  • R 2 , R 3 , R 4 , R 5 and R 6 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, or the number of carbon atoms.
  • alkyl group having 1 to 10 carbon atoms in the formula (4) include a methyl group, an ethyl group, a propyl group, a butyl group, and a heptyl group.
  • Examples of the cycloalkyl group having 6 to 20 carbon atoms include a cyclohexyl group, a cyclooctyl group, a cyclohexyl group, and a cyclodecyl group.
  • Examples of the alkenyl group having 2 to 10 carbon atoms include ethenyl group, propenyl group, butenyl group, heptenyl group and the like.
  • Examples of aryl groups having 6 to 10 carbon atoms include phenyl, tolyl, dimethylphenyl, and naphthyl groups.
  • Examples of the aralkyl group having 7 to 20 carbon atoms include benzyl group, phenethyl group, methylbenzyl group, 2-phenylpropane-1-yl group, and diphenylmethyl group.
  • R 2 , R 3 , R 4 , R 5 and R 6 are each independently a group consisting of an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 10 carbon atoms. It is preferably at least one group selected from In particular, it is preferably at least one group independently selected from the group consisting of a methyl group and a phenyl group.
  • b is an integer of 0 to 3, preferably an integer of 1 to 3, more preferably an integer of 2 to 3.
  • c is an integer of 4 to 100, more preferably an integer of 4 to 50, and still more preferably an integer of 8 to 50.
  • X in the formula (3) represents at least one bond selected from the group consisting of a single bond, an ether bond, a thioether bond, an ester bond, an amino bond, and an amide bond.
  • X is preferably at least one bond selected from the group consisting of a single bond, an ether bond and an ester bond. Of these, single bonds and ester bonds are preferred.
  • a is an integer of 1 to 5, more preferably an integer of 1 to 3, and still more preferably 1.
  • the terminal group represented by the above formula (2) or (3) is preferably derived from a biogenic substance.
  • biogenic substances include long-chain alkyl alcohols having 14 or more carbon atoms, such as sebutanol, stearyl alcohol, and behenyl alcohol.
  • the content of the end group represented by the formula (2) or (3) is 0.3 to 9% by weight, preferably 0.3 to 7.5% by weight, more preferably 0.5%, based on the polymer main chain. 5 to 6% by weight.
  • the resin composition containing the polystrength monoponate resin (component A) having the above-mentioned end groups is excellent in releasability, and the necessity for adding a release agent is low. For this reason, there is no fear of coloring due to scratches during molding with a release agent.
  • Poly-strength Ponate resin (component A) has a biogenic substance content measured according to AS TM D6866 05 of 50% to 100%, preferably 83% to 100%, resin 0.7 g
  • the specific viscosity at 20 ° C of a solution in which 100 ml of methylene chloride is dissolved is 0.20 to 0.45
  • the glass transition temperature (T g) is 150 to 200 ° C
  • the 5% weight loss temperature (Td) is preferably 330 to 400 ° C.
  • Polycarbonate resin (component A) is represented by the following formula (a)
  • isosorbide isomannide, and isoidid.
  • saccharide-derived ether diols are also obtained from natural biomass and are one of the so-called renewable resources.
  • Isosorbide is obtained by hydrogenating D-glucose obtained from starch and then dehydrating it.
  • Other ether diols can be obtained by the same reaction except for the starting materials.
  • isosorbide (1,4; 3,6-dianhydro-D-sorbyl) represented by the formula (b) is particularly preferable.
  • Isosorbide is an ether diol that can be easily made from starch, etc., and can be obtained in abundant resources.
  • isomannide is easy to manufacture, has properties, and has a wider range of applications than isoidid. Is excellent.
  • copolymerized with other aliphatic diols or aromatic bisphenols may be copolymerized with other aliphatic diols or aromatic bisphenols as long as the properties of the polycarbonate resin are not impaired.
  • the copolymerization ratio of such other aliphatic dials or aromatic bisphenols is preferably 5 to 0 mol%, more preferably 2 to 0 mol%.
  • an aliphatic diol having 2 to 20 carbon atoms is preferable, and an aliphatic diol having 3 to 15 carbon atoms is more preferable.
  • linear diols such as 1,3-propanediol, 1,4 monobutanediol, 1, ⁇ monopentanediol, 1,6 monohexane diol, cyclohexanediol, cyclohexane
  • alicyclic alkylenes such as xanthanimethanol and the like are mentioned, and among them, 1,3-propandiol, 1,4-monobutanediol, 1,6-hexanediol, and cyclohexanediol are preferred.
  • Aromatic bisphenols include 2,2-bis (4-hydroxyphenyl) puff bread (commonly called “bisphenol ⁇ ”), 1, 1 bis (4-hydroxyphenyl) Cyclohexane, 1, 1 bis (4-hydroxyphenyl) 1, 3, 3, 5-trimethylcyclohexane, 4, 4 '— (m-phenylene diisopropylidene) diphenol, 9, 9 bis (4-hydroxy-1-methylphenyl) fluorene, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxy-1-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) ) 4-methylpentane, 1,1-bis (4-hydroxyphenyl) decane, 1,3-bis ⁇ 2- (4-hydroxyphenyl) propyl ⁇ benzen and the like.
  • other diol residues may be included, and examples thereof include aromatic diols such as dimethanol benzene and diethanol benzene.
  • the polycarbonate resin (component A) containing a terminal group represented by the formula (2) or (3) is used with respect to the ether diol, carbonic acid diester and ether diol represented by the formula (a).
  • a melt compound that is mixed with a hydroxy compound represented by the following formula (e) or (f) and distills alcohol or phenol produced by transesterification under high temperature and reduced pressure. Can be obtained by performing.
  • Examples of the carbonic acid diester include esters such as aryl groups or aralkyl groups having 6 to 12 carbon atoms which may be substituted with hydrogen atoms, or alkyl groups having 1 to 4 carbon atoms.
  • Specific examples include diphenyl carbonate, bis (diphenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, jetyl carbonate, and dibutyl carbonate. But in terms of reactivity and cost Lucaponate is preferred.
  • the amount of the carbonic acid diester is preferably 1.02 to 0.98 mol, more preferably 1.01 to 0.98 mol, and even more preferably 1.0 1 to 0 mol per mol of the ether diol. 9 9 moles. If the molar ratio of the carbonic acid diester is more than 1.02, it is not preferable because the carbonic acid ester residue acts as a terminal block and a sufficient degree of polymerization cannot be obtained. Even when the molar ratio of carbonic acid diester is less than 0.98, a sufficient degree of polymerization cannot be obtained, which is not preferable.
  • Melt polymerization can be carried out by mixing ether diol and carbonic acid diester in the presence of a polymerization catalyst and distilling alcohol or phenol produced by transesterification under high temperature and reduced pressure.
  • the reaction temperature is preferably as low as possible in order to suppress the decomposition of the ether diol and obtain a highly viscous resin with little coloration.
  • the polymerization temperature is 1 8 0 to allow the polymerization reaction to proceed appropriately.
  • the force S is preferably in the range of ° C to 280 ° C, more preferably in the range of 180 ° C to 260 ° C.
  • the polymerization catalyst it is preferable to use at least one selected from the group consisting of a nitrogen-containing basic compound, an alkali metal compound, and an alkaline earth metal compound.
  • the alkali metal compound include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, sodium salt or potassium salt of divalent phenol.
  • alkaline earth metal compounds include 7K calcium oxide, barium hydroxide, and magnesium hydroxide.
  • Nitrogen-containing basic compounds include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetraptylammonium hydroxide, trimethylamine, and trimethylamine. Ethylamine and the like can be mentioned. These may be used alone or in combination of two or more. Among these, it is preferable to use a nitrogen-containing basic compound and an alkali metal compound in combination.
  • the amount of the polymerization catalyst, to the carbonic acid diester to 1 mole respectively preferably rather the 1 X 1 0 one 9 ⁇ 1 X 1 0- 3 equivalents, more preferably 1 X 1 0- 8 ⁇ 5 X 1 0 — Selected within a range of 4 equivalents.
  • the reaction system is preferably maintained in an atmosphere of a gas that is inert with respect to raw materials such as nitrogen, reaction mixtures, and reaction products. Examples of inert gases other than nitrogen include argon. Furthermore, additives such as antioxidants may be added as necessary.
  • the polystrength Ponate resin (component A) uses at least one compound selected from the group consisting of nitrogen-containing basic compounds, alkali metal compounds, and alkaline earth metal compounds as a polymerization catalyst. a) The ether diol represented by a) and the carbonate diester-forming compound are heated and reacted at normal pressure, and then subjected to melt polycondensation while heating at a temperature of 180 ° C. to 28 ° C. under reduced pressure. it force s preferably one obtained.
  • the C 1 content of the polycarbonate resin (component A) is preferably 0 to 50 ppm, more preferably 0 to 30 ppm, and still more preferably 0 to 10 ppm.
  • the C 1 content of the polycarbonate resin is measured by oxidative decomposition and coulometric titration using a quartz tube combustion method using an all-organic halogen analyzer (T ⁇ X—100 type manufactured by Diain Sturment Co., Ltd.). be able to.
  • the water content of the polycarbonate resin is preferably 0 to 500 ppm, more preferably 0 to 300 ppm.
  • the amount of water in the polycarbonate resin can be measured by a force Luffier one titration method using a moisture vaporizer and a trace moisture measuring device (Miryo Chemical Co., Ltd.).
  • the C 1 content of the polystrength Ponate resin (component A) is 0 to 50 ppm and the water content is 0 to 500 ppm.
  • a resin composition of the present invention is produced by a melt extrusion method or the like using a polycarbonate resin (component A) having a C 1 content and a water content in such a range, a resin composition having a good hue Can be obtained.
  • a polystrength monoponate resin by a melt polymerization method.
  • it is dissolved in a halogen-based solvent and purified by reprecipitation with methanol.
  • a polycarbonate resin it is not preferable to produce a polycarbonate resin by a solution method in which polymerization is carried out in a halogen solvent using an acid binder such as pyridine.
  • an acid binder such as pyridine.
  • the resin composition of the present invention comprises at least one heat stabilizer (S component) selected from the group consisting of a phosphorus heat stabilizer (PS) and a hindered phenol heat stabilizer (HS). 0.5 parts by weight, preferably 0.001 to 0.3 parts by weight, more preferably 0.01 to 0.3 parts by weight.
  • S component selected from the group consisting of a phosphorus heat stabilizer (PS) and a hindered phenol heat stabilizer (HS).
  • the resin composition of the present invention preferably contains a phosphorous heat stabilizer (PS).
  • PSD phosphorous heat stabilizer
  • the phosphorus-based heat stabilizer (PS) is preferably a compound having a structure represented by the following formula (5).
  • R 7 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, particularly a hydrogen atom, a methyl group, An isopropyl group, an isobutyl group, a tert-butyl group, or a tert-pentyl group is preferred.
  • R 8 is an alkyl group having 4 to 10 carbon atoms, preferably an alkyl group having 4 to 6 carbon atoms, particularly preferably an isobutyl group, a tert-butyl group, a tert-pentyl group, or a cyclohexyl group.
  • R 9 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms.
  • the phosphorus-based heat stabilizer is composed of compounds represented by the following formulas (6), (7) and (8): At least one compound selected from the group is preferred.
  • Preferred examples of the above formula (6) include ⁇ ris (2-isobutylphenyl) phosphate, tris (2-tert-butylphenyl) phosphite, tris (2-tert-pentylphenyl) phosphite, ⁇ ris ( 2-cyclohexylphenyl) phosphite, tris (2, 4-di-tert-butylphenyl) phosphite, tris (2, 6-di-tert-butylphenyl) phosphite, tris (2-tert-butyl-6- Methylphenyl) phosphite.
  • Tris (2,4-ji tert-butylphenyl) phosphite is preferred.
  • Preferred examples of the above formula (7) include tetrakis (2, 4-di-tert- (Ptylphenyl) -4,4'-biphenyl dirange phosphonite, tetrakis (2,4-ji tert-butylphenyl) 1,4,3, bibidiylene phosphonite, tetrakis (2,4-di-tert-butylphenyl) one 3, 3'-biphenylenediphosphonite, tetrakis (2, 6-di-tert-butylphenyl) 1-4, 4-biphenylendiphosphonite, tetrakis (2, 6-ditert-butylphenyl) 1, 4, 3, bibidirange Phosphonite, tetrakis (2, 6-g tert-butylphenyl) 1,3'-biphenyl dirange phosphonite.
  • tetrakis (2,4-di-tert-butylphenyl)
  • X 2 is an alkyl group having 5 to 18 carbon atoms, preferably an alkyl group having 8 to 18 carbon atoms, and particularly preferably an alkyl group having 10 to 18 carbon atoms.
  • dihexyl pen evening erythritol diphosphite Dioctylpentaerythritol I ⁇ Ludiphosphite, dicyclohexylpenite erythritol 1 Rudiphosphite, didecylpentaerythritol 1 Rudiphosphite, didodecylpentaerythritol diphosphite, distearyl pentaerythritol monoludiphosphite, especially distearyl Pentaerythritol diphosphite is preferred.
  • the compound of S component may be one kind or a mixture of two or more kinds.
  • the content of the phosphorus stabilizer (PS) is preferably 0.001 to 0.5 parts by weight, more preferably 0.005 to 0.5 parts by weight per 100 parts by weight of the polycarbonate resin (component A). Parts, more preferably 0.005 to 0.3 parts by weight, particularly preferably 0.01 to 0.3 parts by weight.
  • the phosphorus stabilizer (PS) is within this range, it is possible to suppress a decrease in molecular weight or a deterioration in hue when the resin composition of the present invention is molded.
  • the resin composition of the present invention preferably contains a hindered phenol heat stabilizer (HS).
  • the hindered phenol thermal stabilizer (HS) is preferably a compound containing a structure represented by the following formula (10) (hereinafter referred to as “one X 3 ” group).
  • R 11 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, particularly a methyl group, an ethyl group, or an isopropyl group.
  • An isobutyl group and a tertbutyl group are preferable.
  • R 12 is an alkyl group having 4 to 10 carbon atoms, preferably an alkyl group having 4 to 6 carbon atoms, and particularly preferably an isobutyl group, a tertbutyl group, or a cyclohexyl group.
  • R 13 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, a cycloalkoxy group having 6 to 20 carbon atoms, a carbon atom A group consisting of an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, an aralkyl group having 7 to 20 carbon atoms and an aralkyloxy group having 7 to 20 carbon atoms Is at least one group selected from Hydrogen atom, alkyl group having 1 to 10 carbon atoms, cycloalkyl group having 6 to 20 carbon atoms, alkenyl group having 2 to 10 carbon atoms, aryl group having 6 to 10 carbon atoms, and 7 to 20 carbon atoms Of these, at least one group selected from the group consisting of aralky
  • the hindered phenol thermal stabilizer (HS) is composed of the compounds represented by the following formulas (11), (12) and (13). At least one compound selected from the group is preferred.
  • R 14 is a hydrocarbon group that may contain an oxygen atom having 8 to 30 carbon atoms, more preferably a hydrocarbon group that may contain an oxygen atom having 12 to 25 carbon atoms.
  • a hydrocarbon group which may contain an oxygen atom having 15 to 25 carbon atoms is preferred.
  • Preferred examples of the above formula (11) include octyldecyl-3- (3,5-diter 1: -butyl-4-hydroxyphenyl) propaneone, benzenepropanoic acid 3,5-bis (1, 1 -Dimethylethyl) 4-hydroxyalkyl ester (alkyl has 7 to 9 carbon atoms and side chain), ethylene bis (oxchethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate], Hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate.
  • R 15 is a hydrogen atom or an alkyl group having 1 to 25 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, particularly an alkyl having 1 to 18 carbon atoms. Groups are preferred.
  • m is an integer of 1 to 4, an integer of 1 to 3 is preferable, and 2 is particularly preferable.
  • k is an integer of 1 to 4, 3 to 4 is preferable, and 4 is particularly preferable.
  • Preferable specific examples of the formula (12) include pen erythritol tetrakis [3- (3,5-g-tert-petitul 4-hydroxyphenyl) propionate].
  • “one X 3 ” is a group represented by the formula (10).
  • R 16, R 1 7, R 18 and R 19 are each independently a hydrogen atom or aralkyl Kill group having a carbon number of 1-4, preferably an alkyl group having 1 to 4 carbon atoms, especially methyl force S I like it.
  • p is an integer of 1 to 4, an integer of 1 to 3 is preferable, and 2 is particularly preferable.
  • Preferred examples of formula (13) include 3, 9-bis [2- [3- (3- tert-butyl_4-hydroxy-5_methylphenyl) propiodioxy] 1,1,1-dimethylethyl] —2, 4 , 8, 10-Tetraoxaspiro [5, 5] undecane.
  • Penyu Erythritol Tetrakis [3- (3,5-Di-tert-Petilu 4-Hydroxyphenyl) propionate], Octadecyl 3— (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 3, 9-bis [2- [3- (3- (tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy 1,1-dimethylethyl] 1,2,4,8,10-tetraoxaspiro [5,5] undecane is particularly preferred.
  • Such a hindered phenol heat stabilizer may be one or a mixture of two or more.
  • hindered phenol thermal stabilizer is preferably a compound represented by the following formula (14).
  • R 21 is an alkyl group having 4 to 10 carbon atoms
  • R 22 is an alkyl group having 1 to 10 carbon atoms
  • R 23 and R 24 are independently hydrogen atoms. Selected from the group consisting of an alkyl group having 1 to 10 carbon atoms; an alkyl group having 2 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms.
  • R 25 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or 7 to 20 carbon atoms. And at least one group selected from the group consisting of an optionally substituted acryloyl group and an optionally substituted methacryloyl group.
  • R 21 is an alkyl group having 4 to 10 carbon atoms, preferably an alkyl group having 4 to 6 carbon atoms, particularly an isobutyl group, a tert-butyl group, a tert-pentyl group, or a cyclohexyl group.
  • Xylyl basic strength S is preferred.
  • R 22 is an alkyl group having 1 to 10 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, particularly a methyl group, an ethyl group, an isopropyl group, an isobutyl group, or a tert-butyl group. Is preferred.
  • R 23 and R 24 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or 6 to carbon atoms: an aryl group of L 0 and a carbon atom number of 7 Is at least one group selected from the group consisting of -20 aralkyl groups, preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms, particularly a hydrogen atom, or Alkyl groups having 1 to 10 carbon atoms are preferred.
  • R 25 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, It is at least one group selected from the group consisting of an optionally substituted acryloyl group and an optionally substituted methacryloyl group, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and a carbon number of 7 to Twenty aralkyl groups, an optionally substituted acryloyl group, or an optionally substituted methacryloyl group are preferable, and a hydrogen atom, an acryloyl group, or a methacryloyl group is particularly preferable.
  • hindered phenol thermal stabilizer represented by the formula (14)
  • examples of the hindered phenol thermal stabilizer include 2,2, -methylenebis (6-tert-butyl-4-methylphenol, 2,2′-isopropylidenebis (6- tert-butyl-4-methylphenol, 2-tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) 4-methyl acrylate, 2-tert-pentyl 6- (3-tert-pentyl- 2-Hydroxy-5-methylbenzyl) 1-4-methylphenyl acrylate, 2-tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) 1-4-methylphenyl methacrylate, 2-tert-pentyl 6— (3— tert-pentyl mono 2-hydroxy mono 5-methylbenzyl) mono 4-methylphenyl chloride, 2-— [1— (2-hydroxy-3, 5— -Tert-butylphenyl)
  • Such compounds may be one kind or a mixture of two or more kinds.
  • the content of the hindered phenol-based heat stabilizer (HS) is preferably 0.0005 to 0.1 parts by weight, more preferably 0.001 to 0.000 parts per 100 parts by weight of the polycarbonate resin (component A).
  • HS hindered phenol-based heat stabilizer
  • the resin composition of the present invention may contain a release agent (L component).
  • the mold release agent (L component) used in the present invention is an ester of alcohol and fatty acid.
  • the alcohol include monohydric alcohols and polyhydric alcohols.
  • the number of carbon atoms of the alcohol is preferably 1-25, more preferably 1-20, and even more preferably 1-10.
  • the number of carbon atoms of the fatty acid is preferably 10-30, more preferably 10-20.
  • the fatty acid is preferably a saturated fatty acid.
  • Examples of the L component include esters of monohydric alcohols and fatty acids.
  • An ester of a monohydric alcohol having 1 to 20 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms is preferred.
  • Specific examples include stearyl stearate, palmityl palmitate, butyl stearate, methyl laurate, and isopropyl palmitate.
  • the esterification rate of the release agent (component L) is preferably 10 to 100%, more preferably 25 to 100%, still more preferably 25 to 75%, and particularly preferably 25 to 5%. 0% is used. Use of a release agent having an esterification rate within the above range is preferable in terms of moldability (release property) and transparency.
  • the esterification rate was determined by measuring 1 H-NMR in deuterated chloroform solution using J NM-AL 4 00 made by JEOL, and forming an ester bond in the release agent. Proton (3.6 to 4.0) on carbon bound to an alcohol group not forming an ester bond with a proton on carbon bound to the group (around 4.2 to 5.2 ppm) The ratio of esterification can be obtained from the integral ratio with (ppm).
  • L component examples include partial esters of polyhydric alcohols and fatty acids.
  • the partial ester means that a part of the hydroxyl group of the polyhydric alcohol remains without undergoing ester reaction with the fatty acid.
  • a partial ester of a polyhydric alcohol having 1 to 25 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms is preferred.
  • Examples of the L component include all ester strengths of polyhydric alcohols and fatty acids.
  • the total ester means that all the hydroxyl groups of the polyhydric alcohol are ester-reacted with the fatty acid.
  • Preference is given to all esters of polyhydric alcohols having 1 to 25 carbon atoms and saturated fatty acids having 10 to 30 carbon atoms.
  • the L component is preferably a partial ester of a polyhydric alcohol and a fatty acid, a full ester, or a mixture thereof.
  • the L component is more preferably a monoester of a polyhydric alcohol and a fatty acid. Partial ester of polyhydric alcohol and fatty acid This has the advantage that the transparency of the molded product is higher than that of the mold.
  • partial esters or total esters of polyhydric alcohols and saturated fatty acids include glycerin monostearate, glycerin distearate, glycerin tristearate, glycerin monobehenate, pen erythritol monostearate, pen Evening erythritol distearate, pen evening erythritol 1, monotetrastearate, pentaerythritol tetrapelargonate, propylene glycol monostearate, biphenyl biphenate, sorbitan monostearate, 2-ethyl hexyl stearate, dipentaerythritol) Dipentyl ester such as stearate!
  • glycerol monostearate glycerol distearate, glycerol monobehenate, pentaerythritol] ⁇ one monostearate, pen erythritol 1 ⁇ one distearate, propylene glycol monostearate, Partial esters such as Sorbi evening monostea lei are preferred. More preferred are glycerin monostearate, pen erythritol mono-monostearate, and pen erythritol mono-stearate. In particular, glycerin monostearate is preferred.
  • the L component compound may be one kind or a mixture of two or more kinds.
  • the content of the release agent (component L) is from 0.1 to 0.5 parts by weight, preferably from 0.03 to 0.5 parts by weight, based on 100 parts by weight of the polycarbonate resin (component A). More preferably, it is 0.03 to 0.3 part by weight, and particularly preferably 0.03 to 0.2 part by weight. When the release agent is within this range, it is possible to improve the release property while suppressing the opaqueness.
  • the production method is not particularly limited.
  • a preferred method for producing the resin composition of the present invention is a method of melt-kneading each component using an extruder.
  • a twin-screw extruder is particularly suitable, and an extruder having a vent capable of degassing moisture in the raw material and volatile gas generated from the melt-kneaded resin can be preferably used.
  • a vacuum pump is used to efficiently discharge the generated moisture and volatile gas from the vent to the outside of the extruder. Is preferably installed.
  • the supply method of the S component and other additives (simply referred to as “additive” in the following examples) to the extruder is not particularly limited, but the following methods are typically exemplified.
  • Another premixing method is a method in which a resin and additives are uniformly dispersed in a solvent and then the solvent is removed.
  • the resin composition extruded from the extruder is directly cut into pellets, or after forming the strands, the strands are cut with a pelletizer to be pelletized. Furthermore, when it is necessary to reduce the influence of external dust, it is preferable to clean the atmosphere around the extruder. Furthermore, in the manufacture of such pellets, the pellet shape distribution is narrowed, miscuts are reduced, and transported using various methods already proposed for optical disc polyphonic resin for optical discs and cyclic polyolefin resin for optical discs. Alternatively, it is possible to appropriately reduce the fine powder generated during transportation and reduce the bubbles (vacuum bubbles) generated in the strands and pellets. These formulations can increase the molding cycle and reduce the rate of defects such as silver.
  • the pellet may have a general shape such as a cylinder, a prism, and a sphere, but is more preferably a cylinder.
  • the diameter of such a cylinder is preferably 1 to 5 mm, more preferably 1.5 to 4 mm, and even more preferably 2 to 3.3 mm.
  • the length of the cylinder is preferably 1 to 30 mm, more preferably 2 to 5 m. m, more preferably 2.5 to 3.5 mm.
  • the resin composition of the present invention can be manufactured into various molded products by injection molding the pellets produced as described above.
  • the resin melt-kneaded by an extruder can be directly made into a sheet, film, profile extrusion molded product, direct blow molded product, and injection molded product without going through the pellets.
  • injection molding not only ordinary molding methods but also injection compression molding, injection press molding, gas assist injection molding, foam molding (including supercritical fluid injection), insert molding, depending on the purpose as appropriate. Molded products can be obtained using injection molding methods such as plastic mold molding, heat insulation mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding. The advantages of these various molding methods are already widely known. For molding, either a cold runner method or a hot runner method can be selected.
  • the resin composition of the present invention can also be used in the form of various modified extrusion molded products, sheets, films, and the like by extrusion molding. Inflation, force-rendering, and casting methods can also be used to form sheets and films. Furthermore, it can be formed as a heat-shrinkable tube by applying a specific stretching operation.
  • the resin composition of the present invention can be formed into a molded product by rotational molding or blow molding.
  • a molded article formed from the resin composition of the present invention is excellent in transparency and hue.
  • the haze measured by JISK 7105 of a flat plate having an arithmetic average surface roughness (R a) of 0.03 zm or less and a thickness of 2 mm formed from the resin composition of the present invention is preferably Is 0 to 20%, more preferably 0 to 15%.
  • the b value is preferably in the range of 0 to 14, more preferably in the range of 0 to 13 and even more preferably in the range of 0 to 12.
  • the b value can be measured using a spectrochromator S E—200 (produced by Nippon Denshoku Co., Ltd.) (light source: CZ 2).
  • various function-imparting agents may be added to the resin composition of the present invention, for example, plasticizers, light stabilizers, heavy metal deactivators, flame retardants, lubricants, antistatic agents, UV absorbers and the like.
  • various organic and inorganic fillers, fibers and the like can be used in combination in the resin composition of the present invention depending on the application.
  • the filler include carbon, talc, my strength, wollastonite, montmorillonite, and hyde mouth talcite.
  • the fibers include natural fibers such as kenaf, various synthetic fibers, glass fibers, quartz fibers, and carbon fibers.
  • the resin composition of the present invention includes, for example, polylactic acid, aliphatic polyester, aromatic polyester, aromatic polycarbonate, polyamide, polystyrene, polyolefin, polyacrylic, ABS, polyurethane, and other various biogenic substances. It can also be used by being alloyed with a polymer, a synthetic resin, or rubber.
  • the biogenic substance content rate was measured from the biogenic substance content rate test with the concentration of radioactive carbon (percentm or de rn car bon; C 14).
  • the CI content in the pellets was measured by oxidative decomposition and coulometric titration with a quartz tube combustion method using TOX-100, an all-organic halogen analyzer manufactured by Dia Instruments.
  • the amount of residual water in the pellets was measured by a forceful Fischer one titration method using a moisture vaporizer and a trace moisture measuring device manufactured by Mitsubishi Chemical Corporation.
  • Peretto was dissolved in methylene chloride and the concentration was 15% by weight, and it was placed in a sample tube with a 30 mm path length. Next, it was measured using a color difference meter 30 OA at 20 ° C.
  • the b value is derived from the Hunter's color difference formula based on the tristimulus values X, Y, and ⁇ specified in JISZ 8722. The lower the value, the closer the hue is to colorless.
  • JEOL JNM-AL400 was used to measure 1 H-NMR in pellets in a heavy chloroform solution, and terminal modification was performed based on the integration ratio of specific protons derived from ether diol and terminal hydroxy compounds. The group content was determined. The terminal modification group content was determined from the following formula (1).
  • Terminal modified group content [R t] X X 100 (wt%)
  • Re Composition ratio of ether diol in the main chain determined from iH-NMR integral ratio.
  • Thickness of 3-stage plate (arithmetic mean surface roughness R a; 0.03 m) formed by the method described in the examples. Measurement was performed using 0 (light source: C / 2).
  • the b value is derived from the Hunter's color difference formula from the tristimulus values X, ⁇ , and ⁇ specified in JISZ 8722. The lower the value, the closer the hue is to colorless.
  • Three-stage plate mold (arithmetic mean surface roughness R a;
  • Bending specimens were molded using 75E I I I at a cylinder temperature of 250 ° C and a mold temperature of 90 ° C. The bending test was carried out according to IS 0178.
  • the pressure in the reaction vessel was gradually reduced over 30 minutes, and the pressure was reduced to 13.3 ⁇ 10 3 MPa while distilling off the generated phenol.
  • the temperature was raised to 200 ° C, then the pressure was gradually reduced over 20 minutes, and the methanol was distilled off at 4.00 x 10 to 3 MPa for 20 minutes.
  • the reaction was further performed, and the temperature was raised to 220 ° C. for 30 minutes and then to 250 ° C. for 30 minutes.
  • the resin composition shown in Table 1 was prepared as follows. The ingredients in the proportions shown in Table 1 were weighed and mixed uniformly in the blender. The mixture was dissolved in methylene chloride to a concentration of 15% by weight. The b value of this solution was measured. The evaluation results are shown in Table 1. Examples 12-20
  • the resin composition shown in Table 2 was prepared as follows. Each component in the ratio shown in Table 2 was weighed and mixed uniformly, and the mixture was put into an extruder to prepare a resin composition.
  • a vent type twin screw extruder KZW15-25MG manufactured by Technobel Co., Ltd.
  • the extrusion conditions were a discharge rate of 14 kg / h, a screw rotation speed of 250 rpm, a vacuum pressure of 3 k Pa in the ben bowl, and an extrusion temperature of 250 from the first supply port to the die part to obtain pellets. .
  • the obtained pellets were dried at 100 ° C for 12 hours, and then a mold with a cavity surface with an arithmetic average roughness (Ra) of 0.03 m was used.
  • An injection molding machine [manufactured by Nippon Steel Works, Ltd. J SWJ—75E III], injection molding at cylinder temperature 250 ° C, mold temperature 90 ° C, width 55mm, length 90mm, thickness from the gate side 3mm (length 20mm), 2mm (length A three-stage plate having a thickness of 45 mm) and lmm (length 25 mm) was molded, and the mold release property and the shape of a molded plate having a thickness of 2 mm were visually evaluated. In addition, the hue and Haze of the molded plate were evaluated.
  • the flexural modulus of the molded plate obtained in Example 12 was 3,64 OMPa, the mechanical strength was good, the deflection temperature under load was 151 ° C, and the heat resistance was also excellent. .
  • the raw materials used in Table 1 are as follows.
  • A-1 The polycarbonate resin pellet produced in Reference Example 1 was dried at 100 ° C. for 24 hours before being put into the extruder. The moisture content of the polycarbonate resin pellets after drying was 240 pm.
  • A-2 The polycarbonate resin pellets produced in Reference Example 2 were dried at 100 ° C for 24 hours before being put into the extruder. Polycarbonate after drying The water content of the resin pellet was 180 ppm.
  • A-3 The polycarbonate resin pellet produced in Reference Example 3 was dried for 24 hours at 100 before being put into the extruder. In addition, the water content of the poly strength monoponate resin pellets after drying was 180 ppm.
  • the resin composition of the present invention is excellent in heat resistance, thermal stability, moldability, hue and transparency.
  • the resin composition of the present invention contains a polycarbonate resin obtained by using at least one compound selected from the group consisting of a nitrogen-containing basic compound, an alkali metal compound, and an alkaline earth metal compound as a polymerization catalyst. Therefore, it excels in heat resistance and heat stability.
  • the resin composition of the present invention has a high biogenic substance content.
  • the molded product of the present invention is excellent in heat resistance, thermal stability, hue and transparency. Industrial applicability
  • the molded product of the present invention has good hue, transparency and mechanical properties, optical parts such as optical sheets, optical disks, information disks, optical lenses, prisms, various mechanical parts, building materials It can be widely used for various applications including automobile parts, various resin trays, and tableware.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本発明の目的は、高い生物起源物質含有率を示し、耐熱性、熱安定性、成形性、色相および透明性に優れたポリカーボネート樹脂組成物を提供することにある。 本発明は、主として下記式(1)で表される繰り返し単位を含有するポリカーボネート樹脂(A成分)100重量部に対して、リン系熱安定剤(PS)およびヒンダードフェノール系熱安定剤(HS)からなる群より選ばれる少なくとも一種の熱安定剤(S成分)を0.0005~0.5重量部含有する樹脂組成物およびその成形品である。

Description

ポリカーボネ一ト樹脂組成物
技術分野
本発明は、 ポリカーボネート樹脂を含有する樹脂組成物に関する。 さらに詳し くは生物起源物質を原料とするポリカーボネート樹脂を含有し、 耐熱性、 熱安定 性、 成形性、 透明性、 色相に優れた明樹脂組成物に関する。
細 1
背景技術 書
ポリカーボネート樹脂は、 芳香族もしくは脂肪族ジォキシ化合物を炭酸エステ ルにより連結させたポリマーであり、 その中でも 2 , 2—ビス ( 4—ヒドロキシ フエニル) プロパン (通称ビスフエノール A) より得られるポリカーボネート樹 脂 (以下 「P C— A」 と称することがある) は、 透明性、 耐熱性に優れ、 また耐 衝撃性等の機械特性に優れた性質を有することから多くの分野に用いられている。 一般的にポリカーボネート樹脂は石油資源から得られる原料を用いて製造され るが、 石油資源の枯渴が懸念されており、 植物などの生物起源物質を用いたポリ カーボネート樹脂の実用化が求められている。 そのため、 糖質から得られるエー テルジオールを原料とするポリカーボネート樹脂力 S検討されている。 例えば、 下 記式 ( a )
Figure imgf000002_0001
に示したエーテルジオールは、 糖類およびでんぷんなどから容易に作られる。 こ のエーテルジオールには 3種の立体異性体が知られている。 具体的には下記式 ( b)
Figure imgf000003_0001
に示す、 1, 4 : 3, 6—ジアンヒドロ一 D—ソルビト一ル (本明細書では以下 「イソソルビド」 と呼称する)、 下記式 (c )
Figure imgf000003_0002
こ示す、 1, 4 : 3 , 6—ジアンヒドロ— D—マンニトール (本明細書では以下 「イソマンニド」 と呼称する)、 下記式 (d)
Figure imgf000003_0003
に示す、 1, 4 : 3 , 6—ジアンヒドロー L一イジ! ^一ル (本明細書では以下 「イソイデイツド」 と呼称する) がある。
イソソルビド、 イソマンニド、 イソイデイツドはそれぞれ D—グルコース、 D —マンノース、 L一イドースから得られる。 たとえばイソソルビドの場合、 D— グルコースを水添した後、 酸触媒を用いて脱水することにより得ることができる。 これまで上記のエーテルジオールの中でも、 特に、 モノマーとしてイソソルビ ドを中心に用いてポリ力一ポネートに組み込むこと力 S検討されてきた。 特にイソ ソルビドのホモポリ力一ポネートについては特許文献 1、 2、 非特許文献 1、 2 に記載されている。
特許文献 1には、 溶融エステル交換法により得られた 2 0 3 °Cの融点を持つホ モポリカーボネート樹脂が提案されている。 また非特許文献 1には、 酢酸亜鉛を 触媒とする溶融エステル交換法で得られたガラス転移温度が 1 6 6 °Cのホモポリ 力一ポネート樹脂が提案されている。 このポリカーボネート樹脂は、 熱分解温度 (5%重量減少温度) が 283°Cと熱安定性は充分でない。 また非特許文献 2に は、 イソソルビドのビスクロロフォーメートを用い、 界面重合でホモポリカーボ ネート樹脂を製造する方法が提案されている。 しかし、 得られるポリ力一ポネー ト樹脂は、 ガラス転移温度が 144°Cであり、 耐熱性が充分でない。 また特許文 献 2には、 ガラス転移温度が 170°C以上であるポリカーボネート樹脂が提案さ れている。
しかし、 これらの生物起源物質由来のポリカーボネート樹脂を工業材料として 用いるためには、 (1) 樹脂そのものも耐熱性および熱安定性を向上させること、 (2) 樹脂の成形性を改良すること、 (3) 成形による着色 (黄変) および不透 明化を抑制すること等について検討する必要がある。
(特許文献 1 ) 英国特許出願公開第 1079686号明細書
(特許文献 2) 国際公開第 2007/013463号パンフレツト (非特許文献 1) "J ou rna l o f App l i e d Po l ym e r S c i enc e", 2002年, 第 86巻, p. 872— 880
(非特許文献 2) "Ma c r omo 1 e c u 1 e s ", 1996年, 第 2 9巻, p. 8077-8082 発明の開示
そこで本発明の目的は、 耐熱性、 熱安定性、 成形性、 色相および透明性に優れ た樹脂組成物を提供することにある。 また本発明の目的は、 樹脂組成物からなる 成形品を提供することにある。
本発明者は、 糖質由来のポリ力一ポネート樹脂 (A成分) に、 熱安定剤 (S成 分) としてリン系熱安定剤 (PS) およびヒンダードフエノール系熱安定剤 (H S) 力、らなる群より選ばれる少なくとも一種の化合物を含有させると、 耐熱性、 熱安定性、 色相、 透明性に優れた樹脂組成物が得られることを見出した。
また、 重合触媒として含窒素塩基性化合物、 アルカリ金属化合物およびアル力 リ土類金属化合物からなる群より選ばれる少なくとも一つの化合物を使用するこ とにより、 耐熱性、 熱安定性および成形性に優れた糖質由来のポリカーボネート 樹脂 (A成分) が得られることを見出した。 また、 このポリカーボネート樹脂 (A成分) に、 熱安定剤としてリン系熱安定剤 (PS) およびヒンダードフエノ 一ル系熱安定剤 (HS) からなる群より選ばれる少なくとも一種の化合物を含有 させると、 耐熱性、 熱安定性、 色相、 透明性に優れた樹脂組成物が得られること を見出した。
さらに、 糖質由来のポリカーボネート樹脂 (A成分) の末端を特定構造の基で 置換すると別途離型剤を添加しなくても離型性に優れた樹脂組成物が得られるこ とを見出した。
即ち、 本発明は、 主として下記式 (1) で表される繰り返し単位を含有するポ リカーポネート樹脂 (A成分) 100重量部に対して、 リン系熱安定剤 (PS) およびヒンダードフエノール系熱安定剤 (HS) からなる群より選ばれる少なく とも一種の熱安定剤 (S成分) を 0. 0005〜0. 5重量部含有する樹脂組成 物である。 また本発明は、 該樹脂組成物からなる成形品である。
Figure imgf000005_0001
発明を実施するための最良の形態
以下、 本発明について詳細に説明する。
〈ポリカーボネート樹脂: A成分〉
本発明に用いるポリカーボネート樹脂 (A成分) は、 主として下記式 (1)
Figure imgf000005_0002
で表される繰り返し単位を含有する。 式 (1) で表される繰り返し単位の含有量 は、 好ましくは 90〜1 00モル%、 より好ましくは 9 5〜1 00モル%、 さら に好ましくは 9 8〜100モル%である。 特に好ましくは式 (1) の繰り返し単 位のみからなるホモポリ力一ポネート樹脂である。 式 (1) で表される繰り返し 単位は、 イソソルビド (1, 4; 3, 6—ジアンヒドロー D—ソルビ) ^一ル) 由 来の単位であること力 S、好ましい。
他の繰り返し単位は、 脂肪族ジオールまたは芳香族ビスフエノ一ル由来の単位 であることが好ましい。 他の繰り返し単位の含有量は好ましくは 10〜0モル%、 より好ましくは 5〜0モル%、 さらに好ましくは 2〜0モル%である。 脂肪族ジ オールとしては、 炭素数 2〜20の脂肪族ジオールが好ましく、 炭素数 3〜1 5 の脂肪族ジオールがより好ましい。 具体的には 1, 3—プロパンジオール、 1, 4一ブタンジオールなどが挙げられる。 また芳香族ビスフエノールとしては、 2, 2—ビス (4ーヒドロキシフエニル) プロパン (通称 "ビスフエノール A")、 1, 1一ビス (4—ヒドロキシフエニル) シクロへキサン、 1, 1一ビス (4ーヒド ロキシフエニル) 一 3, 3, 5 -卜リメチルシクロへキサン、 2, 2 -ビス (4 ーヒドロキシー 3—メチルフエニル) プロパン、 2, 2—ビス (4ーヒドロキシ フエニル) 一 4ーメチルペンタン、 1, 1一ビス (4ーヒドロキシフエニル) デ カン等が挙げられる。
(粘度)
ポリカーボネート樹脂 (A成分) は、 樹脂 0. 7 gを塩化メチレン 1 00m l に溶解した溶液の 20 °Cにおける比粘度の下限は、 好ましくは 0. 20、 より好 ましくは 0. 22であり、 また上限は 0. 45力 S好ましく、 より好ましくは 0. 3 7であり、 さらに好ましくは 0. 34である。 比粘度が 0. 20より低くなる と本発明の樹脂組成物より得られた成形品に充分な機械強度を持たせることが困 難となる。 また比粘度が 0·. 45より高くなると溶融流動性が高くなりすぎて、 成形に必要な流動性を有する溶融温度が分解温度より高くなつてしまい好ましく ない。 比粘度は、 好ましくは 0. 20〜0. 45である。
ポリカーボネート樹脂 (A成分) は、 2 50でにおけるキヤピロラリーレオメ 一夕で測定した溶融粘度が、 シェアレート 60 0 s e C—1で 0. 4X 1 03〜2. 4X 103P a · sの範囲にあることが好ましく、 0. 4X 103〜1. 8X 1 03Pa · sの範囲にあることがさらに好ましい。 溶融粘度がこの範囲であると 機械的強度に優れ、 本発明の樹脂組成物を用いて成形する際に成形時のシルバー の発生等が無く良好である。
(ガラス転移温度)
ポリ力一ポネート樹脂 (A成分) のガラス転移温度 (Tg) の下限は、 好まし くは 150°C、 より好ましくは 155°Cであり、 また上限は好ましくは 200°C、 より好ましくは 190°Cであり、 さらに好ましくは 168°Cであり、 特に好まし くは 165°C以下である。 ガラス転移温度 (Tg) は、 好ましくは 150〜20 0°Cである。 Tgが 150°C未満であると耐熱性 (殊に吸湿による耐熱性) に劣 り、 200°Cを超えると本発明の樹脂組成物を用いて成形する際の溶融流動性に 劣る。 Tgは TA I n s t r ume n t s社製 D S C (型式 DSC291 0) により測定される。
(5%重量減少温度)
ポリカーボネート樹脂 (A成分) の 5%重量減少温度 (Td) の下限は、 好ま しくは 330°C、 より好ましくは 340°C、 さらに好ましくは 350°Cであり、 また上限は好ましくは 400°C、 より好ましくは 390°C、 さらに好ましくは 3 80°Cである。 5%重量減少温度 (Td) は、 好ましくは 330〜400°Cであ る。 5%重量減少温度が上記範囲内であると、 本発明の樹脂組成物を用いて成形 する際の樹脂の分解がほとんど無く好ましい。 5%重量減少温度 (Td) は TA I n s t r ume n t s社製 TGA (型式 TGA2950) により測定され る。
(生物起源物質含有率)
ポリカーボネート樹脂 (A成分) の ASTM D6866 05に準拠して測 定された生物起源物質含有率は、 50〜 100%であり、 好ましくは 70〜 10 0%、 より好ましくは 83〜100%、 更に好ましくは 84〜100%である。 (末端基)
本発明に用いるポリ力一ポネート樹脂 (A成分) は、 下記式 (2) または (3) で表される末端基を含有すること力 S好ま
1 ( 2 )
'
( 3 )
Figure imgf000008_0001
式 (2)、 (3) において、 R1は炭素原子数 4〜 30のアルキル基、 炭素原子 数 7〜30のァラルキル基、 炭素原子数 4〜 30のパーフルォロアルキル基、 ま たは下記式 (4)
Figure imgf000008_0002
で表される基である。
R1のアルキル基の炭素原子数は、 好ましくは 4〜22、 より好ましくは 8〜 22である。 アルキル基として、 へキシル基、 ォクチル基、 ノニル基、 デシル基、 ゥンデシル基、 ドデシル基、 ペン夕デシル基、 へキサデシル基、 ォクタデシル基 等が挙げられる。
R1のァラルキル基の炭素原子数は、 好ましくは 8〜20、 より好ましくは 1 0〜20である。 ァラルキル基として、 ベンジル基、 フエネチル基、 メチルベン ジル基、 2—フエニルプロパン— 2—ィル基、 ジフエ二ルメチル基等が挙げられ る。
R1のパーフルォロアルキル基の炭素原子数は好ましくは 4〜 20である。 パ 一フルォロアルキル基として 4, 4, 5, 5, 6, 6, 7, 7, 7—ノナフルォ 口へプチル基、 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 9—トリデ カフルォロノニル基、 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 11一へプ夕デカフルォロウンデシル基など力挙げられる。 式 (4) 中、 R2、 R3、 R4、 R5および R6は夫々独立して、 炭素原子数 1〜 10のアルキル基、 炭素原子数 6〜20のシクロアルキル基、 炭素原子数 2〜1 0のアルケニル基、 炭素原子数 6〜 10のァリール基および炭素原子数 7〜 20 のァラルキル基からなる群より選ばれる少なくとも 1種の基を表す。 式 (4 ) 中の炭素原子数 1〜1 0のアルキル基として、 メチル基、 ェチル基、 プロピル基、 ブチル基、 ヘプチル基等が挙げられる。 炭素原子数 6〜2 0のシク 口アルキル基として、 シクロへキシル基、 シクロォクチル基、 シクロへキシル基、 シクロデシル基等が挙げられる。 炭素原子数 2〜1 0のアルケニル基として、 ェ テニル基、 プロぺニル基、 ブテニル基、 ヘプテニル基等力挙げられる。 炭素原子 数 6〜1 0のァリール基として、 フエニル基、 トリル基、 ジメチルフエニル基、 ナフチル基等が挙げられる。 炭素原子数 7〜2 0のァラルキル基として、 ベンジ ル基、 フエネチル基、 メチルベンジル基、 2—フエニルプロパン一 2—ィル基、 ジフエニルメチル基等が挙げられる。
式 (4 ) 中、 R 2、 R 3、 R 4、 R 5および R 6は、 夫々独立して炭素原子数 1〜 1 0のアルキル基および炭素原子数 6〜1 0のァリール基からなる群から選ばれ る少なくとも一種の基であることが好ましい。 特に夫々独立してメチル基および フェ二ル基からなる群から選ばれる少なくとも一種の基であることが好ましい。 bは 0〜3の整数、 好ましくは 1〜3の整数、 より好ましくは 2〜 3の整数で ある。 cは 4〜1 0 0の整数、 より好ましくは 4〜5 0の整数、 さらに好ましく は 8〜5 0の整数である。
式 (3 ) の Xは、 単結合、 エーテル結合、 チォエーテル結合、 エステル結合、 アミノ結合およびアミド結合からなる群より選ばれる少なくとも 1種の結合を表 わす。 Xは、 好ましくは単結合、 ェ一テル結合およびエステル結合からなる群よ り選ばれる少なくとも一種の結合である。 なかでも単結合、 エステル結合が好ま しい。
aは 1〜5の整数、 より好ましくは 1〜3の整数、 さらに好ましくは 1である。 上記式 (2 ) または (3 ) で表される末端基は、 生物起源物質由来であること が好ましい。 生物起源物質として、 炭素数 1 4以上の長鎖アルキルアルコール、 例えばセ夕ノール、 ステアリルアルコール、 ベへニルアルコールが挙げられる。 式 (2 ) または (3 ) で表される末端基の含有量は、 ポリマー主鎖に対して 0 . 3〜9重量%、 好ましくは 0. 3〜7 . 5重量%、 より好ましくは 0 . 5〜6重 量%である。 上記末端基を有するポリ力一ポネート樹脂 (A成分) を含有する樹脂組成物は、 離型性に優れ、 離型剤を添加する必要性が低い。 そのため、 離型剤による成形時 のャケによる着色の恐れがない。
ポリ力一ポネート樹脂 (A成分) は、 AS TM D6866 05に準拠して 測定された生物起源物質含有率が 50%〜 100%、 好ましくは 83%〜 10 0%であり、 樹脂 0. 7 gを塩化メチレン 100m 1に溶解した溶液の 20°Cに おける比粘度が 0. 20〜0. 45であり、 ガラス転移温度 (T g ) が 150〜 200°Cであり、 且つ 5%重量減少温度 (Td) が 330〜400°Cであること が好ましい。
〈ポリカーボネート樹脂 (A成分) の製造〉
ポリカーボネート樹脂 (A成分) は、 下記式 (a)
Figure imgf000010_0001
で表されるエーテルジオールと炭酸ジエステルとを溶融重合しで製造することが できる。 エーテルジオールとしては、 具体的には下記式 (b)、 (c) および (d)
( b )
Figure imgf000010_0002
Figure imgf000011_0001
で表されるイソソルビド、 イソマンニド、 イソイデイツドなどが挙げられる。 これら糖質由来のエーテルジオールは、 自然界のバイオマスからも得られる物 質で、 再生可能資源と呼ばれるものの 1つである。 イソソルビドは、 でんぷんか ら得られる D—グルコースに水添した後、 脱水を受けさせることにより得られる。 その他のエーテルジオールについても、 出発物質を除いて同様の反応により得ら れる。
エーテルジオールとしては特に、 式 ( b ) で表されるイソソルビド ( 1 , 4 ; 3 , 6ージアンヒドロー D—ソルビ 1 ル) が好ましい。 イソソルビドはでんぷ んなどから簡単に作ることができるエーテルジオールであり資源として豊富に入 手することができる上、 イソマンニドゃイソイディッドと比べても製造の容易さ、 性質、 用途の幅広さの全てにおいて優れている。
また、 ポリカーボネート樹脂の特性を損なわない範囲で、 他の脂肪族ジオール 類または芳香族ビスフエノール類との共重合としても良い。 かかる他の脂肪族ジ オール類または芳香族ビスフエノ一ル類の共重合割合は好ましくは 5〜 0モル%、 より好ましくは 2〜 0モル%である。
脂肪族ジオールとしては、 炭素数 2〜2 0の脂肪族ジオールが好ましく、 炭素 数 3〜1 5の脂肪族ジオールがより好ましい。 具体的には 1, 3 _プロパンジォ ール、 1 , 4一ブタンジオール、 1, δ一ペン夕ンジオール、 1 , 6一へキサン ジオールなどの直鎖状ジオール類や、 シクロへキサンジオール、 シクロへキサン ジメタノールなどの脂環式アルキレン類など力挙げられ、 中でも 1 , 3—プロパ ンジオール、 1, 4一ブタンジオール、 1, 6—へキサンジオール、 およびシク 口へキサンジメ夕ノールが好ましい。
芳香族ビスフエノールとしては、 2, 2—ビス (4ーヒドロキシフエニル) プ 口パン (通称 "ビスフエノール Α")、 1, 1一ビス (4ーヒドロキシフエニル) シクロへキサン、 1, 1一ビス (4ーヒドロキシフエニル) 一3, 3, 5—トリ メチルシクロへキサン、 4, 4' — (m—フエ二レンジイソプロピリデン) ジフ ェノール、 9, 9一ビス (4ーヒドロキシ一 3—メチルフエニル) フルオレン、 2, 2—ビス (4ーヒドロキシー 3—メチルフエニル) プロパン、 2, 2—ビス (4—ヒドロキシ一 3—メチルフエニル) プロパン、 2, 2—ビス (4—ヒドロ キシフエニル) 一 4ーメチルペンタン、 1, 1一ビス (4—ヒドロキシフエ二 ル) デカン、 1, 3—ビス {2— (4ーヒドロキシフエニル) プロピル } ベンゼ ン等が挙げられる。 また、 他のジオール残基を含むこともでき、 例えばジメタノ ールベンゼン、 ジエタノールベンゼンなどの芳香族ジオールなどを挙げることが できる。
また、 式 (2) または (3) で表される末端基を含有するポリカーポネ一ト樹 脂 (A成分) は、 前記式 (a) で表されるエーテルジオールと炭酸ジエステルお よびエーテルジオールに対して 0. 3〜15重量%の下記式 (e) または (f) で表されるヒドロキシ化合物とを混合し、 エステル交換反応によって生成するァ ルコールまたはフエノールを高温減圧下にて留出させる溶融重合を行うことによ つて得ることができる。
HO— R1 e)
Figure imgf000012_0001
(式中、 R1 X、 aは上記式 (2) および (3) と同じである)
(炭酸ジエステル)
炭酸ジエステルとしては、 水素原子が置換されていてもよい炭素数 6〜12の ァリ一ル基またはァラルキル基、 もしくは炭素数 1〜 4のアルキル基などのエス テルが挙げられる。 具体的にはジフエニルカーボネート、 ビス (クロ口フエ二 ル) カーボネート、 m—クレジルカ一ポネート、 ジナフチルカーボネート、 ビス (ジフエニル) カーボネート、 ジメチルカーボネート、 ジェチルカーポネート、 ジブチルカーボネートなどが挙げられ、 なかでも反応性、 コスト面からジフエ二 ルカーポネートが好ましい。
炭酸ジエステルの量は、 エーテルジオール 1モルに対して、 好ましくは 1 . 0 2〜0 . 9 8モル、 より好ましくは 1 . 0 1〜0 . 9 8モル、 さらに好ましくは 1 . 0 1〜0 . 9 9モルである。 炭酸ジエステルのモル比が 1 . 0 2より多くな ると、 炭酸エステル残基が末端封止として働いてしまい充分な重合度が得られな くなつてしまい好ましくない。 また炭酸ジエステルのモル比が 0 . 9 8より少な い場合でも、 充分な重合度が得られず好ましくない。
(溶融重合)
溶融重合は、 重合触媒の存在下、 エーテルジオールと炭酸ジエステルとを混合 し、 エステル交換反応によって生成するアルコールまたはフエノールを高温減圧 下にて留出させることによって行なうことができる。
反応温度は、 エーテルジオールの分解を抑え、 着色が少なく高粘度の樹脂を得 るために、 できるだけ低温の条件を用いることが好ましいが、 重合反応を適切に 進める為には重合温度は 1 8 0 °C〜2 8 0 °Cの範囲であること力 S好ましく、 より 好ましくは 1 8 0 °C〜2 6 0 °Cの範囲である。
また、 反応初期にはェ一テルジオールと炭酸ジエステルとを常圧で加熱し、 予 備反応させた後、 徐々に減圧にして反応後期には系を 1 . 3 X 1 0— 3〜1 . 3 X 1 0— 5M P a程度に減圧して生成するアルコールまたはフエノールの留出を 容易にさせる方法が好ましい。 反応時間は通常 1〜4時間程度である。
(重合触媒)
重合触媒は、 含窒素塩基性化合物、 アルカリ金属化合物およびアルカリ土類金 属化合物からなる群より選ばれる少なくとも一種を用いること力 S好ましい。 アルカリ金属化合物として、 水酸化ナトリウム、 水酸化カリウム、 炭酸ナトリ ゥム、 炭酸カリウム、 炭酸水素ナトリウム、 二価フエノールのナトリウム塩また はカリウム塩等が挙げられる。 アルカリ土類金属化合物として、 7K酸化カルシゥ ム、 水酸化バリウム、 水酸化マグネシウム等が挙げられる。 含窒素塩基性化合物 として、 テ卜ラメチルアンモニゥムヒドロキシド、 テ卜ラエチルアンモニゥムヒ ドロキシド、 テトラプチルアンモニゥムヒドロキシド、 トリメチルァミン、 トリ ェチルァミン等が挙げられる。 これらは単独で使用してもよいし、 2種以上組み 合わせて使用してもよい。 なかでも、 含窒素塩基性化合物とアルカリ金属化合物 とを併用して使用することが好ましい。
これらの重合触媒の使用量は、 それぞれ炭酸ジエステル 1モルに対し、 好まし くは 1 X 1 0一9〜 1 X 1 0— 3当量、 より好ましくは 1 X 1 0— 8〜5 X 1 0— 4当 量の範囲で選ばれる。 また反応系は窒素などの原料、 反応混合物、 反応生成物に 対し不活性なガスの雰囲気に保つことが好ましい。 窒素以外の不活性ガスとして は、 アルゴンなどを挙げることができる。 更に、 必要に応じて酸化防止剤等の添 加剤を加えてもよい。
ポリ力一ポネート樹脂 (A成分) は、 重合触媒として含窒素塩基性化合物、 ァ ルカリ金属化合物およびアル力リ土類金属化合物からなる群より選ばれた少なく とも一つの化合物を使用し、 式 (a ) で表されるエーテルジオールと炭酸ジエス テル形成化合物とを、 常圧で加熱反応させ、 次いで減圧下、 1 8 0 °C〜2 8 0 °C の温度で加熱しながら溶融重縮合させて得られたものであること力 s好ましい。 ポリカ一ポネ一ト樹脂 (A成分) の C 1含有量は、 好ましくは 0〜 5 0 p p m、 より好ましくは 0〜3 0 p p m、 さらに好ましくは 0〜1 0 p p mである。 ポリ カーポネ一ト樹脂の C 1含有量は、 全有機ハロゲン分析装置 ((株) ダイアイン スツルメンッ製 T〇X— 1 0 0型) を用いて石英管燃焼方式による酸化分解 ·電 量滴定により測定することができる。
また、 ポリカーボネート樹脂 (Α成分) の水分含有量は、 好ましくは 0〜5 0 0 p p m、 より好ましくは 0〜3 0 0 p p mである。 ポリカーボネート樹脂中の 水分量は、 水分気化装置および微量水分測定装置 (ミ菱化学 (株) 製) を用いて 力一ルフィッシャ一滴定法にて測定することができる。
従って、 ポリ力一ポネート樹脂 (A成分) の C 1含有量 0〜5 0 p p mで、 か つ水分量 0〜5 0 0 p p mであることが好ましい。 かかる範囲の C 1含有量およ び水分量を有するポリカーボネート樹脂 (A成分) を使用して、 溶融押出法等に より本発明の樹脂組成物を製造する際に、 色相が良好な樹脂組成物を得ることが できる。 C 1含有量をかかる範囲内にするためには、 溶融重合法でポリ力一ポネート樹 脂を製造すること力 S好ましく、 ハロゲン系溶媒に溶解し、 メタノールでの再沈に よる精製を行ったり、 ピリジンなどの酸結合剤を用いて、 ハロゲン系溶媒中にて 重合を行う溶液法によりポリカーポネート樹脂を製造することは好ましくない。 また、 本発明の樹脂組成物を製造する際に、 ポリカーボネート樹脂の水分量を 力かる範囲内にするために、 ポリカーボネート樹脂を乾燥すること力 S好ましい。 乾燥条件としては 100〜 120でで、 10〜 48時間程度が好ましい。
〈熱安定剤: S成分〉
本発明の樹脂組成物は、 リン系熱安定剤 (PS) およびヒンダードフエノール 系熱安定剤 (HS) 力らなる群より選ばれる少なくとも一種の熱安定剤 (S成 分) を 0. 0005〜0. 5重量部、 好ましくは 0. 001〜0. 3重量部、 よ り好ましくは 0. 01〜0. 3重量部含有する。
(リン系熱安定剤 ·· PS)
本発明の樹脂組成物は、 リン系熱安定剤 (PS) を含有することが好ましい。 リン系熱安定剤 (PS) は、 下記式 (5) で表わされる構造を含む化合物力 S好ま しい。
Figure imgf000015_0001
上記式 (5) 中、 R 7は水素原子または炭素原子数 1〜10のアルキル基であ り、 水素原子または炭素原子数 1〜4のアルキル基がより好ましく、 特に水素原 子、 メチル基、 イソプロピル基、 イソブチル基、 t e r t—プチル基、 または t e r t一ペンチル基が好ましい。
R8は炭素原子数 4〜10のアルキル基であり、 炭素原子数 4〜6のアルキル 基が好ましく、 特にイソブチル基、 t e r t一ブチル基、 t e r t—ペンチル基、 またはシク口へキシル基が好ましい。
R 9は水素原子、 炭素原子数 1〜 10のアルキル基、 炭素原子数 1〜 10のァ ルコキシ基、 炭素原子数 6〜20のシクロアルキル基、 炭素原子数 6〜20のシ クロアルコキシ基、 炭素原子数 2〜10のアルケニル基、 炭素原子数 6〜10の ァリール基、 炭素原子数 6〜 10のァリールォキシ基、 炭素原子数 7〜 20のァ ラルキル基および炭素原子数 7〜 20のァラルキルォキシ基からなる群から選ば れる少なくとも 1種の基であり、 水素原子、 炭素原子数 1〜10のアルキル基、 または炭素原子数 6〜10のァリール基が好ましく、 特に水素原子、 または炭素 原子数 1〜: L 0のアルキル基が好ましい。
上記式 (5) で表わされる構造を 「一 X1」 基と表わした時、 リン系熱安定剤 (PS) は、 下記式 (6)、 (7) および (8) で表わされる化合物からなる群よ り選ばれる少なくとも 1種の化合物が好ましい。
X1
P— X1 ( 6 )
X1
Figure imgf000016_0001
上記式 (6) の好ましい具体例として、 卜リス (2—イソブチルフエニル) ホ スフアイト、 トリス (2— t e r t—ブチルフエニル) ホスフアイ卜、 トリス (2 - t e r t一ペンチルフエ二ル) ホスファイト、 卜リス (2—シクロへキシ ルフエニル) ホスファイト、 トリス (2, 4—ジ一 t e r t—ブチルフエニル) ホスファイト、 トリス (2, 6—ジ一 t e r t—ブチルフエニル) ホスファイト、 トリス (2— t e r t—ブチル—6—メチルフエニル) ホスファイトが挙げられ る。 特にトリス (2, 4ージー t e r t—ブチルフエニル) ホスフアイ卜が好ま しい。
上記式 (7) の好ましい具体例として、 テ卜ラキス (2, 4—ジ一 t e r t— プチルフエニル) -4, 4' ービフエ二レンジホスホナイト、 テトラキス (2, 4ージー t e r t—ブチルフエニル) 一 4, 3, 一ビフエ二レンジホスホナイト、 テトラキス (2, 4ージ— t e r t—ブチルフエニル) 一 3, 3 ' ービフエニレ ンジホスホナイト、 テトラキス (2, 6—ジ一 t e r t—ブチルフエニル) 一 4, 4, ービフエ二レンジホスホナイト、 テトラキス (2, 6—ジー t e r t—ブチ ルフエニル) 一4, 3, ービフエ二レンジホスホナイト、 テトラキス (2, 6— ジー t e r t—ブチルフエニル) 一 3, 3 ' ービフエ二レンジホスホナイトが挙 げられる。 特にテトラキス (2, 4ージ一 t e r t—ブチルフエニル) 一 4, 4' ービフエ二レンジホスホナイトが好ましい。
上記式 (8) の好ましい具体例として、 ビス (2— t e r t—ブチルフエ二 ル) ペン夕エリスリ! ^一ルジホスファイト、 ビス (2— t e r t—ペンチルフエ ニル) ペン夕エリスリト一ルジホスファイト、 ビス (2—シクロへキシルフェニ ル) ペン夕エリスリト一ルジホスファイト、 ビス (2, 4ージー t e r t—ブチ ルフエニル) ペンタエリスリトールジホスフアイト、 ビス (2, 6—ジー t e r t—ブチルー 4一メチルフエニル) ペン夕エリスリ 1 ^一ルジホスファイト、 ビス (2, 6—ジ一 t e r t—ブチルー 4一ェチルフエニル) ペンタエリスリトール ジホスファイト、 ビス (ノニルフエニル) ペンタエリスリ ] ^一ルジホスファイト が挙げられる。 特にビス (2, 6—ジー t e r t—ブチル—4一メチルフエ二 ル) ペン夕エリスリ 1 ^一ルジホスフアイ卜が好ましい。
また、 リン系熱安定剤 (PS) として、 下記式 (9) で表わされる化合物を用 いることができる。
Figure imgf000017_0001
式 (9) 中、 X2は炭素原子数 5〜18のアルキル基であり、 炭素原子数 8〜 18のアルキル基が好ましく、 炭素原子数 10〜 18のアルキル基が特に好まし 式 (9) の具体例として、 ジへキシルペン夕エリスリトールジホスフアイト、 ジォクチルペンタエリスリ I ^一ルジホスフアイト、 ジシクロへキシルペン夕エリ スリ 1 ルジホスフアイト、 ジデシルペンタエリスリ 1 ルジホスフアイト、 ジ ドデシルペン夕エリスリトールジホスフアイト、 ジステアリルペンタエリスリト 一ルジホスフアイトが挙げられ、 特にジステアリルペンタエリスリトールジホス ファイトが好ましい。 かかる S成分の化合物は、 1種または 2種以上の混合物で あってもよい。
リン系安定剤 (PS) の含有量は、 ポリカーボネート樹脂 (A成分) 100重 量部に対して、 好ましくは 0. 001〜0. 5重量部、 より好ましくは 0. 00 5〜0. 5重量部、 さらに好ましくは 0. 005〜0. 3重量部、 特に好ましく は 0. 01〜0. 3重量部である。 リン系安定剤 (PS) がこの範囲内にあると、 本発明の樹脂組成物を成形する際の分子量低下や色相悪化などを抑えることがで きる。
(ヒンダードフエノ一ル系熱安定剤: H S )
本発明の樹脂組成物は、 ヒンダードフエノール系熱安定剤 (HS) を含有する ことが好ましい。 ヒンダードフエノール系熱安定剤 (HS) は、 下記式 (10) で表わされる構造 (以下 「一 X3」 基と表わす) を含む化合物であることが好ま しい。
Figure imgf000018_0001
式 (10) 中、 R 11は水素原子または炭素原子数 1〜10のアルキル基であ り、 水素原子または炭素原子数 1〜4のアルキル基がより好ましく、 特にメチル 基、 ェチル基、 イソプロピル基、 イソブチル基、 t e r tブチル基が好ましい。
R12は、 炭素原子数 4~10のアルキル基であり、 炭素原子数 4〜6のアル キル基が好ましく、 特にイソブチル基、 t e r tブチル基、 シクロへキシル基が 好ましい。 R 13は水素原子、 炭素原子数 1〜 10のアルキル基、 炭素原子数 1〜 10の アルコキシ基、 炭素原子数 6〜 20のシクロアルキル基、 炭素原子数 6〜20の シクロアルコキシ基、 炭素原子数 2〜10のアルケニル基、 炭素原子数 6〜10 のァリール基、 炭素原子数 6〜 10のァリールォキシ基、 炭素原子数 7〜 20の ァラルキル基および炭素原子数 7〜20のァラルキルォキシ基からなる群から選 ばれる少なくとも 1種の基である。 水素原子、 炭素原子数 1〜10のアルキル基、 炭素原子数 6〜 20のシクロアルキル基、 炭素原子数 2〜 10のアルケニル基、 炭素原子数 6〜10のァリール基および炭素原子数 7〜20のァラルキル基から なる群から選ばれる少なくとも 1種の基が好ましい。 特に水素原子または炭素原 子数:!〜 10のアルキル基が好ましい。 nは、 1〜4の整数であり、 1〜3の整 数が好ましく、 特に 2が好ましい。
上記式 (10) で表わされる構造を 「一 X3」 基としたとき、 ヒンダードフエ ノール系熱安定剤 (HS) は、 下記式 (11)、 (12) および (13) で表わさ れる化合物からなる群より選ばれた少なくとも 1種の化合物が好ましい。
(式 (11) の化合物)
X3 ~ R14 (I D
式 (11) 中、 R14は炭素原子数 8〜 30の酸素原子を含んでも良い炭化水 素基であり、 炭素原子数 12〜25の酸素原子を含んでも良い炭化水素基がより 好ましく、 特に炭素原子数 15〜 25の酸素原子を含んでも良い炭化水素基が好 ましい。
上記式 (11) の好ましい具体例として、 ォク夕デシルー 3— (3, 5—ジー t e r 1:ーブチルー 4ーヒドロキシフエニル) プロビオネ一卜、 ベンゼンプロパ ン酸 3, 5 -ビス (1, 1ージメチルェチル) 一 4ーヒドロキシアルキルエステ ル (アルキルは炭素数 7〜9で側鎖を有する)、 エチレンビス (ォキシェチレ ン) ビス [3— (5— t e r t—ブチルー 4ーヒドロキシー m—トリル) プロピ ォネート]、 へキサメチレンビス [3— (3, 5—ジ— t e r t—ブチル— 4— ヒドロキシフエニル) プロピオネートが挙げられる。
(式 (12) の化合物)
Figure imgf000020_0001
式 (12) において、 「― X3」 は前記式 (10) で示される基である。
式 (12) において、 R 15は水素原子または炭素原子数 1〜25のアルキル 基であり、 水素原子または炭素原子数 1〜18のアルキル基がより好ましく、 特 に炭素原子数 1〜18のアルキル基が好ましい。 mは 1〜 4の整数であり、 1〜 3の整数が好ましく、 特に 2が好ましい。 kは 1〜4の整数であり、 3〜4が好 ましく、 特に 4が好ましい。 式 (12) の好ましい具体例として、 ペン夕エリス リトールテトラキス [3— (3, 5—ジー t e r t—プチルー 4ーヒドロキシフ ェニル) プロピオネート] が挙げられる。
(式 (13) の化合物)
Figure imgf000020_0002
式 (13) において、 「一 X3」 は式 (10) で示される基である。 R16、 R1 7、 R 18および R 19はそれぞれ独立して水素原子または炭素原子数 1〜 4のアル キル基であり、 炭素原子数 1〜4のアルキル基が好ましく、 特にメチル基力 S好ま しい。 pは 1〜4の整数であり、 1〜3の整数が好ましく、 特に 2が好ましい。 式 (13) の好ましい具体例として、 3, 9—ビス [2— [3- (3- t e r t—ブチル _ 4ーヒドロキシ—5 _メチルフエニル) プロピオ二口キシ] 一 1, 1ージメチルェチル] —2, 4, 8, 10—テトラオキサスピロ [5, 5] ゥン デカンが挙げられる。
式 (11)、 (12)、 (13) で表わされる化合物の中で、 ペン夕エリスリトー ルテトラキス [3— (3, 5—ジ— t e r t—プチルー 4—ヒドロキシフエ二 ル) プロピオネート]、 ォクタデシルー 3— (3, 5—ジー t e r t―ブチルー 4ーヒドロキシフエニル) プロピオネート、 3, 9—ビス [2— [3— (3 - t e r t―ブチルー 4—ヒドロキシ— 5―メチルフエニル) プロピオ二ロキシ Ί 一 1, 1ージメチルェチル] 一 2, 4, 8, 10—テトラオキサスピロ [5, 5] ゥンデカンが特に好ましい。
かかるヒンダードフエノール系熱安定剤 (HS) は、 1種または 2種以上の混 合物であってもよい。
また、 ヒンダードフエノール系熱安定剤 (HS) は、 下記式 (14) で表わさ れる化合物であることが好ましい。
Figure imgf000021_0001
(上記式 (14) において、 R21は炭素原子数 4〜10のアルキル基であり、 R22は炭素原子数 1〜10のアルキル基であり、 R23、 R24はそれぞれ独立し て水素原子、 炭素原子数 1〜; L 0のアルキル基、 炭素原子数 2〜 10のァルケ二 ル基、 炭素原子数 6〜 10のァリール基および炭素原子数 7〜 20のァラルキル 基からなる群から選ばれる少なくとも 1種の基であり、 R25は水素原子、 炭素 原子数 1〜10のアルキル基、 炭素原子数 2〜10のアルケニル基、 炭素原子数 6〜10のァリール基、 炭素原子数 7〜 20のァラルキル基、 置換されていても 良いァクリロイル基および置換されていても良いメタァクリロイル基からなる群 から選ばれる少なくとも 1種の基である。)
式 (14) 中、 R21は炭素原子数 4〜10のアルキル基であり、 炭素原子数 4〜 6のアルキル基が好ましく、 特にイソブチル基、 t e r t—ブチル基、 t e r t一ペンチル基、 またはシクロへキシル基力 S好ましい。
R22は炭素原子数 1〜10のアルキル基であり、 炭素原子数 1〜4のアルキ ル基カ 子ましく、 特にメチル基、 ェチル基、 イソプロピル基、 イソブチル基、 ま たは t e r t一ブチル基が好ましい。 R23、 R 24はそれぞれ独立して水素原子、 炭素原子数 1〜10のアルキル基、 炭素原子数 2〜 10のアルケニル基、 炭素原子数 6〜: L 0のァリール基および炭 素原子数 7〜 20のァラルキル基からなる群から選ばれる少なくとも 1種の基で あり、 水素原子、 炭素原子数 1〜10のアルキル基、 または炭素原子数 6〜 10 のァリール基が好ましく、 特に水素原子、 または炭素原子数 1〜 10のアルキル 基が好ましい。
R 25は水素原子、 炭素原子数 1〜10のアルキル基、 炭素原子数 2〜10の アルケニル基、 炭素原子数 6〜10のァリ一ル基、 炭素原子数 7〜20のァラル キル基、 置換されていても良いァクリロイル基および置換されていても良いメタ ァクリロイル基からなる群から選ばれる少なくとも 1種の基であり、 水素原子、 炭素原子数 1〜10のアルキル基、 炭素原子数 7〜 20のァラルキル基、 置換さ れていても良いァクリロイル基、 または置換されていても良いメタァクリロイル 基が好ましく、 特に水素原子、 ァクリロイル基、 またはメタァクリロイル基が好 ましい。
式 (14) で表わされるヒンダードフエノール系熱安定剤 (HS) の好ましい 具体例として、 2, 2, ーメチレンビス (6- t e r t一ブチル—4ーメチルフ ェノール、 2, 2 ' 一イソプロピリデンビス (6 - t e r tーブチルー 4ーメチ ルフエノール、 2 - t e r tーブチルー 6— (3 - t e r tーブチルー 2—ヒド 口キシー 5—メチルベンジル) 一 4一メチルフエニルァクリレート、 2— t e r t一ペンチルー 6— (3 - t e r t一ペンチルー 2—ヒドロキシー 5—メチルベ ンジル) 一 4一メチルフエニルァクリレート、 2— t e r t—ブチルー 6— (3 - t e r tーブチルー 2—ヒドロキシー 5—メチルベンジル) 一 4一メチルフエ ニルメタクリレート、 2— t e r t—ペンチルー 6— (3— t e r t—ペンチル 一 2—ヒドロキシ一 5—メチルベンジル) 一 4—メチルフエ二ルァクリレー卜、 2— [1— (2—ヒドロキシー 3, 5—ジー t e r t—ブチルフエニル) ェチ ル] 一 4, 6—ジー t e r t—ブチルフエ二ルァクリレ一ト、 2一 [1一 (2- ヒドロキシー 3, 5—ジー t e r t—ペンチルフエ二ル) ェチル ] 一 4, 6—ジ 一 t e r t—ペンチルフエ二ルァクリレート、 2— [1— (2—ヒドロキシー 3, 5ージー t e r t—プチルフエニル) ェチル] 一 4, 6—ジ一 t e r t—ブチル フエニルメタクリレート、 および 2— [1— (2—ヒドロキシ _ 3, 5—ジ一 t e r t—ペンチルフエ二ル) ェチル] 一 4, 6—ジ— t e r t—ペンチルフエ二 ルメ夕クリレートなどが挙げられる。 特に 2— t e r t—ブチルー 6— (3— t e r tーブチル— 2—ヒドロキシー 5—メチルベンジル) 一 4一メチルフエニル ァクリレート、 または 2— [1一 (2—ヒドロキシ一 3, 5—ジ一 t e r t—ぺ ンチルフエニル) ェチル] 一 4, 6—ジー t e r t—ペンチルフエ二ルァクリレ ートカ好ましい。 かかる化合物は、 1種または 2種以上の混合物であってもよい。 ヒンダードフエノール系熱安定剤 (HS) の含有量は、 ポリカーボネート樹脂 ( A成分) 100重量部に対して、 好ましくは 0. 0005〜 0. 1重量部、 よ り好ましくは 0. 001〜0. 1重量部、 さらに好ましくは 0. 005〜0. 1 重量部、 特に好ましくは 0. 01〜0. 1重量部である。 ヒンダードフエノール 系熱安定剤 (HS) がこの範囲内にあると、 本発明の樹脂組成物を成形する際の 分子量低下や色相悪化などを抑えることができる。
〈離型剤: L成分〉
本発明の樹脂組成物は離型剤 (L成分) を含有していてもよい。 本発明で用い る離型剤 (L成分) は、 アルコールと脂肪酸とのエステルである。 アルコールと して、 一価アルコール、 多価アルコールが挙げられる。 アルコールの炭素原子数 は、 好ましくは 1〜25、 より好ましくは 1〜20、 さらに好ましくは 1〜10 である。 脂肪酸の炭素原子数は、 好ましくは 10〜30、 より好ましくは 10〜 20である。 脂肪酸は飽和脂肪酸が好ましい。
L成分として、 一価アルコールと脂肪酸とのエステルが挙げられる。 炭素原子 数 1〜 20の一価アルコールと炭素原子数 10〜 30の飽和脂肪酸とのエステル が好ましい。 具体的には、 ステアリルステアレート、 パルミチルパルミテート、 プチルステアレート、 メチルラウレート、 イソプロピルパルミテート等が挙げら れる。
離型剤 (L成分) のエステル化率は、 好ましくは 10〜100%、 より好まし くは25〜100%、 さらに好ましくは 25〜75%、 特に好ましくは 25〜5 0 %のものが使用される。 エステル化率が上記範囲内の離型剤を使用すると成形 性 (離型性)、 透明性の点で好ましい。
エステル化率は、 J E〇L製J NM— AL 4 0 0を用いて離型剤の重クロロホ ルム溶液中における1 H— NMRを測定し、 離型剤中のエステル結合を形成して いるアルコール基と結合している炭素上のプロトン (4. 2〜5 . 2 p p m付 近) とエステル結合を形成していないアルコール基と結合している炭素上のプロ トン (3 . 6〜4. 0 p p m) との積分比からエステル化率を求めることができ る。
Figure imgf000024_0001
エステル化率 = r r 1 Π~ χ 1 0 °
[ム】 + [/Β】
[ /J :エステル結合を形成しているアルコール基と結合している炭素 上のプロトン (1プロトン分) の積分比
[ ] :エステル結合を形成していないアルコール基と結合している炭素 上のプロトン (1プロトン分) の積分比
L成分として、 多価アルコールと脂肪酸との部分エステルが挙げられる。 ここ で、 部分エステルとは、 多価アルコールの水酸基の一部が脂肪酸とエステル反応 せずに残存しているものを意味する。 炭素原子数 1〜2 5の多価アルコールと炭 素原子数 1 0〜3 0の飽和脂肪酸との部分エステルが好ましい。
L成分として、 多価アルコールと脂肪酸との全エステル力挙げられる。 ここで、 全エステルとは、 多価アルコールの水酸基の全部が脂肪酸とエステル反応してい るものを意味する。 炭素原子数 1〜2 5の多価アルコールと炭素原子数 1 0〜3 0の飽和脂肪酸との全エステルが好ましい。
就中、 L成分は、 多価アルコールと脂肪酸との部分エステル、 全エステルまた はこれらの混合物が好ましい。 L成分は、 多価アルコールと脂肪酸とのモノエス テルがさらに好ましい。 多価アルコールと脂肪酸との部分エステルは、 全エステ ルに比べ成形品の透明性が高くなるという利点を有する。
具体的に多価アルコールと飽和脂肪酸との部分エステルまたは全エステルとし て、 グリセリンモノステアレート、 グリセリンジステアレート、 グリセリントリ ステアレート、 グリセリンモノべへネート、 ペン夕エリスリトールモノステアレ ート、 ペン夕エリスリトールジステアレート、 ペン夕エリスリ 1、一ルテトラステ アレー卜、 ペンタエリスリトールテトラペラルゴネート、 プロピレングリコール モノステアレート、 ビフエ二ルビフエネート、 ソルビタンモノステアレート、 2 —ェチルへキシルステアレート、 ジペンタエリスリ ) ルへキサステアレート等 のジペン夕エリスル! ^一ルの全エステルまたは部分エステル等が挙げられる。 これらのエステルのなかでも、 グリセリンモノステアレート、 グリセリンジス テアレート、 グリセリンモノべへネート、 ペンタエリスリ ] ^一ルモノステアレー ト、 ペン夕エリスリ 1 ^一ルジステアレート、 プロピレングリコールモノステアレ' ート、 ソルビ夕ンモノステアレー卜等の部分エステルが好ましい。 グリセリンモ ノステアレー卜、 ペン夕エリスリ 1 ルモノステアレート、 ペン夕エリスリ i ルジステアレートがより好ましい。 特に、 グリセリンモノステアレートが好まし レ^ かかる L成分の化合物は、 1種または 2種以上の混合物であってもよい。 離型剤 (L成分) の含有量は、 ポリカーボネート樹脂 (A成分) 1 0 0重量部 に対して、 0 . 0 1〜0 . 5重量部、 好ましくは 0 . 0 3〜0 . 5重量部、 より 好ましくは 0 . 0 3〜0 . 3重量部、 特に好ましくは 0 . 0 3〜0 . 2重量部で ある。 離型剤がこの範囲内にあると、 不透明化を抑制しつつ離型性の向上を達成 することができる。
〈樹脂組成物の製造〉
本発明の樹脂組成物の製造に当たっては、 その製造法は特に限定されるもので はない。 しかしながら本発明の樹脂組成物の好ましい製造方法は押出機を用いて 各成分を溶融混練する方法である。
押出機としては特に二軸押出機が好適であり、 原料中の水分や溶融混練樹脂か ら発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。 ベ ントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポン プが好ましく設置される。
また、 押出原料中に混入した異物などを除去するためのスクリーンを押出機ダ イス部前のゾーンに設置し、 異物を樹脂組成物から取り除くことも可能である。 かかるスクリーンとしては金網、 スクリーンチェンジャー、 焼結金属プレート (ディスクフィル夕一など) などを挙げることができる。 „
さらに S成分およびその他添加剤 (以下の例示において単に "添加剤" と称す る) の押出機への供給方法は特に限定されないが、 以下の方法が代表的に例示さ れる。
( i ) 添加剤を A成分の樹脂とは独立して押出機中に供給する方法。
( i i ) 添加剤と A成分の樹脂粉末とをスーパ一ミキサーなどの混合機を用いて 予備混合した後、 押出機に供給する方法。
( i i i ) 添加剤と A成分の樹脂とを予め溶融混練してマスターペレット化する 方法。
( i v ) 他の予備混合の方法として、 樹脂と添加剤を溶媒中に均一分散させた溶 液とした後、 該溶媒を除去する方法。
押出機より押出された樹脂組成物は、 直接切断してペレット化するか、 または ストランドを形成した後かかるストランドをペレタイザ一で切断してべレット化 する。 更に外部の埃などの影響を低減する必要がある場合には、 押出機周囲の雰 囲気を清浄化することが好ましい。 更にかかるペレットの製造においては、 光学 ディスク用ポリ力一ポネート樹脂や光学用環状ポリオレフイン樹脂において既に 提案されている様々な方法を用いて、 ペレットの形状分布の狭小化、 ミスカット 物の低減、 運送または輸送時に発生する微小粉の低減、 並びにストランドやペレ ッ卜内部に発生する気泡 (真空気泡) の低減を適宜行うことができる。 これらの 処方により成形のハイサイクル化、 およびシルバーの如き不良発生割合の低減を 行うことができる。 またペレットの形状は、 円柱、 角柱、 および球状など一般的 な形状を取り得るが、 より好適には円柱である。 かかる円柱の直径は好ましくは l〜5 mm、 より好ましくは 1 . 5〜4mm、 さらに好ましくは 2〜3. 3 mm である。 一方、 円柱の長さは好ましくは 1〜3 0 mm、 より好ましくは 2〜5 m m、 さらに好ましくは 2. 5〜3 . 5 mmである。
〈成形品〉
本発明の樹脂組成物は、 前記の如く製造されたペレツトを射出成形して各種成 形品を製造することができる。 ペレットを経由することなく、 押出機で溶融混練 された樹脂を直接シート、 フィルム、 異型押出成形品、 ダイレクトブロー成形品、 および射出成形品にすることも可能である。
射出成形においては、 通常の成形方法だけでなく、 適宜目的に応じて、 射出圧 縮成形、 射出プレス成形、 ガスアシスト射出成形、 発泡成形 (超臨界流体の注入 によるものを含む)、 インサート成形、 ィンモールドコ一ティング成形、 断熱金 型成形、 急速加熱冷却金型成形、 二色成形、 サンドイッチ成形、 および超高速射 出成形などの射出成形法を用いて成形品を得ることができる。 これら各種成形法 の利点は既に広く知られるところである。 また成形はコールドランナ一方式およ びホットランナー方式のいずれも選択することができる。
また、 本発明の樹脂組成物は、 押出成形により各種異形押出成形品、 シート、 およびフィルムなどの形で利用することもできる。 またシート、 フィルムの成形 にはィンフレーション法や、 力レンダ一法、 キャスティング法なども使用可能で ある。 さらに特定の延伸操作をかけることにより熱収縮チューブとして成形する ことも可能である。 また本発明の樹脂組成物を回転成形やブロー成形などにより 成形品とすることも可能である。
本発明の樹脂組成物により形成された成形品は、 透明性および色相に優れる。 本発明の樹脂組成物より形成された 0 . 0 3 z m以下の算術平均表面粗さ (R a ) を有し、 厚み 2 mmの平板の、 J I S K 7 1 0 5で測定されたヘーズは、 好ましくは 0〜2 0 %、 より好ましくは 0〜1 5 %である。
また該平板において、 b値が 0〜 1 4の範囲が好ましく、 0〜 1 3の範囲がよ り好ましく、 0〜1 2の範囲がさらに好ましい。 b値は日本電色 (株) 製分光彩 計 S E— 2 0 0 0 (光源: CZ 2 ) を用いて測定することができる。
また、 本発明の樹脂組成物には、 用途に応じて各種の機能付与剤を添加しても よく、 例えば可塑剤、 光安定剤、 重金属不活性化剤、 難燃剤、 滑剤、 帯電防止剤、 紫外線吸収剤などである。 さらに、 本発明の樹脂組成物には、 用途に応じて各種 の有機および無機のフイラ一、 繊維などを複合化して用いることもできる。 フィ ラーとしては例えばカーボン、 タルク、 マイ力、 ワラストナイト、 モンモリロナ イト、 ハイド口タルサイトなどを挙げることができる。 繊維としては例えばケナ フなどの天然繊維のほか、 各種の合成繊維、 ガラス繊維、 石英繊維、 炭素繊維な どが挙げられる。
また、 本発明の樹脂組成物には、 例えばポリ乳酸、 脂肪族ポリエステルの他、 芳香族ポリエステル、 芳香族ポリカーボネート、 ポリアミド、 ポリスチレン、 ポ リオレフイン、 ポリアクリル、 ABS、 ポリウレタンなど、 各種の生物起源物質 からなるポリマーならびに合成樹脂、 ゴムなどと混合しァロイ化して用いること もできる。 実施例
以下に実施例を挙げて本発明をさらに説明する。 但し、本発明はこれら実施例 に何ら制限されるものではない。 また、 実施例中の部は重量部であり、 %は重 量%である。 なお、 評価は下記の方法によった。
(1) 比粘度 sp
ペレットを塩化メチレンに溶解、 濃度を約 0. 7 g/dLとして、 温度 20°C にて、 ォストワルド粘度計 (装置名: R I GO AUTO V I SCOS IME TER TYPE VMR-0525 · P C) を使用して測定した。 なお、 比粘 度 ?7 s pは下記式から求めた。
Figure imgf000028_0001
t :試料溶液のフロータイム
t。 :溶媒のみのフロータイム
(2) 生物起源物質含有率
ASTM D 6866 05に従って、 放射性炭素濃度 (p e r c e n t m ひ de rn c a r bon ; C 14) による生物起源物質含有率試験から、 生物 起源物質含有率を測定した。 (3) ガラス転移温度
ペレットを用いて TA I n s t r ume n t s社製 DSC (型式 DS C 2910) により測定した。
(4) 5%重量減少温度
ペレットを用いて TA I n s t r ume n t s社製 TGA (型式 TG A2950) により測定した。
(5) C 1含有量
ペレット中の C I含有量を (株) ダイァインスツルメンッ製の全有機ハロゲン 分析装置 TOX-100型を用いて石英管燃焼方式による酸化分解 ·電量滴定 により測定した。
(6) 水分量
ペレット中の残留水分量を三菱化学 (株) 製 水分気化装置及び微量水分測定 装置を用いて力一ルフィッシャ一滴定法にて測定した。
(7) 色相 (溶液 b値)
ペレツ卜を塩化メチレンに溶解、 濃度を 15重量%として、 光路長 30mmの 試料管に入れた。 次いで 20°Cにて日本電色 (株) 色差計 30 OAを用いて測定 した。 b値は J I S Z 8722に規定する三刺激値 X、 Y、 Ζからハンターの 色差式から誘導されるもので、 数値が低いほど色相が無色に近いことを示す。
(8) 末端変性基含有率
J EOL製 JNM— AL400を用いてペレツトの重クロ口ホルム溶液中にお ける1 H— NMRを測定し、 エーテルジオール由来の特定プロトンと末端ヒドロ キシ化合物由来の特定プロトンとの積分比から末端変性基含有率を求めた。 なお 末端変性基含有率は下記式 (1) から求めた。
[M t] X [Re]
末端変性基含有率 = [R t ] X X 100 (重量%)
[Me]
R t : — NMRの積分比から求めた末端ヒドロキシ化合物のエーテ ルジオールに対する割合 t :末端ヒドロキシ化合物構成単位の分子量
Re : iH— NMRの積分比から求めた主鎖中におけるエーテルジォー ルの組成比。
Me :エーテルジオール構成単位の分子量
(9) 成形板の色相 (b値)
実施例に記載の方法で成形した 3段型プレート (算術平均表面粗さ R a ; 0. 03 m) の厚み 2. 0mm部の b値を日本電色 (株) 製分光彩計 SE— 200 0 (光源: C/2) を用いて測定した。 b値は J I S Z 8722に規定する三 刺激値 X、 Υ、 Ζからハンターの色差式から誘導されるもので、 数値が低いほど 色相が無色に近いことを示す。
(10) 成形板の透明性 (Haz e)
実施例に記載の方法で成形した 3段型プレー卜 (算術平均表面粗さ R a ; 0.
03 m) の厚み 2. 0mm部の Ha z eを J I S K7105に従って測定し た。 Ha z eは成形品の濁り度で、 数値が低いほど濁りが少ないことを示す。 (11) 曲げ弾性率
ペレツトを 120°Cで 12時間乾燥した後、 日本製鋼所 (株) 製 J SWJ—
75E I I Iを用いてシリンダ一温度 250°C、 金型温度 90°Cにて曲げ試験片 を成形した。 曲げ試験を I S〇 178に従って行った。
(12) 荷重たわみ温度 (0. 45MPa)
上記 ( 11 ) にて作成した曲げ試験片を用いて I S O 75で規定される低荷重 下 (0. 45MPa) の荷重たわみ温度を測定した。 参考例 1 (ポリ力一ポネート樹脂の製造)
ィソソルビド 7 , 307重量部 ( 50モル) とジフエ二ルカ一ポネ一ト 10 , 709重量部 ( 50モル) とを反応器に入れ、 重合触媒としてテトラメチルアン モニゥムヒドロキシドを 4. 8重量部 (ジフエ二ルカーボネート成分 1モルに対 して IX 10一4モル)、 および水酸化ナトリウムを 5. 0X 10— 3重量部 (ジフ ェニルカーボネート成分 1モルに対して 0. 25X 10— 6モル) 仕込んで窒素 雰囲気下常圧で 180°Cに加熱し溶融させた。
撹拌下、 反応槽内を 30分かけて徐々に減圧し、 生成するフエノールを留去し ながら 13. 3X 10一3 MP aまで減圧した。 この状態で 20分反応させた後 に 200でに昇温した後、 20分かけて徐々に減圧し、 フエノールを留去しなが ら 4. 00 X 10一3 MP aで 20分間反応させ、 さらに、 220°Cに昇温し 3 0分間、 250でに昇温し 30分間反応させた。
次いで、 徐々に減圧し、 2. 67 X 10一3 MP aで 10分間、 1. 33X 1 0一3 MP aで 10分間反応を続行し、 さらに減圧し、 4. 00X 10一5 MP a に到達したら、 徐々に 260。Cまで昇温し、 最終的に 260°C、 6. 66X 1 0一5 MP aで 1時間反応せしめた。 反応後のポリマーをペレット化し、 比粘度 が 0. 32のペレツトを得た。 このペレツトの生物起源物質含有率は 85 %であ り、 ガラス転移温度は 165 °C、 5 %重量減少温度は 355 °C、 C 1含有量は 1.
8 p pmであった。 参考例 2 (ポリカーボネー卜榭脂の製造)
イソソルビド 7, 307重量部 (50モル) とジフエニルカーボネート 10,
923重量部 (51モル) とステアリルアルコール 270重量部 (1. 0モル) とを反応器に入れ、 重合触媒としてテトラメチルァンモニゥムヒドロキシドを 4. 7重量部 (ジフエ二ルカーポネート成分 1モルに対して 1 X 10—4モル)、 およ び水酸化ナトリウムを 4. 0 X 10— 3重量部 (ジフエ二ルカ一ポネート成分 1 モルに対して 0. 20X 10— 6モル) 仕込んで窒素雰囲気下常圧で 180°Cに 加熱し溶融させた。
撹拌下、 反応槽内を 30分かけて徐々に減圧し、 生成するフエノールを留去し ながら 13. 3 X 10一3 MP aまで減圧した。 この状態で 20分反応させた後 に 200°Cに昇温した後、 20分かけて徐々に減圧し、 フエノールを留去しなが ら 4. 00 X 10— 3MP aで 20分間反応させ、 さらに、 220°Cに昇温し 3 0分間、 250 °Cに昇温し 30分間反応させた。
次いで、 徐々に減圧し、 2. 67 X 10一3 MP aで 10分間、 1. 33X 1 0一3 MP aで 10分間反応を続行し、 さらに減圧し、 4. 00X 10一5 MP a に到達したら、 徐々に 260°Cまで昇温し、 最終的に 260° (:、 6. 66 X 1 0一5 MP aで 1時間反応せしめた。 反応後のポリマーをペレツト化し、 比粘度 が 0. 31のペレットを得た。 このペレットの末端変性基含有率は 1. 7重量% であり、 生物起源物質含有率は 85%であり、 ガラス転移温度は 150°C、 5% 重量減少温度は 362 °C、 C 1含有量は 1. 4 p p mであった。 参考例 3 (ポリ力一ポネ一ト樹脂の製造)
イソソルビド 7, 234重量部 (49. 5モル) と 1, 1—ビス (4—ヒドロ キシフエニル) デカン 163重量部 (0. 5モル)、 ジフエ二ルカーポネート 1 1, 030重量部 (51. 5モル) とを反応器に入れ、 重合触媒としてテトラメ チルアンモニゥムヒドロキシドを 9. 4重量部 (ジフエ二ルカ一ポネート成分 1 モルに対して 2 X 10—4モル)、 および水酸化ナトリウムを 5. 2X 10— 2重量 部 (ジフエ二ルカーポネート成分 1モルに対して 2. 5X 10— 6モル) 仕込ん で窒素雰囲気下常圧で 180°Cに加熱し溶融させた。
撹拌下、 反応槽内を 30分かけて徐々に減圧し、 生成するフエノールを留去し ながら 13. 3X 10一3 MP aまで減圧した。 この状態で 20分反応させた後 に 200°Cに昇温した後、 20分かけて徐々に減圧し、 フエノ一ルを留去しなが ら 4. 00 X 10一3 MP aで 20分間反応させ、 さらに、 220°Cに昇温し 3 0分間、 250 °Cに昇温し 30分間反応させた。
次いで、 徐々に減圧し、 2. 67 X 10一3 MP aで 10分間、 1. 33X 1 0一3 MP aで 10分間反応を続行し、 さらに減圧し、 4. 00X 10— 5MP a に到達したら、 徐々に 260°Cまで昇温し、 最終的に 260°C、 6. 66 X 1 0一5 MP aで 1時間反応せしめた。 反応後のポリマーをペレット化し、 比粘度 が 0. 38のペレットを得た。 このペレットの生物起源物質含有率は 83 %であ り、 ガラス転移温度は 158 °C、 5 %重量減少温度は 356 °C、 C 1含有量は 1. 6 p pmであった。 実施例 1〜 11、 比較例:!〜 2
表 1に記載の樹脂組成物を以下の要領で作成した。 表 1の割合の各成分を計量 して、 プレンダ一にて均一に混合した。 該混合物を塩化メチレンに溶解、 濃度を 15重量%とした。 この溶液の b値を測定した。 評価結果は表 1に示した。 実施例 12〜 20
表 2に記載の樹脂組成物を以下の要領で作成した。 表 2の割合の各成分を計量 して、 均一に混合し、 かかる混合物を押出機に投入して樹脂組成物の作成を行つ た。 押出機としては径 15 πιιηφのベント式二軸押出機 ((株) テクノベル社製 KZW15— 25MG) を使用した。 押出条件は吐出量 14 k g/h、 スクリュ 一回転数 250 r pm、 ベン卜の真空度 3 k P aであり、 また押出温度は第 1供 給口からダイス部分まで 250 とし、 ペレットを得た。
得られたペレットを 100°Cで 12時間乾燥した後、 算術平均粗さ (Ra) が 0. 03 mとしたキヤビティ面を持つ金型を使用し、 射出成形機 [日本製鋼所 (株) 製 J SWJ— 75E I I I] により、 シリンダー温度 250°C、 金型温 度 90°Cで射出成形し、 幅 55mm、 長さ 90mm、 厚みがゲート側から 3 mm (長さ 20 mm)、 2mm (長さ 45mm)、 lmm (長さ 25 mm) である 3段 型プレートを成形し、 離型性及び厚み 2mmの成形板の形状を目視にて評価した。 また、 成形板の色相および Ha z eを評価した。 なお、 実施例 12で得られた成 形板の曲げ弾性率は 3, 64 OMP aであり機械的強度が良好で、 荷重たわみ温 度は 151°Cであり耐熱性も優れたものであった。
また、 表 1に記載の使用した原材料等は以下の通りである。
(A成分)
A— 1 :参考例 1にて製造したポリカーボネ一ト樹脂ペレツトを押出機投入前 に 100°Cで 24時間乾燥したものを用いた。 なお、 乾燥後のポリカーボネート 樹脂ペレツ卜の水分量は 240 pmであった。
A— 2 :参考例 2にて製造したポリカーボネー卜樹脂ペレツトを押出機投入前 に 100°Cで 24時間乾燥したものを用いた。 なお、 乾燥後のポリカーボネート 樹脂ペレツトの水分量は 180 p pmであった。
A— 3 :参考例 3にて製造したポリカーボネート樹脂ペレツトを押出機投入前 に 100 で 24時間乾燥したものを用いた。 なお、 乾燥後のポリ力一ポネート 樹脂ペレツ卜の水分量は 180 p pmであった。
(S成分)
S— 1 : 3, 9—ビス [2— [3— (3- t e r t—ブチルー 4ーヒドロキシ 一 5—メチルフエニル) プロピオ二口キシ] 一 1, 1ージメチルェチル] 一 2, 4, 8, 10—テトラオキサスピロ [5, 5] ゥンデカン (住友化学 (株) 社製 S um i 1 i z e r GA— 80)
S-2 : 2- t e r tーブチルー 6— (3— t e r t—ブチルー 2—ヒドロキ シ— 5—メチルベンジル) —4一メチルフエニルァクリレート (住友化学 (株) 社製 S誰 i 1 i z e r GM)
S— 3 : トリス (2, 4—ジー t e r t一プチノレフエ二ノレ) ホスファイト (チ バ ·スペシャルティ ·ケミカルズ社製 I r ga f o s l 68)
S— 4 :ビス (2, 6—ジー t e r t—ブチルー 4一メチルフエニル) ペン夕 エリスリトールジホスファイト ((株) アデ力製 アデカスタブ PEP— 36)
S-5 :ォク夕デシル— 3— (3, 5―ジー t e r t—プチルー 4—ヒドロキ シフエニル) プロピオネート (チバ 'スペシャルティ ·ケミカルズ社製 I r g a n o 1076)
S— 6 :ペン夕エリスリ 1 ^一ルテトラキス [3— (3, 5—ジー t e r t—ブ チル— 4ーヒドロキシフエニル) プロピオネート] (チバ 'スペシャルティ 'ケ ミカルズ社製 I r g anox l O l O)
S-7 (比較例): トリフエニルホスファイト ((株) アデ力製 アデカスタブ TPP)
(L成分)
L- 1 :ステアリン酸モノグリセリド (理研ビタミン (株) リケマール S—1 0 OA) エステル化率 : 33% 表 1
Figure imgf000035_0001
表 2
Figure imgf000036_0001
発明の効果
本発明の樹脂組成物は、 耐熱性、 熱安定性、 成形性、 色相および透明性に優れ る。 本発明の樹脂組成物は、 重合触媒として含窒素塩基性化合物、 アルカリ金属 化合物およびアル力リ土類金属化合物からなる群より選ばれる少なくとも一つの 化合物を使用して得られたポリカーボネート樹脂を含有するので、 耐熱性、 熱安 定性に優れる。 本発明の樹脂組成物は、 生物起源物質含有率が高い。 本発明の成 形品は、 耐熱性、 熱安定性、 色相および透明性に優れる。 産業上の利用可能性
本発明の成形品は、 色相、 透明性および機械的特性が良好であることから、 光 学用シート、 光学用ディスク、 情報ディスク、 光学レンズ、 プリズム等の光学用 部品、 各種機械部品、 建築材料、 自動車部品、 各種の樹脂トレ一、 食器類をはじ めとする様々な用途に幅広く用いることができる。

Claims

1. 主として下記式 (1) で表される繰り返し単位を含有するポリカーボネー ト樹脂 (A成分) 100重量部に対して、 リン系熱安定剤 (PS) およびヒンダ ードフエノール系熱安定剤 (HS) からなる群より選ばれる少なくとも一種の熱 安定剤 (S成分) を 0. 0005〜0. 5重量部含有する樹脂組成物。
Figure imgf000038_0001
2. ポリ力一ポネート樹脂 (A成分) は、 樹脂 0. 7 gを塩化メチレン 100 m 1に溶解した溶液の 20°Cにおける比粘度が 0. 20〜0. 45である請求項
1記載の樹脂組成物。
3. ポリカーボネート樹脂 (A成分) は、 式 (1) で表される繰り返し単位が イソソルビド (1, 4; 3, 6—ジアンヒドロ一 D—ソルビトール) 由来の単位 である請求項 1記載の樹脂組成物。
4. ポリカーボネート樹脂 (A成分) は、 下記式 (a)
Figure imgf000038_0002
で表されるエーテルジオールと炭酸ジエステルとを溶融重合した樹脂である請求 項 1記載の樹脂組成物。
5. ポリカーボネート樹脂 (A成分) は、 下記式 (2) または (3) で表され る末端基を式 (1) で表される繰り返し単位に対し 0. 3〜9重量%含有する請 求項 1記載の樹脂組成物。
Figure imgf000039_0001
(上記式 (2)、 (3) において、 R1は炭素原子数 4〜 30のアルキル基、 炭素 原子数 7〜30のァラルキル基、 炭素原子数 4〜30のパーフルォロアルキル基、 または下 (4)
Figure imgf000039_0002
(式 (4) 中、 R2、 R3、 R4、 R5および R6は夫々独立して炭素原子数 1〜1 0のアルキル基、 炭素原子数 6〜20のシクロアルキル基、 炭素原子数 2〜10 のアルケニル基、 炭素原子数 6〜 10のァリール基および炭素原子数 7〜 20の ァラルキル基からなる群より選ばれる少なくとも 1種の基を表し、 bは 0〜3の 整数、 cは 4〜100の整数である) であり、 Xは単結合、 エーテル結合、 チォ エーテル結合、 エステル結合、 ァミノ結合およびアミド結合からなる群より選ば れる少なくとも 1種の結合を表わし、 aは 1〜5の整数である。)
6. リン系熱安定剤 (PS) 力 下記式 (5) で表わされる構造 (以下 「一 X XJ 基と表わす) を含む化合物である請求項 1記載の樹脂組成物。
Figure imgf000039_0003
(上記式 (5) において、 R 7は水素原子または炭素原子数 1〜10のアルキル 基であり、 R8は炭素原子数 4〜10のアルキル基であり、 R9は水素原子、 炭 素原子数 1〜10のアルキル基、 炭素原子数:!〜 10のアルコキシ基、 炭素原子 数 6〜 20のシクロアルキル基、 炭素原子数 6〜 20のシクロアルコキシ基、 炭 素原子数 2〜10のアルケニル基、 炭素原子数 6〜10のァリール基、 炭素原子 数 6〜10のァリ一ルォキシ基、 炭素原子数 7〜20のァラルキル基および炭素 原子数 7〜 20のァラルキルォキシ基からなる群から選ばれる少なくとも 1種の 基である。)
7. リン系熱安定剤 (PS) が、 下記式 (6)、 (7) および (8) で表わされ る化合物からなる群より選ばれる少なくとも一種の化合物である請求項 6記載の 樹脂組成物。
Figure imgf000040_0001
(上記式 (6)、 (7)、 および (8) において、 「一 1」 は前記式 (5) で示さ れる基である。)
8. リン系熱安定剤 (PS) が下記式 (9) で表わされる化合物である請求項 1記載のポリカーボネート樹脂組成物。
Figure imgf000040_0002
(式 (9) において、 X2は炭素原子数 5〜18のアルキル基である。)
9. ヒンダードフエノール系熱安定剤 (HS) が、 下記式 (10) で表わされ る構造 (以下 「一 X3」 基と表わす) を含む化合物である請求項 1記載の樹脂組 成物。
Figure imgf000041_0001
(上記式 (10) において、 R11は水素原子または炭素原子数 1〜10のアル キル基であり、 R 12は炭素原子数 4〜10のアルキル基であり、 R13は水素原 子、 炭素原子数 1〜10のアルキル基、 炭素原子数 1〜10のアルコキシ基、 炭 素原子数 6〜 20のシクロアルキル基、 炭素原子数 6〜 20のシクロアルコキシ 基、 炭素原子数 2〜: L 0のアルケニル基、 炭素原子数 6〜10のァリール基、 炭 素原子数 6〜10のァリールォキシ基、 炭素原子数 7〜 20のァラルキル基およ び炭素原子数 7〜 20のァラルキルォキシ基からなる群から選ばれる少なくとも
1種の基を表し、 nは 1〜4の整数である。)
10. ヒンダードフエノール系熱安定剤 (HS) が、 下記式 (11)、 (12) および (13) からなる群より選ばれる少なくとも一種の化合物である請求項 9 記載の樹脂組成物。
Figure imgf000041_0002
(上記式 (11) において、 「一 X3」 は前記式 (10) で示される基であり R 14は炭素原子数 8〜 30の酸素原子を含んでも良い炭化水素基である。)
Figure imgf000041_0003
(12) (上記式 (12) において、 「一 X3」 は前記式 (10) で示される基であり、 R 15は水素原子または炭素原子数 1〜 25のアルキル基であり、 mは 1〜 4の 整数、 kは 1〜4の整数である。)
Figure imgf000042_0001
(上記式 (13) において、 「一 X3」 は前記式 (10) で示される基であり、 R16、 R17、 R18および R19はそれぞれ独立して水素原子または炭素原子数 1 〜4のアルキル基であり、 pは 1〜4の整数である。)
11. ヒンダードフエノール系熱安定剤 (HS) 、 下記式 (14) で表わさ れる化合物である請求項 1記載の樹脂組成物。 -
Figure imgf000042_0002
(式 (14) において、 R 21は炭素原子数 4〜10のアルキル基であり、 R22 は炭素原子数 1〜10のアルキル基であり、 R23、 R24はそれぞれ独立して水 素原子、 炭素原子数 1〜10のアルキル基、 炭素原子数 2〜10のアルケニル基、 炭素原子数 6〜 10のァリール基および炭素原子数 7〜 20のァラルキル基から なる群から選ばれる少なくとも 1種の基であり、 R25は水素原子、 炭素原子数 1〜: L 0のアルキル基、 炭素原子数 2〜10のアルケニル基、 炭素原子数 6〜1 0のァリール基、 炭素原子数 7〜20のァラルキル基、 置換されていても良いァ クリロイル基および置換されていても良いメタァクリロイル基からなる群から選 ばれる少なくとも 1種の基である。)
12. ポリカーボネート樹脂 (A成分) 100重量部に対して、 離型剤 (L成 分) として、 アルコールと脂肪酸とのエステルを 0. 01〜0. 5重量部含有す る請求項 1記載の樹脂組成物。
13. 離型剤 (L成分) 力 多価アルコールと脂肪酸との部分エステル、 全ェ ステルまたはこれらの混合物である請求項 12記載の樹脂組成物。
14. 離型剤 (L成分) が、 多価アルコールと脂肪酸とのモノエステルである 請求項 12記載の樹脂組成物。
15. 請求項 1記載の樹脂組成物からなる成形品。
PCT/JP2008/058298 2007-04-25 2008-04-23 ポリカ-ボネ-ト樹脂組成物 WO2008133342A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2008800133557A CN101668813B (zh) 2007-04-25 2008-04-23 聚碳酸酯树脂组合物
US12/597,135 US8008381B2 (en) 2007-04-25 2008-04-23 Polycarbonate resin composition
EP08740966A EP2141202B1 (en) 2007-04-25 2008-04-23 Polycarbonate resin composition
JP2009511923A JP5323688B2 (ja) 2007-04-25 2008-04-23 ポリカーボネート樹脂組成物
KR1020097020460A KR101460825B1 (ko) 2007-04-25 2008-04-23 폴리카보네이트 수지 조성물

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007115672 2007-04-25
JP2007-115672 2007-04-25
JP2007135191 2007-05-22
JP2007-135191 2007-05-22

Publications (1)

Publication Number Publication Date
WO2008133342A1 true WO2008133342A1 (ja) 2008-11-06

Family

ID=39925783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058298 WO2008133342A1 (ja) 2007-04-25 2008-04-23 ポリカ-ボネ-ト樹脂組成物

Country Status (6)

Country Link
US (1) US8008381B2 (ja)
EP (1) EP2141202B1 (ja)
JP (1) JP5323688B2 (ja)
KR (1) KR101460825B1 (ja)
TW (1) TWI443148B (ja)
WO (1) WO2008133342A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010307A1 (en) 2009-07-24 2011-01-27 Skyrad Ltd Improved color changing polymer-based article
JP2011105846A (ja) * 2009-11-17 2011-06-02 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物及びその成形品
US20110160406A1 (en) * 2009-12-30 2011-06-30 Sabic Innovative Plastics Ip B.V Blends of isosorbide-based copolycarbonate, method of making, and articles formed therefrom
EP2460856A1 (en) * 2009-07-27 2012-06-06 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition
JP2012131858A (ja) * 2010-12-20 2012-07-12 Toyota Central R&D Labs Inc ポリカーボネート樹脂組成物
JP2012214675A (ja) * 2010-06-25 2012-11-08 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物および成形品
KR20140009419A (ko) 2011-03-30 2014-01-22 미쓰비시 가가꾸 가부시키가이샤 폴리카보네이트 수지의 제조 방법
JP2015007248A (ja) * 2014-09-02 2015-01-15 帝人株式会社 ポリカーボネート樹脂ペレット
JP2015526581A (ja) * 2013-07-01 2015-09-10 エルジー・ケム・リミテッド ポリカーボネート樹脂組成物
JP2016027082A (ja) * 2014-06-27 2016-02-18 三菱化学株式会社 樹脂成形体の製造方法
JP2016028153A (ja) * 2008-11-28 2016-02-25 三菱化学株式会社 ポリカーボネート樹脂組成物、光学フィルム及びポリカーボネート樹脂成形品
WO2017038547A1 (ja) * 2015-09-04 2017-03-09 三菱エンジニアリングプラスチックス株式会社 芳香族ポリカーボネート樹脂組成物及びその成形品
JP2017048369A (ja) * 2015-09-04 2017-03-09 三菱エンジニアリングプラスチックス株式会社 芳香族ポリカーボネート樹脂組成物及びその成形品
KR101745036B1 (ko) * 2009-12-10 2017-06-08 데이진 가부시키가이샤 난연성 수지 조성물 및 그것으로부터의 성형품

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093860A1 (ja) * 2007-02-02 2008-08-07 Teijin Limited ポリカーボネート樹脂およびその製造方法
EP2692498B1 (en) * 2011-03-31 2019-10-02 Mitsubishi Chemical Corporation Method for manufacturing polycarbonate resin
US8691915B2 (en) 2012-04-23 2014-04-08 Sabic Innovative Plastics Ip B.V. Copolymers and polymer blends having improved refractive indices
US9193864B2 (en) 2012-06-22 2015-11-24 Sabic Global Technologies B.V. Polycarbonate compositions with improved impact resistance
ITRM20120414A1 (it) * 2012-08-17 2014-02-18 Bayer Materialscience Ag Prodotti con caratteristiche ignifughe migliorate.
KR101593297B1 (ko) * 2014-03-25 2016-02-11 롯데케미칼 주식회사 광 차단성이 개선된 바이오 유래 폴리카보네이트 수지 조성물 및 이를 이용한 성형품
KR20190081325A (ko) * 2017-12-29 2019-07-09 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 형성된 성형품

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1079686A (en) 1963-05-17 1967-08-16 Courtaulds Ltd Polyesters
JP2000239511A (ja) * 1999-02-25 2000-09-05 Teijin Ltd 安定化芳香族ポリカーボネート組成物及びそれよりの射出成型品
WO2003010236A1 (en) * 2001-07-27 2003-02-06 Teijin Chemicals, Ltd. Polycarbonate-based molding materials and optical disk substrates
JP2003292603A (ja) * 2002-03-29 2003-10-15 Matsushita Electric Ind Co Ltd 熱可塑性成形材料
JP2004027104A (ja) * 2002-06-27 2004-01-29 Teijin Chem Ltd ポリカーボネート樹脂組成物及びその成形品
JP2004083850A (ja) * 2002-05-08 2004-03-18 Teijin Chem Ltd ポリカーボネート樹脂組成物、そのペレットおよびその成形品
JP2006028441A (ja) * 2004-07-21 2006-02-02 Teijin Ltd 脂肪族ポリカーボネートからなる光学用フィルム
WO2007013463A1 (ja) 2005-07-26 2007-02-01 Ube Industries, Ltd. ポリカーボネート及びその製造方法
WO2007063823A1 (ja) * 2005-11-29 2007-06-07 Mitsui Chemicals, Inc. ポリカーボネート共重合体、その製造方法及びその用途
WO2007148604A1 (ja) * 2006-06-19 2007-12-27 Mitsubishi Chemical Corporation ポリカーボネート共重合体及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0351168B1 (en) * 1988-07-11 1997-11-05 General Electric Company Process for preparing polycarbonates
US6294641B1 (en) * 1998-01-19 2001-09-25 Mitsubishi Chemical Corporation Polycarbonate resin, optical-information recording medium substrate made of the same, and optical-information recording medium
WO2003095557A1 (fr) * 2002-05-08 2003-11-20 Teijin Chemicals, Ltd. Composition de resine polycarbonate, granule fabrique a partir de cette composition et article moule associe
JP5532531B2 (ja) * 2006-06-19 2014-06-25 三菱化学株式会社 ポリカーボネート共重合体及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1079686A (en) 1963-05-17 1967-08-16 Courtaulds Ltd Polyesters
JP2000239511A (ja) * 1999-02-25 2000-09-05 Teijin Ltd 安定化芳香族ポリカーボネート組成物及びそれよりの射出成型品
WO2003010236A1 (en) * 2001-07-27 2003-02-06 Teijin Chemicals, Ltd. Polycarbonate-based molding materials and optical disk substrates
JP2003292603A (ja) * 2002-03-29 2003-10-15 Matsushita Electric Ind Co Ltd 熱可塑性成形材料
JP2004083850A (ja) * 2002-05-08 2004-03-18 Teijin Chem Ltd ポリカーボネート樹脂組成物、そのペレットおよびその成形品
JP2004027104A (ja) * 2002-06-27 2004-01-29 Teijin Chem Ltd ポリカーボネート樹脂組成物及びその成形品
JP2006028441A (ja) * 2004-07-21 2006-02-02 Teijin Ltd 脂肪族ポリカーボネートからなる光学用フィルム
WO2007013463A1 (ja) 2005-07-26 2007-02-01 Ube Industries, Ltd. ポリカーボネート及びその製造方法
WO2007063823A1 (ja) * 2005-11-29 2007-06-07 Mitsui Chemicals, Inc. ポリカーボネート共重合体、その製造方法及びその用途
WO2007148604A1 (ja) * 2006-06-19 2007-12-27 Mitsubishi Chemical Corporation ポリカーボネート共重合体及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF APPLIED POLYMER SCIENCE, vol. 86, 2002, pages 872 - 880
MACROMOLECULES, vol. 29, 1996, pages 8077 - 8082
See also references of EP2141202A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066418A (ja) * 2008-11-28 2017-04-06 三菱化学株式会社 ポリカーボネート樹脂組成物、光学フィルム及びポリカーボネート樹脂成形品
JP2016028153A (ja) * 2008-11-28 2016-02-25 三菱化学株式会社 ポリカーボネート樹脂組成物、光学フィルム及びポリカーボネート樹脂成形品
WO2011010307A1 (en) 2009-07-24 2011-01-27 Skyrad Ltd Improved color changing polymer-based article
EP2460856A1 (en) * 2009-07-27 2012-06-06 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition
EP2460856A4 (en) * 2009-07-27 2013-01-02 Idemitsu Kosan Co POLYCARBONATE RESIN COMPOSITION
JP2011105846A (ja) * 2009-11-17 2011-06-02 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物及びその成形品
KR101745036B1 (ko) * 2009-12-10 2017-06-08 데이진 가부시키가이샤 난연성 수지 조성물 및 그것으로부터의 성형품
US8962770B2 (en) * 2009-12-30 2015-02-24 Sabic Global Technologies B.V. Blends of isosorbide-based copolycarbonate, method of making, and articles formed therefrom
US20110160406A1 (en) * 2009-12-30 2011-06-30 Sabic Innovative Plastics Ip B.V Blends of isosorbide-based copolycarbonate, method of making, and articles formed therefrom
JP2012214675A (ja) * 2010-06-25 2012-11-08 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物および成形品
US9120910B2 (en) 2010-06-25 2015-09-01 Mitsubishi Chemical Corporation Polycarbonate resin compositions and molded articles
JP2012131858A (ja) * 2010-12-20 2012-07-12 Toyota Central R&D Labs Inc ポリカーボネート樹脂組成物
US8735535B2 (en) 2011-03-30 2014-05-27 Mitsubishi Chemical Corporation Production method of polycarbonate resin
KR20140010103A (ko) 2011-03-30 2014-01-23 미쓰비시 가가꾸 가부시키가이샤 폴리카보네이트 수지의 제조 방법
KR20140009419A (ko) 2011-03-30 2014-01-22 미쓰비시 가가꾸 가부시키가이샤 폴리카보네이트 수지의 제조 방법
KR101898307B1 (ko) 2011-03-30 2018-09-12 미쯔비시 케미컬 주식회사 폴리카보네이트 수지의 제조 방법
KR101898306B1 (ko) 2011-03-30 2018-09-12 미쯔비시 케미컬 주식회사 폴리카보네이트 수지의 제조 방법
JP2015526581A (ja) * 2013-07-01 2015-09-10 エルジー・ケム・リミテッド ポリカーボネート樹脂組成物
JP2016027082A (ja) * 2014-06-27 2016-02-18 三菱化学株式会社 樹脂成形体の製造方法
JP2015007248A (ja) * 2014-09-02 2015-01-15 帝人株式会社 ポリカーボネート樹脂ペレット
WO2017038547A1 (ja) * 2015-09-04 2017-03-09 三菱エンジニアリングプラスチックス株式会社 芳香族ポリカーボネート樹脂組成物及びその成形品
JP2017048369A (ja) * 2015-09-04 2017-03-09 三菱エンジニアリングプラスチックス株式会社 芳香族ポリカーボネート樹脂組成物及びその成形品

Also Published As

Publication number Publication date
JPWO2008133342A1 (ja) 2010-07-29
JP5323688B2 (ja) 2013-10-23
EP2141202A1 (en) 2010-01-06
TWI443148B (zh) 2014-07-01
KR101460825B1 (ko) 2014-11-11
TW200906969A (en) 2009-02-16
US8008381B2 (en) 2011-08-30
EP2141202B1 (en) 2013-02-27
KR20100014702A (ko) 2010-02-10
US20100076130A1 (en) 2010-03-25
EP2141202A4 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
WO2008133342A1 (ja) ポリカ-ボネ-ト樹脂組成物
JP5241712B2 (ja) ポリカーボネート樹脂組成物
JP6245240B2 (ja) ポリカーボネート樹脂組成物、光学フィルム及びポリカーボネート樹脂成形品
KR101479113B1 (ko) 도광판용 방향족 폴리카보네이트 수지 조성물 및 도광판
JP2017066418A (ja) ポリカーボネート樹脂組成物、光学フィルム及びポリカーボネート樹脂成形品
TW200415172A (en) Polycarbonate copolymer, resin composition and molded article
JP5905655B2 (ja) ポリカーボネート樹脂組成物
WO2008149872A1 (ja) 難燃性ポリカーボネート樹脂組成物
JP2010077398A (ja) ポリカーボネート樹脂およびその製造方法
JP5255317B2 (ja) 難燃性ポリカーボネート樹脂組成物
WO2008133343A1 (ja) ポリカーボネート樹脂組成物
JP2008291055A (ja) 末端変性ポリカーボネート樹脂組成物
KR20180022712A (ko) 폴리카보네이트 수지 조성물, 그 제조 방법, 성형체
KR102200887B1 (ko) 충격강도가 개선된 친환경 폴리에스테르 카보네이트 수지 조성물 및 그 제조방법
JP2010043244A (ja) 難燃性共重合ポリカーボネート樹脂
JP2008274008A (ja) ポリカーボネート樹脂組成物
JP2008274009A (ja) ポリカーボネート樹脂組成物
JP2008291053A (ja) 末端変性ポリカーボネート樹脂組成物
JP2003096289A (ja) 熱可塑性樹脂組成物
JP2008291054A (ja) 末端変性ポリカーボネート樹脂組成物
KR102200880B1 (ko) 향상된 충격강도와 높은 내열도를 가진 바이오매스 유래 고분자 수지 조성물 및 그 제조방법
JP2015007248A (ja) ポリカーボネート樹脂ペレット
TW202307093A (zh) 聚碳酸酯系樹脂組合物及成形體
JP2023105348A (ja) 共重合ポリカーボネート樹脂及び成形品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880013355.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097020460

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009511923

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008740966

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12597135

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 6279/CHENP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE