WO2008088595A2 - Photovoltaic cell with silole-containing polymer - Google Patents
Photovoltaic cell with silole-containing polymer Download PDFInfo
- Publication number
- WO2008088595A2 WO2008088595A2 PCT/US2007/080053 US2007080053W WO2008088595A2 WO 2008088595 A2 WO2008088595 A2 WO 2008088595A2 US 2007080053 W US2007080053 W US 2007080053W WO 2008088595 A2 WO2008088595 A2 WO 2008088595A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- moiety
- formula
- repeat unit
- alkyl
- comonomer repeat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/40—Organosilicon compounds, e.g. TIPS pentacene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
- H10K30/57—Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/151—Copolymers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/211—Fullerenes, e.g. C60
- H10K85/215—Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- This invention relates to photovoltaic cells with silole-containing polymers, as well as related components, systems, and methods.
- Photovoltaic cells are commonly used to transfer energy in the form of light into energy in the form of electricity.
- a typical photovoltaic cell includes a photoactive material disposed between two electrodes. Generally, light passes through one or both of the electrodes to interact with the photoactive material. As a result, the ability of one or both of the electrodes to transmit light (e.g., light at one or more wavelengths absorbed by a photoactive material) can limit the overall efficiency of a photovoltaic cell.
- a film of semiconductive material e.g., indium tin oxide
- the semiconductive material can have a lower electrical conductivity than electrically conductive materials, the semiconductive material can transmit more light than many electrically conductive materials.
- This invention relates to photovoltaic cells with silole-containing polymers (e.g., polymers containing a silacyclopentadithiophene moiety), as well as related components, systems, and methods.
- silole-containing polymers e.g., polymers containing a silacyclopentadithiophene moiety
- An aspect of the invention relates to a new combination of monomers that produce polymers, wherein the polymers have properties suitable for use as charge carriers in the active layer of a photovoltaic cell.
- the invention features a class of co-polymers including at least two co-monomers, at least one of which is a silacyclopentadithiophene.
- this invention features a polymer including a first comonomer repeat unit and a second comonomer repeat unit different from the first comonomer repeat unit.
- the first comonomer repeat unit includes a silacyclopentadithiophene moiety of formula (1):
- each of Ri, R 2 , R3, and R 4 independently, is H, C 1 -C 2 0 alkyl, C 1 -C 2 0 alkoxy, C 3 -C 20 cycloalkyl, C 1 -C 20 heterocycloalkyl, aryl, heteroaryl, halo, CN, OR, C(O)R, C(O)OR, or SO 2 R; R being H, Ci-C 20 alkyl, Ci-C 20 alkoxy, aryl, heteroaryl, C 3 -C 20 cycloalkyl, or Ci-C 20 heterocycloalkyl.
- the second comonomer repeat unit includes a silacyclopentadithiophene moiety of formula (1), a benzothiadiazole moiety, a thiadiazoloquinoxaline moiety, a cyclopentadithiophene moiety, a cyclopentadithiophene oxide moiety, a benzoisothiazole moiety, a benzothiazole moiety, a thiophene oxide moiety, a thienothiophene moiety, a thienothiophene oxide moiety, a dithienothiophene moiety, a dithienothiophene oxide moiety, a tetrahydroisoindole moiety, a fluorene moiety, a fluorenone moiety, a thiazole moiety, a selenophene moiety, a silole moiety, a thiazolothiazole moiety, a
- this invention features a polymer including a first comonomer repeat unit and a second comonomer repeat unit different from the first comonomer repeat unit.
- the first comonomer repeat unit includes a silacyclopentadithiophene moiety of formula (1) set forth above.
- the second comonomer repeat unit includes a thiophene moiety substituted with Ci-C 20 alkyl, Ci- C 20 alkoxy, C3-C 2 0 cycloalkyl, Ci-C 20 heterocycloalkyl, aryl, heteroaryl, halo, CN, OR', C(O)R', C(O)OR', or SO 2 R'; or a thiophene moiety fused with a 1,4-dioxane moiety; R' being H, Ci-C 20 alkyl, Ci-C 20 alkoxy, aryl, heteroaryl, Cs-C 20 cycloalkyl, or Ci-C 20 heterocycloalkyl.
- this invention features a polymer containing a first comonomer repeat unit and a second comonomer repeat unit different from the first comonomer repeat unit.
- the first comonomer repeat unit comprises a silacyclopentadithiophene moiety of formula (1) set forth above.
- the second comonomer repeat unit is not an unsubstituted thiophene moiety.
- this invention features an article that includes a first electrode, a second electrode, and a photoactive material disposed between the first and second electrodes.
- the photoactive material includes a polymer described above.
- the article is configured as a photovoltaic cell.
- Embodiments can include one or more of the following features.
- Ri and R 2 independently, is C 1 -C 20 alkyl (e.g., hexyl).
- the second comonomer repeat unit includes a benzothiadiazole moiety of formula (2), a thiadiazoloquinoxaline moiety of formula (3), a cyclopentadithiophene dioxide moiety of formula (4), a cyclopentadithiophene monoxide moiety of formula (5), a benzoisothiazole moiety of formula (6), a benzothiazole moiety of formula (7), a thiophene dioxide moiety of formula (8), a cyclopentadithiophene dioxide moiety of formula (9), a cyclopentadithiophene tetraoxide moiety of formula (10), a thienothiophene moiety of formula (11), a thienothiophene tetraoxide moiety of formula (12), a dithienothiophene moiety of formula (13), a dithienothiophene dioxide moiety of formula (14),
- each of X and Y independently, is CH 2 , O, or S; each of R5 and Re, independently, is H, C1-C20 alkyl, C1-C20 alkoxy, C3-C20 cycloalkyl, C1-C20 heterocycloalkyl, aryl, heteroaryl, halo, CN, OR, C(O)R, C(O)OR, or SO 2 R, in which R is H, C1-C20 alkyl, C1-C20 alkoxy, aryl, heteroaryl, C3-C20 cycloalkyl, or C1-C20 heterocycloalkyl; and each OfR 7 and Rg, independently, is H, C1-C20 alkyl, C1-C20 alkoxy, aryl, heteroaryl, C3-C20 cycloalkyl, or C3-C20 heterocycloalkyl.
- the second comonomer repeat unit includes a
- the second comonomer repeat unit includes a thiazole moiety of formula (23), in which R 5 is hexyl.
- the polymer further includes a third comonomer repeat unit different from the first and second comonomer repeat units.
- the third comonomer repeat unit can include a thiophene moiety (e.g., a unsubstituted thiophene moiety or a thiophene moiety substituted with hexyl).
- the polymer can be either an electron donor material or an electron acceptor material. In some embodiments, the polymer can be
- n can be an integer greater than 1.
- the photovoltaic cell can be a tandem photovoltaic cell.
- the photoactive material can include an electron acceptor material.
- the electron acceptor material can be a fullerene (e.g., C61-phenyl-butyric acid methyl ester, PCBM).
- the polymer and the electron acceptor material each can have a LUMO energy level.
- the LUMO energy level of the polymer can be at least about 0.2 eV (e.g., at least about 0.3 eV) less negative than the LUMO energy level of the electron acceptor material.
- the device can be an organic semiconductive device.
- the device can be a member selected from the group consisting of field effect transistors, photodetectors, photovoltaic detectors, imaging devices, light emitting diodes, lasing devices, conversion layers, amplifiers and emitters, storage elements, and electrochromic devices.
- Embodiments can provide one or more of the following advantages.
- using a polymer containing a silacyclopentadithiophene moiety can be advantageous because the silacyclopentadithiophene moiety can contribute to a shift in the maximum absorption wavelength toward the red or near IR region of the electromagnetic spectrum.
- the current and efficiency of the cell can increase.
- substituted fullerenes or polymers containing substituted monomer repeat units can have improved solubility in organic solvents and can form an photoactive layer with improved morphology.
- a polymer containing a silole moiety can absorb light at a relatively long wavelength and have improved solubility in organic solvents.
- a polymer containing a silole moiety can be used to prepare an electron donor material with improved semiconductive properties.
- a photovoltaic cell containing a polymer described above can have a band gap that is relatively ideal for its intended purposes.
- a photovoltaic cell having high cell voltage can be created, whereby the HOMO level of the polymer is at least about 0.2 electron volts more negative relative to the LUMO or conduction band of an electron acceptor material.
- a photovoltaic cell containing a polymer described above can have relatively fast and efficient transfer of an electron to an electron acceptor material, whereby the LUMO of the donor is at least about 0.2 electron volt (e.g., at least about 0.3 electron volt) less negative than the conduction band of the electron acceptor material.
- a photovoltaic cell containing a polymer described above can have relatively fast charge separation, whereby the charge mobility of the positive charge, or hole, is relatively high and falls within the range of 10 "4 to 10 "1 cm 2 /Vs.
- the polymer is soluble in an organic solvent and/or film forming.
- the polymer is optically non- scattering.
- the polymer can be used in organic field effect transistors and OLEDs.
- FIG. 1 is a cross-sectional view of an embodiment of a photovoltaic cell.
- FIG. 2 is a schematic of a system containing one electrode between two photoactive layers.
- FIG. 1 shows a cross-sectional view of a photovoltaic cell 100 that includes a substrate 110, a cathode 120, a hole carrier layer 130, an active layer 140 (containing an electron acceptor material and an electron donor material), a hole blocking layer 150, an anode 160, and a substrate 170.
- a photovoltaic cell 100 that includes a substrate 110, a cathode 120, a hole carrier layer 130, an active layer 140 (containing an electron acceptor material and an electron donor material), a hole blocking layer 150, an anode 160, and a substrate 170.
- the electron donor material e.g., a polymer described above
- the electron acceptor material e.g., PCBM
- the electron acceptor material transmits the electrons through hole blocking layer 150 to anode 160, and the electron donor material transfers holes through hole carrier layer 130 to cathode 120.
- Anode 160 and cathode 120 are in electrical connection via an external load so that electrons pass from anode 160, through the load, and to cathode 120.
- Electron acceptor materials of active layer 140 can include fullerenes.
- active layer 140 can include one or more unsubstituted fullerenes and/or one or more substituted fullerenes.
- unsubstituted fullerenes include C 6 O, C70, C 76 , C 7 8, Cs2, Cs 4 , and C92.
- substituted fullerenes include PCBM or fullerenes substituted with C1-C20 alkoxy optionally further substituted with C1-C20 alkoxy or halo (e.g., (OCF ⁇ CFL ⁇ OCHs or OCH 2 CF 2 OCF 2 CF 2 OCF 3 ).
- the electron acceptor materials can include polymers
- a polymers mentioned herein include at least two identical or different monomer repeat units (e.g., at least 5 monomer repeat units, at least 10 monomer repeat units, at least 50 monomer repeat units, at least 100 monomer repeat units, or at least 500 monomer repeat units).
- a copolymer mentioned herein refers to a polymer that includes at least two co-monomers of differing structures.
- the polymers used as an electron acceptor material can include one or more monomer repeat units listed in Tables 1 and 2 below. Specifically, Table 1 lists examples of electron donating monomer repeat units that can serve as a conjugative link. Table 2 lists examples of electron withdrawing monomer repeat units.
- monomer repeat units listed in Table 1 can be electron withdrawing and monomer repeat units listed in Table 2 can also be electron donating.
- the polymers used as an electron acceptor material include a high molar percentage (e.g., at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%) of an electron withdrawing monomer repeat unit.
- Electron donor materials of active layer 140 can include polymers (e.g., homopolymers or copolymers).
- the polymers used as an electron donor material can include one or more monomer repeat units listed in Tables 1 and 2.
- the polymers used as an electron donor material include a high molar percentage (e.g., at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%) of an electron donating monomer repeat unit.
- the polymers include a monomer repeat unit containing Ci-C 2 O alkoxy on a ring, which is optionally further substituted with Ci-C 2 O alkoxy or halo (e.g., (OCH 2 CH 2 ) 2 OCH 3 or OCH 2 CF 2 OCF 2 CF 2 OCF 3 ).
- halo e.g., (OCH 2 CH 2 ) 2 OCH 3 or OCH 2 CF 2 OCF 2 CF 2 OCF 3 .
- polymers containing monomer repeat units substituted with long-chain alkoxy groups (e.g., oligomeric ethylene oxides) or fluorinated alkoxy groups have improved solubility in organic solvents and can form an photoactive layer with improved morphology.
- each of X and Y can be CH 2 , O, or S; each of Ri, R 2 , R3, R 4 , R5, and R 6 , independently, can be H, C1-C20 alkyl (e.g., branched alkyl or perflorinated alkyl), C1-C20 alkoxy, C 3 - C 2O cycloalkyl, C 1 -C 20 heterocycloalkyl, aryl (e.g., phenyl or substituted phenyl), heteroaryl, halo, CN, OR, C(O)R, C(O)OR, or SO 2 R; R being H, Ci-C 20 alkyl, Ci-C 20 alkoxy, aryl, heteroaryl, Cs-C 20 cycloalkyl, or Ci-C 20 heterocycloalkyl; and each OfR 7 and Rs, independently, is H, Ci-C 20 alkyl, Ci-C
- An alkyl can be saturated or unsaturated and branch or straight chained.
- a Ci- C 20 alkyl contains 1 to 20 carbon atoms (e.g., one, two , three, four, five, six, seven, eight, nine, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 carbon atoms).
- An alkoxy can be branch or straight chained and saturated or unsaturated.
- Ci-C 20 alkoxy contains an oxygen radical and 1 to 20 carbon atoms (e.g., one, two , three, four, five, six, seven, eight, nine, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 carbon atoms).
- a cycloalkyl can be either saturated or unsaturated.
- a C 3 -C 20 cycloalkyl contains 3 to 20 carbon atoms (e.g., three, four, five, six, seven, eight, nine, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 carbon atoms).
- cycloalkyl moieities include cyclohexyl and cyclohexen-3-yl.
- a heterocycloalkyl can also be either saturated or unsaturated.
- a C 3 -C 20 heterocycloalkyl contains at least one ring heteroatom (e.g., O, N, and S) and 3 to 20 carbon atoms (e.g., three, four, five, six, seven, eight, nine, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 carbon atoms).
- heterocycloalkyl moieties include 4-tetrahydropyranyl and 4-pyranyl.
- An aryl can contain one or more aromatic rings.
- aryl moieties include phenyl, phenylene, naphthyl, naphthylene, pyrenyl, anthryl, and phenanthryl.
- a heteroaryl can contain one or more aromatic rings, at least one of which contains at least one ring heteroatom (e.g., O, N, and S).
- heteroaryl moieties include furyl, furylene, fluorenyl, pyrrolyl, thienyl, oxazolyl, imidazolyl, thiazolyl, pyridyl, pyrimidinyl, quinazolinyl, quinolyl, isoquinolyl, and indolyl.
- Alkyl, alkoxy, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl mentioned herein include both substituted and unsubstituted moieties, unless specified otherwise.
- substituents on cycloalkyl, heterocycloalkyl, aryl, and heteroaryl include C1-C20 alkyl, C3-C20 cycloalkyl, C1-C20 alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, amino, C 1 -C 10 alkylamino, C1-C20 dialkylamino, arylamino, diarylamino, hydroxyl, halogen, thio, C 1 -C 10 alkylthio, arylthio, C 1 -C 10 alkylsulfonyl, arylsulfonyl, cyano, nitro, acyl, acyloxy, carboxyl, and carboxylic ester.
- the monomers for preparing the polymers mentioned herein may contain a non-aromatic double bond and one or more asymmetric centers. Thus, they can occur as racemates and racemic mixtures, single enantiomers, individual diastereomers, diastereomeric mixtures, and cis- or trans- isomeric forms. All such isomeric forms are contemplated.
- copolymers described above can be prepared by methods known in the art.
- a copolymer can be prepared by a cross-coupling reaction between one or more comonomers containing two alkylstannyl groups and one or more comonomers containing two halo groups in the presence of a transition metal catalyst.
- a copolymer can be prepared by a cross-coupling reaction between one or more comonomers containing two borate groups and one or more comonomers containing two halo groups in the presence of a transition metal catalyst.
- the comonomers can be prepared by the methods described herein or by the methods know in the art, such as those described in U.S. Patent Application Serial No.
- polymers 1-4 Table 3 below lists four exemplary polymers (i.e., polymers 1-4) described in the Summary section above. These polymers can have unique properties, which make them particularly suitable as charge carriers in the active layer of a photovoltaic cell. Polymers 1-4 can be obtained by the methods described in Examples 2-5 below.
- one co-monomer in the polymers described in the Summary section above is a silacyclopentadithiophene.
- An advantage of a co-polymer containing a silacyclopentadithiophene moiety is that its absorption wavelength can shift toward the red and near IR portion (e.g., 650 - 800 nm) of the electromagnetic spectrum, which is not accessible by most other polymers.
- IR portion e.g., 650 - 800 nm
- the polymers described above can be useful in solar power technology because the band gap is close to ideal for a photovoltaic cell (e.g., a polymer-fullerene cell).
- the HOMO level of the polymers can be positioned correctly relative to the LUMO of an electron acceptor (e.g., PCBM) in a photovoltaic cell (e.g., a polymer- fullerene cell), allowing for high cell voltage.
- the LUMO of the polymers can be positioned correctly relative to the conduction band of the electron acceptor in a photovoltaic cell, thereby creating efficient transfer of an electron to the electron acceptor. For example, using a polymer having a band gap of about 1.4 - 1.6 eV can significantly enhance cell voltage.
- the positive charge mobility of the polymers can be relatively high and approximately in the range of 10 "4 to 10 "1 cm 2 /Vs. In general, the relatively high positive charge mobility allows for relatively fast charge separation.
- the polymers can also be soluble in an organic solvent and/or film forming. Further, the polymers can be optically non-scattering.
- the polymer described above can be used as an electron donor material or an electro acceptor material in a system in which two photovoltaic cells share a common electrode.
- a system in which two photovoltaic cells share a common electrode.
- tandem photovoltaic cell Examples of tandem photovoltaic cells are discussed in U.S. Patent Application Serial No. 10/558,878, filed November 29, 2005, the contents of which are hereby incorporated by reference.
- FIG. 2 is a schematic of a tandem photovoltaic cell 200 having a substrate 210, three electrodes 220, 240, and 260, and two photoactive layers 230 and 250. Electrode 240 is shared between photoactive layers 230 and 250, and is electrically connected with electrodes 220 and 260.
- electrodes 220, 240, and 260 can be formed of an electrically conductive material, such as those described in U.S. Patent Application Serial No. 10/723,554.
- one or more (i.e., one, two, or three) electrodes 220, 240, and 260 is a mesh electrode.
- one or more electrodes 220, 240, and 260 is formed of a semiconductive material.
- one or more (i.e., one, two, or three) electrodes 220, 240, and 260 are formed of titanium dioxide.
- Titanium dioxide used to prepare an electrode can be in any suitable forms.
- titanium dioxide can be in the form of interconnected nanoparticles. Examples of interconnected titanium dioxide nanoparticles are described, for example, in U.S. Patent 7,022,910, the contents of which are incorporated herein by reference.
- at least one (e.g., one, two, or three) of electrodes 220, 240, and 260 is a transparent electrode.
- a transparent electrode is formed of a material which, at the thickness used in a photovoltaic cell, transmits at least about 60% (e.g., at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%) of incident light at a wavelength or a range of wavelengths used during operation of the photovoltaic cell.
- both electrodes 220 and 260 are transparent electrodes.
- Each of photoactive layers 230 and 250 can contain at least one semiconductive material.
- the semiconductive material in photoactive layer 230 has the same band gap as the semiconductive material in photoactive layer 250.
- the semiconductive material in photoactive layer 230 has a band gap different from that of the semiconductive material in photoactive layer 250. Without wishing to be bound by theory, it is believed that incident light not absorbed by one photoactive layer can be absorbed by the other photoactive layer, thereby maximizing the absorption of the incident light.
- At least one of photoactive layers 230 and 250 can contain an electron acceptor material (e.g., PCBM or a polymer described above) and an electron donor material (e.g., a polymer described above).
- an electron acceptor material e.g., PCBM or a polymer described above
- an electron donor material e.g., a polymer described above
- suitable electron acceptor materials and electron donor materials can be those described above.
- each of photoactive layers 230 and 250 contains an electron acceptor material and an electron donor material.
- Substrate 210 can be formed of one or more suitable polymers, such as those described in U.S. Patent Application Serial No. 10/723,554.
- an additional substrate (not shown in FIG. 2) can be disposed on electrode 260.
- Photovoltaic cell 200 can further contain a hole carrier layer (not shown in
- FIG. 2 and a hole blocking layer (not shown in FIG. 2), such as those described in U.S. Patent Application Serial No. 10/723,554.
- the polymers described herein can be used in other devices and systems.
- the polymers can be used in suitable organic semiconductive devices, such as field effect transistors, photodetectors (e.g., IR detectors), photovoltaic detectors, imaging devices (e.g., RGB imaging devices for cameras or medical imaging systems), light emitting diodes (LEDs) (e.g., organic LEDs or IR or near IR LEDs), lasing devices, conversion layers (e.g., layers that convert visible emission into IR emission), amplifiers and emitters for telecommunication (e.g., dopants for fibers), storage elements (e.g., holographic storage elements), and electrochromic devices (e.g., electrochromic displays).
- suitable organic semiconductive devices such as field effect transistors, photodetectors (e.g., IR detectors), photovoltaic detectors, imaging devices (e.g., RGB imaging devices for cameras or medical imaging systems), light emitting diodes (LEDs) (e.g., organic LEDs
- Example 1 Synthesis of bis-(5,5'-trimethylstannyl)-3,3'-di-n-hexyl-silylene-2,2'- dithiophene
- Te solution was then warmed to room temperature and allowed to react for additional two and half hours. After the solution was subsequently cooled down to -78 0 C, 12.00 ml (12.00 mmol) of trimethyltin chloride in hexane was added into the solution dropwise. The reaction solution was stirred at -78 0 C for two more hours. The solution was then warmed to room temperature and allowed to react for 16 more hours. Upon the completion of reaction, 100 ml of distilled water was added and the solution was extracted using toluene (3 x 60 ml). The combined organic phase was washed with distilled water (3 x 150 ml) and dried over sodium sulfate. The organic solvent was removed via rotary evaporation under vacuum.
- the solution was further purged with nitrogen for 15 minutes.
- the solution was then heated up to 110-120 0 C and allowed to react for 40 hours.
- the solvent was removed via rotary evaporation.
- the resultant residue was dissolved in about 30 mL of chlorobenzene.
- the chlorobenzene solution was poured into 600 mL of methanol, a deep blue precipitate thus obtained (the crude polymer product) was collected through filtration.
- the collected solid was redissolved in about 40 mL of chlorobenzene during heating.
- the chlorobenzene solution was filtered through a 0.45 ⁇ membrane, and poured into 600 mL of methanol. After the dark blue color polymer product thus obtained was collected through filtration, it was washed with methanol (3 x 100 ml) and dried under vacuum.
- the dried polymer product was redissolved in 60 ml of hot chlorobenzene and poured into 60 mL of 7.5% sodium diethyldithiocarbamate trihydrate (DDC) aqueous solution. The solution was purged by nitrogen for 15 minutes. The mixed two phase solution thus obtained was heated at about 8O 0 C and stirred vigorously under nitrogen for 15 hours. After the organic phase was washed with hot distilled water (3 x 60 ml), it was slowly poured into 800 mL of methanol. The precipitate was collected through filtration. The collected polymer product was first extracted with acetone and methanol each for 12 hours through Soxhlet extraction apparatus. The polymer product was then collected and dried.
- DDC sodium diethyldithiocarbamate trihydrate
- the molecular weight distribution of the polymer product was analyzed using HPLC through a GPC column with polystyrene as a reference (HPLC Instrument: Agilent Technologies., Model No. 1090M. HPLC Column: PL Gel 1OM Mixed B. Solvent used: Chlorobenzene).
- Example 3 Polymerization of bis-(5,5'-trimethylstannyl)-3,3'-di-n-hexyl-silylene- 2,2'-dithiophene and 3-hexyl-2, 5-dibromo-thiophene
- the solution was then heated up to 110-120 0 C and allowed to react for 40 hours. Upon the completion of the reaction, the solvent was removed via rotary evaporation. The resultant residue was washed with methanol (50 mL x 3), and then washed with of acetone (3 x 50 ml). The residue of the polymer product was collected as dark red-purple solid. The collected polymer product was redissolved in about 60 mL of chloroform under heating. After the chloroform solution was filtered through a 0.45 ⁇ membrane, the solvent was removed via rotary evaporation under vacuum. The polymer product was then dried under vacuum.
- the dried polymer product was redissolved in 60 ml of hot toluene.
- the solution was poured into 60 mL of 7.5% DDC aqueous solution.
- the solution was purged by nitrogen for 15 minutes.
- the mixed two phase solution thus obtained was heated at about 80 0 C and stirred vigorously under nitrogen protection for 12 hours.
- the organic phase was then washed with hot distilled water (3 x 60 ml), the organic phase was collected and dried over anhydrous magnesium sulfate.
- the solvent was removed to give a solid polymer product.
- the solid polymer product was sequentially extracted with methanol and acetone for 12 hours each through Soxhlet extraction apparatus. Finally, the polymer product was collected and dried.
- the molecular weight distribution of the polymer was analyzed using HPLC through a GPC column with polystyrene as a reference (HPLC Instrument: Agilent Technologies, Model No. 1090M. HPLC Column: PL Gel 1OM Mixed B. Solvent used: Chlorobenzene).
- Example 4 Polymerization of bis-(5,5'-trimethylstannyl)-3,3'-di-n-hexyl-silylene- 2,2'-dithiophene, 4,7-dibromo-2,13-benzothiadiazole, and 3-hexyl-2, 5-dibromo- thiophene
- the dried polymer product was redissolved in 60 ml of hot chlorobenzene and poured into 60 mL of 7.5% DDC aqueous solution. The solution was purged by nitrogen for 15 minutes. The mixed two phase solution thus obtained was heated at about 80 0 C and stirred vigorously under nitrogen protection for 15 hours. The organic phase was then washed by hot distilled water (3 x 60 ml). After the chlorobenzene solution was slowly poured into 800 ml of methanol, the precipitate thus obtained was collected through filtration. The collected solid polymer product was sequentially extracted with acetone and methanol for 12 hours each through Soxhlet extraction apparatus. The polymer product was then collected and dried.
- the molecular weight distribution of the polymer was analyzed using HPLC through a GPC column with polystyrene as a reference (HPLC Instrument: Agilent Technologies, Model No. 1090M. HPLC Column: PL Gel 1OM Mixed B. Solvent used: Chlorobenzene).
- Example 5 Polymerization of bis-(5,5'-trimethylstannyl)-3,3'-di-n-hexyl-silylene- 2,2 '-dithiophene and 5,5 '-bis(5-bromo-2-thienyl)-4,4 '-dihexyl-2,2 '-bithiazole
- Polymers 1 and 2 were used to fabricate solar cells on glass/ITO substrates as follows: A PEDOT (Baytron PH) layer, used as electron blocker, was obtained by doctor-blading an isopropanol solution on the ITO. The PEDOT layer was successively hard-baked to improve its resistance to solvents. An active layer, a mixture of a test polymer (i.e., Polymer 1 or 2) and PCBM in weight ratio 1 :1 in CHCl 3 or o-dichlorobenzene was then applied on top of the PEDOT layer. The device was completed by applying a top electrode by high- vacuum evaporation of a bilayer of LiF/ Aluminum.
- a PEDOT Battery PH
- PCBM in weight ratio 1 :1 in CHCl 3 or o-dichlorobenzene
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Photovoltaic Devices (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Electroluminescent Light Sources (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009532499A JP5773568B2 (ja) | 2006-10-11 | 2007-10-01 | シロール含有ポリマーを用いた光電池 |
| EP07872313.7A EP2082437B1 (en) | 2006-10-11 | 2007-10-01 | Photovoltaic cell with silole-containing co-polymer |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US85096306P | 2006-10-11 | 2006-10-11 | |
| US60/850,963 | 2006-10-11 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2008088595A2 true WO2008088595A2 (en) | 2008-07-24 |
| WO2008088595A3 WO2008088595A3 (en) | 2008-10-30 |
Family
ID=39636537
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2007/080053 Ceased WO2008088595A2 (en) | 2006-10-11 | 2007-10-01 | Photovoltaic cell with silole-containing polymer |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP2082437B1 (enExample) |
| JP (2) | JP5773568B2 (enExample) |
| WO (1) | WO2008088595A2 (enExample) |
Cited By (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010062550A (ja) * | 2008-08-06 | 2010-03-18 | Sumitomo Chemical Co Ltd | 光電変換素子 |
| WO2010107101A1 (ja) * | 2009-03-17 | 2010-09-23 | 住友化学株式会社 | 組成物及びそれを用いた素子 |
| CN101624464B (zh) * | 2009-06-09 | 2011-05-18 | 中国科学院化学研究所 | 含有酯基噻唑单元的聚合物光电子材料及其制备方法 |
| WO2011075644A2 (en) | 2009-12-18 | 2011-06-23 | Plextronics, Inc. | Copolymers of 3,4-dialkoxythiophenes and methods for making and devices |
| JP2011136921A (ja) * | 2009-12-28 | 2011-07-14 | Jnc Corp | 有機トランジスタ材料およびこれを用いた有機トランジスタ |
| WO2011161262A1 (de) | 2010-06-24 | 2011-12-29 | Heliatek Gmbh | Verdampfbares organisch halbleitendes material und dessen verwendung in einem optoelektronischen bauelement |
| CN102348737A (zh) * | 2009-03-17 | 2012-02-08 | 住友化学株式会社 | 化合物及使用该化合物的元件 |
| JP2012503679A (ja) * | 2008-09-19 | 2012-02-09 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | ベンゾビス(シロロチオフェン)より誘導されるポリマー、および、有機半導体としてのそれらの使用 |
| JP2012036358A (ja) * | 2009-10-29 | 2012-02-23 | Sumitomo Chemical Co Ltd | 高分子化合物及びそれを用いた電子素子 |
| JP2012519964A (ja) * | 2009-03-05 | 2012-08-30 | コナルカ テクノロジーズ インコーポレイテッド | 複数の電子供与体を有する光電池 |
| WO2012118128A1 (ja) * | 2011-03-03 | 2012-09-07 | 住友化学株式会社 | 重合体、この重合体を用いた有機薄膜及び有機薄膜素子 |
| JP2013509474A (ja) * | 2009-10-28 | 2013-03-14 | ユニヴァーシティ オブ ワシントン | チアゾロチアゾールまたはベンゾビスチアゾール、またはベンゾビスオキサゾール電子受容体サブユニットと、電子供与体サブユニットとを含むコポリマー半導体、ならびにトランジスタおよび太陽電池へのその使用 |
| WO2013065621A1 (ja) * | 2011-11-04 | 2013-05-10 | 株式会社クラレ | 光電変換素子及びその製造方法 |
| WO2013099926A1 (ja) * | 2011-12-28 | 2013-07-04 | 株式会社クラレ | 光電変換素子及びその製造方法 |
| EP2364331A4 (en) * | 2008-11-26 | 2013-12-11 | Univ Florida | BLACK SOLUBLE CONJUGATED POLYMERS WITH HIGH CHARGE STRENGTH MOBILITY |
| CN103502228A (zh) * | 2011-04-28 | 2014-01-08 | 默克专利股份有限公司 | 新颖光敏聚合物 |
| CN103649162A (zh) * | 2011-03-31 | 2014-03-19 | 可乐丽股份有限公司 | 嵌段共聚物及光电转换元件 |
| CN103833980A (zh) * | 2012-11-27 | 2014-06-04 | 海洋王照明科技股份有限公司 | 联二硒吩-噻咯并二(苯并噻二唑)共聚物及其制备方法和应用 |
| JP2014114265A (ja) * | 2012-12-12 | 2014-06-26 | Kuraray Co Ltd | ジチオフェン化合物及びそのジチオフェン基を有するπ電子共役重合体、並びにその重合体を用いた有機半導体デバイス |
| DE102013101713A1 (de) | 2013-02-21 | 2014-08-21 | Heliatek Gmbh | Photoaktives, organisches Material für optoelektronische Bauelemente |
| DE102013101712A1 (de) | 2013-02-21 | 2014-08-21 | Heliatek Gmbh | Photoaktives organisches Material für optoelektronische Bauelemente |
| EP2692760A4 (en) * | 2011-03-31 | 2014-09-24 | Kuraray Co | BLOCK COPOLYMER AND PHOTOELECTRIC CONVERSION ELEMENT |
| WO2015044377A1 (de) | 2013-09-27 | 2015-04-02 | Heliatek Gmbh | Photoaktives; organisches material für optoelektronische bauelemente |
| WO2015067336A3 (en) * | 2013-11-06 | 2015-06-25 | Merck Patent Gmbh | Conjugated polymers |
| CN105731372A (zh) * | 2010-09-02 | 2016-07-06 | 默克专利股份有限公司 | 含新型光活性聚合物的光伏电池 |
| DE102015101768A1 (de) | 2015-02-06 | 2016-08-11 | Technische Universität Dresden | Lichtabsorber |
| DE102015101835A1 (de) | 2015-02-09 | 2016-08-11 | Technische Universität Dresden | Lichtabsorber |
| CN103502228B (zh) * | 2011-04-28 | 2016-11-30 | 默克专利股份有限公司 | 光敏聚合物 |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8455606B2 (en) * | 2008-08-07 | 2013-06-04 | Merck Patent Gmbh | Photoactive polymers |
| WO2010149451A1 (en) * | 2009-06-05 | 2010-12-29 | Basf Se | Fused bithiophene-vinylene polymers |
| WO2011119239A1 (en) * | 2010-03-26 | 2011-09-29 | Hitachi Chemical Co., Ltd. | Water soluble near infrared sensing polymers with low band gaps |
| EP2586810A4 (en) * | 2010-06-25 | 2014-01-29 | Oceans King Lighting Science | CONJUGATED POLYMER BASED ON BENZODITHIOPHEN AND THIENOPYRAZIN, METHOD OF MANUFACTURE AND USE THEREOF |
| KR20140009134A (ko) | 2010-09-04 | 2014-01-22 | 메르크 파텐트 게엠베하 | 공액 중합체 |
| JP5616273B2 (ja) | 2011-03-31 | 2014-10-29 | 富士フイルム株式会社 | 有機半導体ポリマー、有機半導体材料用組成物および光電池 |
| JP5712769B2 (ja) * | 2011-04-28 | 2015-05-07 | コニカミノルタ株式会社 | 有機光電変換素子及び太陽電池 |
| JP5747706B2 (ja) * | 2011-07-20 | 2015-07-15 | 三菱化学株式会社 | 新規コポリマー、有機半導体材料、及びこれを用いた有機電子デバイス、光電変換素子並びに太陽電池モジュール |
| JP6004848B2 (ja) * | 2011-09-06 | 2016-10-12 | 住友化学株式会社 | 重合体、この重合体を用いた有機薄膜及び有機薄膜素子 |
| CN104136484B (zh) * | 2012-02-15 | 2017-02-22 | 默克专利股份有限公司 | 共轭聚合物 |
| JP2015013989A (ja) * | 2013-06-05 | 2015-01-22 | 三菱化学株式会社 | コポリマー、半導体層形成用組成物、有機電子デバイス及び太陽電池モジュール |
| JP6233918B2 (ja) * | 2013-08-01 | 2017-11-22 | 国立大学法人神戸大学 | ポリ(3−置換チオフェン)化合物並びにその合成中間体及びそれらの製造方法 |
| JP6372317B2 (ja) * | 2014-11-14 | 2018-08-15 | 宇部興産株式会社 | ベンゾビス(チアジアゾール)誘導体を含む熱電変換材料及びこれを用いた熱電変換素子 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7022910B2 (en) | 2002-03-29 | 2006-04-04 | Konarka Technologies, Inc. | Photovoltaic cells utilizing mesh electrodes |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ATE303389T1 (de) * | 2001-07-09 | 2005-09-15 | Merck Patent Gmbh | Thienothiophen-derivate |
| KR100592862B1 (ko) * | 2001-09-05 | 2006-06-26 | 샤프 가부시키가이샤 | 고분자 구조체 및 그것을 구비한 기능 소자, 및트랜지스터 및 그것을 사용한 표시 장치 |
| SG124249A1 (en) * | 2001-12-07 | 2006-08-30 | Sumitomo Chemical Co | New polymer and polymer light-emitting device using the same |
| US7094902B2 (en) * | 2002-09-25 | 2006-08-22 | 3M Innovative Properties Company | Electroactive polymers |
| ATE452154T1 (de) * | 2003-10-15 | 2010-01-15 | Merck Patent Gmbh | Polybenzodithiophene |
| JP4916117B2 (ja) * | 2004-02-19 | 2012-04-11 | 三菱化学株式会社 | フラーレン誘導体及びメタノフラーレンの製造方法 |
| JP2005255776A (ja) * | 2004-03-10 | 2005-09-22 | Tokuyama Corp | ジチエノシロール共重合体および正孔輸送性材料 |
| US20060174937A1 (en) * | 2005-02-09 | 2006-08-10 | Zhang-Lin Zhou | High performance organic materials for solar cells |
| US7825326B2 (en) * | 2005-03-21 | 2010-11-02 | Konarka Technologies, Inc. | Polymer photovoltaic cell |
| WO2007011451A2 (en) * | 2005-05-23 | 2007-01-25 | Board Of Regents, The University Of Texas System | Aqueous microfabrication of functional bioelectronic architectures |
-
2007
- 2007-10-01 JP JP2009532499A patent/JP5773568B2/ja not_active Expired - Fee Related
- 2007-10-01 WO PCT/US2007/080053 patent/WO2008088595A2/en not_active Ceased
- 2007-10-01 EP EP07872313.7A patent/EP2082437B1/en active Active
-
2014
- 2014-04-10 JP JP2014081430A patent/JP5799126B2/ja active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7022910B2 (en) | 2002-03-29 | 2006-04-04 | Konarka Technologies, Inc. | Photovoltaic cells utilizing mesh electrodes |
Non-Patent Citations (8)
| Title |
|---|
| A. KUNAI ET AL., SYNTHETIC METALS, vol. 137, 2003, pages 1007 - 1008 |
| COPPO ET AL., MACROMOLECULES, vol. 36, 2003, pages 2705 - 2711 |
| J. OHSHITA ET AL., MACROMOLECULES, vol. 33, 2000, pages 8890 - 8893 |
| KURT ET AL., J. HETEROCYCL. CHEM., vol. 6, 1970, pages 629 |
| L. LIAO ET AL., MACROMOLECULES, vol. 40, 2007, pages 9406 - 9412 |
| M.S. LIU ET AL., CHEM. MATER., vol. 15, 2003, pages 3496 - 3500 |
| See also references of EP2082437A4 |
| USTA ET AL., J. AM .CHEM. SOC., vol. 128, no. 28, 2006, pages 9034 - 9035 |
Cited By (46)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010062550A (ja) * | 2008-08-06 | 2010-03-18 | Sumitomo Chemical Co Ltd | 光電変換素子 |
| JP2012503679A (ja) * | 2008-09-19 | 2012-02-09 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | ベンゾビス(シロロチオフェン)より誘導されるポリマー、および、有機半導体としてのそれらの使用 |
| TWI452058B (zh) * | 2008-09-19 | 2014-09-11 | Merck Patent Gmbh | 衍生自苯并雙(矽并噻吩)之聚合物及其作為有機半導體之用途 |
| US8709290B2 (en) | 2008-09-19 | 2014-04-29 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Polymers derived from benzobis(silolothiophene) and their use as organic semiconductors |
| EP2364331A4 (en) * | 2008-11-26 | 2013-12-11 | Univ Florida | BLACK SOLUBLE CONJUGATED POLYMERS WITH HIGH CHARGE STRENGTH MOBILITY |
| JP2012519964A (ja) * | 2009-03-05 | 2012-08-30 | コナルカ テクノロジーズ インコーポレイテッド | 複数の電子供与体を有する光電池 |
| CN102348737A (zh) * | 2009-03-17 | 2012-02-08 | 住友化学株式会社 | 化合物及使用该化合物的元件 |
| EP2410017A4 (en) * | 2009-03-17 | 2013-05-22 | Sumitomo Chemical Co | COMPOSITION AND ITEM WITH IT |
| CN102348759A (zh) * | 2009-03-17 | 2012-02-08 | 住友化学株式会社 | 组合物及使用它的元件 |
| JP2010245519A (ja) * | 2009-03-17 | 2010-10-28 | Sumitomo Chemical Co Ltd | 組成物及びそれを用いた素子 |
| WO2010107101A1 (ja) * | 2009-03-17 | 2010-09-23 | 住友化学株式会社 | 組成物及びそれを用いた素子 |
| CN102348759B (zh) * | 2009-03-17 | 2013-07-10 | 住友化学株式会社 | 组合物及使用它的元件 |
| EP2410002A4 (en) * | 2009-03-17 | 2013-05-22 | Sumitomo Chemical Co | CONNECTION AND ELEMENT THEREFORE |
| CN101624464B (zh) * | 2009-06-09 | 2011-05-18 | 中国科学院化学研究所 | 含有酯基噻唑单元的聚合物光电子材料及其制备方法 |
| JP2013509474A (ja) * | 2009-10-28 | 2013-03-14 | ユニヴァーシティ オブ ワシントン | チアゾロチアゾールまたはベンゾビスチアゾール、またはベンゾビスオキサゾール電子受容体サブユニットと、電子供与体サブユニットとを含むコポリマー半導体、ならびにトランジスタおよび太陽電池へのその使用 |
| JP2012036358A (ja) * | 2009-10-29 | 2012-02-23 | Sumitomo Chemical Co Ltd | 高分子化合物及びそれを用いた電子素子 |
| WO2011075644A2 (en) | 2009-12-18 | 2011-06-23 | Plextronics, Inc. | Copolymers of 3,4-dialkoxythiophenes and methods for making and devices |
| JP2011136921A (ja) * | 2009-12-28 | 2011-07-14 | Jnc Corp | 有機トランジスタ材料およびこれを用いた有機トランジスタ |
| US9127020B2 (en) | 2010-06-24 | 2015-09-08 | Heliatek Gmbh | Evaporable organic semiconductive material and use thereof in an optoelectronic component |
| DE102010030500A1 (de) | 2010-06-24 | 2011-12-29 | Heliatek Gmbh | Verdampfbares organisch halbleitendes Material und dessen Verwendung in einem optoelektronischen Bauelement |
| WO2011161262A1 (de) | 2010-06-24 | 2011-12-29 | Heliatek Gmbh | Verdampfbares organisch halbleitendes material und dessen verwendung in einem optoelektronischen bauelement |
| CN105731372A (zh) * | 2010-09-02 | 2016-07-06 | 默克专利股份有限公司 | 含新型光活性聚合物的光伏电池 |
| WO2012118128A1 (ja) * | 2011-03-03 | 2012-09-07 | 住友化学株式会社 | 重合体、この重合体を用いた有機薄膜及び有機薄膜素子 |
| CN103649162A (zh) * | 2011-03-31 | 2014-03-19 | 可乐丽股份有限公司 | 嵌段共聚物及光电转换元件 |
| EP2692761A4 (en) * | 2011-03-31 | 2014-09-17 | Kuraray Co | BLOCK COPOLYMER AND PHOTOELECTRIC CONVERSION ELEMENT |
| EP2692760A4 (en) * | 2011-03-31 | 2014-09-24 | Kuraray Co | BLOCK COPOLYMER AND PHOTOELECTRIC CONVERSION ELEMENT |
| CN103502228B (zh) * | 2011-04-28 | 2016-11-30 | 默克专利股份有限公司 | 光敏聚合物 |
| CN103502228A (zh) * | 2011-04-28 | 2014-01-08 | 默克专利股份有限公司 | 新颖光敏聚合物 |
| WO2013065621A1 (ja) * | 2011-11-04 | 2013-05-10 | 株式会社クラレ | 光電変換素子及びその製造方法 |
| WO2013099926A1 (ja) * | 2011-12-28 | 2013-07-04 | 株式会社クラレ | 光電変換素子及びその製造方法 |
| CN103833980A (zh) * | 2012-11-27 | 2014-06-04 | 海洋王照明科技股份有限公司 | 联二硒吩-噻咯并二(苯并噻二唑)共聚物及其制备方法和应用 |
| CN103833980B (zh) * | 2012-11-27 | 2016-01-13 | 海洋王照明科技股份有限公司 | 联二硒吩-噻咯并二(苯并噻二唑)共聚物及其制备方法和应用 |
| JP2014114265A (ja) * | 2012-12-12 | 2014-06-26 | Kuraray Co Ltd | ジチオフェン化合物及びそのジチオフェン基を有するπ電子共役重合体、並びにその重合体を用いた有機半導体デバイス |
| DE102013101712A1 (de) | 2013-02-21 | 2014-08-21 | Heliatek Gmbh | Photoaktives organisches Material für optoelektronische Bauelemente |
| DE102013101712B4 (de) | 2013-02-21 | 2020-05-28 | Heliatek Gmbh | Photoaktives organisches Material für optoelektronische Bauelemente |
| WO2014128277A1 (de) | 2013-02-21 | 2014-08-28 | Heliatek | Photoaktives, organisches material für optoelektronische bauelemente |
| WO2014128281A1 (de) | 2013-02-21 | 2014-08-28 | Heliatek Gmbh | Photoaktives, organisches material für optoelektronische bauelemente |
| DE102013101713A1 (de) | 2013-02-21 | 2014-08-21 | Heliatek Gmbh | Photoaktives, organisches Material für optoelektronische Bauelemente |
| DE102013110693A1 (de) | 2013-09-27 | 2015-04-02 | Heliatek Gmbh | Photoaktives, organisches Material für optoelektronische Bauelemente |
| WO2015044377A1 (de) | 2013-09-27 | 2015-04-02 | Heliatek Gmbh | Photoaktives; organisches material für optoelektronische bauelemente |
| DE102013110693B4 (de) | 2013-09-27 | 2024-04-25 | Heliatek Gmbh | Photoaktives, organisches Material für optoelektronische Bauelemente |
| CN105765028A (zh) * | 2013-11-06 | 2016-07-13 | 默克专利股份有限公司 | 共轭聚合物 |
| WO2015067336A3 (en) * | 2013-11-06 | 2015-06-25 | Merck Patent Gmbh | Conjugated polymers |
| DE102015101768A1 (de) | 2015-02-06 | 2016-08-11 | Technische Universität Dresden | Lichtabsorber |
| DE102015101835A1 (de) | 2015-02-09 | 2016-08-11 | Technische Universität Dresden | Lichtabsorber |
| WO2016128356A1 (de) | 2015-02-09 | 2016-08-18 | Technische Universität Dresden | Lichtabsorbierende verbindungen |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2082437A2 (en) | 2009-07-29 |
| JP5799126B2 (ja) | 2015-10-21 |
| EP2082437A4 (en) | 2011-04-06 |
| JP2014160848A (ja) | 2014-09-04 |
| EP2082437B1 (en) | 2019-01-02 |
| JP5773568B2 (ja) | 2015-09-02 |
| JP2010507233A (ja) | 2010-03-04 |
| WO2008088595A3 (en) | 2008-10-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2082437B1 (en) | Photovoltaic cell with silole-containing co-polymer | |
| US8962783B2 (en) | Photovoltaic cell with silole-containing polymer | |
| EP1902439B1 (en) | Photovoltaic cells with polymers with low band gaps and high charge mobility | |
| US7772485B2 (en) | Polymers with low band gaps and high charge mobility | |
| US8008424B2 (en) | Photovoltaic cell with thiazole-containing polymer | |
| JP6007273B2 (ja) | タンデム型光電池 | |
| US20070131270A1 (en) | Window with photovoltaic cell | |
| EP2321861B1 (en) | Novel photoactive co- polymers | |
| CN103502228B (zh) | 光敏聚合物 | |
| CN103502228A (zh) | 新颖光敏聚合物 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07872313 Country of ref document: EP Kind code of ref document: A2 |
|
| ENP | Entry into the national phase |
Ref document number: 2009532499 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2007872313 Country of ref document: EP |