WO2008084838A1 - 溶接部耐食性および鋼板の靭性に優れた温水器用フェライト系ステンレス鋼板 - Google Patents

溶接部耐食性および鋼板の靭性に優れた温水器用フェライト系ステンレス鋼板 Download PDF

Info

Publication number
WO2008084838A1
WO2008084838A1 PCT/JP2008/050224 JP2008050224W WO2008084838A1 WO 2008084838 A1 WO2008084838 A1 WO 2008084838A1 JP 2008050224 W JP2008050224 W JP 2008050224W WO 2008084838 A1 WO2008084838 A1 WO 2008084838A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
corrosion resistance
steel sheet
stainless steel
toughness
Prior art date
Application number
PCT/JP2008/050224
Other languages
English (en)
French (fr)
Inventor
Kunio Fukuda
Yoshimasa Funakawa
Shuji Okada
Toshihiro Kasamo
Katsuhiro Kobori
Takumi Ujiro
Tomohiro Ishii
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP08703088A priority Critical patent/EP2100983B1/en
Priority to CN2008800021000A priority patent/CN101578385B/zh
Priority to ES08703088T priority patent/ES2396221T3/es
Priority to US12/516,212 priority patent/US8383034B2/en
Publication of WO2008084838A1 publication Critical patent/WO2008084838A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to a stainless steel sheet, a ferritic stainless steel sheet for water heaters, which is excellent in corrosion resistance, in particular, the corrosion resistance of welds and the toughness of steel sheets. 1 ) Background
  • Ferritic stainless steel such as JIS (Japanese Industrial Standards) -SUS44 is more sensitive to stress corrosion cracking (SCC) than austenitic stainless steel. Since it has the characteristic of low temperature, it is used as a material for electric water heaters. '
  • corrosion resistance is improved by reducing P and S, C and N using a high purity refining technique.
  • a method for improving the above is disclosed.
  • JP-A-10-81940 the amount of Ti added is limited and Ti and A1 are combined.
  • a technique for improving the corrosion resistance of welds by adding an appropriate amount of Cu is disclosed.
  • Japanese Patent Laid-Open No. 7-286239 describes a ferrite containing ll% ⁇ Cr ⁇ 35% with a quality of 3 ⁇ 4% and C ⁇ 0.03%, ⁇ 0 ⁇ 025% and 0 ⁇ 0.02%.
  • Stainless steel, the oxygen and nitrogen concentrations of the laser welding portion are 250 ppm or less and 350 ppm or less, respectively, and the precipitated carbides and nitrides have an average particle size.
  • Japanese Patent Laid-Open No. 2005-15816 states that quality *%, C ⁇ 0.003%, 0.1 %% Si ⁇ 0.4% Mn ⁇ 0.4%, P ⁇ 0.04%, S ⁇ 0.01%, 16.0% ⁇ Cr ⁇ 25.0%, 0.8% ⁇ o ⁇ 2.5%, N ⁇ 0.03%, 0.1% ⁇ Nb ⁇ 0.6%, 0 05% ⁇ Ti ⁇ 0. 3%, 0. 01% ⁇ A1 ⁇ 0. 5%, and Nb + Ti ⁇ 7 (C + N) +0.15 between Nb, Ti, C and N
  • the water heater with excellent corrosion resistance is composed of a ferritic stainless steel plate, the balance of which is substantially made of Fe, and the body and upper and lower end panels (barrelhead) are caulking joints.
  • Japanese Patent Laid-Open No. 2006-257544 discloses that in mass%, 0.001% ⁇ C ⁇ 0.02%, 0.001% ⁇ N ⁇ 0 ⁇ 02%, 0.01% ⁇ Si ⁇ 0.3. % 0. 05% ⁇ Mn ⁇ l%, P ⁇ 0. 04% 0. 15% ⁇ Ni ⁇ 3%, ll% ⁇ Cr ⁇ 22%, 0. 01% ⁇ Ti ⁇ 0. 5%, 0. 0002 Including% ⁇ Mg ⁇ 0.002%, 0.5% ⁇ Mo ⁇ 3.0%, 0.02% ⁇ Nb ⁇ 0.6%, 0.l% ⁇ Cu ⁇ 1.5.
  • One or more of Mo, Nb and Cu Ferritic stainless steel is disclosed that includes Cr + 3Mo + 6 (Ni + Nb + Cu) ⁇ 23, with the balance being Fe and unavoidable impurities and excellent crevice corrosion resistance. . Disclosure of the invention
  • the present invention provides a ferritic stainless steel sheet for water heaters that has sufficient toughness and has sufficient corrosion resistance of welds even when the concentration of chlorine increases.
  • Objective. In order to solve the above problems, the present inventors have conducted a thorough investigation on the influence of the chemical composition of steel on the corrosion resistance of the base metal part and the welded part, and the influence of the chemical composition of steel on the manufacturability of the steel sheet. , Study was carried out.
  • TIG welding Tungsten Inert Gas welding
  • the inert gas on both the front and back of the weld Shield with an inert gas and make sure that the welds do not stick to the temper color (oxide layer).
  • this gas shield is not sufficient, oxygen in the air is slightly mixed in, and the tempering force is applied to the bead on the surface of the weld or the bead on the back surface. A called oxide film forms on the weld.
  • this oxide film consumes the Cr of the base metal, lowers the Cr concentration of the base metal directly under the oxide film, and becomes the main cause of deterioration in corrosion resistance.
  • the maximum heating temperature is less than 800-1000
  • the generated oxide film has a low generation speed of Cr oxide, and the base material is moved to the surface of the steel plate. It is relatively unaffected by the rapid diffusion of Cr.
  • the oxide film formed at less than 800 ° C has a low Cr oxide generation rate, but the Cr diffusion from the base metal to the copper plate surface is slow. Corrosion resistance deteriorates.
  • this temperature range it was found that by selectively forming an oxide of Si and an oxide of A1, it becomes a high density protective coating and the deterioration of corrosion resistance can be reduced.
  • the toughness of the hot-rolled sheet is significantly deteriorated with a slight addition of Ti. Even if the Cr concentration is increased, by adding Nb alone as a C and N fixing element, it is possible to manufacture a steel plate without reducing the productivity of the steel plate (steel strip).
  • the corrosion resistance of the weld is greatly affected by the oxide film produced during welding and the base material directly under the oxide film.
  • Corrosion resistance of welds can be controlled by selective formation of A1 oxide and Si oxide.
  • Addition of Ti and Nb improves the corrosion resistance of the base metal part, but excessive addition of Ti deteriorates the toughness of the steel sheet, especially the hot-rolled sheet, and significantly deteriorates the productivity of the steel sheet.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • Cr, Mo, Si, and A1 contain Cr, Mo, Si, and Al, respectively (mass%)
  • V, Nb, C, and N are the contents of V, Nb, N, respectively (mass%)
  • the composition further contains at least one of mass%, Cu: 0.2 to; 1.0%, Zr: 0.10 to 0.60%. Corrosion resistance of welds characterized by the characteristics of high-strength stainless steel sheet for hot water heaters with excellent toughness.
  • group stainless steel for water heaters excellent in the corrosion resistance of a welding part and the toughness of a steel plate is obtained. Furthermore, since the present invention solves the above-mentioned problems by optimizing the component system, the corrosion resistance of the welded portion can be improved without reducing the productivity of the copper plate.
  • the ferritic stainless steel of the present invention has excellent hot rolled sheet toughness and further improved corrosion resistance of the welded portion, when used as a material for a can body for a water heater, residual chlorine in tap water Even if the amount added is increased, damage due to corrosion of the welded portion can be remarkably reduced, resulting in a remarkable industrial effect.
  • Fig. 1 A graph showing the results of Charpy impact tests (relationship between test temperature and absorbed energy) of hot-rolled sheets of 4nmt thickness with two compositions.
  • Fig. 2 is a graph showing the results of Charpy impact test (relationship between test temperature and brittle fracture surface ratio) of hot-rolled strips of 4 t-thickness with two compositions.
  • Charpy impact test correlation between test temperature and brittle fracture surface ratio
  • BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below. First, the chemical component composition of the present invention will be described.
  • C is set to 0.020% or less. More preferably, it is 0.001% or less.
  • Si is an element effective for the corrosion resistance of the welded part, and is an important element in the present invention.
  • a dense film Si oxide
  • Si oxide oxidation in the heat-affected zone during welding
  • it works to prevent deterioration of the corrosion resistance of the base metal.
  • a dense film is formed by adding 0.30% or more, and It minimizes the oxidation of Cr, prevents the oxide film and the underlying iron Cr concentration from decreasing, prevents the deterioration of the corrosion resistance of the base metal, and provides an effect on the oxide film of the weld.
  • Si is 0.30% or more, preferably 0.40% or more.
  • Si degrades the pickling properties of hot and cold rolled sheets and decreases productivity. If added too much, the material becomes hard and the workability deteriorates. Therefore, the upper limit is 1.00%. More preferably, the upper limit is 0.80%.
  • Mn combines with S present in steel to form MnS, a soluble sulfide, which reduces corrosion resistance. Therefore, Mn shall be 1.00% or less. More preferably, it is 0.60% or less.
  • P is an element harmful to corrosion resistance. In particular, it becomes remarkable when it exceeds 0.040%. Therefore, P is set to 0.040% or less. More preferably, it is 0.030% or less.
  • S is an element harmful to corrosion resistance.
  • MnS when it is present together with Mn, it forms MnS, and the effect on corrosion resistance becomes significant when it exceeds 0.010%. So S is 0. Limited to 010% or less. More preferably, it is 0.006% or less.
  • the oxide film formed at 1000 or more contains a large amount of Cr; ⁇ , and if the base metal Cr concentration is low, the corrosion resistance in this temperature range is extremely deteriorated even if the Mo content is high.
  • the lower limit of Cr is set to 20.0% or more.
  • the content exceeds 28.0%, the workability is remarkably lowered.
  • Cr is made 20.00% or more and 28.0% or less. Preferably, it is 20.2% to 25.5% or less.
  • Ni is an element that advantageously contributes to the improvement of toughness. In order to obtain the effect, 0.1% or more is preferable. However, if the Ni force exceeds 0.6%, the sensitivity to stress corrosion cracking (SCC) increases. Therefore, Ni should be 0.6% or less. More preferably, it is 0.4% or less.
  • A1 like Si, is an important element in the present invention regarding the oxide film formed at less than 800 ° C. Corrosion resistance is improved by adding 0.03% A1.
  • A1 forms an oxide immediately below the oxide film on the hot-rolled sheet and cold-rolled sheet, strengthening the oxide film, making pickling difficult, and reducing productivity. Therefore, in the present invention, A1 is set to 0.03% to 0.15%. More preferably, it is 0.06 to 0.12%. • N: 0.020% or less
  • N is likely to combine with Cr to form Cr nitride.
  • Cr nitride When Cr nitride is formed in the heat-affected zone during welding, it causes intergranular attack, so a lower N is desirable. Therefore, in the present invention, N is set to 0.020% or less. More preferably, it is 0.014% or less.
  • O oxygen
  • O is an element that improves the depth of penetration of the weld. In order to obtain the effect, 0.0020% or more is preferable. On the other hand, if O exceeds 0.0150%, inclusions increase, and the presence of these inclusions causes a significant deterioration in corrosion resistance. Therefore, O is 0.0020% or more and 0.0150% or less. More preferably, it is 0.0030 to 0.0100%.
  • Mo is an element that significantly improves the corrosion resistance. Such an effect becomes remarkable when the content is 0.3% or more. On the other hand, if the content exceeds 1.5%, the toughness is remarkably reduced within the Cr concentration range of the present invention, and the workability in the cold-rolled sheet is also deteriorated. Therefore, it is 0.3% or more and 1.5% or less. Preferably, it is 0.7% or more and 1.2% or less.
  • Nb preferentially forms carbonitride over Cr. Therefore, formation of Cr carbonitride after hot rolling can be prevented and deterioration of toughness can be suppressed. Therefore, Nb is added at 0.25% or more. On the other hand, if it exceeds 0.60%, the toughness of the hot-rolled sheet deteriorates, and the corrosion resistance at the weld zone decreases. Therefore, Nb is set to 0.25 to 0.60%. Preferably, it is 0.30 to 0.50%.
  • V is an element that improves corrosion resistance. By improving the corrosion resistance of the base metal, the corrosion resistance of the weld can be indirectly improved. In addition, it has been clarified that it is an element that improves oxidation resistance by coexisting with Nb. Although its mechanism is not well understood, when an oxidation test is performed at a temperature of 1100 ° C or higher, Nb and V may coexist on the surface of the steel plate immediately below the oxide film to form an oxide. confirmed. It is thought that Nb and V coexist on the surface of the steel sheet to form an oxide, thereby suppressing the diffusion of Fe and Cr from the steel sheet to the outside and reducing the oxidation amount of the steel sheet.
  • V In order to improve surface properties, V needs to be 0.50% or less. Therefore, in the present invention, V is set to 0.005 to 0.50%. More preferably, it is 0.01 to 0.20%.
  • Ti is an important element in the present invention. Ti, like Nb, forms carbonitride preferentially over Cr and improves corrosion resistance in welds and so on, so it is an element that should be added when considering the corrosion resistance of welds. However, as described above, Ti, in the Cr and Mo balance as in the present invention, remarkably deteriorates the toughness of the hot-rolled sheet even when added in a small amount. In addition, the formation of TiN in steelmaking slabs causes surface defects in cold-rolled steel sheets. Therefore, in the present invention, Ti is set to 0.05% or less. Preferably, Ti is 0.03% or less.
  • the lower limit of the above formula (1) is a necessary condition for obtaining the corrosion resistance of the base metal part and the welded part even when the residual chlorine concentration in the hot water is high. Meanwhile, the corrosion resistance of the base metal and welding When the difference in corrosion resistance of welds deteriorated due to the formation of oxide film increases, dissolution occurs preferentially at the part where the oxide film is formed, which in turn promotes crevice corrosion. Therefore, the upper limit is 30 in the above equation (1). More preferably, it is 26-29.
  • the above formula (2) is a necessary condition for obtaining the corrosion resistance of the weld.
  • Si oxide and A1 oxide form a sufficient protective film, and suppress deterioration of corrosion resistance.
  • S i + Al needs to be 0.35 or more.
  • elements such as Si and A 1 are concentrated immediately below the oxide film during the formation of the oxide film, thereby preventing deterioration of the corrosion resistance. If the upper limit of the above formula (2) is exceeded, Si and / or A 1 grows too much to form a dense protective film (film without pinholes). Therefore, in the above equation (2), the upper limit is 0.85. More preferably, it is 0.40 to 0.75.
  • the lower limit of the above formula (3) is a necessary condition for further improving the corrosion resistance of the weld. If there is no more than a certain amount of V with respect to the solid solution Nb, sufficient oxidation resistance cannot be obtained, and the effect of improving corrosion resistance will not be exhibited.
  • the upper limit of the above formula (3) is a condition necessary for further improving the corrosion resistance of the welded portion and for improving the surface properties. If the ratio of V becomes too high, the oxidation resistance becomes too strong, which prevents the formation of a dense protective film with A1 and Si, and also suppresses the formation of an oxide film during hot rolling, thereby preventing metal contact (metal lic contact). ) causes surface defects. Therefore, in the above equation (3), the lower limit is 0.1 and the upper limit is 5.0. More preferably, it is 0.5 to 4.0.
  • the balance other than the above components is Fe and inevitable impurities.
  • Mg 0.000020% or less
  • Ca 0.000020% or less are acceptable.
  • the steel sheet of the present invention can achieve the desired properties with the above essential additive elements, but can contain the following elements depending on the desired properties.
  • Cu improves the corrosion resistance of the base metal in the case of steel containing 20.0% or more of Cr. This effect is large in a low pH acid solution containing halogen, and dissolution of the iron base can be reduced by adding 0.2% or more of Cu. Although this mechanism is not clear, it is presumed that Cu dissolved in the low pH solution adheres most to the iron and improves the dissolution resistance. On the other hand, if Cu is added in excess of 1.0%, dissolution of Cu is accelerated, and crevice corrosion resistance may be reduced. Therefore, when Cu is added, Cu should be 0.2% or more 1. ( ⁇ or less, preferably 0.3% or more and 0.7% or less.
  • Zr like Nb, forms carbonitride preferentially over Cr and improves corrosion resistance in welds and so on, so it is an element that should be added when considering the corrosion resistance of welds. This effect appears with the addition of 0.10%. On the other hand, if added too much, an intermetallic compound is formed, and the toughness of the hot-rolled sheet may deteriorate. Therefore, when Zr is added, it should be 0.10% or more and 0.60 or less. Preferably, it is 0.15% or more and 0.35% or less.
  • the manufacturing method is not particularly limited.
  • Molten steel having the above composition is melted by a known method such as a steel converter, an electric furnace, a vacuum fusion furnace, etc. cast ing) is made of steel (slab) by the ingot casting method —blooming method.
  • the steel material is then heated, or directly hot-rolled without heating to a hot-rolled steel sheet.
  • Hot-rolled sheets are usually subjected to hot-rolled sheet annealing, but depending on the application, hot-rolled sheet annealing may be omitted.
  • cold-rolled steel is used to make cold-rolled steel sheets, which are then subjected to cold-rolled sheet annealing and pickling.
  • 2B of JIS G4305 (Sukin'no ⁇ 0 scan rolled material (skin pass rol led steel sheet) ) is used as a product, no problem no be subjected to polishing or the like after machining.
  • a more preferable production method preferably uses a partial condition in the hot rolling process and the cold rolling process as the specific condition.
  • steel making it is preferable to melt the molten steel containing the essential components and components added as necessary in a converter or an electric furnace, and perform secondary refining by the VOD method.
  • the molten steel can be made into a steel material according to a known production method, but from the viewpoint of productivity and quality, it is preferable to use a continuous forging method.
  • the copper material obtained by continuous forging is, for example, heated to 100 ° C to 125 ° C and hot rolled to a desired thickness by hot rolling with a finishing temperature of 700 to 950 ° C. It is said. Of course, it can be processed as other than plate material.
  • This hot-rolled sheet is subjected to batch-type annealing at 600 to 800 ° C or continuous annealing at 900 ° C-110 ° C, and then descaled by pickling etc. Become a product. If necessary, the oxide film may be removed by shot blasting before pickling.
  • the hot-rolled annealed plate obtained above is made into a cold-rolled plate through a cold rolling process.
  • two or more cold rolling processes including intermediate annealing may be performed as necessary for the convenience of production.
  • the total rolling reduction in the cold rolling process consisting of one or more cold rollings is 60% or more, preferably 70% or more.
  • the cold-rolled sheet is 950- 1 1500, more preferably 980-0-1120 ° C continuous annealing (cold-rolled sheet annealing), then pickled, Is done.
  • mild rolling skin pass rolling, etc.
  • the welding method for welding these members is not particularly limited, and MIG (Metal Inert Gas), MAG (Metal Active Gas), TIG (Tungsten Inert Gas) and other ordinary arc welding methods, spot welding, seam welding and other resistance welding methods, and electric resistance welding methods such as high frequency resistance welding and high frequency induction welding Applicable.
  • finishing temperature 750 to 9503 ⁇ 4
  • Coiling temperature Hot rolling was performed under the conditions of 650 to 8503 ⁇ 4 to obtain a hot rolled sheet having a thickness of 4.0 mm.
  • the toughness of the obtained hot-rolled sheet was investigated.
  • the shape of the test specimen is JIS Z2202, No. 4, and V-notch is processed so that the V-notch direction is perpendicular to the rolling direction (C direction).
  • a Charbi impact test was conducted.
  • the toughness was evaluated by observing the fracture cross section with a microscope at 0 and a scanning electron microscope (SEM) and evaluating the brittle fracture surface ratio.
  • SEM scanning electron microscope
  • Electrode 1. 6mm diameter tungsten electrode
  • the welded specimens were subjected to an immersion test in order to investigate the corrosion resistance in the environment where the water heater was used.
  • the test solution was used 0. l% NaCl + 0. 1% CUC1 2 aqueous solution maintained at 80 ° C.
  • the welded specimen was changed to the test solution every 5 days and immersed for 3 cycles (15 days in total), and the maximum pitting depth of pitting corrosion occurred in the weld was measured.
  • the corrosion resistance of the weld was evaluated according to the following criteria.
  • the maximum pore depth is 20 / z m or more and less than 50 ⁇
  • Each item was rated according to the following criteria. -The brittle fracture surface at 0 ° C in the Charpy test was scored at 5 points for 20% or less, 2 points for 20-80%, and 0 points for 80% or more.
  • the pitting corrosion potential of the base metal was 5 points for 500 mV or more, 2 points for 450 to 500 mV, and 0 point for 450 mV or less.
  • the pitting potential (3.5% NaCl) of the weld was 5 points for lOOmV or more, 2 points for 0 to 100 mV, and 0 point for less than OmV. .
  • the pitting corrosion potential (200ppmCr) of the weld was 5 points for lOOmV or more, 2 points for 0 to 100mV, and 0 point for OmV or less.

Abstract

溶接部の耐食性および鋼板の靭性に優れた温水器用フェライト系ステンレス鋼板を提供するものである。具体的には、 mass%で、C:0.020%以下、Si:0.30~1.00%、Mn:1.00%以下、P:0.040%以下、S:0.010%以下、Cr:20.0~28.0%、Ni:0.6%以下、Al:0.03~0.15%、N:0.020%以下、O:0.0020~0.0150%Mo:0.3~1.5%、Nb:0.25~0.60%、Ti:0.05%以下を含有し、残部がFe及び不可避的不純物からなり、かつ、下記式(1)および下記式(2)を満足する温水器用フェライト系ステンレス鋼板である。25≦Cr+3.3Mo≦30 ―――――(1)0.35≦Si+Al≦0.85 ―――――(2)ただし、Cr、Mo、Si、AlはそれぞれCr、Mo、Si、Alの含有量(mass%)

Description

明細書
溶接部耐食性および鋼板の靭性に優れた温水器用フ πライト系ステンレス鋼板 技術分野
本発明は、 耐食性(corrosion resistance)のうち、 特に溶接部(weld)の耐食性、 および鋼板の靭性(toughness)に優れた温水器 (water heater)用フ ライ ト系ステ ンレス鋼板、 ferritic stainless steel sheet)に関する1 のでめる。 背景技術
JIS (Japanese Industrial Standards) -SUS44 等のフェライ ト系ステンレス鋼 は、 オーステナイト系ステンレス鋼(austenitic stainless steel)と比較して、 応 力腐食割れ (SCC: stress corrosion cracking) の感受性(sensitivity)カ /Jヽさレヽ という特徴を有するので電気温水器(electric water heater)等の材料として使用 されている。 '
し力 し、フェライト系ステンレス鋼を電気温水器等の材料として用いるにあたつ ては、 水道水(running water)には衛生対策(sanitary requirement)のため残留塩 素(residual chlorine)が含まれているため、 この残留塩素による酸化作用(oxygen behaviour)により材料が腐食するという問題がある。特に、溶接部(溶接金属 (weld metal)、 溶接熱影響部(welded heat affected zone) ) の耐食性が問題となること が多い。
このような耐食性を改善する技術として、例えば、特開昭 58— 71356号公報では、 高純度化精鍊技術 (high purity refining technique)を用いて、 Pと S、 Cと Nを 低減することにより耐食性を向上させる方法が開示されている。
また、 特開平 10— 81940号公報では、 Ti添加量を制限し、 かつ、 Tiと A1を複合 添加し、 さらに、 適正量の Cuを添加することにより溶接部の耐食性を向上させる 技術が開示されている。
'また、 特開平 7-286239号には、 質 ¾%で、 C≤0. 03%、 Ν≤0· 025%および 0≤0. 02% に規制した l l%≤Cr≤35%を含むフェライト系ステンレス鋼であって、 レーザ溶接 部(laser welding portion)の酸素濃度およぴ窒素濃度がそれぞれ 250ppm以下およ ぴ 350ppm以下で、 析出する炭化物(carbide)および窒化物(nitride)が平均粒径 (.average particle diameter) 3 μ m以「一で合 g十析出 ¾度 (total precipitation density) I X 105個/讓 2以下となるように、 C量 [%C]、 N量 [%N]、 0量 [%0]および Cr 量 [%Cr]の間に、 [%C] +3 [%N] + [%0] < (124. 4- [%Cr] ) /1750の関係を維持させたレーザ 溶接性(laser weldabi lity)に優れたフェライト系ステンレス鋼が開示されている。 また、 特開平 9-217151号公報には、 質量! ¾で、 0. 001¾≤C≤0. 08%、 0. 01%≤Si≤ 1. 0%、 0. 01%≤Mn≤2. 0%、 10. 5%≤Cr≤32. 0%、 0. 001%≤N≤0. 04%、 0. 005%≤A1≤0. 2%、 0. 001 ≤Mg≤0..02%, 0. 001¾≤0≤0. 02%を含有し、残部が Feおよび不可避的不純物 からなる溶接性に優れたフヱライト系ステンレス銅が開示されている。
また、 特開 2005-15816号公報には、 質 *%で、 C≤0. 003%、 0. l%≤Si≤0. 4% Mn ≤0. 4%、 P≤0. 04%、 S≤0. 01%、 16. 0%≤Cr≤25. 0%、 0. 8%≤ o≤2. 5%、 N≤0. 03%、 0. 1% ≤Nb≤0. 6%, 0. 05%≤Ti≤0. 3%, 0. 01%≤A1≤0. 5%を含み、 かつ Nb、 Ti、 Cおよび N の間に Nb+Ti≥7 (C+N) +0. 15の関係が成立し、残部が実質的に Feからなるフェライ ト系ステンレス鋼板から構成され、胴体 (body)と上下の鏡板 (barrelhead)がかしめ 接合 (caulking joint) されている耐食性に優れた温水器缶体が開示されている。 また、 特開 2006ニ257544号公報には、 質量%で、 0. 001%≤C≤0. 02%、 0. 001%≤N ≤0· 02%、 0. 01%≤Si≤0. 3% 0. 05%≤Mn≤l%, P≤0. 04% 0. 15%≤Ni≤3%, l l%≤Cr ≤22%、 0. 01%≤Ti≤0. 5%, 0. 0002%≤Mg≤0. 002%を含み、 0. 5%≤Mo≤3. 0%, 0. 02% ≤Nb≤0. 6%, 0. l%≤Cu≤1. 5%の条件で、 Mo、 Nb、 Cuのうち 1種または 2種以上を、 Cr+3Mo+6 (Ni+Nb+Cu)≥23を満たす範囲で含み、残部が Feおよび不可避不純物から る耐すさ 腐食性 (crevice corrosion resistance)に優れたフェライト系ステン レス鋼が開示されている。 発明の開示
近年、 衛生対策(sanitary requirement)の強化が求められ、 建築物衛生法 (building health laws)あるレ、はビノレ管理法(building management laws)力 S 2003 年に改正され、 特定建築物(specific bui lding)については、 給湯水(feed hot water)について 0. lmg/L以上の塩素(chlorine)の維持が求められることになった。 これを受けて、 残留塩素(residual chlorine)が消耗することを考慮すると、 給湯 システム (hot-water supply system) では給湯水に更なる塩素の濃度の増加が必 要である。したがって、従来の特開昭 58— 71356号公報、特開平 10— 81940号公報、 特開平 7-286239号公報、特開平 9-217151号公報、特開 2005-15816号公報おょぴ、 特開 2006-257544号公報の技術では、十分な溶接部の耐食性を確保できないことが 懸念される。
本発明は、 かかる事情に鑑み、 鋼板が、 十分な靱性を有し、 さらには塩素の濃度 が増加しても、十分な溶接部の耐食性を有する温水器用フェライト系ステンレス鋼 板を提供することを目的とする。 本発明者らは、前記課題を解決するために、母材部および溶接部の耐食性に及ぼ す鋼の化学成分の影響、および鋼板の製造性に及ぼす鋼の化学成分の影響について、 綿密な調査、 検討を行った。
温水器用缶体の場合、 溶接方法としては、 一般に TIG溶接 (Tungsten Inert Gas welding)が用いられる。 TIG溶接の場合、 溶接部の表面および、 裏面とも不活性ガ ス(inert gas)でシールドをし、 溶接部にはテンパーカラー(temper color) (酸化 皮膜 (oxide layer) ) がなるベくつかないような条件を行う。 しかし、 実際の工程 では、 このガスによるシールド(shield)は十分でなく、空気中の酸素がわずかに混 入し、 溶接部の表面のビード (weld bead)や裏面のビードなどにテンパー力ラーと 呼ばれる酸化皮膜が溶接部に生成する。
この酸化皮膜について調査したところ、 この酸化皮膜は、 母材の Crを消費し、 酸化皮膜直下の母材の Cr濃度を下げ、 耐食性を悪化させる主因になることがわか つた。 そして、 各温度で生成する酸化皮膜の特性とその下地の Cr濃度、 および耐 食性との関係を調査したところ、 最高加熱温度が 1000で以上になる領域では、 lOOOt以上で生成する酸化皮膜には Crが選択的に多量に含まれ、母材 Cr濃度が低 いと鋼中の Mo量が高くても、 耐食性が極端に劣化することを知見した。 一方、 最 高加熱温度が 800〜1000 未満になる領域では、 800〜1000°C未満では、 生成する 酸化皮膜は Cr酸化物の生成速度(generation speed)が遅く、 母材から鋼板の表面 への Crの拡散が早いので比較的影響を受けにくい。 また、 最高加熱温度が 800 : 未満になる領域では、 800°C未満で生成する酸化皮膜では、 Cr酸化物の生成速度は 遅いが、 母材から銅板の表面への Crの拡散が遅くなるので、 耐食性は劣化する。 しかし、 この温度域では Siの酸ィ匕物と、 A1の酸化物を選択的に形成させることに より、 緻密な保護皮膜(high density protective coating)となり、 耐食性の劣化 を軽減できることがわかった。
また、 母材の Cr濃度を挙げた場合、 靭性、 特に熱延板の靭性が劣化し、 熱延板 焼鈍時や冷間圧延時の鋼帯(steel strip)の破断の原因となり、 生産性を著しく劣 化させることがわかった。 しかし、 C、 Nの固定元素として、 Nbを添加し、 Tiを低 減することにより熱延板での靭性劣化を抑えることが可能となることもわかった。 図 1と図 2は、 21%Cr— 1. 2%Mo- low C, low N鋼に Nb: 0. 3%を単独添加した材料 と、 同じく 21%Cr— 1. 2%Mo— low C、 low N鋼に Nb : 0. 2%および Ti: 0. 1。を複合添加 した材料について、 4匪 t熱延板のシャルピー衝撃試験(Charpy impact test)を各々 行った結果である。 図 1と図 2によると、 Tiをわずかに添加しただけで、 その熱 延板の靭性は著しく劣化する。 そして、 Cr濃度を上げたとしても、 C、 Nの固定元 素として Nbを単独添加することで、 鋼板 (鋼帯) の生産性を全く落とすことなく 鋼板を製造できることになる。
以上をまとめると、 以下のような知見が得られる。
溶接部の耐食性は溶接時に生じる酸化皮膜と酸化皮膜直下の母材の影響を大き く受ける。
溶接部の耐食性は A1酸化物と、 Si酸化物の選択的な形成により耐食性の劣化を 抑制できる。
Ti、 Nbの添加は母材部の耐食性を向上させるが、 Tiの過剰添加は鋼板の靭性、 特に熱延板の靭性を悪化させ鋼板の生産性を著しく悪化させる。
本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[ 1 ] mass%で、 C: 0. 020%以下、 Si: 0. 30〜1. 00%、 Mn: 1. 00%以下、 P: 0. 040% 以下、 S: 0. 010%以下、 Cr: 20. 0〜28. 0%、 Ni: 0. 6%以下、 A1: 0. 03〜0. 15%、 N: 0. 020% 以下、 0: 0. 0020〜0. 0150% Mo: 0. 3〜1. 5%、 Nb. : 0. 25〜0· 60%、 Ti: 0. 05%以下を 含有し、 残部が Fe及び不可避的不純物からなり、 かつ、 下記式 (1 ) および下記 式(2 ) を満足することを特徴とする溶接部の耐食性および鋼板の靭性に優れた温 水器用フェライ ト系ステンレス鋼板。
25≤Cr + 3. 3Mo≤30 ( 1 )
0. 35≤Si +Al≤0. 85 ( 2 )
ただし、 Cr、 Mo、 Si、 A1はそれぞれ Cr、 Mo、 Si、 Alの含有量 (mass%)
[ 2 ] 前記 [ 1 ] において、 さらに、 mass%で、 V: 0. 005〜0. 50%、 Cr : 22超え 〜28. 0%を含有し、 かつ、 下記式 (3 ) を満足する温水器用フヱライ ト系ステンレ ス鋼板
0. 1≤ 4V/ (Nb-8 (C+N) )≤ 5. 0 ( 3 )
ただし、 V、 Nb、 C、 Nはそれぞれ V、 Nb、 N、 の含有量 (mass%)
[ 3 ]前記 [ 1 ] または、 [ 2 ]において、 さらに、 mass%で、 Cu : 0. 2〜; 1. 0%、 Zr : 0. 10〜0. 60%の少なくとも一種以上を含有することを特徴とする溶接部の耐食性お ょぴ鋼板の靭性に優れた温水器用フヱライト系ステンレス鋼板。
なお、 本明細書において、 鋼の成分を示す%は、 すべて mass%である。
本発明によれば、溶接部の耐食性および鋼板の靱性に優れた温水器用フヱライト 系ステンレス鋼が得られる。 さらに、本発明はその成分系を適正化することにより 上記の課題を解決しているため、銅板の生産性を落とすことなく溶接部の耐食性を 向上させることができる。
そして、 本発明のフェライト系ステンレス鋼は、熱延板の靱性に優れる上に、 さ らに溶接部の耐食性を向上させたので、 温水器用缶体の素材として使用した場合、 水道水中の残留塩素添加量が増加しても、溶接部の腐食による損傷を格段に低減す ることができ、 産業上格段の効果を奏する。 図面の簡単な説明
図 1 : 2種類の組成の 4nmt板厚の熱延板のシャルピー衝撃試験の結果 (試験温度 と吸収エネルギーの関係) を示す図である。
図 2 : 2種類の組成の 4腿 t板厚の熱延板のシャルピー衝撃試験の結果 (試験温度 と脆性破面率 (brittle fracture surface ratio) の関係) を示す図である。 発明を実施するための最良の形態 ' 以下に本発明を詳細に説明する。 まず、 本発明の化学成分組成について説 明する。
• C: 0. 020%以下
ま、 Crと結合して Cr炭化物を形成しやすい。 溶接時、 熱影響部に Cr炭化物 が形成されると粒界腐食の原因となるので、 Cは低い程望ましい。 よって、 C は 0. 020%以下とする。 より好ましくは、 0. 014%以下である。
• Si : 0. 30〜1. 00%
Siは、 溶接部の耐食性に有効な元素であり、 本発明において重要な元素で ある。 特に、 溶接時に熱影響部で酸化されて緻密な皮膜 (Si酸化物) を作つ た場合は、 母材の耐食性の劣化を食い止める働きがある。 例えば、 温水器用 缶体素材として本発明のフェライ ト系ステンレス鋼板を用いた場合、 残留塩 素が存在する溶液中では、 0. 30%以上添加することで緻密な皮膜が生成し、 か つ、 Crの酸化を最小限にし、酸化被膜とその直下の地鉄 Cr濃度の低下を防ぎ、 母材の耐食性の劣化を食い止める働きを生じ、 溶接部の酸化皮膜での効果が 得られる。 よって、 Siは 0. 30%以上、 好ましくは 0. 40%以上とする。 一方、 Si は熱延板、 および冷延板の酸洗性を劣化させ生産性を低下させる。 また、 添 加しすぎると材質が硬くなり、 加工性が劣化する。 よって、 上限は 1. 00%とす る。 より好ましくは、 上限は 0. 80%である。
• Mn: 1. 00%以下
Mnは、 鋼中に存在する Sと結合して、 可溶性硫化物である MnSを形成し、 耐 食性を低下させる。 よって、 Mnは 1. 00%以下とする。 より好ましくは、 0. 60% 以下である。
• P: 0. 040%以下
Pは、 耐食性に有害な元素である。 特に、 0. 040%を超えると顕著になる。 よ つて、 Pは 0. 040%以下とする。 より好ましくは、 0. 030%以下である。
• S: 0. 010%以下
Sは、 耐食性に有害な元素である。 特に、 Mnと同時に存在する場合、 MnSを 形成し、 耐食性に対する影響は 0. 010%を超えると顕著になる。 よって、 Sは 0. 010%以下に限定する。 より好ましくは、 0. 006%以下である。
• Cr: 20. 0〜28. 0%
上述したように、 温水器缶体を製造する場合、 溶接部表面に酸化皮膜がな るべく形成されないような条件で溶接を行うことが好ましい。 しかし、 前述 の通り、実際の工程では、溶接部の表面や裏面のガスシールドは十分でなく、 空気中の酸素がわずかに混入し、 溶接部の表面のビードゃ裏面のビードなど にテンパーカラーと呼ばれる酸化皮膜が生成する。 この酸化皮膜は、 母材の C rを消費し、 酸化皮膜と酸化皮膜直下の母材の Cr濃度を下げ、 耐食性を悪化さ せる主因になる。 特に、 1000 以上で生成する酸化皮膜には Cr;^選択的に多 量に含まれ、 母材 Cr濃度が低いと Mo量を高く してもこの温度域での耐食性は 極端に劣化する。 特に 1000 超え域での Cr量が 20. 0%以下となると、 Moやその 他の元素の添加量にかかわらず、 溶接部の耐食性は不安定となり、 特に隙間 部(crevice port ion)などでは孔食(pitting corrosion)の原因となる。 よつ て、 Crの下限値は 20. 0%以上とする。 一方、 28. 0%を超えて含有すると、 加工 性が顕著に低下する。 以上より、 Crは 20. 0%以上 28. 0%以下とする。 好ましく は、 22. 0%超え 25. 5%以下である。
• Ni: 0. 6%以下
Niは、靭性の向上に有利に寄与する元素である。その効果を得るためには、 0. 1%以上が好ましい。 しかし、 N i力 0. 6%を超えて含有すると応力腐食割 れ (SCC) の感受性が高くなる。 よって、 Niは 0. 6%以下とする。 より好ましく は、 0. 4%以下である。
• A1: 0. 03〜0. 15%
A1も Siと同じく、 800°C未満での生成する酸化被膜に関して、 本発明におい て、重要な元素である。 A1を 0. 03%≥含有させることで耐食性を向上させる。 一方、 A1は熱延板、 および冷延板の酸化皮膜直下に酸化物を形成し、 酸化皮 膜を強固にするため、酸洗を困難にするので、生産性を低下させる。 よって、 本発明では A1は 0. 03%以上 0. 15%以下とする。 より好ましくは、 0. 06〜0. 12% である。 • N: 0.020%以下
Nは、 Crと結合して Cr窒化物(nitride)を形成しやすい。 溶接時、 熱影響部 に Cr窒化物が形成されると粒界腐食(intergranular attack)の原因となるの で、 Nは低い程望ましい。 よって、 本発明では、 Nは 0.020%以下とする。 より 好ましくは、 0.014%以下である。
• 0 : 0.0020~0.0150%
O (oxygen)は、 溶接部の溶け込み深さ(depth of penetration)を向上させ る元素である。 その効果を得るためには、 0.0020%以上が好ましい。 一方、 O が、 0.0150%を超えると介在物(inclusion)を増加させ、 この介在物の存在に より耐食性の劣化が顕著となる。 よって、 Oは 0.0020%以上 0.0150%以下とす る。 より好ましくは、 0.0030〜0.0100%である。
• Mo: 0.3〜1.5%
Moは、 耐食性を顕著に向上させる元素である。 このような効果は 0.3%以上 の含有で顕著となる。 一方、 1.5%を超えて含有すると、 本発明の Crの濃度範 囲内では靭性が顕著に低下し、また、冷延板での加工性も劣化する。 よって、 0.3%以上 1.5%以下とする。 好ましくは、 0.7%以上 1.2%以下である。
• Nb: 0.25〜0.60%
Nbは、 Crよりも優先的に炭窒化物(carbonitride)を形成する。 従って、 熱 延後に Cr炭窒化物が形成されるのを防ぎ、靭性の劣化を抑制できる。よって、 Nbは、 0.25%以上添加する。 一方、 0.60%を超えると逆に熱延板の靭性は劣化 し、 また溶接部での耐食性を低下させる。 よって、 Nbは 0·25〜0.60%とする。 好ましくは、 0.30~0.50%である。
• V : 0.005〜0.50%
Vは耐食性を向上させる元素である。 母材の耐食性を向上させることで、 間 接的に溶接部の耐食性を向上させることができる。 加えて、 Nbと共存するこ とにより耐酸化性を向上させる元素であることが明らかとなった。 その機構. についてはあまりょくわかっていないが、 1100°C以上の温度で酸化試験を行 うと、酸化皮膜の直下の鋼板表面に Nbと Vが共存して酸化物を形成することが 確認された。 Nbと Vが鋼板表面に共存して酸化物を形成することで、 よりいつ そう鋼板から外部に向かう Feや Crの拡散を抑制し、 鋼板の酸化量を低減して いると考えられる。 この効果によって、 溶接直後の酸化皮膜の生成の時に、 1 100°C以上の高温域においても鋼板中の Feや Crの酸化を抑制し、脱 Cr層の形成 を防止するとともに、 酸化皮膜の直下に A1や Siといった酸化皮膜を強固にす る元素による緻密な酸化皮膜の形成を促進して、 溶接部の耐食性を向上させ ると考えられる。 母材の耐食性向上効果、 および、 酸化皮膜の強化の効果を 得るためには、 Vは 0. 005%以上の添加が必要である。 しかし、 過剰の添加を行 うと、 熱間圧延時に潤滑剤として作用する酸化皮膜の生成を抑制し、 鋼帯と 圧延ロールとの金属接触により、 数 mm程度の大きさの凹凸が多数形成される 表面欠陥が発生する。 この表面欠陥は溶接部および母材の耐食性を劣化させ る。 表面性状を良好とするためには、 Vは 0. 50%以下とする必要がある。 よつ て、 本発明では、 Vは 0. 005〜0. 50%とする。 より好ましくは、 0. 01〜0. 20%で ある。
• Ti: 0. 05%以下
Tiは本発明において重要な元素である。 Tiは、 Nbと同様に Crよりも優先的 に炭窒化物を形成し、 溶接部などでは耐食性を向上させるので、 溶接部の耐 食性を考慮した場合は添加したい元素である。 しかし、 Tiは先に述べたよう に、 本発明のような Cr、 Moバランスでは、 少量の添加によっても熱延板の靱 性を著しく劣化させる。 また、 製鋼のスラブでの TiNなどの生成により、 冷延 鋼板の表面欠陥 (へゲ) の原因となる。 よって、 本発明では、 Tiは 0. 05%以下 とする。 好ましくは、 Tiは 0. 03%以下である。
さらに、 本発明では溶接部の耐食性を向上させるため以下の式 (1) 、 及び 式 (2) の関係も併せて満足す 必要がある。
25≤Cr + 3. 3Μο≤30 · · · · ( 1)
0. 35≤Si + Al≤0. 85 (2)
上記式 (1) の下限は、 温水中の残留塩素濃度が高い場合でも、 母材部及び 溶接部の耐食性を得るために必要な条件である。 一方、 母材の耐食性と溶接 の酸化皮膜の生成によって劣化した溶接部の耐食性の差が大きくなると、 溶 解が優先的に酸化皮膜が生成した部分で起るようになり、 かえって隙間腐食 などを助長するようになる。 そのため、 上記式 (1) において、 上限は 30とす る。 より好ましくは、 26〜29である。
上記式 (2) は、 溶接部の耐食性を得るために必要な条件である。 Siと A1 が共存する場合、 Si酸化物および A1酸化物が十分な保護性皮膜になり、 耐食 性劣化を抑制する。 この効果を十分に得るためには上記式 (2) において、 S i+Alは 0. 35以上必要である。 本発明者らが、 詳細に調査検討した結果、 Si、 A 1といった元素は酸化皮膜生成時に酸化皮膜直下に濃化することにより、耐食 性の劣化を妨げることを知見した。 また、 上記式 (2) の上限を超えてしまう と、 Siおよび/または A 1が互いに成長しすぎてかえって、緻密な保護皮膜(ピ ンホールの無い皮膜) にならなくなる。 よって、 上記式 (2 ) において、 上 限は 0. 85とする。 より好ましくは、 0. 40〜0. 75である。
さらに、 好適元素として Vを添加する場合は、 本発明では溶接部の耐食性を より向上させ、 かつ、 表面性状を良好なものとするため、 以下の式 (3 ) の 関係も併せて満足する必要がある。
0. l≤4V/ (Nb-8 (C+N) )≤5. 0 · . · · ( 3 )
上記式 (3 ) の下限は、 溶接部の耐食性をより向上させるために必要な条件 である。 固溶 Nbに対して一定比率以上の Vが存在していないと、 十分な耐酸化 性が得られないため、 耐食性を向上させる効果が発揮されない。 上記式 (3 ) の上限は、 溶接部の耐食性をより向上させるため、 および、 表面性状を良好 なものとするために必要な条件である。 Vの比率が高くなりすぎると、 耐酸化 性が強くなりすぎるため、 A1と Siによる緻密な保護皮膜の形成を妨げるうえ、 熱間圧延時に酸化皮膜の形成を抑制し、 金属接触(metal lic contact)による 表面欠陥(surface defect)を引き起こす。 よって上記式 (3 ) において下限 を 0. 1、 上限を 5. 0とする。 より好ましくは、 0. 5〜4. 0である。
上記した成分以外の残部は、 Feおよび不可避的不純物である。 なお、 不可 避的不純物としては、 Mg: 0. 0020%以下、 Ca: 0. 0020%以下が許容できる。 本発明の鋼板は、 上記の必須添加元素で目的とする特性が得られるが、 所 望の特性に応じて以下の元素を含有することができる。
• Cu : 0. 2〜1. 0%
Cuは、 Crを 20. 0%以上含有させた鋼の場合、 母材の耐食性を向上させる。 この効果は、 ハロゲンを含む低 pH酸溶液中で大きく、 C uの 0. 2%以上の添加 で地鉄の溶解を少なくできる。 このメカニズムは明らかではないが、 低 pH溶 液中で溶け出した Cuが地鉄に最付着し耐溶解性を高めるものと推定される。 一方、 Cuを 1. 0%超えて添加すると、 Cuの溶解が促進され、 耐隙間腐食性が低 下する場合もある。 よって、 添加する場合、 Cuは 0. 2%以上 1. (^以下、 好まし くは 0. 3%以上 0. 7%以下とする。
• Zr : 0. 10〜0. 60%
Zrは、 Nbと同様に Crよりも優先的に炭窒化物を形成し、 溶接部などでは耐 食性を向上させるので、 溶接部の耐食性を考慮した場合添加したい元素であ る。 この効果は 0. 10%の添加で現れる。 一方、 添加しすぎると金属間化合物 を生成し、 熱延板の靭 が劣化する場合がある。 よって、 添加する場合、 Zr は 0. 10%以上 0. 60以下とする。 好ましくは、 0. 15%以上 0. 35%以下である。 次に本発明錮の溶接部の耐食性および鋼板の靭性に優れた温水器用フェラ ィ ト系ステンレス鋼板の製造方法について説明する。
本発明の溶接部の耐食性および鋼板の靭性に優れた温水器用フユライ ト系 ステンレス鋼板を製造するにあたって、 その製造方法は特に限定しない。 上記した成分組成の溶鋼(molten steel)を、 転炉(steel converter) , 電気 炉(electric furnace)、真空溶解炉(vacuum fusion furnace)等の公知の方法 で溶製し、 連続 造 fe (cont inuous cast ing)めるレヽは造塊 ungot cast ing) —分塊法(blooming method)により鋼素材 (スラブ(slab) ) とする。 この鋼素 材を、 その後加熱するか、 あるいは加熱することなく直接、 熱間圧延(hot r oil ing)して熱延板(hot rol led steel sheet)とする。 熱延板には、 通常、 熱 延板焼鈍が施されるが、 用途によっては熱延板焼鈍を省略してもよい。 次い で、 酸洗後、 冷間圧延(cold rol l ing)により冷延板(cold- rol led steel she et)としたのち、 冷延板焼鈍、 酸洗を施して製品とする。 通常温水器用途とし ては、 JIS G4305の 2B (スキンノヽ0ス圧延材(skin pass rol led steel sheet) ) 品として使用されるが、 加工後に研磨等を施しても何ら問題は無い。
より好ましい製造方法は、 熱間圧延工程および冷間圧延工程の一部条件を 特定条件とするのが好ましい。 製鋼においては、 前記必須成分および必要に 応じて添加される成分を含有する溶鋼を、 転炉あるいは電気炉等で溶製し、 V O D法により二次精鍊を行うのが好ましい。 溶製した溶鋼は、 公知の製造 方法にしたがつて鋼素材とすることができるが、 生産性および品質の観点か ら、 連続铸造法によるのが好ましい。 連続铸造して得られた銅素材は、 例え ば、 1 0 0 0〜 1 2 5 0 °Cに加熱され、 仕上げ温度が 700〜950°Cの熱間圧延 により所望の板厚の熱延板とされる。 もちろん、 板材以外として加工するこ ともできる。 この熱延板は、 必要に応じて、 600 〜800 °Cのバッチ式焼鈍あ るいは 900°C— 1 1 0 0 の連続焼鈍を施した後、酸洗等により脱スケールさ れ熱延板製品となる。 また、 必要に応じて、 酸洗の前にショットブラス トし て酸化皮膜を除去してもよい。
さらに、 冷延焼鈍板 (再結晶焼鈍板) を得るためには、 上記で得られた熱 延焼鈍板が、 冷間圧延工程を経て冷延板とされる。 この冷間圧延工程では、 生産上の都合により、 必要に応じて中間焼鈍を含む 2回以上の冷間圧延を行 つてもよい。 1回または 2回以上の冷間圧延からなる冷延工程の総圧下率を 6 0 %以上、好ましくは 7 0 %以上とする。冷延板は、 9 5 0— 1 1 5 0 、 さらに好ましくは 9 8 0— 1 1 2 0 °Cの連続焼鈍 (冷延板焼鈍) 、 次いで酸 洗を施されて、 冷延焼鈍板とされる。 また、 用途によっては、 冷延焼鈍後に 軽度の圧延 (スキンパス圧延等) を加えて、 鋼板の形状、 品質調整を行うこ ともできる。
このようにして製造して得た冷延焼鈍板製品を用い、 それぞれの用途に応 じた曲げ加工等を施し、 温水器の缶体等に成形される。 これらの部材を溶接 するための溶接方法は、特に限定されるものではなく MIG (Metal Inert Gas) 、 MAG (Metal Active Gas) 、 TIG (Tungsten Inert Gas) 等の通常のアーク溶接 方法や, スポッ ト溶接, シーム溶接等の抵抗溶接方法, および電縫溶接方法 などの'高周波抵抗溶接、 高周波誘導溶接が適用可能である。
実施例 1
以下、 実施例に基づいて、 本発明をさらに詳しく説明する。
表 1に示す成分組成からなる鋼 (鋼記号 1〜17が本発明例、 18〜22、 A, Bが比 較例、 23および 24が従来例)を、 50kg小型真空溶解炉(small scale vacuum melting furnace)で溶製した。 これらの鋼塊を、 1050〜1250°Cに加熱後、 仕上げ温度
(finishing temperature) : 750~950¾ 卷取り? 度 (coiling temperature) : 650 〜850¾の条件で熱間圧延を施して 4. 0匪厚の熱延板とした。
まず、 このとき、 得られた熱延板の靭性を調査した。 調査を行うにあたっては、 試験片の形状は JIS Z2202の 4号とし、 V—ノッチの向きが、 圧延方向(rolling . direction)と垂直な方向 (C方向) になるように V—ノッチ加工を施し、 シャルビ 一衝撃試験を行った。 靭性の評価は 0ででの顕微鏡 (microscope)と SEM(scanning electron microscope)により破断面 (fracture cross section)を観察し、 脆性破面 率(brittle fracture surface ratio)により評価した。 次いで、 上記により得られ た熱延板に対して、 900〜1100での熱延板焼鈍を施した。 その後、 酸洗し、 冷間圧 延により板厚 1. 0讓の冷延板とし、 950〜1100°Cの冷延焼鈍を施した。 このとき圧 延ロールとの金属接触による表面欠陥の有無を目視により確認した。このようにし て得られた試験片を JIS G0577 「ステンレス鋼の孔食電位測定方法(pitting potential measuring method) J に従い、 3. 5%NaCl溶液、 温度 30Όで孔食電位 (V cl0) の測定を行った。 また、各銅板から、試験片を採取し、試験片にビード'オン ' プレート(bead on plate)の TIG溶接を下記の条件にて行った。 裏ビード幅が 3mm 以上になるように、 溶接電流を制御した。 評価面は、 裏ビード面とした。
•溶接電圧(welding voltage) : 10V •溶接電流(welding current) : 90~ 110A
•溶接速度 (welding spee) : 600mm/min
•電極(electrode) : 1. 6mm径のタングステン電極
• シールドガス(shielding gas) :表ビード側: 100vol%Ar 20L/min、 裏ビード側: 98vol%Ar + 2vol%02 20L/min
このようにして得られた試験片を JIS G 0577 「ステンレス鋼の孔食電位測定方 法」 をベースに、 3. 5%NaCl溶液中、 30 で溶接部の孔食電位 (V cl0) の測定を 行った。 但し、 試験前の研磨 (grinding)、 試験液への浸漬後の 10分間放置を行わ ず、 直ちに電位走査(scan of potential)を開始した。
また、 温水器の使用環境での耐食性を調査するために、 塩素イオン濃度が、 200mass ppm溶液 (200ppmCD 、 80で中での溶接部の孔食電位の測定も行った。 やはり、 温度、 溶液濃度以外は JIS G 0577 「ステンレス鋼の孔食電位測定方法」 をベースに行い、 試験前の研磨、 試験液への浸漬後の 10分間放置を行わず、 直ち に電位走査を開始した。
さらに、 温水器の使用環境での耐食性を調査するために、 溶接された試験片を、 浸漬試験(immersion test)に供した。 試験液には、 80°Cに保持した 0. l%NaCl + 0. 1%CUC12水溶液を用いた。 試験液に、 溶接された試験片を 5日ごとに溶液を変更 し、 3サイクル (計 15日間) 浸漬し、 溶接部に発生した孔食の最大孔食深さを測 定した。
溶接部の耐食性を以下の基準で評価した。
• A:最大孔食深さが 10 /z m未満
• B :最大孔食深さが ΙΟ μ πι以上、 20 // m未満
• C:最大孔拿深さが 20 /z m以上、 50 μ πι未満
• D:最大孔食深さが 50 // m以上 以上の試験より得られた結果を表 2に示す。
総合評価は、 シャルピー試験の 0 での脆性破面率、 表面欠陥の有無、 母材の孔 食電位、 溶接部の孔食電位 (3. 5%NaCl) 、 溶接部の孔食電位 (200ppmCr) 、 0. l%NaCl+0. 1%CUC12水溶液試験の 6項目について、 5〜0点の評点をつけ、 その和 が 25〜30点を © (Α)、 20〜24点を〇(Β)、 15〜19点を△((:)、 14点以下を X (D)と した。
それぞれの項目は以下の基準で評点をつけた。 - シャルピー試験の 0°Cでの脆性破面串は、 20%以下を 5点、 20〜80%を 2点、 80% 以上を 0点とした。
表面欠陥の有無は、 無しを 5点、 有りを 0点とした。 '
母材の孔食電位は、 500mV以上を 5点、 450〜500mVを 2点、 450mV以下を 0点と した。
溶接部の孔食電位 (3. 5%NaCl) は、 lOOmV以上を 5点、 0〜100mVを 2点、 OmV以 下を 0点とした。 .
溶接部の孔食電位 (200ppmCr) は、 lOOmV以上を 5点、 0〜100mVを 2点、 OmV 以下を 0点とした。
0. l%NaCl+0. 1%CUC12水溶液試験は、 Aを 5点、 Bを 2点、 C, Dを 0点とした。 表 2より、本発明例はいずれも優れた靱性および耐食性を有する。 一方、 本発明 の範囲を外れる比較例及ぴ従来例は靱性もしくは耐食性の一つ以上が劣っている。 産業上の利用可能性
電気温水器用部材等を中心に、優れた鋼板の靱性に加え、鋼板の耐食性、 特に溶 接部の耐食性が要求される部材として好適に用いられる。
Figure imgf000019_0001
表 2
Figure imgf000020_0001

Claims

請求の範囲
1. mass%で、 C: 0.020%以下、 Si : 0.30〜1.00%、 Mn: 1.00%以下、 P: 0.040% 以下、 S: 0.010%以下、 Cr: 20.0〜28.0%、 Ni: 0.6%以下、 A1: 0.03—0.15%、 N: 0.020% 以下、 0: 0.0020〜0.0150%、 Mo: 0.3〜1.5%、 Nb: 0.25〜0.60%、 Ti : 0.05%以下を 含有し、 残部が Fe及び不可避的不純物からなり、 かつ、 下記式 (1) および下記 式 (2) を満足する温水器用フェライ ト系ステンレス鋼板。
25≤Cr + 3.3 o≤30 . (1)
0.35≤Si+Al≤0.85 (2)
ただし、 Cr、 Mo、 Si、 Alはそれぞれ Cr、 Mo、 Si、 Alの含有量 (mass%)
2. さらに、 mass%で、 V : 0.005 〜 0.50 %、 Cr: 22.0超え〜 2'8· 0%を含 有し、 かつ、 下記式 (3) を満足することを特徴とする請求項 1に記載の温水器用 フェライト系ステンレス鋼板。
0.1≤4V/ (Nb-8 (C+N) )≤5.0 (3)
ただし、 V、 Nb、 C、 Nはそれぞれ V、 Nb、 C、 N、 の含有量 (mass%)
3. さらに、 mass%で、 Cu: 0.2〜1.0%、 Zr: 0.10〜0.60%の内、 一種以上を含 有することを特徴とする請求項 1または、請求項 2に記載の温水器用フェライト系 ステンレス鋼板。
PCT/JP2008/050224 2007-01-12 2008-01-07 溶接部耐食性および鋼板の靭性に優れた温水器用フェライト系ステンレス鋼板 WO2008084838A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08703088A EP2100983B1 (en) 2007-01-12 2008-01-07 Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
CN2008800021000A CN101578385B (zh) 2007-01-12 2008-01-07 焊接部耐腐蚀性以及钢板的韧性优良的热水器用铁素体系不锈钢板
ES08703088T ES2396221T3 (es) 2007-01-12 2008-01-07 Chapa de acero inoxidable ferrítico para calentador de agua de excelente resistencia a la corrosión en una parte soldada y tenacidad de la chapa de acero
US12/516,212 US8383034B2 (en) 2007-01-12 2008-01-07 Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007004021 2007-01-12
JP2007-004021 2007-01-12

Publications (1)

Publication Number Publication Date
WO2008084838A1 true WO2008084838A1 (ja) 2008-07-17

Family

ID=39608726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/050224 WO2008084838A1 (ja) 2007-01-12 2008-01-07 溶接部耐食性および鋼板の靭性に優れた温水器用フェライト系ステンレス鋼板

Country Status (7)

Country Link
US (1) US8383034B2 (ja)
EP (1) EP2100983B1 (ja)
JP (1) JP5050863B2 (ja)
KR (2) KR20090087072A (ja)
CN (1) CN101578385B (ja)
ES (1) ES2396221T3 (ja)
WO (1) WO2008084838A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341516A (zh) * 2009-03-27 2012-02-01 新日铁住金不锈钢株式会社 耐局部腐蚀性优良的铁素体系不锈钢

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239644B2 (ja) * 2008-08-29 2013-07-17 Jfeスチール株式会社 熱疲労特性、高温疲労特性、耐酸化性および靭性に優れるフェライト系ステンレス鋼
JP2010202916A (ja) * 2009-03-02 2010-09-16 Nisshin Steel Co Ltd オーステナイト系ステンレス鋼との溶接部の耐食性に優れたフェライト系ステンレス鋼
CN102741445B (zh) * 2010-02-02 2014-12-17 杰富意钢铁株式会社 韧性优异的高耐腐蚀性铁素体系不锈钢冷轧钢板及其制造方法
JP2013531130A (ja) * 2010-04-26 2013-08-01 敬治 中島 高結晶粒細粒化性能及び安定結晶粒細粒化性能をもつフェライト系ステンレス鋼とその製造方法
CN102251086B (zh) * 2010-05-19 2013-07-17 宝山钢铁股份有限公司 一种含钼型铁素体不锈钢及其制造方法
JP5793283B2 (ja) * 2010-08-06 2015-10-14 新日鐵住金ステンレス株式会社 ブラックスポットの生成の少ないフェライト系ステンレス鋼
EP2692891B1 (en) * 2011-03-29 2021-05-05 NIPPON STEEL Stainless Steel Corporation Welded structure obtained by tig welding ferrite stainless steel exhibiting excellent corrosion resistance and strength in weld zones
US9611525B2 (en) 2011-03-29 2017-04-04 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel for biofuel supply system part, biofuel supply system part, ferritic stainless steel for exhaust heat recovery unit, and exhaust heat recovery unit
US9487849B2 (en) * 2011-11-30 2016-11-08 Jfe Steel Corporation Ferritic stainless steel
ES2651071T3 (es) 2012-01-30 2018-01-24 Jfe Steel Corporation Chapa de acero inoxidable ferrítico
JP5867243B2 (ja) * 2012-03-30 2016-02-24 Jfeスチール株式会社 溶接部の耐食性に優れるフェライト系ステンレス鋼
CN104508168B (zh) * 2012-09-24 2017-09-26 杰富意钢铁株式会社 铁素体系不锈钢
FI124995B (fi) * 2012-11-20 2015-04-15 Outokumpu Oy Ferriittinen ruostumaton teräs
JP5935792B2 (ja) * 2013-12-27 2016-06-15 Jfeスチール株式会社 フェライト系ステンレス鋼
EP3176280B1 (en) 2014-07-31 2020-09-02 JFE Steel Corporation Ferritic stainless steel and method for producing same
ES2721541T3 (es) 2014-12-24 2019-08-01 Jfe Steel Corp Acero inoxidable ferrítico y proceso para producir el mismo
JP6300778B2 (ja) * 2015-12-22 2018-03-28 日新製鋼株式会社 耐食性と防眩性に優れたステンレス鋼製レーザ溶接形鋼の製造方法
JP6300779B2 (ja) * 2015-12-22 2018-03-28 日新製鋼株式会社 耐食性と防眩性に優れたステンレス鋼製レーザ溶接形鋼の製造方法
JP2019151901A (ja) * 2018-03-05 2019-09-12 日鉄日新製鋼株式会社 ステンレス鋼材
JP7067998B2 (ja) * 2018-03-28 2022-05-16 日鉄ステンレス株式会社 ステンレス鋼材
CN113383103B (zh) * 2019-02-19 2022-09-16 杰富意钢铁株式会社 铁素体系不锈钢板和其制造方法及带Al蒸镀层的不锈钢板

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871356A (ja) 1981-10-23 1983-04-28 Nippon Steel Corp 耐食性を主とする使用性能がすぐれたフエライト系ステンレス鋼とその製造方法
JPH05271880A (ja) * 1992-03-26 1993-10-19 Nisshin Steel Co Ltd 耐候性に優れたフェライト系ステンレス鋼板及びその製造方法
JPH06279951A (ja) * 1993-03-26 1994-10-04 Nisshin Steel Co Ltd 温水器用フェライト系ステンレス鋼
JPH07286239A (ja) 1994-04-20 1995-10-31 Nisshin Steel Co Ltd レーザ溶接性に優れたフェライト系ステンレス鋼
JPH09217151A (ja) 1996-02-14 1997-08-19 Nippon Steel Corp 溶接性に優れたフェライト系ステンレス鋼
JPH1081940A (ja) 1997-09-26 1998-03-31 Nisshin Steel Co Ltd 溶接部の耐食性に優れるフェライト系ステンレス鋼
JP2001020046A (ja) * 1999-07-07 2001-01-23 Sumitomo Metal Ind Ltd 加工性と靱性に優れたフェライト系ステンレス鋼、フェライト系ステンレス鋼鋼塊及びその製造方法
JP2005015816A (ja) 2003-06-23 2005-01-20 Nisshin Steel Co Ltd 耐食性に優れた温水器缶体
JP2006057544A (ja) 2004-08-20 2006-03-02 Calsonic Compressor Inc 容量可変型気体圧縮機
JP2007270290A (ja) * 2006-03-31 2007-10-18 Jfe Steel Kk 溶接部の耐食性に優れたフェライト系ステンレス鋼。

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976857A (ja) * 1982-10-25 1984-05-02 Nisshin Steel Co Ltd 溶接熱影響部の靭性の優れたフエライト系ステンレス鋼
JPH02270942A (ja) * 1983-03-08 1990-11-06 Nippon Steel Corp 耐隙間腐食性、耐銹性のすぐれた高純、高清浄ステンレス鋼とその製造方法
JP2000169943A (ja) * 1998-12-04 2000-06-20 Nippon Steel Corp 高温強度に優れたフェライト系ステンレス鋼及びその製造方法
JP4390961B2 (ja) * 2000-04-04 2009-12-24 新日鐵住金ステンレス株式会社 表面特性及び耐食性に優れたフェライト系ステンレス鋼
JP3995978B2 (ja) * 2002-05-13 2007-10-24 日新製鋼株式会社 熱交換器用フェライト系ステンレス鋼材
JP4749881B2 (ja) 2005-02-15 2011-08-17 新日鐵住金ステンレス株式会社 耐すきま腐食性に優れたフェライト系ステンレス鋼
CN101680066B (zh) 2007-06-21 2011-09-28 杰富意钢铁株式会社 耐硫酸腐蚀性优良的铁素体系不锈钢板及其制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871356A (ja) 1981-10-23 1983-04-28 Nippon Steel Corp 耐食性を主とする使用性能がすぐれたフエライト系ステンレス鋼とその製造方法
JPH05271880A (ja) * 1992-03-26 1993-10-19 Nisshin Steel Co Ltd 耐候性に優れたフェライト系ステンレス鋼板及びその製造方法
JPH06279951A (ja) * 1993-03-26 1994-10-04 Nisshin Steel Co Ltd 温水器用フェライト系ステンレス鋼
JPH07286239A (ja) 1994-04-20 1995-10-31 Nisshin Steel Co Ltd レーザ溶接性に優れたフェライト系ステンレス鋼
JPH09217151A (ja) 1996-02-14 1997-08-19 Nippon Steel Corp 溶接性に優れたフェライト系ステンレス鋼
JPH1081940A (ja) 1997-09-26 1998-03-31 Nisshin Steel Co Ltd 溶接部の耐食性に優れるフェライト系ステンレス鋼
JP2001020046A (ja) * 1999-07-07 2001-01-23 Sumitomo Metal Ind Ltd 加工性と靱性に優れたフェライト系ステンレス鋼、フェライト系ステンレス鋼鋼塊及びその製造方法
JP2005015816A (ja) 2003-06-23 2005-01-20 Nisshin Steel Co Ltd 耐食性に優れた温水器缶体
JP2006057544A (ja) 2004-08-20 2006-03-02 Calsonic Compressor Inc 容量可変型気体圧縮機
JP2007270290A (ja) * 2006-03-31 2007-10-18 Jfe Steel Kk 溶接部の耐食性に優れたフェライト系ステンレス鋼。

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341516A (zh) * 2009-03-27 2012-02-01 新日铁住金不锈钢株式会社 耐局部腐蚀性优良的铁素体系不锈钢

Also Published As

Publication number Publication date
KR20120083939A (ko) 2012-07-26
CN101578385B (zh) 2012-03-21
JP2008190035A (ja) 2008-08-21
JP5050863B2 (ja) 2012-10-17
US8383034B2 (en) 2013-02-26
EP2100983A1 (en) 2009-09-16
EP2100983B1 (en) 2012-10-31
US20100061878A1 (en) 2010-03-11
ES2396221T3 (es) 2013-02-20
CN101578385A (zh) 2009-11-11
EP2100983A4 (en) 2010-03-10
KR20090087072A (ko) 2009-08-14

Similar Documents

Publication Publication Date Title
US8383034B2 (en) Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
WO2019116531A1 (ja) 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
US10745774B2 (en) Ferrite-martensite dual-phase stainless steel and method of manufacturing the same
JP4761993B2 (ja) スピニング加工用フェライト系ステンレス鋼溶接管の製造法
JP4396676B2 (ja) 耐食性に優れたフェライト系ステンレス鋼板およびその製造方法
US20090056838A1 (en) Ferritic Stainless Steel Sheet Having Excellent Corrosion Resistance and Method of Manufacturing the Same
JP5713118B2 (ja) フェライト系ステンレス鋼
JP4687531B2 (ja) 原油タンク用鋼およびその製造方法
JP2018053281A (ja) 角形鋼管
EP2990498A1 (en) H-shaped steel and method for producing same
KR20230042371A (ko) 용접 조인트 및 용접 조인트의 제조 방법
JP4998719B2 (ja) 打ち抜き加工性に優れる温水器用フェライト系ステンレス鋼板およびその製造方法
JP6036645B2 (ja) 低温靭性に優れたフェライト−マルテンサイト2相ステンレス鋼およびその製造方法
JP5935792B2 (ja) フェライト系ステンレス鋼
JP5012194B2 (ja) 溶接継手強度が高い温水器用フェライト系ステンレス鋼板およびその製造方法
JP6354772B2 (ja) フェライト系ステンレス鋼
JP4273457B2 (ja) 穴拡げ加工性に優れた構造用ステンレス鋼板
JP4192576B2 (ja) マルテンサイト系ステンレス鋼板
JPH0635615B2 (ja) 溶接部の耐食性にすぐれたフエライト系ステンレス鋼材の製法
WO2021125283A1 (ja) 鋼板及びその製造方法
JP2022114890A (ja) フェライト・オーステナイト二相ステンレス鋼溶接構造物、フェライト・オーステナイト二相ステンレス鋼溶接継手及びフェライト・オーステナイト二相ステンレス鋼材の溶接方法
JP4254583B2 (ja) 溶接部の耐歪時効特性に優れたCr含有合金
JP4013515B2 (ja) 耐粒界腐食性に優れた構造用ステンレス鋼
JP2004084063A (ja) 構造用Fe−Cr系鋼板とその製造方法および構造用形鋼

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880002100.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08703088

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008703088

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12516212

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097012588

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020127016896

Country of ref document: KR