WO2008069301A1 - フルオロモノマーの回収方法 - Google Patents

フルオロモノマーの回収方法 Download PDF

Info

Publication number
WO2008069301A1
WO2008069301A1 PCT/JP2007/073658 JP2007073658W WO2008069301A1 WO 2008069301 A1 WO2008069301 A1 WO 2008069301A1 JP 2007073658 W JP2007073658 W JP 2007073658W WO 2008069301 A1 WO2008069301 A1 WO 2008069301A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoropolymer
aqueous
sulfonic acid
dispersion
polymerization
Prior art date
Application number
PCT/JP2007/073658
Other languages
English (en)
French (fr)
Inventor
Tadaharu Isaka
Tadashi Ino
Masaharu Nakazawa
Masahiro Kondo
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2008548345A priority Critical patent/JP5332617B2/ja
Priority to US12/514,961 priority patent/US8344192B2/en
Publication of WO2008069301A1 publication Critical patent/WO2008069301A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/186Monomers containing fluorine with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/003Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom

Definitions

  • the present invention relates to a method for recovering a fluoromonomer.
  • Fluoropolymers are produced by methods such as emulsion polymerization, suspension polymerization, solution polymerization, and bulk polymerization.
  • Emulsion polymerization has a high volumetric efficiency in the polymerization tank, and heat removal during polymerization or during stirring is performed. This is advantageous in that the torque is low!
  • unreacted monomers that have not been consumed in the polymerization reaction are preferably recovered and reused from the viewpoint of economy and the like.
  • monomers that are gaseous at room temperature such as tetrafluoroethylene [TFE]
  • TFE tetrafluoroethylene
  • unreacted monomers that are liquid at room temperature are not easily separated and recovered from the aqueous dispersion after emulsion polymerization.
  • Fluorine such as CFHC1, CF CF CHC1, Hyde Fluorocarbon, Fluorocarbon, etc.
  • a method of using a system solvent as an extraction solvent for example, see Patent Document 2
  • a method of using a hydrated fluoro ether compound as an extraction solvent for example, see Patent Document 3 are known.
  • a fluoropolymer obtained by emulsion polymerization of a fluoromonomer having a sulfonic acid precursor functional group that can be converted into a sulfonic acid group such as SO F is used as an electrolyte membrane material for fuel cells, chemical sensors and the like.
  • a fluoropolymer having a sulfonic acid precursor functional group obtained in the form of an aqueous dispersion by emulsion polymerization is such that only a small part of the sulfonic acid precursor functional group is hydrolyzed by water in the state of the aqueous dispersion.
  • Sulfonic acid group (SO M; M represents H NR ⁇ R ⁇ RR 4 or M 1 , R 2 R
  • R 3 and R 4 are the same or different and represent H or an alkyl group having 14 carbon atoms.
  • M 1 represents an L-valent metal.
  • the fluoropolymer containing a sulfonic acid precursor functional group can be colored, foamed, etc. during melt molding by contacting a fluorine radical generating compound to fluorinate unstable groups such as SO M COOH at the end of the polymer chain. Can be prevented.
  • a fluorine radical generating compound to fluorinate unstable groups such as SO M COOH at the end of the polymer chain. Can be prevented.
  • SO M COOH fluorinate unstable groups
  • the water absorbed has a problem of inhibiting fluorination.
  • Patent Document 1 Japanese Patent Laid-Open No. 56-59810
  • Patent Document 2 Japanese Patent Laid-Open No. 7-118332
  • Patent Document 3 Japanese Patent Laid-Open No. 1 35624
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-344825
  • Patent Document 5 International Publication No. 2005/028522 Pamphlet
  • An object of the present invention is obtained by emulsion polymerization without using an extraction solvent in view of the above-mentioned present situation.
  • Sulfonic acid precursor functional group capable of efficiently separating and recovering unreacted fluoromonomer from the aqueous fluoropolymer dispersion and converting it to sulfonic acid groups such as SO F
  • the present invention is a method for recovering the unreacted fluoro monomer from an aqueous fluoropolymer dispersion obtained by emulsion polymerization of a fluoromonomer having a sulfonic acid precursor functional group that can be converted into a sulfonic acid group.
  • the fluoropolymer aqueous dispersion is vaporized to recover the unreacted fluoromonomer, and the fluoropolymer aqueous dispersion has a acidic pH, and is a method for recovering a fluoromonomer described below. I will explain in detail!
  • the present invention is a method for recovering the unreacted fluoro monomer from an aqueous fluoropolymer dispersion obtained by emulsion polymerization of a fluoromonomer having a sulfonic acid precursor functional group that can be converted into a sulfonic acid group.
  • the recovery method of the present invention is characterized in that the unreacted fluoromonomer is vaporized and recovered from the aqueous fluoropolymer dispersion, and that the pH of the aqueous fluoropolymer dispersion is acidic. .
  • the recovery method of the present invention can suppress the hydrolysis of the functional group of the sulfonic acid precursor by making the pH of the aqueous solution of the fluoropolymer aqueous acidic, so that it can be colored during melt molding using the fluoropolymer. And the ability to obtain a fluoropolymer that can be suitably used as an electrolyte membrane material. Further, it is possible to improve the recovery rate of the unreacted fluoromonomer.
  • the recovery method of the present invention recovers the unreacted fluoromonomer from the aqueous fluoropolymer dispersion by vaporization, so that the fluoromonomer can be recovered without using an extraction solvent as in the prior art. it can.
  • the aqueous fluoropolymer dispersion is obtained by emulsion polymerization of a fluoromonomer, and the fluoromonomer has a sulfonic acid precursor functional group that can be converted into a sulfonic acid group.
  • the sulfonic acid precursor functional group is converted into a sulfonic acid group (one SO M;
  • M is ⁇ , 3 ⁇ 4 3 ⁇ 4 4 or M 1 R 2 , R 3 and R 4 are the same or different
  • X in the SO X group is preferably F.
  • the fluoromonomer having a sulfonic acid precursor functional group is represented by the following general formula (I)
  • Y 1 represents F, C 1 or a perfluoroalkyl group.
  • N represents an integer of 0 to;!
  • Y 2 represents F, C 1 or a perfluoroalkyl group.
  • m represents an integer of 0 to 5 when n is 0, and represents an integer of 1 to 5 when n is 1.
  • m is an integer of 2 to 5
  • m Y 2 are the same.
  • X represents F or C1
  • represents O or one CF 2 O
  • 1 represents an integer of 0 to 1.
  • Y 1 is preferably a perfluoroalkyl group, more preferably a perfluoroalkyl group having 1 to 3 carbon atoms. This is the group
  • Y 2 is preferably F.
  • the fluorovinyl compounds may be used alone or in combination of two or more.
  • the aqueous fluoropolymer dispersion is preferably obtained by emulsion polymerization of a fluoromonomer having a sulfonic acid precursor functional group and an ethylenic fluoromonomer.
  • the ethylenic fluoromonomer is not particularly limited as long as it is a monomer copolymerizable with a fluoromonomer having a sulfonic acid precursor functional group.
  • the ethylenic fluoromonomer is a monomer having a bur group, and the vinyl group may have a hydrogen atom partially or entirely substituted with a fluorine atom.
  • the following general formula (II) is a monomer having a bur group, and the vinyl group may have a hydrogen atom partially or entirely substituted with a fluorine atom.
  • CF CF-R 2 (II) (In the formula, F, CI, or a linear or branched fluoroalkyl having 1 to 9 carbon atoms f
  • Y 3 represents H or F
  • Y 4 represents H, F, CI, or a linear or branched fluoroalkyl group having 1 to 9 carbon atoms.
  • Examples of the ethylenic fluoromonomer represented by the above general formula (II) or (III) include tetrafluoroethylene [TFE], hexafluoropropylene [HFP], black trifluoroethylene [CTFE]. ), Fluorinated vinyl, vinylidene fluoride [VDF], trifluoroethylene, hexafluoroisobutylene and perfluorobutylethylene TFE, VDF, CTFE, trifluoroethylene, fluorinated butyl HF E, CTFE, TFE more preferred HFP, and TFE more preferred HFP are particularly preferred.
  • the ethylenic fluoromonomer may be a monomer having a ring structure or a cyclopolymerizable monomer.
  • Monomers having the above ring structure include perfluoro (2, 2 dimethyl-1, 3 dioxol), perfluoro (1, 3-dioxol), perfluoro (2-methylene-4-methinoleol 1, 3 di-doxolan. ), 2, 2, 4 Trifnore low 5 Trifnore old romethoxy 1, 3 Dioxol.
  • Examples of the cyclopolymerizable monomer include perfluoro (3 butyruvyl ether), perfluoro [(1-methyl 3-buteninole) buruetenole], perfluoro (arilbininoreethenore), 1, 1, 1 [( Difluoromethylene) bis (oxy)] [1, 2, 2-trifluoroene] and the like.
  • ethylenic fluoromonomer examples include the following general formula (IV):
  • R 3 represents a fluoroalkyl group having 1 to 9 carbon atoms or a fluoropolyether having 1 to 9 carbon atoms.
  • Y 5 represents ⁇ or F
  • R 4 may have an ether group having 1 to 9 carbon atoms.
  • a linear or branched fluoroalkyl group is represented.
  • R 5 and R 6 are the same or different and each represents H, an alkyl group or a sulfonyl-containing group), and the like.
  • ethylenic fluoromonomer one type or two or more types can be used.
  • the fluoropolymer obtained by polymerizing a fluoromonomer having a sulfonic acid precursor functional group and an ethylenic fluoromonomer contains 5 to 50 mol% of repeating units derived from the fluoromonomer having a sulfonic acid precursor functional group.
  • a copolymer having 50 to 95 mol% of repeating units derived from the fluoromonomer is preferred.
  • each unit is a value based on 100 mol% of all monomer units.
  • the “all monomer units” are all the parts derived from monomers in the molecular structure of the fluoropolymer.
  • the content of each unit is straightforward obtained by melt NMR measurement at 300 ° C.
  • the emulsion polymerization can be carried out by a conventionally known method, and the polymerization conditions can be appropriately selected according to the type and amount of each monomer, the desired composition, and the like.
  • the aqueous fluoropolymer dispersion obtained by emulsion polymerization may be an aqueous fluoropolymer dispersion after polymerization, or may have been subjected to post-treatment such as concentration and coagulation. Further, the aqueous fluoropolymer dispersion may be coagulated / washed or coagulated “washed” and dehydrated to reduce the ratio of the aqueous medium.
  • the recovery method of the present invention recovers the unreacted fluoromonomer that has not been consumed in the polymerization reaction in the emulsion polymerization from an aqueous fluoropolymer dispersion in which the pH of the liquid is acidic.
  • the aqueous fluoropolymer dispersion is not particularly limited as long as the pH of the liquid is acidic at the time when the fluoromonomer is vaporized and recovered! /, But the aqueous medium having an acidic pH. Obtained by emulsion polymerization or fluoropolymer obtained by emulsion polymerization It is preferably obtained by adjusting the pH of the liquid of the aqueous dispersion to be acidic.
  • the sulfonic acid precursor functional group present in the produced polymer and the unreacted monomer is hydrolyzed by acidifying the pH of the liquid fluoropolymer aqueous dispersion, whereby the sulfonic acid Conversion to a group (one SO M) can be suppressed.
  • the timing for adjusting the pH of the aqueous medium in emulsion polymerization is not particularly limited, and the liquidity of the aqueous medium may be adjusted so that the pH becomes acidic at the end of the polymerization reaction.
  • emulsion polymerization may be performed after adjusting the liquidity of the aqueous medium to be acidic.
  • the sulfonic acid precursor functional group-containing fluoropolymer aqueous dispersion in which the pH of the liquid is acidic is such that the acidic pH value is made smaller!
  • the pH of the liquid fluoropolymer dispersion is preferably less than 3.0.
  • the pH is more preferably 2.5 or less, further preferably 2.0 or less, particularly preferably 1.8 or less, and most preferably 1.5 or less.
  • the aqueous fluoropolymer dispersion in which the pH of the liquid is acidic may be obtained by adjusting the pH of the liquid fluoropolymer aqueous dispersion obtained by general emulsion polymerization to be acidic.
  • the sulfonic acid precursor functional group-containing fluoropolymer aqueous dispersion having an acidic liquid property has a more favorable effect by increasing the effect of suppressing hydrolysis by reducing the acidic pH value to a smaller value.
  • it is preferable that pH is less than 3.0.
  • the pH of a fluoropolymer aqueous dispersion containing a sulfonic acid precursor functional group is greater than 3.0, the pH of the aqueous fluoropolymer dispersion is reduced to a value lower than the original pH value to suppress calo-hydrolysis.
  • the pH is preferably less than 3.0.
  • the pH of the aqueous fluoropolymer dispersion is 3.0 or more, the pH is less than 3.0, preferably 2.5 or less, more preferably 2.0 or less, still more preferably 1.8 or less, particularly preferably. Is preferably 1.5 or less.
  • the pH of the sulfonic acid precursor functional group-containing fluoropolymer aqueous dispersion is smaller than 3.0, an even greater effect can be obtained by making the pH further smaller than that.
  • the fluoropolymer aqueous dispersion has a pH of less than 3.0 It is preferable that the value is not more than 2.0, more preferably not more than 2.0, still more preferably not more than 1.8, particularly preferably not more than 1.5.
  • the lower limit is not particularly limited, but if the pH is too small, the amount of acidic compound to be added becomes large. It is advantageous in the process that the pH of the liquid is 11.0 or more.
  • the pH of the liquid fluoropolymer dispersion obtained by polymerization the fluoropolymer is dispersed in the aqueous fluoropolymer dispersion in the process of adjusting the pH! /, Even if the fluoropolymer is aggregated or coagulated. In this case, there is an advantage that hydrolysis of the sulfonic acid precursor functional group existing in the fluoropolymer can be further suppressed.
  • the pH can be adjusted by adding an acidic compound or by adding a compound that decomposes in water to become an acidic compound.
  • the acidic compound one kind or a plurality of inorganic acids and organic acids can be appropriately used.
  • a compound having a pKa of less than 7 is preferred because it is easy to adjust the pH to the target acidic range.
  • CF COOH trifluoroacetic acid
  • the acidic compound can be used in combination with other compounds.
  • the emulsion polymerization can be performed by a conventionally known method, and the polymerization conditions can be appropriately selected according to the type and amount of each monomer, the desired composition, and the like.
  • a surfactant, a polymerization initiator, other additives, and the like can be added.
  • the surfactant is not particularly limited, and among the 1S for which a conventionally known surfactant can be used, a fluorosurfactant such as perfluorooctanoate is preferable. .
  • the aqueous medium is not particularly limited, and may be, for example, water, a mixture of water and a known water-soluble solvent, or the like, and may further contain an organic solvent. It is preferable that
  • the unreacted fluoromonomer is vaporized and recovered from an aqueous fluoropolymer dispersion in which the pH of the liquid is acidic.
  • the vaporization method is not particularly limited, and can be performed by appropriately combining heating and decompression. Depressurize the above heating Is preferable in that the heating temperature can be lowered and the recovery efficiency can be improved.
  • the sulfonic acid precursor functional groups present in the fluoropolymer and fluoromonomer tend to hydrolyze and convert to sulfonic acid groups (one SOM).
  • the recovery method of the present invention makes it possible to suppress hydrolysis even by heating to vaporize the fluoromonomer by acidifying the liquid fluoropolymer dispersion.
  • the recovery method is not particularly limited, and examples include a method of cooling to the boiling point of the fluoromonomer or less to liquefy and recovering.
  • the recovery method of the present invention can be suitably used in the production of electrolyte membrane materials such as fuel cells and chemical sensors.
  • the aqueous fluoropolymer dispersion can be particularly suitably obtained by the following production methods (1) to (3) of the aqueous fluoropolymer dispersion.
  • a method (1) for producing an aqueous fluoropolymer dispersion is a method for producing an aqueous fluoropolymer dispersion in which a fluoromonomer having a sulfonic acid precursor functional group that can be converted into a sulfonic acid group is emulsion-polymerized in an aqueous medium. In the emulsion polymerization, the liquidity of the aqueous medium is changed to p.
  • This is a method for producing an aqueous fluoropolymer dispersion characterized by being adjusted to H0.5 to 3.0.
  • the method (1) for producing an aqueous fluoropolymer dispersion is characterized in that emulsion polymerization is carried out by adjusting the liquidity of the aqueous medium to an acidity of pH 0.5 to 3.0.
  • emulsion polymerization is carried out by actively adjusting the liquidity of the aqueous medium to an acidity of pHO.5 to 3.0, thereby suppressing hydrolysis of the functional group of the sulfonic acid precursor.
  • Acid group one SO M; M is H,
  • R 2 and R 4 are the same or different and are H or
  • the aqueous fluoropolymer dispersion produced by the production method (1) suppresses the formation of sulfonic acid groups, suppresses problems such as coloring and foaming during melt molding, and can be suitably used as an electrolyte membrane material.
  • a buffering agent for example, Na HPO, NaH 3 PO, etc.
  • the production method (1) adds an acidic compound to the system and actively adjusts the liquidity of the medium to acidic conditions (pHO. 5-3). . 0) Perform emulsion polymerization
  • the emulsion polymerization is carried out by adjusting the liquidity of the aqueous medium to be acidic, thereby suppressing hydrolysis of the sulfonic acid precursor functional group and converting it to a sulfonic acid group.
  • the pH is less than 3.0. It is preferable that The pH is more preferably 2.5 or less, further preferably 2.0 or less, and particularly preferably 1.8 or less.
  • the pH of the aqueous liquid polymer dispersion is preferably 0.5 or more, more preferably 0.8 or more, and even more preferably 1.0 or more.
  • the pH of the solution it is preferable to adjust the pH of the solution so that the pH can be maintained at less than 3.0 at all stages from the start of polymerization to the end of the polymerization reaction.
  • it is 2.5 or less, more preferably 2.0 or less, particularly preferably 1.8 or less.
  • a method (2) for producing an aqueous fluoropolymer dispersion is a method for producing an aqueous fluoropolymer dispersion in which a fluoromonomer having a sulfonic acid precursor functional group that can be converted into a sulfonic acid group is emulsion-polymerized in an aqueous medium.
  • an acid as an acidifying agent is used during the polymerization in order to make the pH at the end of the polymerization smaller than the pH at the start of the polymerization of the aqueous medium. It is characterized by adding a functional compound to the polymerization system.
  • an acidic compound is added to the polymerization system as an acidifying agent during the polymerization in order to make the pH at the end of the polymerization smaller than the pH at the start of the polymerization of the aqueous medium.
  • hydrolysis of the sulfonic acid precursor functional group can be suppressed and conversion to the sulfonic acid group can be suppressed, and the liquid pH value can be reduced to a smaller value.
  • the pH at the end of polymerization of the aqueous medium is preferably less than 3.0.
  • the pH of the aqueous medium at the end of the polymerization is more preferably 2.5 or less, further preferably 2.0 or less, and particularly preferably 1.8 or less.
  • the force S can be obtained by suppressing hydrolysis by setting the liquid pH value of the aqueous medium to a smaller value.
  • the pH of the liquid fluoropolymer dispersion is preferably 0.5 or more, more preferably 0.8 or more, and even more preferably 1.0 or more.
  • the addition of the acidifying agent in the production method (2) is not particularly limited as long as it is during polymerization, and can be appropriately performed. Also, the number of additions is not particularly limited, and it can be continuously added.
  • an aqueous fluoropolymer dispersion is produced by emulsion polymerization of a fluoromonomer having a sulfonic acid precursor functional group that can be converted into a sulfonic acid group in an aqueous medium.
  • the emulsion polymerization can be carried out by a conventionally known method except that the pH is adjusted to be acidic, and the polymerization conditions are suitable depending on the type and amount of each monomer, the desired composition, and the like. You can force to choose.
  • a surfactant, a polymerization initiator, other additives, and the like can be added.
  • the pH of the liquid aqueous polymer dispersion may be adjusted again to a desired pH. Again for adjustment, it is preferable that the pH of the aqueous fluoropolymer dispersion is adjusted to be more acidic.
  • the fluoropolymer dispersed in the aqueous fluoropolymer dispersion may be aggregated in the process of adjusting the pH, and in this case, the sulfonic acid precursor agent present in the fluoropolymer is dispersed. Hydrolysis of functional groups can be further suppressed.
  • the aqueous fluoropolymer dispersion produced by the above production method (1) or (2) has an acidic pH and the hydrolysis of the functional group of the sulfonic acid precursor is suppressed. Even if the existing fluoropolymer aqueous dispersion is used, it is preferable as an electrolyte membrane material in which the sulfonic acid group (one SO M) generated by hydrolysis during melt molding does not thermally decompose and become colored.
  • the aqueous fluoropolymer dispersion is a fluoropolymer aqueous dispersion produced by the above production method (1) or (2). In other words, it may be concentrated and post-treated such as coagulation. Also, it may be a fluoropolymer aqueous dispersion obtained by coagulation 'washing' or coagulation 'washing' dehydration to reduce the ratio of the aqueous medium! /.
  • the sulfonic acid precursor functional group present in the fluoromonomer tends to hydrolyze into sulfonic acid groups (one SO M).
  • the method (3) for producing an aqueous fluoropolymer dispersion comprises the step (1) of obtaining a fluoropolymer aqueous dispersion by emulsion polymerization of a fluoromonomer having a sulfonic acid precursor functional group that can be converted into a sulfonic acid group, and the above fluoropolymer aqueous solution. It includes the step (2) of lowering the pH of the dispersion liquid.
  • the pH of the aqueous fluoropolymer dispersion is positively adjusted in step (2) to adjust the pH of the sulfonic acid precursor functional group to a more acidic pH. Decomposition can be suppressed. Therefore, the sulfonic acid precursor produced by the production method (3) Fluoropolymer aqueous dispersion containing body functional groups is excellent in long-term storage stability of sulfonic acid precursor functional groups, and post-processing such as coagulation, washing and drying is added to fluoric acid aqueous dispersions stored for a long time.
  • the production method (3) includes a step (1) of emulsion polymerization of a fluoromonomer having a sulfonic acid precursor functional group that can be converted into a sulfonic acid group to obtain an aqueous fluoropolymer dispersion.
  • the emulsion polymerization in the production method (3) can be carried out by a conventionally known method, and the polymerization conditions can be appropriately selected according to the type and amount of each monomer, the desired composition, and the like. .
  • the aqueous fluoropolymer dispersion used in step (2) may be concentrated after polymerization as long as it is an aqueous fluoropolymer dispersion obtained by the above step (1).
  • a buffering agent is added at the time of polymerization for the purpose of keeping the initiator efficiency at the time of polymerization constant, and the liquidity of the aqueous medium is increased. It is known to adjust to near neutral. -Can be converted to sulfonic acid groups such as SO F
  • a buffering agent for example, Na HPO, NaH 3 PO, etc.
  • a sulfonic acid precursor functional group-containing fluoropolymer monoaqueous dispersion obtained by emulsion polymerization of a fluoromonomer having a sulfonic acid precursor functional group that can be converted into a sulfonic acid group is used. Adjust the pH aggressively to lower the pH more acidic. The pH adjustment is preferably performed immediately after the completion of the emulsion polymerization, and in this case, the hydrolysis reaction that progresses to the post-polymerization force and the subsequent process such as coagulation can be suppressed. .
  • Production method (3) includes a step (2) of lowering the pH of the liquid fluoropolymer aqueous dispersion.
  • the sulfonic acid precursor functional group present in the resulting polymer in the aqueous fluoropolymer dispersion is hydrolyzed and converted into a sulfonic acid group (one SO M).
  • the aqueous dispersion of a sulfonic acid precursor functional group-containing fluoropolymer that is acidic in liquidity has a more favorable effect by increasing the effect of suppressing hydrolysis by reducing the acidic pH value to a smaller value.
  • it is preferable that pH is less than 3.0.
  • the pH of the sulfonic acid precursor functional group-containing fluoropolymer aqueous dispersion after polymerization is 3.0 or more, the pH is less than 3.0, preferably 2.5 or less, more preferably 2.0. In the following, it is more preferably 1.8 or less, particularly preferably 1.5 or less. If the pH of the sulfonic acid precursor functional group-containing fluoropolymer aqueous dispersion after polymerization is lower than 3.0, an even greater effect can be obtained by setting the pH to a lower value.
  • the pH of the sulfonic acid precursor functional group-containing fluoropolymer aqueous dispersion after polymerization is less than 3.0 and greater than 2.0, the pH is smaller, more preferably less than 2.0, and even more preferably 1.8.
  • it is particularly preferably 1.5 or less.
  • the pH of the sulfonic acid precursor functional group-containing fluoropolymer aqueous dispersion after polymerization is less than 2.0 and greater than 1.8, the pH is smaller, more preferably less than 1.8, and even more preferably 1. It is preferable to make it 5 or less.
  • the aqueous fluoropolymer dispersion produced by the production method (3) is excellent in long-term storage stability of the functional group of the sulfonic acid precursor, and is coagulated, washed and dried into the aqueous fluoropolymer dispersion stored for a long time.
  • the sulfonic acid precursor functional group-containing fluoropolymer is isolated and melt-molded to suppress problems such as coloration and foaming caused by the presence of the sulfonic acid group. It can be used suitably.
  • the sulfonic acid precursor functional group present in the fluoromonomer tends to hydrolyze and convert to a sulfonic acid group (one SO M).
  • the isolation can be performed by coagulating, washing, and drying the aqueous fluoropolymer dispersion produced by the production methods (1) to (3).
  • a molded body such as a film can be obtained by molding the fluoropolymer.
  • the recovery method of the present invention has the above-described configuration, an extraction solvent is used to separate and recover the fluoromonomer having a sulfonic acid precursor functional group from the fluoropolymer aqueous dispersion obtained by emulsion polymerization.
  • the recovery of the unreacted fluoromonomer that does not need to be performed can be made extremely excellent, and the hydrolysis of the sulfonic acid precursor functional group can be suppressed during and after the recovery.
  • each value was measured by the following method.
  • Each fluoropolymer sample obtained by coagulation, water washing and drying of an aqueous fluoropolymer dispersion was heat-pressed at 270 ° C and lOMPa for 20 minutes to form a film with a thickness of 100 ⁇ m.
  • the spectrum was measured by Fourier transform infrared absorption spectroscopy.
  • the amount of the sulfonic acid group is represented by the value obtained above as so-mass in one mass of the unit polymer.
  • Unreacted CF CFOCF CF SO F is a fluoropolymer in a fluoropolymer aqueous dispersion.
  • the OCF CF SO? Unit content was 19 mol% (40 mass%).
  • the OCF CFSO unit content was 19 mol% (40 mass%).
  • the recovery rate of fluoromonomer was 85%.
  • the recovery rate is a value calculated by estimating the mass of the aqueous fluoropolymer dispersion after polymerization from Example 1 (1) as 4450 g.
  • Example 1 An aqueous fluoropolymer dispersion was obtained by the method of (1).
  • the Funoleo mouth polymer was heat-pressed at 270 ° C and lOMPa for 20 minutes to obtain a transparent film having a thickness of 100 m.
  • the content of OCF CF SO F units was 19 mol%.
  • the fluoromonomer recovery was 88%.
  • Example 1 An aqueous fluoropolymer dispersion was obtained by the method of (1).
  • the content of OCF CF SO F units was 19 mol%.
  • the fluoromonomer recovery was 91%.
  • Example 1 An aqueous fluoropolymer dispersion was obtained by the method of (1).
  • the OCF CF SO? Unit content was 19 mol% (40 mass%).
  • the fluoromonomer recovery was 88%.
  • Example 1 An aqueous fluoropolymer dispersion was obtained by the method of (1).
  • the OCF CF SO? Unit content was 19 mol% (40 mass%).
  • the fluoromonomer recovery was 88%.
  • a slightly cloudy fluoropolymer aqueous dispersion 426 9 g containing about 28% by mass of the mouth polymer was obtained.
  • the content of OCF CF SO F units was 19 mol%.
  • Example 1 An aqueous fluoropolymer dispersion was obtained by the method of (1). Into a stainless steel stirred autoclave having a volume of 6000 ml, 4450 g of the above-mentioned aqueous fluoropolymer dispersion immediately after synthesis was placed, and then 300 g of 3% by mass ammonium carbonate aqueous solution was gradually added to maintain the pH in the vicinity of neutrality. The pH of the solution after adding ammonium carbonate aqueous solution was 7.7.
  • the content of OCF CF SO F units was 19 mol%.
  • the recovery rate of fluoromonomer was 58%.
  • TFE tetrafluoroethylene
  • the gauge pressure was increased to 0.7 MPa. Subsequently, 1.5 g of ammonium persulfate [APS] dissolved in 30 g of pure water was injected to initiate polymerization.
  • TFE is continuously supplied to the autoclay.
  • the pressure of the hub was kept at 0.7 MPa.
  • CF CFOCF CF SO F in an amount corresponding to 0.65 times the mass ratio was continuously supplied to the supplied TFE to continue the polymerization.
  • This aqueous fluoropolymer dispersion was coagulated with nitric acid, washed with water, dried at 90 ° C for 24 hours, and further dried at 120 ° C for 12 hours to obtain 1240 g of a fluoropolymer powder.
  • the fluoropolymer powder was heat-pressed at 270 ° C. lOMPa for 20 minutes to obtain a transparent film having a thickness of 100 m.
  • the OCF CF SO? Unit content was 19 mol% (40 mass%).
  • the OCF CF SO? Unit content was 19 mol% (40 mass%).
  • the pH of the solution of the aqueous fluoropolymer dispersion immediately after polymerization was measured with a pH meter. 1. It was 7.
  • This aqueous fluoropolymer dispersion was coagulated with nitric acid, washed with water, dried at 90 ° C for 24 hours, and further dried at 120 ° C for 12 hours to obtain 1240 g of a fluoropolymer powder.
  • the OCF CF SO? Unit content was 19 mol% (40 mass%).
  • TFE tetrafluoroethylene
  • This aqueous fluoropolymer dispersion was coagulated with nitric acid, washed with water, dried at 90 ° C for 24 hours, and further dried at 120 ° C for 12 hours to obtain 103 g of a fluoropolymer powder.
  • lOMPai coating was heat-pressed for 20 minutes to obtain a transparent film having a thickness of 100 mm.
  • the OCF CF SO? Unit content was 19 mol% (40 mass%).
  • This aqueous fluoropolymer dispersion was coagulated with nitric acid, washed with water, dried at 90 ° C for 24 hours, and further dried at 120 ° C for 12 hours to obtain 1240 g of a fluoropolymer powder.
  • the fluoropolymer powder was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 100 m.
  • the OCF CF SO? Unit content was 19 mol% (40 mass%).
  • the aqueous fluoropolymer dispersion was coagulated with nitric acid, washed with water, dried at 90 ° C for 24 hours, and further dried at 120 ° C for 12 hours to obtain 1240 g of a fluoropolymer powder.
  • the fluoropolymer powder was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 100 m.
  • the OCF CF SO? Unit content was 19 mol% (40 mass%).
  • the liquid was gradually poured into the autoclave. Subsequently, 50 g of the internal solution was sampled from the sampling tube and measured with a pH meter. The solution pH was 2.0.
  • This aqueous fluoropolymer dispersion was coagulated with nitric acid, washed with water, dried at 90 ° C for 24 hours, and further dried at 120 ° C for 12 hours to obtain 1230 g of a fluoropolymer powder.
  • the OCF CF SO? Unit content was 19 mol% (40 mass%).
  • the solution was slowly poured into the autoclave. Subsequently, 50 g of the internal solution was sampled from the sampling tube, and the pH of the solution was 1.4 when measured with a pH meter.
  • This aqueous fluoropolymer dispersion was coagulated with nitric acid, washed with water, dried at 90 ° C for 24 hours, and further dried at 120 ° C for 12 hours to obtain 1230 g of a fluoropolymer powder.
  • the OCF CF SO? Unit content was 19 mol% (40 mass%).
  • TFE tetrafluoroethylene
  • This aqueous fluoropolymer dispersion was coagulated with nitric acid, washed with water, dried at 90 ° C for 24 hours, and further dried at 120 ° C for 12 hours to obtain 1240 g of a fluoropolymer powder.
  • the OCF CF SO? Unit content was 19 mol% (40 mass%).
  • TFE tetrafluoroethylene
  • This aqueous fluoropolymer dispersion was coagulated with nitric acid, washed with water, dried at 90 ° C for 24 hours, and further dried at 120 ° C for 12 hours to obtain 1240 g of a fluoropolymer powder.
  • a sample of a funole ropolymer was heat-pressed with a 270 ClOMPai coating for 20 minutes to obtain a transparent film having a thickness of 100 mm.
  • the OCF CF SO? Unit content was 19 mol% (40 mass%).
  • the OCF CF SO? Unit content was 19 mol% (40 mass%).
  • the pH-adjusted fluoropolymer aqueous dispersion was allowed to stand in an atmosphere of 50 ° C. After 6 hours, 24 hours, and 120 hours, 50 g of the fluoropolymer aqueous dispersion was sampled, and 10 g of nitric acid was added thereto. Was added to cause the polymer to coagulate, and the coagulated polymer was washed with water and then dried at 100 ° C. for 24 hours to obtain a polymer sample.
  • the OCF CF SO? Unit content was 19 mol% (40 mass%).
  • the recovery method of the present invention can be suitably used in the production of electrolyte membrane materials such as fuel cells and chemical sensors.
  • FIG. 1 A schematic view of a method for recovering fluoromonomers by connecting a stirrer containing an aqueous fluoropolymer dispersion and a trap.

Abstract

本発明は、抽出溶媒を使用することなく、乳化重合して得られるフルオロポリマー水性分散体から、未反応のフルオロモノマーを効率よく分離、回収し、かつ、-SO2Fのようなスルホン酸基に変換しうるスルホン酸前駆体官能基の加水分解を抑制する技術を提供することにある。本発明は、スルホン酸基に変換しうるスルホン酸前駆体官能基を有するフルオロモノマーを乳化重合して得られるフルオロポリマー水性分散体から未反応の上記フルオロモノマーを回収する方法であって、上記フルオロポリマー水性分散体から未反応の上記フルオロモノマーを気化させて回収するものであり、上記フルオロポリマー水性分散体の液のpHが酸性であることを特徴とするフルオロモノマーの回収方法である。

Description

明 細 書
フノレオ口モノマーの回収方法
技術分野
[0001] 本発明は、フルォロモノマーの回収方法に関する。
背景技術
[0002] フルォロポリマーは、乳化重合、懸濁重合、溶液重合、塊状重合等の方法で製造さ れているが、乳化重合は、重合槽の容積効率が高ぐ重合中の除熱や撹拌時のトノレ クが低!/、等の点で有利である。
[0003] 乳化重合において、重合反応で消費されなかった未反応モノマーは、経済性等の観 点から回収して再利用することが好ましい。上記未反応モノマーのうち、テトラフルォ 口エチレン〔TFE〕のような常温で気体のモノマーは、重合後にガスとして容易に分離 、回収すること力 Sできる。一方、常温で液体である未反応のモノマーは、乳化重合後 の水性分散体から分離、回収することが容易ではなレ、。
[0004] 常温で液体である未反応モノマーを回収する方法としては、弗素化塩素化飽和炭化 水素(CFC)を抽出溶媒として使用し、フッ素化モノマーを乳化重合して得られるラテ ッタスから未反応モノマーを回収する方法 (例えば、特許文献 1参照。)、 CF C1CF
2 2
CFHC1、 CF CF CHC1、ハイド口フルォロカーボン、フルォロカーボン等のフッ素
3 2 2
系溶剤を抽出溶媒として使用する方法 (例えば、特許文献 2参照。)、ハイド口フルォ 口エーテル化合物を抽出溶媒として使用する方法 (例えば、特許文献 3参照。)が知 られている。
[0005] しかし、抽出溶媒を使用して未反応モノマーを分離すると、溶媒抽出後の水性分散 体に抽出溶媒が残存し、それによつて工程上の不具合が発生するという問題がある 。このような問題を避けるために、水性分散体に残存する抽出溶媒を気化させて除去 する必要がある(例えば、特許文献 4参照。)。また、未反応モノマーを再利用するた めには、抽出溶媒中に溶解した未反応モノマーを分離することも必要である。このよ うな経済的、時間的な負担を回避するため、抽出溶媒を使用せずに未反応モノマー を回収できることが好ましい。 [0006] また、 SO Fのようなスルホン酸基に変換しうるスルホン酸前駆体官能基を有するフ ルォロモノマーを乳化重合して得られるフルォロポリマーは、燃料電池、化学センサ 一等の電解質膜材料としての用途が知られている。乳化重合により水性分散体の状 態で得られるこのようなスルホン酸前駆体官能基を有するフルォロポリマーは、水性 分散体の状態において、スルホン酸前駆体官能基のごく一部が水により加水分解さ れて、スルホン酸基( SO M ; Mは、 H NR^R^R R4又は M1 を表す。 、 R2 R
3及び R4は、同一又は異なって、 H若しくは炭素数 1 4のアルキル基を表す。 M1は L価の金属を表す。)に変換される反応が存在する(例えば、特許文献 5参照。)。
[0007] このため、加水分解によりスルホン酸前駆体官能基よりも耐熱性の低いスルホン酸基
(— SO M)を生じ、上記フルォロポリマーを用いた溶融成形時に熱分解により着色 する問題があった。また、上記スルホン酸由来基含有フルォロポリマーは、乾燥処理 を経て、粉末状、ペレット状、成形体等の固体に調製したものであっても、スルホン酸 基(一 SO M)が高吸湿性であることにより空気中の水分を直ちに吸収してしまうため
、吸湿された水が溶融成形時の発泡の原因になったりする問題があった。
[0008] また、スルホン酸前駆体官能基含有フルォロポリマーは、フッ素ラジカル発生化合物 を接触させてポリマー鎖末端の SO M COOH等の不安定基をフッ素化させる ことにより、溶融成形時の着色、発泡等の発生を防ぐことができる。し力、し、 SO M 基が多く存在することによって、吸湿された水がフッ素化を阻害する問題があった。
[0009] 更に、フルォロモノマーに存在するスルホン酸前駆体官能基が加水分解することによ り、未反応モノマーの回収率が低下する問題があった。
[0010] 特許文献 1:特開昭 56— 59810号公報
特許文献 2:特開平 7— 1 18332号公報
特許文献 3:特開平 1 1 35624号公報
特許文献 4 :特開 2000— 344825号公報
特許文献 5:国際公開第 2005/028522号パンフレット
発明の開示
発明が解決しょうとする課題
[0011] 本発明の目的は、上記現状に鑑み、抽出溶媒を使用することなぐ乳化重合して得ら れるフルォロポリマー水性分散体から、未反応のフルォロモノマーを効率よく分離、 回収し、かつ、 SO Fのようなスルホン酸基に変換しうるスルホン酸前駆体官能基
2
の加水分解を抑制する技術を提供することにある。
課題を解決するための手段
[0012] 本発明は、スルホン酸基に変換しうるスルホン酸前駆体官能基を有するフルォロモノ マーを乳化重合して得られるフルォロポリマー水性分散体から未反応の上記フルォ 口モノマーを回収する方法であって、上記フルォロポリマー水性分散体から未反応の 上記フルォロモノマーを気化させて回収するものであり、上記フルォロポリマー水性 分散体の液の pHが酸性であることを特徴とするフルォロモノマーの回収方法である 以下に本発明につ!/、て詳細に説明する。
[0013] 本発明は、スルホン酸基に変換しうるスルホン酸前駆体官能基を有するフルォロモノ マーを乳化重合して得られるフルォロポリマー水性分散体から未反応の上記フルォ 口モノマーを回収する方法である。
[0014] 本発明の回収方法は、上記フルォロポリマー水性分散体から未反応の上記フルォロ モノマーを気化させて回収すること、及び、当該フルォロポリマー水性分散体の液の pHが酸性であることを特徴とする。本発明の回収方法は、フルォロポリマー水性分 散体の液の pHを酸性にすることにより、スルホン酸前駆体官能基の加水分解を抑制 すること力 Sできるので、上記フルォロポリマーを用いた溶融成形時に着色したり発泡 したりすることを抑制でき、電解質膜材料として好適に使用できるフルォロポリマーを 得ること力 Sでき、更に、未反応の上記フルォロモノマーの回収率を優れたものとするこ と力 Sできる。
[0015] 本発明の回収方法は、フルォロポリマー水性分散体から、未反応の上記フルォロモ ノマーを気化させて回収するものであるので、従来のように抽出溶媒を使用すること なくフルォロモノマーを回収することができる。
[0016] 上記フルォロポリマー水性分散体は、フルォロモノマーを乳化重合して得られるもの であり、上記フルォロモノマーは、スルホン酸基に変換しうるスルホン酸前駆体官能 基を有するものである。 [0017] 上記スルホン酸前駆体官能基は、加水分解反応によってスルホン酸基(一 SO M ;
3
Mは、 Η、 ΝΚ ¾ 4又は M1 R2、 R3及び R4は、同一又は異なって
Figure imgf000005_0001
、 H若しくは炭素数 1〜4のアルキル基を表す。 M1は、 L価の金属を表す。)に変換し うるものである。上記スルホン酸前駆体官能基としては、 SO X (Xは、 F又は C1を
2
表す。)であることが好ましい。
[0018] 上記 SO X基における Xは、好ましくは、 Fである。
2
[0019] 上記スルホン酸前駆体官能基を有するフルォロモノマーは、下記一般式 (I)
CF =CF—(A)—(CF CFY1— O) —(CFY2) — SO X (I)
2 1 2 n m 2
(式中、 Y1は、 F、 C1又はパーフルォロアルキル基を表す。 nは、 0〜;!の整数を表し、 Y2は、 F、 C1又はパーフルォロアルキル基を表す。 mは、 nが 0のとき 0〜5の整数を 表し、 nが 1のとき 1〜5の整数を表す。 mが 2〜5の整数であるとき、 m個の Y2は、同 一であってもよいし異なっていてもよい。 Xは、 F又は C1を表す。 Αは、 O 又は一 CF O を表し、 1は 0〜1の整数を表す。)で表されるフルォロビニル化合物であるこ
2
とが好ましい。
[0020] 上記一般式(I)において、 Y1としては、パーフルォロアルキル基であることが好ましく 、炭素数 1〜3のパーフルォロアルキル基であることがより好ましぐ -CF基であるこ
3 とが更に好ましい。 Y2としては、 Fが好ましい。
[0021] 上記フルォロビニル化合物は、 1種又は 2種以上を組み合わせて用いることができる
[0022] 上記フルォロポリマー水性分散体は、スルホン酸前駆体官能基を有するフルォロモ ノマーとエチレン性フルォロモノマーとを乳化重合して得られるものであることが好ま しい。上記エチレン性フルォロモノマーは、スルホン酸前駆体官能基を有するフルォ 口モノマーと共重合可能なモノマーであれば特に制限されない。
[0023] 上記エチレン性フルォロモノマーは、ビュル基を有するモノマーであって、上記ビニ ル基は、フッ素原子により水素原子の一部又は全部が置換されていてもよいものであ 上記エチレン性フルォロモノマーとしては、例えば、下記一般式(II)
CF =CF-R 2 (II) (式中、 は、 F、 CI又は炭素数 1〜9の直鎖状若しくは分岐状のフルォロアルキル f
基を表す。 )
で表されるエチレン性フルォロモノマー、下記一般式(III)
CHY3 = CFY4 (III)
(式中、 Y3は H又は Fを表し、 Y4は H、 F、 CI又は炭素数 1〜9の直鎖状若しくは分岐 状のフルォロアルキル基を表す。)
で表される水素含有エチレン性フルォロモノマー等が挙げられる。
[0024] 上記一般式(II)又は(III)で表されるエチレン性フルォロモノマーとしては、例えば、 テトラフルォロエチレン〔TFE〕、へキサフルォロプロピレン〔HFP〕、クロ口トリフルォロ エチレン〔CTFE〕、フッ化ビュル、フッ化ビニリデン〔VDF〕、トリフルォロエチレン、へ キサフルォロイソブチレン及びパーフルォロブチルエチレン等が挙げられる力 TFE 、 VDF、 CTFE、トリフルォロエチレン、フッ化ビュル、 HFPであることが好ましぐ TF E、 CTFE、 HFPがより好ましぐ TFE、 HFPが更に好ましぐ TFEが特に好ましい。
[0025] 上記エチレン性フルォロモノマーは、環構造を有するモノマーであってもよいし、環 化重合性モノマーであってもよレ、。
[0026] 上記環構造を有するモノマーとしては、パーフルォロ(2, 2 ジメチルー 1 , 3 ジォ キソール)、パーフルォロ(1 , 3—ジォキソール)、パーフルォロ(2—メチレンー4ーメ チノレー 1 , 3 ジ才キソラン)、 2, 2, 4 トリフノレ才ロー 5 トリフノレ才ロメトキシー 1 , 3 ジォキソール等が挙げられる。
[0027] 上記環化重合性モノマーとしては、パーフルォロ(3 ブテュルビュルエーテル)、パ 一フルォロ [ (1—メチル 3—ブテニノレ)ビュルエーテノレ]、パーフルォロ(ァリルビ二 ノレエーテノレ)、 1 , 1,一 [ (ジフルォロメチレン)ビス(ォキシ)] [1 , 2, 2—トリフルォロェ テン]等が挙げられる。
[0028] 上記エチレン性フルォロモノマーとしては、下記一般式(IV)
CF =CF O R 3 (IV)
2 f
(式中、 R 3は、炭素数 1〜9のフルォロアルキル基又は炭素数 1〜9のフルォロポリエ f
一テル基を表す。 )
で表されるパーフルォロビニルエーテル、下記一般式 (V) CHY5 = CF— O— R 4 (V)
f
(式中、 Y5は、 Η又は Fを表し、 R 4は、炭素数 1〜9のエーテル基を有していてもよい
f
直鎖状又は分岐状のフルォロアルキル基を表す。 )
で表される水素含有ビュルエーテル、及び、
上述の一般式(I)における X力 — NR5R6 (R5及び R6は、同一又は異なって、 H、ァ ルキル基若しくはスルホニル含有基を表す。 )であるフルォロモノマー等が挙げられ
[0029] 上記エチレン性フルォロモノマーとしては、 1種又は 2種以上を用いることができる。
[0030] スルホン酸前駆体官能基を有するフルォロモノマーとエチレン性フルォロモノマーと を重合して得られるフルォロポリマーは、スルホン酸前駆体官能基を有するフルォロ モノマーに由来する繰り返し単位が 5〜 50モル%、エチレン性フルォロモノマーに由 来する繰り返し単位が 50〜95モル%である共重合体であることが好ましい。
[0031] 本明細書において、各単位の含有率は、全モノマー単位を 100モル%とした値であ る。上記「全モノマー単位」は、上記フルォロポリマーの分子構造上、モノマーに由来 する部分の全てである。上記各単位の含有率は、 300°Cにおける溶融 NMR測定に より得られるィ直である。
[0032] 上記乳化重合は、従来公知の方法により行うことができ、その重合条件は、各モノマ 一の種類や量、所望の組成等に応じて適宜選択することができる。
[0033] 上記乳化重合して得られるフルォロポリマー水性分散体は、重合上がりのフルォロポ リマー水性分散体であっても、濃縮ゃ凝析等の後処理が施されたものであってもよい 。また、フルォロポリマー水性分散体を凝析 ·洗浄、若しくは、凝析'洗浄 '脱水して水 性媒体の比率を下げたフルォロポリマー水性分散体であってもよい。
[0034] 本発明の回収方法は、上記乳化重合における重合反応で消費されなかった未反応 の上記フルォロモノマーを、液の pHが酸性であるフルォロポリマー水性分散体から 回収するものである。
[0035] 上記フルォロポリマー水性分散体は、フルォロモノマーを気化させて回収する時点 にお!/ヽて液の pHが酸性であるものであれば特に制限されな!/、が、 pHが酸性の水性 媒体中で乳化重合して得られるもの、又は、乳化重合して得られるフルォロポリマー 水性分散体の液の pHを酸性に調整して得られるものであることが好ましい。
[0036] 本発明の回収方法は、上記フルォロポリマー水性分散体の液の pHを酸性にするこ とで、生成ポリマー及び未反応モノマーに存在するスルホン酸前駆体官能基が加水 分解して、スルホン酸基(一 SO M)に変換することを抑制することができる。
3
[0037] 乳化重合における水性媒体の pHを調整する時期は特に制限されず、水性媒体の液 性を重合反応終了時点で pHが酸性となるように調整すればよい。また、予め水性媒 体の液性を酸性に調整した後、乳化重合を行ってもよい。
[0038] 液の pHが酸性であるスルホン酸前駆体官能基含有フルォロポリマー水性分散体は 、その酸性の pH値をより小さ!/、値にすることで加水分解を抑制する効果が大きくなる 1S より好ましい効果を得るためにはフルォロポリマー水性分散体の液の pHが 3. 0 未満であることが好ましい。上記 pHは、より好ましくは 2. 5以下、更に好ましくは 2. 0 以下、特に好ましくは 1. 8以下、最も好ましくは 1. 5以下にすることが好ましい。
[0039] 液の pHが酸性であるフルォロポリマー水性分散体は、一般的な乳化重合により得ら れるフルォロポリマー水性分散体の液の pHを酸性に調整して得られるものであって あよい。
[0040] 液性が酸性であるスルホン酸前駆体官能基含有フルォロポリマー水性分散体は、そ の酸性の pH値をより小さい値にすることで加水分解を抑制する効果が大きくなる力 より好ましい効果を得るためには pHが 3. 0未満であることが好ましい。たとえばスノレ ホン酸前駆体官能基含有フルォロポリマー水性分散体の pHが 3. 0より大きい場合 でも、フルォロポリマー水性分散体の pHを、もとの pH値より小さい値にすることでカロ 水分解を抑制する効果は発現するが、より好ましい効果を得るためには、 pHが 3. 0 未満であることが好ましい。
[0041] フルォロポリマー水性分散体の pHが 3. 0以上であれば、 pHを 3. 0未満、好ましくは 2. 5以下、より好ましくは 2. 0以下、更に好ましくは 1. 8以下、特に好ましくは 1. 5以 下にすることが好ましい。
[0042] スルホン酸前駆体官能基含有フルォロポリマー水性分散体の pHが 3. 0より小さけれ ば、それよりもさらに pHを小さい値にすることでさらにより効果が得られる。たとえばフ ルォロポリマー水性分散体の pHが 3· 0より小さく 2. 0より大きければ、 pHをより小さ い値、より好ましくは 2. 0以下、更に好ましくは 1. 8以下、特に好ましくは 1. 5以下に することが好ましい。
[0043] 重合により得られたフルォロポリマー水性分散体の液の pHを調整する場合は、下限 は特に制限されないが、 pHをあまりに小さくしょうとすると、添加する酸性化合物の量 が多量になることから、液の pHは一 1. 0以上であることがプロセス上有利である。重 合により得られたフルォロポリマー水性分散体の液の pHを調整する場合は、 pHを調 整する過程で、フルォロポリマー水性分散体に分散して!/、るフルォロポリマーが凝集 、凝析をしてもよく、この場合には、フルォロポリマーに存在するスルホン酸前駆体官 能基の加水分解を更に抑制できるという利点がある。
[0044] 上記 pHの調整は、酸性化合物を添加するか、又は、水中で分解して酸性化合物に なる化合物を添加することにより行うことができる。上記酸性化合物としては、無機酸 、有機酸を一種類もしくは複数を適宜使用することができる。上記酸性化合物として は、 pHを目的の酸性領域に調整することのしやすさから、 pKaが 7より小さい化合物 が好ましぐ例えば、硝酸、リン酸、硫酸、塩酸、トリフルォロ酢酸(CF COOH)等が
3
挙げられる。また上記酸性化合物を他の化合物と組み合わせて使用することもできる
[0045] 上記乳化重合は、従来公知の方法により行うことができ、その重合条件は、各モノマ 一の種類や量、所望の組成等に応じて適宜選択することができる。上記乳化重合に おいて、界面活性剤、重合開始剤、その他の添加剤等を添加することができる。
[0046] 上記界面活性剤としては、特に限定されず、従来公知のものを使用することができる 1S なかでも、パーフルォロオクタン酸塩等のフッ素系界面活性剤であることが好まし い。
[0047] 上記水性媒体としては特に限定されず、例えば、水、水と公知の水溶性溶媒との混 合液等であってよぐ更に有機溶剤をも含むものであってもよいが、水であることが好 ましい。
[0048] 本発明の回収方法は、液の pHが酸性であるフルォロポリマー水性分散体から、未反 応の上記フルォロモノマーを気化させて回収する。上記気化させる方法としては、特 に制限されず、加熱や減圧を適宜組み合わせて行うことができる。上記加熱に減圧 を組み合わせると、加熱温度を低くすることができ、回収の効率を向上させることがで きる点、で好ましい。
[0049] フルォロポリマー水性分散体の温度が上昇するほど、フルォロポリマー及びフルォロ モノマーに存在するスルホン酸前駆体官能基は、加水分解して、スルホン酸基(一 S O M)に変換する傾向が大きくなる力 S、本発明の回収方法は、フルォロポリマー水性 分散体の液を酸性にすることで、フルォロモノマーを気化させるために加熱しても加 水分解を抑制することができる。
[0050] 上記回収する方法としては、特に制限されず、上記フルォロモノマーの沸点以下に 冷却して液化させ、回収する方法等が挙げられる。
[0051] 本発明の回収方法は、燃料電池、化学センサー等の電解質膜材料の製造において 好適に使用することができる。
[0052] 上記フルォロポリマー水性分散体は、次に述べるフルォロポリマー水性分散体の製 造方法(1)〜(3)により特に好適に得ることができる。
[0053] フルォロポリマー水性分散体の製造方法(1)は、スルホン酸基に変換しうるスルホン 酸前駆体官能基を有するフルォロモノマーを水性媒体中で乳化重合するフルォロポ リマー水性分散体の製造方法であって、上記乳化重合は、上記水性媒体の液性を p
H0. 5〜3. 0に調整して行うものであることを特徴とするフルォロポリマー水性分散 体の製造方法である。
[0054] フルォロポリマー水性分散体の製造方法(1)は、乳化重合を水性媒体の液性を pHO . 5〜3· 0の酸性に調整して行うものであることを特徴とする。製造方法(1)は、乳化 重合を水性媒体の液性を pHO. 5〜3. 0の酸性に積極的に調整して行うことにより、 スルホン酸前駆体官能基の加水分解を抑制し、スルホン酸基(一 SO M ; Mは、 H、
R2、 及び R4は、同一又は異なって、 H若しく
Figure imgf000010_0001
は炭素数 1〜4のアルキル基を表す。 M1は、 L価の金属を表す。)に変換することを 抑制すること力 Sできる。従って、製造方法(1)により製造されるフルォロポリマー水性 分散体は、スルホン酸基の生成が抑制され、溶融成形時に着色や発泡等の問題を 抑制し、電解質膜材料として好適に使用できる。
[0055] 乳化重合にお!/、て、重合時の開始剤効率を一定に保つ等の目的から、重合時に緩 衝剤を添加し、水性媒体の液性を中性付近に調整することなどが知られて!/、る。 S O Fのようなスルホン酸基に変換しうるスルホン酸前駆体官能基を有するフルォロモ
2
ノマーを乳化重合してスルホン酸前駆体官能基含有フルォロポリマーを製造する方 法においても、重合時に緩衝剤(例えば、 Na HPO、 NaH PO等。)を添加し、水
2 4 2 4
性媒体の液性を中性付近に調整することが行われてレ、る (例えば、米国特許第 433 0654号、特開昭 63— 297406号公報、特開平 11— 35624号公報、特開 2004— 1 8673号公報等、参照。)。
[0056] 製造方法(1)は、このような従来技術に対して、酸性化合物を系中に添加して、積極 的に媒体の液性を酸性の条件に調整して(pHO. 5〜3. 0)乳化重合を行うものであ
[0057] 製造方法(1)は、乳化重合を水性媒体の液性を酸性に調整して乳化重合を行うこと により、スルホン酸前駆体官能基の加水分解を抑制し、スルホン酸基に変換すること を抑制することができるものであり、その液性の pH値をより小さい値にすることで加水 分解を抑制する効果が大きくなる力 より好ましい効果を得るためには pHが 3. 0未 満であることが好ましい。上記 pHは、より好ましくは 2. 5以下、更に好ましくは 2. 0以 下、特に好ましくは 1. 8以下である。
[0058] 製造方法(1)にお!/、て、水性媒体の液性の pH値をより小さレ、値にすることで加水分 解を抑制する効果が得られる力 水性媒体の液の pHを小さくして!/、くことで乳化重 合中のフルォロポリマー水性分散体の分散安定性が低下していく。そのためフルォ 口ポリマー水性分散体の液の pHは 0. 5以上であることが好ましぐ 0. 8以上であるこ とがより好ましぐ 1. 0以上であることが更に好ましい。
[0059] 製造方法(1)において、液の pHは、重合開始時から重合反応終了時までのすべて の段階において、 pHが 3. 0未満に維持できるように調整すすることが好ましぐより 好ましくは 2. 5以下、更に好ましくは 2. 0以下、特に好ましくは 1. 8以下である。
[0060] フルォロポリマー水性分散体の製造方法(2)は、スルホン酸基に変換しうるスルホン 酸前駆体官能基を有するフルォロモノマーを水性媒体中で乳化重合するフルォロポ リマー水性分散体の製造方法であって、上記乳化重合は、上記水性媒体の重合開 始時の pHよりも、重合終了時の pHを小さくするために、重合中に酸性化剤として酸 性化合物を重合系に添加することを特徴とするものである。
[0061] 製造方法(2)は、水性媒体の重合開始時の pHよりも、重合終了時の pHを小さくする ために、重合中に酸性化剤として酸性化合物を重合系に添加して乳化重合を行うこ とにより、スルホン酸前駆体官能基の加水分解を抑制し、スルホン酸基に変換するこ とを抑制することができるものであり、その液性の pH値をより小さい値にすることで加 水分解を抑制する効果が大きくなるが、より好ましい効果を得るためには、水性媒体 の重合終了時での pHが 3. 0未満であることが好ましい。
[0062] 製造方法(2)において、重合中の加水分解を抑制するのみではなぐ重合終了後の フルォロポリマー水性分散体のスルホン酸前駆体官能基の加水分解を長期間にわ たり抑制するためには重合終了時の水性媒体の pHを、より好ましくは 2. 5以下、更 に好ましくは 2. 0以下、特に好ましくは 1. 8以下にすることが好ましい。
[0063] 製造方法(2)にお!/、て、水性媒体の液性の pH値をより小さレ、値にすることで加水分 解を抑制する効果が得られる力 S、水性媒体の液の pHを小さくして!/、くことでフルォロ ポリマー水性分散体の分散安定性が低下していく。そのためフルォロポリマー水性 分散体の液の pHは 0. 5以上であることが好ましぐ 0. 8以上であることがより好ましく 、 1. 0以上であることが更に好ましい。
[0064] 製造方法(2)における酸性化剤の添加は、重合中であれば添加の時期は特に限定 されず、適宜行うこと力できる。また添加の回数も特に限定されず、連続的に添加を fiうことあでさる。
[0065] 製造方法(1)及び(2)は、スルホン酸基に変換しうるスルホン酸前駆体官能基を有す るフルォロモノマーを水性媒体中で乳化重合することにより、フルォロポリマー水性 分散体を製造するものである。
[0066] 上記乳化重合は、 pHを積極的に酸性に調整すること以外は従来公知の方法により 行うことができ、その重合条件は、各モノマーの種類や量、所望の組成等に応じて適 宜選択すること力できる。上記乳化重合において、界面活性剤、重合開始剤、その 他の添加剤等を添加することができる。
[0067] 上記製造方法(1)又は(2)によりフルォロポリマー水性分散体を製造した後、フルォ 口ポリマー水性分散体の液の pHを、所望の pHに再度調整してもよい。当該再度の 調整にお!/、ては、上記フルォロポリマー水性分散体の液の pHをより酸性に調整する ものであることが好ましい。フルォロポリマー水性分散体を製造した後においては、 p Hを調整する過程で、フルォロポリマー水性分散体に分散しているフルォロポリマー カ凝集してもよく、この場合には、フルォロポリマーに存在するスルホン酸前駆体官 能基の加水分解を更に抑制できる。
[0068] 上記製造方法(1)又は(2)により製造されるフルォロポリマー水性分散体は、液の p Hが酸性であり、スルホン酸前駆体官能基の加水分解が抑制されるので、長時間保 存したフルォロポリマー水性分散体を使用しても、溶融成形時に加水分解により生じ たスルホン酸基(一 SO M)が熱分解して着色することがなぐ電解質膜材料として好
3
適に使用できる。
[0069] 上記フルォロポリマー水性分散体は、上記製造方法(1)又は(2)により製造されるフ ノレォロポリマー水性分散体であれば、重合後に濃縮等の操作を経てレ、な!/、ものであ つても、濃縮ゃ凝析等の後処理が施されたものであってもよい。また、フルォロポリマ 一水性分散体を凝析'洗浄、若しくは、凝析'洗浄 '脱水して水性媒体の比率を下げ たフルォロポリマー水性分散体であってもよ!/、。
[0070] フルォロポリマー水性分散体の温度が上昇するほど、フルォロモノマーに存在するス ルホン酸前駆体官能基は、加水分解してスルホン酸基(一 SO M)に変換する傾向
3
が大きくなるが、製造方法(1)及び (2)では、重合反応時に pHを特定の範囲に調整 しているので、フルォロモノマーを気化させるために加熱しても加水分解を抑制する こと力 Sでき、スルホン酸前駆体官能基を有するフルォロモノマーの回収率を優れたも のとすること力 Sでさる。
[0071] フルォロポリマー水性分散体の製造方法(3)は、スルホン酸基に変換しうるスルホン 酸前駆体官能基を有するフルォロモノマーを乳化重合させ、フルォロポリマー水性 分散体を得る工程(1)、上記フルォロポリマー水性分散体の液の pHを低下させるェ 程(2)を含むことを特徴とする。
[0072] 製造方法(3)は、工程(2)においてフルォロポリマー水性分散体の液の pHを積極的 に調整して、より酸性域の pHに調整することにより、スルホン酸前駆体官能基の加水 分解を抑制することができる。従って、製造方法(3)により製造されるスルホン酸前駆 体官能基含有フルォロポリマー水性分散体は、スルホン酸前駆体官能基の長期の 保存安定性に優れ、長時間保存したフルォロポリマー水性分散体に、凝析、洗浄、 乾燥等の後工程を加え、スルホン酸前駆体官能基含有フルォロポリマーとして単離 し、溶融成形を行っても、スルホン酸基の存在に由来する、着色や発泡といった問題 を抑制し、電解質膜材料等として好適に使用できる。
[0073] 製造方法(3)は、スルホン酸基に変換しうるスルホン酸前駆体官能基を有するフルォ 口モノマーを乳化重合させ、フルォロポリマー水性分散体を得る工程(1)を含むもの である。
[0074] 製造方法(3)における上記乳化重合は、従来公知の方法により行うことができ、その 重合条件は、各モノマーの種類や量、所望の組成等に応じて適宜選択することがで きる。
[0075] 工程(2)において使用するフルォロポリマー水性分散体は、上記工程(1)により得ら れるフルォロポリマー水性分散体であれば、重合後に濃縮されたものであってもよい
[0076] フルォロポリマー水性分散体を作製する乳化重合におレ、ては、重合時の開始剤効 率を一定に保つ等の目的から重合時等に緩衝剤を添加し、水性媒体の液性を中性 付近に調整することなどが知られている。 - SO Fのようなスルホン酸基に変換しうる
2
スルホン酸前駆体官能基を有するフルォロモノマーを乳化重合してスルホン酸前駆 体官能基含有フルォロポリマーを製造する方法においても、重合時に緩衝剤(例え ば、 Na HPO 、 NaH POなど)を添加し、水性媒体の液性を中性付近に調整する
2 4 2 4
ことが行われている(例えば、米国特許第 4330654号、特開昭 63— 297406号公 報、特開平 11— 35624号公報、特開 2004— 18673号公報等、参照。)。
[0077] 製造方法(3)では、スルホン酸基に変換しうるスルホン酸前駆体官能基を有するフル ォロモノマーを乳化重合して得られたスルホン酸前駆体官能基含有フルォロポリマ 一水性分散体の液の pHを積極的に調整して、 pHをより酸性に下げる。 pHの調整は 、乳化重合終了直後にすみやかに行うものであることが好ましぐその場合、重合後 力、ら凝析等の後工程までの間に進行する加水分解反応を抑制することができる。
[0078] 製造方法(3)は、上記フルォロポリマー水性分散体の液の pHを低下させる工程(2) を含むものであり、例えばフルォロポリマー水性分散体中の生成ポリマーに存在する スルホン酸前駆体官能基が加水分解して、スルホン酸基(一 SO M)に変換すること
3
を才卬制すること力 sでさる。
[0079] 液性が酸性であるスルホン酸前駆体官能基含有フルォロポリマー水性分散体は、そ の酸性の pH値をより小さい値にすることで加水分解を抑制する効果が大きくなる力 より好ましい効果を得るためには pHが 3. 0未満であることが好ましい。
[0080] 重合後のスルホン酸前駆体官能基含有フルォロポリマー水性分散体の pHが 3. 0以 上であれば、 pHを 3. 0より小さく、好ましくは 2. 5以下、より好ましくは 2. 0以下、更 に好ましくは 1. 8以下、特に好ましくは 1. 5以下にすることが好ましい。重合後のスル ホン酸前駆体官能基含有フルォロポリマー水性分散体の pHが 3. 0より小さければ、 それよりもさらに pHを小さい値にすることでさらにより効果が得られる。例えば重合後 のスルホン酸前駆体官能基含有フルォロポリマー水性分散体の pHが 3. 0より小さく 2. 0より大きければ、 pHをより小さい値、より好ましくは 2. 0以下、更に好ましくは 1. 8以下、特に好ましくは 1. 5以下にすることが好ましい。例えば重合後のスルホン酸 前駆体官能基含有フルォロポリマー水性分散体の pHが 2. 0より小さく 1. 8より大き ければ、 pHをより小さい値、より好ましくは 1. 8以下、更に好ましくは 1. 5以下にする ことが好ましい。
[0081] 製造方法(3)により製造されるフルォロポリマー水性分散体は、スルホン酸前駆体官 能基の長期の保存安定性に優れ、長時間保存したフルォロポリマー水性分散体に、 凝析、洗浄、乾燥等の後工程を加え、スルホン酸前駆体官能基含有フルォロポリマ 一として単離し、溶融成形を行っても、スルホン酸基の存在に由来する、着色や発泡 といった問題を抑制し、電解質膜材料等として好適に使用できる。
[0082] フルォロポリマー水性分散体の温度が上昇するほど、フルォロモノマーに存在するス ルホン酸前駆体官能基は、加水分解してスルホン酸基(一 SO M)に変換する傾向
3
が大きくなる力 製造方法(3)では、工程(2)において pHを低下させているので、フ ルォロモノマーを気化させるために加熱しても加水分解を抑制することができ、スル ホン酸前駆体官能基を有するフルォロモノマーの回収率を優れたものとすることがで きる。 [0083] 製造方法(1 )〜(3)により製造されるフルォロポリマー水性分散体の水性媒体から単 離されるフルォロポリマーは、スルホン酸基(一 SO M)が極めて少ない。従って、水
3
分を吸収しにくぐフッ素化の阻害要因となる含有水分が少ないので、スルホン酸前 駆体官能基のフッ素化が極めて容易であり、電解質膜材料として特に好適である。
[0084] 上記単離は、製造方法(1 )〜(3)により製造されるフルォロポリマー水性分散体を凝 析、洗浄、乾燥することにより行うこと力できる。
[0085] 上記フルォロポリマーを成形することにより膜等の成形体を得ることができる。
発明の効果
[0086] 本発明の回収方法は、上述の構成からなるので、乳化重合して得られるフルォロポリ マー水性分散体からスルホン酸前駆体官能基を有するフルォロモノマーを分離、回 収するにあたって、抽出溶媒を使用する必要がなぐ未反応のフルォロモノマーの回 収率を極めて優れたものとすることができ、更に、回収時や回収後においてスルホン 酸前駆体官能基の加水分解を抑制することができる。
発明を実施するための最良の形態
[0087] 以下、実施例、比較例を示し、本発明を具体的に説明する。
なお、各実施例及び比較例において、各値の測定は以下の方法により行った。
[0088] ( 1 ) IRによる単位ポリマー質量中の SO—質量
3
フルォロポリマー水性分散体を、凝析、水洗、乾燥させて得たフルォロポリマー各サ ンプルは、 270°C、 lOMPaで 20分間ヒートプレスして、 100 ^ mの厚みを有するフィ ルムを作成し、そのフィルムについてフーリエ変換式赤外吸光分光法にてスペクトル の測定を行った。
[0089] 上記測定の分析は、従来公知の方法により、もはやスペクトルに実質的差異がみら れなくなるまで充分にフッ素化処理を行った標準サンプルを別途作成しておき、その IRスペクトルと測定サンプル膜の IRスペクトルとの差スペクトルを C F倍音の吸収ピ ークで規格化して導出し、得られた差スペクトルにおいて、 Ι Οδδ π 1付近に観測さ れるスルホン酸基に由来する吸収ピークの強度を読み取り、それぞれ C F倍音のピ ーク強度で規格化して吸収ピーク強度 Absを得た。
[0090] スルホン酸基の量は、スルホン酸基の吸収ピークの吸光係数 ε (cmVmol - cm)、 サンプルの比重 d(g/cm3)、及び、 C F倍音の強度が 1のときのサンプル膜厚 l(c m)からランバートベール貝 IJ(Abs= ε cl、 cは濃度)を使って、下記式
SO ― (ppm) = {Abs X (SO—の分子量) } X 1011/ ε dl
3 3
に基づいて算出した。
[0091] 本明細書において、スルホン酸基の量は、上記において得られた値を、単位ポリマ 一質量中の so—質量として表した。
3
[0092] (2)フルォロポリマー中のスルホン酸前駆体官能基を有するフルォロモノマー単位の 含有率
300°Cにおける溶融 NMR測定により行い、全モノマー単位を 100モル%とした値( モル%)、及び、全モノマー単位に占める質量の割合(質量0 /0)を示した。
[0093] (3)スルホン酸前駆体官能基を有するフルォロモノマーの回収率
次式による計算によって求めた。
フルォロモノマーの回収率(%) = [m/(a— cXwXp)] X100
&:式&= (111 /w ) Xwにより求めるィ直である。
0 0
m:フノレオ口モノマーの回収量(g)
m :フルォロモノマーの供給量(g)
0
c:重合上がりの水性分散体中のフルォロポリマー含有量 (質量%)/100 w:フルォロモノマーの回収に使用したフルォロポリマー水性分散体の質量(g) w :重合上がりのフルォロポリマー水性分散体の質量 (g)
0
p:フルォロポリマー中のフルォロモノマー単位の含有率(質量%) /100
[0094] (4)pH値の測定
pH計(ノヽナインスツルメンス製、型式 WATERCHECK)により計測した。
[0095] 実施例 1
(1)フルォロポリマー水性分散体の合成
容積 6000mlのステンレス製攪拌式オートクレーブに、 C F COONHの 20質量%
7 15 4
水溶液 150gと純水 2850gを仕込み、充分に真空、窒素置換を行った。オートクレー ブを充分に真空にした後、テトラフノレォロエチレン〔TFE〕ガスをゲージ圧力で 0. 2M Paまで導入し、 50°Cまで昇温した。その後、 CF =CFOCF CF SO Fを 180g注入 し、 TFEガスを導入してゲージ圧力で 0. 7MPaまで昇圧した。引き続き 1. 5gの過硫 酸アンモニゥム [APS]を 30gの純水に溶解した水溶液を注入して重合を開始した。
[0096] 重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 7MPaに保つようにした。さらに供給した TFEに対して、質量比で 0. 6 5倍に相当する量の CF =CFOCF CF SO Fを連続的に供給して重合を継続した
2 2 2 2
[0097] 供給した TFEが 780gになった時点で、オートクレープの圧力を開放し、重合を停止 した。その後室温まで冷却し、 SO Fを含むフルォロポリマーを約 28質量%含有する
2
、やや白濁したフルォロポリマー水性分散体 4450gを得た。重合直後の該フルォロ ポリマー水性分散体の液の pHは 3. 1であった。
[0098] フルォロポリマー水性分散体は未反応の CF =CFOCF CF SO Fを含んでいるが
2 2 2 2
、未反応の CF =CFOCF CF SO Fは、フルォロポリマー水性分散体中のフルォ
2 2 2 2
口ポリマー粒子に含有され、層分離をしていな力、つた。
[0099] (2)フノレオ口モノマーの回収
容積 6000mlのステンレス製攪拌式オートクレーブに、合成直後の上記フルォロポリ マー水性分散体 4450gを入れ、次いで 0. 1M硝酸水溶液 480gを徐々に加えた。 硝酸水溶液を加えた後の液の pHは 2. 1であった。
[0100] 次いで、オートクレーブを密閉し、図 1のように、 PFAチューブを用いて、攪拌槽の気 相部とメタノール/ドライアイスで冷却したトラップをつなぎ、また該トラップとダイァフ ラムポンプをつなぎ、減圧下にて 55°Cで 2時間加熱した。トラップから 168gの未反応 CF =CFOCF CF SO Fが得られた。
2 2 2 2
[0101] 未反応の CF =CFOCF CF SO Fを回収した直後のフルォロポリマー水性分散体
2 2 2 2
を、硝酸で凝析させ、水洗し、 90°Cで 24時間乾燥し、更に 120°Cで 12時間乾燥して フルォロポリマー 1227gを得た。
フノレ才ロポリマーを、 270。C、 lOMPaiこおレヽて 20分 ヒートプレスして、 100〃mの 厚みを有する透明な膜を得た。
[0102] IR測定の結果、スルホン酸に由来するピークが観測され、それから算出される単位 ポリマー質量中の SO—質量は 50ppmであった。
3 [0103] また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO ?単位の含有率は19モル%(40質量%)でぁった。
'一の回収率は 88%であった。
[0104] 実施例 2
容積 6000mlのステンレス製攪拌式オートクレーブに、 C F COONHの 20質量%
7 15 4
水溶液 150gと純水 2850gを仕込み、充分に真空、窒素置換を行った。オートクレー ブを充分に真空にした後、テトラフノレォロエチレン〔TFE〕ガスをゲージ圧力で 0. 2M Paまで導入し、 50°Cまで昇温した。その後、 CF =CFOCF CF SO Fを 180g注入
2 2 2 2
し、 TFEガスを導入してゲージ圧力で 0. 7MPaまで昇圧した。引き続き 1. 5gの過硫 酸アンモニゥム [APS]を 30gの純水に溶解した水溶液を注入して重合を開始した。
[0105] 重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 7MPaに保つようにした。さらに供給した TFEに対して、質量比で 0. 6 5倍に相当する量の CF =CFOCF CF SO Fを連続的に供給して重合を継続した
2 2 2 2
[0106] 供給した TFEが 780gになった時点で、オートクレーブの圧力を開放して、重合を停 止し、フルォロポリマー水性分散体を得た。次いで窒素を用いて 0. 1M硝酸水溶液 480gを徐々に注入して pHを調整した。オートクレーブ内液を 103gサンプリングして pHを測定したところ、 pH2. 1であった。続けて、図 1のように、 PFAチューブを用い て、攪拌槽の気相部とメタノール/ドライアイスで冷却したトラップをつなぎ、また該ト ラップとダイアフラムポンプをつなぎ、減圧下にて 55°Cで 2時間加熱した。トラップか ら 161gの未反応 CF =CFOCF CF SO F力 S得られた。その後室温まで冷却し、 S
2 2 2 2
O Fを含むフルォロポリマーを約 26質量%含有する、やや白濁したフルォロポリマ
2
一水性分散体 4646gを得た。
[0107] 未反応の CF =CFOCF CF SO Fを回収した直後のフルォロポリマー水性分散体
2 2 2 2
を、硝酸で凝析させ、水洗し、 90°Cで 24時間乾燥し、更に 120°Cで 12時間乾燥して フルォロポリマー 1194gを得た。
フノレ才ロポリマーを、 270。C、 lOMPaiこおレヽて 20分 ヒートプレスして、 100〃mの 厚みを有する透明な膜を得た。 [0108] IR測定の結果、スルホン酸に由来するピークが観測され、それから算出される単位 ポリマー質量中の SO—質量は 60ppmであった。
3
[0109] また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CFSO ?単位の含有率は19モル%(40質量%)でぁった。
2 2
フルォロモノマーの回収率は 85%であった。なお、該回収率は、重合上がりのフル ォロポリマー水性分散体の質量を、実施例 1 (1)から推測して 4450gとして計算した 値である。
[0110] 実施例 3
実施例 1 (1)の方法にて、フルォロポリマー水性分散体を得た。
容積 5000mlのガラス製攪拌槽に、合成直後の該フルォロポリマー水性分散体 200 Ogを入れ、次いで 1M硝酸水溶液 2000gを徐々に加えたところフルォポリマーが凝 集して析出してきた。硝酸水溶液を加えた後の液の pHは 0. 4であった。
[0111] 次いで、図 1のように、 PFAチューブを用いて、攪拌槽の気相部とメタノール/ドライ アイスで冷却したトラップをつなぎ、また該トラップとダイアフラムポンプをつなぎ、 55 °Cで 2時間加熱した。トラップから 75gの未反応 CF =CFOCF CF SO Fが得られ
2 2 2 2 た。
[0112] 未反応の CF =CFOCF CF SO Fを回収したのち、フルォロポリマーを水洗し、 90
2 2 2 2
°Cで 24時間乾燥し、更に 120°Cで 12時間乾燥してフルォロポリマー 552gを得た。
[0113] フノレオ口ポリマーを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 100 mの 厚みを有する透明な膜を得た。
IR測定の結果、スルホン酸に由来するピークが観測され、それから算出される単位 ポリマー質量中の SO—質量は 30ppmであった。
3
[0114] また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO F単位の含有率は 19モル%であった。
2 2 2
フルォロモノマーの回収率は 88%であった。
[0115] 実施例 4
実施例 1 (1)の方法にて、フルォロポリマー水性分散体を得た。
容積 5000mlのガラス製攪拌槽に、 1M硝酸水溶液 2000g入れ、次いで合成直後の 該フルォロポリマー水性分散体 2000gを加えたところフルォポリマーが凝集して析出 してきた。このときの液の pHは 0· 4であった。
[0116] 次いで、図 1のように、 PFAチューブを用いて、攪拌槽の気相部とメタノール/ドライ アイスで冷却したトラップをつなぎ、また該トラップとダイアフラムポンプをつなぎ、減 圧下にて 55°Cで 2時間加熱した。トラップから 78gの未反応 CF =CFOCF CF SO
2 2 2
Fが得られた。
2
[0117] 未反応の CF =CFOCF CF SO Fを回収したのち、フルォロポリマーを水洗し、 90
2 2 2 2
°Cで 24時間乾燥し、更に 120°Cで 12時間乾燥してフルォロポリマー 553gを得た。
[0118] フノレオ口ポリマーを、 270。C、 lOMPaにおいて 20分間ヒートプレスして、 100 mの 厚みを有する透明な膜を得た。
IR測定の結果、スルホン酸に由来するピークが観測され、それから算出される単位 ポリマー質量中の SO—質量は 30ppmであった。
3
[0119] また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO F単位の含有率は 19モル%であった。
2 2 2
フルォロモノマーの回収率は 91 %であった。
[0120] 実施例 5
実施例 1 (1)の方法にて、フルォロポリマー水性分散体を得た。
容積 6000mlのステンレス製攪拌式オートクレーブに、合成直後の上記フルォロポリ マー水性分散体 4450gを入れ、次いで 0. 2M硝酸水溶液 480gを徐々に加えた。 硝酸水溶液を加えた後の液の pHは 1. 8であった。
[0121] 次いで、オートクレーブを密閉し、図 1のように、 PFAチューブを用いて、攪拌槽の気 相部とメタノール/ドライアイスで冷却したトラップをつなぎ、また該トラップとダイァフ ラムポンプをつなぎ、減圧下にて 55°Cで 2時間加熱した。トラップから 170gの未反応 CF =CFOCF CF SO Fが得られた。
2 2 2 2
[0122] 未反応の CF =CFOCF CF SO Fを回収した直後のフルォロポリマー水性分散体
2 2 2 2
を、硝酸で凝析させ、水洗し、 90°Cで 24時間乾燥し、更に 120°Cで 12時間乾燥して フルォロポリマー 1225gを得た。
フノレ才ロポリマーを、 270。C、 lOMPaiこおレヽて 20分 ヒートプレスして、 100〃mの 厚みを有する透明な膜を得た。
[0123] IR測定の結果、スルホン酸に由来するピークが観測され、それから算出される単位 ポリマー質量中の SO—質量は 40ppmであった。
3
また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO ?単位の含有率は19モル%(40質量%)でぁった。
2 2 2
フルォロモノマーの回収率は 88%であった。
[0124] 実施例 6
実施例 1 (1)の方法にて、フルォロポリマー水性分散体を得た。
容積 6000mlのステンレス製攪拌式オートクレーブに、合成直後の上記フルォロポリ マー水性分散体 4450gを入れ、次いで 0. 4M硝酸水溶液 480gを徐々に加えた。 硝酸水溶液を加えた後の液の pHは 1. 4であった。
[0125] 次いで、オートクレーブを密閉し、図 1のように、 PFAチューブを用いて、攪拌槽の気 相部とメタノール/ドライアイスで冷却したトラップをつなぎ、また該トラップとダイァフ ラムポンプをつなぎ、減圧下にて 55°Cで 2時間加熱した。トラップから 170gの未反応 CF =CFOCF CF SO Fが得られた。
2 2 2 2
[0126] 未反応の CF =CFOCF CF SO Fを回収した直後のフルォロポリマー水性分散体
2 2 2 2
を、硝酸で凝析させ、水洗し、 90°Cで 24時間乾燥し、更に 120°Cで 12時間乾燥して フルォロポリマー 1225gを得た。
フノレ才ロポリマーを、 270。C、 lOMPaiこおレヽて 20分 ヒートプレスして、 100〃mの 厚みを有する透明な膜を得た。
[0127] IR測定の結果、スルホン酸に由来するピークが観測され、それから算出される単位 ポリマー質量中の SO—質量は 30ppmであった。
3
また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO ?単位の含有率は19モル%(40質量%)でぁった。
2 2 2
フルォロモノマーの回収率は 88%であった。
[0128] 比較例 1
容積 6000mlのステンレス製攪拌式オートクレーブに、 C F COONHの 20質量%
7 15 4
水溶液 150gと純水 2850gを仕込み、充分に真空、窒素置換を行った。オートクレー ブを充分に真空にした後、テトラフノレォロエチレン〔TFE〕ガスをゲージ圧力で 0. 2M Paまで導入し、 50°Cまで昇温した。その後、 CF =CFOCF CF SO Fを 180g注入
2 2 2 2
し、 TFEガスを導入してゲージ圧力で 0. 7MPaまで昇圧した。引き続き 1. 5gの過硫 酸アンモニゥム [APS]を 30gの純水に溶解した水溶液を注入して重合を開始した。
[0129] 重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 7MPaに保つようにした。さらに供給した TFEに対して、質量比で 0. 6 5倍に相当する量の CF =CFOCF CF SO Fを連続的に供給して重合を継続した
2 2 2 2
[0130] 供給した TFEが 780gになった時点で、オートクレープの圧力を開放して、重合を停 止し、フノレオ口ポリマー水性分散体を得た。続けて、合成されたフルォロポリマー水 性分散体を抜き出すことをせず、図 1のように、 PFAチューブを用いて、攪拌槽の気 相部とメタノール/ドライアイスで冷却したトラップをつなぎ、また該トラップとダイァフ ラムポンプをつなぎ、減圧下にて 55°Cで 2時間加熱した。トラップから 125gの未反応 CF =CFOCF CF SO Fが得られた。その後室温まで冷却し、 SO Fを含むフルォ
2 2 2 2 2
口ポリマーを約 28質量%含有する、やや白濁したフルォロポリマー水性分散体 426 9gを得た。
[0131] 未反応の CF =CFOCF CF SO Fを回収した直後のフルォロポリマー水性分散体
2 2 2 2
を、硝酸で凝析させ、水洗し、 90°Cで 24時間乾燥し、更に 120°Cで 12時間乾燥して フルォロポリマー 1230gを得た。
フノレ才ロポリマーを、 270。C、 lOMPaiこおレヽて 20分 ヒートプレスして、 100〃mの 厚みを有する透明な膜を得た。
[0132] IR測定の結果、スルホン酸に由来するピークが観測され、それから算出される単位 ポリマー質量中の SO—質量は 200ppmであった。
3
また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO F単位の含有率は 19モル%であった。
2 2 2
'一の回収率は 66%であった。
[0133] 比較例 2
実施例 1 (1)の方法にて、フルォロポリマー水性分散体を得た。 容積 6000mlのステンレス製攪拌式オートクレーブに、合成直後の上記フルォロポリ マー水性分散体 4450gを入れ、次いで pHを中性付近に保持するために、 3質量% の炭酸アンモニゥム水溶液 300gを徐々に加えた。炭酸アンモニゥム水溶液を加えた 後の液の pHは 7· 7であった。
[0134] 次いで、図 1のように、オートクレーブを密閉し、 PFAチューブを用いて、攪拌槽の気 相部とメタノール/ドライアイスで冷却したトラップをつなぎ、また該トラップとダイァフ ラムポンプをつなぎ、減圧下にて 55°Cで 2時間加熱した。トラップから 109gの未反応 CF =CFOCF CF SO Fが得られた。
2 2 2 2
[0135] 未反応の CF =CFOCF CF SO Fを回収した直後のフルォロポリマー水性分散体
2 2 2 2
を、硝酸で凝析させ、水洗し、 90°Cで 24時間乾燥し、更に 120°Cで 12時間乾燥して フルォロポリマー 1235gを得た。
[0136] フノレ才ロポリマーを、 270。C、 lOMPaiこおレヽて 20分 ヒートプレスして、 100〃mの 厚みを有する透明な膜を得た。
IR測定の結果、スルホン酸に由来するピークが観測され、それから算出される単位 ポリマー質量中の SO—質量は 2100ppmであった。
3
[0137] また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO F単位の含有率は 19モル%であった。
2 2 2
フルォロモノマーの回収率は 58%であった。
[0138] 参考例 1
容積 6000mlのステンレス製攪拌式オートクレーブに、 C F COONH の 20質量%
7 15 4
水溶液 300gと純水 2700g、 CF COOH2. 7gを仕込んだ。 pH計(ノヽナインスツルメ
3
ンス製、型式 WATERCHECK)により計測した液 pHは 2· 2であった。続いてオート クレープを密閉し、充分に真空、窒素置換を行った。オートクレープを充分に真空に した後、テトラフルォロエチレン〔TFE〕ガスをゲージ圧力で 0. 2MPaまで導入し、 50 °Cまで昇温した。その後、 CF =CFOCF CF SO Fを 180g注入し、 TFEガスを導
2 2 2 2
入してゲージ圧力で 0. 7MPaまで昇圧した。引き続き 1. 5gの過硫酸アンモニゥム〔 APS〕を 30gの純水に溶解した水溶液を注入して重合を開始した。
[0139] 重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 7MPaに保つようにした。さらに供給した TFEに対して、質量比で 0. 6 5倍に相当する量の CF =CFOCF CF SO Fを連続的に供給して重合を継続した
2 2 2 2
[0140] 供給した TFEが 780gになった時点で、オートクレープの圧力を開放し、重合を停止 した。その後室温まで冷却し、 SO Fを含むフルォロポリマーを約 28質量%含有する
2
、やや白濁したフルォロポリマー水性分散体 4445gを得た。重合直後のフルォロポリ マー水性分散体の液の pHを pH計で計測したところ液 pHは 2. 1であった。
[0141] このフルォロポリマー水性分散体を、硝酸で凝析させ、水洗し、 90°Cで 24時間乾燥 し、更に 120°Cで 12時間乾燥してフルォロポリマー粉体 1240gを得た。フルォロポリ マー粉体を、 270°C lOMPaにおいて 20分間ヒートプレスして、 100 mの厚みを 有する透明な膜を得た。
[0142] IR測定の結果、スルホン酸に由来するピークが観測され、それから算出される単位 ポリマー質量中の SO—質量は 30ppmであった。
3
また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO ?単位の含有率は19モル%(40質量%)でぁった。
2 2 2
[0143] 参考例 2
容積 6000mlのステンレス製攪拌式オートクレーブに、 C F COONHの 20質量%
7 15 4
水溶 ί夜 1500gと純水 1500g CF COOH5. 8gを仕込んだ、。このときの ί夜 pHは 1 · 8
3
であった。続いてオートクレープを密閉し、充分に真空、窒素置換を行った。オートク レーブを充分に真空にした後、テトラフルォロエチレン〔TFE〕ガスをゲージ圧力で 0 . 2MPaまで導入し、 50°Cまで昇温した。その後、 CF =CFOCF CF SO Fを 180
2 2 2 2 g注入し、 TFEガスを導入してゲージ圧力で 0. 7MPaまで昇圧した。引き続き 1. 5g の過硫酸アンモニゥム〔APS〕を 30gの純水に溶解した水溶液を注入して重合を開 始した。
[0144] 重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 7MPaに保つようにした。さらに供給した TFEに対して、質量比で 0. 6 5倍に相当する量の CF =CFOCF CF SO Fを連続的に供給して重合を継続した
2 2 2 2 [0145] 供給した TFEが 780gになった時点で、オートクレープの圧力を開放し、重合を停止 した。その後室温まで冷却し、 SO Fを含むフルォロポリマーを約 28質量%含有する
2
、ほぼ透明なフルォロポリマー水性分散体 4450gを得た。
重合直後のフルォロポリマー水性分散体の液の pHを pH計で計測したところ液 pHは 1. 7であった。
[0146] このフルォロポリマー水性分散体から 440gを分取して、硝酸で凝析させ、水洗し、 9 0°Cで 24時間乾燥し、更に 120°Cで 12時間乾燥してフルォロポリマー粉体 120gを 得た。フルォロポリマー粉体を、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 1 00 11 mの厚みを有する透明な膜を得た。
[0147] IR測定の結果、スルホン酸に由来するピークは観測されなかった。
また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO ?単位の含有率は19モル%(40質量%)でぁった。
2 2 2
[0148] 引き続いて、このフルォロポリマー水性分散体 445gを分取し、これに純水 2700gと C F COOH5. 2gをカロえて、容積 6000mlのステンレス製攪拌式オートクレーブに仕込
3
んだ。このときの液 pHは 1. 8であった。続いてオートクレーブを密閉し、充分に真空 、窒素置換を行った。オートクレープを充分に真空にした後、 CF =CFOCF CF S
2 2 2
〇 Fを 156g注入した。続けてテトラフルォロエチレン〔TFE〕ガスをゲージ圧力で 0·
2
05MPaまで導入し、 50°Cまで昇温した。その後、 TFEガスを導入してゲージ圧力で 0. 7MPaまで昇圧した。引き続き 1. 5gの過硫酸アンモニゥム〔八?3〕を 30gの純水 に溶解した水溶液を注入して重合を開始した。
[0149] 重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 7MPaに保つようにした。さらに供給した TFEに対して、質量比で 0. 6 5倍に相当する量の CF =CFOCF CF SO Fを連続的に供給して重合を継続した
2 2 2 2
[0150] 供給した TFEが 710gになった時点で、オートクレープの圧力を開放し、重合を停止 した。その後室温まで冷却し、 SO Fを含むフルォロポリマーを約 28質量%含有する
2
、やや白濁したフルォロポリマー水性分散体 4450gを得た。
重合直後のフルォロポリマー水性分散体の液の pHを pH計で計測したところ液 pHは 1. 7であった。
[0151] このフルォロポリマー水性分散体を、硝酸で凝析させ、水洗し、 90°Cで 24時間乾燥 し、更に 120°Cで 12時間乾燥してフルォロポリマー粉体 1240gを得た。
フノレ才ロポリマー粉体を、 270。C、 lOMPaiこおレヽて 20分 ヒートプレスして、 100〃 mの厚みを有する透明な膜を得た。
[0152] IR測定の結果、スルホン酸に由来するピークは観測されなかった。
また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO ?単位の含有率は19モル%(40質量%)でぁった。
2 2 2
[0153] 参考例 3
容積 500mlのステンレス製攪拌式オートクレーブに、純水 250g、 CF =CFOCF C
2 2
F (CF ) OCF CF COONH 0. 025g、 F (CF ) COONH 1. 25g、 CF COOHO
3 2 2 4 2 5 4 3
. 25gを仕込んだ。このときの液 pHは 2· 2であった。続いてオートクレーブを密閉し、 充分に真空、窒素置換を行った。オートクレープを充分に真空にした後、テトラフル ォロエチレン〔TFE〕ガスをゲージ圧力で 0. 2MPaまで導入し、 50°Cまで昇温した。 その後、 CF =CFOCF CF SO Fを 15g注入し、 TFEガスを導入してゲージ圧力
2 2 2 2
で 0. 7MPaまで昇圧した。引き続き 0. 12gの過硫酸アンモニゥム〔八?3〕を 10gの純 水に溶解した水溶液を注入して重合を開始した。
[0154] 重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 7MPaに保つようにした。さらに供給した TFEに対して、質量比で 0. 6 5倍に相当する量の CF =CFOCF CF SO Fを連続的に供給して重合を継続した
2 2 2 2
[0155] 供給した TFEが 65gになった時点で、オートクレープの圧力を開放し、重合を停止し た。その後室温まで冷却し、 SO Fを含むフルォロポリマーを約 28質量%含有する、
2
白濁したフルォロポリマー水性分散体 375gを得た。
重合直後のフルォロポリマー水性分散体の液の pHを pH計で計測したところ液 pHは 2. 1であった。
[0156] このフルォロポリマー水性分散体を、硝酸で凝析させ、水洗し、 90°Cで 24時間乾燥 し、更に 120°Cで 12時間乾燥してフルォロポリマー粉体 103gを得た。 フノレ才ロポリマー粉体を、 270。C、 lOMPaiこおレヽて 20分 ヒートプレスして、 100〃 mの厚みを有する透明な膜を得た。
[0157] IR測定の結果、スルホン酸に由来するピークが観測され、それから算出される単位 ポリマー質量中の SO—質量は 30ppmであった。
3
また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO ?単位の含有率は19モル%(40質量%)でぁった。
2 2 2
[0158] 参考例 4
容積 6000mlのステンレス製攪拌式オートクレーブに、 C F COONHの 20質量%
7 15 4
水溶 ί夜 1500gと純水 1500g、 CF COOH15. 0gを仕込んだ、。 pH計(ノヽナインスッ
3
ルメンス製、型式 WATERCHECK)により計測した液 pHは 1 · 4であった。続いてォ 一トクレーブを密閉し、充分に真空、窒素置換を行った。オートクレープを充分に真 空にした後、テトラフルォロエチレン〔TFE〕ガスをゲージ圧力で 0. 2MPaまで導入し 、 50°Cまで昇温した。その後、 CF =CFOCF CF SO Fを 180g注入し、 TFEガス
2 2 2 2
を導入してゲージ圧力で 0. 7MPaまで昇圧した。引き続き 1. 5gの過硫酸アンモニゥ ム〔APS〕を 30gの純水に溶解した水溶液を注入して重合を開始した。
[0159] 重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 7MPaに保つようにした。さらに供給した TFEに対して、質量比で 0. 6 5倍に相当する量の CF =CFOCF CF SO Fを連続的に供給して重合を継続した
2 2 2 2
[0160] 供給した TFEが 780gになった時点で、オートクレープの圧力を開放し、重合を停止 した。その後室温まで冷却し、 SO Fを含むフルォロポリマーを約 28質量%含有する
2
、やや白濁したフルォロポリマー水性分散体 4445gを得た。重合直後のフルォロポリ マー水性分散体の液の pHを pH計で計測したところ液 pHは 1. 3であった。
[0161] このフルォロポリマー水性分散体を、硝酸で凝析させ、水洗し、 90°Cで 24時間乾燥 し、更に 120°Cで 12時間乾燥してフルォロポリマー粉体 1240gを得た。フルォロポリ マー粉体を、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 100 mの厚みを 有する透明な膜を得た。
[0162] IR測定の結果、スルホン酸に由来するピークは観測されなかった。 また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO ?単位の含有率は19モル%(40質量%)でぁった。
2 2 2
[0163] 参考例 5
容積 6000mlのステンレス製攪拌式オートクレーブに、 C F COONHの 20質量%
7 15 4
水溶液 300gと純水 2700g、硝酸(60重量%) 2. 5gを仕込んだ。 pH計(ノヽナインス ツルメンス製、型式 WATERCHECK)により計測した液 pHは 2· 2であった。続いて オートクレープを密閉し、充分に真空、窒素置換を行った。オートクレープを充分に 真空にした後、テトラフルォロエチレン〔TFE〕ガスをゲージ圧力で 0· 2MPaまで導 入し、 50°Cまで昇温した。その後、 CF =CFOCF CF SO Fを 180g注入し、 TFE
2 2 2 2
ガスを導入してゲージ圧力で 0. 7MPaまで昇圧した。引き続き 1. 5gの過硫酸アン モニゥム〔APS〕を 30gの純水に溶解した水溶液を注入して重合を開始した。
[0164] 重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 7MPaに保つようにした。さらに供給した TFEに対して、質量比で 0. 6 5倍に相当する量の CF =CFOCF CF SO Fを連続的に供給して重合を継続した
2 2 2 2
[0165] 供給した TFEが 780gになった時点で、オートクレープの圧力を開放し、重合を停止 した。その後室温まで冷却し、 SO Fを含むフルォロポリマーを約 28質量%含有する
2
、やや白濁したフルォロポリマー水性分散体 4445gを得た。重合直後のフルォロポリ マー水性分散体の液の pHを pH計で計測したところ液 pHは 2. 0であった。
[0166] このフルォロポリマー水性分散体を、硝酸で凝析させ、水洗し、 90°Cで 24時間乾燥 し、更に 120°Cで 12時間乾燥してフルォロポリマー粉体 1240gを得た。フルォロポリ マー粉体を、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 100 mの厚みを 有する透明な膜を得た。
[0167] IR測定の結果、スルホン酸に由来するピークは観測されなかった。
また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO ?単位の含有率は19モル%(40質量%)でぁった。
2 2 2
[0168] 参考例 6
容積 6000mlのステンレス製攪拌式オートクレーブに、 C F COONHの 20質量%
7 15 4 水溶液 300gと純水 2700gを仕込んだ。このときの液 pHは 6. 5であった。続いてォ 一トクレーブを密閉し、充分に真空、窒素置換を行った。オートクレープを充分に真 空にした後、テトラフルォロエチレン〔TFE〕ガスをゲージ圧力で 0. 2MPaまで導入し 、 50°Cまで昇温した。その後、 CF =CFOCF CF SO Fを 180g注入し、 TFEガス
2 2 2 2
を導入してゲージ圧力で 0. 7MPaまで昇圧した。引き続き 1. 5gの過硫酸アンモニゥ ム〔APS〕を 30gの純水に溶解した水溶液をオートクレープに注入して重合を開始し た。
[0169] 重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 7MPaに保つようにした。さらに供給した TFEに対して、質量比で 0. 6 5倍に相当する量の CF =CFOCF CF SO Fを連続的に供給して重合を継続した
2 2 2 2
[0170] 供給した TFEが 39gになった時点で、 CF COOH3. 4gを純水 50gに溶かした水溶
3
液をオートクレーブに徐々に注入した。続けて、サンプリング管より 50gの内液をサン プリングし、 pH計により計測したところ液 pHは 2. 0であった。
[0171] 更に重合を続け、供給した TFEが 780gになった時点で、オートクレーブの圧力を開 放し、重合を停止した。その後室温まで冷却し、 SO Fを含むフルォロポリマーを約 2
2
8質量%含有する、やや白濁したフルォロポリマー水性分散体 4450gを得た。該フ ルォロポリマー水性分散体の液の pHを pH計により計測したところ 1. 9であった。
[0172] このフルォロポリマー水性分散体を、硝酸で凝析させ、水洗し、 90°Cで 24時間乾燥 し、更に 120°Cで 12時間乾燥してフルォロポリマー粉体 1230gを得た。
[0173] フノレ才ロポリマー ¾Η本を、 270。C、 lOMPaiこおレヽて 20分 ヒートプレスして、 100〃 mの厚みを有する透明な膜を得た。
[0174] IR測定の結果、スルホン酸に由来するピークは観測されなかった。
また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO ?単位の含有率は19モル%(40質量%)でぁった。
2 2 2
[0175] 参考例 7
容積 6000mlのステンレス製攪拌式オートクレーブに、 C F COONHの 20質量%
7 15 4
水溶 ί夜 1500gと純水 1500gを仕込んだ、。このときの ί夜 pHは 6· 5であった。続いてォ 一トクレーブを密閉し、充分に真空、窒素置換を行った。オートクレープを充分に真 空にした後、テトラフルォロエチレン〔TFE〕ガスをゲージ圧力で 0. 2MPaまで導入し 、 50°Cまで昇温した。その後、 CF =CFOCF CF SO Fを 180g注入し、 TFEガス
2 2 2 2
を導入してゲージ圧力で 0. 7MPaまで昇圧した。引き続き 1. 5gの過硫酸アンモニゥ ム〔APS〕を 30gの純水に溶解した水溶液をオートクレープに注入して重合を開始し た。
[0176] 重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 7MPaに保つようにした。さらに供給した TFEに対して、質量比で 0. 6 5倍に相当する量の CF =CFOCF CF SO Fを連続的に供給して重合を継続した
2 2 2 2
[0177] 供給した TFEが 39gになった時点で、 CF COOH15. Ogを純水 50gに溶かした水
3
溶液をオートクレーブに徐々に注入した。続けて、サンプリング管より 50gの内液をサ ンプリングし、 pH計により計測したところ液 pHは 1. 4であった。
[0178] 更に重合を続け、供給した TFEが 780gになった時点で、オートクレーブの圧力を開 放し、重合を停止した。その後室温まで冷却し、 SO Fを含むフルォロポリマーを約 2
2
8質量%含有する、やや白濁したフルォロポリマー水性分散体 4460gを得た。該フ ルォロポリマー水性分散体の液の pHを pH計により計測したところ 1. 3であった。
[0179] このフルォロポリマー水性分散体を、硝酸で凝析させ、水洗し、 90°Cで 24時間乾燥 し、更に 120°Cで 12時間乾燥してフルォロポリマー粉体 1230gを得た。
[0180] フノレ才ロポリマー ¾Η本を、 270。C、 lOMPaiこおレヽて 20分 ヒートプレスして、 100〃 mの厚みを有する透明な膜を得た。
[0181] IR測定の結果、スルホン酸に由来するピークは観測されなかった。
また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO ?単位の含有率は19モル%(40質量%)でぁった。
2 2 2
[0182] 比較参考例 1
容積 6000mlのステンレス製攪拌式オートクレーブに、 C F COONHの 20質量%
7 15 4
水溶液 300gと純水 2700g、 Na HPO · 12Η Ο 24. 0gおよび、 NaH PO · 2Η O
2 4 2 2 4 2
13. 6gを仕込んだ。このときの液 pHは 7· 0であった。続いてオートクレーブを密閉 し、充分に真空、窒素置換を行った。オートクレープを充分に真空にした後、テトラフ ルォロエチレン〔TFE〕ガスをゲージ圧力で 0. 2MPaまで導入し、 50°Cまで昇温した 。その後、 CF =CFOCF CF SO Fを 180g注入し、 TFEガスを導入してゲージ圧
2 2 2 2
力で 0. 7MPaまで昇圧した。引き続き 1. 5gの過硫酸アンモニゥム〔八?3〕を 30gの 純水に溶解した水溶液を注入して重合を開始した。
[0183] 重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 7MPaに保つようにした。さらに供給した TFEに対して、質量比で 0. 6 5倍に相当する量の CF =CFOCF CF SO Fを連続的に供給して重合を継続した
2 2 2 2
[0184] 供給した TFEが 780gになった時点で、オートクレーブの圧力を開放し、重合を停止 した。その後室温まで冷却し、 SO Fを含むフルォロポリマーを約 28質量%含有する
2
、やや白濁したフルォロポリマー水性分散体 4445gを得た。
[0185] このフルォロポリマー水性分散体を、硝酸で凝析させ、水洗し、 90°Cで 24時間乾燥 し、更に 120°Cで 12時間乾燥してフルォロポリマー粉体 1240gを得た。
フノレ才ロポリマー ¾Η本を、 270。C、 lOMPaiこおレヽて 20分 ヒートプレスして、 100〃 mの厚みを有する透明な膜を得た。
[0186] IR測定の結果、スルホン酸に由来するピークが観測され、それから算出される単位 ポリマー質量中の SO—質量は 350ppmであった。
3
また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO ?単位の含有率は19モル%(40質量%)でぁった。
2 2 2
[0187] 比較参考例 2
容積 6000mlのステンレス製攪拌式オートクレーブに、 C F COONHの 20質量%
7 15 4
水溶液 300gと純水 2700gを仕込んだ。このときの液 pHは 6. 5であった。続いてォ 一トクレーブを密閉し、充分に真空、窒素置換を行った。オートクレープを充分に真 空にした後、テトラフルォロエチレン〔TFE〕ガスをゲージ圧力で 0. 2MPaまで導入し 、 50°Cまで昇温した。その後、 CF =CFOCF CF SO Fを 180g注入し、 TFEガス
2 2 2 2
を導入してゲージ圧力で 0. 7MPaまで昇圧した。引き続き 1. 5gの過硫酸アンモニゥ ム〔APS〕を 30gの純水に溶解した水溶液を注入して重合を開始した。 [0188] 重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 7MPaに保つようにした。さらに供給した TFEに対して、質量比で 0. 6 5倍に相当する量の CF =CFOCF CF SO Fを連続的に供給して重合を継続した
2 2 2 2
[0189] 供給した TFEが 780gになった時点で、オートクレープの圧力を開放し、重合を停止 した。その後室温まで冷却し、 SO Fを含むフルォロポリマーを約 28質量%含有する
2
、やや白濁したフルォロポリマー水性分散体 4450gを得た。該フルォロポリマー水性 分散体の液の pHは 3. 1であった。
[0190] このフルォロポリマー水性分散体を、硝酸で凝析させ、水洗し、 90°Cで 24時間乾燥 し、更に 120°Cで 12時間乾燥してフルォロポリマー粉体 1240gを得た。
[0191] フノレ才ロポリマー ¾Η本を、 270 C lOMPaiこおレヽて 20分 ヒートプレスして、 100〃 mの厚みを有する透明な膜を得た。
[0192] IR測定の結果、スルホン酸に由来するピークが観測され、それから算出される単位 ポリマー質量中の SO—質量は 150ppmであった。
3
[0193] また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO ?単位の含有率は19モル%(40質量%)でぁった。
2 2 2
[0194] 参考例 8
ェ禾呈
容積 6000mlのステンレス製攪拌式オートクレーブに、 C F COONHの 20質量%
7 15 4
水溶液 150gと純水 2850gを仕込み、充分に真空、窒素置換を行った。オートクレー ブを充分に真空にした後、テトラフノレォロエチレン〔TFE〕ガスをゲージ圧力で 0. 2M Paまで導入し、 50°Cまで昇温した。その後、 CF =CFOCF CF SO Fを 180g注入
2 2 2 2
し、 TFEガスを導入してゲージ圧力で 0. 7MPaまで昇圧した。引き続き 1. 5gの過硫 酸アンモニゥム〔APS〕を 30gの純水に溶解した水溶液を注入して重合を開始した。
[0195] 重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 7MPaに保つようにした。さらに供給した TFEに対して、質量比で 0. 6 5倍に相当する量の CF =CFOCF CF SO Fを連続的に供給して重合を継続した
2 2 2 2 [0196] 供給した TFEが 780gになった時点で、オートクレープの圧力を開放し、重合を停止 した。その後室温まで冷却し、 SO Fを含むフルォロポリマーを約 28質量%含有する
2
、やや白濁したフルォロポリマー水性分散体 4450gを得た。 pH計 (ノヽナインスツルメ ンス製、型式 WATERCHECK)により計測した重合直後のフルォロポリマー水性分 散体の液の pHは 3· 1であった。
[0197] 工程(2)
工程(1)で得られた合成直後のフルォロポリマー水性分散体 350gに 0. 2M硫酸水 溶液 50gをゆっくり加えた。硫酸水溶液を加えたときの液の pHは 1 · 3であった。この ときフルォロポリマー水性分散体は、凝析を起こしては!/ヽなかった。
[0198] pH調整後のフルォロポリマー水性分散体を 50°Cの雰囲気にて静置し、 6時間後、 2 4時間後、 120時間後に、それぞれフルォロポリマー水性分散体を 50gサンプリング し、そこに硝酸 10gを加えてポリマーを凝析させ、凝析したポリマーを水洗した後、 10 0°Cで 24時間乾燥させてポリマーサンプルを得た。
得られた各ポリマーサンプルについて IR測定を行い、単位ポリマー質量中の SO
3 質量を算出した。結果を表 1に示す。
[0199] また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO ?単位の含有率は19モル%(40質量%)でぁった。
2 2 2
[0200] 比較参考例 3
上記参考例 8のフルォロポリマー水性分散体の合成直後に、酸の添加等の pH調整 を加えずに、フルォロポリマー水性分散体 350gを 50°Cの雰囲気にて静置し、 6時間 後、 24時間後、 120時間後に、それぞれフルォロポリマー水性分散体を 50gサンプリ ングし、そこに硝酸 10gを加えてポリマーを凝析させ、凝析したポリマーを水洗した後 、 100°Cで 24時間乾燥させてポリマーサンプルを得た。
得られた各ポリマーサンプルについて IR測定を行い、単位ポリマー質量中の SO
3 質量を算出した。結果を表 1に示す。
[0201] 比較参考例 4
参考例 8で得られた合成直後のフルォロポリマー水性分散体 350gに 0. 2M炭酸ァ ンモニゥム水溶液 50gをゆっくり加えた。炭酸アンモニゥム水溶液を加えた直後の液 の pHは 7· 6であった。
[0202] ρΗ調整後のフルォロポリマー水性分散体を 50°Cの雰囲気にて静置し、 6時間後、 2 4時間後、 120時間後に、それぞれフルォロポリマー水性分散体を 50gサンプリング し、そこに硝酸 20gを加えてポリマーを凝析させ、凝析したポリマーを水洗した後、 10 0°Cで 24時間乾燥させてポリマーサンプルを得た。
得られた各ポリマーサンプルについて IR測定を行い、単位ポリマー質量中の SO
3 質量を算出した。結果を表 1に示す。
[0203] [表 1]
Figure imgf000035_0001
[0204] 参考例 9
工程 · ("
容積 6000mlのステンレス製攪拌式オートクレーブに、 C F COONHの 20質量%
7 15 4
水溶液 300gと純水 2700g、 Na HPO · 12Η Ο 24. 0g及び NaH PO · 2Η O 1
2 4 2 2 4 2
3. 6gを仕込んだ。続いてオートクレープを密閉し、充分に真空、窒素置換を行った 。オートクレーブを充分に真空にした後、テトラフルォロエチレン〔TFE〕ガスをゲージ 圧力で 0· 2MPaまで導入し、 50°Cまで昇温した。その後、 CF =CFOCF CF SO
2 2 2 2
Fを 180g注入し、 TFEガスを導入してゲージ圧力で 0. 7MPaまで昇圧した。引き続 き 1. 5gの過硫酸アンモニゥム〔APS〕を 30gの純水に溶解した水溶液を注入して重 合を開始した。
[0205] 重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 7MPaに保つようにした。更に供給した TFEに対して、質量比で 0. 6 5倍に相当する量の CF =CFOCF CF SO Fを連続的に供給して重合を継続した
2 2 2 2
[0206] 供給した TFEが 780gになった時点で、オートクレープの圧力を開放し、重合を停止 した。その後室温まで冷却し、 SO Fを含むフルォロポリマーを約 28質量%含有する
2
、やや白濁したフルォロポリマー水性分散体 4460gを得た。
pH計(ノヽナインスツルメンス製、型式 WATERCHECK)により計測した重合直後の フルォロポリマー水性分散体の液の pHは 6. 8であった。
[0207] 工程(2)
工程(1)で得られた合成直後のフルォロポリマー水性分散体 350gに 0. 2M硫酸水 溶液 63gをゆっくり加えた。硫酸水溶液を加えたときの液の pHは 1 · 3であった。この ときフルォロポリマー水性分散体は、凝析を起こしては!/ヽなかった。
[0208] pH調整後のフルォロポリマー水性分散体を 50°Cの雰囲気にて静置し、 6時間後、 2 4時間後、 120時間後に、それぞれフルォロポリマー水性分散体を 50gサンプリング し、そこに硝酸 10gを加えてポリマーを凝析させ、凝析したポリマーを水洗した後、 10 0°Cで 24時間乾燥させてポリマーサンプルを得た。
得られた各ポリマーサンプルについて IR測定を行い、単位ポリマー質量中の SO
3 質量を算出した。結果を表 2に示す。
[0209] また、 300°Cにおける溶融 NMR測定の結果、上記フルォロポリマー中の CF =CF
2
OCF CF SO ?単位の含有率は19モル%(40質量%)でぁった。
2 2 2
[0210] [表 2]
Figure imgf000036_0001
産業上の利用可能性
[0211] 本発明の回収方法は、燃料電池、化学センサー等の電解質膜材料の製造において 好適に使用することができる。
図面の簡単な説明 [0212] [図 1]フルォロポリマー水性分散体の入った攪拌槽とトラップとをつなぎ、フルォロモノ マーを回収する方式の模式図である。
符号の説明
[0213] 1 攪拌槽
2 トラップ
3 ダイァフラムポンプ
4 バノレブ
5 メタノール/ドライアイス
6 排気管

Claims

請求の範囲
[1] スルホン酸基に変換しうるスルホン酸前駆体官能基を有するフルォロモノマーを乳化 重合して得られるフルォロポリマー水性分散体から未反応の前記フルォロモノマーを 回収する方法であって、
前記フルォロポリマー水性分散体から未反応の前記フルォロモノマーを気化させて 回収するものであり、前記フルォロポリマー水性分散体の液の pHが酸性であることを 特徴とするフルォロモノマーの回収方法。
[2] フルォロポリマー水性分散体は、液の pHが 3. 0未満である請求項 1記載の回収方 法。
[3] スルホン酸前駆体官能基を有するフルォロモノマーは、下記一般式 (I)
CF =CF—(A)—(CF CFY1— O) —(CFY2) — SO X (I)
2 1 2 n m 2
(式中、 Y1は、 F、 C1又はパーフルォロアルキル基を表す。 nは、 0〜;!の整数を表し、 Y2は、 F、 C1又はパーフルォロアルキル基を表す。 mは、 nが 0のとき 0〜5の整数を 表し、 nが 1のとき 1〜5の整数を表す。 mが 2〜5の整数であるとき、 m個の Y2は、同 一であってもよいし異なっていてもよい。 Xは、 F又は C1を表す。 Aは、 O 又は一 CF O を表し、 1は 0〜;!の整数を表す。)
2
で表されるフルォロビニル化合物である請求項 1又は 2記載の回収方法。
[4] フルォロポリマー水性分散体は、スルホン酸前駆体官能基を有するフルォロモノマー と、エチレン性フルォロモノマーとを乳化重合して得られるものである請求項 1、 2又 は 3記載の回収方法。
[5] フルォロポリマー水性分散体は、 pHが 0. 5以上、 3. 0未満である水性媒体中でフル ォロモノマーを乳化重合して得られるものである請求項 1、 2、 3又は 4記載の回収方 法。
[6] フルォロポリマー水性分散体は、フルォロモノマーを乳化重合させ、フルォロポリマ 一水性分散体を得た後、前記フルォロポリマー水性分散体の液を低下させて酸性に 調整したものである請求項 1、 2、 3、 4又は 5記載の回収方法。
PCT/JP2007/073658 2006-12-08 2007-12-07 フルオロモノマーの回収方法 WO2008069301A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008548345A JP5332617B2 (ja) 2006-12-08 2007-12-07 フルオロモノマーの回収方法
US12/514,961 US8344192B2 (en) 2006-12-08 2007-12-07 Process for the recovery of fluoromonomers

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006-332525 2006-12-08
JP2006332525 2006-12-08
JP2007150879 2007-06-06
JP2007150877 2007-06-06
JP2007-150877 2007-06-06
JP2007150878 2007-06-06
JP2007-150879 2007-06-06
JP2007-150878 2007-06-06

Publications (1)

Publication Number Publication Date
WO2008069301A1 true WO2008069301A1 (ja) 2008-06-12

Family

ID=39492176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073658 WO2008069301A1 (ja) 2006-12-08 2007-12-07 フルオロモノマーの回収方法

Country Status (3)

Country Link
US (1) US8344192B2 (ja)
JP (1) JP5332617B2 (ja)
WO (1) WO2008069301A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012511606A (ja) * 2008-12-11 2012-05-24 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア フルオロイオノマー組成物の精製
WO2012173153A1 (ja) * 2011-06-15 2012-12-20 旭硝子株式会社 含フッ素共重合体の製造方法
JP2014070081A (ja) * 2012-09-27 2014-04-21 Asahi Glass Co Ltd 含フッ素共重合体の製造方法
WO2014069165A1 (ja) * 2012-10-29 2014-05-08 旭硝子株式会社 含フッ素共重合体の製造方法
WO2016104379A1 (ja) * 2014-12-25 2016-06-30 旭硝子株式会社 含フッ素ポリマー粒子の製造方法
WO2017014218A1 (ja) * 2015-07-23 2017-01-26 旭硝子株式会社 含フッ素化合物、光硬化性組成物、コーティング液、ハードコート層形成用組成物および物品
WO2021141061A1 (ja) * 2020-01-08 2021-07-15 ダイキン工業株式会社 ディスプレイ保護膜

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194367A1 (ja) * 2014-06-17 2015-12-23 ダイキン工業株式会社 ハイドロフルオロカーボンの回収方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632816A (ja) * 1992-07-15 1994-02-08 Dainippon Ink & Chem Inc 未反応フルオロオレフィンの回収方法
JPH07118332A (ja) * 1993-10-25 1995-05-09 Asahi Glass Co Ltd フッ素化モノマーの回収方法
JPH08500628A (ja) * 1992-08-28 1996-01-23 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー フルオロポリマー類の精製
JPH1135624A (ja) * 1997-07-24 1999-02-09 Asahi Glass Co Ltd フッ素化モノマーの回収方法
JP2000344825A (ja) * 1999-06-04 2000-12-12 Asahi Glass Co Ltd フルオロカーボンポリマー粒子の製造方法
JP2001064317A (ja) * 1999-08-25 2001-03-13 Daikin Ind Ltd 含フッ素共重合体の安定化方法
JP2001226436A (ja) * 2000-02-16 2001-08-21 Daikin Ind Ltd フッ素系アイオノマー共重合体の製造法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282875A (en) * 1964-07-22 1966-11-01 Du Pont Fluorocarbon vinyl ether polymers
JPS5659810A (en) 1979-10-19 1981-05-23 Asahi Glass Co Ltd Recovery of fluorine-containing monomer
US4358412A (en) * 1980-06-11 1982-11-09 The Dow Chemical Company Preparation of vinyl ethers
US4940525A (en) * 1987-05-08 1990-07-10 The Dow Chemical Company Low equivalent weight sulfonic fluoropolymers
US5182342A (en) * 1992-02-28 1993-01-26 E. I. Du Pont De Nemours And Company Hydrofluorocarbon solvents for fluoromonomer polymerization
US6395848B1 (en) * 1999-05-20 2002-05-28 E. I. Du Pont De Nemours And Company Polymerization of fluoromonomers
EP1283225B1 (en) 2000-02-16 2006-05-03 Daikin Industries, Ltd. Process for producing fluoroionomer, method for purification and concentration of the ionomer, and method of film formation
CA2446014A1 (en) * 2001-05-02 2002-11-07 3M Innovative Properties Company Aqueous emulsion polymerization in the presence of ethers as chain transfer agents to produce fluoropolymers
US6869997B2 (en) * 2003-05-06 2005-03-22 Arkema, Inc. Polymerization of fluoromonomers using a 3-allyloxy-2-hydroxy-1-propanesulfonic acid salt as surfactant
US20070129500A1 (en) 2003-09-10 2007-06-07 Eiji Honda Stabilized fluoropolymer and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632816A (ja) * 1992-07-15 1994-02-08 Dainippon Ink & Chem Inc 未反応フルオロオレフィンの回収方法
JPH08500628A (ja) * 1992-08-28 1996-01-23 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー フルオロポリマー類の精製
JPH07118332A (ja) * 1993-10-25 1995-05-09 Asahi Glass Co Ltd フッ素化モノマーの回収方法
JPH1135624A (ja) * 1997-07-24 1999-02-09 Asahi Glass Co Ltd フッ素化モノマーの回収方法
JP2000344825A (ja) * 1999-06-04 2000-12-12 Asahi Glass Co Ltd フルオロカーボンポリマー粒子の製造方法
JP2001064317A (ja) * 1999-08-25 2001-03-13 Daikin Ind Ltd 含フッ素共重合体の安定化方法
JP2001226436A (ja) * 2000-02-16 2001-08-21 Daikin Ind Ltd フッ素系アイオノマー共重合体の製造法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012511606A (ja) * 2008-12-11 2012-05-24 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア フルオロイオノマー組成物の精製
WO2012173153A1 (ja) * 2011-06-15 2012-12-20 旭硝子株式会社 含フッ素共重合体の製造方法
CN103619890A (zh) * 2011-06-15 2014-03-05 旭硝子株式会社 含氟共聚物的制造方法
US9624329B2 (en) 2011-06-15 2017-04-18 Asahi Glass Company, Limited Process for producing fluorinated copolymer
JPWO2012173153A1 (ja) * 2011-06-15 2015-02-23 旭硝子株式会社 含フッ素共重合体の製造方法
JP2014070081A (ja) * 2012-09-27 2014-04-21 Asahi Glass Co Ltd 含フッ素共重合体の製造方法
US9464176B2 (en) 2012-10-29 2016-10-11 Asahi Glass Company, Limited Process for producing fluorinated copolymer
JPWO2014069165A1 (ja) * 2012-10-29 2016-09-08 旭硝子株式会社 含フッ素共重合体の製造方法
WO2014069165A1 (ja) * 2012-10-29 2014-05-08 旭硝子株式会社 含フッ素共重合体の製造方法
WO2016104379A1 (ja) * 2014-12-25 2016-06-30 旭硝子株式会社 含フッ素ポリマー粒子の製造方法
JPWO2016104379A1 (ja) * 2014-12-25 2017-11-02 旭硝子株式会社 含フッ素ポリマー粒子の製造方法
US10131720B2 (en) 2014-12-25 2018-11-20 AGC Inc. Method for producing fluorinated polymer particles
WO2017014218A1 (ja) * 2015-07-23 2017-01-26 旭硝子株式会社 含フッ素化合物、光硬化性組成物、コーティング液、ハードコート層形成用組成物および物品
WO2021141061A1 (ja) * 2020-01-08 2021-07-15 ダイキン工業株式会社 ディスプレイ保護膜
JP2021110951A (ja) * 2020-01-08 2021-08-02 ダイキン工業株式会社 ディスプレイ保護膜
CN114981689A (zh) * 2020-01-08 2022-08-30 大金工业株式会社 显示器保护膜

Also Published As

Publication number Publication date
US8344192B2 (en) 2013-01-01
JPWO2008069301A1 (ja) 2010-03-25
US20100048956A1 (en) 2010-02-25
JP5332617B2 (ja) 2013-11-06

Similar Documents

Publication Publication Date Title
US9464176B2 (en) Process for producing fluorinated copolymer
WO2008069301A1 (ja) フルオロモノマーの回収方法
JP5986102B2 (ja) マイクロエマルジョン及びマイクロエマルジョンを用いて作製されたフルオロポリマー
JP4779184B2 (ja) フッ素系アイオノマー共重合体の製造法
US9624329B2 (en) Process for producing fluorinated copolymer
WO2008001894A1 (fr) Procédé de production de polymère contenant du fluor
JP5598332B2 (ja) 含フッ素ポリマー粒子の製造方法
WO2018062193A1 (ja) モノマー組成物および含フッ素ポリマーの製造方法
JPWO2017086465A1 (ja) ヨウ素原子含有量の低減された含フッ素化合物を製造する方法
US9340632B2 (en) Process for producing fluorinated copolymer
JP4759782B2 (ja) フッ素系アイオノマーの精製・濃縮方法
WO2018235911A1 (ja) 含フッ素重合体、官能基含有含フッ素重合体および電解質膜の製造方法
US9834631B2 (en) Fluoropolymer production method
US10611859B2 (en) Process for producing fluorinated polymer
JP4720734B2 (ja) フルオロモノマーの回収方法
JP7276330B2 (ja) 含フッ素ポリマーの製造方法および含フッ素イオン交換ポリマーの製造方法
EP2586800A1 (en) Process for the treatment of sulfonyl fluoride polymers with supercritical carbon dioxide
WO2022163814A1 (ja) フルオロポリマー組成物の製造方法
CN117510698A (zh) 一种反应性含氟表面活性剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07859736

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548345

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12514961

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07859736

Country of ref document: EP

Kind code of ref document: A1