WO2008062723A1 - Echangeur d'anions inorganiques constitué d'un composé de bismuth et d'une composition de résine pour l'encapsulation d'un composant électronique en utilisant celui-ci - Google Patents

Echangeur d'anions inorganiques constitué d'un composé de bismuth et d'une composition de résine pour l'encapsulation d'un composant électronique en utilisant celui-ci Download PDF

Info

Publication number
WO2008062723A1
WO2008062723A1 PCT/JP2007/072265 JP2007072265W WO2008062723A1 WO 2008062723 A1 WO2008062723 A1 WO 2008062723A1 JP 2007072265 W JP2007072265 W JP 2007072265W WO 2008062723 A1 WO2008062723 A1 WO 2008062723A1
Authority
WO
WIPO (PCT)
Prior art keywords
anion exchanger
inorganic
electronic component
inorganic anion
resin
Prior art date
Application number
PCT/JP2007/072265
Other languages
English (en)
French (fr)
Inventor
Yasuharu Ono
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Priority to CN2007800429956A priority Critical patent/CN101541683B/zh
Priority to KR1020097009998A priority patent/KR101423089B1/ko
Priority to US12/312,633 priority patent/US8017661B2/en
Priority to JP2008545380A priority patent/JP5077239B2/ja
Publication of WO2008062723A1 publication Critical patent/WO2008062723A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/10Inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds

Definitions

  • the present invention relates to a novel bismuth compound useful as an inorganic anion exchanger used for a semiconductor encapsulant and the like in the field of electronic industry, an inorganic anion exchanger containing the bismuth compound, and the inorganic anion exchange.
  • the present invention relates to a resin composition for encapsulating electronic parts containing a body.
  • hydrated talcite, hydrous bismuth oxide, hydrous magnesium oxide, hydrous aluminum oxide and the like are known as inorganic anion exchangers.
  • bismuth compounds have long been known as inorganic anion exchangers.
  • Inorganic anion exchangers are blended in resins for encapsulating electronic components, resins for encapsulating electrical components, resins for electrical products, and the like.
  • LSIs, ICs, hybrids, transistors, diodes, thyristors, and many of these hybrid parts are sealed with epoxy resin.
  • Such an electronic component sealing material does not cause defects due to ionic impurities in the raw materials or moisture entering from the outside, as well as flame resistance, high adhesion, crack resistance and high volume resistance. It is required to have various characteristics such as electrical characteristics such as rate!
  • Epoxy resins that are widely used as encapsulants for electronic parts are epoxy compounds, which are the main components, as well as epoxy compound curing agents, curing accelerators, inorganic fillers, flame retardants, pigments, and silane cups. It is composed of a ring agent or the like.
  • This compound already has anions such as hydroxide and carbonate ions as anions! /, So anion exchange is not sufficient.
  • This hydrated talcite compound is decalcified from the anion in the structure by firing, and becomes a calcined product of nodyl and idoltite. Since this baked product does not contain anions, it is superior in anion exchange performance as compared with the nodo and idrotalcite compounds. This absorbs water and takes a layered structure again.
  • Patent Document 8 An epoxy resin composition for semiconductor encapsulation containing an anion exchanger bismuth oxyhydroxide hydroxy compound (see, for example, Patent Document 8) is known (see, for example, Patent Document 9).
  • anion exchangers generally absorb anions well when the surrounding environment is on the acidic side. It wears, but when it is near neutral or alkaline, it is difficult to adsorb anions.
  • the pH of the resin composition may be near neutral, and the effect of the anion exchanger may not be fully demonstrated.
  • an aramid fiber contains an epoxy resin or a polyphenylene oxide resin and an ion scavenger.
  • the ion scavenger include ion exchange resins and inorganic ion exchangers, and examples of inorganic ion exchangers include antimony bismuth-based and zirconium-based materials (see, for example, Patent Document 12).
  • An insulating varnish containing an ion scavenger is known, and a multilayer printed wiring board is produced using this insulating varnish.
  • the ion scavenger include activated carbon, zeolite, silica gel, activated alumina, activated clay, hydrated antimony pentoxide, zirconium phosphate, and hydrated talcite (see, for example, Patent Document 13).
  • the inorganic ion adsorption body with the adhesive film for multilayer wiring boards is known.
  • the inorganic ion adsorbent include activated carbon, zeolite, silica gel, activated alumina, activated clay, hydrated antimony pentoxide, zirconium phosphate, and hydrated talcite (see, for example, Patent Document 14).
  • An epoxy resin adhesive containing an ion trapping agent is known!
  • the ion trapping agent include an anion exchanger and a cation exchanger (see, for example, Patent Document 15).
  • a conductive epoxy resin paste containing an ion scavenger and silver powder is known.
  • the ion scavenger include hydrated bismuth nitrate, magnesium aluminum hydrate talcite, and antimony oxide (see, for example, Patent Document 16).
  • the hyde mouth talcite listed as the ion exchanger 'ion scavenger in the above known examples is used as it is or as a fired body.
  • hydrated talcite and hydrous bismuth oxide are used in various applications because they have high anion exchange properties and relatively excellent chemical resistance and heat resistance.
  • these are mixed in a semiconductor sealing resin and used for the purpose of improving the reliability of semiconductor components and the like.
  • Hyde mouth talcite is highly soluble under high temperature and high humidity such as hot water of 100 ° C or higher.
  • Hyde mouth talcite also has a limited range of use because it adversely affects the properties of the sealing resin, which is highly hygroscopic.
  • bismuth compounds such as hydrous bismuth oxide have excellent anion exchange performance and can be used in a wide range.
  • high-performance ones with higher ion exchange and heat resistance have been demanded.
  • Patent Literature 1 Koyuki, JP 63-60112
  • Patent Document 2 Japanese Patent Application Laid-Open No. 07-267643
  • Patent Document 3 JP-A 63-252451
  • Patent Literature 4 Kosho No. 64-64243
  • Patent Document 5 Koyuki, JP 60-40124
  • Patent Document 6 Japanese Patent Laid-Open No. 2000-226438
  • Patent Document 7 Japanese Patent Publication No. 60-42418
  • Patent Document 8 Japanese Patent Laid-Open No. 02-293325
  • Patent Document 9 Japanese Patent Laid-Open No. 02-294354
  • Patent Document 10 Japanese Patent Laid-Open No. 60-23901
  • Patent Document 11 Japanese Patent Laid-Open No. 05-140419
  • Patent Document 12 Japanese Unexamined Patent Publication No. 09-314758
  • Patent Document 13 JP-A-10-287830
  • Patent Document 14 JP-A-10-330696
  • Patent Document 15 Japanese Patent Laid-Open No. 10-013011
  • Patent Document 16 JP-A-10-007763
  • the present invention aims to find a novel bismuth compound. Furthermore, in view of the above-mentioned problems of the currently known inorganic anion exchangers, it is environmentally friendly and highly effective. The purpose is to find a new inorganic anion exchanger with high performance.
  • a novel bismuth compound represented by the following formula (1) having a peak intensity at 45 ° to 8.55 ° of 100 to 800 cps was found and the present invention was completed.
  • is a positive number not smaller than 2.5 and smaller than 3
  • n is 0 or positive. Number.
  • a resin for encapsulating an electronic component obtained by curing the resin composition for encapsulating an electronic component according to 8 or 9,
  • the newly found bismuth compound has an anion exchange property equivalent to that of an existing inorganic anion exchanger.
  • a resin by blending this with a resin, an effect of suppressing the dissolution of anions from the resin can be obtained. Therefore, sealing of electronic components or electrical components that require high! / Reliability, covering, and It can be widely applied to various uses such as insulation. It can also be used as a stabilizer for a resin such as bull chloride, an antifungal agent and the like.
  • X in the formula (1) is a number of 2.5 or more and less than 3, more preferably a number of 2.6 to less than 3, more preferably a number of 2.7 to 2.9. It is. If the value of X is less than 2.5, there are many NO roots
  • y in formula (1) is a positive number of 0.5 or less, and the conductivity of the supernatant in water suspension may increase and the heat resistance may deteriorate.
  • Positive numbers less than 4 are preferred, 0.3.
  • Positive numbers less than 35 are more preferred 0.
  • More than 1 is preferred 0.
  • More than 1 Power is more preferred 0.
  • More than 15 is more preferable.
  • it exceeds 2000 cps the ion exchange properties in a neutral aqueous solution will deteriorate.
  • it is less than 900 cps it will be easy to elute into hot water, which may adversely affect electronic materials.
  • the bismuth compound represented by the formula (1) is a powder X-ray diffraction pattern 2
  • the bismuth compound in the present invention has a peak of the powder X-ray diffraction pattern.
  • the raw material for obtaining the bismuth compound in the present invention any material can be used as long as the material represented by the formula (1) and having anion exchange properties can be obtained.
  • the bismuth compound in the present invention can be obtained by adjusting the aqueous solution of bismuth nitrate to basic to produce a precipitate and drying it.
  • the bismuth compound in the present invention can be obtained, for example, by adjusting an aqueous solution of bismuth nitrate to basic to produce a precipitate, which is dried and then heated.
  • the temperature of the solution used to form this precipitate is preferably! ⁇ 100 ° C, more preferably 10-80 ° C, and even more preferably 20-60 ° C.
  • the compounds that can be used for this pH adjustment include alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, ammonia, and compounds that generate ammonia by heating (for example, urea and hexane). Methylenetetramine, etc.) can be illustrated as preferred, and more preferably an alkali metal hydroxide.
  • a preferred method for obtaining a uniform bismuth compound is an alkali solution in a bismuth solution. It is a method that slowly drops and adjusts to the desired pH to produce a precipitate.
  • it is possible to produce a precipitate by simultaneously dropping a bismuth solution and an alkaline solution while adjusting the pH to the above-mentioned value.
  • the drying after the above precipitation may be performed at room temperature or by heating. That is, any treatment can be performed as long as excess water can be removed from the precipitate.
  • a heating and drying furnace can be used for heating.
  • the drying temperature in the present invention is 50 ⁇ 250. C-preferred ⁇ , 100-200. It is better than C.
  • the bismuth compound in the present invention obtained as described above can be pulverized according to the purpose to obtain a desired particle size.
  • the particle size of the bismuth compound in the present invention is not particularly limited, but is preferably an average particle size (preferably 0.01 to 10 m; more preferably 0.05 to 3 to 111. Average particle size force) If it is 0. Ol ⁇ m or less, it tends to agglomerate, and if it is more than 10 m, the physical properties of the resin may be impaired when added to the resin.
  • the anion exchange capacity in the present invention is measured using hydrochloric acid. That is, lg sample and 50 ml of 0.1 mol / liter hydrochloric acid are placed in a 100 ml polyethylene bottle, shaken at 40 ° C. for 24 hours, and then the supernatant chloride ion concentration is determined by ion chromatography. It was measured. Then, the anion exchange capacity was calculated using a blank value as the measured value of chloride ion by performing the same operation without inserting a specimen.
  • the anion exchange capacity of the inorganic anion exchanger of the present invention is preferably 2. Omeq / g or more, more preferably 2.5 meq / g or more 3. More preferably Omeq / g or more, 10 me q / g or less.
  • the anion exchanger of the present invention has an anion exchange capacity in the above range, which is suitable for applications such as electronic component sealing. Furthermore, the anion exchanger of the present invention is more suitable for applications such as sealing of electronic components when the anion exchange capacity in a neutral aqueous solution is in the range described below.
  • the anion exchange capacity in a neutral aqueous solution in the present invention is measured using a sodium chloride aqueous solution. That is, lg sample and 50 ml of 0.1 mol / liter sodium chloride aqueous solution are put into a 100 ml polyethylene bottle, shaken at 40 ° C for 24 hours, and then the chloride ion concentration of the supernatant is measured by ion chromatography. Measured with Then, the anion exchange capacity was calculated using the same procedure as described above without measuring the sample and measuring the chloride ion concentration as a blank value.
  • the anion exchange capacity in the neutral aqueous solution of the inorganic anion exchanger of the present invention is preferably 0.8 meq / g or more 1. Omeq / g or more is more preferable 1.2 meq / g or more More preferred Usually it is 5 meq / g or less.
  • This neutral aqueous solution has a pH of 5-7.
  • the anion exchanger of the present invention is suitable for applications such as electronic component sealing when the anion exchange capacity in a neutral aqueous solution is in the range described above.
  • the heat resistance in the present invention is represented by the mass that decreases when the bismuth compound of the present invention is heated at 300 ° C.
  • the heat resistance is preferably 2.0% or less, more preferably 1.7% or less, and even more preferably 1.4% or less.
  • the heat resistance of the anion exchanger of the present invention is in the above-described range, it is suitable for applications such as electronic component sealing.
  • the electrical conductivity of the supernatant in the present invention is obtained by measuring the electrical conductivity of the supernatant after adding deionized water to the sample and stirring and suspending it.
  • deionized water 0.5 g of the sample and 50 ml of deionized water were placed in a 100 ml polypropylene bottle, suspended and suspended, then stoppered and kept at 95 ° C for 20 hours. There is a small hole). Thereafter, the solution was cooled and filtered through a 0.1 l ⁇ m membrane filter, and the conductivity of the filtrate was measured.
  • the conductivity of the supernatant in the inorganic anion exchanger of the present invention is preferably 50 S / cm or less, more preferably 40 to S / cm, more preferably 30 to S / cm, and usually 5 to S. / cm or more is preferable.
  • the anion exchanger of the present invention is suitable for applications such as electronic component sealing when the conductivity is in the above-described range.
  • the inorganic anion exchanger of the present invention has an anion exchange capacity of 2. Omeq / g or more and a supernatant conductivity of 50 S / cm or less, which is more suitable for applications such as electronic component sealing. is there.
  • thermosetting resins such as phenol resin, urea resin, melamine resin, unsaturated polyester resin, and epoxy resin. It may be a resin or a thermoplastic resin such as polyethylene, polystyrene, butyl chloride, and polypropylene. It is a curable resin.
  • thermosetting resin used in the resin composition for encapsulating electronic parts of the present invention a phenol resin or an epoxy resin is preferable, and an epoxy resin is particularly preferable.
  • the epoxy resin used in the present invention can be used without limitation as long as it is used as an electronic component sealing resin.
  • any type of resin that has two or more epoxy groups in one molecule and can be cured can be used, such as phenol'nopolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, Any material used as a molding material such as an alicyclic epoxy resin can be used.
  • the epoxy resin composition for sealing an electronic component preferably contains a curing agent and a curing accelerator.
  • the curing agents used in the present invention are known as curing agents for epoxy resin compositions! /, And any of them can be used, and preferred specific examples include acid anhydrides, amine-based curing agents and nopolac-based curing agents. Etc.
  • curing accelerator used in the present invention any of those known as curing accelerators for epoxy resin compositions can be used, and preferred specific examples include amine-based, phosphorus-based, and imidazole-based accelerators. Etc.
  • the resin composition for sealing an electronic component of the present invention may be blended with what is known as a component to be blended with the molding resin, if necessary.
  • this component include inorganic fillers, flame retardants, inorganic filler coupling agents, colorants, and release agents. These components are all known as components to be added to the molding epoxy resin.
  • preferred inorganic fillers include crystalline silica powder, quartz glass powder, fused silica powder, alumina powder, and talc. Among these, crystalline silica powder, quartz glass powder, and fused silica powder are preferred because they are inexpensive.
  • flame retardants include antimony oxide, halogenated epoxy resins, magnesium hydroxide, aluminum hydroxide, red phosphorus compounds, phosphates
  • the coupling agent include silane and titanium
  • examples of the release agent include waxes such as aliphatic paraffin and higher aliphatic alcohol.
  • the resin composition for encapsulating electronic components of the present invention may contain a reactive diluent, a solvent, a thixotropy imparting agent, and the like in addition to the above components.
  • a reactive diluent include butyl phenyl daricidyl ether
  • examples of the solvent include methyl ethyl ketone
  • examples of the thixotropic agent include organically modified bentonite.
  • a preferable blending ratio of the inorganic anion exchanger of the present invention is 0.;! To 10 parts by mass, more preferably 1 to 5 parts by mass per 100 parts by mass of the resin composition for sealing an electronic component. . If the amount is less than 0.1 parts by mass, the effect of improving the anion removability and moisture resistance reliability is small. On the other hand, if the amount exceeds 10 parts by mass, the effect is not further improved, and the cost is increased.
  • the anion trapping capacity of the inorganic anion exchanger of the present invention is increased and the cationic ions are trapped.
  • the effect can be expected.
  • the inorganic cation exchanger is an inorganic substance and has a cation exchange property.
  • the inorganic anion exchanger and the inorganic cation exchanger of the present invention may be blended separately when preparing a resin composition for encapsulating an electronic component. You can also. A method of blending the latter mixture is preferable. This is because the effect of using these components in combination can be further exhibited.
  • the inorganic cation exchanger include antimonic acid (antimony pentoxide hydrate), diobetic acid (niobium pentoxide hydrate), manganese oxide, zirconium phosphate, titanium phosphate, phosphorus Examples thereof include tin oxide, cerium phosphate, zeolite, and clay minerals, and antimonic acid (antimony pentoxide hydrate), zirconium phosphate, and titanium phosphate are preferable.
  • the resin composition for sealing an electronic component of the present invention can be easily obtained by mixing the above raw materials by a known method.
  • the respective raw materials are appropriately blended, and the blend is kneaded.
  • the mixture is kneaded in a heated state by a machine to obtain a semi-cured resin composition, which is cooled to room temperature, pulverized by known means, and molded into a tablet as necessary.
  • the inorganic anion exchanger of the present invention can be used in various applications such as sealing, coating, and insulation of electronic components or electrical components.
  • the inorganic anion exchanger of the present invention can also be used as a stabilizer for a resin such as butyl chloride, an antifungal agent and the like.
  • the resin composition for encapsulating an electronic component containing the inorganic anion exchanger of the present invention is used for supporting members such as lead frames, wired tape carriers, wiring boards, glass, silicon wafers, semiconductor chips, transistors, etc. It can be used for devices equipped with active elements such as diodes and thyristors, and passive elements such as capacitors, resistors and coils.
  • the resin composition for encapsulating electronic components of the present invention can also be used effectively for printed circuit boards.
  • An epoxy resin composition for encapsulating electronic components containing the inorganic anion exchanger of the present invention can be used in the same manner.
  • a low-pressure transfer molding method is the most common, but an injection molding method, A compression molding method or the like may be used.
  • a general method for manufacturing a wiring board is to make a printed wiring board using thermosetting properties such as epoxy resin, and to attach a copper foil etc. to this, and then etch it to produce a circuit to produce a wiring board. is doing.
  • thermosetting properties such as epoxy resin
  • a copper foil etc. to attach a copper foil etc. to this
  • etch it to produce a circuit to produce a wiring board.
  • corrosion and insulation failure have become problems due to high density of circuits, lamination of circuits, and thinning of insulating layers.
  • Such corrosion can be prevented by adding the inorganic anion exchanger of the present invention when producing a wiring board.
  • corrosion of the wiring board can be prevented by adding the inorganic anion exchanger of the present invention to the insulating layer for the wiring board.
  • the wiring board containing the inorganic anion exchanger of the present invention can suppress the occurrence of defective products due to corrosion or the like. It is preferable to add 0.;! To 5 parts by mass of the inorganic anion exchanger of the present invention with respect to 100 parts by mass of the resin solid content in the insulating layer for the wiring board or the wiring board. An inorganic cation exchanger may be contained here. [0041] ⁇ About blending into adhesive
  • the inorganic anion exchanger of the present invention By adding the inorganic anion exchanger of the present invention to the adhesive used at this time, generation of defective products due to corrosion or the like can be suppressed. It is preferable to add 0.;! To 5 parts by mass of the inorganic anion exchanger of the present invention with respect to 100 parts by mass of the resin solid content in the adhesive. An inorganic cation exchanger may be contained therein.
  • the inorganic anion exchanger of the present invention By adding the inorganic anion exchanger of the present invention to a conductive adhesive or the like used when connecting or wiring an electronic component or the like to a wiring board, it is possible to suppress defects caused by corrosion or the like with a force S.
  • the conductive adhesive include those containing a conductive metal such as silver. It is preferable to add 0.5 to 5 parts by mass of the insoluble anion exchanger of the present invention with respect to 100 parts by mass of the resin solid content in the conductive adhesive.
  • An inorganic cation exchanger may be contained here.
  • An electrical product, a printed wiring board, an electronic component, or the like can be produced using the varnish containing the inorganic anion exchanger of the present invention.
  • the varnish include those mainly composed of a thermosetting resin such as an epoxy resin. It is preferable to add from 0.5 to 5 parts by mass of the inorganic anion exchanger of the present invention to 100 parts by mass of the resin solid content. Inorganic cation exchangers may be included here.
  • the inorganic anion exchanger of the present invention can be added to a paste containing silver powder or the like. Paste is used to improve the adhesion between connecting metals as an auxiliary agent for soldering. This can suppress the generation of corrosive substances generated from the paste. It is preferable to add 0.5 to 5 parts by mass of the inorganic anion exchanger of the present invention to 100 parts by mass of the resin solid content in the paste. An inorganic cation exchanger may be contained therein.
  • the above bismuth compound was dissolved in nitric acid, and the bismuth content was measured with an ICP emission spectrometer. Further, 50 ml of a 0.1N sodium hydroxide solution was added to 0.5 g of the above bismuth compound, followed by treatment at 95 ° C. for 20 hours. The nitrate ion concentration in the treated solution was measured with an ion chromatograph, and the nitric acid content was determined. From these two measurement results, the composition of the bismuth compound was calculated.
  • anion exchanger 1 was placed in a 100 ml polyethylene bottle, 50 ml of 0.1 mol / liter hydrochloric acid was added, sealed, and shaken at 40 ° C. for 24 hours. Thereafter, this solution was filtered through a membrane filter having a pore size of 0.1 m, and the chloride ion concentration in the filtrate was measured by ion chromatography. The anion exchange capacity was determined by comparing with the measurement of the chloride ion concentration by performing the same operation except that the anion exchanger 1 was not added. The results are shown in Table 1.
  • anion exchanger 1 0 g was placed in a 100 ml polyethylene bottle, 50 ml of 0.1 mol / liter sodium chloride aqueous solution was added, sealed, and shaken at 40 ° C. for 24 hours. Thereafter, this solution was filtered with a membrane filter having a pore size of 0.1 ⁇ m, and the chloride ion concentration in the filtrate was measured by ion chromatography. Anion exchange was performed in comparison with the chloride ion concentration measured in the same manner except that no anion exchanger 1 was added. The exchange capacity was determined. The results are shown in Table 1.
  • Example 1 the anion exchange capacity of the anion exchanger 3, the anion exchange capacity in a neutral aqueous solution, the heating loss rate, and the conductivity of the supernatant were measured. ⁇ 1 in ⁇ .
  • Example 1 As in Example 1, the anion exchange capacity of Comparative Compound 1, the anion exchange capacity in a neutral aqueous solution, the heating loss rate, and the conductivity of the supernatant were measured, and the results are shown in Table 1. 7 pieces.
  • Example 1 As in Example 1, the anion exchange capacity of Comparative Compound 3, the anion exchange capacity in a neutral aqueous solution, the heating loss rate, and the conductivity of the supernatant were measured, and the results are shown in Table 1.
  • Reagent bismuth oxide B 2 O was used as comparative compound 4.
  • Figure 7 shows the XRD figure.
  • cresol nopolac type epoxy resin (epoxy equivalent 235), 20 parts brominated phenolic nopolac type epoxy resin (epoxy equivalent 275), 50 parts phenol novolac resin (molecular weight 700-1000), 2 parts 3 parts of phenylphenylphosphine, 1 part carnauba wax, 1 part carbon black, 370 parts fused silica, and 2 parts anion exchanger 1 were combined in a hot roll at 80 ° C to 90 ° C. Kneaded for ⁇ 5 minutes. Then, it cooled and grind
  • a crushed sample of the resin kneaded body 2 was prepared in the same manner as in the preparation of the resin kneaded body 1 except that the anion exchanger 2 was used instead of the anion exchanger 1.
  • a pulverized sample of the resin kneaded body 3 was prepared in the same manner as in the preparation of the resin kneaded body 1 except that the anion exchanger 3 was used instead of the anion exchanger 1.
  • a pulverized sample of comparative resin kneaded body 1 was prepared in the same manner as in preparation of resin kneaded body 1 except that comparative compound 1 was used instead of anion exchanger 1.
  • a pulverized sample of comparative resin kneaded body 2 was prepared in the same manner as in preparation of resin kneaded body 1 except that comparative compound 2 was used instead of anion exchanger 1.
  • a pulverized sample of comparative resin kneaded body 3 was prepared in the same manner as in preparation of resin kneaded body 1 except that comparative compound 3 was used instead of anion exchanger 1.
  • a pulverized sample of comparative resin kneaded body 4 was prepared in the same manner as in preparation of resin kneaded body 1 except that comparative compound 4 was used instead of anion exchanger 1.
  • a pulverized sample of comparative resin kneaded body 0 was prepared in the same manner as in the preparation of resin kneaded body 1 except that the anion exchanger 1 was not used. That is, the comparative resin kneaded body 0 does not contain an inorganic anion exchanger.
  • Resin kneaded body 2 3 and comparative resin kneaded body 0 4 were tested in the same manner, and these results were not
  • the inorganic anion exchanger of the present invention has a large ion exchange capacity, and has an effect of suppressing elution of chlorine ions even when added to the encapsulant resin.
  • Comparative resin kneaded material 1 is impractical because it has a large amount of nitrate ion elution instead of its ability to suppress chloride ion elution.
  • the inorganic anion exchanger of the present invention has an anion exchange property equivalent to that of an existing inorganic anion exchanger. And even if it mix
  • the inorganic anion exchanger of the present invention can also be used as a stabilizer for a resin such as bull chloride, an antifungal agent, and the like.
  • FIG. 7 Explanation of XRD symbols for Comparative Compound 2 in Comparative Example 4.
  • Figs. 1 to 7 The vertical axis in Figs. 1 to 7 is the XRD diffraction intensity (cps); the horizontal axis from! To 7 is the XRD diffraction angle 2 ⁇ (°)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Medicinal Chemistry (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

明 細 書
ビスマス化合物による無機陰イオン交換体およびそれを用いた電子部品 封止用樹脂組成物
技術分野
[0001] 本発明は、電子産業分野で半導体封止材等に使用される無機陰イオン交換体等 として有用な新規ビスマス化合物、該ビスマス化合物を含有する無機陰イオン交換 体、該無機陰イオン交換体を含有する電子部品封止用樹脂組成物に関するもので ある。
背景技術
[0002] 従来、無機陰イオン交換体として、ハイド口タルサイト、含水酸化ビスマス、含水酸 化マグネシウム、および含水酸化アルミニウム等が知られている。
その中でもビスマス化合物は古くから無機陰イオン交換体として知られており、 Bi
6
〇 (OH) (NO ) ·ηΗ〇(χは、 3. 5≤χ≤5. 5、 ηは 0または正の数。例えば特許
6 3 6 2
文献 1参照)、 Bi O (NO ) (xは、 -0. 18≤x≤0. 29。例えば特許文献 2参
10 13+x 3 4-2x
照)などがイオン交換性能の高レ、ビスマス化合物として提案されて!/、る。
[0003] 無機陰イオン交換体は、電子部品封止用樹脂、電気部品封止用樹脂、および電 気製品用樹脂等に配合されている。
例えば、 LSI、 IC、ハイブリッド 、トランジスタ、ダイオード、およびサイリスタゃこれ らのハイブリッド部品の多くは、エポキシ樹脂を用いて封止されている。このような電 子部品封止材は、原材料中のイオン性不純物または外部より侵入する水分に起因 する不良を生じさせないことの他、難燃性、高密着性、耐クラック性および高体積抵 抗率等の電気特性などの種々の特性を備えることが要求されて!/、る。
電子部品封止材として多用されてレ、るエポキシ樹脂は、主成分であるエポキシ化 合物の他、エポキシ化合物硬化剤、硬化促進剤、無機充填物、難燃剤、顔料、およ びシランカップリング剤等により構成されている。
更に、近年、半導体の高集積化に伴い、 ICチップ上のアルミニウム配線幅の縮小 により、アルミニウムの腐食が早期に発生するようになった。この腐食は、主に、封止 材として用いられているエポキシ樹脂中に浸入した水分により助長されるものである。 また、配線幅の縮小により、半導体の使用中に発生する熱が多くなつたため、該ェポ キシ樹脂に酸化アンチモン、臭素化エポキシ樹脂、および無機水酸化物等の難燃 剤が多量に配合されるようになり、これらの難燃剤成分により、アルミニウム等の配線 の腐食が更に助長されるようになってきている。
[0004] 上記の腐食を防止するために、エポキシ樹脂の耐湿信頼性を更に向上させること が要求されてきた。既に、この耐湿信頼性を高める要求に応えるために、問題となる 不純物イオン、特にハロゲンイオンを捕捉する目的で、無機陰イオン交換体であるハ イド口タルサイト類をエポキシ樹脂等に配合することが提案されてレ、る(例えば特許文 献 3、特許文献 4、特許文献 5、および特許文献 6等参照)。
この化合物は陰イオンとして水酸イオンおよび炭酸イオン等の陰イオンをすでに有 して!/、るため、陰イオン交換 1·生能は充分とは言えなレ、。
[0005] このハイド口タルサイト化合物は、焼成により構造内の陰イオンが脱離し、ノ、イドロタ ルサイト焼成物となる。この焼成物は、その中に陰イオンを含まないため、ノ、イドロタ ルサイト化合物に比べ陰イオン交換性能に優れる。このものは、水を吸収して再び層 状構造をとる。
このハイド口タルサイト焼成物をエポキシ樹脂等に配合する提案もなされてレ、る(例 えば特許文献 7参照)。このものは、陰イオン交換性能に優れ、電子部品の耐湿信頼 性向上に有効であるものの、吸湿性が非常に高ぐ空気中において吸湿しやすいた め、電子部品中で吸湿し、この吸湿に伴い体積増加を生じる。よって、はんだバスや リフロー装置処理等で高温にさらされた時などに、基板等の熱膨張係数の違いによ つて発生する熱応力や、吸湿水分が気化して発生する蒸気圧によって、素子、リード フレーム等のインサート品と封止用成形材料との間で剥離が発生し、パッケージクラ ック、チップ損傷等の原因になる恐れがある。
陰イオン交換体であるォキシ水酸化ォキシ酸ビスマス化合物(例えば特許文献 8参 照)を配合した半導体封止用エポキシ樹脂組成物が知られて!/、る(例えば特許文献 9参照)。
[0006] また、陰イオン交換体は、一般的に、周囲の環境が酸性側の時は陰イオンをよく吸 着するが、中性付近あるいはアルカリ性側の時は陰イオンを吸着し難い。封止材に 配合される添加剤によっては樹脂組成物の pHが中性付近になることがあり、陰ィォ ン交換体の効果が十分に発揮できなレ、場合がある。
[0007] この対策として、陰イオン交換体に固体酸である陽イオン交換体を混合して見かけ の pHを下げ、イオン交換性を向上させて使用する方法が提案されている(例えば特 許文献 10参照)。し力、し、固体酸を樹脂に添加した場合、樹脂の物性を損ねたりする ことがある。また、陽イオン交換体には重金属を含むものが多ぐ最近では環境への 配慮から陽イオン交換体を併用できない場合もある。
[0008] プリント配線板に用いるエポキシ樹脂に陽イオン交換体、陰イオン交換体、および 両イオン交換体等の無機イオン交換体を配合したものが知られて!/、る(例えば特許 文献 11参照)。
ァラミド繊維にエポキシ樹脂あるいはポリフエ二レンオキサイド樹脂とイオン捕捉剤 を含有させたプリント基板が知られている。このイオン捕捉剤としては、イオン交換樹 脂や無機イオン交換体が例示されていて、無機イオン交換体としては、アンチモン ビスマス系のものやジルコニウム系のものが記載されている(例えば特許文献 12参照
)。
イオン捕捉剤を含有する絶縁ワニスが知られていて、この絶縁ワニスを用いて多層 プリント配線板が作製されている。このイオン捕捉剤としては、活性炭、ゼォライト、シ リカゲル、活性アルミナ、活性白土、水和五酸化アンチモン、リン酸ジルコニウム、お よびハイド口タルサイト等が例示されている(例えば特許文献 13参照)。
多層配線板用の接着フィルムに無機イオン吸着体を配合したものが知られている。 この無機イオン吸着剤としては、活性炭、ゼォライト、シリカゲル、活性アルミナ、活性 白土、水和五酸化アンチモン、リン酸ジルコニウム、およびハイド口タルサイト等が例 示されている(例えば特許文献 14参照)。
イオントラップ剤を含有させたエポキシ樹脂接着剤が知られて!/、る。このイオントラッ プ剤として、陰イオン交換体または陽イオン交換体が例示されている(例えば特許文 献 15参照)。
イオン捕捉剤と銀粉等を含有させた導電性エポキシ樹脂ペーストが知られている。 このイオン捕捉剤としては、水和硝酸ビスマス、マグネシウムアルミニウムハイド口タル サイト、酸化アンチモン等が例示されている(例えば特許文献 16参照)。
上記公知例においてイオン交換体'イオン捕捉剤として掲げられたハイド口タルサイ トは、そのままで、または焼成体として用いられている。
[0009] このうち、ハイド口タルサイトや含水酸化ビスマスは、陰イオン交換性が高ぐ耐薬品 性や耐熱性も比較的優れているため、様々な用途に利用されている。これらは、例え ば電子産業分野において、半導体の封止樹脂に混入され、半導体部品などの信頼 性を向上させる目的で使用されている。
しかし、ハイド口タルサイトは、 100°C以上の熱水中などの高温高湿下では溶解性 が大きい。また、ハイド口タルサイトは、吸湿性が高ぐ封止樹脂の物性に悪影響を与 えるため、使用範囲が限られている。
[0010] 一方、含水酸化ビスマスなどのビスマス化合物は、優れた陰イオン交換性能を持ち 、広い範囲での使用が可能であった。し力、し、近年の ICチップにおけるアルミニウム 配線幅の更なる縮小、及びそれに伴う発熱に対応するために、イオン交換性や耐熱 性などが更に高い高性能なものが求められるようになつてきており、従来のビスマス 化合物では使用できなレ、用途も出てきて!/、る。
[0011] 特許文献 1 : :特開昭 63 - - 60112号公幸
特許文献 2 : :特開平 07 - - 267643号公報
特許文献 3 : :特開昭 63 - - 252451号公報
特許文献 4 : :特開昭 64 - - 64243号公幸
特許文献 5 : :特開昭 60 - - 40124号公幸
特許文献 6 : :特開 2000- - 226438号公報
特許文献 7 : :特開昭 60 - -42418号公幸
特許文献 8 : :特開平 02 - - 293325号公報
特許文献 9 : :特開平 02 - - 294354号公報
特許文献 10 :特開昭 60— 23901号公報
特許文献 11 :特開平 05— 140419号公報
特許文献 12 :特開平 09— 314758号公報 特許文献 13 :特開平 10— 287830号公報
特許文献 14 :特開平 10— 330696号公報
特許文献 15:特開平 10— 013011号公報
特許文献 16 :特開平 10— 007763号公報
発明の開示
発明が解決しょうとする課題
[0012] 本発明は、新規なビスマス化合物を見出すことを目的としたものであり、更には、現 在知られている無機陰イオン交換体の上記のような問題等に鑑み、環境に優しく高 性能な新しい無機陰イオン交換体を見出すことを目的とする。
課題を解決するための手段
[0013] 本発明者は、電子産業分野における半導体封止材等に使用できる高性能で新規 な無機陰イオン交換体を見出すため鋭意検討を行なった結果、粉末 X線回折パター ンにおける 2 Θ = 27. 9° —28. 1° のピーク強度力 900〜2000cpsで、且つ 2 Θ =
8. 45° 〜8. 55° のピーク強度が 100〜800cpsである下記式(1)で表される新規 なビスマス化合物を見出し、本発明を完成させたのである。
Bi (OH) (NO ) ·ηΗ Ο (1)
(式(1)において、 χは 2· 5以上 3未満の正数であり、 yは 0. 5以下の正数であり、 x+ y = 3の値を満たすものであり、 nは 0または正数である。 )
即ち、本発明は、
< 1〉上記式(1)で表されるビスマス化合物であり、
く 2〉粉末 X線回折パターンにおける 2 Θ = 7· 4° 〜7· 5° のピーク強度が 1000c ps以下である前記 1記載のビスマス化合物であり、
< 3〉前記 1または 2に記載のビスマス化合物を含有する無機陰イオン交換体であり
< 4〉陰イオン交換容量が 2. Omeq/g以上である前記 3に記載の無機陰イオン交 換体であり、
< 5〉中性水溶液中での陰イオン交換容量が 0. 8meq/g以上である前記 3または 4に記載の陰イオン交換体であり、 < 6 > 300°Cに加熱したときの質量減少が 2質量%以下である前記 3〜5の!/、ずれか 一つに記載の無機陰イオン交換体であり、
< 7〉脱イオン水に懸濁させたものの上清の電導度が 50〃 S/cm以下のものである 前記 3〜6の!/、ずれか一つに記載の無機陰イオン交換体であり、
< 8〉前記 3〜7のいずれか 1つに記載の無機陰イオン交換体を含有する電子部品 封止用樹脂組成物であり、
< 9〉無機陽イオン交換体を含有する前記 8に記載の電子部品封止用樹脂組成物 であり、
< 10〉前記 8または 9に記載の電子部品封止用樹脂組成物を硬化させてなる電子 部品封止用樹脂であり、
< 11〉前記 8または 9に記載の電子部品封止用樹脂組成物により素子を封止してな る電子部品であり、
く 12〉前記 3〜7いずれか 1つに記載の無機陰イオン交換体を含有するワニス、接 着剤、またはペーストであり、
く 13〉無機陽イオン交換体を含有する前記 12に記載のワニス、接着剤、またはぺ 一ストであり、
く 14〉前記 12または 13に記載のワニス、接着剤、またはペーストを含有する製品で ある。
発明の効果
[0014] 新たに見出したビスマス化合物は、既存の無機陰イオン交換体と同等の陰イオン 交換性を有する。そして、これを樹脂に配合することにより、樹脂からの陰イオンの溶 出を抑える効果が得られることから、高!/、信頼性が要求される電子部品または電気 部品の封止、被覆、および絶縁等の様々な用途に幅広く適用することができる。また 、塩化ビュルなどの樹脂の安定剤、防鯖剤などにも使用することができる。
発明を実施するための最良の形態
[0015] 以下、本発明について詳細に説明する。なお、「%」は特に明記しない限り「質量%
」を示す。
〇ビスマス化合物 本発明におけるビスマス化合物は、粉末 X線回折パターンの 2 θ = 27· 9° 〜28· 1° のピーク強度力 S900〜2000cps、 2 θ = 8. 45° 〜8· 55° のピーク強度が 100 〜800cps、および上記式(1)で表されるものである。
[0016] 本発明において、式(1)の Xは、 2. 5以上 3未満の数であり、 2. 6〜3未満の数が好 ましぐより好ましくは 2. 7〜2. 9の数である。 Xの値が 2. 5未満であると NO根が多く
3 なり、水懸濁における上清の電導度が高くなること、および耐熱性が悪くなることがあ 本発明において、式(1)の yは、 0. 5以下の正の数であり、 0. 4以下の正の数が好 ましく、 0. 35以下の正の数がより好ましぐ 0. 1以上が好ましぐ 0. 1より大きいもの 力 り好ましぐ 0. 15以上が更に好ましい。 yの値が 0であると中性水溶液中におけ るイオン交換性が低下する。
[0017] 〇粉末 X線回折パターン
本発明において、式(1)で表されるビスマス化合物は、粉末 X線回折パターンの 2 Θ = 27. 9° —28. 1° のピーク強度力 S900〜2000cpsであるものであり、より好まし <は 1900cps以下であり、更に好まし <は 1800cps以下であり、 l OOOcps以上である ものが好ましい。本発明において 2000cpsを超えると、中性水溶液中におけるイオン 交換性が悪くなる。また、 900cps未満であると熱水に溶出しやすくなり、電子材料に 悪影響を及ぼす可能性がある。
[0018] 本発明において、式(1)で表されるビスマス化合物は、粉末 X線回折パターンの 2
Θ = 8. 45—8. 55° のピーク強度力 00cps〜800cpsであるものであり、より好まし <は 200〜700cpsであり、更に好まし <は 300〜600cpsである。
[0019] 本発明において、式(1)で表されるビスマス化合物は、粉末 X線回折パターンの 2 θ = 7· 4° 〜7· 5° にピークを示すものであってよぐそのピーク強度は、好ましくは lOOOcps以下であり、より好ましくは 700cps以下であり、更に好ましくは 400cps以 下である。このピークは硝酸が多いビスマス化合物のものと思われ、少量であれば本 発明の組成物に悪影響を及ぼさないが、 lOOOcpsを超えるとイオン交換性が悪くな り、熱水に硝酸イオンが溶出しやすくなる。
[0020] 本発明におけるビスマス化合物としては、上記粉末 X線回折パターンのピークを有 し
Bi (OH) (NO ) 、 Bi (OH) (NO )
Bi (OH) (NO ) 、 Bi (OH) (NO )
Bi (OH) (NO ) 、 Bi (OH) (NO )
Bi (OH) (NO ) 、 Bi (OH) (NO )
Bi (OH) (NO ) 、 Bi (OH) (NO )
などで表されるものが挙げられる。
[0021] 本発明におけるビスマス化合物を得るための原料としては、式(1)で表され且つ陰 イオン交換性を有するものが得られるならば、どのようなものでも使用することができ る。例えば、本発明におけるビスマス化合物は、硝酸ビスマスの水溶液を塩基性に調 整して沈殿を生成させ、これを乾燥後することにより得ることができる。
[0022] 本発明におけるビスマス化合物は、例えば、硝酸ビスマスの水溶液を塩基性に調 整して沈殿を生成させ、これを乾燥後加熱することにより得ることができる。塩基性に 調整された水溶液の pHとしては、 ρΗ = 7· ;!〜 12力 S好ましく、 ρΗ = 8〜; 11. 5がより 好ましぐ ρΗ = 9〜; 11が更に好ましい。この沈澱を生成させるときの溶液の温度とし ては、;!〜 100°Cが好ましぐ 10〜80°Cがより好ましぐ 20〜60°Cが更に好ましい。 本発明において、この pH調整のために使用できる化合物としては、水酸化アルカリ 金属、炭酸アルカリ金属塩、炭酸水素アルカリ金属塩、アンモニア、および加熱によ りアンモニアが発生する化合物(例えば尿素やへキサメチレンテトラミン等)等が好ま しいものとして例示でき、より好ましくは水酸化アルカリ金属であり、このアルカリ金属 本発明において、均一なビスマス化合物を得るための好ましい方法は、ビスマス溶 液中にアルカリ溶液をゆっくり滴下して、 目的の pHに調整して沈殿物を生成させる 方法である。他に、ビスマス溶液とアルカリ溶液とを上記記載の pHになるように調整 しながら同時滴下して沈殿物を生成させる方法も可能である。
[0023] 本発明にお!/、て、上記沈殿生成後の乾燥は、室温で行っても加熱して行っても良 い。即ち、沈殿物から余分な水分を除くことができれば、どのような処理を行っても良 い。加熱には加熱乾燥炉などが使用できる。本発明における乾燥温度としては、 50 〜250。Cカ好まし <、 100〜200。Cカより好ましレヽ。
[0024] 上記のようにして得られた本発明におけるビスマス化合物は、 目的に応じて粉砕処 理を行って、希望する粒径にすることができる。
本発明におけるビスマス化合物の粒径は特に限定されないが、平均粒径として好 ましく (ま 0. 01〜; 10〃 m、より好ましく (ま 0. 05〜3〃111である。平均粒径力 0. Ol ^ m 以下であると凝集しやすくなり、 10 m以上になると樹脂に添加した場合に樹脂の物 性を損ねる場合がある。
[0025] 〇陰イオン交換容量
本発明における陰イオン交換容量は、塩酸を用いて測定したものである。すなわち 、 lgの検体と 50mlの 0. lmol/リットル濃度の塩酸とを 100mlのポリエチレン製の 瓶に入れ、 40°Cで 24時間振盪し、その後、上清の塩素イオン濃度をイオンクロマトグ ラフィ一で測定した。そして、検体を入れないで同様の操作を行って塩素イオン濃度 を測定したものをブランク値として陰イオン交換容量を算出した。
本発明の無機陰イオン交換体の陰イオン交換容量は、 2. Omeq/g以上が好まし く、 2· 5meq/g以上がより好ましぐ 3. Omeq/g以上が更に好ましぐ通常、 10me q/g以下である。本発明の陰イオン交換体は、陰イオン交換容量が上記記載の範 囲であると、電子部品封止等の用途に好適である。更に、本発明の陰イオン交換体 は、中性水溶液中での陰イオン交換容量が下記記載の範囲であると、電子部品封 止等の用途により好適である。
[0026] 〇中性水溶液中での陰イオン交換容量
本発明における中性水溶液中での陰イオン交換容量は、塩化ナトリウム水溶液を 用いて測定したものである。すなわち、 lgの検体と 50mlの 0. lmol/リットル濃度の 塩化ナトリウム水溶液とを 100mlのポリエチレン製の瓶に入れ、 40°Cで 24時間振盪 し、その後、上清の塩素イオン濃度をイオンクロマトグラフィーで測定した。そして、検 体を入れないで同様の操作を行って塩素イオン濃度を測定したものをブランク値とし て陰イオン交換容量を算出した。
本発明の無機陰イオン交換体の中性水溶液中での陰イオン交換容量は、 0. 8me q/g以上が好ましぐ 1. Omeq/g以上がより好ましぐ 1. 2meq/g以上が更に好ま しぐ通常、 5meq/g以下である。この中性水溶液とは、 pHが 5〜7のものである。 本発明の陰イオン交換体は、中性水溶液中での陰イオン交換容量が上記記載の 範囲であると、電子部品封止等の用途に好適である。
[0027] 〇耐熱性
本発明における耐熱性とは、本発明のビスマス化合物を 300°Cで加熱したときに減 少する質量で表したものである。当該耐熱性は、 2. 0%以下が好ましぐ 1. 7%以下 力 り好ましく、 1. 4%以下がさらに好ましい。
本発明の陰イオン交換体は、耐熱性が上記記載の範囲であると、電子部品封止等 の用途に好適である。
[0028] 〇電導度
本発明における上清の電導度は、検体に脱イオン水を入れて撹拌して懸濁させた 後、この上清の電導度を測定したものである。すなわち、 0. 5gの検体と 50mlの脱ィ オン水とを 100mlのポリプロピレン製の瓶に入れて撹拌して懸濁させた後、栓をして 95°Cで 20時間保持した (瓶には小さな穴をあけてある)。その後、冷却して 0. l ^ m のメンブレンフィルターでこの溶液をろ過し、ろ液の電導度を測定した。
本発明の無機陰イオン交換体における上清の電導度は、 50 S/cm以下が好ま しく、 40〃 S/cm以下カより好ましく、 30〃 S/cm以下カ更に好ましく、通常、 5〃 S /cm以上が好ましい。
本発明の陰イオン交換体は、電導度が上記記載の範囲であると、電子部品封止等 の用途に好適である。
例えば、本発明の無機陰イオン交換体は、陰イオン交換容量が 2. Omeq/g以上 で上清の電導度が 50 S/cm以下であると、電子部品封止等の用途に更に好適で ある。
[0029] 〇電子部品封止用樹脂組成物
本発明の無機陰イオン交換体を含有する電子部品封止用樹脂組成物に用いられ る樹脂成分としては、フエノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル 樹脂、およびエポキシ樹脂等の熱硬化性樹脂であっても、ポリエチレン、ポリスチレン 、塩化ビュル、およびポリプロピレン等の熱可塑性樹脂であってもよぐ好ましくは熱 硬化性樹脂である。本発明の電子部品封止用樹脂組成物に用いる熱硬化性樹脂と しては、フエノール樹脂またはエポキシ樹脂が好ましぐ特に好ましくはエポキシ樹脂 である。
[0030] 〇電子部品封止用エポキシ樹脂組成物
本発明に用いるエポキシ樹脂は、電子部品封止用樹脂に用いられてレ、るものであ れば限定なく用いることができる。例えば、 1分子中に 2個以上のエポキシ基を有し、 硬化可能なものであれば特に種類は問わず、フエノール'ノポラック型エポキシ樹脂、 ビスフエノール A型エポキシ樹脂、ビスフエノール F型エポキシ樹脂、脂環式エポキシ 樹脂等、成形材料として用いられているものをいずれも使用できる。また、本発明の 組成物の耐湿性を高めるためには、エポキシ樹脂として、塩化物イオン含有量が 10 ppm以下、加水分解性塩素含有量が lOOOppm以下のものを用いることが好ましい
[0031] 本発明にお!/、て、電子部品封止用エポキシ樹脂組成物は、硬化剤および硬化促 進剤を含有することが好ましレ、。
本発明に用いる硬化剤はエポキシ樹脂組成物の硬化剤として知られて!/、るものを いずれも使用可能であり、好ましい具体例として、酸無水物、アミン系硬化剤およびノ ポラック系硬化剤等がある。
本発明に用いる硬化促進剤はエポキシ樹脂組成物の硬化促進剤として知られてレ、 るものをいずれも使用可能であり、好ましい具体例として、アミン系、リン系、およびィ ミダゾール系の促進剤等がある。
[0032] 本発明の電子部品封止用樹脂組成物には、必要に応じて成形用樹脂に配合する 成分として知られたものを配合することもできる。この成分としては、無機充填物、難 燃剤、無機充填物用カップリング剤、着色剤、および離型剤等が例示できる。これら の成分はいずれも成形用エポキシ樹脂に配合する成分として知られたものである。 無機充填物の好ましい具体例として、結晶性シリカ粉、石英ガラス粉、熔融シリカ粉、 アルミナ粉およびタルク等が挙げられ、中でも結晶性シリカ粉、石英ガラス粉および 熔融シリカ粉が安価で好ましい。難燃剤の例としては、酸化アンチモン、ハロゲン化 エポキシ樹脂、水酸化マグネシウム、水酸化アルミニウム、赤リン系化合物、リン酸ェ ステル系化合物等があり、カップリング剤の例としては、シラン系およびチタン系等が あり、離型剤の例としては、脂肪族パラフィン、高級脂肪族アルコール等のワックスが ある。
[0033] 本発明の電子部品封止用樹脂組成物は、上記の成分の他に、反応性希釈剤、溶 剤やチクソトロピー性付与剤等を含有することもできる。具体的には、反応性希釈剤 としてはブチルフエニルダリシジルエーテル、溶剤としてはメチルェチルケトン、チクソ トロピー性付与剤としては有機変性ベントナイトが例示できる。
[0034] 本発明の無機陰イオン交換体の好ましい配合割合は、電子部品封止用樹脂組成 物 100質量部当たり 0. ;!〜 10質量部であり、より好ましくは 1〜5質量部である。 0. 1 質量部未満では、陰イオン除去性や耐湿信頼性を高める効果が小さぐ一方 10質 量部を越えても効果はそれ以上向上することがなく逆にコストアップにつながる。
[0035] 本発明の無機陰イオン交換体と無機陽イオン交換体とを併用することにより、本発 明の無機陰イオン交換体の陰イオン捕捉能を増加させ、且つ陽イオン性イオンの捕 捉効果を期待することができる。無機陽イオン交換体は、無機物であって、陽イオン 交換性を有する物質である。
本発明の無機陰イオン交換体と無機陽イオン交換体との配合比は、特に限定はな いが、質量比で無機陰イオン交換体/無機陽イオン交換体 = 100/0〜20/80が 好ましい。本発明の無機陰イオン交換体と無機陽イオン交換体は、電子部品封止用 樹脂組成物を作製する際に別個に配合してもよぐこれらを予め均一に混合してから 酉己合することもできる。好ましくは、後者の混合物を配合する方法である。このように することにより、これらの成分を併用する効果をさらに発揮させることができるからであ
[0036] 無機陽イオン交換体の具体例として、アンチモン酸(五酸化アンチモン水和物)、二 ォブ酸(五酸化ニオブ水和物)、マンガン酸化物、リン酸ジルコニウム、リン酸チタン、 リン酸スズ、リン酸セリウム、ゼォライト、および粘土鉱物等が挙げられ、アンチモン酸 (五酸化アンチモン水和物)、リン酸ジルコニウム、およびリン酸チタンが好ましい。
[0037] 本発明の電子部品封止用樹脂組成物は、上記の原料を公知の方法で混合するこ とにより容易に得ることができ、例えば上記各原料を適宜配合し、この配合物を混練 機にかけて加熱状態で混練し、半硬化状の樹脂組成物とし、これを室温に冷却した 後、公知の手段により粉砕し、必要に応じて錠剤に成型することにより得られる。
[0038] 本発明の無機陰イオン交換体は、電子部品または電気部品の封止、被覆、および 絶縁等の様々な用途に使用することが可能である。
さらに、塩化ビュル等の樹脂の安定剤、防鯖剤等にも本発明の無機陰イオン交換 体は使用可能である。
[0039] 本発明の無機陰イオン交換体を配合した電子部品封止用樹脂組成物は、リードフ レーム、配線済みのテープキャリア、配線板、ガラス、シリコンウェハ等の支持部材に 、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵 抗体、コイル等の受動素子等の素子を搭載したものなどに使用することができる。ま た、プリント回路板にも本発明の電子部品封止用樹脂組成物は有効に使用できる。 本発明の無機陰イオン交換体を配合した電子部品封止用エポキシ樹脂組成物も同 様に用いることができる。
本発明の電子部品封止用樹脂組成物または電子部品封止用エポキシ樹脂組成 物を用いて素子を封止する方法としては、低圧トランスファ成形法が最も一般的であ るが、インジェクション成形法、圧縮成形法等を用いてもよい。
[0040] 〇配線板への適用について
一般的な配線板の製法は、エポキシ樹脂などの熱硬化性を用いてプリント配線基 板とし、これに銅箔等を接着し、これをエッチング加工等して回路を作製して配線板 を作製している。しかし、近年、回路の高密度化、回路の積層化および絶縁層の薄 膜化等により腐食や絶縁不良が問題となっている。配線板を作製するときに本発明 の無機陰イオン交換体を添加することによりこのような腐食を防止することができる。 また、配線板用の絶縁層に本発明の無機陰イオン交換体を添加することにより、配 線板の腐食等を防止することができる。このようなこと力 、本発明の無機陰イオン交 換体を含有する配線板は、腐食等に起因する不良品発生を抑制することができる。 この配線板や配線板用の絶縁層中の樹脂固形分 100質量部に対し、 0. ;!〜 5質量 部の本発明の無機陰イオン交換体を添加することが好ましい。ここに無機陽イオン交 換体を含有させても良い。 [0041] 〇接着剤への配合について
配線板等の基板に接着剤を用いて電子部品等を実装して!/、る。このとき用いる接 着剤に本発明の無機陰イオン交換体を添加することにより、腐食等に起因する不良 品発生を抑制することができる。この接着剤中の樹脂固形分 100質量部に対し、 0. ;!〜 5質量部の本発明の無機陰イオン交換体を添加することが好ましい。ここに無機 陽イオン交換体を含有させても良い。
配線板に電子部品等を接続するまたは配線するときに用いる伝導性接着剤等に本 発明の無機陰イオン交換体を添加することにより腐食等に起因する不良を抑制する こと力 Sでさる。この伝導性接着剤とは、銀等の伝導性金属を含むものが例示できる。 この伝導性接着剤中の樹脂固形分 100質量部に対し 0. ;!〜 5質量部の本発明の無 機陰イオン交換体を添加することが好ましレ、。ここに無機陽イオン交換体を含有させ ても良い。
[0042] 〇ワニスへの配合について
本発明の無機陰イオン交換体を含有したワニスを用いて電気製品、プリント配線板 、または電子部品等を作製することができる。このワニスとしては、エポキシ樹脂等の 熱硬化性樹脂を主成分とするものが例示できる。この樹脂固形分 100質量部に対し 0. ;!〜 5質量部の本発明の無機陰イオン交換体を添加することが好ましい。ここに無 機陽イオン交換体を含有させても良い。
[0043] 〇ペーストへの配合について
銀粉等を含有させたペーストに本発明の無機陰イオン交換体を添加することができ る。ペーストとは、ハンダ付け等の補助剤として接続金属同士の接着を良くするため に用いられるものである。このことにより、ペーストから発生する腐食性物の発生を抑 制すること力 Sできる。このペースト中の樹脂固形分 100質量部に対し 0. ;!〜 5質量部 の本発明の無機陰イオン交換体を添加することが好ましい。ここに無機陽イオン交換 体を含有させても良い。
[0044] <実施例 >
以下、実施例および比較例を挙げて本発明をさらに詳しく説明するが、本発明はこ れに限定されるものではない。なお、%は質量%であり、部は質量部である。 [0045] <実施例 1〉
50%硝酸ビスマス水溶液を 25°Cに保ち攪拌しながら、 15%水酸化ナトリウム水溶 液と 2%水酸化ナトリウム水溶液とを用いて pH= 10とした。そして、生じた沈殿物をろ 過し、脱イオン水で洗浄した。この沈殿物を 120°Cで 24時間乾燥した。その後、粉砕 し、ビスマス化合物 1 (陰イオン交換体 1)を得た。この化合物の分析を行ったところ、 Bi (OH) (NO ) であった。また、この化合物の粉末 X線回折 (XRD)測定を行つ た。得られた XRD図形を図 1に示す。この結果、 2 Θ = 28° のピーク強度が l lOOcp sであり、 2 Θ = 8. 5° のピーク強度が 380cpsであり、 2 Θ = 7. 4° のピーク強度が 4 OOcpsであった。
[0046] <ビスマス化合物の組成分析〉
上記のビスマス化合物を硝酸で溶解し、 ICP発光分析装置によりビスマス含有量を 測定した。また、上記ビスマス化合物 0. 5gに 0. 1N水酸化ナトリウム溶液 50mlを加 え、 95°Cで 20時間処理した。処理後の溶液中の硝酸イオン濃度をイオンクロマトダラ フィ一で測定し、硝酸含有量を求めた。この 2つの測定結果から、ビスマス化合物の 組成を算出した。
[0047] <陰イオン交換容量の測定〉
1. Ogの陰イオン交換体 1を 100mlのポリエチレン製の瓶に入れ、更に 50mlの 0. lmol/リットル濃度の塩酸を投入し、密栓して 40°Cで 24時間振とうした。その後、ポ ァサイズ 0· 1 mのメンブレンフィルターでこの溶液をろ過し、ろ液中の塩素イオン濃 度をイオンクロマトグラフィーで測定した。陰イオン交換体 1を入れない以外同様の操 作を行って塩素イオン濃度を測定したものと比較して陰イオン交換容量を求めた。こ の結果を表 1に示す。
[0048] <中性水溶液中での陰イオン交換容量の測定〉
1. 0gの陰イオン交換体 1を 100mlのポリエチレン製の瓶に入れ、更に 50mlの 0. lmol/リットル濃度の塩化ナトリウム水溶液を投入し、密栓して 40°Cで 24時間振とう した。その後、ポアサイズ 0. l〃mのメンブレンフィルターでこの溶液をろ過し、ろ液 中の塩素イオン濃度をイオンクロマトグラフィーで測定した。陰イオン交換体 1を入れ ない以外同様の操作を行って塩素イオン濃度を測定したものと比較して陰イオン交 換容量を求めた。この結果を表 1に示す。
[0049] <加熱減量率の測定 >
10. Ogの陰イオン交換体 1を磁製ルツボに入れ重量を測定、その後 300°Cで 1時 間加熱して、取り出し後デシケーター内で室温まで冷却し、再度重量を測定して、減 量率を求めた。これらの結果を表 1に示す。
[0050] <上清の電導度の測定〉
0. 5gの陰イオン交換体 1と 50mlの脱イオン水を 100mlのポリプロピレン製の瓶に 入れて攪拌して懸濁させた後、栓をして 95°Cで 20時間保持した (瓶には小さな穴を あけてある)。その後、冷却し、 0. 1 mのメンブレンフィルターでこの溶液をろ過し、 ろ液の電導度を測定した。これの結果を表 1に示す。
[0051] <実施例 2〉
50%硝酸ビスマス水溶液を 25°Cに保ち攪拌しながら、 15%水酸化ナトリウム水溶 液と 2%水酸化ナトリウム水溶液とを用いて pH= 10. 8とした。そして、生じた沈殿物 をろ過し、脱イオン水で洗浄した。この沈殿物を 120°Cで 24時間乾燥した。その後、 粉砕し、ビスマス化合物 2 (陰イオン交換体 2)を得た。この化合物の分析を行ったとこ ろ、 Bi (OH) (NO ) であった。また、この化合物の粉末 X線回折 (XRD)測定を行 つた。得られた XRD図形を図 2に示す。この結果、 2 Θ = 28° のピーク強度が 1200 cpsで、 2 Θ = 8. 5° のピーク強度が 370cpsであり、 2 Θ = 7. 4° のピーク強度が 1 50cpsでめった。
実施例 1と同様に、陰イオン交換体 2の陰イオン交換容量、中性水溶液中での陰ィ オン交換容量、加熱減量率、および上清の電導度の測定を行い、これらの結果を表 1に §ΰ載した。
[0052] <実施例 3〉
50%硝酸ビスマス水溶液を 25°Cに保ち攪拌しながら、 15%水酸化ナトリウム水溶 液と 2%水酸化ナトリウム水溶液とを用いて pH= 12とした。そして、生じた沈殿物をろ 過し、脱イオン水で洗浄した。この沈殿物を 120°Cで 24時間乾燥した。その後、粉砕 し、ビスマス化合物 3 (陰イオン交換体 3)を得た。この化合物の分析を行ったところ、 Bi (OH) (NO ) であった。また、この化合物の粉末 X線回折 (XRD)測定を行つ た。得られた XRD図形を図 3に示す。この結果、 2 Θ = 28° のピーク強度が 1800cp sで、 2 Θ = 8. 5。 のピーク強度が 500cpsであった。
実施例 1と同様に、陰イオン交換体 3の陰イオン交換容量、中性水溶液中での陰ィ オン交換容量、加熱減量率、および上清の電導度の測定を行い、これらの結果を表 1に §ΰ載した。
[0053] <比較例 1〉
50%硝酸ビスマス水溶液を 25°Cに保ち攪拌しながら、 15%水酸化ナトリウム水溶 液と 2%水酸化ナトリウム水溶液とを用いて pH = 7とした。そして、生じた沈殿物をろ 過し、脱イオン水で洗浄した。この沈殿物を 120°Cで 24時間乾燥した。その後、粉砕 し、比較化合物 1を得た。この化合物の分析を行ったところ、 Bi (OH) (NO ) であ
2.4 3 0.6 つた。また、この化合物の粉末 X線回折 (XRD)測定を行った。得られた XRD図形を 図 4に示す。この結果、 2 Θ = 28° のピーク強度は 730cpsで、 2 Θ = 8· 5° のピー ク強度は 230cpsで、 2 Θ = 7. 4° のピーク強度力 S620cpsであった。
実施例 1と同様に、比較化合物 1の陰イオン交換容量、中性水溶液中での陰イオン 交換容量、加熱減量率、および上清の電導度の測定を行い、これらの結果を表 1に 5し¾し 7こ。
[0054] <比較例 2〉
50%硝酸ビスマス水溶液を 25°Cに保ち攪拌しながら、 15%水酸化ナトリウム水溶 液と 2%水酸化ナトリウム水溶液とを用いて pH= 13とした。そして、生じた沈殿物をろ 過し、脱イオン水で洗浄した。この沈殿物を 120°Cで 24時間乾燥した。その後、粉砕 し、比較化合物 2を得た。この化合物の分析を行ったところ、 Bi (OH) (NO ) であ
2.9 3 0.1 つた。また、この化合物の粉末 X線回折 (XRD)測定を行った。得られた XRD図形を 図 5に示す。この結果、 2 Θ = 28° のピーク強度は 2400cpsで、 2 Θ = 8. 5° のピー ク強度は 650cpsであった。
実施例 1と同様に、比較化合物 2の陰イオン交換容量、中性水溶液中での陰イオン 交換容量、加熱減量率、および上清の電導度の測定を行い、これらの結果を表 1に 5し¾し 7こ。
[0055] <比較例 3〉 試薬の水酸化ビスマス Bi (OH)を比較化合物 3として用いた。その XRD図形を図
6に示す。この水酸化ビスマスの XRD図形における 2 Θ = 28° のピーク強度は 280 Ocpsで、 2 Θ = 8. 5。 のピーク強度は 900cpsであった。
実施例 1と同様に、比較化合物 3の陰イオン交換容量、中性水溶液中での陰イオン 交換容量、加熱減量率、および上清の電導度の測定を行い、これらの結果を表 1に
3し¾し 7こ。
[0056] <比較例 4 >
試薬の酸化ビスマス B Oを比較化合物 4として用いた。その XRD図形を図 7に示 す。
実施例 1と同様に、比較化合物 4の陰イオン交換容量、中性水溶液中での陰イオン 交換容量、加熱減量率、および上清の電導度の測定を行い、これらの結果を表 1に 5し¾し 7こ。
[0057] [表 1]
Figure imgf000019_0001
<実施例 4〉
80部のクレゾールノポラック型エポキシ樹脂(エポキシ当量 235)、 20部のブロム化 フエノールノポラック型エポキシ樹脂(エポキシ当量 275)、 50部のフエノールノボラッ ク樹脂(分子量 700〜; 1000)、 2部のトリフエニルホスフィン、 1部のカルナバワックス、 1部のカーボンブラック、 370部の溶融シリカ、および 2部の陰イオン交換体 1を配合 し、これを 80°C〜90°Cの熱ロールで 3〜5分間混練りした。その後、冷却し、粉砕し て、粉末状エポキシ樹脂組成物 1を得た。そして、この組成物 1を 100メッシュの篩で 篩レ、分けし、 100メッシュパスの試料を作製した。 この 100メッシュパスの試料を用いて、 170°Cで硬化させ、樹脂練込体 1を作製した 。この樹脂練込体 1を 2〜3mmの大きさに粉砕した。この粉砕試料を用いて塩素ィォ ンの溶出試験を fiつた。
[0059] <実施例 5〉
陰イオン交換体 1の代わりに陰イオン交換体 2を用いた以外は樹脂練込体 1の作製 と同様に操作し、樹脂練込体 2の粉砕試料を作製した。
[0060] <実施例 6〉
陰イオン交換体 1の代わりに陰イオン交換体 3を用いた以外は樹脂練込体 1の作製 と同様に操作し、樹脂練込体 3の粉砕試料を作製した。
[0061] <比較例 5〉
陰イオン交換体 1の代わりに比較化合物 1を用いた以外は樹脂練込体 1の作製と同 様に操作し、比較樹脂練込体 1の粉砕試料を作製した。
[0062] <比較例 6〉
陰イオン交換体 1の代わりに比較化合物 2を用いた以外は樹脂練込体 1の作製と同 様に操作し、比較樹脂練込体 2の粉砕試料を作製した。
[0063] <比較例 7〉
陰イオン交換体 1の代わりに比較化合物 3を用いた以外は樹脂練込体 1の作製と同 様に操作し、比較樹脂練込体 3の粉砕試料を作製した。
[0064] <比較例 8〉
陰イオン交換体 1の代わりに比較化合物 4を用いた以外は樹脂練込体 1の作製と同 様に操作し、比較樹脂練込体 4の粉砕試料を作製した。
[0065] <比較例 9〉
陰イオン交換体 1を用いない以外は樹脂練込体 1の作製と同様に操作し、比較樹 脂練込体 0の粉砕試料を作製した。即ち、比較樹脂練込体 0は無機陰イオン交換体 を含まないものである。
[0066] <樹脂練込体からの塩素イオン抽出試験〉
5gの樹脂練込体 1と 50mlの脱イオン水とをポリテトラフルォロエチレン製耐圧容器 に入れて密閉し、 125°Cで 100時間加熱した。冷却後、水を取り出し、水に溶出した 塩素イオンおよび NOイオンの濃度をイオンクロマトグラフィーで測定した。結果を表
2に示す。また、上清の pHを測定し、この結果を表 2に記載した。
樹脂練込体 2 3、比較樹脂練込体 0 4についても同様に試験し、これらの結果を 2に不しプ
[表 2]
Figure imgf000021_0001
[0068] 表 2から明らかなように、本発明の無機陰イオン交換体は、イオン交換容量が大きく 、封止材樹脂に添加しても、塩素イオンの溶出を抑える効果がある。比較樹脂練込 体 1は塩素イオンの溶出を抑えている力 代わりに硝酸イオンの溶出が多ぐ実用的 でない。
本発明によれば、幅広!/、範囲で信頼性の高レ、封止材組成物の提供が可能である。 産業上の利用可能性
[0069] 本発明の無機陰イオン交換体は、既存の無機陰イオン交換体と同等の陰イオン交 換性を有する。そして、樹脂に本発明の無機陰イオン交換体を配合しても、これから の陰イオンの溶出を抑える効果がある。このこと力 、本発明の無機陰イオン交換体 は、高い信頼性が要求される電子部品または電気部品の封止、被覆、および絶縁等 の様々な用途に幅広く使用することができる。また、本発明の無機陰イオン交換体は 、塩化ビュルなどの樹脂の安定剤、防鯖剤などにも使用することができる。
図面の簡単な説明
[0070] [図 1]実施例 1で作製した化合物 1 (陰イオン交換体 1)の XRD図形
[図 2]実施例 2で作製した化合物 2 (陰イオン交換体 2)の XRD図形
[図 3]実施例 3で作製した化合物 3 (陰イオン交換体 3)の XRD図形 [図 4]比較例 1で作製した比較化合物 1の XRD図形 園 5]比較例 2で作製した比較化合物 2の XRD図形 [図 6]比較例 3の比較化合物 3の XRD図形
[図 7]比較例 4の比較化合物 2の XRD図形 符号の説明
図 1〜7の縦軸は、 XRDの回折強度(cps) 図;!〜 7の横軸は、 XRDの回折角度 2 θ (° )

Claims

請求の範囲 [I] 粉末 X線回折パターンにおける 2 θ = 27. 9° 〜28 · 1° のピーク強度が 900〜20 OOcpsで、且つ 2 Θ = 8. 45° 〜8. 55° のピーク強度力 00〜800cpsである下記 式(1 )で表されるビスマス化合物。 Bi (OH) (NO ) · ηΗ Ο ( 1 )
(式(1 )において、 χは 2· 5以上 3未満の正数であり、 yは 0. 5以下の正数であり、 x+ y = 3の値を満たすものであり、 nは 0または正数である。 )
[2] 粉末 X線回折パターンにおける 2 Θ = 7. 4° 〜7. 5° のピーク強度が l OOOcps以 下である請求項 1記載のビスマス化合物。
[3] 請求項 1または 2に記載のビスマス化合物を含有する無機陰イオン交換体。
[4] 陰イオン交換容量が 2. Omeq/g以上である請求項 3に記載の無機陰イオン交換 体。
[5] 中性水溶液中での陰イオン交換容量が 0. 8meq/g以上である請求項 3または 4 に記載の陰イオン交換体。
[6] 300°Cに加熱したときの質量減少が 2質量%以下である請求項 3〜5のいずれか一 つに記載の無機陰イオン交換体。
[7] 脱イオン水に懸濁させたものの上清の電導度が 50 S/cm以下のものである請求 項 3〜6のいずれか一つに記載の無機陰イオン交換体。
[8] 請求項 3〜7のいずれか 1つに記載の無機陰イオン交換体を含有する電子部品封 止用樹脂組成物。
[9] 無機陽イオン交換体を含有する請求項 8に記載の電子部品封止用樹脂組成物。
[10] 請求項 8または 9に記載の電子部品封止用樹脂組成物を硬化させてなる電子部品 封止用樹脂。
[I I] 請求項 8または 9に記載の電子部品封止用樹脂組成物により素子を封止してなる 電子部品。
[12] 請求項 3〜7いずれか 1つに記載の無機陰イオン交換体を含有するワニス、接着剤 、またはペースト。
[13] 無機陽イオン交換体を含有する請求項 12に記載のワニス、接着剤、またはペース 卜。
[14] 請求項 12または 13に記載のワニス、接着剤、またはペーストを含有する製品。
PCT/JP2007/072265 2006-11-20 2007-11-16 Echangeur d'anions inorganiques constitué d'un composé de bismuth et d'une composition de résine pour l'encapsulation d'un composant électronique en utilisant celui-ci WO2008062723A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800429956A CN101541683B (zh) 2006-11-20 2007-11-16 铋化合物的无机阴离子交换体及使用其的电子器件密封用树脂组合物
KR1020097009998A KR101423089B1 (ko) 2006-11-20 2007-11-16 비스무트 화합물에 의한 무기 음이온 교환체 및 그것을 이용한 전자부품 밀봉용 수지조성물
US12/312,633 US8017661B2 (en) 2006-11-20 2007-11-16 Inorganic anion exchanger composed of bismuth compound and resin composition for electronic component encapsulation using the same
JP2008545380A JP5077239B2 (ja) 2006-11-20 2007-11-16 ビスマス化合物による無機陰イオン交換体およびそれを用いた電子部品封止用樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006312421 2006-11-20
JP2006-312421 2006-11-20

Publications (1)

Publication Number Publication Date
WO2008062723A1 true WO2008062723A1 (fr) 2008-05-29

Family

ID=39429656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072265 WO2008062723A1 (fr) 2006-11-20 2007-11-16 Echangeur d'anions inorganiques constitué d'un composé de bismuth et d'une composition de résine pour l'encapsulation d'un composant électronique en utilisant celui-ci

Country Status (6)

Country Link
US (1) US8017661B2 (ja)
JP (1) JP5077239B2 (ja)
KR (1) KR101423089B1 (ja)
CN (1) CN101541683B (ja)
TW (1) TWI481565B (ja)
WO (1) WO2008062723A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191075A1 (ja) * 2012-06-21 2013-12-27 東亞合成株式会社 非晶質無機陰イオン交換体、電子部品封止用樹脂組成物および非晶質ビスマス化合物の製造方法
JP2014019927A (ja) * 2012-07-20 2014-02-03 Hitachi Chemical Co Ltd 銀変色防止材、銀変色防止膜の形成方法、発光装置の製造方法及び発光装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718253B (zh) * 2011-08-05 2017-05-31 积水化学工业株式会社 导电材料及连接结构体
KR20170002371U (ko) 2015-12-23 2017-07-03 대우조선해양 주식회사 자율 주행형 잠망경 및 이를 포함하는 수중운동체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360112A (ja) * 1986-08-29 1988-03-16 Toagosei Chem Ind Co Ltd ビスマス化合物およびこの化合物を有効成分とする無機陰イオン交換体
JPH02294354A (ja) * 1989-05-08 1990-12-05 Toagosei Chem Ind Co Ltd 半導体封止用エポキシ樹脂組成物
JPH0655081A (ja) * 1992-08-06 1994-03-01 Natl Inst For Res In Inorg Mater Bi5O7(NO3)を有効成分とする無機陰イオン交換体
JPH07267643A (ja) * 1994-02-14 1995-10-17 Natl Inst For Res In Inorg Mater ビスマス化合物、その製造法と無機陰イオン交換体
JP2000016814A (ja) * 1998-06-30 2000-01-18 Natl Inst For Res In Inorg Mater 無機陰イオン交換性に優れた含水ビスマス化合物とその製造法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040124A (ja) 1983-08-13 1985-03-02 Toshiba Chem Corp 封止用樹脂組成物
JPS6042418A (ja) 1983-08-19 1985-03-06 Toshiba Chem Corp 封止用樹脂組成物
JP2501820B2 (ja) 1987-04-08 1996-05-29 日東電工株式会社 半導体装置
JP2514981B2 (ja) 1987-05-28 1996-07-10 日東電工株式会社 半導体装置
JPH0774340B2 (ja) 1989-05-08 1995-08-09 東亞合成株式会社 オキシ水酸化オキシ酸ビスマス化合物
JPH05140419A (ja) 1991-11-26 1993-06-08 Matsushita Electric Works Ltd プリント配線板用エポキシ樹脂組成物
JP3433611B2 (ja) 1996-05-28 2003-08-04 松下電工株式会社 プリプレグ及び積層板
JPH1013011A (ja) 1996-06-26 1998-01-16 Matsushita Electric Ind Co Ltd 電子部品用接着剤及び電子部品実装方法
JPH107763A (ja) 1996-06-27 1998-01-13 Sumitomo Bakelite Co Ltd 導電性樹脂ペースト
JP3615906B2 (ja) 1997-05-28 2005-02-02 日立化成工業株式会社 多層配線板用接着フィルム
JP3838389B2 (ja) 1997-04-15 2006-10-25 日立化成工業株式会社 絶縁材料及びこれを用いた多層プリント配線板
JP2000226438A (ja) 1999-02-03 2000-08-15 Sanyu Resin Kk 難燃性エポキシ樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360112A (ja) * 1986-08-29 1988-03-16 Toagosei Chem Ind Co Ltd ビスマス化合物およびこの化合物を有効成分とする無機陰イオン交換体
JPH02294354A (ja) * 1989-05-08 1990-12-05 Toagosei Chem Ind Co Ltd 半導体封止用エポキシ樹脂組成物
JPH0655081A (ja) * 1992-08-06 1994-03-01 Natl Inst For Res In Inorg Mater Bi5O7(NO3)を有効成分とする無機陰イオン交換体
JPH07267643A (ja) * 1994-02-14 1995-10-17 Natl Inst For Res In Inorg Mater ビスマス化合物、その製造法と無機陰イオン交換体
JP2000016814A (ja) * 1998-06-30 2000-01-18 Natl Inst For Res In Inorg Mater 無機陰イオン交換性に優れた含水ビスマス化合物とその製造法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191075A1 (ja) * 2012-06-21 2013-12-27 東亞合成株式会社 非晶質無機陰イオン交換体、電子部品封止用樹脂組成物および非晶質ビスマス化合物の製造方法
KR20150023041A (ko) * 2012-06-21 2015-03-04 도아고세이가부시키가이샤 비정질 무기 음이온 교환체, 전자 부품 밀봉용 수지 조성물 및 비정질 비스무트 화합물의 제조 방법
JPWO2013191075A1 (ja) * 2012-06-21 2016-05-26 東亞合成株式会社 非晶質無機陰イオン交換体、電子部品封止用樹脂組成物および非晶質ビスマス化合物の製造方法
KR102040351B1 (ko) 2012-06-21 2019-11-04 도아고세이가부시키가이샤 비정질 무기 음이온 교환체, 전자 부품 밀봉용 수지 조성물 및 비정질 비스무트 화합물의 제조 방법
JP2014019927A (ja) * 2012-07-20 2014-02-03 Hitachi Chemical Co Ltd 銀変色防止材、銀変色防止膜の形成方法、発光装置の製造方法及び発光装置

Also Published As

Publication number Publication date
CN101541683A (zh) 2009-09-23
JPWO2008062723A1 (ja) 2010-03-04
KR20090083904A (ko) 2009-08-04
TW200823150A (en) 2008-06-01
US8017661B2 (en) 2011-09-13
CN101541683B (zh) 2011-04-13
KR101423089B1 (ko) 2014-07-25
US20100069516A1 (en) 2010-03-18
JP5077239B2 (ja) 2012-11-21
TWI481565B (zh) 2015-04-21

Similar Documents

Publication Publication Date Title
US8066810B2 (en) Lamellar zirconium phosphate
JP5126223B2 (ja) ハイドロタルサイト化合物およびその製造方法、無機イオン捕捉剤、組成物、電子部品封止用樹脂組成物
JP5447539B2 (ja) 球状ハイドロタルサイト化合物および電子部品封止用樹脂組成物
JP5943223B2 (ja) 非晶質無機陰イオン交換体、電子部品封止用樹脂組成物および非晶質ビスマス化合物の製造方法
JP4337411B2 (ja) 無機陰イオン交換体およびそれを用いた電子部品封止用エポキシ樹脂組成物
WO2008062723A1 (fr) Echangeur d&#39;anions inorganiques constitué d&#39;un composé de bismuth et d&#39;une composition de résine pour l&#39;encapsulation d&#39;un composant électronique en utilisant celui-ci
JPWO2007077779A1 (ja) 硫酸イオン無機捕捉剤、無機捕捉組成物並びにそれらを用いた電子部品封止用樹脂組成物、電子部品封止材、電子部品、ワニス、接着剤、ペーストおよび製品
JP5176323B2 (ja) イットリウム化合物による無機陰イオン交換体およびそれを用いた電子部品封止用樹脂組成物
JP5176322B2 (ja) アルミニウム化合物による無機陰イオン交換体およびそれを用いた電子部品封止用樹脂組成物
CN100518939C (zh) 阴离子交换体及使用它的电子器件封装用树脂组合物
JP5125673B2 (ja) 半導体封止用エポキシ樹脂組成物および半導体装置
JP2002053735A (ja) エポキシ樹脂組成物及び半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780042995.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831995

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097009998

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12312633

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008545380

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 07831995

Country of ref document: EP

Kind code of ref document: A1