WO2008047761A1 - Composition de revêtement à base de fluor - Google Patents

Composition de revêtement à base de fluor Download PDF

Info

Publication number
WO2008047761A1
WO2008047761A1 PCT/JP2007/070084 JP2007070084W WO2008047761A1 WO 2008047761 A1 WO2008047761 A1 WO 2008047761A1 JP 2007070084 W JP2007070084 W JP 2007070084W WO 2008047761 A1 WO2008047761 A1 WO 2008047761A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fluorine
reaction
copolymer
diisocyanate
Prior art date
Application number
PCT/JP2007/070084
Other languages
English (en)
French (fr)
Inventor
Shinichiro Watanabe
Isao Kimura
Original Assignee
Asahi Kasei Chemicals Corporation
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation, Asahi Glass Company, Limited filed Critical Asahi Kasei Chemicals Corporation
Priority to JP2008539805A priority Critical patent/JP5481859B2/ja
Priority to EP07829818A priority patent/EP2075294A4/en
Priority to CN2007800386471A priority patent/CN101528871B/zh
Priority to US12/311,798 priority patent/US8344071B2/en
Publication of WO2008047761A1 publication Critical patent/WO2008047761A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6275Polymers of halogen containing compounds having carbon-to-carbon double bonds; halogenated polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6279Polymers of halogen containing compounds having carbon-to-carbon double bonds; halogenated polymers of compounds having carbon-to-carbon double bonds containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7837Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes

Definitions

  • the present invention relates to a main agent composed of a fluorine-containing copolymer having a hydroxyl group soluble in a weak solvent, and a curing agent composed of a polyisocyanate compound containing an allophanate group and an isocyanurate group in a specific ratio. It is related with the coating composition containing this.
  • a fluorine paint composition containing a main agent containing a fluorine-containing copolymer having a hydroxyl group and a curing agent containing a polyisocyanate compound as a paint that gives a coating film having excellent weather resistance. Things are known. Fluorine paint compositions are used as heavy-duty anticorrosive topcoats or as topcoats on cement-based substrates.
  • Fluorine paint compositions containing conventional strong solvents such as toluene, xylene, etc. have been used in older synthetic resin blend paints, chlorinated rubber paints and other lacquers. When applied directly to the coating film, there was a problem that shrinkage or swelling occurred and good adhesion could not be obtained.
  • a two-component fluorine coating composition containing a main component composition containing a fluorine-containing copolymer having a hydroxyl group and a curing agent composition containing a polyisocyanate is cured with the hydroxyl group of the main agent. Since the isocyanate group of the agent causes a cross-linking reaction to build a three-dimensional network structure, it is widely used because of its excellent weather resistance and stain resistance.
  • a fluorine-containing copolymer having a hydroxyl group used as a main component of a two-component fluorine coating composition has a higher crosslinking density and higher weather resistance and stain resistance as the hydroxyl group content (hydroxyl value) increases.
  • the greater the number of hydroxyl groups the higher the polarity and the lower the solubility in weak solvents. For this reason, a strong solvent having a strong dissolving power is usually used in the two-component fluorine coating composition.
  • a fluorine-containing copolymer having a hydroxyl group has a weaker solvent power than a strong solvent! / And a fluorine-containing copolymer having a weak solvent-soluble type hydroxyl group using a weak solvent.
  • a nitrogen copolymer has been developed.
  • Patent Documents 1 and 2 propose fluorine-containing copolymers having hydroxyl groups that are soluble in mineral spirit, which is a weak solvent!
  • the fluorine-containing copolymer having a hydroxyl group used in Patent Document 1 has a case where the solubility in a weak solvent is lowered when the hydroxyl value is increased due to the use of a two-pack type fluorine paint.
  • polyisocyanate compounds used as curing agents include aliphatic or alicyclic compounds such as hexamethylene diisocyanate (hereinafter referred to as HDI) and isophorone diisocyanate (hereinafter referred to as IPDI).
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • a prepolymerized formula diisocyanate is used. Since the conventional polyisocyanate compound has high polarity, it must be dissolved in a strong solvent when actually used. For this reason, odor countermeasures may be necessary, and in the case of repainting work, repair work, and overcoating work, there is a problem that the underlying coating film may be affected.
  • polyisocyanate compounds having excellent solubility in weak solvents have been developed.
  • Patent Documents 3 to 7 long-chain diols and monoalcohols have been urethanated or allophanated.
  • These polyisocyanate compounds may have insufficient solubility in weak solvents with lower polarity at low temperatures.
  • Patent Document 8 contains a main agent composed of a fluorine-containing copolymer having a hydroxyl group, and a curing agent composed of a polyisocyanate compound having an allophanate group and an isocyanurate group obtained from a monoalcohol having 1 to 10 carbon atoms. Fluorocoating compositions are proposed.
  • the patent does not mention weak solvents, and the fluorine-containing copolymers and polyisocyanate compounds having a hydroxyl group disclosed in the patent are resistant to weak solvents. And show sufficient solubility.
  • Patent Document 1 Japanese Patent Laid-Open No. 63-199770
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-277716
  • Patent Document 3 Japanese Patent Laid-Open No. 61-72013
  • Patent Document 4 JP-A-2-250872
  • Patent Document 5 JP-A-4 306218
  • Patent Document 6 Japanese Patent Application Laid-Open No. 5-70444
  • Patent Document 7 JP-A-5-222007
  • Patent Document 8 JP-A-5-278240
  • the present invention combines a main agent containing a fluorine-containing copolymer having a hydroxyl group that has low polarity even at low temperatures and can be dissolved in a weak solvent, and a curing agent containing a polyisocyanate compound.
  • An object is to provide a liquid fluorine coating composition.
  • Fluorine-containing copolymer containing an alkyl group and a weak solvent-soluble hydroxyl group containing the double bond-containing monomer and a specific amount of hydroxyl group.
  • Fluorine paint composition containing a curing agent composition comprising a main agent comprising a body and a polyisocyanate compound containing a specific ratio of allophanate groups / isocyanurate groups. It came to complete.
  • the present invention provides:
  • the fluorine content is 10% by mass or more.
  • a monomer containing a hydroxyl group is 5 to 30 mol%, and a branched alkyl having 3 or more carbon atoms.
  • a main component comprising 10 to 50 mol% of a monomer containing a group, the copolymer, at least one diisocyanate selected from (B) an aliphatic diisocyanate and an alicyclic diisocyanate, and a carbon number of 1 to Provided is a fluorine coating composition containing a curing agent containing a polyisocyanate compound obtained from 20 monoalcohols and having a molar ratio of allophanate group / isocyanolate group of 90/10 to 81/19 And also The present invention (2) (A) A copolymer of fluororefin and a double bond-containing monomer copolymerizable with fluororefin, based on fluororefin in the copolymer The fluorine content is 10% by mass or more.
  • a monomer containing a hydroxyl group is 5 to 30 mol%, and a branched alkyl having 3 or more carbon atoms.
  • a main component comprising 10 to 50 mol% of a group-containing monomer and comprising the copolymer; (B) at least one diisocyanate selected from aliphatic diisocyanate and alicyclic diisocyanate; and carbon number;
  • Fluorine-containing paint comprising a curing agent comprising a polyisocyanate compound having a molar ratio of allophanate groups / isocyanurate groups of 90/10 to 81/19, obtained from a monoalcohol of ⁇ 20, and a weak solvent.
  • a main component comprising 10 to 50 mol% of a group-containing monomer and comprising the copolymer; (B) at least one diisocyanate selected from aliphatic diisocyanate and alicyclic diisocyanate; and carbon number;
  • Mixing specific force with a curing agent comprising a polyisocyanate compound obtained from a monoalcohol of ⁇ 20 and having a molar ratio of allophanate groups / isocyanurate groups of 90/10 to 81/19 isocyanate groups / moles of hydroxyl groups Ratio is 0.2 5.
  • a fluorine coating composition according to (1) or (2).
  • the main agent made of a fluorine-containing copolymer having a hydroxyl group and the curing agent made of a polyisocyanate compound used in the present invention can be dissolved at a low temperature! It is. Therefore, the fluorine coating composition of the present invention can be used even when dissolved in a weak solvent with low polarity at low temperatures. In addition, since the fluorine coating composition of the present invention can produce a tough coating film, it can form a coating film having high hardness and high adhesion.
  • the fluorine coating composition of the present invention comprises (A) a main agent comprising a fluorine-containing copolymer having a hydroxyl group, (B) an aliphatic diisocyanate or an alicyclic diisocyanate, and a carbon number of 1 to And a curing agent obtained from the reaction of 20 monoalcohols.
  • the main agent used in the present invention contains a fluorine-containing copolymer having a hydroxyl group.
  • the main ingredient contains paint resin such as acrylic acid or its ester polymer, polyester, etc. to improve the gloss, hardness and paint workability of the coating! / ,.
  • the fluorine-containing copolymer used in the present invention is a copolymer of fluoroolefin and a double bond-containing monomer copolymerizable with fluoroolefin, and in the copolymer
  • the fluorine content based on fluoroolefin is 10% by mass or more with respect to the total mass of the fluorinated copolymer, and the double bond-containing monomer content in the copolymer is the double bond-containing monomer.
  • a monomer containing a hydroxyl group 5-30 mole 0/0 and is intended to include 10 to 50 mol% of a monomer containing a number of 3 or more branched alkyl group having a carbon is a weak solvent-soluble.
  • the fluorine addition number is preferably 2 or more, more preferably 3-4.
  • a fluorine addition number of 2 or more is preferable because weather resistance is sufficient.
  • fluoroolefin examples include tetrafluoroethylene, chlorofluoroethylene, vinylidene fluoride, hexafluoropropylene, etc., and particularly tetrafluoroethylene and chlorofluoroethylene. Trifluoroethylene is preferred!
  • the double bond-containing monomer can be copolymerized with fluororefin, and a bur monomer other than fluororefin is preferably used.
  • the double bond monomer a monomer that does not contain a fluorine atom or a monomer is preferred.
  • Examples of the bur monomer include alkyl butyl ethers and alkyl butyl esters containing linear, branched or cyclic alkyl groups.
  • the double bond-containing monomer includes a double bond-containing monomer containing a hydroxyl group (hereinafter referred to as a hydroxyl group-containing monomer) and a branched alkyl group having 3 or more carbon atoms. And a double bond-containing monomer (hereinafter referred to as a branched alkyl group-containing monomer).
  • the hydroxyl group-containing monomer may contain a branched alkyl group having 3 or more carbon atoms and may be V, or the branched alkyl group-containing monomer may contain a hydroxyl group! /, Or may be /.
  • the content of the hydroxyl group-containing monomer is preferably 5 mol% or more because a sufficient amount of hydroxyl groups is introduced into the fluorine-containing copolymer to obtain a coating film having high hardness.
  • the content of the hydroxyl group-containing monomer is 30 mol% or less, it is preferable because sufficient solubility for a coating material can be maintained in a weak solvent.
  • the number of carbon atoms of the hydroxyl group-containing monomer is not particularly limited, but is preferably 2 to 10 force S, and more preferably 2 to 4 with 2 to 6 being more preferable.
  • hydroxyl group-containing monomer examples include hydroxyalkyl butyl ethers such as 4-hydroxybutyl butyl ether (HBVE), 2-hydroxy ethinorevinino reetenore (HEVE), and cyclohexane dimethanol enomono linolee.
  • Hydroxyalkyl aryl ethers such as hydroxyethyl allyl ether and cyclohexane dimethanol monoallyl ether; (meth) acrylic acid hydroxyalkyl esters such as hydroxyethyl (meth) acrylate It is done.
  • Hydroxyalkyl vinyl ethers are preferred because they are excellent in copolymerizability and have good weather resistance of the formed coating film.
  • HBVE is more preferable because it is excellent in solubility in a weak solvent, and hydroxyalkylbulle ether having 2 to 4 carbon atoms is preferred.
  • the hydroxyl group-containing monomers may be used singly or in combination of two or more.
  • the double bond-containing monomer in the present invention 10 to 50 mol% in the copolymer.
  • branched alkyl group-containing monomer is 10 to 50 mole 0/0, be a hydroxyl group-containing monomer in an amount of above, it can be secured solubility in weak solvents.
  • the number of carbon atoms of the branched alkyl group in the branched alkyl group-containing monomer is not particularly limited as long as it is 3 or more, 4 to; 15 is preferable, and 4 to 10 is more preferable.
  • the branched alkyl group-containing monomer include butyl ethers, aryl ethers or (meth) acrylic acid esters containing a branched alkyl group.
  • the branched alkyl group include an isopropylene group, an isobutyl group, a sec butyl group, a tert butyl group, a 2-ethylhexyl group, and a 2-methylhexyl group.
  • 2-EHVE is preferred because 2-ethylhexylbulle ether (2-EHVE), tertbutylbutyl ether (t BuV E) and other butyl ethers are excellent in copolymerizability. More preferred.
  • the branched alkyl group-containing monomers may be used alone or in combination of two or more.
  • the double bond-containing monomer further contains a double bond-containing monomer other than the hydroxyl group-containing monomer and the branched alkyl group-containing monomer within a range not impairing the effects of the present invention. Les, even okay.
  • a monomer containing an alkyl group is preferred.
  • the alkyl group include linear, branched or cyclic alkyl groups.
  • the alkyl group preferably has 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms.
  • Tg glass transition temperature
  • Examples of the double bond-containing monomer containing a cyclic alkyl group include cyclic alkyl butyl ethers such as cyclohexyl butyl ether and cyclohexyl methyl vinyl ether, cyclohexyl (meth) acrylate, 3, 3, 5-trimethyl. Examples include (meth) acrylic acid cyclic alkyl esters such as cyclohexyl (meth) acrylate.
  • the other double bond-containing monomer is a single type May be used in combination, or two or more types may be used in combination.
  • the ratio of the other double bond-containing monomer in the total amount of the double bond-containing monomer is 0 to
  • Monore 0/0 Ca Preferably, preferably from 30 to 60 Monore 0/0 Ca Rere.
  • the fluorine-containing copolymer used in the present invention contains a polymerization medium in a mixture of fluoroolefin and a double bond-containing monomer containing a predetermined proportion of a hydroxyl group-containing monomer and a branched alkyl group-containing monomer.
  • a copolymerization reaction can be carried out by causing a polymerization initiator such as a polymerization initiator or ionizing radiation to act.
  • the proportion of the amount of the fluororefin and the double bond-containing monomer used depends on the fluoroolefin-based polymer unit and double bond content in the fluorine-containing copolymer.
  • the ratio is preferably the same as the proportion of polymerized units based on the monomer.
  • Polymerization media include ketones such as methyl ethyl ketone and methyl isobutyl ketone, esters such as ethyl acetate and n-butyl acetate, aromatic solvents such as xylene and toluene, cyclohexanone, solvent naphtha, Aliphatic solvents such as mineral terpenes, mineral spirits, petroleum naphtha, etc., ethyl ethoxypropionate, methyl amyl ketone, tert-butyl acetate, 4-chlorobenzoic trifluoride, benzotrifluoride, monochlorotolenene, 3, Examples include 4-dichloro black benzotrifluoride.
  • polymerization initiator examples include 2,2'-azobisisobutyronitrile, 2,2'-azobiscyclohexane carbonate nitrile, 2,2'-azobis (2,4 dimethylvaleronitrile), 2, 2, azo initiators such as azobis (2-methylbutyronitrile); ketone peroxides such as cyclohexanone peroxide, hydride peroxides such as tert butyl hydride peroxide, dibenzo such as benzoyl peroxide Silver oxides, G Dialkyl peroxides such as tert-butyl peroxide, peroxyketals such as 2,2-di (tert-butylperoxy) butane, alkyl peresters such as tert-butyl peroxybivalate, diisopropyl peroxide And peroxide initiators such as percarbonates such as dicarbonate;
  • the fluorine-containing copolymer has a fluorine content based on fluoroolefins of 10% by mass or more and 20 to 40% by mass with respect to the total mass of the fluorine-containing copolymer. It is particularly preferable that the content is 20 to 30% by mass. A fluorine content of 10% by mass or more is preferable because the weather resistance of the coating film is sufficient. Moreover, when the fluorine content is 40% by mass or less, there is an advantage that the solubility in a weak solvent is improved.
  • the fluorine-containing copolymer contains a hydroxyl group as a reactive site with the curing agent.
  • the hydroxyl value in the fluorinated copolymer (hereinafter referred to as OHV) is 30 to 55 mgKOH / g force S based on the total solid content of the fluorinated copolymer, converted to the chemical reaction equivalent of potassium hydroxide. Preferably, 35 to 50 mg KOH / g is more preferable.
  • OHV is 30 mg KOH / g or more, a coating film with high hardness can be obtained, and when the OHV is 55 mg KOH / g or less, the fluorine-containing copolymer for coating has sufficient solubility in weak solvents. This is preferable.
  • the fluorine-containing copolymer preferably has a number average molecular weight (Mn) of 5,000 to 10,000 as measured by gel permeation chromatography (GPC) using polystyrene as a standard substance. If Mn is 5,000 or more, it is excellent in weather resistance, and if Mn is 10000 or less, it is preferable because it has excellent solubility in weak solvents.
  • Mn number average molecular weight
  • the GPC measurement method will be described below.
  • the measured values related to the molecular weight of the fluorine-containing copolymer and the main agent were all measured by the following measuring methods.
  • Equipment used HLC-80 20 (manufactured by Tosoh Corporation), columns used: KF 806M, KF 806M, KF802 (all manufactured by Tosoh Corporation), sample concentration: 5 wt / vol% (for example, 50 mg of sample in lml of THF) ), Carrier: THF, detection method: parallax refractometer, flow rate 1. Oml / min., Column temperature 35 ° C).
  • the GPC calibration curve was prepared using polystyrene (Easical PS-1 manufactured by Shimasei Corporation) having a molecular weight (Mp) of 7.5 to 580 as a standard.
  • the glass transition point (hereinafter referred to as Tg and! /) Of the fluorinated copolymer is preferably 25 ° C or higher, more preferably 30 to 40 ° C. If the Tg is 25 ° C or higher, a high hardness coating can be obtained. Therefore, it is preferable.
  • the fluorine-containing copolymer for coatings of the present invention preferably further contains a carboxy group.
  • a carboxy group for example, when used as a paint, the dispersibility of the pigment is improved.
  • the content of the carboxy group in the fluorinated copolymer (acid value (hereinafter referred to as AV)) is calculated based on the total solid content of the fluorinated copolymer in terms of the chemical reaction equivalent of potassium hydroxide. 0.5 to 5 mg KOH / g is preferred 2 to 5 mg KOH / g is more preferred.
  • the carboxy group may be obtained by, for example, reacting a polyvalent carboxylic acid or an anhydride thereof with a hydroxyl group in the fluorinated copolymer after the above-described polymerization reaction between fluoroolefin and a double bond-containing monomer. Can be introduced. It can also be introduced by direct polymerization of a double bond-containing monomer having a carboxy group.
  • the fluorine-containing copolymer used in the present invention is soluble in a weak solvent.
  • soluble means that, when dissolved in a weak solvent of 100% by mass with respect to the fluorinated copolymer at 23 ° C., it exists stably without causing separation or precipitation. is there. In this case, it is most preferable that the total amount of solids is dissolved in a weak solvent, but there is some insoluble matter, and it may take the form of so-called NAD (non-aqueous dispersion)! /.
  • the fluorine-containing copolymer and the main agent used in the present invention may contain a weak solvent.
  • the main agent substantially contains a weak solvent, fluororefin, and a monomer copolymerizable with fluororefin.
  • the mass ratio of the non-fluorinated copolymer to the weak solvent is preferably 10/90 to 90/10.
  • the lower limit of the mass ratio is more preferably 20/80, even more preferably 40/60, most preferably 60/40.
  • the upper limit of the mass ratio is more preferably 90/10 and even more preferably 85/15.
  • a weak solvent is a type 3 organic solvent in the classification of organic solvents according to the Occupational Safety and Health Act! /, which is either of the following (1) to (3)! / It is equivalent.
  • first-class organic solvent and second-class organic solvent is 5% by mass or less.
  • the first type organic solvent includes black mouth form, carbon tetrachloride, 1,2-dichloroethane, 1,2-dichloroethylene, 1,1,2,2-tetrachloroethane, trichloroethane, Carbon sulfide and a mixture consisting of these only, and a mixture other than these, containing more than 5% by mass.
  • the second type organic solvent includes acetone, isobutyl alcohol, isopropyl alcohol, isopentino alcohol, ethanol, ethylene glycol, ethylene glycol, and ethylene glycol monomer.
  • the weak solvent used in the present invention is more preferably one using these type 3 organic solvents, and containing the type 2 organic solvent corresponding to the strong solvent in excess of 5% by mass of the total solvent. It is not. More preferably, the solvent has an aniline point of 30 ° C to 70 ° C. The lower limit of the aniline point is more preferably 40 ° C, and the upper limit of the aniline point is more preferably 60 ° C. When the aniline point exceeds 30 ° C, the old coating film is not attacked, and if the aniline point is 70 ° C or less, the fluorinated copolymer and polyisocyanate compound used in the present invention can be dissolved. In addition, the aniline point may be measured according to the aniline point test method described in JIS K 2256.
  • Mi Solvents commonly sold as Neral Spirit include, for example, HAWS (manufactured by Shell Japan, aniline point 17 ° C), Etsonaphusa No.
  • the curing agent used in the present invention contains a polyisocyanate compound.
  • the polyisocyanate compound used in the present invention is obtained from the reaction of at least one diisocyanate selected from aliphatic diisocyanate, alicyclic diisocyanate, and monoalcohol having carbon number of !!-20, and is formed from an allophanate group / isocyanurate.
  • the molar ratio of the groups is 90/10 to 81/19.
  • Aliphatic diisocyanate is a compound having an aliphatic group in the molecule.
  • alicyclic diisocyanate is a compound having a cyclic aliphatic group in the molecule.
  • the use of an aliphatic diisocyanate is more preferable because the resulting polyisocyanate compound has a low viscosity.
  • Examples of the aliphatic diisocyanate include 1,4-diisocyanatobutane, 1,5-diisocyanatopentane, 1,6-diisocyanatohexane (hereinafter referred to as HDI), 1,6-diisocyanato 2, 2, 4— Examples include trimethylhexane, methyl 2,6-diisocyanatohexanoate (lysine diisocyanate), and the like.
  • alicyclic diisocyanates examples include 5-isocyanato 1-isocyanatomethyl 1 1,3,3-trimethylcyclohexane (isophorone diiso And bis (4-isocyanatocyclohexyl) methane (hydrogenated diphenylmethane diisocyanate), 1,4-diisocyanatocyclohexane, and the like.
  • HDI isophorone diisocyanate
  • hydrogenated xylylene diisocyanate hydrogenated diphenylmethane diisocyanate
  • HDI is most preferred because of its excellent weather resistance and film flexibility.
  • diisocyanate! / aliphatic diisocyanate! /.
  • a monoalcohol having 1 to 20 carbon atoms is used.
  • the lower limit of the carbon number of the monoalcohol is preferably 2, more preferably 3, even more preferably 4, and most preferably 6.
  • the upper limit is preferably 16, more preferably 12, even more preferably 9. If the number of carbon atoms is 1 or more, the ability to dissolve in weak solvents can be demonstrated. If the number of carbon atoms is 20 or less, the hardness of the coating film is sufficient.
  • Monoalcohol may be used alone or in combination of two or more.
  • the monoalcohol used in the present invention may contain an ether group, an ester group or a carbonyl group in the molecule, but a monoalcohol consisting only of a saturated hydrocarbon group is preferred.
  • a monoalcohol having a branch is more preferable.
  • monoalcohols include methanol, ethanol, 1 propanol, 2-propanol, 1-butanol, 2-butanol monoole, isobutanol, 1 pentanol, 2-pentanol, isoaminoethanolo colenore, 1 1-Hexanol, 1-Heptanol, 1-octanol, 2-Ectil, 1-Hexanol, 3, 3, 5-Trimethyl 1-Hexanol, Tridecanol, Pentadecanol, Noremitino Renoreconore , Stearino-leanoloconole, cyclopentanol, cyclohexanol, methylcyclohexanol, trimethyl cyclohexanol and the like.
  • isobutanol, n-butanol, isoaminoethanolone, 1-hexanol, 1-heptano-nore, 1-octanore, 2-ethylenore, 1-hexanol, tridecanol, pentadecanol, noreminoinoreconole, stearyl Alcohol, 1,3,5-trimethylcyclohexanol is more preferred because of its particularly excellent solubility in weak solvents.
  • the polyisocyanate compound used in the present invention has a molar specific power ratio of 0/10 to 81/19 of allophanate group / isocyanurate group.
  • the upper limit of the molar ratio of allophanate group / isocyanurate group is more preferably 88/12, still more preferably 86/14.
  • the lower limit is more preferably 83/17. In the case where the molar specific force between the allophanate group and the isocyanurate group is 90/10 to 81/19, the curability and the solubility in a weak solvent are sufficient.
  • the molar ratio of the allophanate group to the isocyanurate group can be determined by ifi-NMR.
  • An example of a method for measuring 1 H-NMR of a polyisocyanate compound using hexamethylene diisocyanate and an isocyanate prepolymer obtained therefrom as a raw material is shown below.
  • Example of NMR measurement method Polyisocyanate compound is dissolved in deuterium chloroform at a concentration of 10% by mass (0.03% by mass of tetramethylsilane based on polyisocyanate compound) Added).
  • the chemical shift standard was Oppm for the hydrogen signal of tetramethylsilane. ! ⁇ ! Measured by NMR, the signal of the hydrogen atom bonded to the nitrogen of the allophanate group at around 8.5 ppm (lmol hydrogen atom relative to lmol of the allophanate group) and 3. is adjacent to the isocyanurate group at around 85 ppm Measure the signal area ratio of the hydrogen atom of the methylene group (6 mol of hydrogen atom per 1 mole of isocyanurate group).
  • Alophanate group / isocyanurate group (signal area around 8.5 ppm) / (3. signanore area around 85 ppm / 6)
  • the content of the uretdione compound is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 3% by mass or less with respect to the polyisocyanate compound.
  • the content of the uretdione compound can be determined by measuring the ratio of the peak area with a molecular weight of about 336 in gel filtration chromatography (hereinafter referred to as GPC) using a differential refractometer.
  • a ratio of the height of the peak of about one Arofaneto group 1720 cm can be determined by methods quantitated using an internal standard.
  • the GPC measurement method is described below! The measurement values related to the molecular weight of the polyisocyanate compound and the curing agent were all measured by the following measurement method.
  • Equipment used ⁇ 1 Shiji-8120 (manufactured by Tosoh Corporation), column used: Ding 31 ⁇ GEL SuperHlOOO, TSK GEL SuperH2000, TSK GEL SuperH3000 (all manufactured by Tosoh Corporation), sample concentration: 5 wt / vol%, Carrier: THF, detection method: differential refractometer, flow rate 0.6 ml / min., Column temperature 30 ° C).
  • the biuret body and other diisocyanate polymers have a high content because the solubility in a weak solvent decreases.
  • the amount of biuret and other diisocyanate polymer contained in the polyisocyanate compound used in the present invention is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 3% by mass. % Or less is appropriate.
  • the urethane body improves the adhesion to the substrate, but if it is too much, the solubility in a weak solvent may decrease.
  • the range in which the polyisocyanate compound used in the present invention contains urethane is preferably from 0.;! To 10% by mass, more preferably from 0.2 to 5% by mass, and still more preferably. 0.5-3 mass% is suitable.
  • the isocyanate group content (hereinafter referred to as NCO content) of the polyisocyanate compound used in the present invention is 10 to 22% by mass, preferably 13 to 21% by mass, substantially free of diisocyanate. %, More preferably 16 to 20% by mass.
  • NCO content 10 to 22% by mass, preferably 13 to 21% by mass, substantially free of diisocyanate. %, More preferably 16 to 20% by mass.
  • the viscosity of the polyisocyanate compound used in the present invention is preferably 50 to 500 mPa.s in a state in which the solvent is substantially free of diisocyanate.
  • the lower limit of the viscosity is more preferable (75 mPa.s, even more preferable (or lOOmPa.s, more preferably 120 mPa.s.
  • the upper limit of the viscosity is more preferably 450 mPa.s. More preferably, it is 400 mPa.s, more preferably 350 mPa.s, most preferably 300 mPa.s, and if it is 50 or more, a polyisocyanate compound having sufficient crosslinkability can be obtained. Then, it becomes possible to obtain a coating composition with a reduced VOC component.
  • the number average functional group number (isocyanate group) of the polyisocyanate compound used in the present invention is preferably 2.10-2.50.
  • the lower limit of the number average functional group is more preferably 2.15, even more preferably (or 2.20.
  • the upper limit is ⁇ , more preferably ⁇ 2.40, and even more preferably ⁇ 2.35.
  • the number average functional group number can be determined by the following equation.
  • Number average functional group number number average molecular weight X NCO content (%) / 4200
  • the number average molecular weight can be determined by GPC measurement.
  • the polyisocyanate compound used in the present invention is soluble in a weak solvent.
  • the polyisocyanate compound and the curing agent used in the present invention may contain a weak solvent.
  • the curing agent contains a weak solvent
  • the curing agent contains a weak solvent and a polyisocyanate compound substantially free of diisocyanate.
  • the mass ratio of the solvent is preferably 5/95 to 95/5.
  • the lower limit of the mass ratio of the polyisocyanate compound to the weak solvent is more preferably 10/90, still more preferably 15/85.
  • the upper limit of the mass ratio is more preferably 90/10, still more preferably 80/20.
  • the method (1) is characterized by good production efficiency because it can be produced by a single process.
  • a polyisocyanate having an isocyanurate structure or a polyisocyanate having an isocyanurate structure and an allophanate structure and a polyisocyanate having an allophanate group are mixed in an arbitrary ratio. Therefore, the physical properties of the resulting polyisocyanate compound can be easily adjusted.
  • Any method may be used as long as the molar ratio of the allophanate group to the isocyanurate group is 90/10 to 81/19.
  • the urethanization reaction is preferably 20 to 200 ° C, more preferably 40 to; 150 ° C, even more preferably 60 to; 120 ° C, preferably 10 minutes to 24 hours, more preferably Is performed for 15 minutes to 15 hours, more preferably 20 minutes to 10 hours. Reactions are fast at temperatures above 20 ° C. Side reactions such as uretdione formation are suppressed at temperatures below 200 ° C, and coloring is also suppressed. If the time is 10 minutes or more, the reaction can be completed, and if it is 24 hours or less, there is no problem in production efficiency and side reactions are also suppressed.
  • the urethanization reaction can be carried out without a catalyst or in the presence of a tin-based or amine-based catalyst.
  • the halophanation reaction is preferably performed at a temperature of 20 to 200 ° C. More preferably, 40-; C, even more preferably 60-160. C. Even more preferred is 90-150 ° C, and most preferred is 110-; 150 ° C. Alophanate above 20 ° C As the amount of the catalyst is reduced, the time required to complete the reaction is short. Further, at 200 ° C or lower, side reactions such as uretdione formation are suppressed, and coloring of the reaction product is suppressed.
  • the reaction time of the halophanation reaction is preferably 10 minutes to 24 hours, more preferably 15 minutes to 12 hours, even more preferably 20 minutes to 8 hours, and even more preferably 20 minutes to 6 hours. If the reaction time is 10 minutes or longer, the reaction can be controlled, and if it is within 24 hours, the production efficiency is sufficient. When the reaction temperature exceeds 130 ° C, uretdione may be generated as a side reaction. Therefore, the reaction time is preferably within 8 hours, more preferably within 6 hours, and even more preferably 4 hours. Within is good.
  • the isocyanuration reaction, or the allophanation and isocyanuration reaction is preferably 20 to 80. Done at a temperature of C. More preferably, 30-60. C, and more preferably 40 to 40 ° C. Even more preferred is 60 to 130 ° C, and most preferred is 80 to 110 ° C. Above 20 ° C, the amount of catalyst decreases and side reactions such as nylon reaction are less likely to occur. Also, at 180 ° C or lower, side reactions such as uretdione formation are suppressed, and coloring of reaction products is suppressed.
  • the reaction time of the isocyanuration reaction, or the allophanatization and isocyanuration reaction is preferably 10 minutes to 24 hours, more preferably 15 minutes to 12 hours, even more preferably 20 minutes to 8 hours, and further More preferably, 20 minutes to 6 hours is good. If the reaction time is 10 minutes or longer, the reaction can be controlled, and if it is within 24 hours, the production efficiency is sufficient.
  • the method of (1) it is preferable to use a catalyst for the allophanate reaction and the isocyanurate reaction.
  • the molar ratio of the allophanate group / isocyanurate group of the resulting polyisocyanate is 81. It is better to select a catalyst that will be between / 19 and 90/10.
  • catalysts include zinc carboxylates, bismuth carboxylates, alkoxides such as zinc, tin, zirconium and zirconyl.
  • a catalyst for the allophanate reaction particularly the selection of the allophanate group. It is better to select a catalyst having a high ratio, more preferably a catalyst in which the ratio of allophanate group / isocyanurate group of the resulting polyisocyanate is 90/10 to 100/0. preferable.
  • a catalyst having a high ratio more preferably a catalyst in which the ratio of allophanate group / isocyanurate group of the resulting polyisocyanate is 90/10 to 100/0.
  • examples of such a catalyst include lead, tin, zirconyl, zirconium carboxylate and the like, or a mixture thereof.
  • a catalyst for the isocyanuration reaction examples thereof include carboxylates of isocyanurated metal salts, hydrated oxides, aminosilyl group-containing compounds, and mixtures thereof.
  • a catalyst for the allophanate reaction and the isocyanurate reaction examples include tetraalkylammonium, hydroxyalkylammonium, alkali metal salt rubates, hydrated oxides, aminosilyl group-containing compounds, and mixtures thereof.
  • the ratio of the allophanate group / isocyanurate group of the resulting polyisocyanate is 40/60 to 70 / A catalyst of 30 is good.
  • Such catalysts include tetraalkylammonium, hydroxyalkylammonium carboxylates, or mixtures thereof.
  • the amount of use of the alophanation catalyst, the isocyanuration catalyst, the alophanation catalyst and the isocyanuration catalyst is preferably from 0.00;! To 2.0 mass%, more preferably, based on the total mass of the reaction solution. , 0.01-0. 5% by mass.
  • the effect of the catalyst can be sufficiently exerted at 0.001% by mass or more. When the content is 2% by weight or less, the control of the alphaphanation reaction is easy.
  • the method for adding the alophanate catalyst, the isocyanurate catalyst, the alophanate catalyst, and the isocyanurate catalyst may be added before the production of a compound containing a urethane group, that is, prior to the urethanation reaction of an organic compound having a diisocyanate and a hydroxyl group, or during the urethanization reaction of an organic compound having a diisocyanate and a hydroxyl group. However, it may be added after the production of the urethane group-containing compound. Also, as a method of addition, the required amount of the alphaphanation catalyst is added all at once. Alternatively, it may be added in several divided portions. Alternatively, a method of adding continuously at a constant addition rate can also be adopted.
  • the urethanization reaction, the halophanation reaction, the isocyanurate formation catalyst, the halophanation reaction and the isocyanurate formation catalyst proceed in the absence of a solvent, but if necessary, in addition to the above-mentioned weak solvent, ethyl acetate, butyl acetate, etc.
  • the alophanation reaction, the isocyanuration reaction, the allophanation reaction and the isocyanuration reaction can be stopped by adding a cooling force to room temperature, a reaction terminator, and a reaction terminator is added when using a catalyst. This is preferable because side reactions can be suppressed.
  • the amount of the reaction terminator added is preferably 0.25 to 20 times the amount of monole, more preferably 0.5 to 16 times the amount of monole, and even more preferably 1.0 to 0.25 to the catalyst. ; 12 times the molar amount. 0.25 or more, it becomes possible to completely deactivate. Storage stability is good at 20 times or less. Any reaction terminator may be used as long as it deactivates the catalyst.
  • reaction terminators include phosphoric acid, pyrophosphoric acid and other phosphoric acid compounds, phosphoric acid and pyrophosphoric acid monoalkyl or dialkyl esters, monochrome acetic acid halogenated acetic acid, benzoyl chloride, and the like.
  • phosphoric acid, pyrophosphoric acid, metaphosphoric acid, polyphosphoric acid, and phosphoric acid monoalkyl ester and phosphoric acid dialkyl ester are preferable because they hardly corrode stainless steel.
  • Examples of phosphoric acid monoesters and phosphoric acid diesters include, for example, phosphoric acid monoethyl ester, phosphoric acid jetyl ester, phosphoric acid monobutyl ester, phosphoric acid dibutyl ester, and phosphoric acid mono (2-ethylhexynole).
  • Esters di (2-ethylhexyl) phosphate, monodecyl phosphate, didecyl phosphate, monolauryl phosphate, dilauryl phosphate, phosphoric acid Examples thereof include monotridecyl ester, ditridecinole ester phosphate, monoole phosphate, dioleyl phosphate, and mixtures thereof.
  • adsorbent such as silica gel or activated carbon
  • an addition amount of 0.05 to 10% by mass is preferable with respect to the diisocyanate used in the reaction.
  • unreacted diisocyanate and solvent may be separated from the polyisocyanate compound.
  • the method for separating unreacted diisocyanate and solvent include a thin film distillation method and a solvent extraction method.
  • fluorine coating composition of the present invention or the fluorine coating composition of the present invention, what may be added to the main agent and the curing agent used in the present invention will be described.
  • the fluorine coating composition of the present invention it is preferable to occupy 20% by mass or more of the total solid content contained in the fluorine-containing copolymer strength fluorine coating composition used in the present invention. 40% by mass or more is most preferable.
  • the total amount of the solid content is dissolved in a weak solvent, but there are some insoluble portions.
  • the addition amount of the weak solvent in the fluorine coating composition is appropriately determined in consideration of the solubility of the fluorine-containing copolymer, the appropriate viscosity when applied as a coating material, the coating method, and the like.
  • the fluorine-containing copolymer used in the present invention is excellent in solubility in a weak solvent
  • the amount of the weak solvent contained in the fluorine coating composition may be 10 to 30% by mass.
  • the mass ratio of the main agent, the curing agent and the weak solvent in the fluorine coating composition containing the weak solvent is preferably 10/90 to 90/10 force S.
  • the lower limit of the mass ratio is more preferably 15/85.
  • the upper limit of the mass ratio is more preferably 85/15.
  • the mixing ratio of (A) the main agent comprising the fluorine-containing copolymer having a hydroxyl group and (B) the curing agent comprising the polyisocyanate compound is
  • the molar ratio of cyanate group / hydroxyl group is preferably in the range of 0.2 to 5.0.
  • the lower limit of the molar ratio is more preferably (or 0.3, even more preferably (or 0.4, most preferably (or 0.5.
  • the upper limit of the monolayer is more preferably 4.0, even more). Preferably it is 3.0, most preferably 2.0. In the range of 2 to 5.0, a tough coating can be formed.
  • the fluorine coating composition of the present invention may contain a weak solvent.
  • the fluorocoating composition of the present invention, the main agent and the curing agent used in the present invention are suitable for coloring pigments, dyes, and coatings according to the purpose and application within a range not impairing the effects of the present invention.
  • Various additives used in the technical field, such as surfactants, can also be mixed and used.
  • Color pigments and dyes have good weather resistance! /, Inorganic pigments such as carbon black and titanium oxide, phthalocyanine bunoley, phthalocyanine green, quinacridone red, indanthrene orange, isoindolinone yellow, etc. Examples include organic pigments and dyes.
  • silane coupling agents include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, ⁇ -2- (aminoethyl) 3-aminopropyltrimethoxysilane, ureidopropyltriethoxysilane, butyltriethoxy.
  • Examples of the ultraviolet absorber include benzophenone-based, benzotriazole-based, triazine-based, and cyanacrylate-based ultraviolet absorbers.
  • Examples of the light stabilizer include hindered amine light stabilizers and the like.
  • Adekastab LA62 Adekastab LA62
  • Adekastab LA67 (above, trade name, manufactured by Adeka Gas Chemical Co., Ltd.), Tinuvin 292, Tinuvin 144, Tinuvin 123, Tinuvin 440 (above, trade name, manufactured by Chinoku 'Specialty' Chemicals), etc.
  • matting agents include ultrafine synthetic silica and the like, and when matting agents are used
  • An elegant semi-gloss, matte finish can be formed.
  • a silicate compound is preferred as a coating surface hydrophilizing agent! Contains silicate compounds By making it, the coating-film surface becomes hydrophilic and rain-stain stain resistance is expressed in the coating film. Since the silicate compound reacts with the hydroxyl group, when the silicate compound is mixed in advance, it is preferably added to the (B) curing agent. Alternatively, the main agent and the curing agent may be mixed at the same time.
  • the silicate compound is at least one selected from tetraalkoxysilane, a tetraalkoxysilane condensate, and a tetraalkoxysilane or a derivative of the condensate thereof.
  • the average degree of condensation is; When the average degree of condensation is in the range of ! to 100, when the coating film is prepared, the hydrophilicity of the coating film surface is sufficiently increased.
  • the tetraalkoxysilane condensate can be produced by a known method.
  • silicate compound examples include tetramethoxysilane, tetraethoxysilane, tetra
  • Examples thereof include n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetraisobutoxysilane, tetra-tert-butoxysilane, dimethoxydiethoxysilane, tetrahenoxysilane, and condensates thereof.
  • the condensate of tetramethoxysilane and the condensate of tetraethoxysilane are preferable because the surface of the coating film tends to become hydrophilic when a coating film is prepared.
  • silicate compound tetraalkoxysilane in which two or more kinds of alkoxyl groups having different carbon numbers are mixed, and a condensate thereof can also be used.
  • This is a method of using tetramethoxysilane, or a compound in which 5 to 50 mol% of methoxy group or ethoxy group of tetraethoxysilane is substituted with an alkoxyl group having 3 to 10 carbon atoms.
  • the ratio of the methoxy group and ethoxy group to be substituted with an alkoxyl group having 3 to 10 carbon atoms is more preferably 8 to 40 mol%, and still more preferably 12 to 35 mol%.
  • the substituted alkoxyl group is preferably a butyl group, a pentyl group, a hexyl group, or an octyl group, and more preferably an n-butyl group, an isobutyl group, a tert-butyl group, an n-hexyl group, an n-octyl group, 2-Ethyl 1 is a monohexyl group.
  • Such a silicate compound, particularly a condensate thereof is very preferable because it has a feature of high solubility in a weak solvent having high hydrophilicity on the surface of the coating film. Furthermore, condensates of these silicate compounds are used. It is most preferable because the hydrophilicity of the coating film surface becomes higher.
  • a derivative of tetraalkoxysilane or a condensate thereof refers to a silicate compound in which a part of the alkoxy group is substituted with, for example, a polyalkylene glycol monoalkyl ester or a polyalkylene glycol monoaryl ester.
  • Examples of the catalyst for accelerating the curing include tin oxide compounds such as dibutyltin dilaurate and dioctyltin laurate butyltinoxide; tin 2-ethylhexanoate, zinc 2-ethylhexanoate, cobalt Metal carboxylates such as salts; triethylamine, pyridine, methylpyridine, benzyldimethylamine, N, N-dimethylcyclohexylamine, N-methylbiperidine, pentamethyljetylenetriamine, N, N'-endoethylenepiperazine And tertiary amines such as N, N′-dimethylpiperazine.
  • tin oxide compounds such as dibutyltin dilaurate and dioctyltin laurate butyltinoxide
  • tin 2-ethylhexanoate zinc 2-ethylhexanoate
  • drying improver examples include CAB (cellulose acetate butrate), NC (nitrocellulose).
  • the fluorine coating composition of the present invention comprises (A) a main agent containing a fluorine-containing copolymer having a hydroxyl group, and (B) a curing agent containing a polyisocyanate compound mixed at the coating site.
  • a main agent containing a fluorine-containing copolymer having a hydroxyl group a curing agent containing a polyisocyanate compound mixed at the coating site.
  • a curing agent containing a polyisocyanate compound mixed at the coating site.
  • the order of mixing is not particularly limited. For example, there is a method of using the following form.
  • any method such as spray coating, air spray coating, brush coating, dipping method, roll coater, flow coater and the like can be applied.
  • Materials of articles to be painted include concrete, natural stone, glass and other inorganic materials, iron, stainless steel, etc. Examples include metals such as loess, aluminum, copper, brass, and titanium, and organic substances such as plastic, rubber, adhesives, and wood.
  • old coating film it is suitable for coating on the surface of an already formed coating film, so-called old coating film. It is also suitable for coating organic and inorganic composite materials such as FRP, resin reinforced concrete, and fiber reinforced concrete.
  • articles to be painted include automobiles, trains, aircraft and other transportation equipment, bridge members, civil engineering members such as steel towers, waterproofing sheets, tanks, pipes and other industrial equipment, building exteriors, doors, and window gates. Building materials such as members, monuments, poles, road median strips, road rails such as guardrails and soundproof walls, communication equipment, electrical and electronic parts.
  • the main agent made of a fluorine-containing copolymer having a hydroxyl group and the curing agent made of a polyisocyanate compound used in the present invention are low in polarity at low temperatures and can be sufficiently stably dissolved in weak solvents. is there. Therefore, the fluorine coating composition of the present invention can be used even when dissolved in a weakly polar solvent at low temperatures. In addition, since the fluorine coating composition of the present invention can produce a tough coating film, it can be measured by the ability to form a coating film having high hardness and high adhesion.
  • the ratio of alophanate group to isocyanurate group is: — NMR (FT-NMR DPX-400 manufactured by Bruker).
  • the hydrogen signal on the nitrogen atom of the allophanate group near 8.5 ppm and the isocyanurate group around 3.8 ppm. It was obtained from the area ratio of the hydrogen signal of the methylene group adjacent to the nitrogen atom of the isocyanurate ring.
  • NCO content was determined by back titration with 1N hydrochloric acid after neutralizing the isocyanate group with an excess of 2N amine.
  • the viscosity was measured at 25 ° C. using an E-type viscometer (Tokimec Co., Ltd.). A standard rotor (1 ° 34 'X R24) was used. The number of rotations is as follows.
  • Solubility in weak solvents is as follows: 50 parts by weight, 100 parts by weight, 200 parts by weight, and 500 parts by weight of weak solvent for 100 parts by weight of the polyisocyanate compound at 0 ° C and left for 24 hours The later state was observed.
  • solubility to a weak solvent is represented by the following formula
  • Solubility in weak solvent (%) ((mass of added solvent (g) X 100%) / (mass of polyisocyanate compound (g)))
  • the gel fraction was determined from the mass force of the coating film obtained by immersing about 0.1 lg of the coating film in acetone at 23 ° C. for 24 hours, removing the coating film, and drying at 80 ° C. for 1 hour.
  • the obtained polyisocyanate compound was a transparent liquid and had a yield of 420 g, a viscosity of 160 mPa ⁇ s, and an NCO content of 17.4%.
  • NMR NMR was measured, the molar ratio of allophanate / isocyanurate was 84/16.
  • the resulting polyisocyanate compound is designated P-1.
  • the obtained polyisocyanate compound was a transparent liquid, and had a yield of 480 g, a viscosity of 450 mPa ⁇ s, and an NCO content of 17.7%.
  • NMR nuclear magnetic resonance
  • the molar ratio of allophanate / isocyanurate was 65/35.
  • the resulting polyisocyanate compound is P-2.
  • the obtained polyisocyanate compound was a transparent liquid, and had a yield of 770 g, a viscosity of lOmPa ⁇ s, and an NCO content of 17.2%.
  • NMR NMR was measured, the molar ratio of allophanate group / isocyanurate group was 97/3.
  • the resulting polyisocyanate compound is designated P-3.
  • P-5 was a transparent liquid, and the NCO content was 17.6% and the viscosity was 180 mPa.s.
  • the coating film was subjected to pencil hardness (destruction), water resistance secondary adhesion test, and weak solvent solubility of the curing agent.
  • test was carried out based on JIS K 5600-5-4 scratch hardness (pencil method).
  • the coated plate was cut into 25 squares with 2 mm in advance, immersed in boiling water for 2 hours, and tested based on the adhesion (cross-cut method) of JIS K 5600-5-6. Evaluation was also classified into 6 levels from 0 to 6 according to JIS K 5600-5-6.
  • the coated plate was immersed in boiling water for 2 hours, pulled up, cut into 25 squares at 2 mm, and tested based on the adhesion (cross-cut method) of JIS K 5600-5-6. Evaluation was also classified into 6 levels from 0 to 6 according to JIS K 5600-5-6.
  • Solubility in weak solvent ((mass of added solvent (g) X 100%) / (mass of polyisocyanate compound (g)))
  • Article materials to which the fluorine coating composition of the present invention is applied include inorganic materials such as concrete, natural stone, and glass, metals such as iron, stainless steel, aluminum, copper, brass, and titanium, plastic, rubber, and adhesive. And organic substances such as agents and wood.
  • old coating film it is suitable for coating on the surface of an already formed coating film, so-called old coating film. It is also suitable for coating organic / inorganic composite materials such as FRP, resin reinforced concrete, and fiber reinforced concrete.
  • articles to be painted include transportation equipment such as automobiles, trains and aircraft, civil engineering members such as bridge members and steel towers, industrial materials such as waterproof sheets, tanks and pipes, building exteriors, doors and window gates. Building materials such as members, monuments, poles, road median strips, road rails such as guardrails and soundproof walls, communication equipment, electrical and electronic parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明 細 書
フッ素塗料組成物
技術分野
[0001] 本発明は、弱溶剤に可溶な水酸基を有する含フッ素共重合体からなる主剤と、ァロ ファネート基とイソシァヌレート基を特定割合で含有するポリイソシァネート化合物か らなる硬化剤とを含有する塗料組成物に関する。
背景技術
[0002] 従来、耐候性に優れる塗膜を与える塗料として、水酸基を有する含フッ素共重合体 を含んでなる主剤と、ポリイソシァネート化合物を含んでなる硬化剤とを含有するフッ 素塗料組成物が知られている。フッ素塗料組成物は、重防食トップコートとして用い られたり、セメント系基材へのトップコートとして用いられたりしている。
[0003] し力、し、従来のトルエン、キシレン等の!/、わゆる強溶剤を含むフッ素塗料組成物は、 経年変化した合成樹脂調合ペイント、塩化ゴム系塗料、他のラッカー類等の旧塗膜 に直接塗布すると、縮みや膨れが生じたり、良好な密着性が得られないという問題が あった。
[0004] 特に、水酸基を有する含フッ素共重合体を含んでなる主剤組成物と、ポリイソシァ ネートを含んでなる硬化剤組成物を含有する 2液型のフッ素塗料組成物は、主剤の 水酸基と硬化剤のイソシァネート基が架橋反応を起こし、 3次元網目構造を構築する ため、耐候性ゃ耐汚染性に優れた性能を示すため、広く使用されている。
[0005] 2液型のフッ素塗料組成物の主剤に用いられる水酸基を有する含フッ素共重合体 は、水酸基の含有量 (水酸基価)が多いほど、架橋密度が高ぐ耐候性、耐汚染性に 優れた強靱な膜が作れる力 一方、水酸基が増えるほど、極性が高くなり、弱溶剤に は溶けにくくなる。このため、 2液型のフッ素塗料組成物には、通常、溶解力の強い 強溶剤が用いられており、前記の様に、旧塗膜を補修する場合に、縮みや膨れ、密 着性などの問題を有していた。
[0006] このような問題を解決するために、水酸基を有する含フッ素共重合体については、 強溶剤よりも溶解力の弱!/、弱溶剤を用いる弱溶剤可溶タイプの水酸基を有する含フ ッ素共重合体が開発されている。例えば、特許文献 1及び 2では、弱溶剤であるミネ ラルスピリットに可溶性の水酸基を有する含フッ素共重合体が提案されて!/、る。しかし 、特許文献 1で用いられている水酸基を有する含フッ素共重合体は、 2液型のフッ素 塗料の用いるために水酸基価を高めると、弱溶剤に対する溶解性が低下する場合が あった。
[0007] 一方、硬化剤に用いられるポリイソシァネート化合物には、へキサメチレンジイソシ ァネート(以下、 HDI)やイソホロンジイソシァネート(以下、 IPDI)などの脂肪族、ある いは脂環式ジイソシァネートをプレポリマー化したものが用いられてレ、る。ポリイソシァ ネート化合物も、従来のものは、極性が高いため、実際に使用する際には強溶剤に 溶解させる必要があった。そのため、臭気対策が必要な場合があり、また塗り替え作 業、補修作業、重ね塗り作業の場合、下地塗膜を侵すことがあるという問題点があつ た。
[0008] この問題を解決するため弱溶剤への溶解性が優れたポリイソシァネート化合物の 開発が進められ、特許文献 3〜7では、長鎖ジオールやモノアルコールをウレタン化 、あるいはァロファネート化したポリイソシァネート化合物、あるいは長鎖ジオールや モノアルコールをァロファネート化と同時にイソシァヌレート化したポリイソシァネート 化合物が提案されていた。これらのポリイソシァネート化合物は、低温時における、よ り極性が低い弱溶剤への溶解性は不十分な場合があった。
[0009] さらに、特許文献 8では、水酸基を有する含フッ素共重合体からなる主剤と炭素数 1 〜10のモノアルコールから得られるァロファネート基とイソシァヌレート基を有するポリ イソシァネート化合物からなる硬化剤を含有するフッ素塗料組成物が提案されている 力 該特許では弱溶剤については触れられておらず、また該特許で開示されている 水酸基を有する含フッ素共重合体およびポリイソシァネート化合物は弱溶剤に対し て十分な溶解性を示さなレ、。
特許文献 1:特開昭 63— 199770号公報
特許文献 2 :特開 2004— 277716号公報
特許文献 3:特開昭 61— 72013号公報
特許文献 4 :特開平 2— 250872号公報 特許文献 5 :特開平 4 306218号公報
特許文献 6:特開平 5— 70444号公報
特許文献 7:特開平 5— 222007号公報
特許文献 8:特開平 5— 278240号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、低温時でも極性が低!/、弱溶剤に溶解可能な水酸基を有する含フッ素 共重合体を含有する主剤とポリイソシァネート化合物を含有する硬化剤を組み合わ せた 2液型のフッ素塗料組成物を提供することを目的とする。
課題を解決するための手段
[0011] 本発明者らは鋭意検討した結果、フルォロォレフインと、フルォロォレフインと共重 合可能な二重結合含有モノマーであって、特定量の炭素数 3以上の分岐状アルキ ル基を含有して!/、る該二重結合含有モノマー及び特定量の水酸基を含有してレ、る 該二重結合含有モノマーを含有する弱溶剤可溶な水酸基を有する含フッ素共重合 体を含んでなる主剤と、特定比率のァロファネート基/イソシァヌレート基を含有する ポリイソシァネート化合物を含んでなる硬化剤組成物を含有するフッ素塗料組成物 、上記課題を解決できることを見出し、本発明を完成するに至った。
[0012] すなわち、本発明は、
(1) (A)フルォロォレフインと、フルォロォレフインと共重合可能な二重結合含有モノ マーとの共重合体であり、該共重合体中、フルォロォレフインに基づくフッ素の含有 量が 10質量%以上であり、更に、該共重合体中、前記二重結合含有モノマーとして 、水酸基を含有するモノマーを 5〜30モル%、そして炭素数 3以上の分岐状アルキ ル基を含有するモノマーを 10〜50モル%含み、該共重合体からなる主剤と、(B)脂 肪族ジイソシァネート、脂環式ジイソシァネートから選ばれる少なくとも 1種類のジイソ シァネート、及び炭素数が 1〜20のモノアルコールから得られ、ァロファネート基/ィ ソシァヌレート基のモル比が 90/10〜81/19であるポリイソシァネート化合物を含 んでなる硬化剤とを含有するフッ素塗料組成物を提供するものであり、また本発明は (2) (A)フルォロォレフインと、フルォロォレフインと共重合可能な二重結合含有モノ マーとの共重合体であり、該共重合体中、フルォロォレフインに基づくフッ素の含有 量が 10質量%以上であり、更に、該共重合体中、前記二重結合含有モノマーとして 、水酸基を含有するモノマーを 5〜30モル%、そして炭素数 3以上の分岐状アルキ ル基を含有するモノマーを 10〜50モル%含み、該共重合体を含んでなる主剤と、 ( B)脂肪族ジイソシァネート、脂環式ジイソシァネートから選ばれる少なくとも 1種類の ジイソシァネート、及び炭素数が;!〜 20のモノアルコールから得られ、ァロファネート 基/イソシァヌレート基のモル比が 90/10〜81/19であるポリイソシァネート化合 物を含んでなる硬化剤と、弱溶剤とを含有する含フッ素塗料組成物を提供するもの であり、また本発明は、
(3) (A)フルォロォレフインと、フルォロォレフインと共重合可能な二重結合含有モノ マーとの共重合体であり、該共重合体中、フルォロォレフインに基づくフッ素の含有 量が 10質量%以上であり、更に、該共重合体中、前記二重結合含有モノマーとして 、水酸基を含有するモノマーを 5〜30モル%、そして炭素数 3以上の分岐状アルキ ル基を含有するモノマーを 10〜50モル%含み、該共重合体を含んでなる主剤と、 ( B)脂肪族ジイソシァネート、脂環式ジイソシァネートから選ばれる少なくとも 1種類の ジイソシァネート、及び炭素数が;!〜 20のモノアルコールから得られ、ァロファネート 基/イソシァヌレート基のモル比が 90/10〜81/19であるポリイソシァネート化合 物を含んでなる硬化剤との混合比力 イソシァネート基/水酸基のモル比で 0. 2〜5 . 0である、上記(1)又は(2)に記載のフッ素塗料組成物である。
発明の効果
本発明で用いる水酸基を有する含フッ素共重合体からなる主剤およびポリイソシァ ネート化合物からなる硬化剤は、低温時にお!、て、極性が低!/、弱溶剤にも十分安定 に溶解することが可能である。従って、本発明のフッ素塗料組成物は、低温時におい て、極性の低い弱溶剤に溶解した場合でも使用することが可能となる。また、本発明 のフッ素塗料組成物は、強靱な塗膜を作成することができるため、高い硬度、高い密 着性を有する塗膜を形成することができる。
発明を実施するための最良の形態 [0014] 以下、本発明を詳細に説明する。
[0015] 本発明のフッ素塗料組成物は、(A)水酸基を有する含フッ素共重合体を含んでな る主剤と、(B)脂肪族ジイソシァネート、あるいは脂環式ジイソシァネート、及び炭素 数が 1〜20のモノアルコールの反応から得られる硬化剤とを含有している。
[0016] まず、本発明の構成要件 (A)の主剤について説明する。
[0017] 本発明で用いる主剤は、水酸基を有する含フッ素共重合体を含有している。主剤 には、塗膜の光沢、硬度、塗料の施工性を改良するために、アクリル酸またはそのェ ステルからなる重合体、ポリエステル等の塗料用樹脂を含有して!/、てもよ!/、。
[0018] 本発明で用いる含フッ素共重合体とは、フルォロォレフインと、フルォロォレフインと 共重合可能な二重結合含有モノマーとの共重合体であり、該共重合体中、フルォロ ォレフィンに基づくフッ素の含有量が含フッ素共重合体の総質量に対して 10質量% 以上であり、また該共重合体中、前記二重結合含有モノマーとして、前記二重結合 含有モノマー量に対して、水酸基を含有するモノマーを 5〜30モル0 /0、そして炭素 数 3以上の分岐状アルキル基を含有するモノマーを 10〜50モル%含むものであり、 弱溶剤可溶性である。
[0019] フルォロォレフインとしては、フッ素付加数は 2以上が好ましぐ 3〜4がより好ましい 。フッ素付加数が 2以上であると、耐候性が充分であり好ましい。
[0020] フルォロォレフインとしては、例えば、テトラフルォロエチレン、クロ口トリフルォロェ チレン、フッ化ビニリデン、へキサフルォロプロピレン等を挙げることができ、特にテト ラフルォロエチレン、クロ口トリフルォロエチレンが好まし!/、。
[0021] 二重結合含有モノマーは、フルォロォレフインと共重合可能であり、フルォロォレフ イン以外のビュル系モノマーが好ましく使用される。該ビュル系モノマーとは、 CH =
2
CH で表される炭素 炭素二重結合を有する化合物である。
二重結合モノマーとしては、フッ素原子を含まなレ、モノマーが好ましレ、。
[0022] 該ビュル系モノマーとしては、直鎖状、分岐状または環状のアルキル基を含有する アルキルビュルエーテル、アルキルビュルエステル等が挙げられる。
[0023] 本発明において、二重結合含有モノマーは、水酸基を含有する二重結合含有モノ マー(以下、水酸基含有モノマーという。)と、炭素数 3以上の分岐状アルキル基を含 有する二重結合含有モノマー(以下、分岐アルキル基含有モノマーという。)の両方 を含む。なお、水酸基含有モノマーが炭素数 3以上の分岐状アルキル基を含有して V、てもよく、分岐アルキル基含有モノマーが水酸基を含有して!/、てもよ!/、。
[0024] 本発明における二重結合含有モノマーのうち、前記共重合体中、 5〜30モル%が 水酸基を含有する。
[0025] 水酸基含有モノマーの含有量が 5モル%以上であると、硬度の高い塗膜を得るた めに充分な量の水酸基が含フッ素共重合体中に導入されるため好ましい。
[0026] また、水酸基含有モノマーの含有量が 30モル%以下であると、弱溶剤に対し、塗 料用として充分な溶解性を維持できるため好ましレ、。
[0027] 水酸基含有モノマーの炭素数は、特に制限はないが、 2〜; 10力 S好ましく、 2〜6がよ り好ましぐ 2〜4がとりわけ好ましい。
[0028] 水酸基含有モノマーとしては、 4—ヒドロキシブチルビュルエーテル(HBVE)、 2— ヒドロキシェチノレビニノレエーテノレ(HEVE)、シクロへキサンジメタノーノレモノビニノレエ 一テル等のヒドロキシアルキルビュルエーテル類;ヒドロキシェチルァリルエーテル、 シクロへキサンジメタノールモノアリルエーテル等のヒドロキシアルキルァリルエーテ ル類;ヒドロキシェチル (メタ)アタリレート等の(メタ)アクリル酸ヒドロキシアルキルエス テル類などが挙げられる。
[0029] 共重合性に優れ、形成される塗膜の耐候性が良好であることから、ヒドロキシアルキ ルビニルエーテル類が好ましレ、。
[0030] なかでも、弱溶剤に対する溶解性に優れることから、炭素数 2〜4のヒドロキシアル キルビュルエーテルが好ましぐ HBVEがより好ましい。
[0031] HBVE等の炭素数 2〜4のヒドロキシアルキルビュルエーテルを用いることにより、 弱溶剤への溶解性が優れる理由は明らかではなレ、が、炭素数が少な!/、ことから、含 フッ素共重合体における側鎖の水酸基が主鎖の近くに存在するため他の側鎖が立 体障害となり、弱溶剤の影響を受けに《なるためと推測される。
[0032] 該水酸基含有モノマーは、 1種単独で用いてもよぐ 2種以上を組み合わせて用い てもよい。
[0033] 本発明における二重結合含有モノマーのうち、前記共重合体中、 10〜50モル% が炭素数 3以上の分岐アルキル基を含有する。分岐アルキル基含有モノマーが 10 〜50モル0 /0であることにより、上記の量の水酸基含有モノマーを用いても、弱溶剤へ の溶解性を確保できる。
[0034] 該分岐アルキル基含有モノマーを用いることにより、弱溶剤への溶解性を確保でき る理由は明らかではないが、分岐アルキル基含有モノマーの分子構造と弱溶剤の分 子構造とが類似しており、相溶性が高いためと推測される。
[0035] 分岐アルキル基含有モノマーにおける分岐アルキル基の炭素数は、 3以上であれ ば特に制限はなぐ 4〜; 15が好ましぐ 4〜; 10がより好ましい。分岐アルキル基含有 モノマーとしては、分岐アルキル基を含有するビュルエーテル類、ァリルエーテル類 または (メタ)アクリル酸エステル類が挙げられる。分岐アルキル基としては、イソプロ ピノレ基、イソブチル基、 sec ブチル基、 tert ブチル基、 2—ェチルへキシル基、 2 メチルへキシル基等が挙げられる。分岐アルキル基含有モノマーとしては、 2—ェ チルへキシルビュルエーテル(2— EHVE)、 tert ブチルビュルエーテル(t BuV E)等のビュルエーテル類が共重合性に優れるため好ましぐ 2— EHVEがより好まし い。該分岐アルキル基含有モノマーは、 1種単独で用いてもよぐ 2種以上を組み合 わせて用いてもよい。
[0036] 本発明においては、二重結合含有モノマーとして、さらに、本発明の効果を損なわ ない範囲で、水酸基含有モノマー、分岐アルキル基含有モノマー以外の他の二重結 合含有モノマーを含有してレ、てもよレ、。
[0037] 他の二重結合含有モノマーとしては、アルキル基を含有するモノマーが好ましぐ 該アルキル基としては、直鎖状、分岐状または環状のアルキル基が挙げられる。該ァ ルキル基の炭素数は 2〜8が好ましぐ 2〜6がより好ましい。特に、環状アルキル基を 含有する二重結合含有モノマーを用いると、含フッ素共重合体のガラス転移温度 (T g)が上がり、塗膜の硬度がさらに高まるため好ましい。該環状アルキル基を含有する 二重結合含有モノマーとしては、シクロへキシルビュルエーテル、シクロへキシルメチ ルビニルエーテル等の環状アルキルビュルエーテル類、シクロへキシル(メタ)アタリ レート、 3, 3, 5—トリメチルシクロへキシル (メタ)アタリレート等の(メタ)アクリル酸環 状アルキルエステル類等が挙げられる。該他の二重結合含有モノマーは、 1種単独 で用いてもよく、 2種以上を組み合わせて用いてもょレ、。
[0038] 二重結合含有モノマーの全量における他の二重結合含有モノマーの割合は、 0〜
70モノレ0 /0カ好ましく、 30〜60モノレ0 /0カより好ましレヽ。
[0039] 含フッ素共重合体におけるフルォロォレフインに基づく重合単位と二重結合含有モ ノマーに基づく重合単位の割合は、フルォロォレフインに基づく重合単位が 30〜70 モル0 /0であることが好ましぐ 40〜60モル0 /0であること力 Sより好ましく、二重結合含有 モノマーに基づく重合単位が 70〜30モル0 /0であることが好ましぐ 60〜40モル0 /0で あることがより好ましい。フルォロォレフインに基づく重合単位の割合が 70モル0 /0以 下であると、水酸基を有する含フッ素共重合体の弱溶剤への溶解性が充分となり、 3 0モル%以上であると充分な耐候性が得られるため好ましい。
[0040] 本発明で用いる含フッ素共重合体は、フルォロォレフインと、水酸基含有モノマー および分岐アルキル基含有モノマーを所定割合含む二重結合含有モノマーとの混 合物に、重合媒体の存在下または非存在下で、重合開始剤または電離性放射線な どの重合開始源を作用させて共重合反応を行うことによって製造できる。
[0041] 共重合反応における、フルォロォレフインと二重結合含有モノマーとの使用量の割 合は、上記の含フッ素共重合体におけるフルォロォレフインに基づく重合単位と二重 結合含有モノマーに基づく重合単位の割合と同じであることが好ましい。
[0042] 重合媒体としては、メチルェチルケトン、メチルイソブチルケトン等のケトン類、酢酸 ェチル、酢酸 n ブチル等のエステル類、キシレン、トルエン等の芳香族系溶剤、シ クロへキサノン、ソルベントナフサ、ミネラルターペン、ミネラルスピリット、石油ナフサ 等の脂肪族系溶剤、 3—エトキシプロピオン酸ェチル、メチルアミルケトン、酢酸 tert ーブチル、 4 クロ口べンゾトリフルオリド、ベンゾトリフルオリド、モノクロロトノレェン、 3 , 4ージクロ口べンゾトリフルオリド等が挙げられる。
[0043] 重合開始剤としては、 2, 2 'ーァゾビスイソブチロニトリル、 2, 2 'ーァゾビスシクロへ キサンカーボネート二トリル、 2, 2 '—ァゾビス(2, 4 ジメチルバレロニトリル)、 2, 2, ーァゾビス(2—メチルブチロニトリル)等のァゾ系開始剤;シクロへキサノンパーォキ サイド等のケトンパーオキサイド類、 tert ブチルハイド口パーオキサイド等のハイド 口パーオキサイド類、ベンゾィルパーオキサイド等のジァシルバーオキサイド類、ジー tert—ブチルパーオキサイド等のジアルキルパーオキサイド類、 2, 2—ジー(tert— ブチルパーォキシ)ブタン等のパーォキシケタール類、 tert—ブチルパーォキシビバ レイト等のアルキルパーエステル類、ジイソプロピルパーォキシジカーボネート等の パーカーボネート類等の過酸化物系開始剤;等が挙げられる。
[0044] 該含フッ素共重合体は、フルォロォレフインに基づくフッ素の含有量が、含フッ素共 重合体の総質量に対して 10質量%以上であり、 20〜40質量%であることが好ましく 、 20〜30質量%であることが特に好ましい。フッ素の含有量が 10質量%以上である と、塗膜の耐候性が充分となり好ましい。またフッ素の含有量が 40質量%以下である 場合には、弱溶剤への溶解性が向上する利点がある。
[0045] また、該含フッ素共重合体は、硬化剤との反応性部位として水酸基を含有する。
含フッ素共重合体中の水酸基価(以下、 OHVという。)は、水酸化カリウムの化学 的反応当量に換算して、含フッ素共重合体の総固形分に対し、 30〜55mgKOH/ g力 S好ましく、 35〜50mgKOH/gがより好ましい。 OHVが 30mgKOH/g以上であ ると、硬度の高い塗膜を得ることができ、 OHVが 55mgKOH/g以下であると、弱溶 剤に対し、塗料用含フッ素共重合体が充分な溶解性を有するため好ましい。
[0046] 含フッ素共重合体は、ポリスチレンを標準物質としてゲルパーミエーシヨンクロマトグ ラフィー(GPC)で測定される数平均分子量(Mn)が 5000〜; 10000であることが好 ましい。 Mnが 5000以上であると耐候性に優れ、 Mnが 10000以下であると弱溶剤 への溶解性に優れるため好ましレ、。
[0047] 以下、 GPCの測定方法につ!/、て述べる。含フッ素共重合体、および主剤の分子量 に関する測定値は、全て以下の測定方法で行ったものである。使用機器: HLC— 80 20 (東ソー株式会社製)、使用カラム: KF 806M、KF 806M、 KF802 (何れも東 ソー株式会社製)、試料濃度: 5wt/vol% (例えば、試料 50mgを lmlの THFに溶 解する)、キャリア: THF、検出方法:視差屈折計、流出量 1. Oml/min.、カラム温 度 35°C)。 GPCの検量線は、分子量(Mp) 750万〜 580のポリスチレン(株式会社シ マセィ製 Easical PS— 1)を標準として作成した。
[0048] また、含フッ素共重合体のガラス転移点(以下、 Tgと!/、う。 )は、 25°C以上が好まし く、 30〜40°Cがより好ましい。 Tgが 25°C以上であると、高硬度の塗膜が得られるた め好ましい。
[0049] 本発明の塗料用含フッ素共重合体は、さらに、カルボキシ基を含有することが好ま しい。カルボキシ基を含有することにより、例えば塗料として用いる際に顔料の分散 性が向上する。含フッ素共重合体中のカルボキシ基の含有量 (酸価(以下、 AVという 。))は、水酸化カリウムの化学的反応当量に換算して、含フッ素共重合体の総固形 分に対し、 0. 5〜5mgKOH/gが好ましぐ 2〜5mgKOH/gがより好ましい。
[0050] 該カルボキシ基は、例えば、上述したフルォロォレフインと二重結合含有モノマーと の重合反応後、含フッ素共重合体中の水酸基に多価カルボン酸またはその無水物 を反応させることにより導入できる。また、カルボキシ基を有する二重結合含有モノマ 一の直接重合によっても導入できる。
[0051] 本発明で用いる含フッ素共重合体は、弱溶剤に可溶である。本発明でいう可溶と は、 23°Cの条件で含フッ素共重合体に対して 100質量%の弱溶剤に溶解させた場 合、分離、沈殿を生じることなく安定に存在するということである。この場合、固形分の 全量が弱溶剤に溶解していることが最も好ましいが、若干の不溶分があり、いわゆる NAD (非水分散体)の形状をとつてもよ!/、。
本発明で用いる含フッ素共重合体、及び主剤は、弱溶剤を含有してもよい。
[0052] 含フッ素共重合体、あるいは主剤が弱溶剤を含有している場合、主剤において、弱 溶剤、フルォロォレフイン、そしてフルォロォレフインと共重合可能なモノマーを実質 的に含有しない含フッ素共重合体と、弱溶剤との質量比は、 10/90〜90/10が好 ましい。質量比の下限は、より好ましくは 20/80、より一層好ましくは 40/60、最も 好ましくは 60/40である。質量比の上限は、より好ましくは 90/10、より一層好まし くは 85/15である。
[0053] 弱溶剤とは、労働安全衛生法による有機溶剤の分類において、第 3種有機溶剤と されて!/、るものであり、下記(1)〜(3)の!/、ずれかに相当するものである。
(1) ガソリン、コールタールナフサ(ソルベントナフサを含む)、石油エーテル、石油 ナフサ、石油ベンジン、テレビン油、ミネラルスピリット(ミネラルシンナー、ペトロリウム スピリット、ホワイトスピリットおよびミネラルターペンを含む)、
(2) (1)のみからなる混合物、 (3) (1)と、(1)以外の混合物で、(1)を 5質量%を超えて含有するもの。ただし、第 一種有機溶剤、第二種有機溶剤の割合が 5質量%以下のもの。
なお、第一種有機溶剤とは、クロ口ホルム、四塩化炭素、 1 , 2—ジクロルェタン、 1 , 2—ジクロルエチレン、 1 , 1 , 2, 2—テトラクロルェタン、トリクロルェタン、二硫化炭素 、及び、これらのみからなる混合物、これらとこれら以外の混合物で、これらを 5質量 %を超えて含有するもの。
また、第二種有機溶剤とは、アセトン、イソブチルアルコール、イソプロピルアルコー ノレ、イソペンチノレアノレコーノレ、 ェチノレアノレコーノレ、エチレングリコーノレモノェチノレエー テノレ、エチレングリコ一ノレモノェチノレエーテノレアセテート、エチレングリコーノレモノ ーブチノレエーテノレ、エチレングリコーノレモノメチノレエーテノレ、オノレトージクロ口べンゼ ン、キシレン、クレゾール、クロルベンゼン、酢酸イソブチル、酢酸イソプロピル、酢酸 イソペンチル、酢酸ェチル、酢酸—n ブチル、酢酸—n—プロピル、酢酸—n ぺ ンチノレ、酢酸メチノレ、シクロへキサノーノレ、シクロへキサノン、 1 , 4 ジ才キサン、ジク ロロメタン、 N, N ジメチルホルムアミド、スチレン、テトラクロロエチレン、テトラヒドロ フラン、 1 , 1 , 1 トリクロルェタン、トルエン、 n へキサン、 1ーブタノ一ノレ、 2—ブタ ノーノレ、メタノール、メチルイソブチルケトン、メチルェチルケトン、メチルシクロへキサ ノール、メチルシクロへキサノン、メチルー n ブチルケトン、及び、これらのみからな る混合物、これらとこれら以外の混合物で、これらを 5質量%を超えて含有するもの( ただし、第一種有機溶剤の割合が 5質量%以下のもの)。
[0054] 本発明で用いる弱溶剤として、より好ましくは、これらの第 3種有機溶剤を使用した もので、強溶剤に相当する第 2種有機溶剤を、全溶剤の 5質量%を超えて含有しな いものである。更に好ましくは、ァニリン点が 30°C〜70°Cの溶剤である。ァニリン点の 下限は更に好ましくは 40°C、ァニリン点の上限は更に好ましくは 60°Cである。ァニリ ン点が 30°Cを超えると、旧塗膜を侵さず、ァニリン点が 70°C以下であれば、本発明 で用いる含フッ素共重合体およびポリイソシァネート化合物が溶解可能となる。なお 、ァニリン点は JIS K 2256に記載のァニリン点試験方法に準じて測定すればよい
[0055] 弱溶剤としては、引火点が室温以上であることから、ミネラルスピリットが好ましい。ミ ネラルスピリットとして一般に販売されている溶剤は、例えば、 HAWS (シェルジャパ ン製、ァニリン点 17°C)、エツソナフサ No. 6 (ェクソンモービル化学製、ァニリン点 43 。C)、 LAWS (シェルジャパン製、ァニリン点 44。C)、ぺガゾ一ノレ 3040 (ェクソンモー ビル化学製、ァニリン点 55°C)、 Aソルベント(新日本石油化学株式会社、ァニリン点 45°C)、クレンゾル (新日本石油化学株式会社製、ァニリン点 64°C)、ミネラルスピリツ ト A (新日本石油化学株式会社製、ァニリン点 43°C)、 ノ、ィァロム 2S (新日本石油化 学株式会社製、ァニリン点 44°C)、 ノ、ィァロム 2S (新日本石油化学株式会社製、ァニ リン点 44°C)、リニアレン 10、リニアレン 12 (出光石油化学株式会社製、 αォレフイン 系炭化水素、ァニリン点 44°C、 54°C)、エタソール D30 (ェクソンモービル有限会社 製、ナフテン系溶斉 IJ、ァニリン点ヽ 63。C)、リカソノレフ、、 900、 910B、 1000 (新曰本理ィ匕 株式会社製、水添 C9溶剤、ァニリン点 53°C、 40°C、 55°C)などをあげることができる 。本発明で用いる弱溶剤としては、これらを単独または混合して用いることができる。
[0056] 以下、本発明の構成要件 (B)のポリイソシァネート化合物を含んでなる硬化剤につ いて説明する。
本発明で用いる硬化剤は、ポリイソシァネート化合物を含有している。
本発明で用いるポリイソシァネート化合物は、脂肪族ジイソシァネート、脂環式ジィ ソシァネートから選ばれる少なくとも 1種類のジイソシァネート、及び炭素数が;!〜 20 のモノアルコールの反応から得られ、ァロファネート基/イソシァヌレート基のモル比 力 90/10〜81/19である。
[0057] 脂肪族ジイソシァネートとは分子中に脂肪族基を有する化合物である。一方、脂環 式ジイソシァネートとは、分子中に環状脂肪族基を有する化合物である。脂肪族ジィ ソシァネートを用いると得られるポリイソシァネート化合物が低粘度となるのでより好ま しい。脂肪族ジイソシァネートとして、例えば、 1 , 4—ジイソシアナトブタン、 1 , 5—ジ イソシアナトペンタン、 1 , 6—ジイソシアナトへキサン(以下、 HDI)、 1 , 6—ジイソシァ ナトー 2, 2, 4—トリメチルへキサン、 2, 6—ジイソシアナトへキサン酸メチル(リジンジ イソシァネート)等が挙げられる。脂環式ジイソシァネートとしては、例えば、 5—イソシ アナト一 1—イソシアナトメチル一 1 , 3, 3—トリメチルシクロへキサン (イソホロンジイソ ァネート)、ビス(4 イソシアナトシクロへキシル)メタン(水添ジフエニルメタンジイソシ ァネート)、 1 , 4ージイソシアナトシクロへキサン等が挙げられる。この中でも HDI、ィ ソホロンジイソシァネート、水添キシリレンジイソシァネート、水添ジフエニルメタンジィ ソシァネートは、工業的に入手し易いため好ましい。中でも HDIは耐候性と塗膜の柔 軟性が非常に優れており最も好ましい。以下、脂肪族ジイソシァネートと脂環式ジイソ シァネートを総称してジイソシァネートと!/、う。
本発明では、炭素数が 1〜20のモノアルコールを用いる。モノアルコールの炭素数 の下限は、好ましくは 2、より好ましくは 3、更に一層好ましくは 4、最も好ましくは 6であ る。上限は、好ましくは 16、より好ましくは 12、更に一層好ましくは 9である。炭素数が 1以上であれば弱溶剤への溶解力を発揮できる。炭素数が 20以下であれば、塗膜 の硬度が十分である。モノアルコールは 1種類でも 2種類以上混合して用いても良い 。また本発明で用いるモノアルコールは、分子内にエーテル基や、エステル基、カル ボニル基を含んでも良いが、好ましいのは飽和炭化水素基だけからなるモノアルコー ルである。更に、分岐を有しているモノアルコールがより好ましい。このようなモノアル コールとして例えば、メタノール、エタノール、 1 プロパノール、 2—プロパノール、 1 ーブタノール、 2—ブタノ一ノレ、イソブタノール、 1 ペンタノール、 2—ペンタノール、 イソアミノレァノレコーノレ、 1一へキサノーノレ、 2—へキサノーノレ、 1 ヘプタノ一ノレ、 1 ォクタノール、 2—ェチルー 1一へキサノール、 3, 3, 5—トリメチルー 1一へキサノー ノレ、 トリデカノーノレ、 ペンタデカノーノレ、ノ ノレミチノレアノレコーノレ、ステアリノレアノレコーノレ 、シクロペンタノール、シクロへキサノール、メチルシクロへキサノール、トリメチルシク 口へキサノール等が挙げられる。この中でイソブタノール、 n ブタノール、イソアミノレ ァノレコーノレ、 1一へキサノーノレ、 1 ヘプタノ一ノレ、 1ーォクタノーノレ、 2—ェチノレー 1 一へキサノーノレ、トリデカノーノレ、 ペンタデカノーノレ、ノ ノレミチノレアノレコーノレ、 ステアリ ルアルコール、 1 , 3, 5—トリメチルシクロへキサノールは弱溶剤への溶解性が特に 優れているため、より好ましい。 1 プロパノール、イソブタノール、 1ーブタノール、ィ ソァミノレアノレコーノレ、 ペンタノ一ノレ、 1一へキサノーノレ、 2—へキサノーノレ、 1一へプタ ノーノレ、 1ーォクタノール、 2 ォクタノール、 2 ェチルーへキシルアルコール、 3, 3 , 5—トリメチル 1—へキサノールは、粘度がより低くなるため、より一層好ましい。ィ ソブタノール、 2—へキサノール、 2—ォクタノール、 2—ェチルー 1一へキサノール、 3, 3, 5—トリメチルー 1一へキサノールは、弱溶剤への溶解性が非常に優れており、 最も好ましい。
[0059] 本発明で用いるポリイソシァネート化合物は、ァロファネート基/イソシァヌレート基 のモル比力 0/10〜81/19である。ァロファネート基/イソシァヌレート基のモル 比の上限は、より好ましくは 88/12、一層好ましくは 86/14である。下限は、より好 ましくは 83/17である。ァロファネート基とイソシァヌレート基のモル比力 90/10 〜81/19の場合に、硬化性と、弱溶剤への溶解性が十分となる。
[0060] なお、ァロファネート基とイソシァヌレート基のモル比は、 ifi— NMRにより求めるこ とができる。へキサメチレンジイソシァネートおよびそれから得られるイソシァネートプ レポリマーを原料として用いたポリイソシァネート化合物を1 H— NMRで測定する方 法の一例を以下に示す。
[0061] ェ^1 NMRの測定方法例:ポリイソシァネート化合物を重水素クロ口ホルムに 10質 量%の濃度で溶解する(ポリイソシァネート化合物に対して 0. 03質量%テトラメチル シランを添加)。化学シフト基準は、テトラメチルシランの水素のシグナルを Oppmとし た。ェ^! NMRにて測定し、 8. 5ppm付近のァロファネート基の窒素に結合した水素 原子(ァロファネート基 lmolに対して、 lmolの水素原子)のシグナルと、 3. 85ppm 付近のイソシァヌレート基に隣接したメチレン基の水素原子(イソシァヌレート基 1モ ノレに対して、 6molの水素原子)のシグナルの面積比を測定する。
ァロファネート基/イソシァヌレート基 = (8· 5ppm付近のシグナル面積) / (3. 85 ppm付近のシグナノレ面積 /6)
また、ウレトジオン体は、弱溶剤への溶解性が低いだけでなぐ熱などにより解離し て HDIを生成し易いため、ウレトジオン体の含有量を削減することが好ましい。ウレト ジオン体の含有量は、ポリイソシァネート化合物に対して好ましくは 10質量%以下、 より好ましくは 5質量%以下、更に一層好ましくは 3質量%以下である。ウレトジオン体 の含有量の測定は、ゲル濾過クロマトグラフィー(以下、 GPC)の分子量 336程度の ピークの面積の割合を示差屈折計で測定することで求めることができる。 336程度の ピーク付近に測定の障害となるようなピークがある場合は、 FT— IRを用いて、 1770c m 1程度のウレトジオン基のピークの高さと、 1720cm 1程度のァロファネート基のピ ークの高さの比を、内部標準を用いて定量する方法によっても求めることができる。
[0062] 以下、 GPCの測定方法につ!/、て述べる。ポリイソシァネート化合物、および硬化剤 の分子量に関する測定値は、全て以下の測定方法で行ったものである。使用機器: ^1しじー8120 (東ソー株式会社製)、使用カラム:丁31^ GEL SuperHlOOO, TS K GEL SuperH2000、 TSK GEL SuperH3000 (何れも東ソー株式会社製) 、試料濃度: 5wt/vol%、キャリア: THF、検出方法:示差屈折計、流出量 0. 6ml/ min.、カラム温度 30°C)。 GPCの検量線は、分子量 50000〜2050のポリスチレン( ジーエルサイエンス株式会社製 PSS— 06 (Mw50000)、 BK13007 (Mp = 20000 、 Mw/Mn= l . 03)、 PSS— 08 (Mw= 9000)、 PSS— 09 (Mw=4000)、 5040 35125 (Mp = 2050、 Mw/Mn= l . 05)と、へキサメチレンジイソシァネート系ポ リイソシァネート化合物(デユラネート TPA— 100、旭化成ケミカルズ株式会社製)の イソシァヌレート体の 3量体〜 7量体(イソシァヌレート 3量体分子量 = 504、イソシァ ヌレート 5量体分子量 = 840、イソシァヌレート 7量体分子量 = 1176)及び HDI (分 子量 = 168)を標準として作成した。
[0063] 更に、ビウレット体、その他のジイソシァネート重合体も、弱溶剤への溶解性が低下 するため、含有量が多くなるのは好ましくない。本発明で用いるポリイソシァネート化 合物にビウレット体、その他のジイソシァネート重合体が含まれる量の範囲としては、 好ましくは 10質量%以下、より好ましくは 5質量%以下、更に一層好ましくは 3質量% 以下が適当である。
[0064] ウレタン体は、基材との密着性を向上させるが、多すぎると弱溶剤への溶解性が低 下する場合がある。本発明で用いるポリイソシァネート化合物に、ウレタン体が含まれ る量の範囲としては、好ましくは 0. ;!〜 10質量%、より好ましくは 0. 2〜5質量%、更 に一層好ましくは 0. 5〜3質量%が適当である。
[0065] 本発明で用いるポリイソシァネート化合物のイソシァネート基含有量(以下、 NCO 含有量)は、実質的に溶剤ゃジイソシァネートを含んでいない状態で 10〜22質量% 、好ましくは 13〜21質量%、より好ましくは 16〜20質量%である。 10〜22質量%の 範囲であれば弱溶剤に十分溶解して、かつ十分な架橋性を有するポリイソシァネート ィ匕合物を得ること力 Sでさる。
[0066] 本発明で用いるポリイソシァネート化合物の粘度は、実質的に溶剤ゃジイソシァネ ートを含んでいない状態で好ましくは 50〜500mPa. sである。粘度の下限は、より好 ましく (ま 75mPa. s、より一層好ましく (ま lOOmPa. s、更 ίこ一層好ましく (ま 120mPa. s である。粘度の上限は、より好ましくは 450mPa. s、より一層好ましくは 400mPa. s、 一層好ましくは 350mPa. s、最も好ましくは 300mPa. sである。 50以上であれば十 分な架橋性を有するポリイソシァネート化合物を得ることができる。 500mPa. s以下 であれば VOC成分を減らしたコーティング組成物を得ることが可能となる。
[0067] 本発明で用いるポリイソシァネート化合物の数平均官能基数 (イソシァネート基)は 、好ましくは 2. 10-2. 50である。数平均官能基数の下限は、より好ましくは 2. 15、 より一層好ましく (ま 2. 20である。上限 ίま、より好ましく ίま 2. 40、より一層好ましく ίま 2· 35である。数平均官能基数が 2. 10-2. 50の範囲の場合に、塗膜にした場合の硬 化性と、弱溶剤への溶解性が良好となる。
[0068] 数平均官能基数は、以下の式で求めることができる。
数平均官能基数 =数平均分子量 X NCO含有量(%) /4200
数平均分子量は、 GPCの測定で求めることができる。
[0069] 本発明で用いるポリイソシァネート化合物は、弱溶剤に可溶である。
本発明で用いるポリイソシァネート化合物及び硬化剤は弱溶剤を含有してもよレ、。
[0070] ポリイソシァネート化合物、あるレ、は硬化剤が弱溶剤を含有してレ、る場合、硬化剤 において、弱溶剤およびジイソシァネートを実質的に含有しないポリイソシァネート化 合物と弱溶剤の質量比は、 5/95〜95/5が好ましい。ポリイソシァネート化合物と 弱溶剤の質量比の下限は、より好ましくは 10/90、より一層好ましくは 15/85であ る。質量比の上限は、より好ましくは 90/10、より一層好ましくは 80/20である。
[0071] 以下、本発明で用いるポリイソシァネート化合物の製造方法について説明する。
本発明で用いるポリイソシァネート化合物を製造する方法としては、以下の 3つの方 法が挙げられる。
[0072] (1) C;!〜 20のモノアルコールとジイソシァネートを、ウレタン化反応し、その後、あ るいは同時にァロファネート化反応及びイソシァヌレート化反応を行い、ポリイソシァ ネート化合物を得る方法。
[0073] (2) C;!〜 20のモノアルコールとジイソシァネートを、ウレタン化反応し、その後、あ るいは同時にァロファネート化反応を行い、得られたァロファネート基を有するポリイ ソシァネートと、ジイソシァネ一トをイソシァヌレート化反応して得たイソシァヌレート基 を有するポリイソシァネートを混合して、ポリイソシァネート化合物を得る方法。
[0074] (3) C;!〜 20のモノアルコールとジイソシァネートを、ウレタン化反応し、その後、あ るいは同時にァロファネート化反応を行い、得られたァロファネート基を含有するポリ イソシァネートと、 C;!〜 20のモノアノレコーノレとジイソシァネートを、ウレタンィ匕反応し、 その後あるいは同時にァロファネート化及びイソシァヌレート化反応を行い、得られた ァロファネート基及びイソシァヌレート基を有するポリイソシァネートを混合してポリイソ シァネート化合物を得る方法。
[0075] (1)の方法は、一つのプロセスで製造できるため、生産効率が良いという特徴があ る。 (2)と(3)の方法は、イソシァヌレート構造を有するポリイソシァネートあるいはイソ シァヌレート構造とァロファネート構造を有するポリイソシァネートと、ァロファネート基 を有するポリイソシァネートを任意の比率で混合することが可能であるので、得られる ポリイソシァネート化合物の物性の調整が容易であるという特徴がある。
[0076] ァロファネート基とイソシァヌレート基のモル比が 90/10〜81/19の範囲になるよ うに製造すれば、いずれの方法を用いてもよい。
[0077] ウレタン化反応は、好ましくは 20〜200°C、より好ましくは 40〜; 150°C、より一層好 ましくは 60〜; 120°Cで、好ましくは 10分〜 24時間、より好ましくは 15分〜 15時間、よ り一層好ましくは 20分〜 10時間行われる。 20°C以上で反応が速ぐ 200°C以下でゥ レトジオン化などの副反応が抑制され、また着色も抑制される。時間は、 10分以上で あれば反応を完結させることが可能となり、 24時間以下であれば生産効率に問題が 無ぐまた副反応も抑制される。ウレタン化反応は、無触媒で、またはスズ系、アミン系 などの触媒の存在下で行うことができる。
[0078] ァロファネート化反応は、好ましくは 20〜200°Cの温度で行われる。より好ましくは 、 40〜; 180。Cであり、より一層好ましくは 60〜; 160。Cである。更に一層好ましくは 90 〜150°Cであり、最も好ましいのは 110〜; 150°Cである。 20°C以上で、ァロファネート 化触媒の量が少なくなると共に、反応の終結までに必要な時間が短い。また 200°C 以下で、ウレトジオン化などの副反応が抑制され、また、反応生成物の着色が抑えら れる。
[0079] ァロファネート化反応の反応時間は、好ましくは 10分〜 24時間、より好ましくは 15 分〜 12時間、より一層好ましくは 20分〜 8時間、更に一層好ましくは 20分〜 6時間 が良い。反応時間が 10分以上であれば反応の制御が可能となり、 24時間以内であ れば生産効率が十分である。なお、反応温度が 130°Cを超える場合には、副反応と してウレトジオンが生成する場合があるため、反応時間は好ましくは 8時間以内、より 好ましくは 6時間以内、より一層好ましくは 4時間以内が良い。
[0080] イソシァヌレート化反応、あるいはァロファネート化及びイソシァヌレート化反応は、 好ましくは 20〜 80。Cの温度で行われる。より好ましくは、 30〜 60。Cであり、より一 層好ましくは 40〜; 140°Cである。更に一層好ましくは 60〜; 130°Cであり、最も好まし いのは 80〜; 110°Cである。 20°C以上で、触媒の量が少なくなると共に、ナイロン化反 応等の副反応が起こりにくくなる。また 180°C以下で、ウレトジオン化などの副反応が 抑制され、また、反応生成物の着色が抑えられる。
[0081] イソシァヌレート化反応、あるいはァロファネート化及びイソシァヌレート化反応の反 応時間は、好ましくは 10分〜 24時間、より好ましくは 15分〜 12時間、より一層好まし くは 20分〜 8時間、更に一層好ましくは 20分〜 6時間が良い。反応時間が 10分以上 であれば反応の制御が可能となり、 24時間以内であれば生産効率が十分である。
[0082] 上記(1)の方法を採用する場合、ァロファネート化反応およびイソシァヌレート化反 応は触媒を用いた方が好ましぐ特に生成するポリイソシァネートのァロファネート基 /イソシァヌレート基のモル比が 81/19〜90/10となる触媒を選択する方が好まし い。このような触媒として、例えば亜鉛のカルボン酸塩、ビスマスのカルボン酸塩、亜 鉛、錫、ジルコニウム、ジルコニル等のアルコキシド等が挙げられる。
[0083] 上記(2)、あるいは上記(3)の方法を採用し、ァロファネート基を有するポリイソシァ ネートを製造する場合、ァロファネート化反応は触媒を用いた方が好ましぐ特にァロ ファネート基の選択率が高い触媒、より好ましくは生成するポリイソシァネートのァロフ ァネート基/イソシァヌレート基の比が 90/10〜100/0となる触媒を選択する方が 好ましい。このような触媒として、例えば鉛、錫、ジルコニル、ジルコニウムのカルボン 酸塩等、あるいはこれらの混合物が挙げられる。
[0084] 上記(2)の方法を採用し、イソシァヌレート基を含有するポリイソシァネートを製造す る場合、イソシァヌレート化反応は触媒を用いた方が好ましい。イソシァヌレート化触 ルカリ金属塩のカルボン酸塩、ハイド口オキサイドや、アミノシリル基含有化合物等、 あるいはこれらの混合物などが挙げられる。
[0085] 上記(3)の方法を採用し、ァロファネート基及びイソシァヌレート基を含有するポリイ ソシァネートを製造する場合、ァロファネート化反応及びイソシァヌレート化反応は触 媒を用いた方が好ましい。ァロファネート化及びイソシァヌレート化触媒として、例え ばテトラアルキルアンモニゥム、ヒドロキシアルキルアンモニゥム、アルカリ金属塩の力 ルボン酸塩、ハイド口オキサイドやアミノシリル基含有化合物、あるいはこれらの混合 物などが挙げられる。特に、ァロファネート化の選択率が適度に高い方力 ウレタン 基の残る可能性が低く好ましいため、より好ましくは生成するポリイソシァネートのァロ ファネート基/イソシァヌレート基の比が 40/60〜70/30となる触媒が良い。この ような触媒としては、テトラアルキルアンモニゥム、ヒドロキシアルキルアンモニゥムの カルボン酸塩、あるいはこれらの混合物が挙げられる。
[0086] ァロファネート化触媒、イソシァヌレート化触媒、ァロファネート化及びイソシァヌレ ート化触媒の使用量は、反応液総質量を基準にして、好ましくは 0. 00;!〜 2. 0質量 %、より好ましくは、 0. 01-0. 5質量%の量にて用いられる。 0. 001質量%以上で 触媒の効果が十分に発揮できる。 2重量%以下で、ァロファネート化反応の制御が容 :¾である。
[0087] 本発明にお!/、て、ァロファネート化触媒、イソシァヌレート化触媒、ァロファネート化 及びイソシァヌレート化触媒の添加方法は限定されない。例えば、ウレタン基を含有 する化合物の製造の前、即ちジイソシァネートと水酸基を有する有機化合物のウレタ ン化反応に先だって添加してもよいし、ジイソシァネートと水酸基を有する有機化合 物のウレタン化反応中に添加してもよぐウレタン基含有化合物製造の後に添加して もよい。また、添加の方法として、所要量のァロファネート化触媒を一括して添加して もよいし、何回かに分割して添加してもよい。または、一定の添加速度で連続的に添 加する方法も採用できる。
[0088] ウレタン化反応ゃァロファネート化反応、イソシァヌレート化触媒、ァロファネート化 及びイソシァヌレート化触媒は、無溶媒中で進行するが、必要に応じて前記の弱溶 剤の他、酢酸ェチル、酢酸ブチル等のエステル系溶剤、メチルェチルケトン等のケト ン系溶剤、トルエン、キシレン、ジェチルベンゼン等の芳香族系溶剤、ジアルキルポリ アルキレングリコールエーテル等のイソシァネート基との反応性を有していない有機 溶剤、およびそれらの混合物を溶媒として使用することができる。
[0089] 本発明におけるウレタン化反応、ァロファネート化反応、イソシァヌレート化反応、ァ ロファネート化反応及びイソシァヌレート化反応の過程は、反応液の NCO含有率を 測定するか、屈折率を測定することにより追跡できる。
[0090] ァロファネート化反応、イソシァヌレート化反応、ァロファネート化反応及びイソシァ ヌレート化反応は、室温に冷却する力、、反応停止剤を添加することにより停止できる 力 触媒を用いる場合、反応停止剤を添加するほうが、副反応を抑制することができ るために、好ましい。反応停止剤を添加する量は、触媒に対して、好ましくは 0. 25〜 20倍のモノレ量、より好ましく ίま 0. 5〜; 16倍のモノレ量、より一層好ましく ίま 1. 0〜; 12倍 のモル量である。 0. 25倍以上で、完全に失活させることが可能となる。 20倍以下で 保存安定性が良好となる。反応停止剤としては、触媒を失活させるものであれば何を 使ってもよい。反応停止剤の例としては、リン酸、ピロリン酸等のリン酸酸性を示す化 合物、リン酸、ピロリン酸等のモノアルキルあるいはジアルキルエステル、モノクロ口酢 酸などのハロゲン化酢酸、塩化べンゾィル、スルホン酸エステル、硫酸、硫酸エステ ノレ、イオン交換樹脂、キレート剤等が挙げられる。工業的にみた場合、リン酸、ピロリ ン酸、メタリン酸、ポリリン酸、およびリン酸モノアルキルエステルや、リン酸ジアルキル エステルは、ステンレスを腐食し難いので、好ましい。リン酸モノエステルや、リン酸ジ エステルとして、たとえば、リン酸モノェチルエステルや、リン酸ジェチルエステル、リ ン酸モノブチルエステルやリン酸ジブチルエステル、リン酸モノ(2—ェチルへキシノレ )エステルや、リン酸ジ(2—ェチルへキシル)エステル、リン酸モノデシルエステル、リ ン酸ジデシルエステル、リン酸モノラウリルエステル、リン酸ジラウリルエステル、リン酸 モノトリデシルエステル、リン酸ジトリデシノレエステノレ、リン酸モノォレィルエステル、リ ン酸ジォレイルエステルなど、あるいはこれらの混合物などが挙げられる。
[0091] また、シリカゲルや活性炭等の吸着剤を停止剤として用いることも可能である。この 場合、反応で使用するジイソシァネートに対して、 0. 05〜; 10質量%の添加量が好ま しい。
[0092] 反応終了後、ポリイソシァネート化合物からは、未反応のジイソシァネートや溶媒を 分離しても良い。安全性を考えると、未反応のジイソシァネートは分離した方が好まし い。未反応のジイソシァネートや溶媒を分離する方法として、例えば、薄膜蒸留法や 溶剤抽出法が挙げられる。
[0093] 以下、本発明のフッ素塗料組成物について、あるいは本発明のフッ素塗料組成物 、本発明で用いる主剤、硬化剤に添加してよいものについて記載する。
[0094] 本発明のフッ素塗料組成物においては、本発明で用いる含フッ素共重合体力 フ ッ素塗料組成物に含まれる総固形分の 20質量%以上を占めることが好ましぐ 30質 量%以上がより好ましぐ 40質量%以上が最も好ましい。
[0095] 本発明のフッ素塗料組成物は、含有する固形分の全量が弱溶剤に溶解しているこ とが最も好ましレ、が、若干の不溶部があってもょレ、。
フッ素塗料組成物における弱溶剤の添加量は、含フッ素共重合体の溶解性、塗料 として塗装する際の適度な粘度、塗装方法などを考慮して適宜決定される。
本発明で用いる含フッ素共重合体は、弱溶剤への溶解性に優れることから、フッ素 塗料組成物中に含まれる弱溶剤の量は 10〜30質量%とすることもできる。
[0096] 弱溶剤を含有して!/、るフッ素塗料組成物中の、主剤、硬化剤と、弱溶剤との質量比 は 10/90〜90/10力 S好ましい。質量比の下限は、より好ましくは 15/85である。 質量比の上限は、より好ましくは 85/15である。
[0097] 本発明のフッ素塗料組成物における (A)水酸基を有する含フッ素共重合体を含ん でなる主剤と、(B)ポリイソシァネート化合物を含んでなる硬化剤との混合比は、イソ シァネート基/水酸基のモル比で、 0. 2〜5. 0の範囲が好ましい。モル比の下限は 、より好ましく (ま、 0. 3、より一層好ましく (ま 0. 4、最も好ましく (ま 0. 5である。モノレ匕の 上限は、より好ましくは、 4. 0、より一層好ましくは 3. 0、最も好ましくは 2. 0である。 0 . 2〜5· 0の範囲の場合、強靭な塗膜を形成することができる。
[0098] 本発明のフッ素塗料組成物は、弱溶剤を含有してもよい。
[0099] 本発明のフッ素塗料組成物、本発明で用いる主剤及び硬化剤には、 目的及び用 途に応じて、本発明の効果を損なわない範囲で、着色顔料、染料、塗膜の付着性向 上のためのシランカップリング剤、紫外線吸収剤、硬化促進剤、光安定剤、つや消し 剤、塗膜表面親水化剤、触媒、乾燥性改良剤、レべリング剤、酸化防止剤、可塑剤、 界面活性剤等の当該技術分野で使用されている各種添加剤を混合して使用するこ ともできる。
[0100] 着色顔料、染料としては、耐候性の良!/、カーボンブラック、酸化チタン等の無機顔 料、フタロシアニンブノレー、フタロシアニングリーン、キナクリドンレッド、インダンスレン オレンジ、イソインドリノン系イェロー等の有機顔料、染料等が挙げられる。
[0101] シランカップリング剤としては、 3 ァミノプロピルトリエトキシシラン、 3 ァミノプロピ ルトリメトキシシラン、 Ν— 2— (アミノエチル) 3 ァミノプロピルトリメトキシシラン、ゥ レイドプロピルトリエトキシシラン、ビュルトリエトキシシラン、ビュルトリメトキシシラン、 3 ン、 2—(3, 4 エポキシシクロへキシノレ)ェチノレトリメトキシシラン、 3 グリシドキシプ プロピルトリエトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン等が挙げ られる。
[0102] 紫外線吸収剤としては、ベンゾフエノン系、ベンゾトリアゾール系、トリアジン系、シァ ノアクリレート系の紫外線吸収剤が挙げられる。
[0103] 光安定剤としては、ヒンダードアミン系光安定剤等が挙げられ、アデカスタブ LA62
、アデカスタブ LA67 (以上、アデカァーガス化学社製、商品名)、チヌビン 292、チヌ ビン 144、チヌビン 123、チヌビン 440 (以上、チノく'スペシャルティ'ケミカルズ社製、 商品名)等が挙げられる。
[0104] つや消し剤としては、超微粉合成シリカ等が挙げられ、つや消し剤を使用した場合
、優雅な半光沢、つや消し仕上げの塗膜を形成できる。
[0105] 塗膜表面親水化剤としては、シリケート化合物が好まし!/、。シリケート化合物を含有 させることによって、塗膜表面が親水性になり、塗膜に耐雨筋汚染性が発現する。シ リケート化合物は、水酸基と反応するため、シリケート化合物を予め混合する場合に は(B)硬化剤に添加するのが好ましい。あるいは主剤と硬化剤を混合する際に、同 時に混合してもよい。
[0106] シリケート化合物とは、テトラアルコキシシラン、テトラアルコキシシランの縮合物、及 びテトラアルコキシシランあるいはその縮合物の誘導体から選ばれる少なくとも 1種類 のものである。
[0107] テトラアルコキシシランの縮合物を用いる場合、平均縮合度は;!〜 100である。平均 縮合度が;!〜 100の範囲の場合に、塗膜を作成した場合、塗膜表面の親水性が十 分高くなる。なお、テトラアルコキシシランの縮合物は、公知の方法で製造することが できる。
[0108] シリケート化合物としては、例えばテトラメトキシシラン、テトラエトキシシラン、テトラ
n プロポキシシラン、テトライソプロポキシシラン、テトラー n ブトキシシラン、テト ライソブトキシシラン、テトラー tert ブトキシシラン、ジメトキシジエトキシシラン、テト ラフエノキシシラン、およびこれらの縮合物等があげられる。このなかで、テトラメトキシ シランの縮合物及びテトラエトキシシランの縮合物は、塗膜を作成した場合、塗膜表 面が親水性になりやすいため、好ましい。
[0109] 更に、シリケート化合物として、炭素数が異なる 2種類以上のアルコキシル基が混在 するテトラアルコキシシラン、及びそれらの縮合物を使用することもできる。これは、テ トラメトキシシラン、あるいはテトラエトキシシランのメトキシ基あるいはエトキシ基の 5〜 50mol%を炭素数 3〜; 10のアルコキシル基で置換した化合物を用いる方法である。 メトキシ基、エトキシ基を炭素数 3〜; 10のアルコキシル基に置換する割合は、より好ま しくは 8〜40mol%、より一層好ましくは 12〜35mol%である。置換するアルコキシ ル基としては、好ましくはブチル基、ペンチル基、へキシル基、ォクチル基であり、より 好ましくは、 n ブチル基、イソブチル基、 tert ブチル基、 n へキシル基、 n オタ チル基、 2—ェチルー 1一へキシル基である。このようなシリケート化合物、特にこれら の縮合物は、塗膜を作成した場合の塗膜表面の親水性が高ぐ弱溶剤への溶解性 が高い特徴があり、非常に好ましい。更に、これらのシリケート化合物の縮合物を用 いると、塗膜表面の親水性がより高くなるため、最も好ましい。
[0110] テトラアルコキシシラン、あるいはその縮合物の誘導体とは、アルコキシ基の一部を 例えば、ポリアルキレングリコールモノアルキルエステル、ポリアルキレングリコールモ ノアリールエステルなどに置換したシリケート化合物をいう。
[0111] 硬化促進用の触媒の例としては、ジブチルスズジラウレート、ジォクチルスズラウレ ブチルスズォキサイド等のスズオキサイド化合物; 2—ェチルへキサン酸スズ、 2—ェ チルへキサン酸亜鉛、コバルト塩等の金属カルボン酸塩;トリェチルァミン、ピリジン、 メチルピリジン、ベンジルジメチルァミン、 N, N—ジメチルシクロへキシルァミン、 N— メチルビペリジン、ペンタメチルジェチレントリァミン、 N, N'—エンドエチレンピペラジ ン、及び N, N'—ジメチルピペラジンのような 3級ァミン類等があげられる。
[0112] 乾燥性改良剤としては、 CAB (セルロースアセテートブトレート)、 NC (ニトロセル口 ース)等が挙げられる。
[0113] 本発明のフッ素塗料組成物は、(A)水酸基を有する含フッ素共重合体を含んでな る主剤と、 (B)ポリイソシァネート化合物を含んでなる硬化剤を塗装現場で混合して 使用する 2液型の塗料であるが、必要に応じて適宜、弱溶剤、さらに必要に応じて添 加剤を混合することができる。
[0114] その混合順序は特に限定されず、例えば、以下のような形態の使用方法がある。
•弱溶剤と添加剤を予め混合した主剤に、塗装現場にて硬化剤を混合する使用方法
•塗装現場にて主剤および硬化剤を混合し、次いで更に弱溶剤及び添加剤を混合 する使用方法、
•弱溶剤と添加剤を予め混合した主剤に、塗装現場にて予め添加剤と弱溶剤を混合 した硬化剤を混合する使用方法。
[0115] 本発明のフッ素塗料を用いて塗装する方法としては、スプレー塗装、エアスプレー 塗装、はけ塗り、浸漬法、ロールコーター、フローコーター等の任意の方法を適用で きる。
[0116] 塗装される物品材質としては、コンクリート、自然石、ガラス等の無機物、鉄、ステン レス、アルミユウム、銅、真鍮、チタン等の金属、プラスチック、ゴム、接着剤、木材等 の有機物が挙げられる。
特に、すでに形成された塗膜、いわゆる旧塗膜の表面への塗装に適する。 また有機無機複合材である FRP、樹脂強化コンクリート、繊維強化コンクリート等の 塗装にも適する。
[0117] また塗装される物品としては、自動車、電車、航空機等の輸送用機器、橋梁部材、 鉄塔などの土木部材、防水材シート、タンク、パイプ等の産業機材、ビル外装、ドア、 窓門部材、モニュメント、ポール等の建築部材、道路の中央分離帯、ガードレール、 防音壁等の道路部材、通信機材、電気および電子部品等が挙げられる。
[0118] 本発明で用いる水酸基を有する含フッ素共重合体からなる主剤およびポリイソシァ ネート化合物からなる硬化剤は、低温時、極性が低!、弱溶剤にも十分安定に溶解す ることが可能である。従って、本発明のフッ素塗料組成は、低温時、極性の低い弱溶 剤に溶解した場合でも使用することが可能となる。また、本発明のフッ素塗料組成物 は、強靱な塗膜を作成することができるため、高い硬度、高い密着性を有する塗膜を 形成すること力でさる。
実施例
[0119] 本発明を実施例に基づいて説明する。
ァロファネート基とイソシァヌレート基の比は、 — NMR(Bruker社製 FT— NMR DPX— 400)を用いて、 8. 5ppm付近のァロファネート基の窒素原子上の水素の シグナルと、 3. 8ppm付近のイソシァヌレート基のイソシァヌレート環の窒素原子の隣 のメチレン基の水素のシグナルの面積比から求めた。
[0120] NCO含有率は、イソシァネート基を過剰の 2Nァミンで中和した後、 1N塩酸による 逆滴定によって求めた。
粘度は、 E型粘度計 (株式会社トキメック社)を用いて 25°Cで測定した。 標準ローター(1° 34' X R24)を用いた。回転数は、以下の通りである。
[0121] 100r. p. m. (128mPa. s未満の場合)
50r. p. m. (128mPa. s〜256mPa. sの場合)
20r. p. m. (256mPa. s〜640mPa. sの場合) 10r. p. m. (640mPa. s~1280mPa. sの場合)
5r. p. m. (1280mPa. s〜2560mPa. sの場合)
弱溶剤への溶解性は、 0°Cの条件で、ポリイソシァネート化合物 100質量部に対し て、弱溶剤 50質量部、 100質量部、 200質量部、 500質量部を加え、 24時間放置 後の状態を観察した。なお、弱溶剤への溶解性は以下の式で表される。
弱溶剤への溶解性(%) = ( (添加した溶剤の質量 (g) X 100%) / (ポリイソシァネ ート化合物の質量 (g) )
ゲル分率は、塗膜約 0. lgをアセトン中に 23°Cで 24時間浸漬し、塗膜取り出し後、 80°Cで 1時間乾燥したときの塗膜の質量力、ら求めた。
[0122] [合成例 1 (ポリイソシァネート化合物の合成) ]
攪拌器、温度計、冷却管を取り付けた四ッロフラスコの内部を窒素置換し、 HDI 1 000gと 2—ェチルへキサノール 100gを仕込み、攪拌下 90°Cで 1時間ウレタン化反 応を行った。 90°Cで、ァロファネート化/イソシァヌレート化触媒としての 2—ェチル へキサン酸ビスマスの固形分 20%ミネラルスピリット溶液(日本化学産業株式会社製 、商品名「ユッカオタチックスビスマス 25%」をミネラルスピリットで希釈したもの)を 10 g加えた。反応液の屈折率の上昇が 0. 01となった時点でリン酸 2—ェチルへキシル エステル (城北化学工業株式会社製、商品名「JP— 508」)を 4. 5g (触媒に対して 8. 0倍モル)を加え反応を停止した。
反応液を濾過後、流下式薄膜蒸留装置を用いて、 1回目 160°C (27Pa)、 2回目 1 50°C (13Pa)で未反応の HDIを除去した。
[0123] 得られたポリイソシァネート化合物は透明の液体であり、収量 420g、粘度 160mPa . s、 NCO含有率 17. 4%であった。 NMRを測定したところ、ァロファネート/イソシ ァヌレートのモル比は 84/16であった。得られたポリイソシァネート化合物を P—1と する。
[0124] [合成例 2 (ァロファネート基及びイソシァヌレート基を有するポリイソシァネート) ] 合成例 1と同様の装置に、 HDI 1000gと 2—ェチノレへキサノーノレ 100gを仕込み、 攪拌下 90°Cで 1時間ウレタン化反応を行った。ァロファネート化及びイソシァヌレート 化触媒としてカプリン酸テトラメチルアンモニゥムの固形分 10%n—ブタノール溶液を 0. 36加えた。反応液の屈折率の NCO含有率が 35. 8%となった時点で、リン酸の 固形分 85%水溶液 0. 58g (触媒に対して 4. 0倍モル)を加え、反応を停止した。 反応液の濾過後、合成例 1と同様の方法で未反応の HDIを除去した。
[0125] 得られたポリイソシァネート化合物は透明の液体であり、収量 480g、粘度 450mPa . s、 NCO含有率 17. 7%であった。 NMRを測定した所、ァロファネート/イソシァヌ レートのモル比は 65/35であった。得られたポリイソシァネート化合物を P— 2とする
[0126] [合成例 3 (ァロファネート基を有するポリイソシァネートの合成) ]
合成列 1と同様の装置に、 HDI 2700gと 2—ェチノレへキサノーノレ 210gを仕込み、 攪拌下 130°Cで 1時間ウレタン化反応を行った。ァロファネート化触媒として 2—ェチ ルへキサン酸ジルコニルの固形分 20%ミネラルスピリット溶液を 0. 54g加えた。反応 液の屈折率の上昇が 0. 0055となった時点で、リン酸ドデシルエステルの 50%イソブ タノール溶液 (城北化学工業株式会社製、商品名「JP— 512」をイソブタノールで希 釈したもの) 0. 81g (触媒に対して、 4. 0倍モル)を加え、反応を停止した。
反応液の濾過後、合成例 1と同様の方法で未反応の HDIを除去した。
[0127] 得られたポリイソシァネート化合物は透明の液体であり、収量 770g、粘度 l lOmPa . s、 NCO含有率 17. 2%であった。 NMRを測定した所、ァロファネート基/イソシァ ヌレート基のモル比は 97/3であった。得られたポリイソシァネート化合物を P— 3と する。
[0128] [合成例 4 (ジオールを用いたァロファネート基を有するポリイソシァネート)]
合成例 1と同様の装置に、 HDI 800gと 12—ヒドロキシステアリルアルコール(商品 名「ソバモール 912」、コグニスジャパン株式会社製、水酸基価: 345〜365mgKOH /g) 50. 6gを仕込み、攪拌下 130°Cで 1時間ウレタン化反応を行った。ァロファネー ト化触媒として 2—ェチルへキサン酸ジルコニルの固形分 20%ミネラルスピリット溶液 を 0. 51g加えた。 30分後、反応液の屈折率の上昇が 0. 0035となった時点で、ピロ リン酸の固形分 50%ブタノール溶液 0· 070g (触媒に対して 1. 05倍モル)を加え、 反応を停止した。
[0129] 次いで、合成例 1と同様の方法で未反応の HDIを除去した 得られたポリイソシァネート化合物は透明の液体であり、収量 170g、粘度 750mPa . s NCO含有率は 16. 6%であった。 NMRを測定した所、ァロファネート/イソシァ ヌレートのモル比は 97/3であった。得られたポリイソシァネート化合物を P— 4とする
[0130] P— 4の弱溶剤への溶解性を試験した。 HAWSへの溶解性は、 0°Cで、 50% 50 0%がいずれも良好であった。 Aソルベントへの溶解性は、 0°Cで 50% 100%が良 好であった。
[0131] [合成例 5]
合成例 2で得られた P— 2と合成例 3で得られた P— 3を、 P— 2/P— 3 = 40/60の 質量比で混合し、ポリイソシァネート化合物 P— 5を得た。
P— 5は透明の液体であり、 NCO含有率は、 17. 6%、粘度 180mPa. sであった。
NMRを測定した所、ァロファネート/イソシァヌレートのモル比は 83/17であった。
[0132] [実施例;!〜 2及び比較例;!〜 3]
本発明で用いる含フッ素共重合体(商品名 ルミフロン LF800、旭硝子株式会社 製、フルォロォレフインと、フルォロォレフインと共重合可能な二重結合含有モノマー との共重合体、水酸基を有するモノマー = 9モル%、炭素数 3以上の分岐状アルキ ル基を含有するモノマー = 15モル0 水酸基価 = 38mgKOH/g (固形分)、加熱 残分 = 60%、溶剤組成 =ミネラルスピリット(商品名:ミネラルスピリット A、新日本石 油株式会社製、ァニリン点 = 43°C)を用いて、以下の方法で、エナメル顔料入りの主 剤を作成した。
[0133] ミルベース作成
組成:
ノレミフロン : LF800 (フッ素含有量 22. 7質量0 /0) 25. 05g
D— 918 (商品名、 ^ィ匕学 $¾、 ィ匕チタン) 60. 00g
Aソノレベン卜 64. 95g
ガラスビーズ 150. 00g
これを 0. 5L容器に入れ、ペイントシェーカーで 2時間攪拌しミルベースを作製した [0134] レットダウン
組成:
ミノレベース 57. 00g
ノレミフロン LF800 78. 00g
Aソノレベント 14. 70g
0. 1 %BTL (ミネラルスピリット溶液) 0· 30g
これを、 0. 2L容器に入れ、ペイントシェーカーで 20分攪拌し、レットダウンを行い、 エナメル顔料入り主剤を得た。
[0135] これを、 P— 1 (実施例 1)、 P— 5 (実施例 2)、 P— 2 (比較例 1)、 P— 3 (比較例 2)、 P — 4 (比較例 3)各々と、 NCO/OH= l . 0で混合し、フッ素塗料組成物を得た。これ を 75mm X 150mmのクロメート処理アルミニウム板に、スプレー塗装で乾燥膜厚 25 ミクロンとなるように塗布し、 23°C50%RH条件下で 1週間乾燥させた。
この塗膜の鉛筆硬度 (破壊)と、耐水 2次密着性試験、硬化剤の弱溶剤溶解性を実 施した。
[0136] 鉛筆硬度:
JIS K 5600— 5— 4引つかき硬度 (鉛筆法)に基づき、試験を実施した。
[0137] 耐水 2次密着試験 1:
塗装板を予め、 2mmで 25マスにカットし、沸騰水に 2時間浸漬し、 JIS K 5600 —5— 6の付着性(クロスカット法)に基づいて試験を行った。評価も、 JIS K 5600 - 5- 6に従い、 0点〜 6点の 6段階で分類した。
[0138] 耐水 2次密着試験 2 :
塗装板を、沸騰水に 2時間浸漬し、引き上げ後、 2mmで 25マスにカットし、 JIS K 5600— 5— 6の付着性(クロスカット法)に基づいて試験を行った。評価も、 JIS K 5600— 5— 6に従い、 0点〜 6点の 6段階で分類した。
[0139] 硬化剤の弱溶剤への溶解性(0°C):
0°Cの条件で、ポリイソシァネート化合物 100質量部に対して、弱溶剤 50質量部、 1 00質量部、 200質量部、 500質量部を加え、 24時間放置後の状態を観察した。 な お、弱溶剤への溶解性は以下の式で表される。 弱溶剤への溶解性(%) = ( (添加した溶剤の質量 (g) X 100%) / (ポリイソシァネ ート化合物の質量 (g) )
弱溶剤は、 Aソルベント(商品名、新日本石油化学株式会社製のミネラルスピリット、 ァニリン点 45°C)を用いて試験した。試験結果について、表 1に記す。表 1に示すよう に、実施例 1 , 2ではポリイソシァネート化合物 100質量部に対して、弱溶剤 50質量 部、 100質量部、 200質量部、 500質量部の何れを加えて溶解させた場合も完全に 相溶する。これに対して、比較例 1 , 3では 50質量部を加えて溶解させた場合には完 全に相溶するが、 100質量部、 200質量部、 500質量部加えた場合には相溶しない
[0140] [表 1] 表 1
Figure imgf000031_0001
産業上の利用可能性
[0141] 本発明のフッ素塗料組成物が塗装される物品材質としては、コンクリート、 自然石、 ガラス等の無機物、鉄、ステンレス、アルミニウム、銅、真鍮、チタン等の金属、プラス チック、ゴム、接着剤、木材等の有機物が挙げられる。
特に、すでに形成された塗膜、いわゆる旧塗膜の表面への塗装に適する。 また有機無機複合材である FRP、樹脂強化コンクリート、繊維強化コンクリート等の塗 装にも適する。
[0142] また塗装される物品としては、自動車、電車、航空機等の輸送用機器、橋梁部材、 鉄塔などの土木部材、防水材シート、タンク、パイプ等の産業機材、ビル外装、ドア、 窓門部材、モニュメント、ポール等の建築部材、道路の中央分離帯、ガードレール、 防音壁等の道路部材、通信機材、電気および電子部品等が挙げられる。

Claims

請求の範囲
[1] (A)フルォロォレフインと、フルォロォレフインと共重合可能な二重結合含有モノマ 一との共重合体であり、該共重合体中、フルォロォレフインに基づくフッ素の含有量 力 ^0質量%以上であり、更に、該共重合体中、前記二重結合含有モノマーとして、 水酸基を含有するモノマーを 5〜30モル0 /0、そして炭素数 3以上の分岐状アルキル 基を含有するモノマーを 10〜50モル%含み、該共重合体を含んでなる主剤と、
(B)脂肪族ジイソシァネート、脂環式ジイソシァネートから選ばれる少なくとも 1種類 のジイソシァネート、及び炭素数が 1〜20のモノアルコールの反応から得られ、ァロ ファネート基/イソシァヌレート基のモル比が 90/10〜81/19であるポリイソシァネ ート化合物を含んでなる硬化剤と、
を含有するフッ素塗料組成物。
[2] 弱溶剤を更に含んでなる請求項 1に記載のフッ素塗料組成物。
[3] (A)フルォロォレフインと、フルォロォレフインと共重合可能な二重結合含有モノマ 一との共重合体であり、該共重合体中、フルォロォレフインに基づくフッ素の含有量 力 ^0質量%以上であり、更に、該共重合体中、前記二重結合含有モノマーとして、 水酸基を含有するモノマーを 5〜30モル0 /0、そして炭素数 3以上の分岐状アルキル 基を含有するモノマーを 10〜50モル%含み、該共重合体を含んでなる主剤と、
(B)脂肪族ジイソシァネート、脂環式ジイソシァネートから選ばれる少なくとも 1種類 のジイソシァネート、及び炭素数が 1〜20のモノアルコールの反応から得られ、ァロ ファネート基/イソシァヌレート基のモル比が 90/10〜81/19であるポリイソシァネ ート化合物を含んでなる硬化剤との混合比力 s、イソシァネート基/水酸基のモル比で 0. 2〜5. 0である、請求項 1又は 2に記載のフッ素塗料組成物。
PCT/JP2007/070084 2006-10-16 2007-10-15 Composition de revêtement à base de fluor WO2008047761A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008539805A JP5481859B2 (ja) 2006-10-16 2007-10-15 フッ素塗料組成物
EP07829818A EP2075294A4 (en) 2006-10-16 2007-10-15 FLUORINE COATING COMPOSITION
CN2007800386471A CN101528871B (zh) 2006-10-16 2007-10-15 氟涂料组合物
US12/311,798 US8344071B2 (en) 2006-10-16 2007-10-15 Fluorine coating composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-280914 2006-10-16
JP2006280914 2006-10-16

Publications (1)

Publication Number Publication Date
WO2008047761A1 true WO2008047761A1 (fr) 2008-04-24

Family

ID=39313988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070084 WO2008047761A1 (fr) 2006-10-16 2007-10-15 Composition de revêtement à base de fluor

Country Status (6)

Country Link
US (1) US8344071B2 (ja)
EP (1) EP2075294A4 (ja)
JP (1) JP5481859B2 (ja)
KR (1) KR20090073164A (ja)
CN (1) CN101528871B (ja)
WO (1) WO2008047761A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157449A1 (ja) * 2008-06-23 2009-12-30 旭硝子株式会社 太陽電池モジュール用バックシートおよび太陽電池モジュール
JP2010215870A (ja) * 2009-03-19 2010-09-30 Nippon Polyurethane Ind Co Ltd ポリイソシアネート組成物およびそれを用いた2液型塗料組成物
US7919557B2 (en) 2006-09-22 2011-04-05 Asahi Glass Company, Limited Aqueous coating composition, process for producing it and two-pack type curable aqueous coating kit
JP2012082270A (ja) * 2010-10-07 2012-04-26 Agc Coat-Tech Co Ltd 塗料用組成物および塗料用組成物用キット
US20120220712A1 (en) * 2010-01-15 2012-08-30 Asahi Glass Company, Limited Process for producing hydrolyzable silyl group-containing fluoropolymer, and composition containing hydrolyzable silyl group-containing fluoropolymer
JP2017105956A (ja) * 2015-12-11 2017-06-15 旭化成株式会社 フッ素塗料組成物
WO2019240189A1 (ja) * 2018-06-13 2019-12-19 Agc株式会社 加飾フィルム、組成物、加飾フィルムの製造方法、加飾フィルム付き3次元成形品の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120063952A1 (en) * 2010-09-10 2012-03-15 Hong Keith C Uv resistant clear laminates
MX2014009035A (es) * 2012-01-25 2014-10-24 Basf Coatings Gmbh Composicion de material de revestimiento catalizada con complejo de (1 - metilimidazol) bis (2 - etilhexanoato) de zinc.
CN105829367A (zh) * 2013-10-22 2016-08-03 霍尼韦尔国际公司 由四氟丙烯形成的可固化含氟共聚物
JP6834490B2 (ja) * 2014-12-05 2021-02-24 Agc株式会社 塗膜の補修方法及び塗装物品
CN106675153B (zh) * 2017-01-09 2020-01-31 上海新大余氟碳喷涂材料有限公司 一种氟碳喷涂涂料的添加剂及其使用方法
JP6531125B2 (ja) 2017-02-20 2019-06-12 セーレン株式会社 プリント物およびプリント物の製造方法
CN111936558B (zh) * 2018-04-12 2022-03-18 日本帕卡濑精株式会社 聚硅氧烷化合物和组合物

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172013A (ja) 1984-09-18 1986-04-14 Dainippon Ink & Chem Inc 樹脂組成物
JPS63199770A (ja) 1987-02-17 1988-08-18 Asahi Glass Co Ltd 塗料用組成物
JPH02250872A (ja) 1988-12-28 1990-10-08 Takeda Chem Ind Ltd ポリイソシアネート,その製造法および用途
JPH04306218A (ja) 1991-01-24 1992-10-29 Asahi Chem Ind Co Ltd 低粘度ポリイソシアネート
JPH0570444A (ja) 1991-01-22 1993-03-23 Miles Inc アロフアネート基とイソシアヌレート基とを有するポリイソシアネート、その製造方法および2−成分被覆組成物におけるその使用
JPH05222007A (ja) 1991-07-22 1993-08-31 Miles Inc アロファネート基およびイソシアヌレート基を有するポリイソシアネートの製造方法
JPH05278240A (ja) 1992-03-31 1993-10-26 Ricoh Co Ltd 画像形成装置
JPH0641270A (ja) * 1992-04-14 1994-02-15 Takeda Chem Ind Ltd アロフアネート基及びイソシアヌレート基を有するポリイソシアネート及びその製造方法
JPH07330860A (ja) * 1994-06-15 1995-12-19 Asahi Chem Ind Co Ltd ポリイソシアネート組成物
JP2001026626A (ja) * 1999-06-16 2001-01-30 Bayer Ag 非極性溶媒に良好な溶解性を有する耐光堅牢性ポリイソシアネート
JP2002060459A (ja) * 2000-08-22 2002-02-26 Nippon Polyurethane Ind Co Ltd 変性イソシアネート化合物の製造方法
JP2002249535A (ja) * 2001-02-22 2002-09-06 Nippon Polyurethane Ind Co Ltd アロファネート変性ポリイソシアネート組成物の製造方法
WO2003027163A1 (fr) * 2001-09-20 2003-04-03 Asahi Kasei Chemicals Corporation Composition poly-isocyanate possedant un groupe allophanate et materiau de revetement a haute teneur en solides
JP2004277716A (ja) 2003-02-28 2004-10-07 Asahi Glass Co Ltd 塗料用含フッ素共重合体、塗料用組成物および塗料
JP2005048179A (ja) * 2003-07-16 2005-02-24 Asahi Kasei Chemicals Corp ポリイソシアネート組成物およびコーティング組成物
JP2006052265A (ja) * 2004-08-10 2006-02-23 Asahi Kasei Chemicals Corp ポリイソシアネート組成物および2液型ポリウレタンコーティング組成物
WO2006075636A1 (ja) * 2005-01-14 2006-07-20 Nippon Polyurethane Industry Co., Ltd アロファネート変性ポリイソシアネート組成物の製造方法
JP2006348235A (ja) * 2005-06-20 2006-12-28 Asahi Kasei Chemicals Corp ポリイソシアネート組成物
JP2007177171A (ja) * 2005-12-28 2007-07-12 Mitsui Chemicals Polyurethanes Inc アロファネート基含有ポリイソシアネートの製造方法、ならびにウレタンプレポリマーおよびポリウレタン樹脂組成物
JP2007197642A (ja) * 2006-01-30 2007-08-09 Asahi Kasei Chemicals Corp 二液型ポリウレタン組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4436773A (en) * 1982-02-05 1984-03-13 Dai Nippon Toryo Co., Ltd. Anticorrosive coating process
EP0566037A2 (en) * 1992-04-14 1993-10-20 Takeda Chemical Industries, Ltd. Polyisocyanates, their production and use
KR100874627B1 (ko) * 2003-02-28 2008-12-17 아사히 가라스 가부시키가이샤 도료용 불소 함유 공중합체, 도료용 조성물 및 도료
AU2007302971A1 (en) 2006-10-05 2008-04-10 Asahi Glass Co., Ltd. Composition for two-component fluorine coating material

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172013A (ja) 1984-09-18 1986-04-14 Dainippon Ink & Chem Inc 樹脂組成物
JPS63199770A (ja) 1987-02-17 1988-08-18 Asahi Glass Co Ltd 塗料用組成物
JPH02250872A (ja) 1988-12-28 1990-10-08 Takeda Chem Ind Ltd ポリイソシアネート,その製造法および用途
JPH0570444A (ja) 1991-01-22 1993-03-23 Miles Inc アロフアネート基とイソシアヌレート基とを有するポリイソシアネート、その製造方法および2−成分被覆組成物におけるその使用
JPH04306218A (ja) 1991-01-24 1992-10-29 Asahi Chem Ind Co Ltd 低粘度ポリイソシアネート
JPH05222007A (ja) 1991-07-22 1993-08-31 Miles Inc アロファネート基およびイソシアヌレート基を有するポリイソシアネートの製造方法
JPH05278240A (ja) 1992-03-31 1993-10-26 Ricoh Co Ltd 画像形成装置
JPH0641270A (ja) * 1992-04-14 1994-02-15 Takeda Chem Ind Ltd アロフアネート基及びイソシアヌレート基を有するポリイソシアネート及びその製造方法
JPH07330860A (ja) * 1994-06-15 1995-12-19 Asahi Chem Ind Co Ltd ポリイソシアネート組成物
JP2001026626A (ja) * 1999-06-16 2001-01-30 Bayer Ag 非極性溶媒に良好な溶解性を有する耐光堅牢性ポリイソシアネート
JP2002060459A (ja) * 2000-08-22 2002-02-26 Nippon Polyurethane Ind Co Ltd 変性イソシアネート化合物の製造方法
JP2002249535A (ja) * 2001-02-22 2002-09-06 Nippon Polyurethane Ind Co Ltd アロファネート変性ポリイソシアネート組成物の製造方法
WO2003027163A1 (fr) * 2001-09-20 2003-04-03 Asahi Kasei Chemicals Corporation Composition poly-isocyanate possedant un groupe allophanate et materiau de revetement a haute teneur en solides
JP2004277716A (ja) 2003-02-28 2004-10-07 Asahi Glass Co Ltd 塗料用含フッ素共重合体、塗料用組成物および塗料
JP2005048179A (ja) * 2003-07-16 2005-02-24 Asahi Kasei Chemicals Corp ポリイソシアネート組成物およびコーティング組成物
JP2006052265A (ja) * 2004-08-10 2006-02-23 Asahi Kasei Chemicals Corp ポリイソシアネート組成物および2液型ポリウレタンコーティング組成物
WO2006075636A1 (ja) * 2005-01-14 2006-07-20 Nippon Polyurethane Industry Co., Ltd アロファネート変性ポリイソシアネート組成物の製造方法
JP2006348235A (ja) * 2005-06-20 2006-12-28 Asahi Kasei Chemicals Corp ポリイソシアネート組成物
JP2007177171A (ja) * 2005-12-28 2007-07-12 Mitsui Chemicals Polyurethanes Inc アロファネート基含有ポリイソシアネートの製造方法、ならびにウレタンプレポリマーおよびポリウレタン樹脂組成物
JP2007197642A (ja) * 2006-01-30 2007-08-09 Asahi Kasei Chemicals Corp 二液型ポリウレタン組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2075294A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919557B2 (en) 2006-09-22 2011-04-05 Asahi Glass Company, Limited Aqueous coating composition, process for producing it and two-pack type curable aqueous coating kit
RU2498458C2 (ru) * 2008-06-23 2013-11-10 Асахи Гласс Компани, Лимитед Задний лист для модуля солнечных элементов и модуль солнечных элементов
AU2009263416B2 (en) * 2008-06-23 2014-07-17 Asahi Glass Company, Limited Backsheet for solar cell module and solar cell module
EP2309551A1 (en) * 2008-06-23 2011-04-13 Asahi Glass Company, Limited Backsheet for solar cell module and solar cell module
CN102067327A (zh) * 2008-06-23 2011-05-18 旭硝子株式会社 太阳能电池模块用背板及太阳能电池模块
WO2009157449A1 (ja) * 2008-06-23 2009-12-30 旭硝子株式会社 太陽電池モジュール用バックシートおよび太陽電池モジュール
EP2309551A4 (en) * 2008-06-23 2013-07-10 Asahi Glass Co Ltd BACK SHEET FOR SOLAR CELL MODULE AND SOLAR CELL MODULE
JP5348134B2 (ja) * 2008-06-23 2013-11-20 旭硝子株式会社 太陽電池モジュール用バックシートおよび太陽電池モジュール
JP2010215870A (ja) * 2009-03-19 2010-09-30 Nippon Polyurethane Ind Co Ltd ポリイソシアネート組成物およびそれを用いた2液型塗料組成物
US20120220712A1 (en) * 2010-01-15 2012-08-30 Asahi Glass Company, Limited Process for producing hydrolyzable silyl group-containing fluoropolymer, and composition containing hydrolyzable silyl group-containing fluoropolymer
US8722801B2 (en) * 2010-01-15 2014-05-13 Asahi Glass Company, Limited Process for producing hydrolyzable silyl group-containing fluoropolymer, and composition containing hydrolyzable silyl group-containing fluoropolymer
JP2012082270A (ja) * 2010-10-07 2012-04-26 Agc Coat-Tech Co Ltd 塗料用組成物および塗料用組成物用キット
JP2017105956A (ja) * 2015-12-11 2017-06-15 旭化成株式会社 フッ素塗料組成物
WO2019240189A1 (ja) * 2018-06-13 2019-12-19 Agc株式会社 加飾フィルム、組成物、加飾フィルムの製造方法、加飾フィルム付き3次元成形品の製造方法
JPWO2019240189A1 (ja) * 2018-06-13 2021-07-08 Agc株式会社 加飾フィルム、組成物、加飾フィルムの製造方法、加飾フィルム付き3次元成形品の製造方法
JP7259855B2 (ja) 2018-06-13 2023-04-18 Agc株式会社 加飾フィルム、組成物、加飾フィルムの製造方法、加飾フィルム付き3次元成形品の製造方法

Also Published As

Publication number Publication date
JPWO2008047761A1 (ja) 2010-02-25
US20100179285A1 (en) 2010-07-15
JP5481859B2 (ja) 2014-04-23
US8344071B2 (en) 2013-01-01
CN101528871B (zh) 2011-11-30
CN101528871A (zh) 2009-09-09
EP2075294A4 (en) 2011-11-23
EP2075294A1 (en) 2009-07-01
KR20090073164A (ko) 2009-07-02

Similar Documents

Publication Publication Date Title
JP5481859B2 (ja) フッ素塗料組成物
JP5388405B2 (ja) ポリイソシアネート組成物、及び二液型ポリウレタン組成物
JP5334361B2 (ja) ポリイソシアネート組成物、及びコーティング組成物
JP3902180B2 (ja) アロファネート基を有するポリイソシアネート組成物及びハイソリッド塗料
JP5438970B2 (ja) 二液型フッ素塗料用組成物
JP4476056B2 (ja) ポリイソシアネート組成物およびコーティング組成物
JP4919667B2 (ja) 二液型ポリウレタン組成物
WO1998022547A1 (fr) Composition de revetement non salissant
JP5415155B2 (ja) ポリイソシアネート組成物、及び二液型ポリウレタン組成物
US20170247563A1 (en) Process for producing fluoroolefin copolymer powder for powder coating material, composition for powder coating material, powder coating material and coated article
JP4545648B2 (ja) ポリイソシアネート組成物
JP5004782B2 (ja) ポリイソシアネート組成物、及び二液型ポリウレタン組成物
JP5055106B2 (ja) ポリイソシアネート組成物、及び二液型ポリウレタン組成物
JP4476057B2 (ja) ポリイソシアネート組成物およびコーティング組成物
JP2004307666A (ja) 塗料用含フッ素共重合体、塗料用組成物および塗料
JP2011105886A (ja) ポリイソシアネート組成物、及び二液型ポリウレタン組成物
KR100874627B1 (ko) 도료용 불소 함유 공중합체, 도료용 조성물 및 도료
JP2004277716A (ja) 塗料用含フッ素共重合体、塗料用組成物および塗料
CN108368373B (zh) 涂料组合物及涂装体
JP5060757B2 (ja) 弱溶剤可溶型イソシアネート
JP2015067783A (ja) 含フッ素重合体溶液の製造方法、および含フッ素塗料組成物の製造方法
CN118369386A (zh) 双组分聚氨酯组合物
JP2005330438A (ja) 含フッ素樹脂粉体塗料組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780038647.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829818

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008539805

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2007829818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007829818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12311798

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097007733

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE