WO2008041565A1 - Condensateur, dispositif de condensateur, composant électronique, dispositif de filtre, dispositif de communication et procédé de fabrication d'un dispositif de condensateur - Google Patents

Condensateur, dispositif de condensateur, composant électronique, dispositif de filtre, dispositif de communication et procédé de fabrication d'un dispositif de condensateur Download PDF

Info

Publication number
WO2008041565A1
WO2008041565A1 PCT/JP2007/068588 JP2007068588W WO2008041565A1 WO 2008041565 A1 WO2008041565 A1 WO 2008041565A1 JP 2007068588 W JP2007068588 W JP 2007068588W WO 2008041565 A1 WO2008041565 A1 WO 2008041565A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
capacitive element
capacitor device
dielectric layer
circuit board
Prior art date
Application number
PCT/JP2007/068588
Other languages
English (en)
French (fr)
Inventor
Hideharu Kurioka
Hiroshi Katta
Yoshihiro Okubo
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to US12/441,892 priority Critical patent/US8320102B2/en
Priority to JP2008537480A priority patent/JP5000660B2/ja
Publication of WO2008041565A1 publication Critical patent/WO2008041565A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making
    • Y10T29/435Solid dielectric type

Definitions

  • the present invention relates to a capacitor and a capacitor device that are mainly used in a radio communication circuit of a mobile communication device, and more particularly to a stable capacitor and capacitor device in which deterioration of characteristics such as leakage current characteristics is reduced, and
  • the present invention relates to an electronic component used, a filter device, a communication device using the same, and a method of manufacturing a capacitor device.
  • BST film Perovs force of strontium barium ((Ba, Sr) Ti ⁇ ) thin film
  • a thin film capacitor using a ferroelectric oxide thin film having a light-emitting structure as a dielectric layer has been proposed (see, for example, Japanese Patent Laid-Open No. 8-340090).
  • a variable capacitor that controls the capacitance characteristics by applying a predetermined bias signal (bias voltage) to this dielectric layer to control the dielectric constant of the dielectric layer to a desired value has been proposed! /, (For example, see JP-A-11 260667).
  • a variable capacitor in which a plurality of variable capacitors are connected in series, an external connection electrode is formed on a support substrate, and the variable capacitor is covered with an interlayer insulating film and a protective layer has been proposed (for example, a special capacitor). (See Kai 2004-207630).
  • Capacitors as described above are produced by various thin film processes. Generally, it is known that thin film dielectric layers are affected by these processes and their characteristics change. This is particularly noticeable when it is made of a dielectric material having a perovskite structure. In addition, it is known that when the stress applied to the thin film dielectric layer changes depending on the process, structure, and capacitor material, the characteristics of the thin film dielectric layer also change due to the change in stress. Therefore, in order to produce a capacitor stably and with high reproducibility, it is important to reduce the change in characteristics of the thin film dielectric layer with respect to process and stress.
  • the leakage current characteristics are greatly deteriorated due to the slight deformation of the thin film dielectric layer due to the stress applied to the thin film dielectric layer, the surrounding environment, and processes, etc. It was found that suppressing the deterioration of the thin-film dielectric layer is important for the stable production of capacitors with high reproducibility.
  • characteristics such as leakage current characteristics of the variable capacitor deteriorate due to film stress caused by the interlayer insulating film or protective film.
  • characteristics such as leakage current characteristics of the variable capacitor deteriorate due to film stress caused by the interlayer insulating film or protective film.
  • an inert gas such as nitrogen or argon and sealed
  • oxygen in the thin film dielectric layer and the introduction atmosphere Due to the equilibrium reaction, oxygen vacancies are generated, and the characteristics such as the leakage current characteristics of the variable capacitor are deteriorated.
  • the variable capacitor is resin-molded, the thin film dielectric layer is reduced by the components in the resin, and the characteristics such as the leakage current characteristic of the variable capacitor are deteriorated.
  • variable capacitor utilizing the voltage dependence of the dielectric constant of the dielectric layer, such knowledge between the dielectric layer and the leakage current has not been known so far and was first confirmed by the present inventors. Is.
  • An object of the present invention is to provide a capacitor, a capacitor device, an electronic component, a filter device, and a communication device that have excellent moisture resistance with little characteristic deterioration such as leakage current.
  • the present invention includes a support substrate, a dielectric layer made of an oxide, and a pair of electrodes sandwiching the dielectric layer, the capacitive element formed on the support substrate, and the capacitive element with a gap
  • the dielectric layer has an exposed portion exposed to the gap, and a gas containing oxygen is introduced into the gap. is there.
  • the gas containing oxygen is introduced into the gap, so that the gas containing oxygen is filled in the gap.
  • the capacitive element is sealed by the sealing body via the gap, and moisture resistance can be ensured, so that the reliability can be improved.
  • the capacitive element since the capacitive element is not covered with the protective film or the mold resin, film stress due to the protective film or the like is not newly applied to the dielectric layer. For this reason, the leakage current etc. of the capacitor device by sealing Therefore, it is possible to provide a capacitor device with stable characteristics.
  • the dielectric layer made of oxide has an exposed portion exposed in the gap, and a gas containing oxygen is introduced into the gap, which is caused by being covered with the mold resin or the interlayer insulating film.
  • the present invention also provides a capacitive element group in which a plurality of capacitive elements including a support substrate, a lower electrode, a dielectric layer made of oxide, and an upper electrode, which are sequentially stacked in the thickness direction on the support substrate, are arranged.
  • a capacitor element group including a first capacitor element and a second capacitor element, and connected to the upper electrode or the lower electrode of the first capacitor element, and electrically connecting the first capacitor element to an external circuit.
  • the first connection body and the second connection body are capacitors that are connected to the external circuit and electrically connect the first capacitance element and the second capacitance element, respectively.
  • the interlayer insulating film and the protective film which are conventionally required, are unnecessary, and the interlayer insulating film and the protective film are not required. Since the film stress due to the protective film does not act on the dielectric layer, the leakage current can be reduced.
  • the first capacitive element and the second capacitive element can be connected in series, the high-frequency signal (high-frequency voltage) applied to the capacitor is divided, and a V and capacitor with less distortion can be obtained. .
  • the present invention is a circuit board having the above capacitor and a conductor on which the capacitor is mounted, wherein the first connection body and the second connection body are respectively disposed via the conductor. And a circuit board in which the first capacitive element and the second capacitive element are electrically connected to each other.
  • the interlayer insulating film and the protective film which are conventionally required, are unnecessary, and the interlayer insulating film and the protective film are not required. Since the film stress due to the protective film does not act on the dielectric layer, the leakage current must be reduced with the force S.
  • the present invention is an electronic component that constitutes a resonance circuit, and uses the capacitor device described above.
  • the capacitor device with reduced characteristics such as leakage current characteristics since the capacitor device with reduced characteristics such as leakage current characteristics is used, the reliability can be improved.
  • the present invention also includes an input terminal, an output terminal, and a reference potential terminal, on an input / output line connecting the input terminal and the output terminal, or between the input / output line and the reference potential terminal.
  • a filter device provided with the electronic component described above.
  • the filter device since the filter device uses highly reliable electronic components with little characteristic change, the filter device has stable and highly reliable filter characteristics such as pass characteristics and attenuation characteristics. I'll do it.
  • the present invention is a communication device having at least one of a reception circuit and a transmission circuit having the filter device described above.
  • the filter device with high reliability since the filter device with high reliability is used, it is possible to reduce the call quality with excellent power S.
  • the present invention also includes a step of forming a capacitive element including a dielectric layer made of an oxide and a pair of electrodes sandwiching the dielectric layer on the support substrate, and an oxygen-containing atmosphere in the atmosphere.
  • a step of sealing the capacitive element with the sealing body is also includes a step of forming a capacitive element including a dielectric layer made of an oxide and a pair of electrodes sandwiching the dielectric layer on the support substrate, and an oxygen-containing atmosphere in the atmosphere.
  • the dielectric layer since the dielectric layer has an exposed portion in the gap, and the exposed portion is in contact with a gas containing oxygen, a capacitor device having stable leakage current characteristics can be provided.
  • the protective film and the interlayer Since an insulating film is not required, it is possible to provide a capacitor in which the force and stress applied to the dielectric layer can be reduced and the deterioration of characteristics such as leakage current characteristics is reduced. Furthermore, when the dielectric layer made of oxide has an exposed portion exposed in a gas containing oxygen, deterioration of characteristics such as the leakage current characteristic of the capacitor due to reduction of the dielectric layer is reduced and stable. It is possible to provide a capacitor device of the same quality. In addition, by using a sealing structure having a gap, it is possible to realize a small and low-capacity capacitor device having excellent moisture resistance. Furthermore, it is possible to provide a highly reliable electronic component, filter device, communication device, and capacitor device manufacturing method using these excellent capacitor devices.
  • FIG. 1 is a cross-sectional view showing a capacitor device according to a first embodiment of the present invention.
  • FIGS. 2A and 2B are cross-sectional views showing a capacitor device according to a second embodiment of the present invention.
  • FIG. 3A is a cross-sectional view showing a capacitor device according to a third embodiment of the present invention
  • FIGS. 3B and 3C are a plan view and a cross-sectional view, respectively, showing modifications thereof.
  • FIG. 4 is a cross-sectional view showing a modification of the capacitor device of the present invention.
  • FIG. 5 is an equivalent circuit diagram showing a capacitor device according to a fourth embodiment of the present invention.
  • FIG. 6 is a see-through plan view showing a capacitor formed on the support substrate of the capacitor device according to the fourth embodiment of the present invention.
  • FIG. 7 is a see-through plan view showing a capacitor formed on the circuit board of the capacitor device according to the fourth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of the capacitor device according to the fourth embodiment of the present invention.
  • FIG. 9A and FIG. 9B are a plan view and a cross-sectional view of relevant parts showing a modification of the capacitor device according to the fourth embodiment of the present invention, respectively.
  • FIG. 10A to FIG. 10G are cross-sectional views for each process showing the manufacturing process for manufacturing the sealed body of the capacitor device of the present invention.
  • FIG. 11A to FIG. 11C are respectively before sealing the capacitor device of the first embodiment of the present invention. It is a graph of later IV characteristics.
  • FIG. 12 is a diagram showing a change in leakage current with respect to time in the capacitor device according to the first embodiment of the present invention.
  • FIG. 13 is a diagram showing IV characteristics before sealing of the capacitor device of the first embodiment of the present invention and the capacitor device of the comparative example.
  • FIG. 14 is a graph of the IV characteristics before and after sealing of the capacitor device according to the second embodiment of the present invention.
  • FIG. 15 is a graph of the IV characteristics before and after sealing of the capacitor device according to the third embodiment of the present invention.
  • FIG. 16A and FIG. 16B are cross-sectional views showing the capacitor according to the first embodiment of the present invention.
  • FIG. 17 is a cross-sectional view showing a capacitor according to the second embodiment of the present invention.
  • 18A and 18B are cross-sectional views showing a capacitor according to the third embodiment of the present invention.
  • FIG. 19 is a cross-sectional view showing a capacitor device according to a fifth embodiment of the present invention.
  • FIG. 20 is a cross-sectional view showing a capacitor device according to a sixth embodiment of the present invention.
  • FIG. 21 is a cross-sectional view showing a capacitor device according to a seventh embodiment of the present invention.
  • FIG. 22 is a cross-sectional view showing a capacitor device according to an eighth embodiment of the present invention.
  • FIG. 23 is an equivalent circuit diagram showing the electronic component of one embodiment of the present invention.
  • FIG. 24 is an equivalent circuit diagram showing a filter device according to an embodiment of the present invention.
  • FIG. 25 is a block diagram showing a communication apparatus according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a capacitor device according to a first embodiment of the present invention.
  • the same force is applied to the same parts in the following drawings, and the same symbols are attached to the same parts, and the duplicate description is omitted.
  • 1 is a support substrate
  • 2 is a lower electrode formed on the support substrate 1
  • 4 is a lower portion.
  • Dielectric layer formed on electrode 2 is upper electrode formed on dielectric layer 4
  • 21 is capacitive element comprising lower electrode 2
  • 24 is capacitive element 21
  • 25 is a lid that seals the capacitive element 21 to the package 24 via the gap 22
  • 26 is a seal ring that joins the package 24 and the lid 25.
  • the lid 25 for example, Kovar (Fe—Ni—Co alloy), or Kovar with Ni electrolessly plated can be used.
  • the seal ring 26 may be made of Kovar or 42 alloy (Fe—42 wt% ⁇ alloy) with Ni and Au plated.
  • the node / cage 24, the lid 25, and the seal ring 26 constitute a sealing body that seals the capacitive element 21.
  • the lower electrode 2 and the upper electrode 5 constitute a pair of electrodes sandwiching the dielectric layer 4 made of oxide. Further, the dielectric layer 4 has an exposed portion 23 exposed to the gap 22.
  • the lower electrode 2 and the upper electrode 5 are connected via a metal wire 11 to a terminal electrode layer 12 formed in a knock 24 for connection to an external circuit.
  • the terminal electrode layer 12 is connected to an external power supply circuit or the like via a package 24.
  • the capacitive element 21 is not covered with the protective film and the dielectric layer 4 has the exposed portion 23 exposed to the gap 22, the dielectric layer 4 is covered with the protective film. Since the generated stress does not act on the dielectric layer 4, characteristic deterioration such as leakage current of the capacitor device is reduced.
  • the capacitor element 21 is not resin-molded and the dielectric layer 4 is not in direct contact with the resin, it is possible to prevent impurities from the resin from being mixed in and the dielectric layer 4 from being reduced. it can. For this reason, a capacitor device having stable characteristics can be provided.
  • the hermetically sealed capacitor device can be provided with a small size and excellent moisture resistance.
  • the dielectric layer 4 is a perovskite oxide containing at least Bi, Sr, and Ti
  • a capacitor device having a high dielectric constant, a high Q value, and a low loss can be obtained.
  • the capacitor device when a gas containing oxygen, such as dry air, is introduced into the gap 22, The atmosphere in which the electrodes 2 and 5 are sealed by moisture and the sealed atmosphere is sufficient to suppress the formation of new oxygen vacancies in the dielectric layer 4 made of the oxide after sealing. Since the partial pressure can be maintained for a long period of time, the capacitor device can be greatly reduced in characteristic deterioration such as leakage current after sealing, and a highly reliable capacitor device can be provided.
  • the dielectric layer 4 since there is sufficient oxygen in the sealed atmosphere, the dielectric layer 4 is formed of an oxide such as a thin BST film! /, So that the dielectric layer 4 is reduced. Even if oxygen is released from the dielectric layer 4, the oxygen in the atmosphere is supplemented, so the dielectric layer 4 is not altered. For this reason, characteristic deterioration such as leakage current is reduced as a capacitor device, and a capacitor device of stable quality can be provided.
  • the dielectric layer 4 when the dielectric layer 4 is made of BST, oxygen vacancies are likely to occur. In addition, the oxygen vacancies change the characteristics as a dielectric. Therefore, particularly when the dielectric layer 4 is made of BST, it is particularly important that the dielectric layer 4 has the exposed portion 23 in the gap 22 into which the gas containing oxygen is introduced.
  • the gas introduced into the gap 22 has an oxygen partial pressure capable of supplying oxygen so as to prevent an alteration of the dielectric layer 4 by performing an equilibrium reaction with the oxygen of the dielectric layer 4 made of oxide. It is not limited to good dry air.
  • dry air refers to air that has less moisture (low humidity) than ordinary air, which does not mean air that contains no moisture. Specifically, it refers to air dried to a relative humidity of 40% or less.
  • the sealed atmosphere may be obtained by, for example, unpacking a sealed body that seals the capacitive element group by peeling, breaking, or the like in a vacuum, and analyzing the emitted gas with a gas chromatography, a mass spectrometer, or the like.
  • the capacitor device having the configuration shown in FIG. 1 has a capacitance forming portion, that is, a portion of the capacitive element 21 where the lower electrode 2, the dielectric layer 4, and the upper electrode 5 overlap in the thickness direction.
  • a metal wire 11 is formed (on the upper surface of the upper electrode 5).
  • a bonding wire or the like can be used.
  • the support substrate 1 is a ceramic substrate such as alumina ceramic, a single crystal substrate such as sapphire, or the like.
  • a lower electrode 2 On the support substrate 1, a lower electrode 2, a dielectric layer 4 and an upper electrode 5 are sequentially formed on almost the entire surface of the support substrate 1. After the formation of these layers, the upper electrode 5, the dielectric layer 4 and the lower electrode 2 are sequentially etched into a predetermined shape.
  • the lower electrode 2 Since the lower electrode 2 requires high-temperature sputtering to form the dielectric layer 4, it must have a high melting point so as to withstand the high temperature. Specifically, it is made of a metal material such as Pt, Pd, or Ir and an oxide such as Ir02. This lower electrode 2 is also formed by high temperature sputtering. Further, the lower electrode 2 is heated to 700 to 900 ° C., which is the sputtering temperature of the dielectric layer 4, after being formed by high-temperature sputtering, and kept flat for a certain period of time until the sputtering of the dielectric layer 4 starts. Become a layer.
  • the thickness of the lower electrode 2 is preferably thick when considering the resistance component as an electrode and the continuity of the lower electrode 2, but is relatively thin when considering the adhesion to the support substrate 1. Is determined in consideration of both desired. Specifically, it is from 0.1 111 to 10 111. If the thickness of the lower electrode 2 is less than 0.1 m, the resistance of the lower electrode 2 itself increases, and the continuity of the lower electrode 2 may not be ensured. If it is thicker than lO ⁇ m, the internal stress increases, and there is a possibility that the adhesion to the support substrate 1 may be lowered or the support substrate 1 may be warped.
  • the lower electrode 2 is formed so as to extend to the outside of the capacitance forming portion.
  • the dielectric layer 4 may be an oxide material, but is preferably a high dielectric constant dielectric layer made of a perovskite oxide crystal containing at least Ba, Sr, and Ti. This dielectric layer 4 is formed on the surface of the lower electrode 2. For example, using a dielectric material from which a perovskite oxide crystal can be obtained as a target, film formation by sputtering is performed until a desired thickness is achieved.
  • a low loss dielectric layer 4 having a high dielectric constant and a large capacitance change rate can be obtained without performing heat treatment after sputtering. it can.
  • the thickness of the upper electrode 5 is 0 ⁇ 1 111 to 10 111.
  • the lower limit of the thickness is set in consideration of the resistance of the upper electrode 5 itself, as with the lower electrode 2. Further, the upper limit of the thickness is set in consideration of the adhesion with the dielectric layer 4.
  • the upper electrode 4 when the upper electrode 4 is disposed in the dielectric layer 4 in a plan view, or the side surface of the dielectric layer 4 is exposed, a portion that becomes the exposed portion 23 can be formed.
  • it is formed by patterning in order from the upper electrode 5 side so that nothing other than the upper electrode 5 is in contact with the dielectric layer 4. Is preferred.
  • it is preferable to seal the capacitor element 21 without using a sacrificial layer or the like when the capacitor element 21 is sealed through the gap 22. In this example, since it is housed in the node / cage 24, it can be sealed without using a sacrificial layer, so that a capacitor device having a high Q value can be obtained.
  • the capacitive element 21 is formed on the support substrate 1.
  • a terminal electrode layer 12 is formed on the package 24.
  • the terminal electrode layer 12 is formed, for example, by forming a metal conductor such as Au, Cu, Ag, Ag—Pd, W or the like by a film forming method such as screen printing, and patterning by etching, or from the lower layer in order.
  • a conductor layer in which Ni and Au are laminated may be formed in a desired pattern by an electric field plating method or an electroless plating method.
  • the terminal electrode layer 12 is connected to the lower electrode 2 and the upper electrode 5 with a normal metal wire 11.
  • a seal ring 26 made of Kovar or the like is printed on the top of the package 24, and this seal is A lid 25 is disposed on the ring 26 so as to cover the recess of the package 24 and form a gap 22.
  • the capacitor device shown in FIG. 1 can be obtained by connecting the package 24 and the lid 25 by seam welding with the seal ring 26.
  • FIGS. 2A and 2B show a capacitor device according to a second embodiment of the present invention.
  • FIG. 2A is a cross-sectional view of the capacitor device of the present invention. The capacitor device shown in FIG. 2A is different from the capacitor device shown in FIG.
  • reference numeral 13 denotes a cap-shaped cap member covered on the support substrate 1.
  • the cap member 13 may be made of, for example, an epoxy-based resin material, and previously processed into a cap shape may be disposed on the support substrate 1 and bonded.
  • the terminal electrode layer 12 is formed on the support substrate 1.
  • variable capacitance element 21 may be manufactured in the same manner as the capacitor device shown in FIG.
  • the terminal electrode layer 12 may be formed of the same material at the same time when the lower electrode 2 or the upper electrode 5 of the capacitive element 21 is formed on the support substrate 1.
  • the capacitative element 21 can be sealed by the cap member 13, it is possible to seal the capacitative element 21 via the gap 22 with a simple configuration as compared with the capacitor device having the configuration of FIG. it can. Therefore, the capacitor device can be reduced in size and height. In addition, since the number of parts required for sealing the capacitive element 21 is reduced, it is possible to reduce the power S with high productivity.
  • FIG. 2B is a cross-sectional view showing a modification of FIG. 2A.
  • the cap member 13 has two layers and is formed on the support substrate 1, and is formed on the support substrate 1 and the first cap member 13a located on the capacitive element 21 side, that is, on the inner side.
  • the second cap member 13b covering the first cap member 13a and the force.
  • the terminal electrode layer 12 extends to the outside of the position where the first cap member 13a is disposed on the support substrate 1, and the first columnar electrode 14a and the second columnar electrode 14b are formed on the extended portion, respectively. It has been. That is, the first columnar electrode 14 a is electrically connected to the lower electrode 2 of the capacitive element 21.
  • the second columnar electrode 14b is electrically connected to the upper electrode 5 of the capacitive element 21.
  • the first columnar electrode 14a and the second columnar electrode 14b have their end faces exposed from the top of the second cap member 13b.
  • the capacitive element 21 can be mounted in a hermetically sealed state by connecting the exposed portions of the first columnar electrode 14a and the second columnar electrode 14b to an external circuit. For this reason, it is possible to provide a capacitor device that is easy to mount, small and low profile.
  • FIG. 3A The configuration shown in FIG. 3A is different from the configuration shown in FIGS. 1, 2A, and 2B in the configuration of the sealing body.
  • reference numeral 41 denotes a circuit board disposed opposite to the support substrate 1, and 42 is formed at a position corresponding to a terminal electrode layer (hereinafter also referred to as a terminal portion) 12 on the circuit board 41.
  • Reference numeral 40 denotes a pad, 40 is a connection body that electrically connects the support board 1 and the circuit board 41 to each other, and 43 is a capacitor element 21 and a terminal part 12 formed on the support board 1.
  • An annular electrode layer 44 is formed so as to surround the region, and an annular pad portion 44 is formed on the circuit board 41 at a position corresponding to the annular electrode layer 43.
  • connection body 40 is connected between the terminal portion 12 and the pad portion 42, and between the annular electrode layer 43 and the annular pad portion 44.
  • a connection body 40 is made of, for example, a solder material or a brazing material.
  • An annular member 49 is composed of the annular electrode layer 43, the annular pad portion 44, and the connection body 40 connecting them.
  • connection body 40 constituting the annular member 49 materials such as solder, Au—Sn solder, anisotropic conductive resin, and epoxy resin can be used. Further, for example, Cr, Ni, Au, Pt or the like can be used for the annular pad portion 44 and the annular electrode layer 43.
  • the sealing body is formed so as to surround the circuit board 41 and the region where the capacitive element 21 is formed, and the annular member 49 that connects and seals the circuit board 41 and the support substrate 1. And consist of In this way, by bonding the circuit board 41 and the annular member 49 together, the capacitive element 21 can be sealed via the gap 22, so that it is smaller and less productive than a package. Can be high. Furthermore, when the annular member 49 is formed of a metal material such as a solder or a brazing material, the capacitive element 21 can be hermetically sealed, and as a result, moisture can be well blocked, so that the reliability can be improved. A higher power of S Next, the structure of the capacitor device shown in FIG.
  • the capacitive element 21 is produced in the same manner as the capacitor device shown in FIG.
  • the terminal electrode layer 12 may be formed at the same time in the same material and in the same process when the lower electrode 2 and the upper electrode 5 are formed on the upper surface of the support substrate 1.
  • the terminal electrode layer 12 is connected to the lower electrode 2 and the upper electrode 5 with a metal wire 11 by a known technique.
  • annular electrode layer 43 is provided so as to surround the region where the capacitive element 21 is formed on the upper surface of the support substrate 1.
  • the annular electrode layer 43 may be formed simultaneously with the same material and in the same process when the lower electrode 2 and the upper electrode 5 are formed.
  • connection body 40 is formed on the upper surfaces of the terminal electrode layer 12 and the annular electrode layer 43.
  • the connection body 40 is formed to facilitate mounting on the circuit board 41 by connecting to a pad part 42 and an annular pad part 44 formed on the circuit board 41 described later.
  • the annular electrode layer 43 is connected to an annular pad portion 44 formed on a circuit board 41 to be described later, thereby forming a sealing space that seals the region where the capacitive element 21 is formed. It is formed to prevent moisture from entering the space and increase the mechanical strength of the capacitor device.
  • These connectors 40 are generally formed by reflowing after a solder paste is printed using a predetermined mask.
  • the circuit board 41 is made of an insulating material, for example, a laminate of a plurality of insulating layers is used.
  • insulating layers for example, LTCC (Low Temperature Co-fired Ceramics), ceramics such as alumina ceramics, and glass ceramics are used.
  • the circuit board 41 is a green sheet obtained by molding a slurry in which a metal oxide such as ceramics and an organic binder are homogeneously kneaded with an organic solvent into a sheet, and a desired conductor pattern or through conductor pattern (via hole) is formed. After being formed as appropriate, these liner sheets are laminated and pressure-bonded to form an integral body, which is then fired.
  • the circuit board 41 is not limited to a laminate, but may be an alumina board or the like.
  • a pad portion 42 and an annular pad portion 44 connected to the connection body 40 are formed on the surface (upper surface, surface) of the circuit board 41 on the side to which the support substrate 1 is connected.
  • the pad part 42 and the annular pad part 44 are made of metal such as Au, Cu, Ag, Ag—Pd, and W.
  • a conductor is formed by a film-forming method such as screen printing and patterned by etching, or a conductor layer in which W, Ni, and Au are laminated in order from the lower layer is formed by the electroplating method or electroless plating method. It is formed in a pattern.
  • circuit board 41 and the support substrate 1 are bonded.
  • the annular electrode layer 43 formed on the support substrate 1 and the annular pad portion 44 of the circuit board 41 are arranged so as to correspond to each other, and are reflow-melted at 240 ° C. for 5 minutes in a reflow furnace. Then, the capacitor device shown in FIG.
  • FIG. 3B and FIG. 3C are modifications of FIG. 3A.
  • 3B is a plan view showing a modification of FIG. 3A
  • FIG. 3C is a cross-sectional view taken along line AA in FIG. 3B.
  • FIG. 3B omits the connection body 40 and the circuit board 41 located in the upper portion in order to make the configuration component and easy, and the portion where the connection body 40 is formed is indicated by a dotted line.
  • the terminal electrode layer 12 and the annular electrode layer 43 are separate, whereas in the configurations of FIGS. 3B and 3C, one of the two terminal electrode layers 12 (first terminal) is connected.
  • one of the terminal electrode layers 12 functions as the annular electrode layer 43.
  • a new configuration is not required for joining the circuit board 41 and the support substrate 1, so that a smaller capacitor device can be obtained.
  • the heat can be radiated to the circuit board 41 having a larger area through the first terminal, and it is possible to provide a more reliable capacitor device. it can.
  • one of the terminal electrode layers 12 functions as a part of the annular member 49.
  • the terminal electrode layer 12 and the electrodes 2 and 5 of the capacitor 21 are electrically connected by the metal wire 11. Therefore, since the variable capacitor 21 and the terminal electrode layer 12 can be connected without providing an interlayer insulating layer, the exposed portion 23 can be increased, resulting in the formation of the interlayer insulating layer. A reduction reaction of the dielectric layer can be prevented, and a capacitor device with stable characteristics can be provided.
  • the force metal wire 11 has been described with respect to the example in which the metal wire 11 is used to electrically connect the terminal electrode layer 12 and the capacitor 21. Is not necessarily required.
  • a portion that extends outside the capacitance forming portion of the lower electrode 2 may have a function as the terminal electrode layer 12.
  • the extending portion of the lower electrode 2 and the terminal electrode layer 12 may be integrally formed.
  • the dielectric layer 4 is formed up to the support substrate 1 outside the capacitance forming portion, and the upper electrode 5 is extended to the support substrate 1 through the dielectric layer 4 so that terminals are connected to the extension portion.
  • a function as the electrode layer 12 may be provided.
  • the extending portion of the upper electrode 5 and the terminal electrode layer 12 may be formed integrally.
  • a sacrificial layer may be provided, a layer covering the sacrificial layer may be formed, a through hole may be formed in this layer, the sacrificial layer may be removed from the through hole, and then the through hole may be closed to form the cap member 13.
  • the force S described for the capacitor device including one capacitive element 21 is used, and as shown in FIG. (5 in the example of Fig. 4) may be provided.
  • FIG. 5 in the example of Fig. 4
  • FIG. 4 is a sectional view showing a modification of the capacitor device of the present invention, and shows a configuration in which five capacitive elements 21 are connected in series between two terminal electrode layers 12.
  • the plurality of capacitive elements 21 may be connected in series by forming the lower electrode 2 in common, for example, or may be connected in series by connecting the upper electrodes 5 with the metal wire 11.
  • the lower electrode 2 and the upper electrode 5 of the capacitive element 21 are connected to the first and second terminals 12 through the other capacitive elements 21, respectively. Can be considered.
  • One capacitive element 21 connected by the metal wire 11 is referred to as a first capacitive element, and the other capacitive element is referred to as a second capacitive element.
  • the capacity of the entire capacitor device can be designed as appropriate.
  • this voltage is divided into a plurality of capacitor elements 21, so that the influence of the high frequency voltage is small. It can be a capacitor device.
  • the first capacitive element and the second capacitive element are connected to the terminal electrode layer 12 by the metal wire 11, a plurality of capacitive elements can be connected without providing an interlayer insulating layer, and the exposed portion 23 As a result, the reduction reaction of the dielectric layer 4 can be prevented, and a capacitor device having stable characteristics can be provided.
  • the capacitor device having the exposed portion 23 in which the dielectric layer 4 is exposed to the gap 22 by using the sealing body shown in FIGS. 3A and 3B. Further, instead of the connection body 40 and the annular electrode layer 43, the sealing body shown in FIGS. 1, 2A, and 2B can be used.
  • FIGS. 3A and 3B The configuration of the fourth embodiment is similar to the configuration shown in FIG. 4 in the case where the sealing body shown in FIGS. 3A and 3B is used.
  • a bias line for applying a DC voltage to the capacitance element 21 and changing the capacitance is used.
  • a point that a wiring pattern formed on the circuit board 41 is used to connect a plurality of capacitive elements to each other.
  • a dielectric layer 4 whose dielectric constant changes to a value corresponding to the applied voltage when a voltage is applied to the dielectric layer 4 of the capacitive element 21 by a noise line is used.
  • FIG. 5 is an equivalent circuit diagram
  • Fig. 6 is formed on the support substrate 1.
  • FIG. 7 is a plan view of the circuit board 41 to which the capacitor shown in FIG. 6 is connected
  • FIG. 7 is a plan view of the circuit board 41 to which the capacitor shown in FIG. 6 is connected.
  • Fig. 8 shows a capacitor device by connecting the capacitor shown in Fig. 6 and the circuit board 41 shown in Fig. 7, but is a cross-sectional view taken along the lines B-B 'and CC' shown in Figs. It is.
  • a dotted line portion indicates a position where a wiring pattern 45 formed on a circuit board 41 described later is disposed.
  • symbols CI, C2, and C3 are all capacitive elements 21, and Bl l and B12 are first bias lines including at least one of a resistance component and an inductor component (in this figure, resistance components Rl l and R12), and B21 and B22 are second bias lines (showing the resistance components R21 and R22 in the figure) including at least one of the resistance component and the inductor component, and VI I and V12 are Connected to the first bias lines Bl l and B12, respectively.
  • the bias terminals V21 and V22 are bias terminals connected to the second bias lines B21 and B22, respectively.
  • Capacitance elements C1 to C3 are connected in series between input and output terminals that input and output high-frequency signals. Between one input / output terminal and the capacity element C1, between capacity elements C1 and C2, and capacity elements The first bias line (Bl, B12) and the second bias line (B21, B22) are alternately connected between C2 and the capacitive element C3, and between the capacitive element C3 and the other input / output terminal. ing.
  • the bias lines B11 to B22 need to have a low resistance to the insulation resistance of the capacitive elements C1 to C3 at DC and be larger than the impedance of the capacitive elements C1 to C3 at AC.
  • the DC voltage applied to the capacitive element is determined by the divided voltage of the bias line resistance and the insulation resistance of the capacitive element. Compared to the case, the DC voltage that can be applied to the capacitor element can be increased by dividing the voltage.
  • the high-frequency signal flows between the input / output terminals via the capacitive elements CI, C2, C3 connected in series.
  • the bias signal for controlling the capacitance component of the capacitive element C1 is supplied from the bias terminal VI I and flows to the bias terminal V21 (ground in FIG. 5) via the capacitive element C1.
  • the capacitive element C1 has a predetermined dielectric constant, and as a result, a desired capacitive component is obtained.
  • the bias signal is supplied from the bias terminal VI2 and flows to the bias terminals V21 and V22 (ground) via the capacitive elements C2 and C3.
  • the capacitive elements C2 and C3 have a predetermined dielectric constant, and as a result, a desired capacitive component is obtained. That is, since the capacitive elements C1 to C3 are connected in parallel in a direct current, a bias signal having the same magnitude as the bias signal applied from the bias terminal is applied in a direct current, and a predetermined capacitance component can be obtained. .
  • a DC bias signal for controlling the capacitances of the capacitive elements CI, C2, and C3 to a desired value can be stably and separately supplied to the capacitive elements CI, C2, and C3, respectively.
  • Capacitance device CI, C2, C3 can be applied with a force S to change the dielectric constant in the dielectric layer as desired, and the capacitance component can be easily controlled. Yes.
  • the high-frequency signal input to the capacitor device that is, the high-frequency signal input to the capacitive elements CI, C2, and C3 has the resistance components Rl l and R12 and R21 and R22 in the frequency domain of the high-frequency signal.
  • the impedance component is large, so that leakage does not occur through the first bias lines Bl l and B12 and the second bias lines B2 1 and B22.
  • the Q value of the capacitor device is not affected by the resistance component of the bias line, and the capacitor device can have a high Q value.
  • N is an integer of 2 or more
  • three capacitive elements CI, C2, C3 can be regarded as capacitive elements connected in series in terms of high frequency. Therefore, the high-frequency voltage applied to the capacitive elements CI, C2, and C3 connected in series is divided into the capacitive elements CI, C2, and C3, so that they are applied to the individual capacitive elements CI, C2, and C3. The high frequency voltage will decrease. As a result, the capacitance fluctuation with respect to the high-frequency signal can be suppressed, and waveform distortion, intermodulation distortion, etc. can be suppressed.
  • the capacitive elements CI, C2, C3 are connected in series, so This has the same effect as increasing the thickness of the dielectric layer of the capacitive element, can reduce the amount of heat generated per unit volume due to the loss resistance of the capacitor device, and can improve power durability.
  • the first bias lines Bl l and B12 may be electrically connected to share the bias terminal VI I and the bias terminal V12.
  • the second bias lines B21 and B22 may be electrically connected to share the bias terminal V21 and the bias terminal V22.
  • the high-frequency signal input / output terminals and bias signal bias terminals can be shared.
  • the high-frequency signal input / output terminals consist of a first signal terminal (input terminal) and a second signal terminal (output terminal), and are composed of a terminal electrode layer 12, a solder diffusion prevention layer 16, and a connection body 40.
  • the connecting body 40 and a part of the solder diffusion preventing layer 16 located at the upper portion are omitted in order to make the components of the respective parts easier to distribute.
  • Capacitance elements C1 to C3 have a capacitance forming portion where the lower electrode 2, the dielectric layer 4, and the upper electrode 5 overlap, and an extending portion of the lower electrode 2 extending outside the capacitance forming portion. . Then, the solder diffusion preventing layer 16 is formed on the upper electrode 5 and the extension part of the lower electrode 2, and the connection body 40 is formed thereon. Then, the connection body 40 formed on the extending portion of the lower electrode 2 of the capacitive element C1 and the connection body 40 formed on the upper electrode 5 of the capacitive element C2 are formed on one circuit board 41. By connecting to the wiring pattern, the capacitive elements CI and C2 are connected in series.
  • the capacitive elements C2 and C3 are connected in series, and the extending portion of the upper electrode 4 of the capacitive element C1 and the lower electrode 2 of the capacitive element C3 functions as the terminal electrode layer 12.
  • this terminal electrode layer 12 By connecting this terminal electrode layer 12 to the pad portion 42 formed on the circuit board 41, a capacitor device in which variable capacitance elements C1 to C3 are connected in series between the input terminal and the output terminal is obtained. Touch with S.
  • variable capacitance elements C1 to C3 are produced in the same manner as the capacitance element 21 in the capacitor device of FIG. Form 16.
  • the solder diffusion prevention layer 16 is formed to prevent the connection body 40 from diffusing into the lower electrode 2 during reflow or mounting when the connection body 40 is formed when the connection body 40 is made of solder. .
  • Ni is suitable.
  • Au, Cu or the like having a high solder wettability may be formed on the surface of the solder diffusion preventing layer 16 by about 0.1 m.
  • the annular electrode layer 43 is a capacitive element composed of the capacitive elements C1 to C3 on the upper surface of the support substrate 1. It is provided so as to surround the region where the child group is formed.
  • the annular electrode layer 43 may be formed at the same time in the same material and in the same process when the lower electrode 2 and the upper electrode 5 are formed. Further, a solder diffusion preventing layer 16 may be formed thereon.
  • connection body 40 is formed on the solder diffusion preventing layer 16 to form the capacitor shown in FIG.
  • the connection body 40 is connected to the wiring pattern 45, the pad portion 42, and the annular pad portion 44 formed on the circuit board 41 to be described later, so that the capacitive elements C1 to C3 are connected in series and connected to the circuit board 41. Formed to facilitate mounting.
  • the annular electrode layer 43 is connected to an annular pad portion 44 formed on a circuit board 41, which will be described later, thereby forming a sealed space that seals the region where the capacitive element group is formed, and this sealed (sealed) space.
  • These connectors 40 are generally formed by reflowing after a solder paste is printed using a predetermined mask.
  • connection body 40 constituting the annular member 49 the same material as that of the capacitor device shown in FIG. 3A can be used.
  • connection body 40 formed on the upper electrode 5 of the capacitive element C1 and the lower electrode 2 of the capacitive element C3 serves as an input / output terminal for high-frequency signals with the solder diffusion preventing layer 16.
  • An auxiliary connection portion 30 is provided outside the capacitive element C1 in order to increase the connection strength between the support substrate 1 and the circuit board 41.
  • the auxiliary connection portion 30 may be formed in the same material and in the same process at the same time when the lower electrode 2 and the upper electrode 5 are formed.
  • a solder diffusion prevention layer 16 and a connection body 40 are formed on the upper surface of the auxiliary connection portion 30 and connected to the circuit board 41.
  • the circuit board 41 can use the same material as the capacitor device shown in FIG. 3A. On the surface (upper surface, front surface) of the circuit board 41 to which the support substrate 1 is connected, the wiring pattern 18 connected to the connection body 40, the pad portion 42, and the annular pad portion 44 are formed.
  • the wiring pattern 18, the pad portion 42, and the annular pad portion 44 are formed by forming a metal conductor such as Au, Cu, Ag, Ag—Pd, or W by a film forming method such as screen printing, and then etching. It is formed by turning, or by forming a conductor layer in which W, Ni, and Au are laminated in order from the bottom layer in a desired pattern by an electric field plating method or an electroless plating method.
  • a metal conductor such as Au, Cu, Ag, Ag—Pd, or W by a film forming method such as screen printing, and then etching. It is formed by turning, or by forming a conductor layer in which W, Ni, and Au are laminated in order from the bottom layer in a desired pattern by an electric field plating method or an electroless plating method.
  • the circuit board 41 includes a pad part 42a for connecting a connection body 40 as an input / output terminal formed on the upper electrode 5 of the capacitive element C1 to an external circuit, a lower electrode 2 of the capacitive element C1, and an upper part of the capacitive element C2.
  • a pad portion 42b for connecting the connecting body 40 to an external circuit and an annular pad portion 44 are formed so as to surround them.
  • bias lines Bl1, B12, B21, and B22 that constitute a bias supply circuit for applying a voltage to the capacitive elements C1 to C3 are formed on the circuit board 41.
  • resistors, inductors, ⁇ / 4 lines, etc. can be built in the circuit board 41 side, or formed on the surface of the circuit board 41 or the like. Therefore, it is possible to form a desired bias line that does not increase the size of the device even if an inductor and a ⁇ / 4 line are used as the bias line. Further, since it can be formed separately from the capacitive element group, it can be easily formed on the circuit board 41 using an optimum material.
  • the first bias lines Bl l and B12 constituting such a bias supply circuit are composed of printing resistors 61 and 62 and conductor portions 31 and 32 connected thereto, respectively.
  • the second bias lines B21 and ⁇ 22 are composed of printing resistors 63 and 64 and conductor portions 33 and 34 connected thereto, respectively.
  • the frequency is set so as not to adversely affect the impedance of the capacitor device. For example, if the capacitor device is used at a frequency of 1 GHz and the capacitance of the capacitive elements C1 to C3 is 5 pF, the printed resistance 6 ;! so that 1/10 (100 MHz) force of this frequency does not adversely affect the impedance.
  • Set ⁇ 64 to a resistance value of 10 times or more of the impedance of capacitive elements C1 to C3 at 100MHz.
  • the necessary resistance values of the first and second bias lines Bl l, B12, B21, B22 may be set to about 3.2 kQ or more.
  • the material of this conductor part 3;! To 34 includes low resistance Au, Ag, Cu, etc. to suppress variations in resistance values of the first and second bias lines B11 to B13, B2;! However, since the resistance of the printing resistance 6;! -66 is sufficiently high, Ag may be used and the circuit board 41 may be simultaneously fired using LTCC.
  • the through conductor 15 is made of, for example, a conductor such as Ag, and a through hole (via hole) is formed at a desired position on the green sheet by micro drilling, notching, laser processing, die punching, photolithography, or the like. For example, it is formed by a force formed by introducing an Ag-based conductive paste or by an electroless plating method.
  • input / output terminals can be led out from the upper surface to the lower surface of the circuit board 41.
  • the bias supply circuit can be led out from the upper surface of the circuit board 41 to the lower surface.
  • the annular pad portion 44 on the circuit board 41 side has a shape corresponding to the annular electrode layer 43 formed on the support substrate 1, and a layer made of Cr, Ni, Au or the like is formed by sputtering, electroless plating, electrolysis or the like. It is formed at a predetermined position by a plating method.
  • the annular pad portion 44 may be a single layer or a stack of a plurality of layers.
  • an external connection terminal 19 connected to an input / output terminal and a noise line by a through conductor 15 is formed on the lower surface of the circuit board 41.
  • the material of the external connection terminal 19 is not particularly limited as long as it is a conductor. For example, Ag, Au, Cu or other noble metals, or alloys containing them may be used.
  • circuit board 41 and the capacitor shown in FIG. 6 are joined to obtain the capacitor device shown in FIG.
  • the capacitor shown in FIG. 6 and the upper surface of the circuit board 41 are made to face each other so that the annular electrode layer 43 formed on the support substrate 1 and the annular pad portion 44 of the circuit board 41 correspond to each other. Place them in a reflow oven at 240 ° C for 5 minutes and reflow melt them to join them together with a connector 40 made of solder.
  • the annular member 49 can seal the region where the capacitive element group is formed, prevents moisture from entering the sealed (sealed) space, and increases the mechanical strength of the capacitor device. Touch with S.
  • the gas can be introduced into the gap 22 in the gap 22 with a gas containing oxygen.
  • the circuit board 41 and the capacitor shown in FIG. 6 are joined under dry air, the dry air is introduced into the sealed space. That's the power S.
  • an interlayer insulating film and a protective film that exert a film stress on the dielectric layer are not required, and therefore, it is possible to reduce characteristic deterioration such as leakage current and to provide a capacitor device. Further, since the dielectric layer 4 is difficult to be reduced, it is possible to reduce deterioration of characteristics such as leakage current of the capacitor device and provide a capacitor device having a stable quality. In addition, by using a sealed body having a gap, it is possible to realize a small and low-profile variable capacitance capacitor having excellent moisture resistance. Furthermore, a capacitive element without the need for a sacrificial layer
  • the magnitude of the leakage current in the capacitive element C1 is 1 (+)
  • the magnitude of the leakage current in the capacitive element C2 is 1 (one).
  • the total leakage current of the capacitive element C1 and the capacitive element C2 is 1 (one) +1 (+).
  • the overall difference between the capacitive element C1 and the capacitive element C2 cancels the difference in leakage current due to the polarity of the bias voltage, so that the polarity dependence of the leakage current can be reduced.
  • the bias lines are formed on the circuit board 41. However, a part or all of the bias lines may be formed on the support substrate 1.
  • the plurality of capacitive elements 21 are connected via the wiring pattern 18 formed on the circuit board 41, but may be connected using a metal wire 11 or the like.
  • 9A and 9B show a modification of the capacitor device according to the fourth embodiment of the present invention.
  • 9A is a plan view of the capacitor formed on the support substrate 1, and FIG. This is a cross-sectional view taken along line D ′, and is the same as FIG. 4 except that it includes a bias line.
  • the connection body 40 located at the top is not shown.
  • FIGS. 6 to 8 show the examples shown in FIGS. 6 to 8, the point that all bias lines are formed on the support substrate 1, the point that a plurality of capacitive elements 21 are connected to each other by metal wires 11, and the capacitance. It differs in the number of elements 21.
  • the material of the printing resistance 6;! -64 contains tantalum (Ta) and has a specific resistance of 1 m Q 'cm or more is desirable.
  • the material include tantalum nitride (TaN), TaSiN, and Ta—Si—O.
  • a printing resistor 6;! -64 having a desired composition ratio and resistivity can be formed by a reactive sputtering method in which sputtering is performed by adding nitrogen with Ta as a target. it can.
  • sputtering conditions By appropriately selecting the sputtering conditions, it is possible to form printing resistors 6;! To 64 having a film thickness of 40 nm or more and a specific resistance of ⁇ ⁇ 'cm or more. Furthermore, after sputtering is completed, a resist is applied, processed into a predetermined shape, and then subjected to an etching process such as reactive ion etching (RIE), thereby allowing easy patterning.
  • RIE reactive ion etching
  • FIGS. 10A to 10G are cross-sectional views showing respective steps of a method for manufacturing a sealing body made of the cap member 13.
  • a negative type film resist 27 protected with a release material is applied to a support substrate 1 on which a capacitive element 21 and a terminal electrode layer 12 connected thereto are formed by pressing with a roller. Match.
  • the film resist 27 is heated and cured by heating at 100 ° C.
  • a photo resist is applied to the film resist 27 affixed on the support substrate 1. After aligning the mask or reticle, UV light is exposed to light, and only the part irradiated with UV light undergoes polymerization and crosslinking reaction to stabilize.
  • the film resist 27 is placed on the column portion 13c in the same manner as in FIGS. 10A and 10B, and is unnecessary except for exposure and development to become the lid 13d of the cap member 13. After removing the spot, it is dried by baking. Here, by heating, the support column portion 13c and the lid body 13d are joined and integrated to form the first cap member 13a.
  • a first columnar electrode 14a and a second columnar electrode 14b made of Cu are formed on the two terminal electrode layers 12 by an electroless plating method.
  • a resin material such as an epoxy resin is molded from above the support substrate 1 onto the first cap member 13a and the columnar electrode 14, and the resin material is cut by a grinding technique.
  • the second cap member 13b has the upper surfaces of the first columnar electrode 14a and the second columnar electrode 14b exposed.
  • the bump connecting body is formed on the upper surfaces of the exposed columnar electrodes 14a and 14b with an electrode material such as solder, and the capacitor device sealed with the cap member 13 can be obtained. Touch with S.
  • the capacitive element 21 was formed by laminating the upper electrode 5 in which Pt and Au were laminated in order from the layer 4 and the lower layer. In this state, the leakage current characteristic (IV characteristic) before sealing was measured. The IV characteristics were measured using an Agilent Picoammeter 4140B.
  • the capacitive element 21 was accommodated in a package 24 made of alumina, and the package 24 and a lid 25 (lid) were sealed by seam welding via a seal ring 26 in a dry air atmosphere. After sealing, the sample was subjected to He leak test and air leak test to confirm that it was hermetically sealed! /, And the leakage current characteristics (IV characteristics) after sealing were measured (first Example).
  • FIGS. 11A to 11C show graphs of IV characteristics when the capacitor device of the present invention is sealed in an air atmosphere.
  • the horizontal axis represents voltage (unit: V), and the vertical axis represents leakage current (unit: A).
  • FIGS. 11A to 11C show the characteristics before and after the sealing of three types of samples # 1 to # 3, respectively.
  • FIG. 12 shows the results of measuring the change in leakage current with time when 6.0 V is continuously applied at 85 ° C. for the sample of the first embodiment.
  • FIG. 12 shows the results of measuring the change in leakage current with time when 6.0 V is continuously applied at 85 ° C. for the sample of the first embodiment.
  • the capacitive element 21 is covered with SiO, which is an insulating protective film, and a dielectric layer 4
  • a capacitor device having no exposed portion 23 was produced.
  • the SiO film has an electrical measurement
  • FIG. 13 shows the IV characteristics of the example and the comparative example. As is apparent from this figure, the leakage current of the comparative example was generally larger than that of the sample of the example of the present invention. From this, it was confirmed that it is effective to provide the exposed portion 23 where the dielectric layer 4 is exposed to the gap 22 and to prevent the dielectric layer 4 from being subjected to stress due to an insulating protective film or the like.
  • FIG. 14 shows the leakage current characteristics of the second example with nitrogen sealing. Shown in Figure 14 Thus, when nitrogen sealing was performed, it was confirmed that the leakage current characteristics were superior to those of the comparative example shown in FIG. 13 before sealing. However, the IV characteristics of the capacitor device were significantly degraded before and after sealing. This is presumably because new oxygen vacancies were generated in the dielectric layer 4 due to the equilibrium reaction between oxygen in the dielectric layer 4 and the nitrogen-sealed atmosphere.
  • FIG. 15 shows the leakage current characteristics of the third example after vacuum sealing.
  • the leakage current characteristic was superior to that of the comparative example shown in FIG. 13 before sealing.
  • the IV characteristics are greatly deteriorated before and after sealing. This is presumably because oxygen vacancies were generated in the dielectric layer 4 due to the equilibrium reaction between oxygen in the dielectric layer 4 and the vacuum-sealed atmosphere.
  • the lid (lid) 25 was removed and the leakage current characteristics were measured, and the leakage current (IV) characteristics recovered slightly. However, it was in a considerably deteriorated state compared to the leakage current characteristics before sealing.
  • the IV characteristics were greatly improved and became close to those before sealing.
  • the leakage current characteristics are the same in the low-voltage region as compared with the voltage before the vacuum sealing, and the voltage at which the force current rises is lower, and it did not return completely to the state before the vacuum sealing. From the above, even when vacuum sealed, the IV characteristics deteriorated before and after sealing, so the presence or absence of oxygen is not affected by reducing elements such as hydrogen in the atmosphere. It is inferred that this is an important factor.
  • the leakage current characteristic remains deteriorated even if the atmosphere is returned to an atmosphere containing oxygen. Therefore, when the capacitor element 21 is sealed, a sacrificial layer or the like is used. It turned out to be important to seal without using it.
  • the leakage current was larger than in the case of the second and third examples.
  • the dielectric layer 4 has a structure in which pressure by an insulating protective film or the like is not applied, and the exposed portion 23 where the dielectric layer 4 is exposed to the gap 22 is provided, thereby providing excellent leakage current characteristics. It turned out that it can be set as a capacitor
  • FIG. 16A is a cross-sectional view showing the capacitor according to the first embodiment of the present invention.
  • the capacitor of the present invention is used by being connected to an external circuit.
  • the circuit board 41 having conductors such as the wiring pattern 18 (shown by dotted lines in the figure. The details will be described later, and detailed description thereof is omitted here) is used.
  • the support substrate 1 On the support substrate 1, there is a capacitive element group 8 in which capacitive elements CI and C2 including a lower electrode 2, a dielectric layer 4, and an upper electrode 5 are sequentially stacked in the thickness direction.
  • a region where the lower electrode 2, the dielectric layer 4, and the upper electrode 5 overlap is defined as a capacitance forming portion.
  • the capacitive element group 8 includes capacitive elements CI and C2, which are referred to as a first capacitive element 6 and a second capacitive element 7, respectively.
  • first connector 9 is connected to the upper electrode 5 of the first capacitor element 6 via the solder diffusion preventing layer 16, and the upper electrode 5 of the second capacitor element 7 is connected to the upper electrode 5 via the solder diffusion preventing layer 16.
  • the second connector 10 is connected.
  • the first connection body 9 and the second connection body 10 are connected to the wiring pattern 18 of the circuit board 41, respectively, and connect the first capacitor element 6 and the second capacitor element 7 in series. That is, the upper electrodes 5 are connected to each other by connecting the wiring pattern 18 of the circuit board 41 to both the first connection body 10 and the second connection body 10.
  • the dielectric layer 4 of the first capacitor element 6 and the second capacitor element 7 is partially exposed! /.
  • the lower electrode 2 of the first capacitor element 6 and the second capacitor element 7 extends on the support substrate 1 to the outside of the capacitor forming portion in order to connect to the input / output terminals of the capacitor.
  • An input / output terminal is formed by sequentially laminating a solder diffusion preventing layer 16 and a terminal connector 17 on the extended portion. By connecting this input / output terminal to an input / output terminal wiring pattern 18 formed on the circuit board 41, a capacitor in which capacitive elements CI and C2 are connected in series between the input terminal and the output terminal can do.
  • FIG. 16B is a cross-sectional view showing a modification of FIG. 16A.
  • FIG. 16B shows that the first connector 9 is formed on the extended portion of the lower electrode 2 of the first capacitive element C1 extending outside the capacitance forming portion via the solder diffusion preventing layer 16! / This is different from Fig. 16A.
  • the first connection body 9 is connected to the second connection body 10 formed on the upper electrode 5 of the second capacitor element C2 via the wiring pattern 18 formed on the force circuit board 41.
  • the first capacitor element C1 and the second capacitor element C2 are connected in series.
  • the input / output terminal of the capacitor is connected to the upper electrode 5 of the first capacitive element C1 and the lower electrode 2 of the second capacitive element C2. Therefore, the terminal connection body 17 is provided on the upper electrode 5 of the first capacitor C1.
  • connection conductor 20 may be provided.
  • the connection conductor 20 is formed on the lower electrode 2 formed on the support substrate 1 and on the solder diffusion prevention layer 16 in order to match the height of the first connection body 9, the second connection body 10, and the terminal connection body 17. It is preferable to form.
  • FIG. 17 is a cross-sectional view showing a capacitor according to the second embodiment of the present invention.
  • a plurality of capacitive elements C1 to C5 are arranged, among which the capacitive element C1 and the capacitive element C2, and the capacitive element C3 and the capacitive element C4 share the lower electrode 2. Further, a connection body 40 is formed on the upper electrode 5 of each of the capacitive elements C1 to C5.
  • This capacitor is connected to the first wiring pattern 18c connected to the upper electrode 5 of the capacitive element C1, the second wiring pattern 18d connecting the upper electrodes 5 of the capacitive element C2 and the capacitive element C3, and the capacitive element C4 to the capacitive element.
  • a circuit board having a third wiring pattern 18e for connecting the upper electrodes 5 to the element C5, and a fourth wiring pattern 18f for connecting to the input / output terminal connector 17 connected to the lower electrode 2 of the capacitor C5. If connected to 41, capacitive elements C1 to C5 are connected in series. Here, attention is paid to the capacitive element C3 and the capacitive element C4.
  • the capacitive element C3 and the capacitive element C4 share the lower electrode 2 and are electrically connected. As a result, the step of connecting the one ends of the capacitive elements C3 and C4 can be omitted, and the fabrication becomes easy and the productivity can be increased.
  • connection body 40 formed on the upper electrode 5 of the capacitive element C3 and the connection body 40 formed on the upper electrode 5 of the capacitive element C4 are separated from each other by separate wiring patterns formed on the circuit board 41.
  • the second wiring pattern 18d and the third wiring pattern 18e By connecting to the second wiring pattern 18d and the third wiring pattern 18e, the second wiring pattern 18d is connected to the capacitive element C3 via the connection body 40, and the lower electrode 2 is shared to thereby provide the capacitive element.
  • C3 and the capacitive element C4 are connected, the capacitive element C4 and the third wiring pattern 18e are connected via the connection body 40, and the capacitive element C3 and the capacitive element C4 are connected in series.
  • the capacitive element C3 and the capacitive element C4 are referred to as the first capacitive element 6 and the second capacitive element 7, respectively, and the connection body 40 connected to each of them is regarded as the first connection body 9 and the second connection body 10. I can do it.
  • the functions of the first connection body 9 and the second connection body 10 are not limited to the case where the first capacitor element 6 and the second capacitor element 7 are directly connected in series as shown in FIG. 16A, but as shown in FIG. This includes the case where the first capacitor element 6 and the second capacitor element 7 are connected to the circuit board 41 so as to function as a capacitor in a state where they are connected in series.
  • the capacitors shown in FIGS. 16A, 16B, and 17 are patterned in order from the upper layer after laminating the lower electrode 2, the dielectric layer 4, and the upper electrode 5 on the support substrate 1. It is possible to form a capacitor with S. For this reason, the productivity can be increased and the same batch can be formed, so that the adhesion of foreign matters and the like between layers can be prevented, so that the reliability can be increased.
  • FIG. 18A is a cross-sectional view showing a capacitor according to the third embodiment of the present invention.
  • a capacitive element C1 to be the first capacitive element 6 and a capacitive element C2 to be the second capacitive element 7 are formed on the support substrate 1, and the upper electrode 5 and the capacitive element of the capacitive element C1 are formed.
  • the lower electrode 2 of C2 is electrically connected.
  • the first connection body 9 and the second connection body 10 are formed on the upper surface of the extending portion of the lower electrode 2 of the capacitive element C1 that extends outside the capacitance forming portion and the upper surface of the upper electrode 5 of the capacitive element C2. The It is formed.
  • the first connection body 9 and the second connection body 10 have the function of the terminal connection body 17. Then, by connecting the first connection body 9 and the second connection body 10 to separate wiring patterns 18 formed on the wiring board, the capacitor C1 and the capacitor C2 are capacitors connected in series.
  • a step of connecting one ends of a plurality of capacitive elements can be omitted, and a highly productive capacitor can be provided.
  • the dielectric layer 4 is changed according to the voltage applied, and the bias voltage is changed between the connection point of the first capacitive element 6 and the second capacitive element 7, the lower electrode 2 of the first capacitive element 6, and the second capacitive element 7.
  • the direction in which the leakage current flows between the first capacitor element 6 and the second capacitor element 7 is opposite in the thickness direction. Therefore, when the first capacitor element 6 and the second capacitor element 7 are viewed as a whole, the polarity dependence of the leakage current can be reduced.
  • FIG. 18B is a cross-sectional view showing a modification of FIG. 18A.
  • the capacitor shown in FIG. 18B is different from the capacitor shown in FIG. 18A in that five capacitive elements C1 to C5 are formed on the support substrate 1.
  • the upper electrode 5 of one adjacent capacitive element is connected to the lower electrode 2 of the other capacitive element, and is connected in series in the arrangement direction.
  • a connection body 40 is formed on the upper surface of the extending portion of the lower electrode 2 of the capacitive element C1 that extends to the outside of the capacitive forming portion and the upper surface of the upper electrode 5 of the capacitive element C5. This connection 40 also serves as a terminal connection!
  • the connection body 40 connected to the first capacitive element 6 becomes the first connection body 9, and the second capacitive element 7
  • the connecting body 40 connected to the second connecting body 10 becomes the second connecting body 10.
  • the first capacitive element 6 (C1) and the second capacitive element 7 (C5) are connected in series from the capacitive element C1 to the capacitive element C5. It can be connected to the circuit board 41 so as to function as a capacitor.
  • FIG. 19 is a cross-sectional view showing a capacitor device according to a fifth embodiment of the present invention.
  • This capacitor device includes a capacitor according to the present invention shown in FIG. 17, a circuit board 41 having a conductor and mounted with the capacitor shown in FIG. 17, and a capacitor element group 8 including capacitor elements C1 to C5. And a sealing body that seals through the gap 22.
  • the dielectric layer 4 constituting the capacitive element has an exposed portion 23 that is exposed in the gap 22.
  • Capacitors C1 to C5 are sequentially connected in series by connecting capacitor connecting bodies 40 to the wiring pattern 18 of the circuit board 41, respectively.
  • the combination of the first capacitive element 6 and the second capacitive element 7 may be any combination as long as the adjacent capacitive elements are, for example, the capacitive element C1 and the capacitive element C2, and the capacitive element C3 and the capacitive element.
  • a combination of C4, a capacitive element C2 and a capacitive element C3, and a combination of a capacitive element C4 and a capacitive element C5 can be given.
  • the wiring pattern 18 connects the wiring pattern 18c that connects the capacitive element C1 and the external connection terminal 19a, the wiring pattern 18d that connects the capacitive element C2 and the capacitive element C3, and connects the capacitive element C4 and the capacitive element C5.
  • the wiring pattern 18e includes a wiring pattern 18f that connects the capacitor C5 and the external connection terminal 19b.
  • the wiring patterns 18c and 18f also function as terminal connection electrodes connected to the external connection terminals 19a and 19b.
  • the through conductor 15 connects the wiring patterns 18c and 18f and the external connection terminals 19a and 19b.
  • the external connection terminal 19 is on the main surface of the circuit board 41 opposite to the side on which the wiring pattern 18 is formed. Is formed. With such a configuration, it is possible to connect a plurality of capacitance elements in series without providing a protective film or interlayer insulating film on the capacitor. As a result, the interlayer insulating film and the protective film that exert a film stress on the dielectric layer 4 are protected.
  • the capacitor device Since no film is required, deterioration in characteristics such as capacitor leakage current characteristics can be reduced.
  • the capacitive elements C1 to C5 are serially connected in high frequency, the high frequency voltage applied to the capacitive elements is divided into the capacitive elements, so that the capacitive elements are applied to the individual capacitive elements. The high frequency voltage is divided and reduced. For this reason, it is possible to suppress the capacitance fluctuation of the capacitor device with respect to the high frequency signal.
  • the capacitive elements C1 to C5 are connected in series at a high frequency, the same effect as that obtained by increasing the thickness of the dielectric layer of the capacitive element can be obtained, and the loss resistance of the capacitor device can be obtained. The calorific value per unit volume can be reduced. For this reason, the electric strength of the capacitor device can be improved.
  • a frame body 28 made of ceramic is formed on the circuit board 41 so as to surround the region to which the capacitor is connected, and the lid body 25 is disposed on the upper surface of the frame body 28 via the seal ring 26. Is connected. Further, in order to connect the frame body 28 and the lid body 25 by the seal ring 26, they may be connected by seam welding, or may be connected by using Au—Sn alloy solder or resin as the seal ring 26. .
  • the circuit board 41 and the frame body 28 constitute a package for accommodating capacitors.
  • a gas containing oxygen is introduced into the gap 22.
  • FIG. 20 is a cross-sectional view showing a capacitor device according to a sixth embodiment of the present invention.
  • the capacitor device shown in FIG. 20 differs from the configuration shown in FIG. 19 in the configuration of the sealing body. That is, the sealing body in FIG. 20 is formed so as to surround the area where the circuit board 41 and the capacitive element group 8 are formed, and the circuit board 41 and the support board 1 are joined and sealed. 4 and 9.
  • the annular member 49 includes an annular electrode layer 43, an annular pad portion 44, and a connection body 40 that connects them to each other.
  • the connection body 40 constituting the annular member 49 is connected to the support substrate 1 via the annular electrode layer 43 formed so as to surround the region where the capacitive element group 8 is formed on the support substrate 1.
  • the circuit board 41 is connected to the circuit board 41 via an annular pad portion 44 formed so as to correspond to the annular electrode layer 43.
  • the capacitor can be sealed with a simple configuration, no package is required, and a small and low-capacitance capacitor device can be realized. Further, when the annular member 49 is made of an inorganic material or a metal material, it can be hermetically sealed, and thus a more stable and highly reliable capacitor device can be provided.
  • the surface (back surface) and the side surface of the support substrate 1 not facing the circuit substrate 41 and the side surface and the annular member 49 may be sealed with a sealing resin.
  • FIG. 21 is a cross-sectional view showing a capacitor device according to a seventh embodiment of the present invention.
  • the capacitor device shown in FIG. 21 is different from the configuration shown in FIG. 19 in the configuration of the sealing body.
  • the sealing body in FIG. 21 is a resin member that covers from the main surface of the circuit board 41 on the side where the capacitor is connected to the side surface of the support substrate 1 and the main surface on the side not facing the circuit board 41. Consists of.
  • Such a resin member 50 is provided in order to prevent moisture from entering the sealed space and to increase the mechanical strength of the capacitor device.
  • Thermosetting resins such as epoxy resin and polyimide resin, and polyphenylene
  • a thermoplastic resin such as a sulfide resin, an ultraviolet ray curable resin, a low melting point glass, or the like can be used, and these may be formed by applying a potting method or a printing method and then performing a curing treatment. For example, when a resin member 50 made of an epoxy resin is used, it is applied so as to cover the capacitor connected to the circuit board 41 by a potting method, and then heated at 150 ° C. for 5 minutes in a drying furnace. It can be cured.
  • FIG. 22 is a cross-sectional view showing a capacitor device according to an eighth embodiment of the present invention.
  • the capacitor device shown in FIG. 22 is different from the structure shown in FIG. That is, the sealing body in FIG. 21 is a resin member 50 formed by a potting method or the like, whereas the sealing body in FIG.
  • the sheet-like resin member 51 is provided so as to cover from the upper surface of the circuit board 41 to the side surface of the support substrate 1 and the main surface (back surface) on the side not facing the circuit substrate 41.
  • the sheet-like resin member 51 is made of an epoxy resin, a phenol resin, or the like.
  • the sheet-like resin member 51 is formed by placing a sheet-like uncured resin so as to cover the support substrate 1, pressurizing the sheet-like uncured resin from above, and the circuit board 41 After being bonded to the upper surface of the film, it is formed by heat curing.
  • the heating temperature varies depending on the resin used. For example, when the sheet-like resin member 51 made of an epoxy resin is used, it may be processed at 150 ° C.
  • the capacitive element group 8 can be sealed with a simple configuration. As a result, the manufacturing process can be simplified, and it is possible to provide a capacitor device with high productivity. Further, since a package for sealing the capacitive element group 8 is not required and can be sealed only by the thin sheet-like resin member 51, a small and low-profile capacitor device can be realized. .
  • a gas containing oxygen for example, dry air is introduced into the gap 22 for the same reason as in the above embodiment. I prefer to do that!
  • the force conductor described in the example using the wiring pattern 18 as the conductor is not limited to the wiring pattern 18 alone.
  • the connection body 40 may be connected to a via of the circuit board 41, and the first capacitor element and the second capacitor element may be electrically connected by routing the wiring in the circuit board 41.
  • the dielectric layer may have a function as a variable capacitor device by using a dielectric layer whose dielectric constant changes in response to voltage application.
  • the bias voltage may be applied, for example, by superimposing a high frequency signal between the external connection terminals 19a and 19b.
  • FIGS in order to increase the capacity variable ratio of the capacitor device, it is shown in FIGS. In this way, a bias line may be formed to apply a bias voltage to each capacitive element individually! /.
  • the capacitors shown in Fig. 16B and Fig. 18B are examples of capacitors whose leakage current characteristics do not increase even when the polarity of the bias voltage is changed. This is because the direction in which the leakage current flows between the capacitive elements when the bias voltage is applied is reversed in the thickness direction, and the polarity of the leakage current is canceled out.
  • FIG. 23 is an equivalent circuit diagram showing the electronic component of one embodiment of the present invention.
  • Ct is the capacitor device of the present invention
  • Tt is a ⁇ g / 4 transmission line as a transmission line
  • Cc is a high-frequency grounding capacitor that forms a high-frequency grounding capacitor
  • the capacitor device Ct is transmitted between the signal input terminal S and the reference potential portion.
  • the transmission line Tt and the high-frequency grounding capacitor Cc are connected in parallel to the circuit connected in series.
  • the reference potential portion is a ground potential.
  • the capacitor device Ct of the present invention since the capacitor device Ct of the present invention is used, a highly reliable electronic component can be obtained.
  • the force S can be used to change the resonance frequency to an arbitrary value.
  • FIG. 24 is an equivalent circuit diagram showing a filter device according to an embodiment of the present invention.
  • the filter device of the present invention has an electronic component 100a of the present invention between the input / output line connecting the input terminal In and the output terminal Out and the reference potential terminal and on the input / output line.
  • 100b can be connected.
  • the reference potential terminal is grounded.
  • the electronic component 100a of the present invention is connected only between the input / output line connecting the input terminal In and the output terminal Out and the reference potential terminal.
  • the electronic component 100b may be connected only on the input / output line.
  • a highly reliable device can be provided by using the electronic components 100a and 100b of the present invention as resonators constituting the filter.
  • FIG. 25 is a block diagram showing a communication apparatus according to an embodiment of the present invention.
  • a transmitting circuit Tx and a receiving circuit Rx are connected to an antenna 140 via a duplexer 150.
  • the high-frequency signal to be transmitted is removed from the unnecessary signal by the filter 210, amplified by the power amplifier 220, and then radiated from the antenna 140 through the isolator 230 and the duplexer 150. Further, the high frequency signal received by the antenna 140 passed through the duplexer 150 and was amplified by the low noise amplifier 160, and the unnecessary signal was removed by the filter 170. Thereafter, the signal is re-amplified by the amplifier 180 and converted to a low frequency signal by the mixer 190.
  • the filter device of the present invention is used for the lever displacement force of the duplexer 150, the finore 170, and the finoleator 210, the reliability can be improved.
  • the communication device having the transmission circuit Tx and the reception circuit Rx or the communication device having either the transmission circuit Tx or the reception circuit Rx may be used. According to the communication device of the present invention having such a configuration, a highly reliable communication device can be provided by including the filter device of the present invention.
  • a printed resistor may be formed inside or on the back surface of the circuit board 41, or a ⁇ / 4 line or an inductor may be formed on the surface layer, the inner layer, or the back surface of the circuit board 41 instead of the printed resistance.
  • either the connecting conductor 20 or the input / output terminal may have a function as the annular electrode layer 43.
  • It may be formed on one side and a part may be formed on the support substrate.
  • the input / output terminals may be connected to the external circuit on the force upper surface described in the example in which the input / output terminals are led to the lower surface of the circuit board 41.
  • first capacitor element 6 and the second capacitor element 7 are connected in series.
  • they may be connected in parallel.
  • FIG. 16A if the wiring pattern for the input / output terminal is connected to the reference potential, and the input terminal for the high-frequency signal is connected to the wiring pattern that electrically connects the first capacitor element 6 and the second capacitor element 7.
  • the first capacitor element 6 and the second capacitor element are connected in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Description

明 細 書
コンデンサ、コンデンサ装置、電子部品、フィルタ装置、通信装置、および コンデンサ装置の製造方法
技術分野
[0001] 本発明は、移動体通信機の無線通信回路等に主に用いられるコンデンサおよびコ ンデンサ装置に関し、特にリーク電流特性等の特性劣化が低減され、安定なコンデ ンサおよびコンデンサ装置、それを用いた電子部品、フィルタ装置、ならびにそれを 用いた通信装置、およびコンデンサ装置の製造方法に関するものである。
背景技術
[0002] 常誘電体であるチタン酸ストロンチウム(SrTiO )薄膜や、強誘電体であるチタン酸
3
ストロンチウムバリウム((Ba, Sr)Ti〇)薄膜(以下、 BST膜ともいう)等のぺロブス力
3
イト構造を有する強誘電体酸化物薄膜を誘電体層として用いた薄膜コンデンサが提 案されている(例えば、特開平 8— 340090号公報を参照)。またこの誘電体層に所 定のバイアス信号 (バイアス電圧)を印加することにより、誘電体層の誘電率を所望の 値に制御して容量特性を制御する可変容量コンデンサが提案されて!/、る(例えば、 特開平 11 260667号公報を参照)。さらに可変容量素子が複数個直列に接続さ れ、支持基板上に外部接続電極が形成され、可変容量素子を層間絶縁膜および保 護層で覆った可変容量コンデンサが提案されている(例えば、特開 2004— 207630 号公報を参照)。
発明の開示
[0003] 上記のようなコンデンサは、種々の薄膜プロセスを経て作製される力 一般的に薄 膜誘電体層はこれらのプロセスの影響を受け、特性が変化することが知られている。 特に、ぺロブスカイト構造を有する誘電体材料からなる場合にはそれが顕著である。 また、プロセスや構造、コンデンサを形成する材料により、薄膜誘電体層にかかる応 力が変化すると、その応力の変化によっても、薄膜誘電体層の特性は変化することが 知られている。従って、コンデンサを安定に再現性高く作製するためには、プロセス や応力等に対する薄膜誘電体層の特性変化を低減することが重要である。 発明者が鋭意検討した結果、とりわけリーク電流特性は、薄膜誘電体層にかかる応 力や周辺環境、プロセスなどによる薄膜誘電体層の僅力、な変質により大幅に劣化す るため、可能な限り薄膜誘電体層の変質を抑制することが、コンデンサを安定に再現 性高く作製する上で重要であることがわかった。
たとえば、層間絶縁膜や保護膜により被覆されている薄膜誘電体層の場合には、 層間絶縁膜や保護膜による膜応力により、可変容量コンデンサのリーク電流特性等 の特性が劣化する。また、耐湿性等の信頼性を向上するため、可変容量コンデンサ を窒素、アルゴン等の不活性ガスでパッケージ内に導入して封止した場合には、薄 膜誘電体層の酸素と導入雰囲気との平衡反応により酸素空孔が生じ、可変容量コン デンサのリーク電流特性等の特性が劣化する。また、可変容量コンデンサを樹脂モ 一ルドした場合、樹脂中の成分により薄膜誘電体層が還元されて、可変容量コンデ ンサのリーク電流特性等特性が劣化する。
誘電体層の誘電率の電圧依存性を利用した可変容量コンデンサにおいて、誘電 体層とリーク電流との間のこのような知見はこれまで知られておらず、本発明者がはじ めて確認したものである。
本発明の目的は、リーク電流等の特性劣化が少なぐ耐湿性に優れたコンデンサ、 コンデンサ装置、電子部品、フィルタ装置および通信装置を提供することである。 本発明は、支持基板と、酸化物からなる誘電体層と前記誘電体層を挟持して成る 一対の電極とを含み、前記支持基板上に形成された容量素子と、前記容量素子を 間隙を介して封止する封止体と、を有し、前記誘電体層は、前記間隙に露出する露 出部を有し、前記間隙には、酸素を含む気体が導入されている、コンデンサ装置で ある。
すなわち、本発明のコンデンサ装置は、間隙内に酸素を含む気体が導入されること より、間隙内には酸素を含む気体が充填されたものとなる。
本発明によれば、容量素子が封止体により間隙を介して封止されており、耐湿性を 確保することができるので信頼性の高いものとすることができる。また、容量素子が保 護膜やモールド樹脂に被覆されていないため、保護膜等による膜応力が新たに誘電 体層に力、かることがなくなる。このため、封止によってコンデンサ装置のリーク電流等 の特性劣化が低減され、特性の安定したコンデンサ装置を提供することができる。ま た、酸化物からなる誘電体層は間隙に露出する露出部を有し、間隙には酸素を含む 気体が導入されていることから、モールド樹脂や層間絶縁膜に被覆されることに起因 する、樹脂からの不純物の混入、誘電体層を構成する材料の還元反応が起きず、安 定したリーク電流特性を有するコンデンサ装置を提供することができる。
特に間隙には酸素を含む気体が導入されていることから、酸化物からなる誘電体層 を構成する材料の新たな酸素欠陥の発生を抑制するとともに、酸素抜けによる変質 を抑制することができる。このため、安定したリーク電流特性を有するコンデンサ装置 を提供すること力できる。
また、本発明は、支持基板と、前記支持基板上の厚み方向に順次積層された、下 部電極、酸化物からなる誘電体層、上部電極を含む容量素子が複数個配列された 容量素子群であって、第 1容量素子と、第 2容量素子と、を含む容量素子群と、前記 第 1容量素子の前記上部電極又は前記下部電極に接続され、前記第 1容量素子を 外部回路に電気的に接続する第 1接続体と、前記第 2容量素子の前記上部電極又 は前記下部電極に接続され、前記第 2容量素子を前記外部回路に電気的に接続す る第 2接続体と、を含み、前記第 1接続体および前記第 2接続体は、それぞれ前記外 部回路に接続されて、前記第 1容量素子と前記第 2容量素子とを電気的に接続する 、コンデンサである。
本発明によれば、複数の容量素子を第 1および第 2接続体と外部回路とを介して接 続するため、従来必要であった層間絶縁膜や保護膜が不要となり、層間絶縁膜や保 護膜による膜応力が誘電体層にはたらくことがなくなるので、リーク電流の少ないもの とすること力 Sできる。また、第 1容量素子と第 2容量素子とを直列に接続することができ るので、コンデンサに印加される高周波信号(高周波電圧)が分圧され、歪みの少な V、コンデンサとすることができる。
また、本発明は、上記のコンデンサと、導電体を有し、前記コンデンサが実装された 回路基板であって、前記第 1接続体および前記第 2接続体が、それぞれ前記導電体 を介して、前記第 1容量素子と前記第 2容量素子とが電気的に接続されるようにした 回路基板と、を含む、コンデンサ装置である。 本発明によれば、複数の容量素子を第 1および第 2接続体と回路基板とを介して接 続するため、従来必要であった層間絶縁膜や保護膜が不要となり、層間絶縁膜や保 護膜による膜応力が誘電体層にはたらくことがなくなるので、リーク電流の少ないもの とすること力 Sでさる。
また、本発明は、共振回路を構成する電子部品であって、上記のコンデンサ装置を 用いた電子部品である。
本発明によれば、リーク電流特性等の特性劣化を低減したコンデンサ装置を用いる ことから、信頼性の高いものとすることができる。
また、本発明は、入力端子と出力端子と基準電位端子とを有し、前記入力端子と前 記出力端子とをつなぐ入出力ライン上、または前記入出力ラインと前記基準電位端 子との間に、上記に記載の電子部品を設けたフィルタ装置である。
本発明によれば、フィルタ装置を、特性変化の少ない、信頼性の高い電子部品を 用いることから、通過特性、減衰特性等のフィルタ特性の安定した、信頼性の高いも のとすること力 Sでさる。
また、本発明は、上記のフィルタ装置を有する、受信回路および送信回路の少なく とも一方を備える通信装置である。
本発明によれば、信頼性の高いフィルタ装置を用いたことから、通話品質の優れた あのとすること力 Sでさる。
また、本発明は、酸化物からなる誘電体層と前記誘電体層を挟持して成る一対の 電極とを含む容量素子を、前記支持基板上に形成する工程と、酸素を含む雰囲気 下で前記容量素子を封止体により間隙を介して封止する工程であって、前記間隙内 が前記酸素を含む雰囲気となった状態で、前記誘電体層の一部を前記間隙内にお いて露出させるように、前記容量素子を前記封止体により封止する工程と、を有する コンデンサ装置の製造方法である。
本発明によれば、間隙内で誘電体層が露出部を有し、その露出部が酸素を含む気 体と接することから、安定したリーク電流特性を有するコンデンサ装置を提供すること ができる。
以上により、本発明によれば、複数の容量素子を直列接続する際に保護膜や層間 絶縁膜が不要となるので誘電体層に力、かる応力を低減でき、リーク電流特性等の特 性劣化を低減したコンデンサを提供することができる。さらに、酸化物からなる誘電体 層が酸素を含む気体中で露出する露出部を有する場合には、誘電体層の還元によ る、コンデンサのリーク電流特性等の特性の劣化が低減され、安定した品質のコンデ ンサ装置を提供することができる。また、間隙を有する封止構造を用いることにより、 耐湿性に優れ、小型で低背なコンデンサ装置を実現することができる。さらに、これら の優れたコンデンサ装置を用いた、信頼性の高い電子部品、フィルタ装置、通信装 置、コンデンサ装置の製造方法を提供することができる。
図面の簡単な説明
本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確にな るであろう。
図 1は、本発明の第 1の実施形態のコンデンサ装置を示す断面図である。
図 2Aおよび図 2Bは、それぞれ、本発明の第 2の実施形態のコンデンサ装置を示 す断面図である。
図 3Aは、本発明の第 3の実施形態のコンデンサ装置を示す断面図であり、図 3B および図 3Cはそれぞれ、その変形例を示す平面図および断面図である。
図 4は、本発明のコンデンサ装置の変形例を示す断面図である。
図 5は、本発明の第 4の実施形態のコンデンサ装置を示す等価回路図である。 図 6は、本発明の第 4の実施形態のコンデンサ装置の支持基板上に形成されたコ ンデンサを示す透視状態の平面図である。
図 7は、本発明の第 4の実施形態のコンデンサ装置の回路基板上に形成されたコ ンデンサを示す透視状態の平面図である。
図 8は、本発明の第 4の実施形態のコンデンサ装置の断面図である。
図 9Aおよび図 9Bは、それぞれ、本発明の第 4の実施形態のコンデンサ装置の変 形例を示す平面図および要部断面図である。
図 10A〜図 10Gは、それぞれ、本発明のコンデンサ装置の封止体を製造する製造 工程を示す工程毎の断面図である。
図 11A〜図 11Cは、それぞれ、本発明の第 1の実施例のコンデンサ装置の封止前 後の I V特性のグラフである。
図 12は、本発明の第 1の実施例のコンデンサ装置の時間に対するリーク電流の変 化を示す線図である。
図 13は、本発明の第 1の実施例のコンデンサ装置と比較例のコンデンサ装置との 封止前の I V特性を示す線図である。
図 14は、本発明の第 2の実施例のコンデンサ装置の封止前後の I V特性のグラフ である。
図 15は、本発明の第 3の実施例のコンデンサ装置の封止前後の I V特性のグラフ である。
図 16Aおよび図 16Bは、それぞれ、本発明の第 1の実施形態のコンデンサを示す 断面図である。
図 17は、本発明の第 2の実施形態のコンデンサを示す断面図である。
図 18Aおよび図 18Bは、それぞれ、本発明の第 3の実施形態のコンデンサを示す 断面図である。
図 19は、本発明の第 5の実施形態のコンデンサ装置を示す断面図である。
図 20は、本発明の第 6の実施形態のコンデンサ装置を示す断面図である。
図 21は、本発明の第 7の実施形態のコンデンサ装置を示す断面図である。
図 22は、本発明の第 8の実施形態のコンデンサ装置を示す断面図である。
図 23は、本発明の一実施形態の電子部品を示す等価回路図である。
図 24は、本発明の一実施形態のフィルタ装置を示す等価回路図である。
図 25は、本発明の一実施形態の通信装置を示すブロック図である。
発明を実施するための最良の形態
以下図面を参考にして本発明の好適な実施形態を詳細に説明する。
以下、本発明のコンデンサ装置について図面を参照しつつ詳細に説明する。 図 1は、本発明の第 1の実施形態のコンデンサ装置を示す断面図である。なお、以 下の図面でも同様である力 同様の箇所には同一の符号を付し、重複する説明は省 略する。
図 1において、 1は支持基板、 2は支持基板 1上に形成された下部電極、 4は下部 電極 2上に形成された誘電体層、 5は誘電体層 4上に形成された上部電極、 21は下 部電極 2、誘電体層 4、上部電極 5からなる容量素子、 24は容量素子 21を収容する 、アルミナ等のセラミックスからなるパッケージ、 25はパッケージ 24に容量素子 21を 間隙 22を介して封止する蓋体、 26はパッケージ 24と蓋体 25を接合するシールリン グである。蓋体 25は、例えば、コバール(Fe— Ni— Co合金)または、コバールに Ni を無電界メツキしたもの等を用いることができる。シールリング 26は、コバールまたは 4 2ァロイ(Fe— 42重量%^合金)に Niと Auをメツキしたもの等を用いることができる。 このノ /ケージ 24と蓋体 25とシールリング 26とで、容量素子 21を封止する封止体を 構成する。
ここで、下部電極 2と上部電極 5とで、酸化物からなる誘電体層 4を挟持して成る一 対の電極を構成する。また、誘電体層 4は間隙 22に露出する露出部 23を有している
下部電極 2および上部電極 5は、ノ ッケージ 24に形成された、外部回路と接続する ための端子電極層 12に金属線 11を介して接続されている。この端子電極層 12は、 パッケージ 24を介して外部の電源回路などと接続されている。
このように、容量素子 21が保護膜に被覆されておらず、誘電体層 4が間隙 22に露 出されている露出部 23を有するため、誘電体層 4が保護膜に被覆された場合に発生 する応力が誘電体層 4にはたらくことがなくなるので、コンデンサ装置のリーク電流等 の特性劣化が低減される。また、容量素子 21が樹脂モールドされておらず、誘電体 層 4が直接樹脂に接触していないので、樹脂からの不純物が混入したり、誘電体層 4 が還元されたりするのを防ぐことができる。このため、安定した特性を有するコンデン サ装置を提供することができる。また、気密封止されることにより、小型で耐湿性に優 れたコンデンサ装置を提供することができる。
また、誘電体層 4に、少なくとも Bi、 Sr、 Tiを含むぺロブスカイト型酸化物である場 合には、誘電率が高ぐ Q値が高ぐ損失の少ないコンデンサ装置とすることができる ことから、近年需要の高い小型、高容量のコンデンサ装置を作製することが容易とな るので好ましい。
さらに、間隙 22に酸素を含む気体、例えば乾燥空気が導入されている場合には、 湿気による電極 2, 5の変質を防ぐとともに、封止される雰囲気は、封止後の酸化物か らなる誘電体層 4中での新たな酸素空孔の生成を抑制するのに十分な酸素分圧を 長期間にわたり保持できるので、コンデンサ装置として、封止後のリーク電流等の特 性劣化を大幅に低減することができ、信頼性の高いコンデンサ装置を提供することが できる。また、封止される雰囲気中に十分な酸素が存在するので、誘電体層 4が薄膜 の BST膜等の酸化物で形成されて!/、た場合には、誘電体層 4が還元されて誘電体 層 4中から酸素が抜けても、雰囲気中の酸素が補われるため、誘電体層 4が変質す ることがない。このため、コンデンサ装置としてリーク電流等の特性劣化が低減され、 安定した品質のコンデンサ装置を提供することができる。
特に誘電体層 4が BSTからなる場合には、酸素空孔が生じやすい。また、この酸素 空孔により誘電体としての特性も変化する。このため、特に誘電体層 4が BSTからな る場合には、誘電体層 4が酸素を含む気体が導入されている間隙 22内で露出部 23 を有することが特に重要となる。
また、間隙 22内に導入される気体は、酸化物からなる誘電体層 4の酸素と平衡反 応をして誘電体層 4の変質を防ぐように酸素を供給できる酸素分圧を有していれば 良ぐ乾燥空気に限定されるものではない。
ここで、乾燥空気とは、全く水分を含まない空気という意味ではなぐ通常の空気と 比較して水分が少ない(低湿度の)空気をさす。具体的には、相対湿度 40%以下に 乾燥させた空気をさす。
封止された雰囲気は、例えば、剥離、破壊等により容量素子群を封止する封止体 を真空中で解き、出てきたガスをガスクロマトグラフィー,質量分析計等で分析すれ ばよい。
また、封止された雰囲気の湿度を測定するには、例えば、以下のようにすればよい 。まず、湿度の異なる空気を導入したサンプルを作製し、低温にして結露させた状態 で電気特性を測定する。次に、実際に湿度を測定した!/、サンプルの電気特性を低温 にして結露させた状態で測定し、事前に測定した結果と比較することで湿度を推定 する。
さらに、誘電体層 4が圧電性を有する場合には、電圧の印加により容量形成部が厚 み方向に振動し、その影響で周期的に特定の周波数で Q値が減少するという現象が 生じる。これに対して、図 1に示す構成のコンデンサ装置は、容量形成部、すなわち 容量素子 21のうち下部電極 2、誘電体層 4、上部電極 5が厚み方向で重なる部位の 、厚み方向の上部に(上部電極 5の上面に)、金属線 11が形成されている。このよう な金属線 11としては、例えばボンディングワイヤ等を用いることができる。このような構 成により、容量形成部の厚み方向に伝搬してきた振動を、金属線 11により散乱させ ること力 Sでき、無用の共振を低減することができる。このため、特定の周波数で Q値が 減少することがない、安定して高レ、Q値を有するコンデンサ装置とすることができる。 次に、製造方法を例に、図 1の構成を具体的に説明する。
まず、容量素子 21の製造方法について説明する。
支持基板 1は、アルミナセラミックス等のセラミック基板や、サファイア等の単結晶基 板等である。この支持基板 1の上に下部電極 2、誘電体層 4および上部電極 5を順次 、支持基板 1のほぼ全面に成膜する。これら各層の成膜終了後、上部電極 5、誘電 体層 4および下部電極 2を順次所定の形状にエッチングする。
下部電極 2は、誘電体層 4の形成に高温スパッタが必要となるため、その高温に耐 えられるように高融点であることが必要である。具体的には、 Pt、 Pd、 Ir等の金属材 料及び Ir〇2等の酸化物から成るものである。この下部電極 2も、高温スパッタで形成 される。さらに、下部電極 2は、高温スパッタによる形成後に、誘電体層 4のスパッタ温 度である 700〜900°Cへ加熱され、誘電体層 4のスパッタ開始まで一定時間保持す ることにより、平坦な層となる。
下部電極 2の厚みは、電極としての抵抗成分および下部電極 2の連続性を考慮し た場合には厚い方が望ましいが、支持基板 1との密着性を考慮した場合には相対的 に薄い方が望ましぐ両方を考慮して決定される。具体的には、 0. 1 111〜10 111で ある。下部電極 2の厚みが 0. 1 mよりも薄くなると、下部電極 2自身の抵抗が大きく なるほか、下部電極 2の連続性が確保できなくなる可能性がある。 lO ^ mより厚くす ると、内部応力が大きくなつて、支持基板 1との密着性が低下したり、支持基板 1の反 りを生じたりするおそれがある。
なお、下部電極 2は容量形成部の外側まで延在するように形成されている。 誘電体層 4は、酸化物材料であればよいが、少なくとも Ba、 Sr、 Tiを含有するぺロ ブスカイト型酸化物結晶から成る高誘電率の誘電体層であることが好ましレ、。この誘 電体層 4は、下部電極 2の表面に形成されている。例えば、ぺロブスカイト型酸化物 結晶が得られる誘電体材料をターゲットとして、スパッタリング法による成膜を所望の 厚みになるまで行なう。このとき、基板温度を高ぐ例えば 800°Cとして高温スパッタリ ングを行なうことにより、スパッタ後の熱処理を行なうことなぐ高誘電率で容量変化率 の大きい、低損失の誘電体層 4を得ることができる。
上部電極 5の材料としては、この層の抵抗を下げるため、抵抗率の小さな Auが望ま しいが、誘電体層 4との密着性向上のためには、 Pt等を密着層として用いることが望 ましい。この上部電極 5の厚みは 0· 1 111〜10 111となっている。この厚みの下限に ついては、下部電極 2と同様に、上部電極 5自身の抵抗を考慮して設定される。また 、厚みの上限については、誘電体層 4との密着性を考慮して設定される。
ここで、上部電極 4を、平面視で誘電体層 4の内に配置したり、誘電体層 4の側面を 露出させることで、露出部 23となる部位を形成することができる。このように、誘電体 層 4の露出部 23を設けるためには、誘電体層 4上に上部電極 5以外のものが接しな いように、上部電極 5側から順にパターユングして形成するのが好ましい。さらに、容 量素子 21を間隙 22を介して封止する際に、犠牲層などを用いることなく封止すること が好ましい。この例では、ノ /ケージ 24に収容することから、犠牲層を用いることなく 封止できるため、 Q値の高いコンデンサ装置とすることができる。
このようにして、支持基板 1上に容量素子 21が形成される。
次に、支持基板 1上に容量素子 21が形成されたコンデンサを、アルミナ等からなる パッケージ 24内に配置する。パッケージ 24には、端子電極層 12が形成されている。 端子電極層 12は、例えば Au、 Cu、 Ag、 Ag— Pd、 W等の金属導体をスクリーン印 刷等の成膜法により形成し、エッチングによりパターユングして形成したり、下層から 順に W、 Ni、 Auを積層した導体層を電界めつき法または無電解めつき法によって所 望のパターンに形成したりして形成してもよい。この端子電極層 12と下部電極 2、上 部電極 5とを通常の金属線 11で接続する。
次に、パッケージ 24の上部にコバール等からなるシールリング 26を印刷し、このシ ールリング 26上にパッケージ 24の凹部を覆い、間隙 22を形成するような蓋体 25を 配置する。このように、パッケージ 24と蓋体 25とをシールリング 26でシーム溶接して 接続することで、図 1に示すコンデンサ装置を得ることができる。
次に、図 2Aおよび図 2Bに本発明の第 2の実施形態のコンデンサ装置を示す。図 2 Aは、本発明のコンデンサ装置の断面図である。図 2Aに示すコンデンサ装置は、図 1に示すコンデンサ装置とは封止体の構成が異なる。
図 2Aにおいて、 13は、支持基板 1上に覆蓋させたキャップ状のキャップ部材である 。このキャップ部材 13は、例えばエポキシ系の樹脂材料からなり、予めキャップ状に 加工されたものを支持基板 1上に配置して接合すればよい。また、端子電極層 12は 、支持基板 1上に形成されている。
ここで、可変容量素子 21は、図 1に示すコンデンサ装置と同様にして作製すればよ い。また、端子電極層 12は、支持基板 1上に、容量素子 21の下部電極 2または上部 電極 5を形成する際に、同一の材料で同時に形成すればよ!/、。
このように、キャップ部材 13により容量素子 21を封止することができるので、図 1の 構成のコンデンサ装置に比べて、容量素子 21を簡易な構成で間隙 22を介して封止 すること力 Sできる。したがって、コンデンサ装置を小型化および低背化させることがで きる。また、容量素子 21を封止するための必要部品数も少なくなるため、生産性の高 いあのとすること力 Sでさる。
図 2Bは、図 2Aの変形例を示す断面図である。
図 2Bにおいて、キャップ部材 13は、 2層となっており、支持基板 1上に形成され、容 量素子 21側、すなわち内側に位置する第 1キャップ部材 13aと、支持基板 1上に形 成され、第 1キャップ部材 13aを覆う第 2キャップ部材 13bと、力、らなる。さらに、端子 電極層 12は、支持基板 1上の第 1キャップ部材 13a配置位置の外側まで延在してお り、その延在部上にそれぞれ第 1柱状電極 14aおよび第 2柱状電極 14bが形成され ている。すなわち、第 1柱状電極 14aは、容量素子 21の下部電極 2に電気的に接続 される。第 2柱状電極 14bは、容量素子 21の上部電極 5に電気的に接続される。この 第 1柱状電極 14aおよび第 2柱状電極 14bは、第 2キャップ部材 13bの上部から端面 を露出させている。 このような構成としたので、第 1柱状電極 14aおよび第 2柱状電極 14bの露出部を 外部回路に接続することで、容量素子 21を気密封止した状態で、実装することがで きる。このため、実装が容易で、小型で低背なコンデンサ装置を提供することができる
次に、図 3Aを用いて、本発明の第 3の実施形態のコンデンサ装置について説明す る。図 3Aに示す構成では、図 1、図 2Aおよび図 2Bに示す構成と、封止体の構成が 異なる。
図 3Aにおいて、 41は、支持基板 1と対向して配置される回路基板であり、 42は、 回路基板 41上の端子電極層(以下、端子部ともいう) 12に対応する位置に形成され たパッド部であり、 40は、支持基板 1と回路基板 41とを相互に電気的に接続する接 続体であり、 43は、支持基板 1上に、容量素子 21および端子部 12が形成された領 域を囲うように形成された環状電極層であり、 44は、回路基板 41上に、環状電極層 4 3に対応する位置に形成された環状パッド部である。
端子部 12とパッド部 42との間、環状電極層 43と環状パッド部 44との間は、それぞ れ接続体 40で接続されている。このような接続体 40は、例えば半田材料やロウ材か らなる。そして、環状電極層 43と環状パッド部 44とそれらを接続する接続体 40とから 、環状部材 49が構成される。
ここで、環状部材 49を構成する接続体 40としては、半田、 Au— Sn半田、異方性 導電樹脂、エポキシ樹脂等の材料を用いることができる。また、環状パッド部 44およ び環状電極層 43は、例えば、 Cr、 Ni、 Au、 Pt等を用いることができる。
このような構成では、封止体は、回路基板 41と、容量素子 21が形成された領域を 取り囲むように形成され、回路基板 41と支持基板 1とを接続して封止する環状部材 4 9と、から成る。このように、回路基板 41と環状部材 49とを貼り合わせることで、容量 素子 21を間隙 22を介して封止することができるので、パッケージを用いる場合に比 ベて小型かつ低背で生産性の高いものとすることができる。さらに、環状部材 49を半 田またはロウ材などの金属材料で形成したときには、容量素子 21を気密封止するこ とができ、その結果、湿気を良好に遮断することができるので、信頼性のより高いもの とすること力 Sでさる。 次に、図 3Aに示すコンデンサ装置の構成について、製造方法を例に説明する。 容量素子 21は、図 1に示すコンデンサ装置と同様にして作製する。端子電極層 12 は、支持基板 1の上面に、下部電極 2や上部電極 5を形成する際に同一材料および 同一工程で同時に形成すればよい。この端子電極層 12と、下部電極 2、上部電極 5 とを周知の技術により金属線 1 1で接続する。
また、環状電極層 43は、支持基板 1の上面の、容量素子 21が形成された領域を取 り囲むように設けられる。この環状電極層 43は、下部電極 2や上部電極 5を形成する 際に同一材料および同一工程で同時に形成すればよい。
次に、端子電極層 12、環状電極層 43の上面に、接続体 40を形成する。接続体 40 は、後述の回路基板 41に形成されたパッド部 42、環状パッド部 44に接続することで 、回路基板 41への実装を容易にするために形成する。環状電極層 43は、後述の回 路基板 41に形成された環状パッド部 44と接続することで、容量素子 21が形成された 領域を密閉する封止空間を形成し、この封止 (密閉)空間への湿気の侵入を防ぐとと もに、コンデンサ装置の機械的強度を高めるために形成する。これら接続体 40は、 所定のマスクを用いて半田ペーストを印刷後、リフローを行なうことにより形成するの が一般的である。
次に、回路基板 41は、絶縁性の材料からなり、例えば、複数の絶縁層を積層したも のを用いる。これら絶縁層には例えば、 LTCC (Low Temperature Co-fired Ceramics :低温同時焼成セラミックス)、アルミナセラミックス等のセラミックスやガラスセラミック スが用いられる。回路基板 41は、セラミックス等の金属酸化物と有機バインダとを有 機溶媒等で均質混練したスラリーをシート状に成型したグリーンシートを作製し、所望 の導体パターンや貫通導体のパターン (ビアホール)を適宜形成した後、これらダリー ンシートを積層し圧着することにより一体形成し、これを焼成することによって作製さ れる。なお、回路基板 41は積層体に限定されるものではなぐアルミナ基板等を用い ることあでさる。
回路基板 41の、支持基板 1が接続される側の面(上面、表面)には、接続体 40と接 続されるパッド部 42、環状パッド部 44が形成される。
このパッド部 42、環状パッド部 44は、例えば Au、 Cu、 Ag、 Ag— Pd、 W等の金属 導体をスクリーン印刷等の成膜法により形成し、エッチングによりパターユングして形 成したり、下層から順に W、 Ni、 Auを積層した導体層を電界めつき法または無電解 めっき法によって所望のパターンに形成したりして形成する。
次に、この回路基板 41と支持基板 1とを接合する。
具体的には、支持基板 1上に形成された環状電極層 43と回路基板 41の環状パッ ド部 44とが対応するように配置し、リフロー炉にて 240°Cで 5分間、リフロー溶融させ て半田から成る接続体 40により両者を接合して、図 3Aに示すコンデンサ装置とする
次に、図 3Bおよび図 3Cは、図 3Aの変形例である。図 3Bは、図 3Aの変形例を示 す平面図であり、図 3Cは、図 3Bの A— A線矢視断面図である。なお、図 3Bは、構成 を分力、り易くするために、上部に位置する接続体 40、回路基板 41を省略しており、 接続体 40が形成される部位を点線で示している。
図 3Aでは端子電極層 12と環状電極層 43とが別体であったのに対して、図 3Bおよ び図 3Cの構成では、 2つある端子電極層 12の一方(第 1端子)を、容量素子 21と端 子電極層 12の他方(第 2端子)とが形成された領域を取り囲むように形成することで、 端子電極層 12の一方が、環状電極層 43として機能するものである。このように構成 することで、図 3Aに示すコンデンサ装置に比べ、回路基板 41と支持基板 1とを接合 するために新たな構成を必要としないので、さらに小型なコンデンサ装置とすることが できる。また、容量素子 21に高い電圧が印加され発熱した場合には、第 1端子を介し て面積の広い回路基板 41へ放熱させることができ、より信頼性の高いコンデンサ装 置を提供すること力 Sできる。
このような構成とすることで、端子電極層 12の一方が環状部材 49の一部として機能 するあのとなる。
以上の図 2Aおよび図 2B、図 3Aおよび図 3Bに示す例では、端子電極層 12と容量 素子 21の電極 2, 5とが金属線 11によって電気的に接続されている。したがって、層 間絶縁層を設けることなく可変容量素子 21と端子電極層 12とを接続することができ るので、露出部 23を多くすることができ、その結果、層間絶縁層の形成に起因する誘 電体層の還元反応を防ぎ、特性の安定したコンデンサ装置を提供することができる。 以上の図 2Aおよび図 2B、図 3Aおよび図 3Bに示す例では、端子電極層 12と容量 素子 21とを電気的に接続するために金属線 11を用いた例について説明した力 金 属線 11を必ずしも要するわけではない。例えば、下部電極 2の容量形成部の外側に 延在する部分に、端子電極層 12としての機能を持たせてもよい。具体的には、図 2A および図 2B、図 3Aおよび図 3Bにおいて、下部電極 2の延在部と端子電極層 12とを 一体に形成すればよい。
さらに、誘電体層 4を容量形成部の外側の支持基板 1上まで形成し、上部電極 5を この誘電体層 4を介して支持基板 1上まで延在させることで、この延在部に端子電極 層 12としての機能を持たせてもよい。具体的には、上部電極 5の延在部と端子電極 層 12とを一体に形成すればよい。
このように、金属線 11を用いない場合には、図 2Aおよび図 2Bに示すようなキヤッ プ部材 13の形成方法に様々な手法を用いることができるので好ましい。例えば、犠 牲層を設け、それを覆う層を形成し、この層に貫通孔を形成し、この貫通孔から犠牲 層を除去した後にこの貫通孔を塞いでキャップ部材 13を形成することもできる。 また、図 1、図 2A、図 2B、図 3Aおよび図 3Bに示す例では、容量素子 21を 1つ含 むコンデンサ装置について説明した力 S、図 4に示すように、容量素子 21を複数個(図 4の例では 5個)設けても良い。図 4は、本発明のコンデンサ装置の変形例を示す断 面図であり、容量素子 21が 2つの端子電極層 12の間に 5個直列接続された構成を 示している。なお、図 4では、封止体の図示を省略している。複数の容量素子 21は、 例えば下部電極 2を共有して形成することで直列に接続したり、上部電極 5同士を金 属線 11で接続して直列接続したりすればよい。このように、容量素子 21を複数個設 けるときには、容量素子 21の下部電極 2、上部電極 5は、他の容量素子 21を介して、 それぞれ第 1および第 2端子 12に接続されているとみなすことができる。なお、金属 線 11で接続される一方の容量素子 21を第 1容量素子、他方の容量素子を第 2容量 素子という。このように容量素子 21を複数個設けることで、コンデンサ装置全体の容 量を適宜設計することができる。さらに、容量素子 21を直列接続することで、 2つの端 子電極層 12間に高周波電圧を印加してもこの電圧は複数個の容量素子 21に分圧 されるので、高周波電圧による影響の少ないコンデンサ装置とすることができる。 また、第 1容量素子と第 2容量素子とがそれぞれ端子電極層 12に金属線 11で接続 されるので、複数の容量素子を層間絶縁層を設けることなく接続することができ、露 出部 23を多くすることができ、その結果、誘電体層 4の還元反応を防ぎ、特性の安定 したコンデンサ装置を提供することができる。
なお、図 4に示すコンデンサに、図 3Aおよび図 3Bに示す封止体を用いることで、 誘電体層 4が間隙 22に露出する露出部 23を有するコンデンサ装置とすることができ る。また、接続体 40、環状電極層 43に代えて、図 1、図 2Aおよび図 2Bに示す封止 体を用いることもできる。
次に、図 5〜図 8を用いて、本発明の第 4の実施形態を説明する。第 4の実施形態 の構成は、図 4に示す構成に図 3Aおよび図 3Bに示す封止体を用いた場合に近い 力 容量素子 21に直流電圧を印加して容量を変化させるためのバイアスラインを含 んでいる点と、複数個の容量素子を互いに接続するために回路基板 41上に形成さ れた配線パターンを用いる点とが異なる。また、誘電体層 4として、ノ ィァスラインによ り容量素子 21の誘電体層 4に電圧を印加することで、誘電率が印加する電圧に応じ た値に変化するものを用いるものとする。
図 5〜図 8は、 3つの容量素子 21を有するコンデンサ装置を可変容量コンデンサと して用いる場合の例を示すものであり、図 5は等価回路図、図 6は支持基板 1上に形 成されたコンデンサを回路基板 41に接続したときに、支持基板 1の裏面からみたとき の透視状態の平面図、図 7は、図 6に示すコンデンサが接続される回路基板 41の平 面図、図 8は、図 6に示すコンデンサと図 7に示す回路基板 41とを接続してコンデン サ装置としたものの、図 6および図 7に示す B— B'線、 C C'線における矢視断面図 である。図 6において、点線部は後述する回路基板 41に形成された配線パターン 45 が配置される位置を示す。
図 5に示す等価回路図において、符号 CI , C2, C3はいずれも容量素子 21であり 、 Bl l , B12は抵抗成分およびインダクタ成分の少なくとも一方を含む第 1バイアスラ イン(同図では、抵抗成分 Rl l , R12を示す)であり、 B21 , B22は抵抗成分およびィ ンダクタ成分の少なくとも一方を含む第 2バイアスライン(同図では、抵抗成分 R21 , R22を示す)であり、 VI I , V12は第 1バイアスライン Bl l , B12にそれぞれ接続され たバイアス端子、 V21 , V22は第 2バイアスライン B21 , B22にそれぞれ接続された バイアス端子である。
高周波信号を入出力する入出力端子間に容量素子 C1〜C3が直列に接続されて おり、一方の入出力端子と容量素子 C1との間、容量素子 C1と容量素子 C2との間、 容量素子 C2と容量素子 C3との間、容量素子 C3と他方の入出力端子との間に第 1 バイアスライン (Bl l , B12)と第 2バイアスライン (B21 , B22)とがそれぞれ交互に接 続されている。バイアスライン B11〜B22は、直流では容量素子 C1〜C3の絶縁抵 抗に対して抵抗が低ぐかつ交流では容量素子 C1〜C3のインピーダンスより大きい 必要がある。容量素子に印加される直流電圧は、バイアスラインの抵抗と容量素子の 絶縁抵抗の分圧で決まるため、インダクタやえ /4線路を用いた場合は、直流では 低抵抗となるため、抵抗を使用した場合に比べ、分圧により、容量素子に印加できる 直流電圧を大きくすることができる。
このような構成のコンデンサ装置においては、高周波信号は、直列接続された容量 素子 CI , C2, C3を介して入出力端子間に流れることになる。
また、容量素子 C1の容量成分を制御するバイアス信号は、バイアス端子 VI Iから 供給され、容量素子 C1を介してバイアス端子 V21 (図 5ではグランド)に流れる。この 容量素子 C1に印加される電圧に応じて、容量素子 C1は所定の誘電率となり、その 結果、所望の容量成分が得られることになる。同様に、容量素子 C2, C3についても 、バイアス信号は、バイアス端子 VI 2から供給され、容量素子 C2, C3を介してバイァ ス端子 V21 , V22 (グランド)に流れる。この容量素子 C2, C3に印加される電圧に応 じて、容量素子 C2、 C3は所定の誘電率となり、その結果、所望の容量成分が得られ ることになる。つまり、容量素子 C1〜C3は直流的に並列接続されているので、直流 的にバイアス端子から印加されるバイアス信号と同じ大きさのバイアス信号が印加さ れ、所定の容量成分を得ることができる。
その結果、容量素子 CI , C2, C3の容量を所望の値に制御するための直流バイァ ス信号を、安定してそれぞれ別々に容量素子 CI , C2, C3に供給することができ、バ ィァス信号の印加による容量素子 CI , C2, C3の誘電体層における誘電率を所望通 りに変化させること力 Sでき、よって容量成分の制御が容易なコンデンサ装置となって いる。
また、コンデンサ装置に入力される高周波信号、つまり容量素子 CI , C2, C3に入 力される高周波信号は、抵抗成分 Rl l , R12および R21 , R22が高周波信号の周 波数領域での容量素子 CI , C2, C3のインピーダンスに対して大きなインピーダンス 成分となっていることから、第 1バイアスライン Bl l , B12および第 2バイアスライン B2 1 , B22を介して漏れることがない。これによつて、高周波信号の周波数領域におい て、コンデンサ装置の Q値はバイアスラインの抵抗成分の影響を受けることはなぐ Q 値の高レ、コンデンサ装置とすることができる。
つまり、コンデンサ装置においては、 N個(Nは 2以上の整数)、ここでは 3個の容量 素子 CI , C2, C3は、高周波的には直列接続された容量素子と見ることができる。 したがって、これら直列接続された容量素子 CI , C2, C3に印加される高周波電圧 は各々の容量素子 CI , C2, C3に分圧されるので、個々の容量素子 CI , C2, C3に 印加される高周波電圧は減少することとなる。このこと力 、高周波信号に対する容 量変動は小さく抑えることができ、波形歪みや相互変調歪み等を抑制することができ また、容量素子 CI , C2, C3を直列接続したことにより、高周波的には容量素子の 誘電体層の層厚を厚くしたのと同じ効果があり、コンデンサ装置の損失抵抗による単 位体積当りの発熱量を小さくすることができ、耐電力性を向上することができる。 なお、第 1バイアスライン Bl l , B12を電気的に接続し、バイアス端子 VI Iとバイァ ス端子 V12とを共通化してもよい。同様に、第 2バイアスライン B21 , B22を電気的に 接続し、バイアス端子 V21とバイアス端子 V22とを共通化してもよい。
さらに、奇数個の容量素子を接続した場合には、高周波信号の入出力端子とバイ ァス信号のバイアス端子とを共通化してもょレ、。
次に、本発明の第 4の実施形態のコンデンサ装置の具体的な構成を、作製方法の 例に沿って説明する。
図 6〜図 8において、 3;!〜 34は導体部、 6;!〜 64は印刷抵抗である。また、高周波 信号の入出力端子は、第 1信号端子 (入力端子)および第 2信号端子(出力端子)か ら成り、端子電極層 12と半田拡散防止層 16と接続体 40とで構成されている。 まず、図 6を用いて、支持基板 1上に形成されるコンデンサの構成を説明する。なお 、各部の構成を分力、り易くするために、上部に位置する接続体 40および一部の半田 拡散防止層 16を省略している。
容量素子 C1〜C3は、下部電極 2、誘電体層 4、上部電極 5が重なった部分である 容量形成部と、この容量形成部の外側に延在する下部電極 2の延在部とがある。そ して、上部電極 5上および下部電極 2の延在部上に半田拡散防止層 16が形成され、 その上に接続体 40が形成される。そして、容量素子 C1の下部電極 2の延在部上に 形成された接続体 40と、容量素子 C2の上部電極 5上に形成された接続体 40とが、 回路基板 41に形成された 1つの配線パターンに接続されることで、容量素子 CI , C 2が直列接続される。
同様に、容量素子 C2, C3が直列に接続され、また、容量素子 C1の上部電極 4お よび容量素子 C3の下部電極 2の延在部が端子電極層 12としての機能を有する。 この端子電極層 12を、回路基板 41上に形成されたパッド部 42に接続することで、 入力端子と出力端子との間に可変容量素子 C1〜C3が直列接続されたコンデンサ 装置とすること力 Sでさる。
これにより、各容量素子を従来のように層間絶縁膜および保護膜により被覆しなく ても直歹 IJ接続すること力できる。したがって、層間絶縁膜や保護膜の膜応力が誘電 体層 4にはたらくことがなくなるので、コンデンサ装置のリーク電流等の特性劣化を低 減できる。
可変容量素子 C1〜C3は、図 1のコンデンサ装置における容量素子 21と同様に作 製し、上部電極 5の上面および下部電極 2の容量形成部の外側に延在した部位に半 田拡散防止層 16を形成する。
半田拡散防止層 16は、接続体 40が半田からなる場合に、接続体 40の形成時のリ フローや実装の際に、接続体 40が下部電極 2へ拡散することを防止するために形成 する。この半田拡散防止層 16の材料としては、 Niが好適である。また、半田拡散防 止層 16の表面には、半田濡れ性を向上させるために、半田濡れ性の高い Au, Cu 等を 0. 1 m程度形成する場合もある。
また、環状電極層 43は、支持基板 1の上面の、容量素子 C1〜C3からなる容量素 子群が形成された領域を取り囲むように設けられる。この環状電極層 43は、下部電 極 2や上部電極 5を形成する際に同一材料および同一工程で同時に形成すればよ い。また、その上に半田拡散防止層 16を形成してもよい。
最後に、半田拡散防止層 16の上に接続体 40を形成して、図 6に示すコンデンサが 形成される。接続体 40は、後述の回路基板 41に形成された配線パターン 45、パッド 部 42、環状パッド部 44に接続することで、容量素子 C1〜C3を直列に接続するととも に、回路基板 41への実装を容易にするために形成する。環状電極層 43は、後述の 回路基板 41に形成された環状パッド部 44と接続することで、容量素子群が形成され た領域を密閉する封止空間を形成し、この封止 (密閉)空間への湿気の侵入を防ぐと ともに、コンデンサ装置の機械的強度を高めるために形成する。これら接続体 40は、 所定のマスクを用いて半田ペーストを印刷後、リフローを行なうことにより形成するの が一般的である。
環状部材 49を構成する接続体 40としては、図 3Aに示すコンデンサ装置と同様の 材料を用いることカできる。
なお、容量素子 C1の上部電極 5および容量素子 C3の下部電極 2上に形成された 接続体 40は半田拡散防止層 16とで、高周波信号の入出力端子となる。
このような構成とすることで、容量素子 C1〜C3を接続するための部分が全て上面 に露出するようにすること力できる。このため、回路基板 41への実装が容易になる。 なお、容量素子 C1の外側には、支持基板 1と回路基板 41との接続強度を増すた めに、補助接続部 30を設けている。補助接続部 30は、下部電極 2や上部電極 5を形 成する際に同一材料に同一工程で同時に形成すればよい。この補助接続部 30の上 面には、半田拡散防止層 16、接続体 40を形成し、回路基板 41と接続する。
次に、図 7および図 8を用いて、回路基板 41の構成について説明する。
回路基板 41は、図 3Aに示すコンデンサ装置と同様の材料を用いることができる。 回路基板 41の、支持基板 1が接続される側の面(上面、表面)には、接続体 40と接 続される配線パターン 18、パッド部 42、環状パッド部 44が形成される。
この配線パターン 18、パッド部 42、環状パッド部 44は、例えば Au、 Cu、 Ag、 Ag— Pd、 W等の金属導体をスクリーン印刷等の成膜法により形成し、エッチングによりパ ターユングして形成したり、下層から順に W、 Ni、 Auを積層した導体層を電界めつき 法または無電解めつき法によって所望のパターンに形成したりして形成する。
回路基板 41には、容量素子 C1の上部電極 5上に形成された入出力端子としての 接続体 40を外部回路に接続するパッド部 42a、容量素子 C1の下部電極 2と容量素 子 C2の上部電極 5とを接続する配線パターン 18a、容量素子 C2の下部電極 2と容 量素子 C3の上部電極 5とを接続する配線パターン 18b、容量素子 C3の下部電極 2 上に形成された入出力端子としての接続体 40を外部回路に接続するパッド部 42b、 これらを取り囲むように環状パッド部 44が形成されている。
また、回路基板 41に容量素子 C1〜C3に電圧を印加するためのバイアス供給回路 を構成するバイアスライン Bl l、 B12、 B21、 B22が形成されている。回路基板 41に バイアスライン B11〜B22を形成することで、抵抗、インダクタ、 λ /4線路等を回路 基板 41側に内蔵させたり、回路基板 41の表面等に形成させたりすることができる。こ のため、バイアスラインとしてインダクタ、 λ /4線路を用いても装置を大型化させるこ とがなぐ所望のバイアスラインを形成することができる。また、容量素子群と別個に 形成することができるので、回路基板 41上に最適な材料を用いて容易に形成するこ とができる。このようなバイアス供給回路を構成する第 1バイアスライン Bl l , B12は、 印刷抵抗 61 , 62とそれにそれぞれ接続された導体部 31 , 32とから構成される。同様 に、第 2バイアスライン B21 , Β22は印刷抵抗 63, 64とそれにそれぞれ接続された導 体部 33, 34とから構成されている。
印刷抵抗 6;!〜 64の材料としては、 RuO等を用い形成される。抵抗値としては、使
2
用周波数でコンデンサ装置のインピーダンスに悪影響を与えないように設定する。例 えば、コンデンサ装置を周波数 1GHzで使用し、容量素子 C1〜C3の容量を 5pFと した場合には、この周波数の 1/10 (100MHz)力もインピーダンスに悪影響を与え ないように印刷抵抗 6;!〜 64を容量素子 C1〜C3の 100MHzでのインピーダンスの 10倍以上の抵抗値に設定する。この場合には、必要な第 1および第 2バイアスライン Bl l , B12, B21 , B22の抵抗値は、約 3. 2kQ以上に設定すればよい。
この導体部 3;!〜 34の材料としては、第 1および第 2バイアスライン B11〜B13, B2 ;!〜 B23の抵抗値のばらつきを抑制するために、低抵抗である Au、 Ag、 Cuその他 の貴金属、またはそれらを含む合金が望ましいが、印刷抵抗 6;!〜 66の抵抗が十分 に高いので、 Agを用い、回路基板 41に LTCCを用いて、同時焼成してもよい。
貫通導体 15は、例えば Ag等の導体からなり、グリーンシートの所望の位置に貫通 孔(ビアホール)をマイクロドリル、ノ ンチング、レーザ加工、金型打ち抜き加工、フォト リソグラフィ法等で形成し、貫通孔に例えば Ag系の導体ペーストを導入して形成され る力、、または、無電解めつき法によって形成される。この貫通導体 15により、回路基 板 41の上面から下面に入出力端子を導出することができる。また、同様にバイアス供 給回路も回路基板 41の上面から下面に導出することがきる。
回路基板 41側の環状パッド部 44は、支持基板 1上に形成された環状電極層 43に 対応した形状とし、 Cr、 Ni、 Au等からなる層をスパッタ法または無電解めつき法、電 解めつき法により所定の位置に形成する。この環状パッド部 44は、一層のみでもよい し、複数層を積層したものとしてもよい。
また、回路基板 41の下面には、貫通導体 15で入出力端子、ノ ィァスラインに接続 された外部接続端子 19が形成されている。この外部接続端子 19は、導体であれば 材料は特に限定されず、例えば Ag、 Au、 Cuその他の貴金属、またはそれらを含む 合金を用いればよい。
次に、この回路基板 41と図 6に示すコンデンサとを接合して、図 8に示すコンデンサ 装置とする。
具体的には、支持基板 1上に形成された環状電極層 43と回路基板 41の環状パッ ド部 44とが対応するように、図 6に示すコンデンサと回路基板 41の上面とを対面させ て配置し、リフロー炉にて 240°Cで 5分間、リフロー溶融させて半田から成る接続体 4 0により両者を接合する。
この環状部材 49により、容量素子群が形成された領域を封止することができ、この 封止 (密閉)空間への湿気の侵入を防ぐと共に、コンデンサ装置の機械的強度を高 めること力 Sでさる。
回路基板 41と図 6に示すコンデンサとを酸素を含む気体の下で接合すれば、間隙 22内の間隙 22に酸素を含む気体で導入させることができる。特に、回路基板 41と図 6に示すコンデンサとを乾燥空気下で接合すれば、封止空間に乾燥空気を導入する こと力 Sでさる。
以上により、本発明によれば、誘電体層に膜応力を及ぼす層間絶縁膜および保護 膜が不要となるので、リーク電流等の特性劣化を低減させコンデンサ装置を提供する こと力 Sできる。さらに、誘電体層 4が還元されにくくなるので、コンデンサ装置のリーク 電流等の特性の劣化を低減し、安定した品質のコンデンサ装置を提供することがで きる。また、間隙を有する封止体を用いることにより、耐湿性に優れ、小型で低背な可 変容量コンデンサを実現することができる。さらに、犠牲層を必要とせずに容量素子
21を封止できるので、 Q値の高いコンデンサ装置を実現することができる。
また、バイアス電圧を、容量素子 C1および第 2容量素子 C2の接続点から印加し、 容量素子 C1の上部電極 5、並びに容量素子 C2の下部電極 2まで印加する場合に は、容量素子 C1と容量素子 C2とでリーク電流が流れる向きが厚み方向で反対となる 。このとき、容量素子 C1でのリーク電流の大きさを 1 (一)、容量素子 C2でのリーク電 流の大きさを 1 ( + )とすると、 1 (ー)≠1 ( + )であり、容量素子 C1と容量素子 C2との全 体でのリーク電流の大きさは 1 (— ) +1 ( + )となる。ここで、バイアス電圧の極性を変更 した場合、容量素子 C1でのリーク電流の大きさは 1 ( + )、容量素子 C2でのリーク電 流の大きさは 1 (一)となり、この場合も、容量素子 C1と容量素子 C2との全体でのリー ク電流の大きさは 1 (一) +1 ( + )となる。すなわち、容量素子 C1と容量素子 C2との全 体でみると、バイアス電圧の極性によるリーク電流の違いを打ち消すようになるため、 リーク電流の極性依存性を低減することができる。その結果、バイアス電圧の極性を 入れ替えても、コンデンサ装置としてリーク電流特性が大きく変化しないものを得るこ とができるので、信頼性の高いコンデンサ装置を提供することができる。このような効 果は容量素子が偶数個のときにさらに顕著である。
なお、図 6〜図 8に示す例では、バイアスラインを全て回路基板 41に形成したが、 一部または全てを支持基板 1上に形成してもよい。また、図 6〜図 8に示す例では、 複数の容量素子 21を回路基板 41に形成された配線パターン 18を介して接続したが 、金属線 11等を用いて接続しても良い。
図 9Aおよび図 9Bに、本発明の第 4の実施形態のコンデンサ装置の変形例を示す 。図 9Aは支持基板 1上に形成されるコンデンサの平面図であり、図 9Bは図 9Aの D —D'線矢視断面図であり、バイアスラインを含む点以外は図 4と同様である。なお、 図 9Aにおいて、上部に位置する接続体 40の図示を省略している。
図 9Aおよび図 9Bは、図 6〜図 8に示す例と、バイアスラインが全て支持基板 1上に 形成されている点、複数の容量素子 21同士を金属線 11で接続している点、容量素 子 21の個数の点で異なる。
なお、図 9Aおよび図 9Bに示すように、支持基板 1上にバイアスラインを形成する場 合、印刷抵抗 6;!〜 64の材料としては、タンタル (Ta)を含有し、かつその比抵抗が 1 m Q 'cm以上であるものが望ましい。具体的な材料としては、窒化タンタル (TaN)や TaSiN、 Ta— Si— Oを例示することができる。例えば、窒化タンタルの場合であれば 、 Taをターゲットとして、窒素を加えてスパッタリングを行なうリアタティブスパッタ法に より、所望の組成比および抵抗率の印刷抵抗 6;!〜 64を成膜することができる。
このスパッタリングの条件を適宜選択することにより、膜厚が 40nm以上で、比抵抗 が Ιπι Ω 'cm以上の印刷抵抗 6;!〜 64を形成することができる。さらに、スパッタリング の終了後、レジストを塗布して所定の形状に加工した後、反応性イオンエッチング (R IE)等のエッチングプロセスを行なうことにより、簡便にパターユングすることができる 。このように、高抵抗の材料を用いることができるので、印刷抵抗 6;!〜 64のアスペクト 比を大きくすることなく、所望の抵抗値を得ることができる。これにより、コンデンサ装 置を小型化することができる。
次に、図 10A〜図 10Gを用いて、図 2Aおよび図 2Bで説明した本発明のコンデン サ装置のキャップ部材 13から成る封止体の作製方法の例について説明する。ただし 、容量素子 21と端子電極層 12との間、もしくは複数の容量素子 21間は金属線 11を 用いることなく接続されているものとする。図 10A〜図 10Gは、キャップ部材 13からな る封止体の作製方法の各工程を示す断面図である。
図 1 OAにおいて、容量素子 21、これに接続された端子電極層 12が形成された支 持基板 1上に、離型材で保護されたネガタイプのフィルムレジスト 27を、ローラーによ り加圧して貼り合わせる。次に、フィルムレジスト 27から、離型材を剥離した後、 100 °Cで加熱してフィルムレジスト 27を加熱硬化させる。
次に、図 10Bに示すように、支持基板 1上に貼り付けたフィルムレジスト 27にフォト マスクまたはレチクルを合わせた後、 UV光を露光照射させ、 UV光を照射された部 分のみ、重合および架橋反応を生じて安定化させる。
次に、図 10Cに示すように、現像してキャップ部材 13の支柱部分 13c以外の不要 箇所を除去した後、ベーキングにより乾燥させる。
次に、図 10Dに示すように、支柱部分 13c上に、図 10Aおよび図 10Bと同様にして 、フィルムレジスト 27を配置し、露光および現像してキャップ部材 13の蓋体 13dとなる 以外の不要箇所を除去した後、ベーキングにより乾燥させる。ここで、加熱により、支 柱部分 13cと蓋体 13dとが接合されて一体化され、第 1キャップ部材 13aとなる。 次に、図 10Eに示すように、無電解メツキ法により、 2つの端子電極層 12上に Cuか ら成る第 1柱状電極 14aと第 2柱状電極 14bとを形成する。
次に、図 10Fに示すように、支持基板 1上から第 1キャップ部材 13a、柱状電極 14 の上部にエポキシ樹脂等の樹脂材料をモールドし、この樹脂材料を、グラインド技術 にて切削加工し、第 1柱状電極 14aと第 2柱状電極 14bとの上面を露出させた第 2キ ヤップ部材 13bとする。
最後に、図 10Gに示すように、半田等の電極材料により、露出した柱状電極 14a, 14bの上面にバンプ接続体を形成して、キャップ部材 13で封止されたコンデンサ装 置を得ること力 Sでさる。
以上のような製造プロセスにより、ウェハレベルパッケージングが可能となり、簡便な 方法で実装構造を作製することができ、さらに小型で低背なコンデンサ装置を実現 すること力 Sでさる。
実施例
図 1に示す本発明のコンデンサ装置を例に、容量素子 21を封止体で封止する前後 でのリーク電流特性の変化を調べた。
まず、支持基板 1として表面に熱酸化膜を形成した Si基板を用いた。この支持基板 1上に密着層として TiOを形成した後、 Ptからなる下部電極 2、 BSTからなる誘電体
2
層 4、下層から順に Pt、 Auを積層してなる上部電極 5を積層し、容量素子 21を形成 した。この状態で、封止前のリーク電流特性 (I—V特性)を測定した。 I V特性の測 定は、アジレント社製のピコアンメータ 4140Bを用いた。 この容量素子 21をアルミナからなるパッケージ 24に収容し、乾燥大気雰囲気中で このパッケージ 24と蓋体 25 (リツド)とをシールリング 26を介してシーム溶接して封止 した。封止後、サンプルを Heリークテストおよび airリークテストを実施して気密封止さ れて!/、ることを確認し、封止後のリーク電流特性 (I V特性)を測定した(第 1の実施 例)。
図 11A〜図 11Cに、本発明のコンデンサ装置を大気雰囲気で封止した場合の I V特性のグラフを示した。横軸は電圧(単位: V)、縦軸はリーク電流(単位: A)である 。図 11A〜図 11Cはそれぞれ、 3種類のサンプル # 1〜# 3の封止前後の特性を示 すものである。
図 11A〜図 11Cに示すように、本発明の実施例のように大気封止した場合は、封 止前後でコンデンサ装置の I V特性の特性劣化が生じることはな力、つた。
また、この第 1の実施例のサンプルについて、 85°Cにて 6. 0Vを印加し続けたとき のリーク電流の時間による変化を測定した結果を図 12に示す。図 12より明らかなよう に、本実施例のサンプルは、時間経過によってリーク電流の電流値はほとんど変化 せず、低い電流値を維持しており、高い信頼性を有していることが確認された。
次に、比較例として、容量素子 21を絶縁性保護膜である SiOで覆い、誘電体層 4
2
に露出部 23がないコンデンサ装置を作製した。 SiO膜には、電気的測定のために、
2
上部電極 5および下部電極 2の一部のみが露出するような貫通孔を各電極上に形成 し、誘電体層 4には露出部 23が無い構造とした。図 13に実施例と比較例の I—V特 性を示した。この図から明らかなように、本発明の実施例のサンプルに比べて比較例 のリーク電流は全体的に大きかった。このことから、誘電体層 4が間隙 22に露出する 露出部 23を設け、誘電体層 4に絶縁保護膜などによる応力の力、からない構成とする ことが効果的であることを確認した。
次に、間隙内の雰囲気を変えたサンプルを用意し、同様に、封止の前後でリーク電 流特性を測定した。具体的には、窒素雰囲気下および真空下でシーム溶接を行な い、第 2の実施例として窒素封止サンプルおよび第 3の実施例として真空封止サンプ ルを作製した。
図 14に、窒素封止を行なった第 2の実施例のリーク電流特性を示した。図 14に示 すように窒素封止を行なった場合には、封止前は図 13に示す比較例に比べ優れた リーク電流特性を有することが確認された。し力もながら、封止前後でコンデンサ装置 の I V特性は、大幅に劣化していた。これは、誘電体層 4中の酸素と窒素封止され た雰囲気との間の平衡反応により、誘電体層 4中に新たに酸素空孔が発生したため と推察される。
図 15に、真空封止を行なった第 3の実施例のリーク電流特性を示した。図 15に示 すように、真空封止した場合は、封止前は図 13に示す比較例に比べ優れたリーク電 流特性を有することが確認された。し力もながら、封止前後で大幅に I—V特性が劣 化している。これは、誘電体層 4中の酸素と真空封止された雰囲気との間の平衡反 応により、誘電体層 4中に酸素空孔が発生したためと推察される。さらに、真空封止 後、蓋体(リツド) 25を除去してリーク電流特性を測定すると、リーク電流 (I—V)特性 が若干回復した。し力もながら、封止前のリーク電流特性に比べると大幅に劣化した 状態であった。さらに、蓋体(リツド) 25除去後に、 500°Cにて lhr大気中にて支持基 板 1ごとァニールしたところ、 I—V特性は大幅に改善し、封止前に近い特性となった 。しかしながら、リーク電流特性は真空封止前と比較して、低電圧領域では同等であ る力 電流の立ち上がる電圧が低くなつており、完全には真空封止前の状態には戻 らなかった。以上のことより、真空封止した場合も封止前後で I V特性が劣化してい ることより、雰囲気中の水素等の還元元素が影響するのではなぐ酸素の有無が I V特性の変化に対して重要な要素となっているものと推察される。また、一度誘電体 層 4が変質すると、例え酸素のある雰囲気下に戻してもリーク電流特性は劣化した状 態を保持することから、容量素子 21を封止する際には、犠牲層などを用いることなく 封止することが重要であることが分かった。
なお、比較例のコンデンサ装置は封止したときに、第 2および第 3の実施例の場合 に比べ、更にリーク電流は大きかった。
以上のことをまとめると、誘電体層 4に絶縁保護膜などによる圧力を付加しない構成 とするとともに、誘電体層 4が間隙 22に露出する露出部 23を設けることにより、リーク 電流特性の優れたコンデンサ装置とすることができることが分かった。さらに、間隙 22 内を、大気で封止することにより、一定量の酸素が雰囲気中に存在するため、誘電体 層 4が還元することがなぐリーク電流が低い状態でかつ経時変化のない、安定した 品質のコンデンサ装置を提供することができることを確認した。
図 16Aは、本発明の第 1の実施形態のコンデンサを示す断面図である。
本発明のコンデンサは、外部回路に接続されて用いられるものである。例えば、配 線パターン 18等の導電体を有する回路基板 41 (図中に点線で示す。詳しくは後述 するため、ここでの詳細な説明は省略する。)に実装されて用いられるものであり、支 持基板 1上に、その厚み方向に順次積層された、下部電極 2、誘電体層 4、上部電極 5を含む容量素子 CI , C2が配列された容量素子群 8を有する。ここで、下部電極 2、 誘電体層 4、上部電極 5が重なる領域を容量形成部とする。容量素子群 8は、容量素 子 CI , C2を含み、それぞれを第 1容量素子 6と第 2容量素子 7とする。さらに、第 1容 量素子 6の上部電極 5には半田拡散防止層 16を介して第 1接続体 9が接続され、第 2容量素子 7の上部電極 5には半田拡散防止層 16を介して第 2接続体 10が接続さ れている。この第 1接続体 9および前記第 2接続体 10は、それぞれ回路基板 41の配 線パターン 18に接続されて、第 1容量素子 6と第 2容量素子 7とを直列に接続する。 すなわち、回路基板 41の配線パターン 18が第 1接続体および第 2接続体 10の双方 に接続されることにより上部電極 5同士が接続されることなる。そして、第 1容量素子 6 と第 2容量素子 7との誘電体層 4は、その一部が露出した状態となって!/、る。
また、第 1容量素子 6および第 2容量素子 7の下部電極 2は、コンデンサの入出力端 子に接続するために、支持基板 1上に容量形成部の外側まで延在している。この延 在部上に半田拡散防止層 16、端子用接続体 17を順次積層し入出力端子が形成さ れる。この入出力端子を、回路基板 41上に形成された入出力端子用の配線パター ン 18に接続することで、入力端子と出力端子との間に容量素子 CI , C2が直列接続 されたコンデンサとすることができる。
これにより、各容量素子を従来のように層間絶縁膜および保護膜により被覆しなく ても接続すること力できる。したがって、層間絶縁膜や保護膜の膜応力が誘電体層 4 にはたらくことがなくなるので、コンデンサのリーク電流特性等の特性劣化を低減でき なお、以下のコンデンサの実施形態においても同様である力 誘電体層として電圧 の印加により誘電率が変化するものを用いて、各容量素子の容量を変化させるため にバイアス電圧を印加することにより、可変容量コンデンサとして機能させてもよい。 バイアス電圧印加方法につ!/、ては、後述のコンデンサ装置につ!/、ての説明にお!/、て 説明する。
図 16Bは図 16Aの変形例を示す断面図である。
図 16Bは、第 1容量素子 C1の下部電極 2のうち、容量形成部の外側に延在しした 延在部上に半田拡散防止層 16を介して第 1接続体 9が形成されて!/、る点で、図 16A と異なる。この第 1接続体 9と、第 2容量素子 C2の上部電極 5上に形成された第 2接 続体 10と力 回路基板 41に形成された配線パターン 18を介して接続されることによ り、第 1容量素子 C1と第 2容量素子 C2とが直列に接続される。
このような構成の場合には、コンデンサの入出力端子は、第 1容量素子 C1の上部 電極 5と、第 2容量素子 C2の下部電極 2とに接続される。このため、第 1容量素子 C1 の上部電極 5上に端子用接続体 17を設けた構成となっている。
さらに、回路基板 41とコンデンサとの接続強度を向上させるために、接続用導体 2 0を設けてもよい。接続用導体 20は、第 1接続体 9、第 2接続体 10、端子用接続体 1 7と高さを合わせるために、支持基板 1上に形成された下部電極 2、半田拡散防止層 16上に形成することが好ましい。
図 17は、本発明の第 2の実施形態のコンデンサを示す断面図である。
図 17に示すコンデンサは、複数の容量素子 C1〜C5が配列されており、そのうち容 量素子 C1および容量素子 C2、容量素子 C3および容量素子 C4は互いに下部電極 2を共有している。また、これらの容量素子 C1〜C5の上部電極 5上にはそれぞれ接 続体 40が形成されている。
このコンデンサを、容量素子 C1の上部電極 5と接続される第 1配線パターン 18cと、 容量素子 C2と容量素子 C3との上部電極 5同士を接続する第 2配線パターン 18dと、 容量素子 C4と容量素子 C5との上部電極 5同士を接続する第 3配線パターン 18eと、 容量素子 C5の下部電極 2に接続された入出力端子用接続体 17に接続する第 4配 線パターン 18fとを有する回路基板 41に接続すれば、容量素子 C1〜C5が直列接 続される。 ここで、容量素子 C3と容量素子 C4とに着目する。
容量素子 C3と容量素子 C4とは下部電極 2を共有して、電気的に接続されている。 これにより、容量素子 C3, C4の一端同士を接続する工程を省略でき、作製を容易と なり、生産性の高いものとすることができる。
また、容量素子 C3の上部電極 5上に形成された接続体 40と、容量素子 C4の上部 電極 5上に形成された接続体 40とを、それぞれ回路基板 41上に形成された別個の 配線パターン(第 2配線パターン 18dと第 3配線パターン 18eと)に接続することにより 、第 2配線パターン 18dから、接続体 40を介して容量素子 C3に接続され、下部電極 2を共有することにより容量素子 C3と容量素子 C4とが接続され、接続体 40を介して 容量素子 C4と第 3配線パターン 18eとが接続され、容量素子 C3と容量素子 C4とが 直列接続されたものとなる。
このような容量素子 C3と容量素子 C4とを、それぞれ第 1容量素子 6、第 2容量素子 7とし、それぞれに接続された接続体 40を、第 1接続体 9および第 2接続体 10とみな すことができる。なお、第 1接続体 9および第 2接続体 10の機能は、第 1容量素子 6と 第 2容量素子 7とを図 16Aのように直接直列接続する場合のみでなく、図 17のように 第 1容量素子 6と第 2容量素子 7とを直列接続させた状態でコンデンサとして機能す るように回路基板 41に接続する場合も含むものとする。
図 16A、図 16Bおよび図 17に示すコンデンサは、支持基板 1上に下部電極 2、誘 電体層 4、上部電極 5を構成する層を積層後に、上に位置する層から順にパターニン グすることでコンデンサを形成すること力 Sできる。このため、生産性が高くなるとともに 、同一バッチで形成することができるので、各層の間での異物等の付着を防ぐことが できるので、信頼性の高レ、ものとすること力 Sできる。
図 18Aは、本発明の第 3の実施形態のコンデンサを示す断面図である。
図 18Aに示すコンデンサは、支持基板 1上に第 1容量素子 6となる容量素子 C1と 第 2容量素子 7となる容量素子 C2とが形成されており、容量素子 C1の上部電極 5と 容量素子 C2の下部電極 2とが電気的に接続されたものである。
容量素子 C1の下部電極 2のうち容量形成部の外側に延在する延在部の上面およ び容量素子 C2の上部電極 5の上面には第 1接続体 9および第 2接続体 10がそれぞ れ形成されている。この第 1接続体 9および第 2接続体 10は端子用接続体 17の機能 を有する。そして、第 1接続体 9および第 2接続体 10を配線基板に形成された別個の 配線パターン 18に接続することで、容量素子 C1および容量素子 C2が直列接続され たコンデンサとなる。
このような構成とすることで、複数の容量素子同士の一端同士を接続させる工程を 省くことができ、生産性の高いコンデンサを提供することができる。また誘電体層 4を 電圧の印加に応じて変わるものとし、バイアス電圧を第 1容量素子 6および第 2容量 素子 7の接続点と、第 1容量素子 6の下部電極 2および第 2容量素子 7の上部電極と の間に印加する場合には、第 1容量素子 6と第 2容量素子 7とでリーク電流が流れる 向きが厚み方向で反対となる。このため、第 1容量素子 6と第 2容量素子 7との全体で みると、リーク電流の極性依存性を小さくすることができる。
図 18Bは、図 18Aの変形例を示す断面図である。
図 18Bに示すコンデンサは、支持基板 1上に 5つの容量素子 C1〜C5が形成され ている点で、図 18Aに示すコンデンサと異なる。この容量素子 C1〜C5は、隣り合う 一方の容量素子の上部電極 5が他方の容量素子の下部電極 2に接続され、配列方 向に直列に接続されている。また、容量素子 C1の下部電極 2のうち容量形成部の外 側に延在する延在部の上面および容量素子 C5の上部電極 5の上面に接続体 40が 形成されて!/、る。この接続体 40は端子用接続体を兼ねて!/、る。
ここで、容量素子 C1を第 1容量素子 6、容量素子 C5を第 2容量素子 7とすると、第 1 容量素子 6に接続された接続体 40が第 1接続体 9となり、第 2容量素子 7に接続され た接続体 40が第 2接続体 10となる。この第 1接続体 9および第 2接続体 10により、容 量素子 C1から容量素子 C5まで直列に接続させた状態で、第 1容量素子 6 (C1)と第 2容量素子 7 (C5)とを、コンデンサとして機能するように回路基板 41に接続すること ができる。
このような構成とすることで、複数の容量素子同士の一端同士を接続させる工程を 省くこと力 Sできるとともに、接続体 40の必要数が 2個と少ないため、生産性の高いコン デンサを提供することができる。
次に、本発明のコンデンサを回路基板 41に接続してなるコンデンサ装置について 説明する。
図 19は、本発明の第 5の実施形態のコンデンサ装置を示す断面図である。このコ ンデンサ装置は、図 17に示す本発明のコンデンサと、導電体を有し、図 17に示すコ ンデンサが実装された回路基板 41と、容量素子 C1〜C5からなる容量素子群 8を間 隙 22を介して封止する封止体とからなる。そして、容量素子を構成する誘電体層 4は 、間隙 22内において露出する露出部 23を有している。なお、図 19に示す例では、 導電体として、配線パターン 18を用いた例について説明する。この回路基板 41の配 線パターン 18に、コンデンサの接続体 40をそれぞれ接続させて、容量素子 C1〜C5 が順次直列に接続される。ここで、第 1容量素子 6と第 2容量素子 7との組み合わせ は、隣り合う容量素子同士であればどのような組み合わせでも良ぐ例えば容量素子 C1と容量素子 C2と、容量素子 C3と容量素子 C4と、の組み合わせや、容量素子 C2 と容量素子 C3と、容量素子 C4と容量素子 C5と、の組み合わせが挙げられる。なお、 配線パターン 18は、容量素子 C1と外部接続端子 19aとを接続する配線パターン 18 c、容量素子 C2と容量素子 C3とを接続する配線パターン 18d、容量素子 C4と容量 素子 C5とを接続する配線パターン 18e、容量素子 C5と外部接続端子 19bとを接続 する配線パターン 18fとからなる。このうち、配線パターン 18c, 18fは、外部接続端 子 19a, 19bに接続する端子接続電極の機能を兼ねている。貫通導体 15は、配線パ ターン 18c, 18fと外部接続端子 19a, 19bとを接続しており、外部接続端子 19は、 回路基板 41の配線パターン 18が形成された側と反対側の主面に形成されている。 このような構成により、コンデンサに保護膜や層間絶縁膜を設けなくても複数の容 量素子を直列に接続することができ、その結果、誘電体層 4に膜応力を及ぼす層間 絶縁膜および保護膜が不要となるので、コンデンサのリーク電流特性等の特性劣化 が低減できる。また、コンデンサ装置は、容量素子 C1〜C5が高周波的に直列接続 されているため、容量素子に印加される高周波電圧が各々の容量素子に分圧される ので、個々の容量素子に印加される高周波電圧は分圧されて減少することとなる。こ のことから、コンデンサ装置の高周波信号に対する容量変動を小さく抑えることがで きる。しかも、容量素子 C1〜C5が高周波的に直列接続されているため、容量素子の 誘電体層の膜厚を厚くしたのと同じ効果が得られ、コンデンサ装置の損失抵抗による 単位体積あたりの発熱量を小さくすることができる。このため、コンデンサ装置の耐電 力を向上することができる。
また、封止体としては、回路基板 41上に、コンデンサが接続された領域を囲うような セラミックスからなる枠体 28を形成し、この枠体 28の上面にシールリング 26を介して 蓋体 25を接続した構成となっている。また、枠体 28と蓋体 25とをシールリング 26によ り接続するには、シーム溶接により接続したり、シールリング 26として Au— Sn合金半 田や樹脂を用いて接続したりすればよい。
ここで、回路基板 41と枠体 28とでコンデンサを収容するパッケージとなっている。 間隙 22には、酸素を含む気体が導入されている。
このような構成により、本発明の第 1の実施形態のコンデンサ装置と同様の効果を 達成すること力でさる。
図 20は、本発明の第 6の実施形態のコンデンサ装置を示す断面図である。
図 20に示すコンデンサ装置は、図 19に示す構成とは封止体の構成が異なる。す なわち、図 20における封止体は、回路基板 41と、容量素子群 8が形成された領域を 取り囲むように形成され、回路基板 41と支持基板 1とを接合して封止する環状部材 4 9とを有している。環状部材 49は、環状電極層 43と、環状パッド部 44と、これらを相 互に接続する接続体 40とからなる。ここで、環状部材 49を構成する接続体 40は、支 持基板 1上に容量素子群 8が形成された領域を取り囲むように形成された環状電極 層 43を介して支持基板 1に接続され、回路基板 41上に、環状電極層 43に対応する ように形成された環状パッド部 44を介して回路基板 41に接続される。
このような構成により、簡便な構成でコンデンサを封止することができるので、パッケ ージが不要となり、小型で低背なコンデンサ装置を実現することができる。また環状 部材 49が無機材料または金属材料からなる場合には、気密封止することができるの で、さらに安定した、信頼性の高いコンデンサ装置を提供することができる。
また、支持基板 1の、回路基板 41と対向していない側の面 (裏面)および側面と環 状部材 49を封止樹脂で封止してもよい。
図 21は、本発明の第 7の実施形態のコンデンサ装置を示す断面図である。
図 21に示すコンデンサ装置は、図 19に示す構成とは封止体の構成が異なる。す なわち、図 21における封止体は、回路基板 41のコンデンサが接続される側の主面 から、支持基板 1の側面と回路基板 41に対向しない側の主面とにかけて被覆する樹 脂部材 50から成る。このような、樹脂部材 50は、密閉空間への湿気の侵入を防ぐと 共に、コンデンサ装置の機械的強度を高めるために設けられ、エポキシ樹脂ゃポリイ ミド樹脂等の熱硬化性樹脂、ポリフエ二レンサルファイド樹脂等の熱可塑性樹脂、紫 外線硬化樹脂または低融点ガラス等を用いることができ、これらをポッティング法また は印刷法により塗布した後硬化処理して形成すればよい。例えば、エポキシ樹脂か らなる樹脂部材 50を用いた場合には、ポッティング法により回路基板 41上に接続さ れたコンデンサを覆うように塗布した後、乾燥炉で 150°Cにて 5分間加熱して硬化さ せればよい。
このように、支持基板 1の側面と回路基板 41に対向しない側の主面とが樹脂部材 5 0により被覆された簡便な構成であるので、容量素子群 8を封止する工程を簡略化す ること力 Sでき、生産性の高いコンデンサ装置を提供することができる。また、容量素子 群 8を封止するためにパッケージ等が不要となるため、小型で低背なコンデンサ装置 を実現すること力できる。
図 22は、本発明の第 8の実施形態のコンデンサ装置を示す断面図である。
図 22に示すコンデンサ装置は、図 21に示す構成とは封止体の構成が異なる。す なわち、図 21の封止体がポッティング法等で形成された樹脂部材 50であるのに対し て、図 22における封止体は、シート状樹脂部材 51からなる。
このシート状樹脂部材 51は、回路基板 41の上面から、支持基板 1の側面と回路基 板 41に対向しない側の主面(裏面)とにかけて被覆するように設けられている。
ここで、シート状樹脂部材 51は、エポキシ樹脂、フエノール樹脂等からなる。このシ ート状樹脂部材 51は、シート状の未硬化樹脂を支持基板 1を覆うように配置し、シー ト状の未硬化樹脂を上から加圧して、支持基板 1の裏面、回路基板 41の上面に接合 させた後、加熱硬化させて形成する。この加熱温度は使用樹脂により異なる力 例え ば、エポキシ樹脂からなるシート状樹脂部材 51を用いた場合には、 150°Cで処理す れば'よい。
このような構成とすることにより、容量素子群 8を簡便な構成で封止することができる ので、作製工程を簡略化することができ、生産性の高いコンデンサ装置を提供するこ と力 Sできる。また、容量素子群 8を封止するためのパッケージが不要であり、且つ、薄 いシート状樹脂部材 51のみで封止することができるので、小型で低背なコンデンサ 装置を実現することができる。
また、本発明のコンデンサ装置において、封止体により容量素子群 8を封止する際 、上述の実施形態と同様の理由で、間隙 22には酸素を含む気体、例えば乾燥空気 が導入されてレ、ることが好まし!/、。
なお、上述の図 19〜図 22に示すコンデンサ装置においては、導電体として配線パ ターン 18を用いた例で説明した力 導電体は配線パターン 18のみに限定されるもの ではない。例えば、接続体 40は回路基板 41のビアに接続されて、回路基板 41内の 配線の引き回しにより第 1容量素子と第 2容量素子とを電気的に接続してもよい。 また、上述のコンデンサ装置において、誘電体層を電圧の印加に応じて誘電率が 変化するものを用いることで可変容量コンデンサ装置としての機能を持たせてもよい 。その場合には、バイアス電圧は、例えば外部接続端子 19a, 19b間に高周波信号 に重畳させて印加すればよいが、コンデンサ装置の容量可変率を大きくするために、 図 5〜図 9に示されるように、各容量素子に個別にバイアス電圧を印加するためのバ ィァスラインを形成してもよ!/、。
またバイアス電圧の極性を入れ替えても、リーク電流特性が大きくしないコンデンサ としては、図 16B、図 18Bに示す構成が挙げられる。容量素子間で、バイアス電圧の 印加によりリーク電流が流れる向きが厚み方向で反対となり、リーク電流の極性を打 ち消すようになるためである。
次に、上述のコンデンサ装置を用いた、本発明の電子部品について説明する。 図 23は本発明の一実施形態の電子部品を示す等価回路図である。図 23に示す 等価回路図において、符号 Ctは本発明のコンデンサ装置であり、 Ttは伝送線路とし ての λ g/4伝送線路、 Ccは高周波接地用容量を形成する高周波接地用コンデン サ、 Sは信号入力端子、ここで、 gは信号入力端子 Sから入力される高周波信号が λ g/4可変伝送線路 Ttを伝搬する際の実効波長である。
図 23において、信号入力端子 Sと基準電位部との間に、コンデンサ装置 Ctが、伝 送線路 Ttと高周波接地用コンデンサ Ccとが直列に接続された回路に並列接続され ている。なお、ここで基準電位部は接地電位としている。
このような構成とすることで、所望の共振特性を有する共振回路を構成する電子部 品を提供することができる。ここで、本発明のコンデンサ装置 Ctを用いていることから 、信頼性の高い電子部品とすることができる。また、コンデンサ装置 Ctに、可変容量 コンデンサとしての機能をもたせた場合には、共振周波数を任意の値に変化させるこ と力 Sでさるあのとなる。
次に、本発明のフィルタ装置について説明する。
図 24は、本発明の一実施形態のフィルタ装置を示す等価回路図である。
本発明のフィルタ装置は、図 24に示すように、入力端子 Inと出力端子 Outとをつな ぐ入出力ラインと基準電位端子との間および入出力ライン上に、本発明の電子部品 1 00a, 100bを接続すればよい。なお、この例では、基準電位端子は接地されている また、入力端子 Inと出力端子 Outとをつなぐ入出力ラインと基準電位端子との間の みに、本発明の電子部品 100aを接続したり、入出力ライン上のみに、電子部品 100 bを接続したりしてもよい。
このようにしてラダー型のフィルタ装置を形成してもよ!/、し、非平衡入力一平衡出力 等のバランス型のフィルタ装置を形成してもょレ、。
このような構成の本発明のフィルタ装置によれば、本発明の電子部品 100a, 100b をフィルタを構成する共振子として用いたことにより、信頼性の高いデバイスを提供で さるようになる。
次に、本発明のフィルタ装置を用いて通信装置を形成した例について説明する。 図 25は、本発明の一実施形態の通信装置を示すブロック図である。
図 25において、アンテナ 140に送信回路 Txと受信回路 Rxが分波器 150を介して 接続されている。送信される高周波信号は、フィルタ 210によりその不要信号が除去 され、パワーアンプ 220で増幅された後、アイソレータ 230と分波器 150を通り、アン テナ 140から放射される。また、アンテナ 140で受信された高周波信号は、分波器 1 50を通りローノイズアンプ 160で増幅されフィルタ 170でその不要信号を除去された 後、アンプ 180で再増幅されミキサ 190で低周波信号に変換される。
図 25におレヽて、分波器 150、フイノレタ 170、フイノレタ 210のレヽずれ力、に、本発明の フィルタ装置を用いれば、信頼性の高レ、ものとすることができる。
なお、図 25では送信回路 Txと受信回路 Rxとを有する通信装置について説明した 力、送信回路 Txまたは受信回路 Rxのいずれか一方を有する通信装置としてもよい。 このような構成の本発明の通信装置によれば、本発明のフィルタ装置を有すること により、信頼性が高い通信装置を提供することができる。
なお、本発明は以上の実施形態の例に限定されるものではなぐ本発明の要旨を 逸脱しなレ、範囲で種々の変更を加えることは何ら差し支えなレ、。
例えば、印刷抵抗を回路基板 41の内部や裏面に形成したり、印刷抵抗の変わりに λ /4線路やインダクタを回路基板 41の表層、内層、裏面に形成したりしてもよい。 また、接続用導体 20や、入出力端子のいずれか一方に、環状電極層 43としての 機能をもたせても構わなレ、。
また、図 7および図 8に示す本発明の実施形態のコンデンサ装置では、ノ ィァスラ インを全て回路基板 41側に形成しているが、バイアスラインの一部だけを回路基板 4
1側に形成し、一部を支持基板上に形成してもよい。
また、入出力端子を回路基板 41の下面に導出した例について説明した力 上面で 外部回路に接続してもよい。
さらに、第 1容量素子 6、第 2容量素子 7を直列に接続する例について説明したが、 並列に接続してもよい。例えば、図 16Aにおいて、入出力端子用の配線パターンを 基準電位に接続し、第 1容量素子 6、第 2容量素子 7を電気的に接続する配線パター ンに高周波信号の入力端子を接続すれば、第 1容量素子 6、第 2容量素子は並列に 接続されたものとなる。
本発明は、その精神または主要な特徴から逸脱することなぐ他のいろいろな形態 で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本 発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束され ない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のもので ある。

Claims

請求の範囲
[1] 支持基板と、
酸化物からなる誘電体層と前記誘電体層を挟持して成る一対の電極とを含む、前 記支持基板上に形成された容量素子と、
前記容量素子を間隙を介して封止する封止体と、を有し、
前記誘電体層は、前記間隙内において露出する露出部を有し、
前記間隙には、酸素を含む気体が導入されていることを特徴とするコンデンサ装置
[2] 前記誘電体層は、少なくとも Bi、 Sr、 Tiを含むぺロブスカイト型酸化物であることを 特徴とする請求項 1に記載のコンデンサ装置。
[3] 前記間隙には、乾燥空気が導入されていることを特徴とする請求項 1に記載のコン デンサ装置。
[4] 前記封止体は、キャップ状のキャップ部材であって、前記支持基板上に覆蓋されて 成ることを特徴とする請求項 1に記載のコンデンサ装置。
[5] 前記容量素子の前記一対の電極の少なくも一方に電気的に接続された端子部と、 前記端子部と対応する位置に設けられたパッド部を含む回路基板であって、前記 端子部と前記パッド部とが相互に電気的に接続するように搭載された回路基板と、を さらに含み、
前記封止体は、
前記回路基板と、
前記容量素子が形成された領域を取り囲むように形成され、前記回路基板と前記 支持基板とを接合して封止する環状部材と、を含んで成ることを特徴とする請求項 1 に記載のコンデンサ装置。
[6] 前記端子部は、前記一対の電極の一方に接続された第 1端子と、前記一対の電極 の他方に接続された第 2端子とを含み、
前記第 1端子は、前記容量素子が形成された領域および前記第 2端子を取り囲む ように形成され、前記環状部材として機能することを特徴とする請求項 5に記載のコン デンサ装置。
[7] 前記一対の電極の少なくとも一方と前記端子部とは、金属線により電気的に接続さ れていることを特徴とする請求項 5に記載のコンデンサ装置。
[8] 前記一対の電極の一方に電気的に接続され、前記キャップ部材の上部から端面を 露出させた第 1柱状電極と、
前記一対の電極の他方に電気的に接続され、前記キャップ部材の上部から端面を 露出させた第 2柱状電極と、をさらに含むことを特徴とする請求項 4に記載のコンデン サ装置。
[9] 前記容量素子は複数個あり、複数個の前記容量素子は、第 1容量素子と、前記第 1容量素子に金属線により接続された第 2容量素子とを含むことを特徴とする請求項 1に記載のコンデンサ装置。
[10] 前記誘電体層は、電圧の印加に応じて誘電率が変化し、
前記容量素子に電圧を印加するためのバイアスラインをさらに含むことを特徴とす る請求項 1に記載のコンデンサ装置。
[11] 支持基板と、
前記支持基板上の厚み方向に順次積層された、下部電極、酸化物からなる誘電体 層、上部電極を含む容量素子が複数個配列された容量素子群であって、第 1容量 素子と、第 2容量素子と、を含む容量素子群と、
前記第 1容量素子の前記上部電極又は前記下部電極に接続され、前記第 1容量 素子を外部回路に電気的に接続する第 1接続体と、
前記第 2容量素子の前記上部電極又は前記下部電極に接続され、前記第 2容量 素子を前記外部回路に電気的に接続する第 2接続体と、を含み、
前記第 1接続体および前記第 2接続体は、それぞれ前記外部回路に接続されて、 前記第 1容量素子と前記第 2容量素子とを電気的に接続することを特徴とするコンデ ンサ。
[12] 前記第 1容量素子と前記第 2容量素子とは、前記下部電極を共有していることを特 徴とする請求項 11に記載のコンデンサ。
[13] 前記第 1容量素子の前記上部電極と、前記第 2容量素子の前記下部電極とが電気 的に接続されて成ることを特徴とする請求項 11に記載のコンデンサ。
[14] 請求項 11に記載のコンデンサと、
導電体を有し、前記コンデンサが実装された回路基板であって、前記第 1接続体お よび前記第 2接続体が、それぞれ前記導電体を介して、前記第 1容量素子と前記第 2容量素子とが電気的に接続されるようにした回路基板と、前記容量素子群を間隙を 介して封止する封止体と、を含み、
前記誘電体層は、前記間隙に露出された露出部を有し、
前記間隙は、酸素を含む気体が導入されていることを特徴とするコンデンサ装置。
[15] 前記間隙には、乾燥空気が導入されていることを特徴とする請求項 14に記載のコ ンデンサ装置。
[16] 前記封止体は、前記容量素子群が形成された領域を取り囲むように形成され、前 記回路基板と前記支持基板とを接合して封止する環状部材を含んで成ることを特徴 とする請求項 14に記載のコンデンサ装置。
[17] 前記封止体は、前記回路基板の前記コンデンサが接続される側の主面から、前記 支持基板の側面と前記回路基板に対向しない側の主面とにかけて被覆する樹脂部 材から成ることを特徴とする請求項 14に記載のコンデンサ装置。
[18] 前記樹脂部材は、シート状樹脂部材であることを特徴とする請求項 17に記載のコ ンデンサ装置。
[19] 前記誘電体層は、電圧の印加に応じて誘電率が変化し、
前記回路基板は、前記第 1容量素子および第 2容量素子に電圧を印加するための バイアスラインが形成されていることを特徴とする請求項 14に記載のコンデンサ装置
[20] 前記第 1容量素子と前記第 2容量素子とは、直列に接続されていることを特徴とす る請求項 14に記載のコンデンサ装置。
[21] 共振回路を構成する電子部品であって、
請求項 14に記載のコンデンサ装置を用いた電子部品。
[22] 入力端子と出力端子と基準電位端子とを有し、前記入力端子と前記出力端子とを つなぐ入出力ライン上、または前記入出力ラインと前記基準電位端子との間に、請求 項 21に記載の電子部品を設けたフィルタ装置。
[23] 請求項 22に記載のフィルタ装置を有する、受信回路および送信回路の少なくとも 一方を備える通信装置。
[24] 酸化物からなる誘電体層と前記誘電体層を挟持して成る一対の電極とを含む容量 素子を、前記支持基板上に形成する工程と、
酸素を含む雰囲気下で前記容量素子を封止体により間隙を介して封止する工程で あって、前記間隙内が前記酸素を含む雰囲気となった状態で、前記誘電体層の一 部を前記間隙内において露出させるように、前記容量素子を前記封止体により封止 する工程と、を有することを特徴とするコンデンサ装置の製造方法。
PCT/JP2007/068588 2006-09-27 2007-09-25 Condensateur, dispositif de condensateur, composant électronique, dispositif de filtre, dispositif de communication et procédé de fabrication d'un dispositif de condensateur WO2008041565A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/441,892 US8320102B2 (en) 2006-09-27 2007-09-25 Capacitor, capacitor device, electronic component, filter device, communication apparatus, and method of manufacturing capacitor device
JP2008537480A JP5000660B2 (ja) 2006-09-27 2007-09-25 コンデンサ装置、電子部品、フィルタ装置、通信装置、およびコンデンサ装置の製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-262920 2006-09-27
JP2006262920 2006-09-27
JP2006321805 2006-11-29
JP2006-321805 2006-11-29
JP2007-019282 2007-01-30
JP2007019282 2007-01-30

Publications (1)

Publication Number Publication Date
WO2008041565A1 true WO2008041565A1 (fr) 2008-04-10

Family

ID=39268427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068588 WO2008041565A1 (fr) 2006-09-27 2007-09-25 Condensateur, dispositif de condensateur, composant électronique, dispositif de filtre, dispositif de communication et procédé de fabrication d'un dispositif de condensateur

Country Status (3)

Country Link
US (1) US8320102B2 (ja)
JP (1) JP5000660B2 (ja)
WO (1) WO2008041565A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2390910A1 (en) * 2009-01-22 2011-11-30 Kyocera Corporation Board for mounting component, and package for holding component using same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101046502B1 (ko) * 2010-11-12 2011-07-04 주식회사 케이엠더블유 통신용 함체
US8787003B2 (en) * 2011-10-12 2014-07-22 Infineon Technologies Ag Low inductance capacitor module and power system with low inductance capacitor module
JP6056259B2 (ja) * 2012-08-18 2017-01-11 セイコーエプソン株式会社 電子部品の製造方法、電子デバイスの製造方法
KR102093099B1 (ko) * 2013-09-27 2020-03-25 한국전력공사 텐던의 긴장력 평가 장치 및 이를 이용한 평가 방법
CN206134667U (zh) 2014-04-03 2017-04-26 株式会社村田制作所 可变电容器
JP6284859B2 (ja) * 2014-08-29 2018-02-28 太陽誘電株式会社 可変容量デバイス及びアンテナ装置
US9768872B2 (en) * 2014-11-20 2017-09-19 Sumitomo Electric Industries, Ltd. Optical transceiver outputting wavelength multiplexed signal and receiving another wavelength multiplexed signal
DE102016101801B4 (de) * 2016-02-02 2021-01-14 Infineon Technologies Ag Lastanschluss eines leistungshalbleiterbauelements, leistungshalbleitermodul damit und herstellungsverfahren dafür
KR102449952B1 (ko) 2016-08-10 2022-10-04 교세라 가부시키가이샤 전기 소자 탑재용 패키지, 어레이형 패키지, 및 전기 장치
US10236852B2 (en) * 2016-12-09 2019-03-19 Nxp Usa, Inc. Parallel LC resonator and method therefor
TWI629700B (zh) * 2017-03-01 2018-07-11 鈺邦科技股份有限公司 電容器封裝結構
US10480962B2 (en) * 2017-04-21 2019-11-19 Capsule Technologies, Inc. Electronic device including a capacitive sensor in a housing
JP6826947B2 (ja) * 2017-05-18 2021-02-10 新光電気工業株式会社 配線基板、配線基板の製造方法
JP6635605B2 (ja) * 2017-10-11 2020-01-29 国立研究開発法人理化学研究所 電流導入端子並びにそれを備えた圧力保持装置及びx線撮像装置
CN110148634A (zh) * 2018-02-02 2019-08-20 华星光通科技股份有限公司 防止湿气进入的光感测器电极堆迭结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150665A (en) * 1978-05-18 1979-11-27 Nitto Electric Ind Co Seal device for electrical component and method of producing same
JPH04111461A (ja) * 1990-08-31 1992-04-13 Sanyo Electric Co Ltd 混成集積回路装置
JPH0611338U (ja) * 1992-07-10 1994-02-10 ティーディーケイ株式会社 非直線性誘電体装置
JP2000357630A (ja) * 1999-06-14 2000-12-26 Nissin Electric Co Ltd 乾式直流コンデンサ
JP2005236089A (ja) * 2004-02-20 2005-09-02 Matsushita Electric Ind Co Ltd 三次元実装構造体、三次元実装構造体を備えた携帯用電子機器、および、三次元実装構造体の製造方法
JP2006196704A (ja) * 2005-01-13 2006-07-27 Kyocera Corp 可変容量コンデンサ,回路モジュールおよび通信装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754917B2 (ja) 1990-12-07 1998-05-20 株式会社村田製作所 標準コンデンサ
JP3076507B2 (ja) 1995-06-13 2000-08-14 松下電子工業株式会社 半導体装置、半導体集積回路装置及びその製造方法
JP3599558B2 (ja) 1998-03-10 2004-12-08 シャープ株式会社 高周波用容量可変素子の製造方法及び高周波用容量可変素子
JP3656465B2 (ja) 1999-06-15 2005-06-08 ティアック株式会社 記録媒体装填装置
JP2001085272A (ja) * 1999-07-14 2001-03-30 Matsushita Electric Ind Co Ltd 可変容量コンデンサ
US6549396B2 (en) * 2001-04-19 2003-04-15 Gennum Corporation Multiple terminal capacitor structure
JP3898638B2 (ja) 2002-12-26 2007-03-28 京セラ株式会社 容量可変薄膜コンデンサ及び高周波部品
JP2007533152A (ja) * 2004-04-16 2007-11-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 集積回路、集積回路の製造方法及び集積回路を製造するための組立部品、並びに該集積回路を有する携帯電話
JP4493405B2 (ja) 2004-05-26 2010-06-30 京セラ株式会社 可変コンデンサ,回路モジュールおよび通信装置
JP2007074647A (ja) * 2005-09-09 2007-03-22 Toshiba Corp 薄膜圧電共振器及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150665A (en) * 1978-05-18 1979-11-27 Nitto Electric Ind Co Seal device for electrical component and method of producing same
JPH04111461A (ja) * 1990-08-31 1992-04-13 Sanyo Electric Co Ltd 混成集積回路装置
JPH0611338U (ja) * 1992-07-10 1994-02-10 ティーディーケイ株式会社 非直線性誘電体装置
JP2000357630A (ja) * 1999-06-14 2000-12-26 Nissin Electric Co Ltd 乾式直流コンデンサ
JP2005236089A (ja) * 2004-02-20 2005-09-02 Matsushita Electric Ind Co Ltd 三次元実装構造体、三次元実装構造体を備えた携帯用電子機器、および、三次元実装構造体の製造方法
JP2006196704A (ja) * 2005-01-13 2006-07-27 Kyocera Corp 可変容量コンデンサ,回路モジュールおよび通信装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2390910A1 (en) * 2009-01-22 2011-11-30 Kyocera Corporation Board for mounting component, and package for holding component using same
EP2390910A4 (en) * 2009-01-22 2015-04-22 Kyocera Corp COMPONENT MOUNTING CARD, AND COMPONENT MAINTAINING BOX USING THE SAME

Also Published As

Publication number Publication date
US8320102B2 (en) 2012-11-27
US20100020469A1 (en) 2010-01-28
JP5000660B2 (ja) 2012-08-15
JPWO2008041565A1 (ja) 2010-02-04

Similar Documents

Publication Publication Date Title
JP5000660B2 (ja) コンデンサ装置、電子部品、フィルタ装置、通信装置、およびコンデンサ装置の製造方法
KR100463092B1 (ko) 세라믹 적층 소자
WO2012070540A1 (ja) 電子部品
US20190172647A1 (en) Multilayer ceramic capacitor
JP7425084B2 (ja) 広帯域性能を有するコンパクトな薄膜表面実装可能結合器
JP2001189605A (ja) セラミック積層rfデバイス
JP4502609B2 (ja) 可変コンデンサ
JP2004289760A (ja) ローパスフィルタ内蔵配線基板
JP4566012B2 (ja) 可変容量コンデンサ,回路モジュールおよび通信装置
US10930435B2 (en) Multilayer element and LC filter
WO2002089209A1 (fr) Module haute frequence et son procede de fabrication
JP4177560B2 (ja) 薄膜コンデンサ及び受動素子内蔵電子部品と高周波対応モジュール
JP4749052B2 (ja) 可変容量コンデンサ,回路モジュールおよび通信装置
US7002435B2 (en) Variable capacitance circuit, variable capacitance thin film capacitor and radio frequency device
WO2014013831A1 (ja) モジュールおよびこのモジュールの製造方法
KR100838965B1 (ko) 이동 전화 장치
US7009276B2 (en) Thin film capacitor, thin film capacitor array and electronic component
JP2003060107A (ja) 半導体モジュール
JP3898638B2 (ja) 容量可変薄膜コンデンサ及び高周波部品
JP2006303389A (ja) 薄膜コンデンサ素子および薄膜コンデンサアレイ
JP4493405B2 (ja) 可変コンデンサ,回路モジュールおよび通信装置
JP4307141B2 (ja) 容量可変コンデンサ回路、容量可変薄膜コンデンサ素子及び高周波部品
US10720338B1 (en) Low temperature cofired ceramic substrates and fabrication techniques for the same
JP2001308667A (ja) Lcフィルタ
TW202236734A (zh) 微型化薄膜表面安裝耦合器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807857

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008537480

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12441892

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807857

Country of ref document: EP

Kind code of ref document: A1