WO2008038683A1 - Laminated piezoelectric element, injection apparatus and fuel injection system using the laminated piezoelectric element, and method for manufacturing laminated piezoelectric element - Google Patents

Laminated piezoelectric element, injection apparatus and fuel injection system using the laminated piezoelectric element, and method for manufacturing laminated piezoelectric element Download PDF

Info

Publication number
WO2008038683A1
WO2008038683A1 PCT/JP2007/068719 JP2007068719W WO2008038683A1 WO 2008038683 A1 WO2008038683 A1 WO 2008038683A1 JP 2007068719 W JP2007068719 W JP 2007068719W WO 2008038683 A1 WO2008038683 A1 WO 2008038683A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
piezoelectric element
multilayer
piezoelectric
internal
Prior art date
Application number
PCT/JP2007/068719
Other languages
English (en)
French (fr)
Inventor
Susumu Ono
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to CN2007800305239A priority Critical patent/CN101507007B/zh
Priority to JP2008536404A priority patent/JP4933554B2/ja
Priority to US12/443,450 priority patent/US8104693B2/en
Priority to EP20070828465 priority patent/EP2073283B1/en
Publication of WO2008038683A1 publication Critical patent/WO2008038683A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/508Piezoelectric or electrostrictive devices having a stacked or multilayer structure adapted for alleviating internal stress, e.g. cracking control layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • Multilayer piezoelectric element injection apparatus and fuel injection system using the same, and method for manufacturing multilayer piezoelectric element
  • the present invention relates to a multilayer piezoelectric element, an ejection device, and a method for manufacturing a multilayer piezoelectric element.
  • a multilayer piezoelectric element including a multilayer body in which a plurality of piezoelectric layers are stacked via internal electrodes, and having a pair of external electrodes formed on the side surfaces of the multilayer body is known.
  • a multilayer body in which a plurality of piezoelectric layers are stacked via internal electrodes, and having a pair of external electrodes formed on the side surfaces of the multilayer body is known.
  • the laminated piezoelectric element (hereinafter sometimes simply referred to as “element”) has a so-called partial electrode structure in which internal electrodes are not formed on the entire main surface of the piezoelectric layer.
  • the internal electrodes of this partial electrode structure are exposed on different side surfaces of the laminated body every other layer and are connected to every other pair of external electrodes.
  • Patent Documents 1 and 2 propose to reduce the residual stress by forming a shrinkage rate adjusting layer (dummy electrode) in a portion where the internal electrode is not printed. .
  • Patent Document 1 Japanese Patent Laid-Open No. 8-242023
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-102646
  • the present inventor has found that an internal electrode, a dummy electrode separated from the internal electrode and electrically insulated, and a gap between the dummy electrode and the internal electrode
  • the piezoelectric layer in contact with the metal internal electrode and the dummy electrode, and the piezoelectric layer in contact with the insulating portion between them are formed at the time of firing. Since differences in sintering behavior occur, we focused on the fact that this difference in sintering behavior is one of the causes of residual stress in the element.
  • the present inventor reduces the residual stress of the element by forming a porous portion having more voids than the internal electrode at a position facing the insulating portion in the stacking direction via the piezoelectric layer.
  • the present inventors have found a new fact that force and stress applied to the element can be relaxed during driving, and have completed the present invention.
  • the multilayer piezoelectric element of the present invention includes a multilayer body in which a plurality of piezoelectric layers are stacked via internal electrodes, and the internal electrodes are disposed between the piezoelectric layers adjacent to each other in the stacking direction.
  • a laminated piezoelectric element in which a dummy electrode separated from an internal electrode and electrically insulated, and an insulating portion between the dummy electrode and the internal electrode are arranged in parallel, the above-described piezoelectric layer is interposed through the piezoelectric layer.
  • a porous portion having more voids than the internal electrode is formed at a position facing the insulating portion in the stacking direction! /.
  • the porous portion is preferably formed at a position facing the internal electrode, the dummy electrode and the insulating portion in the stacking direction via the piezoelectric layer.
  • the porous portion is formed at a position facing the insulating portion on both sides in the stacking direction via the piezoelectric layer.
  • the laminate includes a pair of external electrodes on a side surface thereof, and the dummy electrode is an external electrode different from an external electrode electrically connected to an internal electrode between the same piezoelectric layers as the dummy electrode. Electrically connected to! /, Preferable!
  • the laminate includes a pair of external electrodes on its side surface, and the dummy electrode is electrically insulated from the external electrode!
  • Another multilayer piezoelectric element of the present invention is a multilayer piezoelectric element including a multilayer body in which a plurality of piezoelectric layers are stacked via internal electrodes, wherein the multilayer body is arranged in a stacking direction of the multilayer body. Between adjacent internal electrodes, a porous portion having more voids than these internal electrodes is provided, and between the porous portion and at least one of the adjacent internal electrodes, an electric space is provided that is separated from these internal electrodes. It is characterized by providing a dummy electrode that is electrically insulated.
  • the dummy electrode includes a plurality of dummy portions that are separated from each other and are electrically insulated.
  • At least one of the metal part made of metal and the ceramic part made of ceramic is dispersed in a plurality of positions between two adjacent piezoelectric layers through the porous part.
  • the plurality of metal parts are scattered in a state of being electrically isolated from each other.
  • the laminate includes a plurality of the porous portions, and the porous portions are regularly arranged in the stacking direction of the laminate.
  • the porous electrode and the internal electrodes adjacent to both sides in the stacking direction have the same polarity via the piezoelectric layer. Further, the internal electrodes adjacent to both sides of the porous portion in the stacking direction through the piezoelectric layer may have different polarities.
  • An injection device includes a container having an ejection hole and the multilayer piezoelectric element according to any one of the above, and the liquid filled in the container is driven by the multilayer piezoelectric element. It is characterized by being made to discharge from the said injection hole.
  • the fuel injection system of the present invention includes a common rail that stores high-pressure fuel, the injection device that injects fuel stored in the common rail, a pressure pump that supplies high-pressure fuel to the common rail, and the injection device. And an injection control unit for supplying a drive signal to the vehicle.
  • a method for manufacturing a multilayer piezoelectric element of the present invention includes a multilayer body in which a plurality of piezoelectric layers are stacked via internal electrodes, and the internal electrodes and the internal electrodes are disposed between two adjacent piezoelectric layers.
  • a manufacturing method for manufacturing a laminated piezoelectric element provided with a dummy electrode separated from an internal electrode and electrically insulated, and an insulating portion between the dummy electrode and the internal electrode.
  • An internal electrode paste layer containing the metal component M is formed on the surface of the green sheet, and is separated from the internal electrode paste layer to form the insulating portion.
  • the ratio X of the metal component ratio to the total amount of metal components in the paste is higher than the internal electrode paste layer and the dummy electrode paste layer.
  • the stress relaxation paste layer is formed at a position corresponding to the internal electrode paste layer, the dummy electrode paste layer, and the separated portions.
  • the porous portion having more voids than the internal electrode is formed at a position facing the insulating portion via the piezoelectric layer in the stacking direction. Even if there is a difference in sintering behavior between the piezoelectric layer in contact with the dummy electrode and the piezoelectric layer in contact with the insulating portion where the internal electrode and dummy electrode are not formed, residual stress is generated.
  • the porous part can absorb the residual stress. As a result, it is possible to suppress the occurrence of cracks due to residual stress. Therefore, even when driven under high temperature, high humidity, and high electric field, the laminated piezoelectric material has excellent durability. An element can be provided.
  • the stress relaxation effect can be further enhanced.
  • the laminate includes a pair of external electrodes on its side surface, and the dummy electrode is electrically connected to an external electrode different from the external electrode electrically connected to the internal electrode between the same piezoelectric layers as the dummy electrode.
  • the piezoelectric material When connected, the piezoelectric material is unnecessarily displaced when a voltage is applied to the piezoelectric material existing between the internal electrode and the dummy electrode between the piezoelectric materials. Force to be absorbed The porous part can absorb the stress caused by this unnecessary displacement. As a result, the stress generated in the vicinity of the piezoelectric body existing between the internal electrode and the dummy electrode is relaxed, and the generation of cracks can be more reliably suppressed.
  • the laminated body has a pair of external electrodes on its side surface and the dummy electrode is electrically isolated from the external electrode, it has excellent withstand voltage (insulation resistance) and excellent durability even in a high electric field.
  • a stacked piezoelectric element can be provided.
  • a porous portion having more voids than these internal electrodes is provided between two internal electrodes adjacent to each other in the stacking direction via a piezoelectric layer. Between the porous portion and at least one of the two internal electrodes, a dummy electrode is formed that is separated from these internal electrodes and is electrically insulated. Therefore, the piezoelectric layer in contact with the internal electrode and the dummy electrode Even if there is a difference in sintering behavior between the piezoelectric layer, the internal electrode, and the dummy electrode that are in contact with each other! The porous part can absorb this residual stress. As a result, it is possible to prevent the occurrence of cracks due to the residual stress, so that a multilayer piezoelectric element having excellent durability even when driven under high temperature, high humidity and high electric field can be obtained. Can be provided.
  • the contact area between the dummy electrode and the piezoelectric layer can be reduced, so that the high temperature, high humidity, high electric field can be reduced. Even if it is driven for a long time under, migration can be suppressed
  • the porous part When the porous part is provided with a metal part, the Young's modulus of the metal is lower than that of ceramics, so the effect of reducing stress can be further enhanced.
  • the ceramic part is more likely to crack when subjected to a stress force S than the metal part. Therefore, when the porous part is provided with the ceramic part, it is more selective than the other part during driving. Since cracks and the like can occur in the mix part itself, the force S can be relaxed in the porous part. Thereby, it can suppress that a crack etc. arise in another part.
  • the porous part has both a metal part and a ceramic part, the flexibility caused by the metal part and the stress relaxation effect caused by the ease of cracking in the ceramic part combine to improve the durability of the piezoelectric element. Can be increased.
  • the porous portion does not function as an electrode, the amount of displacement of the piezoelectric layer adjacent to the porous portion can be reduced, and the stress relaxation effect can be further enhanced.
  • the stress relaxation effect is substantially uniform over almost the entire area of the stack in the stacking direction. Obtainable.
  • FIG. 1 is a perspective view showing a multilayered piezoelectric element that applies force to this embodiment
  • FIG. 2 is a sectional view taken along the line AA.
  • FIG. 3 is an enlarged cross-sectional view in which the periphery of the porous portion 17 is enlarged.
  • the multilayer piezoelectric element of the present embodiment includes a multilayer body 10 in which a plurality of piezoelectric layers 11 are stacked via internal electrodes 13. Between two adjacent piezoelectric layers 11, there are an internal electrode 13, a dummy electrode 15 that is electrically isolated from the internal electrode 13, and an insulating portion between the dummy electrode 15 and the internal electrode 13. 23 and are provided. Pressure A porous portion 17 having more voids than the internal electrode 13 is formed at a position facing the internal electrode 13, the dummy electrode 15, and the insulating portion 23 in the stacking direction via the electric conductor layer 11.
  • the porous portion 17 is preferably composed of at least one of a metal and a ceramic.
  • the porous portion 17 is made of only metal, the Young's modulus of the metal is low, so that the force S can be further reduced.
  • the porous portion 17 is composed only of ceramics, it is possible to prevent the occurrence of cracks because it is firmly bonded to the piezoelectric body.
  • the ceramic part is more likely to crack in the ceramic part itself when a large stress is applied compared to the metal part. Therefore, when the porous part is provided with a ceramic part, if a large stress force S is applied during driving, cracks or the like can be generated in the ceramic part itself more selectively than other parts. The stress can be relaxed at. Thereby, it can suppress that a crack etc. arise in another part. Further, when the porous portion 17 is made of metal and ceramics, both of the features are combined, so that it is possible to reduce stress and prevent cracks.
  • At least one of the porous portion 17 includes a metal portion 21a made of metal and a ceramic portion 21b made of ceramic. More preferably, it is interspersed. Even when a stress force S is applied to the porous portion 17, the concentration of stress can be suppressed and reliability can be further improved. As shown in FIG. 3, the plurality of metal portions 21a are preferably interspersed while being separated from each other and electrically insulated.
  • the porous portion 17 is formed only at the minimum necessary position, which leads to cost reduction. Even if a large number of porous portions 17 are arranged in the element, the element strength is hardly lowered. Absent.
  • the porous portion 17 may be formed at a position facing the insulating portion 23 on both sides in the stacking direction via the piezoelectric layer 11.
  • the dummy electrode 15 is different from the external electrode 19 electrically connected to the internal electrode 13 between the same piezoelectric layers 11 where the dummy electrode 15 is disposed. Different external The electrode 19 may be electrically connected. In addition, as shown in FIG. 7, the dummy electrode 15 is electrically insulated from the external electrode 19! /, Or may be! /.
  • the dummy electrode 15 is composed of a plurality of dummy portions 15a that are spaced apart from each other and electrically insulated! Since the dummy electrodes are separated from each other and electrically insulated, the generation of migration can be further reduced even when driven for a long time at high temperature, high humidity, and high electric field.
  • the porous electrode 17 and the internal electrode 13 adjacent on both sides in the stacking direction may be the same polarity via the piezoelectric layer 11. Further, as shown in FIG. 10, the internal electrodes 13 adjacent to both sides in the stacking direction of the porous portion 17 through the piezoelectric layer 11 may have different polarities.
  • the dummy electrode 15 that is insulated from the internal electrode 13 is disposed, and there are more voids 25 than the internal electrode 13 at positions adjacent to the internal electrode 13 in the stacking direction.
  • a porous part 17 is arranged. That is, the residual stress during firing is reduced by the dummy electrode 15 and the porous portion 17 with many voids 25 is disposed at a position adjacent to the stacking direction, so that the dummy electrode 15 can be driven at high temperature, high humidity, and high electric field. Even in this case, the porous portion 17 can effectively absorb the stress. For this reason, it is possible to suppress the occurrence of a problem when a crack occurs and water vapor enters the atmosphere, migration occurs, or conduction between the internal electrodes 13 occurs.
  • the dummy electrode 15 preferably contains the same metal component as that of the internal electrode 13 in order to bring the shrinkage during firing close to the portion of the internal electrode 13.
  • it has the same composition as the internal electrode.
  • the porosity of the porous portion 17 is preferably 10 to 95% in order to further enhance the stress reduction effect. When the porosity is within this range, the bonding strength between the porous portion 17 and the piezoelectric layer 11 adjacent to the porous portion 17 can be maintained high, and the stress can be effectively reduced to prevent the occurrence of cracks. .
  • the porosity is more preferably 40 to 90%.
  • the porosity of the porous portion 17 is such that, in a cross section parallel to the stacking direction of the element, the porosity 25 (void) is relative to the area of the entire porous portion 17 (area of the region sandwiched between the piezoelectric layers 11). ) Is a percentage.
  • the metal filling rate of the porous portion 17 is preferably 5 to 55%. By setting the metal filling rate to 5% or more, it is possible to suppress an excessive decrease in the bonding strength between the metal portion 21a and the piezoelectric body adjacent thereto. By setting the metal filling rate to 55% or less, a plurality of metal portions 21a are appropriately scattered, so that the effect of absorbing stress can be enhanced.
  • the metal filling rate is 10 to 40%.
  • the metal filling rate is a percentage of the ratio of the metal part 21a to the entire area of the porous part 17 in the cross section parallel to the stacking direction of the elements.
  • the size (length in the stacking direction) of the metal part 21a is preferably 1 to 100 m, and more preferably 3 to 50 m.
  • the size of the metal part 21a is 1 m or more, it can be suppressed that the thickness of the metal part 21a becomes excessively thin and the stress relaxation effect is reduced.
  • the size of the metal part 21a is 100 m or less, it is possible to suppress the effect of the metal part 21a from dispersing and absorbing the stress generated by the expansion and contraction of the laminate.
  • the shape of the metal portion 21a may be a substantially spherical shape or another shape.
  • Inactive layers 9 are disposed at both ends of the stacked body 10 in the stacking direction. Since the inactive layer 9 is a layer composed of a plurality of piezoelectric bodies not provided with the internal electrodes 13, it does not cause displacement even when a voltage is applied.
  • External electrodes 19 are joined to opposite side surfaces of the multilayer body, and the internal electrodes 13 that are laminated are electrically connected to the external electrodes 19 every other layer. For this reason, a voltage necessary for displacing the piezoelectric layer 11 by the inverse piezoelectric effect can be commonly supplied to the connected internal electrodes 13. Since the lead wire is connected and fixed to the external electrode 19 with solder or the like, the external electrode 19 can be connected to an external voltage supply unit.
  • a pair of external electrodes 19 are formed on the side surface of the laminate, and a plurality of internal electrodes 13 are alternately electrically connected to the external electrodes 19, and the dummy electrodes 15 It is preferable that the internal electrode 13 between the same piezoelectric layers 11 is electrically connected to an external electrode 19 different from the external electrode 19 to which the internal electrode 13 is electrically connected. As a result, in-plane stress non-uniformity is reduced, and the crack suppression effect can be further enhanced.
  • a pair of external electrodes 19 are formed on the side surfaces of the laminate, and a plurality of internal electrodes 13 are alternately electrically connected to these external electrodes 19, and the dummy electrodes 15 are different from the external electrodes 19. It may be insulated. As a result, since the external electrode 19 and the dummy electrode 15 are insulated, it is possible to provide a laminated piezoelectric element that has excellent withstand voltage and excellent durability even in a high electric field.
  • porous portions 17 exist and are regularly arranged in the stacking direction of the stacked body. Since the porous portions 17 having a stress relaxation effect are regularly arranged in the stacking direction of the stacked body, the stress is relaxed almost uniformly over the entire stacking direction of the stacked body.
  • the porous portion 17 is preferably arranged for each number of layers equal to or less than half of the number of laminated layers (the number of all internal electrodes 13).
  • the interval between the porous portions 17 is 1/2 or less of the number of stacked layers, the stress can be reduced uniformly over the entire side surface of the stacked body.
  • the porous portion 17 is more preferably 1/8 or less of the number of stacked layers.
  • the porous portions 17 are preferably arranged regularly in the stacking direction of the laminate, but both end portions in the stacking direction may deviate from the regularity at the center of the stack.
  • the internal electrodes 13 adjacent to both sides in the stacking direction via the piezoelectric layer 11 with respect to the porous portion 17 have the same polarity. In this case, since the porous portion 17 is not driven, the stress relaxation effect is further enhanced. On the other hand, in the case where priority is given to obtaining a larger displacement amount, it is preferable to make the internal electrodes 13 adjacent to both sides in the stacking direction different from each other in the stacking direction with respect to the porous portion 17 through the piezoelectric layer 11. In this case, since the porous portion 17 is driven, the amount of displacement can be increased, and it is possible to provide a stacked piezoelectric element that is small and can obtain a large amount of displacement.
  • the thickness of the piezoelectric layer 11, that is, the distance between the internal electrodes 13, is preferably 40 to 250 111.
  • the multilayer piezoelectric element can be reduced in size and height even when the number of layers is increased in order to obtain a larger amount of displacement by applying a voltage. Insulation breakdown can be prevented.
  • FIG. 11 is a perspective view showing a multilayer piezoelectric element according to the second embodiment of the present invention
  • FIG. 12 is a sectional view thereof
  • FIG. 13 is an enlarged cross-sectional view in which the periphery of the porous portion 17 is enlarged.
  • the in the multilayer piezoelectric element of the present embodiment as shown in FIGS. 12 and 13, a porous part 17 having more voids than the internal electrode 13 is provided, and between the porous part 17 and at least one of the internal electrodes 13 is provided.
  • a dummy electrode 15 that is separated from the internal electrodes 13 and is electrically insulated is disposed.
  • the residual stress at the time of firing is reduced by the dummy electrode 15 and the porous portion 17 with many voids 25 is disposed at a position adjacent in the stacking direction, so that it is driven at high temperature, high humidity, and high electric field.
  • the porous portion 17 can absorb the stress. For this reason, it is possible to suppress the occurrence of a problem when cracks are generated, water vapor in the atmosphere enters, migration occurs, and conduction occurs between the internal electrodes 13.
  • the porous portion 17 has at least one force of the metal portion 21a made of metal and the ceramic portion 21b also made of ceramic force through the gap 25 between two adjacent piezoelectric layers 11. It is dotted with multiple points.
  • the plurality of metal portions 21a are preferably interspersed in a state of being electrically insulated from each other.
  • the laminate includes a plurality of porous portions 17, and these porous portions 17 are regularly arranged in the stacking direction of the laminate.
  • the dummy electrodes 15 are preferably interspersed while being separated from each other and electrically insulated.
  • the porous electrode 17 and the internal electrode 13 adjacent to both sides in the stacking direction via the piezoelectric layer 11 may have the same polarity.
  • the internal electrodes 13 adjacent to both sides in the stacking direction of the porous portion 17 via the piezoelectric layer 11 may have different polarities.
  • the dummy electrodes 15 may be arranged side by side in the stacking direction not on the same plane as the internal electrodes 13. As a result, the electric field strength applied to the piezoelectric layer 11 sandwiched between the internal electrodes is reduced.
  • the presence of the dummy electrode 15 corrects the electric field strength within the same plane.
  • the electric field strength can be made substantially uniform in the same plane, so the stress generated by the concentration of the electric field strength locally with respect to the porous portion 17 arranged to concentrate the stress of the element. Concentration can be deterred.
  • the porous portion 17 function effectively as a stress relaxation layer, the multilayer piezoelectric element can be made extremely durable with a force S.
  • a dummy electrode 15 is provided between the porous portion 17 and the internal electrode 13 adjacent to both sides in the stacking direction. Each is preferably arranged. Since the dummy electrodes 15 are arranged above and below the porous portion 17, the residual stress during firing is further reduced, and the stress on the porous portion 17 can also be reduced. The dummy electrode 15 is located between the piezoelectric layer 11 where all the internal electrodes 13 are arranged, and only between the piezoelectric layers 11 where the internal electrodes 13 adjacent to both sides in the stacking direction are arranged with respect to the porous portion 17. You can place it!
  • the internal electrode paste layer 13a containing the metal component M is formed on the surface of the ceramic green sheet 11a, and at the same time, the insulating part 23 is separated from the internal electrode paste layer 13a.
  • the step of forming the dummy electrode paste layer containing the metal component M and the stress relaxation paste layer 17a containing the metal component M at the position corresponding to the above-mentioned separated portion of the surface of the other ceramic green sheet 11a Forming a laminated molded body by laminating these ceramic green sheets 11a adjacent to each other, and firing the laminated molded body.
  • the ratio X of the metal component M to the total amount of metal components is higher than the internal electrode paste layer 13a and the dummy electrode paste layer.
  • the stress relaxation paste layer 17a is preferably formed at a position corresponding to the internal electrode paste layer 13a, the dummy electrode paste layer, and the separated portions thereof.
  • PZT lead zirconate titanate
  • a piezoelectric ceramic material mainly composed of barium titanate (BaTiO).
  • This piezoelectric ceramic has a piezoelectric strain constant d indicating its piezoelectric characteristics.
  • the production method of the present invention will be described in more detail by taking as an example the case where the metal component M is silver.
  • PZT lead zirconate titanate
  • a binder made of an acrylic or butyral organic polymer such as acrylic or butyral organic polymer
  • a plasticizer such as DBP (dibutyl phthalate) or DOP (dioctyl phthalate)
  • DBP dibutyl phthalate
  • DOP dioctyl phthalate
  • a metal paste for the internal electrode 13 and a metal paste for the dummy electrode 15 are produced. These metal pastes are obtained by adding and mixing a binder, a plasticizer and the like to metal powder mainly composed of silver palladium. This metal paste is printed on one side of the ceramic green sheet 11a by screen printing or the like to form the internal electrode paste layer 13a and the dummy electrode paste layer 15a.
  • a metal paste for the porous portion 17 having a high porosity is produced.
  • This metal paste can be obtained, for example, by adding a binder, a plasticizer or the like to a metal powder containing silver as a main component, or a silver palladium power with a higher silver ratio than the metal paste for the internal electrode 13 and the dummy electrode 15.
  • a binder, a plasticizer and the like may be added to and mixed with the metal powder.
  • This metal paste is printed on one side of the ceramic green sheet 11a by screen printing or the like.
  • a stress relaxation paste layer 17a containing silver is formed at a position corresponding to the separation portion.
  • the stress relaxation paste layer 17a is preferably formed at a position corresponding to the internal electrode paste layer 13a, the dummy electrode paste layer 15a, and the separated portions thereof.
  • FIG. 17 (a) is an enlarged cross-sectional view of a part of the laminated molded body.
  • the thickness of the ceramic layer is further required, only the green sheet on which the metal paste is not printed may be partially laminated on the portion where the thickness is required.
  • the laminated molded body can be cut into a desired form.
  • the thickness of the metal paste layer can be about 1 to 40 m for screen printing.
  • the laminated molded body is debindered at a predetermined temperature, and then fired at 800 to 1000 ° C. Then, silver diffuses from the metal layer having a high silver concentration to the alloy layer (see FIG. 17 (b)) to form a porous portion 17 having a high porosity, and a relatively dense internal electrode 13 is formed ( Figure 17 (c)).
  • the sintered body is processed into a desired dimension, and then the external electrode 19 is formed.
  • the external electrode 19 is made by adding a binder, a plasticizer, glass powder, etc. to a metal powder mainly composed of silver to prepare a metal paste, and applying the metal paste on the side surface of the sintered body by screen printing or the like. It can be formed by printing and firing at 600-800 ° C.
  • the porous portion 17 is formed by diffusion of silver from the metal paste layer having a high silver concentration into the metal paste layer having a low silver concentration and a high porosity.
  • Another method of manufacturing the multilayer piezoelectric element of the present invention is as follows. Contains organic components that are bonded and fixed when acrylic beads are dried, and volatilized when fired, in a paste that is mixed with metallic components such as silver and palladium that form porous part 17 and, if necessary, calcined powder of piezoelectric ceramics. By doing so, it is possible to form a porous portion 17 having an arbitrary porosity. That is, the porosity of the porous portion 17 can be controlled by controlling the amount of acrylic beads added to the paste. In other words, when the acrylic beads are few! /, The porosity is small, and conversely when the acrylic beads are many! /, The porosity is large. Others are the same as the above-described method, and thus description thereof is omitted.
  • the laminate 10 is not limited to the one produced by the above-described production method, and any production method can be used as long as a laminate obtained by alternately laminating a plurality of piezoelectric bodies and a plurality of internal electrodes 13 can be produced. May be formed.
  • the obtained laminated fired body is ground into a predetermined shape using a known surface grinder or the like.
  • a silver glass conductive paste prepared by adding a binder, a plasticizer, and a solvent to a conductive powder and glass powder mainly composed of silver is applied to the side surface of the laminate forming the external electrode 19 by screen printing or the like. ,Print. Thereafter, the external electrode 19 can be formed by drying and baking at a predetermined temperature.
  • a conductive auxiliary member made of a conductive adhesive in which a metal mesh or a mesh-like metal plate is embedded may be formed on the outer surface of the external electrode 19.
  • a conductive auxiliary member made of a conductive adhesive in which a metal mesh or a mesh-like metal plate is embedded
  • a metal mesh is a braided metal wire, and a mesh-like metal plate is a mesh formed by forming holes in a metal plate!
  • the exterior resin made of silicone rubber or the like is coated on the side surface of the laminate including the external electrode 19 by using a technique such as datebing.
  • the laminated piezoelectric element is completed.
  • FIG. 18 shows an injection device of the present invention.
  • An injection hole 33 is provided at one end of the storage container 31, and the needle valve 3 that can open and close the injection hole 33 in the storage container 31.
  • a fuel passage 37 is provided in the injection hole 33 so that it can communicate with the fuel passage 37.
  • the fuel passage 37 is connected to an external fuel supply source, and fuel is always supplied to the fuel passage 37 at a constant high pressure. Accordingly, when the needle valve 35 opens the injection hole 33, the fuel that has been supplied to the fuel passage 37 is formed so as to be injected into a fuel chamber (not shown) of the internal combustion engine at a constant high pressure.
  • the upper end portion of the needle valve 35 has a large diameter, and serves as a piston 41 that can slide with a cylinder 39 formed in the storage container 31. And inside the storage container 31
  • the piezoelectric actuator 43 described above is accommodated.
  • FIG. 19 is a schematic diagram illustrating a fuel injection system according to one embodiment of the present invention.
  • the fuel injection system 51 according to this embodiment includes a common rail 52 that stores high-pressure fuel, a plurality of the injection devices 53 that inject the fuel stored in the common rail 52, and the common rail 52. And a pressure pump 54 for supplying high-pressure fuel to an injection device 53 and an injection control unit 55 for supplying a drive signal to the injection device 53.
  • the injection control unit 55 controls the amount and timing of fuel injection while sensing the state in the combustion chamber of the engine with a sensor or the like.
  • the pressure pump 54 serves to feed the fuel from the fuel tank 56 to the common rail 52 at about 1000 to 2000 atmospheres, preferably ⁇ 1500 to about 1700 atmospheres.
  • the common rail 54 stores the fuel sent from the pressure pump 54 and sends it to the injector 53 as appropriate.
  • the injection device 53 injects a small amount of fuel into the combustion chamber from the injection hole 33 in the form of a mist.
  • a piezoelectric actuator comprising the multilayer piezoelectric element of the present invention was produced as follows. First, lead zirconate titanate (? 2 0 -PbTiO) with an average particle size of 0.4 111 is the main component
  • a slurry was prepared by mixing piezoceramic powder, binder, and plasticizer of piezoelectric ceramic 3 3, and a ceramic green sheet to become a piezoelectric body 11 having a thickness of 120 m was prepared by the doctor blade method.
  • a conductive paste in which a binder is added to a silver-palladium alloy (95% by mass of silver—5% by weight of palladium) is used as an internal electrode and, if necessary, a dummy electrode
  • a total of 300 sheets formed by the screen printing method are laminated, and a conductive paste of silver-palladium alloy (99% by mass of silver—1% by weight of palladium) is screened on the porous part with many voids.
  • the print pattern was changed and printed. The firing was held at 800 ° C., sintered at 950 ° C., further heated and held at 900 ° C. for 1 hour, and then cooled.
  • the external electrode 15 was formed by baking at 700 ° C. for 30 minutes.
  • a lead wire is connected to the external electrode 15, a 3 kV / mm DC electric field is applied to the positive and negative external electrodes 15 through the lead wire for 15 minutes, and polarization treatment is performed, as shown in FIG. Piezoelectric actuators using multi-layered piezoelectric elements were fabricated.
  • the piezoelectric Akuchiyueta by applying an AC voltage of 0 to + 170 V at frequency of 150Hz at room temperature, was continuously driven test to 1 X 10 9 times.
  • some of the cross-sections were polished after a continuous drive test and the interior was confirmed with a metallographic microscope. Separately, voltage was applied to a piezoelectric actuator manufactured under the same conditions, and the withstand voltage was measured. The results are shown in Table 1.
  • Sample No. 1 is a comparative example, a porous portion can reduce the stress in the active part from the fact that is not placed, a significant reduction of the displacement amount after IX 10 9 cycles was observed . Also, delamination (delamination) was found near the external electrode.
  • Sample Nos. 2 to 7 which are examples of the present invention, are effective displacements necessary as a multilayer piezoelectric element that does not show extreme deterioration from the initial displacement after the continuous driving test. Therefore, it was possible to produce a durable laminated piezoelectric element that does not cause a malfunction.
  • Sample Nos. 4, 6 and 7 were able to produce a multilayer piezoelectric element having an excellent withstand voltage.
  • Sample No. 6 is a laminated piezoelectric element with extremely high durability that ensures effective displacement from the beginning, does not change the element performance even after continuous driving, and has improved dielectric strength. I was able to do it.
  • the dummy electrode is printed on a ceramic green sheet different from the internal electrode and the same conductive paste as the internal electrode is applied.
  • a piezoelectric actuator was produced in the same manner as in Example 1 except that the arrangement of the porous part and the polarities of the upper and lower internal electrodes of the porous part were arranged as shown in Table 2.
  • the comparative sample No. 11 did not have a porous part that could relieve stress in the active part, so a significant decrease in displacement was observed after 1 X 10 9 cycles. I understand that. In addition, delamination was found near the external electrode.
  • Sample Nos. 12 to 15 which are examples of the present invention are effective as a multilayer piezoelectric element that does not show extreme deterioration from the initial displacement after the continuous driving test. It was possible to fabricate a durable multilayer piezoelectric element that has a displacement amount and does not cause a malfunction that does not cause delamination between internal electrodes.
  • FIG. 1 is a perspective view showing a multilayer piezoelectric element according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the multilayer piezoelectric element shown in FIG. 1 taken along the line AA.
  • FIG. 3 is an enlarged cross-sectional view of a part of the multilayer piezoelectric element shown in FIG.
  • FIG. 4 is a cross-sectional view showing another example of the first embodiment (a cross-sectional view taken along a plane parallel to the stacking direction).
  • FIG. 5 is a cross-sectional view showing still another example of the first embodiment (a cross-sectional view taken along a plane parallel to the stacking direction).
  • FIG. 6 is a cross-sectional view of the multilayer piezoelectric element according to the first embodiment cut along a plane perpendicular to the stacking direction.
  • FIG. 7 is a cross-sectional view of the multilayer piezoelectric element according to the first embodiment cut along a plane perpendicular to the stacking direction.
  • FIG. 8 is a cross-sectional view showing still another example of the first embodiment (a cross-sectional view taken along a plane parallel to the stacking direction).
  • FIG. 9 is a cross-sectional view showing still another example of the first embodiment (a cross-sectional view taken along a plane parallel to the stacking direction).
  • FIG. 10 is a cross-sectional view showing still another example of the first embodiment (a cross-sectional view taken along a plane parallel to the stacking direction).
  • FIG. 11 is a perspective view showing a multilayer piezoelectric element according to a second embodiment of the present invention.
  • FIG. 12 is a cross-sectional view taken along line AA of the multilayer piezoelectric element shown in FIG.
  • FIG. 13 is an enlarged cross-sectional view of a part of the multilayer piezoelectric element shown in FIG.
  • FIG. 14 is a cross-sectional view showing still another example of the eleventh embodiment (a cross-sectional view taken along a plane parallel to the stacking direction).
  • FIG. 15 is a cross-sectional view showing still another example of the second embodiment (a cross-sectional view taken along a plane parallel to the stacking direction).
  • FIG. 16 is a cross-sectional view showing still another example of the second embodiment (a cross-sectional view taken along a plane parallel to the stacking direction).
  • FIG. 17 (a) to (c) are explanatory views showing a method for producing a multilayer piezoelectric element of the present invention.
  • FIG. 18 is a cross-sectional view showing an injection device according to one embodiment of the present invention.
  • FIG. 19 is a schematic diagram showing a fuel injection common rail system according to an embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

明 細 書
積層型圧電素子、これを用いた噴射装置及び燃料噴射システム、並びに 積層型圧電素子の製造方法
技術分野
[0001] 本発明は、積層型圧電素子および噴射装置、並びに積層型圧電素子の製造方法 に関する。
背景技術
[0002] 従来から、複数の圧電体層が内部電極を介して積層された積層体を備え、該積層 体の側面に一対の外部電極が形成された積層型圧電素子が知られている。一般に
、積層型圧電素子(以下、単に「素子」ということもある)は、内部電極が圧電体層の 主面全体に形成されておらず、いわゆる部分電極構造となっている。この部分電極 構造の内部電極は、一層おきに積層体の異なる側面に露出し、一対の外部電極に 一層おきに接続されている。
[0003] このように部分電極構造を有する素子では内部電極が印刷されている部分と印刷 されていない部分とを比較すると、焼成時における圧電体層の収縮率が異なる。この ため、焼成後には、素子に残留応力が生じることになる。この残留応力を低減させる ため、例えば特許文献 1 , 2には、内部電極が印刷されていない部分に収縮率調整 層(ダミー電極)を形成して残留応力の低減を図ることが提案されている。
特許文献 1:特開平 8— 242023号公報
特許文献 2:特開 2001— 102646号公報
発明の開示
発明が解決しょうとする課題
[0004] 近年、高温、高湿の環境下で大きな変位量を確保すること、長期間連続駆動できる ことなどが要求されている。このため、素子に高い電界を印加して大きな変位量を得 るとともに、長期間連続駆動させることが試みられている。このような高温、高湿、高電 界、高圧力下で長期間連続駆動させたときには、特許文献 1 , 2に記載の素子のよう にダミー電極を形成するだけでは、クラックの発生を抑制する効果は十分ではなかつ た。
課題を解決するための手段
[0005] 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、内部電極と、該内部 電極から離隔し電気的に絶縁されたダミー電極と、該ダミー電極と当該内部電極の 間の絶縁部と、が設けられた積層型圧電素子においては、金属からなる内部電極及 びダミー電極に接する圧電体層と、これらの間の絶縁部に接する圧電体層とは、焼 成時における焼結挙動に差異が生じるため、この焼結挙動の差異が素子の残留応 力の発生原因の一つになっていることに着目した。さらに、本発明者は、圧電体層を 介して絶縁部と積層方向に対向する位置に、内部電極よりも空隙の多い多孔質部を 形成することで、素子の残留応力を低減し、し力、も駆動時に素子に力、かる応力をも緩 和することができるという新たな事実を見出し、本発明を完成するに至った。
[0006] すなわち、本発明の積層型圧電素子は、複数の圧電体層が内部電極を介して積 層された積層体を備え、積層方向に隣り合う圧電体層間に、前記内部電極と、この内 部電極から離隔し電気的に絶縁されたダミー電極と、このダミー電極と当該内部電極 の間の絶縁部と、が並設された積層型圧電素子において、前記圧電体層を介して前 記絶縁部と積層方向に対向する位置に、前記内部電極よりも空隙の多い多孔質部 が形成されて!/、ることを特徴とする。
[0007] 前記多孔質部は、前記圧電体層を介して、前記内部電極、前記ダミー電極及び前 記絶縁部と積層方向に対向する位置に形成されているのが好ましい。
[0008] 前記多孔質部は、前記圧電体層を介して前記絶縁部と積層方向両側に対向する 位置にそれぞれ形成されてレ、るのが好ましレ、。
[0009] 前記積層体はその側面に一対の外部電極を備え、前記ダミー電極は、該ダミー電 極と同じ圧電体層間にある内部電極が電気的に接続された外部電極とは異なる外 部電極に電気的に接続されて!/、るのが好まし!/、。
[0010] 前記積層体はその側面に一対の外部電極を備え、前記ダミー電極は前記外部電 極と電気的に絶縁されて!/、てもよ!/、。
[0011] 本発明の他の積層型圧電素子は、複数の圧電体層が内部電極を介して積層され た積層体を備えた積層型圧電素子において、前記積層体は、積層体の積層方向に 隣り合う内部電極間に、これらの内部電極よりも空隙の多い多孔質部を備え、この多 孔質部と前記隣り合う内部電極の少なくとも一方との間に、これらの内部電極から離 隔し電気的に絶縁されたダミー電極を備えていることを特徴とする。
[0012] 前記ダミー電極は、互いに離隔し電気的に絶縁された状態で存在する複数のダミ 一部からなるのが好ましい。
[0013] 前記多孔質部は、金属からなる金属部及びセラミックスからなるセラミック部の少な くとも一方が、隣り合う 2つの圧電体層間に空隙を介して複数点在してなるのが好まし い。
[0014] 複数の前記金属部は、互いに離隔して電気的に絶縁された状態で点在しているの が好ましい。
[0015] 前記積層体は前記多孔質部を複数備え、これらの多孔質部が前記積層体の積層 方向に規則的に配置されてレ、るのが好ましレ、。
[0016] 前記圧電体層を介して前記多孔質部と積層方向両側に隣り合う内部電極が同極 であるのがよい。また、前記圧電体層を介して前記多孔質部の積層方向両側に隣り 合う内部電極が異極であってもよい。
[0017] 本発明の噴射装置は、噴出孔を有する容器と、上記のいずれかに記載の積層型 圧電素子とを備え、前記容器内に充填された液体を前記積層型圧電素子の駆動に より前記噴射孔から吐出させるように構成されたことを特徴とする。
[0018] 本発明の燃料噴射システムは、高圧燃料を蓄えるコモンレールと、このコモンレー ルに蓄えられた燃料を噴射する前記噴射装置と、前記コモンレールに高圧の燃料を 供給する圧力ポンプと、前記噴射装置に駆動信号を与える噴射制御ユニットと、を備 えている。
[0019] 本発明の積層型圧電素子の製造方法は、複数の圧電体層が内部電極を介して積 層された積層体を備え、隣り合う 2つの圧電体層間に、前記内部電極と、該内部電極 から離隔し電気的に絶縁されたダミー電極と、該ダミー電極と当該内部電極の間の 絶縁部と、が設けられた積層型圧電素子を製造するための製造方法であって、セラミ ックグリーンシートの表面に、金属成分 Mを含有する内部電極ペースト層を形成する とともに、前記絶縁部を形成するために前記内部電極ペースト層から離隔させた状 態で、金属成分 を含有するダミー電極ペースト層を形成する工程と、他のセラミツ クグリーンシートの表面のうち、前記離隔部分に対応する位置に、金属成分 Μを含 有する応力緩和ペースト層を形成する工程と、これらのセラミックグリーンシートが隣り 合うように積層された部分を含む積層成形体を作製する工程と、該積層成形体を焼 成する工程と、を含み、前記応力緩和ペースト層は、ペースト中における金属成分総 量に対する金属成分 Μの比率 Xが前記内部電極ペースト層及び前記ダミー電極ぺ 一スト層よりも高!/、ことを特徴とする。
[0020] 前記応力緩和ペースト層は、前記内部電極ペースト層、前記ダミー電極ペースト層 及びこれらの前記離隔部分に対応する位置に形成されて!/、るのが好まし!/、。
発明の効果
[0021] 本発明の積層型圧電素子によれば、圧電体層を介して絶縁部と積層方向に対向 する位置に、内部電極よりも空隙の多い多孔質部が形成されているので、内部電極 及びダミー電極に接する圧電体層と、内部電極及びダミー電極が形成されていない 絶縁部に接する圧電体層との間で焼結挙動に差異が生じて残留応力が発生したと しても、この残留応力を多孔質部が吸収することができる。これにより、残留応力に起 因してクラックが発生するのを抑制することができるので、高温、高湿、高電界下で駆 動させた場合であっても優れた耐久性を有する積層型圧電素子を提供することがで きる。
[0022] また、多孔質部が、圧電体層を介して、内部電極、ダミー電極及び絶縁部と積層方 向に対向する位置に形成されているときには、応力緩和効果をより高めることができ
[0023] 多孔質部が圧電体層を介して絶縁部と積層方向両側に対向する位置にそれぞれ 形成されているときには、焼成時の残留応力がさらに低減され、素子の信頼性をより 高めること力 Sでさる。
[0024] 積層体がその側面に一対の外部電極を備え、ダミー電極が、このダミー電極と同じ 圧電体層間にある内部電極が電気的に接続された外部電極とは異なる外部電極に 電気的に接続されているときには、圧電体層間において内部電極とダミー電極との 間に存在する圧電体に電圧が印加されることになつてこの圧電体が不必要に変位す ることになる力 この不必要な変位に起因する応力を多孔質部が吸収できる。これに より、内部電極とダミー電極との間に存在する圧電体近傍に生じる応力が緩和され、 クラックの発生をより確実に抑制できる。
[0025] 積層体がその側面に一対の外部電極を備え、ダミー電極が外部電極と電気的に絶 縁されているときには、絶縁耐圧(絶縁耐カ)に優れ、高電界でも耐久性に優れた積 層型圧電素子を提供できる。
[0026] 本発明の他の積層型圧電素子によれば、圧電体層を介して積層方向に隣り合う 2 つの内部電極間に、これらの内部電極よりも空隙の多い多孔質部を備え、この多孔 質部と前記 2つの内部電極の少なくとも一方との間に、これらの内部電極から離隔し 電気的に絶縁されたダミー電極を形成しているので、内部電極に接する圧電体層、 ダミー電極に接する圧電体層、内部電極及びダミー電極が形成されて!/、な!/、絶縁部 の近傍に位置する圧電体層との間で焼結挙動に差異が生じて残留応力が発生した としても、この残留応力を多孔質部が吸収することができる。これにより、残留応力に 起因してクラックが発生するのを防止することができるので、高温、高湿、高電界下で 駆動させた場合であっても優れた耐久性を有する積層型圧電素子を提供することが できる。
[0027] ダミー電極が互いに離隔し電気的に絶縁された状態で点在しているときには、ダミ 一電極と圧電体層との接触面積を小さくすることができるので、高温、高湿、高電界 下で長期間駆動させた場合であっても、マイグレーションが発生するのを抑制できる
[0028] 多孔質部が、金属からなる金属部及びセラミックスからなるセラミック部の少なくとも 一方が隣り合う 2つの圧電体層間に空隙を介して複数点在してなるときには、多孔質 部に応力力 Sかかった際に各金属部又はセラミック部に応力が分散されるので、応力 がー点に集中することを防止できる。
[0029] 多孔質部が金属部を備えているときには、金属のヤング率がセラミックスと比べて低 いので、応力を低減する効果をより高めることができる。また、セラミック部は金属部と 比べて、応力力 Sかかった際にセラミック部自体に亀裂等が生じやすい。したがって、 多孔質部がセラミック部を備えているときには、駆動時に他の部分よりも選択的にセラ ミックス部自体に亀裂等を生じさせることができるので、多孔質部において応力を緩 和すること力 Sできる。これにより、他の部分に亀裂等が生じるのを抑制できる。多孔質 部が金属部とセラミック部の両方を備えているときには、金属部に起因する柔軟性と セラミック部の亀裂の生じ易さに起因する応力緩和効果とが相まって、圧電素子の耐 久性をより高めることができる。
[0030] 複数の金属部が互いに離隔して電気的に絶縁された状態で点在しているときには
、この多孔質部は電極として機能しないので、これに隣接する圧電体層の変位量を 低減させて、応力緩和効果をより高めることができる。
[0031] 積層体が多孔質部を複数備え、これらの多孔質部が積層体の積層方向に規則的 に配置されているときには、積層体の積層方向のほぼ全域において応力緩和効果を ほぼ均一に得ることができる。
[0032] 圧電体層を介して多孔質部と積層方向両側に隣り合う内部電極が同極であるとき には、多孔質部に隣接する圧電体層が駆動しないので、応力がより低減される。
[0033] 圧電体層を介して多孔質部の積層方向両側に隣り合う内部電極が異極であるとき には、多孔質部に隣接する圧電体層が駆動するので、変位量を大きくすることができ
[0034] 本発明の噴射装置によれば、応力緩和効果に優れた積層型圧電素子を備えてい るので、高温、高湿、高電界下で使用した場合であっても優れた耐久性を発揮する。 発明を実施するための最良の形態
[0035] <積層型圧電素子〉
以下、本発明の一実施形態にかかる積層型圧電素子について図面を参照し詳細 に説明する。図 1は、本実施形態に力、かる積層型圧電素子を示す斜視図であり、図 2 はその A— A泉断面図である。図 3は、多孔質部 17の周辺を拡大した拡大断面図で ある。
[0036] 図;!〜 3に示すように、本実施形態の積層型圧電素子は、複数の圧電体層 11が内 部電極 13を介して積層された積層体 10を備えている。隣り合う 2つの圧電体層 11間 には、内部電極 13と、この内部電極 13から離隔し電気的に絶縁されたダミー電極 1 5と、このダミー電極 15と当該内部電極 13の間の絶縁部 23と、が設けられている。圧 電体層 11を介して内部電極 13、ダミ一電極 15及び絶縁部 23と積層方向に対向す る位置には、内部電極 13よりも空隙の多い多孔質部 17が形成されている。
[0037] 多孔質部 17は金属及びセラミックスの少なくとも一方で構成されていることが好まし い。多孔質部 17が金属だけで構成されている場合、金属のヤング率が低いため、応 力をさらに低減すること力 Sできる。また、多孔質部 17がセラミックスだけで構成されて いる場合、圧電体と強固に接合しているため、クラックの発生を防止すること力 Sできる 。また、セラミック部は金属部と比べて、大きな応力がかかった際にセラミック部自体 に亀裂等が生じやすい。したがって、多孔質部がセラミック部を備えているときには、 駆動時に大きな応力力 Sかかった場合には他の部分よりも選択的にセラミックス部自体 に亀裂等を生じさせることができるので、多孔質部において応力を緩和することがで きる。これにより、他の部分に亀裂等が生じるのを抑制できる。また、多孔質部 17が 金属及びセラミックスで構成されている場合、両者の特徴を兼ね備えるため、応力の 低減及びクラックの発生を防止することが可能となる。
[0038] 図 3に示すように、多孔質部 17は、金属からなる金属部 21a及びセラミックスからな るセラミック部 21bの少なくとも一方力 隣り合う 2つの圧電体層 11間に空隙 25を介し て複数点在してなるのがより好ましい。多孔質部 17に応力力 Sかかったときにでも、局 所的に応力が集中することを抑制して信頼性をさらに高めることができる。複数の金 属部 21 aは、図 3に示すように、互いに離隔して電気的に絶縁された状態で点在して なるのがよい。
[0039] 図 4に示すように、多孔質部 17は、圧電体層 11を介して、少なくとも絶縁部 23と積 層方向に対向する位置に形成されているだけであっても、本発明の効果を得ることが できる。この形態の場合には、最小限必要な位置にのみ多孔質部 17を形成している のでコスト低減につながるとともに、多孔質部 17を素子中に多数配置しても素子強度 の低下がほとんど生じない。図 5に示すように、積層型圧電素子は、多孔質部 17が、 圧電体層 11を介して絶縁部 23と積層方向両側に対向する位置にそれぞれ形成さ れていてもよい。
[0040] 図 6に示すように、ダミー電極 15は、このダミー電極 15が配置されているのと同じ圧 電体層 11間にある内部電極 13に電気的に接続された外部電極 19とは異なる外部 電極 19に電気的に接続されていてもよい。また、図 7に示すように、ダミー電極 15は 外部電極 19と電気的に絶縁されて!/、てもよ!/、。
[0041] さらに、図 8に示すように、ダミー電極 15は、互いに離隔し電気的に絶縁された状 態で点在する複数のダミー部 15aからなることが好まし!/、。ダミー電極が互いに離隔 し電気的に絶縁されているため、高温、高湿、高電界で長期間駆動させても、マイグ レーシヨンの発生をさらに低減することが可能となる。
[0042] 図 9に示すように、圧電体層 11を介して多孔質部 17と積層方向両側に隣り合う内 部電極 13が同極であってもよい。また、図 10に示すように、圧電体層 11を介して多 孔質部 17の積層方向両側に隣り合う内部電極 13が異極であってもよい。
[0043] 本実施形態の積層型圧電素子では、内部電極 13と絶縁されたダミー電極 15が配 置されており、内部電極 13と積層方向に隣り合う位置に内部電極 13よりも空隙 25の 多い多孔質部 17が配置されている。即ち、ダミー電極 15により焼成時の残留応力が 低減され、且つ積層方向に隣り合う位置に、空隙 25の多い多孔質部 17が配置され ているため、たとえ高温、高湿、高電界で駆動させた場合であっても、多孔質部 17が 効果的に応力を吸収することができる。このため、クラックが発生し雰囲気中の水蒸 気が入り込んだり、マイグレーションが発生したり、内部電極 13間で導通するといつた 問題が生じるのを抑制できる。
[0044] ダミー電極 15は焼成時の収縮を内部電極 13の部分に近づけるため、内部電極 13 と同一金属成分を含むことが望ましい。好ましくは内部電極と同一組成であることが 望ましい。内部電極と同一組成とすることで、焼成時の収縮を内部電極 13の部分と 同一とできるため、残留応力を低減することが可能となる。
[0045] 多孔質部 17の空隙率は、応力低減効果をより高めるために、 10〜95%であるの が望ましい。空隙率がこの範囲内であることにより、多孔質部 17とそれと隣り合う圧電 体層 11との接合強度を高く維持し、且つ効果的に応力を低減しクラックの発生を防 止すること力できる。空隙率は、より好ましくは 40〜90%であるのが望ましい。
[0046] 多孔質部 17の空隙率は、素子の積層方向と平行な断面において、多孔質部 17全 体の面積 (圧電体層 11で挟まれた領域の面積)に対して空隙 25 (ボイド)が占める割 合を百分率で表したものである。 [0047] 多孔質部 17の金属充填率は、 5〜55%であるのが好ましい。金属充填率を 5%以 上とすることで金属部 21aとこれに隣り合う圧電体との接合強度が過度に低下するの を抑制することができる。金属充填率を 55%以下とすることで複数の金属部 21aが適 度に点在した状態となるので応力を吸収する効果を高めることができる。これにより、 クラックの発生を効果的に抑制することができる。金属充填率は 10〜40%であるの 力はり好ましい。金属充填率は、素子の積層方向に平行な断面において、多孔質部 17全体の面積に対して金属部 21aが占める割合を百分率で表したものである。
[0048] 金属部 21aの大きさ(積層方向の長さ)は、 1〜; 100 mであるのが好ましぐ 3〜50 であるのがより好ましい。金属部 21aの大きさが 1 m以上であることで、金属部 21 aの厚みが過度に薄くなりすぎて応力緩和効果が小さくなるのを抑制できる。また 、金属部 21aの大きさが 100 m以下であることで、積層体の伸縮によって生じる応 力を金属部 21aが分散して吸収する効果が小さくなるのを抑制できる。金属部 21aの 形状は、略球形であっても、他の形状であっても構わない。
[0049] 積層体 10の積層方向の両端部には、不活性層 9が配置されている。不活性層 9は 内部電極 13が配されていない複数の圧電体からなる層であるため、電圧を印加して も変位を起こさない。
[0050] 積層体の対向する側面には外部電極 19が接合されており、この外部電極 19には 、積層されている内部電極 13がー層おきに電気的に接続されている。このため、接 続されている各内部電極 13に圧電体層 11を逆圧電効果により変位させるに必要な 電圧を共通に供給することができる。外部電極 19にはリード線が半田等により接続 固定されているため、外部電極 19を外部の電圧供給部に接続することができる。
[0051] 積層体の側面には一対の外部電極 19が形成され、これらの外部電極 19には複数 の内部電極 13が交互に電気的に接続されており、ダミー電極 15は、このダミー電極 15と同じ圧電体層 11間にある内部電極 13が電気的に接続されている外部電極 19 とは異なる外部電極 19に電気的に接続されていることが好ましい。これにより、面内 での応力の不均等が低減され、クラック抑制効果をより高めること力 Sできる。
[0052] 積層体の側面には一対の外部電極 19が形成され、これらの外部電極 19には複数 の内部電極 13が交互に電気的に接続されており、ダミー電極 15は外部電極 19とは 絶縁されていてもよい。これにより、外部電極 19とダミー電極 15が絶縁されているた め、絶縁耐圧に優れており、高電界でも耐久性に優れた積層型圧電素子を提供でき
[0053] さらに、多孔質部 17は、複数存在し、積層体の積層方向に規則的に配置されてい ることが好ましい。応力緩和効果のある多孔質部 17が積層体の積層方向に規則的 に配置されていることで、積層体の積層方向全域にわたってほぼ均一に応力が緩和 される。
[0054] 多孔質部 17は、積層体の積層数(全内部電極 13の数)の 1/2以下の層数毎に配 置されていることが好ましい。多孔質部 17の間隔を積層体の積層数の 1/2以下とす ることにより、積層体の側面の全域にわたって均等に応力が低減できる。これにより、 高温、高湿、高電界、高圧力下で長期間連続駆動させた場合においても、クラック力 S 発生し水蒸気が入り込み、マイグレーションが発生し、内部電極 13間で導通し、積層 体が機能しなくなるといった問題が生じることを防ぐことができる。多孔質部 17は、積 層体の積層数の 1/8以下であることがより好ましい。多孔質部 17は、積層体の積層 方向に規則的に配置されていることが好ましいが、積層方向の両端部は積層体の中 央での規則性から外れても構わなレ、。
[0055] 多孔質部 17に対して圧電体層 11を介して積層方向の両側に隣り合う内部電極 13 は同極であることが好ましい。この場合、多孔質部 17が駆動しないため、応力緩和効 果がより高められる。一方、より大きな変位量を得ることを優先する場合には、多孔質 部 17に対して圧電体層 11を介して積層方向の両側に隣り合う内部電極 13を異極に するのがよい。この場合、多孔質部 17が駆動するため、変位量を増やすことができ、 小型で大きな変位量が得られる積層型圧電素子を提供できる。
[0056] また、圧電体層 11の厚み、つまり内部電極 13間の距離は 40〜250 111が望まし い。これにより、積層型圧電素子は電圧を印加してより大きな変位量を得るために積 層数を増加しても、積層型圧電ァクチユエータの小型化、低背化ができるとともに、圧 電体層 11の絶縁破壊を防止できる。
[0057] 図 11は、本発明の第 2の実施形態にかかる積層型圧電素子を示す斜視図であり、 図 12はその断面図である。図 13は、多孔質部 17の周辺を拡大した拡大断面図であ る。 本実施形態の積層型圧電素子では、図 12, 13に示すように、内部電極 13より も空隙の多い多孔質部 17を備え、この多孔質部 17と内部電極 13の少なくとも一方と の間に、これらの内部電極 13から離隔し電気的に絶縁されたダミー電極 15が配置さ れている。即ち、ダミー電極 15により焼成時の残留応力が低減され、且つ積層方向 に隣り合う位置に、空隙 25の多い多孔質部 17が配置されているため、高温、高湿、 高電界で駆動させても多孔質部 17が応力を吸収することができる。このため、クラッ クが発生し雰囲気中の水蒸気が入り込み、マイグレーションが発生し、内部電極 13 間で導通するといつた問題が生じることを抑制できる。
[0058] また、図 13に示すように、多孔質部 17は、金属からなる金属部 21a及びセラミックス 力もなるセラミック部 21bの少なくとも一方力 隣り合う 2つの圧電体層 11間に空隙 25 を介して複数点在してなる。特に、複数の金属部 21aは、互いに離隔して電気的に 絶縁された状態で点在してなるのが好ましい。
[0059] 積層体においては多孔質部 17を複数備え、これらの多孔質部 17が積層体の積層 方向に規則的に配置されていることが好ましい。図 14に示すように、ダミー電極 15は 、互いに離隔し電気的に絶縁された状態で点在してなるのが好ましい。図 15に示す ように、圧電体層 11を介して多孔質部 17と積層方向両側に隣り合う内部電極 13が 同極であってもよい。また、図 16に示すように、圧電体層 11を介して多孔質部 17の 積層方向両側に隣り合う内部電極 13が異極であってもよい。
[0060] なお、ダミー電極 15を内部電極 13とは同一平面ではなぐ積層方向に並べて配置 してもよい。これにより、内部電極間に挟まれた圧電体層 11に印加される電界強度が
、圧電体粒子の形状や分極能のばらつきに起因して同一面内で面内分布がばらつ いた場合でも、ダミー電極 15があることで同一面内の電界強度が補正される。これに より、同一面内においてほぼ均一な電界強度にすることができるので、素子の応力を 集中させるために配置した多孔質部 17に対し、局部的に電界強度が集中することに よって生じる応力集中を抑止することができる。その結果、多孔質部 17を応力緩和 層として効果的に機能させることで、積層型圧電素子を極めて耐久性の高いものとす ること力 Sでさる。
[0061] 多孔質部 17と積層方向の両側に隣り合う内部電極 13との間には、ダミー電極 15が それぞれ配置されていることが好ましい。ダミー電極 15が多孔質部 17の上下に配置 されるため、さらに焼成時の残留応力が低減され、多孔質部 17への応力も低減する こと力 Sできる。ダミー電極 15は多孔質部 17に対して積層方向の両側に隣り合う内部 電極 13がそれぞれ配置された圧電体層 11間のみでなぐ全ての内部電極 13が配 置された圧電体層 11間に配置してもよ!/、。
[0062] 他の部位及び他の特性については、第 1の実施形態で説明したのと同様であるの で、説明を省略する。
[0063] <製造方法〉
次に、上記した本発明の積層型圧電素子の製造方法について説明する。本発明 の製造方法は、セラミックグリーンシート 11aの表面に、金属成分 Mを含有する内部 電極ペースト層 13aを形成するとともに、絶縁部 23を形成するために内部電極ぺー スト層 13aから離隔させた状態で、金属成分 Mを含有するダミー電極ペースト層を形 成する工程と、他のセラミックグリーンシート 11aの表面のうち、上記離隔部分に対応 する位置に、金属成分 Mを含有する応力緩和ペースト層 17aを形成する工程と、こ れらのセラミックグリーンシート 11aが隣り合うように積層して積層成形体を作製する 工程と、該積層成形体を焼成する工程と、を含む。
[0064] 応力緩和ペースト層 17aは、金属成分総量に対する金属成分 Mの比率 Xが内部 電極ペースト層 13a及び前記ダミー電極ペースト層よりも高い。
[0065] 応力緩和ペースト層 17aは、内部電極ペースト層 13a、ダミー電極ペースト層及び これらの離隔部分に対応する位置に形成されて!/、るのが好まし!/、。
[0066] 圧電材料としては、例えば、チタン酸ジルコン酸鉛(Pb (Zr, Ti) O、以下 PZTと略
3
す)、或いはチタン酸バリウム(BaTiO )を主成分とする圧電セラミックス材料等を用
3
いること力 sできる。この圧電セラミックスは、その圧電特性を示す圧電歪み定数 d
33 高いものが望ましい。
[0067] 以下、本発明の製造方法について、金属成分 Mが銀である場合を例に挙げてさら に詳細に説明する。まず、チタン酸ジルコン酸鉛 (PZT)の粉末と、アクリル系、ブチラ ール系等の有機高分子からなるバインダーと、 DBP (フタル酸ジブチル)、 DOP (フタ ル酸ジォクチル)等の可塑剤とを混合してスラリーを作製する。ついで、このスラリー を周知のドクターブレード法やカレンダーロール法等のテープ成型法を用いて、セラ ミックグリーンシートを作製する。
[0068] ついで、内部電極 13用の金属ペースト及びダミー電極 15用の金属ペーストを作製 する。これらの金属ペーストは、主に銀パラジウムからなる金属粉末にバインダー、可 塑剤等を添加混合して得る。この金属ペーストをセラミックグリーンシート 11aの片面 にスクリーン印刷等によって印刷して内部電極ペースト層 13a及びダミー電極ペース ト層 15aを形成する。
[0069] また、空隙率の高い多孔質部 17用の金属ペーストを作製する。この金属ペーストは 、例えば銀を主成分とする金属粉末にバインダー、可塑剤等を添加混合して得るか 、内部電極 13、ダミー電極 15用の金属ペーストよりも銀の比率を高めた銀パラジウム 力、らなる金属粉末にバインダー、可塑剤等を添加混合して得えてもよい。この金属ぺ 一ストをセラミックグリーンシート 11aの片面にスクリーン印刷等によって印刷する。こ のとき、前記離隔部分に対応する位置に、銀を含有する応力緩和ペースト層 17aを 形成する。応力緩和ペースト層 17aは、内部電極ペースト層 13a、ダミー電極ペース ト層 15a及びこれらの離隔部分に対応する位置に形成されるのが好ましい。
[0070] 次に各金属ペーストが印刷されたグリーンシートを例えば図 2に示す構造となるよう に積層して乾燥することで、焼成前の積層成型体を得る。図 17(a)は、積層成形体の 一部を拡大した断面図である。このとき、セラミック層厚みをさらに必要とする場合は、 金属ペーストを印刷していないグリーンシートのみを厚みの必要な箇所に部分的に 積層すればよい。また積層成型体は、裁断して所望の形態にすることができる。金属 ペースト層の厚みは、スクリーン印刷であれば 1〜40 m程度にすることができる。
[0071] ついで、積層成形体を所定の温度で脱バインダー処理した後、 800〜; 1000°Cで 焼成する。すると、銀濃度の高い金属層から合金層へ銀が拡散して(図 17(b)参照)、 空隙率の高い多孔質部 17が形成され、比較的緻密な内部電極 13が形成される(図 17(c))。
[0072] 次に、焼結体を所望の寸法に加工した上で外部電極 19を形成する。外部電極 19 は、主に銀からなる金属粉末にバインダー、可塑剤、ガラス粉末等を添加混合して金 属ペーストを作製し、この金属ペーストを上記焼結体の側面にスクリーン印刷等によ つて印刷して 600〜800°Cで焼成することにより形成できる。なお、銀濃度の高い金 属ペースト層から銀濃度の低!/、金属ペースト層へ銀が拡散して空隙率の高レ、多孔質 部 17が形成される。
[0073] 本発明の積層型圧電素子の他の製造方法は、次の通りである。多孔質部 17を形 成する銀 パラジウム等の金属成分及び必要に応じて圧電セラミックスの仮焼粉末 等を添加混合したペースト中にアクリルビーズ等の乾燥時には接着固定され、焼成 時には揮発する有機物を含有させておくことにより、任意の空隙率をもった多孔質部 17を形成すること力 Sできる。即ち、前記ペーストに添加するアクリルビーズの量を制 御することにより、該多孔質部 17の空隙率を制御することができる。つまり、アクリルビ ーズが少な!/、場合には、空隙率は小さくなり、逆にアクリルビーズが多!/、場合には、 空隙率は大きくなる。その他は、上記した方法と同様であるので説明を省略する。
[0074] なお、このとき、不活性層をなすグリーンシート中に、銀 パラジウム等の内部電極 13を構成する金属粉末を添加したり、不活性層 9をなすグリーンシートを積層する際 に、銀—パラジウム等の内部電極 13を構成する金属粉末および無機化合物とバイン ダ一と可塑剤からなるスラリーをグリーンシート上に印刷することで、不活性層 9とその 他の部分の焼結時の収縮挙動ならびに収縮率を一致させることができるので、緻密 な積層体を形成することができる。
[0075] 積層体 10は、上記製法によって作製されるものに限定されるものではなぐ複数の 圧電体と複数の内部電極 13とを交互に積層してなる積層体を作製できれば、どのよ うな製法によって形成されても良い。
[0076] 次に、得られた積層焼成体を周知の平面研削盤などを用いて、所定の形状に研削 を行う。
[0077] その後、銀を主成分とする導電剤粉末とガラス粉末にバインダー、可塑剤及び溶剤 を加えて作製した銀ガラス導電性ペーストを、外部電極 19を形成する積層体側面に スクリーン印刷等によって、印刷する。その後、所定の温度で乾燥、焼き付けを行うこ とにより、外部電極 19を形成することができる。
[0078] さらに、外部電極 19の外面に、金属のメッシュ若しくはメッシュ状の金属板が埋設さ れた導電性接着剤からなる導電性補助部材を形成してもよい。この場合には、外部 電極 19の外面に導電性補助部材を設けることによりァクチユエ一タに大電流を投入 し、高速で駆動させる場合においても、大電流を導電性補助部材に流すことができ、 外部電極 19に流れる電流を低減できるという理由から、外部電極 19が局所発熱を 起こし断線することを防ぐこと力 Sでき、耐久性を大幅に向上させることができる。
[0079] さらには、導電性接着剤中に金属のメッシュ若しくはメッシュ状の金属板を埋設して いるため、前記導電性接着剤に亀裂が生じるのを防ぐことができる。
[0080] 金属のメッシュとは金属線を編み込んだものであり、メッシュ状の金属板とは、金属 板に孔を形成してメッシュ状にしたものを!/、う。
[0081] その後、外部電極 19にリード線を半田等で接続した後、外部電極 19を含む積層体 側面にシリコーンゴム等からなる外装樹脂をデイツビング等の手法を用いてコーティ ングすることにより本発明の積層型圧電素子が完成する。
[0082] <噴射装置〉
図 18は、本発明の噴射装置を示すもので、収納容器 31の一端には噴射孔 33が設 けられ、また収納容器 31内には、噴射孔 33を開閉することができるニードルバルブ 3
5が収容されている。
[0083] 噴射孔 33には燃料通路 37が連通可能に設けられ、この燃料通路 37は外部の燃 料供給源に連結され、燃料通路 37に常時一定の高圧で燃料が供給されている。従 つて、ニードルバルブ 35が噴射孔 33を開放すると、燃料通路 37に供給されていた 燃料が一定の高圧で内燃機関の図示しない燃料室内に噴出されるように形成されて いる。
[0084] また、ニードルバルブ 35の上端部は直径が大きくなつており、収納容器 31に形成 されたシリンダ 39と摺動可能なピストン 41となっている。そして、収納容器 31内には
、上記した圧電ァクチユエータ 43が収納されている。
[0085] このような噴射装置では、圧電ァクチユエータ 43が電圧を印加されて伸長すると、 ピストン 41が押圧され、ニードルバルブ 35が噴射孔 33を閉塞し、燃料の供給が停止 される。
[0086] また、電圧の印加が停止されると圧電ァクチユエータ 43が収縮し、皿バネ 45がビス トン 41を押し返し、噴射孔 33が燃料通路 37と連通して燃料の噴射が行われるように なっている。
[0087] <燃料噴射システム〉
図 19は、本発明の一実施形態に力、かる燃料噴射システムを示す概略図である。図 18に示すように、本実施形態に力、かる燃料噴射システム 51は、高圧燃料を蓄えるコ モンレール 52と、このコモンレール 52に蓄えられた燃料を噴射する複数の上記噴射 装置 53と、コモンレール 52に高圧の燃料を供給する圧力ポンプ 54と、噴射装置 53 に駆動信号を与える噴射制御ユニット 55と、を備えて!/、る。
[0088] 噴射制御ユニット 55は、エンジンの燃焼室内の状況をセンサ等で感知しながら燃 料噴射の量やタイミングを制御するものである。圧力ポンプ 54は、燃料タンク 56から 燃料を 1000〜2000気圧程度、好まし <は 1500〜; 1700気圧程度にしてコモンレー ル 52に送り込む役割を果たす。コモンレール 54では、圧力ポンプ 54から送られてき た燃料を蓄え、適宜噴射装置 53に送り込む。噴射装置 53は、上述したように噴射孔 33から少量の燃料を燃焼室内に霧状に噴射する。
実施例 1
[0089] 本発明の積層型圧電素子からなる圧電ァクチユエータを以下のようにして作製した 。まず、平均粒径が 0. 4 111のチタン酸ジルコン酸鉛(? 2 0 -PbTiO )を主成分
3 3 とする圧電セラミックの仮焼粉末、バインダー、及び可塑剤を混合したスラリーを作製 し、ドクターブレード法で厚み 120 mの圧電体 11になるセラミックグリーンシートを 作製した。
[0090] このセラミックグリーンシートの片面に、銀一パラジウム合金(銀 95質量%—パラジ ゥム 5重量%)にバインダーを加えた導電性ペーストを内部電極及び、必要に応じて ダミー電極となる部分に、スクリーン印刷法により形成したシートを、合計 300枚積層 し、空隙の多い多孔質部の部分には、銀—パラジウム合金 (銀 99質量%—パラジゥ ム 1重量%)の導電性ペーストをスクリーン印刷のパターンを変更して印刷を行い、焼 成した。焼成は、 800°Cで保持した後に、 950°Cで焼結させた後、さらに 900°Cで 1 時間加熱保持してから冷却した。
[0091] このとき、空隙の多い多孔質部の配置、及びダミー電極の外部電極への接続、多 孔質部の上下の内部電極の極性は表 1の示すように配置した。 [0092] 次に、平均粒径 2 ,1 mのフレーク状の銀粉末と、残部が平均粒径 2 μ mのケィ素を 主成分とする軟化点力 40°Cの非晶質のガラス粉末との混合物に、バインダーを銀 粉末とガラス粉末の合計質量 100質量部に対して 8質量部添加し、十分に混合して 銀ガラス導電性ペーストを作製し、このようにして作製した銀ガラス導電性ペーストを 得た。
[0093] そして、前記銀ガラスペーストを積層体 13の外部電極 15面に印刷して乾燥した後
、 700°Cで 30分焼き付けを行い、外部電極 15を形成した。
[0094] その後、外部電極 15にリード線を接続し、正極及び負極の外部電極 15にリード線 を介して 3kV/mmの直流電界を 15分間印加して分極処理を行い、図 1に示すよう な形態の積層型圧電素子を用いた圧電ァクチユエータを作製した。
[0095] 得られた積層型圧電素子に 170Vの直流電圧を印加したところ、すべての圧電ァク チユエータにおいて、積層方向に変位量が得られた。
[0096] さらに、この圧電ァクチユエータを室温で 0〜 + 170Vの交流電圧を 150Hzの周波 数で印加して、 1 X 109回まで連続駆動した試験を行った。また、一部は連続駆動の 試験後に断面を研磨し、金属顕微鏡で内部を確認した。これとは別に、同一条件に て作製した圧電ァクチユエータに電圧を印加していき、絶縁耐圧を測定した。結果は 表 1に示すとおりである。
[表 1]
Figure imgf000020_0001
[0097] 表 1から、比較例である試料番号 1は、活性部内に応力を緩和できる多孔質部を配 置していないことから、 I X 109サイクル後に変位量の大幅な低下が見られた。また、 外部電極近傍にデラミネーシヨン (層間剥離)が見つかった。
[0098] これに対し、本発明の実施例である試料番号 2〜7は、連続駆動試験後も、初期の 変位量から極端な劣化を見せることは無ぐ積層型圧電素子として必要な有効変位 量を有しており、また、デラミネーシヨンはなぐ誤作動が生じない耐久性のある積層 型圧電素子を作製することが出来た。
[0099] 中でも、試料番号の 4、 6及び 7は、優れた絶縁耐圧を有する積層型圧電素子を作 製することが出来た。特に試料番号 6は、有効な変位量を初期から確保しながら、連 続駆動後も素子性能を変化させることがなぐまた、絶縁耐圧も向上され、極めて耐 久性に優れた積層型圧電素子とすることが出来た。
実施例 2
[0100] これとは別に、ダミー電極を内部電極とは別のセラミックグリーンシートに、内部電極 と同一の導電性ペーストを塗布したものを所定の枚数印刷し、ダミー電極の配置、空 隙の多い多孔質部の配置、及び多孔質部の上下の内部電極の極性は表 2の示すよ うに配置した以外は、実施例 1と同様に圧電ァクチユエータを作製した。
[0101] 得られた積層型圧電素子に 170Vの直流電圧を印加したところ、すべての圧電ァク チユエータにおいて、積層方向に変位量が得られた。
[0102] さらに、この圧電ァクチユエータを室温で 0〜 + 170Vの交流電圧を 150Hzの周波 数で印加して、 1 X 109回まで連続駆動した試験を行った。また、一部は連続駆動の 試験後に断面を研磨し、金属顕微鏡で内部を確認した。結果は表 2に示すとおりで ある。
[表 2]
Figure imgf000022_0001
[0103] 表 2から、比較例である試料番号 11は、活性部内に応力を緩和できる多孔質部を 配置していないことから、 1 X 109サイクル後に変位量の大幅な低下が見られたことが わかる。また、また、外部電極近傍にデラミネーシヨンが見つかった。
[0104] これに対し、本発明の実施例である試料番号 12〜; 15は、連続駆動試験後も、初期 の変位量から極端な劣化を見せることは無ぐ積層型圧電素子として必要な有効変 位量を有しており、また、内部電極間にデラミネーシヨンはなぐ誤作動が生じない耐 久性のある積層型圧電素子を作製することが出来た。
図面の簡単な説明
[0105] [図 1]本発明の第 1の実施形態にかかる積層型圧電素子を示す斜視図である。
[図 2]図 1に示す積層型圧電素子の A— A線断面図である。
[図 3]図 1に示す積層型圧電素子の一部分を拡大した断面図である。
[図 4]第 1の実施形態の他の例を示す断面図である(積層方向と平行な平面で切断し たときの断面図)。
[図 5]第 1の実施形態のさらに他の例を示す断面図である(積層方向と平行な平面で 切断したときの断面図)。
[図 6]第 1の実施形態の積層型圧電素子を、積層方向と垂直な平面で切断したときの 断面図である。
[図 7]第 1の実施形態の積層型圧電素子を、積層方向と垂直な平面で切断したときの 断面図である。
[図 8]第 1の実施形態のさらに他の例を示す断面図である(積層方向と平行な平面で 切断したときの断面図)。
[図 9]第 1の実施形態のさらに他の例を示す断面図である(積層方向と平行な平面で 切断したときの断面図)。
[図 10]第 1の実施形態のさらに他の例を示す断面図である(積層方向と平行な平面 で切断したときの断面図)。
[図 11]本発明の第 2の実施形態にかかる積層型圧電素子を示す斜視図である。
[図 12]図 11に示す積層型圧電素子の A— A線断面図である。
[図 13]図 11に示す積層型圧電素子の一部分を拡大した断面図である。 [図 14]第 11の実施形態のさらに他の例を示す断面図である(積層方向と平行な平面 で切断したときの断面図)。
[図 15]第 2の実施形態のさらに他の例を示す断面図である(積層方向と平行な平面 で切断したときの断面図)。
[図 16]第 2の実施形態のさらに他の例を示す断面図である(積層方向と平行な平面 で切断したときの断面図)。
[図 17](a)〜(c)は本発明の積層型圧電素子の製造方法を示す説明図である。
[図 18]本発明の一実施形態にかかる噴射装置を示す断面図である。
[図 19]本発明の一実施形態に力、かる燃料噴射コモンレールシステムを示す概略図で ある。
符号の説明
11 圧電体層
11 a セラミックグリーンシート
13 内部電極
13a 内部電極ペースト層
15 ダミー電極
15a ダミー電極ペースト層
17 多孔質部
17a 応力緩和ペースト層
19 外部電極
21 金属部
23 絶縁部
25 空隙

Claims

請求の範囲
[1] 複数の圧電体層が内部電極を介して積層された積層体を備え、積層方向に隣り合 う圧電体層間に、前記内部電極と、この内部電極から離隔し電気的に絶縁されたダミ 一電極と、このダミー電極と当該内部電極の間の絶縁部と、が並設された積層型圧 電素子において、
前記圧電体層を介して前記絶縁部と積層方向に対向する位置に、前記内部電極 よりも空隙の多レ、多孔質部が形成されてレ、ることを特徴とする積層型圧電素子。
[2] 前記多孔質部は、前記圧電体層を介して、前記内部電極、前記ダミー電極及び前 記絶縁部と積層方向に対向する位置に形成されている請求項 1に記載の積層型圧 電素子。
[3] 前記多孔質部は、前記圧電体層を介して前記絶縁部と積層方向両側に対向する 位置にそれぞれ形成されている請求項 1又は 2に記載の積層型圧電素子。
[4] 前記積層体はその側面に一対の外部電極を備え、前記ダミー電極は、該ダミー電 極と同じ圧電体層間にある内部電極が電気的に接続された外部電極とは異なる外 部電極に電気的に接続されている請求項;!〜 3のいずれかに記載の積層型圧電素 子。
[5] 前記積層体はその側面に一対の外部電極を備え、前記ダミー電極は前記外部電 極と電気的に絶縁されている請求項 1〜3のいずれかに記載の積層型圧電素子。
[6] 複数の圧電体層が内部電極を介して積層された積層体を備えた積層型圧電素子 において、
前記積層体は、積層体の積層方向に隣り合う内部電極間に、これらの内部電極より も空隙の多い多孔質部を備え、この多孔質部と前記隣り合う内部電極の少なくとも一 方との間に、これらの内部電極から離隔し電気的に絶縁されたダミー電極を備えてい ることを特徴とする積層型圧電素子。
[7] 前記ダミー電極は、互いに離隔し電気的に絶縁された状態で存在する複数のダミ 一部からなる請求項 1〜6のいずれかに記載の積層型圧電素子。
[8] 前記多孔質部は、金属からなる金属部及びセラミックスからなるセラミック部の少な くとも一方が、隣り合う 2つの圧電体層間に空隙を介して複数点在してなる請求項 1 〜7のいずれかに記載の積層型圧電素子。
[9] 複数の前記金属部は、互いに離隔して電気的に絶縁された状態で点在している請 求項 8に記載の積層型圧電素子。
[10] 前記積層体は前記多孔質部を複数備え、これらの多孔質部が前記積層体の積層 方向に規則的に配置されている請求項 1〜9のいずれかに記載の積層型圧電素子。
[11] 前記圧電体層を介して前記多孔質部と積層方向両側に隣り合う内部電極が同極 である請求項;!〜 10のいずれかに記載の積層型圧電素子。
[12] 前記圧電体層を介して前記多孔質部の積層方向両側に隣り合う内部電極が異極 である請求項;!〜 10のいずれかに記載の積層型圧電素子。
[13] 噴出孔を有する容器と、請求項;!〜 12のいずれかに記載の積層型圧電素子とを備 え、前記容器内に充填された液体を前記積層型圧電素子の駆動により前記噴射孔 力 吐出させるように構成されたことを特徴とする噴射装置。
[14] 高圧燃料を蓄えるコモンレールと、
このコモンレールに蓄えられた燃料を噴射する請求項 13に記載の噴射装置と、 前記コモンレールに高圧の燃料を供給する圧力ポンプと、
前記噴射装置に駆動信号を与える噴射制御ユニットと、
を備えた燃料噴射システム。
[15] 複数の圧電体層が内部電極を介して積層された積層体を備え、隣り合う 2つの圧 電体層間に、前記内部電極と、該内部電極から離隔し電気的に絶縁されたダミー電 極と、該ダミー電極と当該内部電極の間の絶縁部と、が設けられた積層型圧電素子 を製造するための製造方法であって、
セラミックグリーンシートの表面に、金属成分 Mを含有する内部電極ペースト層を 形成するとともに、前記絶縁部を形成するために前記内部電極ペースト層から離隔さ せた状態で、金属成分 Mを含有するダミー電極ペースト層を形成する工程と、他の セラミックグリーンシートの表面のうち、前記離隔部分に対応する位置に、金属成分
Mを含有する応力緩和ペースト層を形成する工程と、これらのセラミックグリーンシー トが隣り合うように積層された部分を含む積層成形体を作製する工程と、該積層成形 体を焼成する工程と、を含み、 前記応力緩和ペースト層は、ペースト中における金属成分総量に対する金属成分 Mの比率 Xが前記内部電極ペースト層及び前記ダミー電極ペースト層よりも高!/、こと を特徴とする積層型圧電素子の製造方法。
前記応力緩和ペースト層は、前記内部電極ペースト層、前記ダミー電極ペースト層 及びこれらの前記離隔部分に対応する位置に形成されている請求項 15に記載の積 層型圧電素子の製造方法。
PCT/JP2007/068719 2006-09-28 2007-09-26 Laminated piezoelectric element, injection apparatus and fuel injection system using the laminated piezoelectric element, and method for manufacturing laminated piezoelectric element WO2008038683A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800305239A CN101507007B (zh) 2006-09-28 2007-09-26 层叠型压电元件、使用它的喷射装置和燃料喷射系统、层叠型压电元件的制造方法
JP2008536404A JP4933554B2 (ja) 2006-09-28 2007-09-26 積層型圧電素子、これを用いた噴射装置及び燃料噴射システム、並びに積層型圧電素子の製造方法
US12/443,450 US8104693B2 (en) 2006-09-28 2007-09-26 Multilayer piezoelectric element, injection device and fuel injection system using the same, and method of manufacturing multilayer piezoelectric element
EP20070828465 EP2073283B1 (en) 2006-09-28 2007-09-26 Laminated piezoelectric element, injection apparatus and fuel injection system using the laminated piezoelectric element, and method for manufacturing laminated piezoelectric element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-264012 2006-09-28
JP2006264012 2006-09-28
JP2006-338637 2006-12-15
JP2006338637 2006-12-15

Publications (1)

Publication Number Publication Date
WO2008038683A1 true WO2008038683A1 (en) 2008-04-03

Family

ID=39230119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068719 WO2008038683A1 (en) 2006-09-28 2007-09-26 Laminated piezoelectric element, injection apparatus and fuel injection system using the laminated piezoelectric element, and method for manufacturing laminated piezoelectric element

Country Status (5)

Country Link
US (1) US8104693B2 (ja)
EP (1) EP2073283B1 (ja)
JP (1) JP4933554B2 (ja)
CN (1) CN101507007B (ja)
WO (1) WO2008038683A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007046077A1 (de) * 2007-09-26 2009-04-02 Epcos Ag Piezoelektrisches Vielschichtbauelement
CN101960709A (zh) * 2008-04-22 2011-01-26 奥林巴斯株式会社 层叠压电元件以及超声波马达
WO2011052528A1 (ja) * 2009-10-28 2011-05-05 京セラ株式会社 積層型圧電素子およびそれを用いた噴射装置ならびに燃料噴射システム
CN102132433A (zh) * 2008-08-28 2011-07-20 京瓷株式会社 层叠型压电元件、喷射装置以及燃料喷射系统
JP2014187060A (ja) * 2013-03-21 2014-10-02 Taiheiyo Cement Corp 圧電素子

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930962B1 (en) * 2005-08-29 2013-03-20 Kyocera Corporation Layered piezoelectric element and injection device using the same
JP5050164B2 (ja) * 2006-10-20 2012-10-17 京セラ株式会社 圧電アクチュエータユニット及びその製造方法
DE602006017603D1 (de) * 2006-10-31 2010-11-25 Kyocera Corp Mehrschichtiges piezoelektrisches element und einspritzvorrichtung damit
WO2011024948A1 (ja) * 2009-08-27 2011-03-03 京セラ株式会社 積層型圧電素子およびこれを用いた噴射装置ならびに燃料噴射システム
JP2013101020A (ja) * 2011-11-08 2013-05-23 Seiko Epson Corp センサー素子、力検出装置およびロボット
JP5780261B2 (ja) * 2013-04-24 2015-09-16 カシオ計算機株式会社 アクチュエータ
US9525119B2 (en) 2013-12-11 2016-12-20 Fujifilm Dimatix, Inc. Flexible micromachined transducer device and method for fabricating same
JP6540796B2 (ja) * 2015-03-31 2019-07-10 株式会社村田製作所 圧電素子およびこれを備える超音波センサ
CN105845820B (zh) * 2016-04-13 2018-08-17 盐城工学院 一种压电陶瓷极化装置
JP2020167225A (ja) * 2019-03-28 2020-10-08 Tdk株式会社 積層型圧電素子
CN114874029B (zh) * 2022-07-12 2022-09-20 苏州隐冠半导体技术有限公司 用于制备多孔层的陶瓷浆料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242023A (ja) 1995-03-03 1996-09-17 Hitachi Metals Ltd 圧電素子及びそれを用いた圧電アクチュエータ
JPH08274381A (ja) * 1995-03-31 1996-10-18 Chichibu Onoda Cement Corp 積層型圧電アクチュエータ及びその製造方法
JP2001102646A (ja) 1999-09-28 2001-04-13 Tokin Ceramics Corp 積層型圧電セラミックス
JP2005108989A (ja) * 2003-09-29 2005-04-21 Murata Mfg Co Ltd 積層型圧電素子とその製造方法
JP2005223013A (ja) * 2004-02-03 2005-08-18 Denso Corp 積層型圧電素子及びその製造方法
WO2006087871A1 (ja) * 2005-02-15 2006-08-24 Murata Manufacturing Co., Ltd. 積層型圧電素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW432731B (en) * 1998-12-01 2001-05-01 Murata Manufacturing Co Multilayer piezoelectric part
EP1534525B1 (en) * 2002-08-06 2009-04-01 Ricoh Company, Ltd. Electrostatic actuator formed by a semiconductor manufacturing process
JP4771649B2 (ja) * 2003-07-28 2011-09-14 京セラ株式会社 積層型電子部品の製造方法
JP2005340387A (ja) * 2004-05-25 2005-12-08 Tdk Corp 積層型圧電素子及び燃料噴射装置
DE102004050803A1 (de) * 2004-10-19 2006-04-20 Robert Bosch Gmbh Piezoaktor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242023A (ja) 1995-03-03 1996-09-17 Hitachi Metals Ltd 圧電素子及びそれを用いた圧電アクチュエータ
JPH08274381A (ja) * 1995-03-31 1996-10-18 Chichibu Onoda Cement Corp 積層型圧電アクチュエータ及びその製造方法
JP2001102646A (ja) 1999-09-28 2001-04-13 Tokin Ceramics Corp 積層型圧電セラミックス
JP2005108989A (ja) * 2003-09-29 2005-04-21 Murata Mfg Co Ltd 積層型圧電素子とその製造方法
JP2005223013A (ja) * 2004-02-03 2005-08-18 Denso Corp 積層型圧電素子及びその製造方法
WO2006087871A1 (ja) * 2005-02-15 2006-08-24 Murata Manufacturing Co., Ltd. 積層型圧電素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2073283A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007046077A1 (de) * 2007-09-26 2009-04-02 Epcos Ag Piezoelektrisches Vielschichtbauelement
JP2010541232A (ja) * 2007-09-26 2010-12-24 エプコス アクチエンゲゼルシャフト 圧電多層構成要素
US8080919B2 (en) 2007-09-26 2011-12-20 Epcos Ag Piezoelectric multilayer component
CN101960709A (zh) * 2008-04-22 2011-01-26 奥林巴斯株式会社 层叠压电元件以及超声波马达
CN102132433A (zh) * 2008-08-28 2011-07-20 京瓷株式会社 层叠型压电元件、喷射装置以及燃料喷射系统
US8757130B2 (en) 2008-08-28 2014-06-24 Kyocera Corporation Multi-layer piezoelectric element, injection device, and fuel injection system
WO2011052528A1 (ja) * 2009-10-28 2011-05-05 京セラ株式会社 積層型圧電素子およびそれを用いた噴射装置ならびに燃料噴射システム
JP5518090B2 (ja) * 2009-10-28 2014-06-11 京セラ株式会社 積層型圧電素子およびそれを用いた噴射装置ならびに燃料噴射システム
US8857413B2 (en) 2009-10-28 2014-10-14 Kyocera Corporation Multi-layer piezoelectric element, and injection device and fuel injection system using the same
JP2014187060A (ja) * 2013-03-21 2014-10-02 Taiheiyo Cement Corp 圧電素子

Also Published As

Publication number Publication date
US20100072306A1 (en) 2010-03-25
CN101507007A (zh) 2009-08-12
US8104693B2 (en) 2012-01-31
JP4933554B2 (ja) 2012-05-16
EP2073283A4 (en) 2013-07-10
EP2073283B1 (en) 2014-12-17
CN101507007B (zh) 2010-11-17
EP2073283A1 (en) 2009-06-24
JPWO2008038683A1 (ja) 2010-01-28

Similar Documents

Publication Publication Date Title
JP4933554B2 (ja) 積層型圧電素子、これを用いた噴射装置及び燃料噴射システム、並びに積層型圧電素子の製造方法
JP5084744B2 (ja) 積層型圧電素子、これを備えた噴射装置及び燃料噴射システム
WO2010024277A1 (ja) 積層型圧電素子および噴射装置ならびに燃料噴射システム
WO2005093866A1 (ja) 積層型圧電素子及びその製造方法
WO2007037377A1 (ja) 積層型圧電素子およびこれを用いた噴射装置
WO2010101056A1 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
WO2010024199A1 (ja) 積層型圧電素子およびこれを用いた噴射装置ならびに燃料噴射システム
JP5084745B2 (ja) 積層型圧電素子、これを備えた噴射装置及び燃料噴射システム
JP4817610B2 (ja) 積層型圧電素子およびその製造方法ならびにこれを用いた噴射装置
JP2012216875A (ja) 積層型圧電素子、噴射装置、燃料噴射システム、及び積層型圧電素子の製造方法
JP5203621B2 (ja) 積層型圧電素子、これを備えた噴射装置及び燃料噴射システム
JP3730893B2 (ja) 積層型圧電素子及びその製法並びに噴射装置
JP5329544B2 (ja) 燃料噴射システム
JP5562382B2 (ja) 積層型圧電素子、これを備えた噴射装置及び燃料噴射システム
JP4925563B2 (ja) 積層型圧電素子およびこれを用いた噴射装置
JP5705509B2 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP4868707B2 (ja) 積層型圧電素子および噴射装置
WO2012011302A1 (ja) 積層型圧電素子およびこれを備えた噴射装置ならびに燃料噴射システム
JP5319196B2 (ja) 積層型圧電素子、これを用いた噴射装置及び燃料噴射システム
JP4873837B2 (ja) 積層型圧電素子および噴射装置
JP2011109119A (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2005150369A (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2005217180A (ja) 積層型圧電素子およびこれを用いた噴射装置
JP2005150548A (ja) 積層型圧電素子およびこれを用いた噴射装置
WO2010001800A1 (ja) 積層型圧電素子、これを備えた噴射装置および燃料噴射システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780030523.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828465

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008536404

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12443450

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007828465

Country of ref document: EP