WO2008029960A1 - PARTICULES D'ALLIAGE DE Zn POUR PEINTURE HAUTEMENT ANTICORROSIVE ET ANTIROUILLE, PROCÉDÉ DE PRODUCTION DES PARTICULES, PEINTURE HAUTEMENT ANTICORROSIVE ET ANTIROUILLE CONTENANT LES PARTICULES, MATÉRIAU EN ACIER HAUTEMENT RÉSISTANT A LA CORROSION REVÊTU AVEC LA PEINTURE, ET STRUCTURES E - Google Patents

PARTICULES D'ALLIAGE DE Zn POUR PEINTURE HAUTEMENT ANTICORROSIVE ET ANTIROUILLE, PROCÉDÉ DE PRODUCTION DES PARTICULES, PEINTURE HAUTEMENT ANTICORROSIVE ET ANTIROUILLE CONTENANT LES PARTICULES, MATÉRIAU EN ACIER HAUTEMENT RÉSISTANT A LA CORROSION REVÊTU AVEC LA PEINTURE, ET STRUCTURES E Download PDF

Info

Publication number
WO2008029960A1
WO2008029960A1 PCT/JP2007/067901 JP2007067901W WO2008029960A1 WO 2008029960 A1 WO2008029960 A1 WO 2008029960A1 JP 2007067901 W JP2007067901 W JP 2007067901W WO 2008029960 A1 WO2008029960 A1 WO 2008029960A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
corrosion resistance
alloy particles
paint
alloy
Prior art date
Application number
PCT/JP2007/067901
Other languages
English (en)
French (fr)
Inventor
Kenji Katoh
Makoto Nagasawa
Minoru Ito
Michio Kaneko
Shiro Imai
Masatoshi Kominami
Toshiro Terakawa
Takashi Kumai
Original Assignee
Nippon Steel Corporation
Yoshikawa Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation, Yoshikawa Kogyo Co., Ltd. filed Critical Nippon Steel Corporation
Priority to EP07807308.7A priority Critical patent/EP2060345B1/en
Priority to CN2007800331360A priority patent/CN101511510B/zh
Priority to US12/310,574 priority patent/US8105699B2/en
Priority to KR1020097004443A priority patent/KR101109166B1/ko
Publication of WO2008029960A1 publication Critical patent/WO2008029960A1/ja
Priority to NO20090790A priority patent/NO341767B1/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • C09D5/106Anti-corrosive paints containing metal dust containing Zn
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • Zn alloy particles for high corrosion resistance antifouling paint method for producing the particles, high corrosion resistance antifouling paint containing the particles, high corrosion resistance steel material coated with the paint, and steel structure having the steel material
  • the present invention relates to Zn alloy particles for high corrosion resistance antifouling paints, which have a physically crushed surface and / or cracks, and can impart extremely excellent high corrosion resistance and antifouling properties.
  • the present invention relates to a method for producing alloy particles, a high-corrosion-resistant antifouling paint containing the Zn alloy particles, a high-corrosion-resistant steel material coated with the paint, and a steel structure having the steel material.
  • zinc paint which consists of zinc powder containing inevitable impurities as a pigment and organic and / or inorganic materials as a vehicle (liquid binder component), is often used.
  • Zinclich paint is mainly used for undercoating of heavy duty anticorrosion paint.
  • the feature of the anticorrosion mechanism is sacrificial anticorrosive action of zinc powder contained in the coating film.
  • the anticorrosive ability of the zinc rich paint coating strongly depends on the degree of sacrificial anticorrosive action of the zinc powder. Therefore, depending on the usage environment, the disappearance rate of zinc increases and the protective action against steel materials does not last long. There is a case.
  • JP-A-5-91 198 1 42 contains a Zn-Mg alloy powder and Mn powder in addition to zinc powder.
  • the proposed organic zinc rich pain candy has been proposed.
  • Japanese Patent Laid-Open No. 1 3 1 1 1 7 8 discloses the long-life anticorrosion performance of Zn— (5 to 15%) Mg alloy powder in organic paints. 3 the 2 discloses, metal structure, long-life corrosion performance of organic coatings containing a Z n-M g alloy powder consisting of Z n and M g Z n 2 is disclosed.
  • Japanese Patent Application Laid-Open No. 11-3 4 3 4 2 2 proposes an organic anticorrosion paint antifouling pigment containing Zn alloy flaky particles containing A 1 and Mg.
  • Japanese Patent Application Laid-Open No. 2 0 0 1-1 6 4 1 9 4 discloses that Zn—A 1 —Mg alloy powder, and 50% or more of the alloy powder is A 1 ZZ n / Z n 2 M g eutectic structure by grinding Ingo' bets are organic-based zinc Ritsuchi paints have been proposed, JP-a-2 0 0 5 - a 3 1 4 5 0 1 JP, Z n-a 1 alloy, In addition, it contains Mg or S i, and is spherical or elliptical, and the ratio of the maximum diameter to the minimum diameter (maximum diameter / minimum diameter) is Organic paints have been proposed for improving the corrosion resistance of cut parts of high corrosion resistance zinc-based alloy-plated steel materials containing powders of 1 to 1.5.
  • the above proposal is intended to improve the corrosion resistance by combining the anticorrosion performance of organic paints with new alloy powders.
  • Japanese Patent Application Laid-Open No. 6 1-2 1 3 2 70 discloses that zinc powder and Mg or Mg are used for the purpose of suppressing coating deterioration during welding and fusing. Coating compositions containing a mixture of alloys have been proposed.
  • the main component is three types of a Zn phase, a Zn—Mg alloy phase, and a solid solution phase of Zn and Mg, and These have been proposed a corrosion-resistant paint mixed in an inorganic paint as powder particles, and a corrosion-resistant steel material coated with the paint.
  • Japanese Laid-Open Patent Publication No. 2 0 00-0 0 3 0 9 is attracting attention as a means for drastically improving corrosion resistance, but according to the study by the present inventors, the case where the corrosion resistance is improved and the corrosion resistance is improved. In reality, there are cases where improvement is not clear, but there is a problem with the stability of the effect of improving corrosion resistance.
  • the present invention can impart unprecedented long-term excellent corrosion resistance and antifungal properties to steel materials, etc., and has high paint resistance and economic efficiency.
  • a method for producing alloy particles, a highly corrosion-resistant antifouling paint containing the Zn alloy particles, and a high-corrosion-resistant iron and steel material and a steel structure whose maintenance cycle is significantly extended as a result of applying the paint For the purpose.
  • the inventors of the present invention contain Mg in an amount of not less than 0.01% by mass and not more than 30% by mass, with the balance containing inevitable impurities, and a physical fracture surface and / or
  • Mg in an amount of not less than 0.01% by mass and not more than 30% by mass, with the balance containing inevitable impurities, and a physical fracture surface and / or
  • non-flaked particles having cracks exhibit extremely excellent corrosion resistance, antifungal properties and paintability. This knowledge is the knowledge forming the basis of the present invention.
  • the present inventors have examined in detail the possibility of further improving the corrosion resistance and antifouling properties of the particles having physical fracture surfaces and / or cracks, and as a result, the physical fracture surfaces and Z or cracks.
  • the cracked Zn alloy particles contain 1 type or 2 types of A 1: 0.0 1 to 30% and S i: 0.0 1 to 3% by mass%, a better protection
  • Mg Zn 2 , Mg 2 Z n, Mg 2 Z n 3 , Mg Z n, or Mg 7 Z n 3 We found that when one or more of them were placed, better corrosion resistance was developed.
  • the present inventors also examined the particle shape after crushing. As a result, when the number of non-spherical polyhedrons after crushing is 2 or more, the above-mentioned antifouling performance, that is, sacrificial anticorrosive effect We found that self-dissolvability could be further reduced without compromising the process.
  • the present inventors also examined the size of the crack, and as a result, when the length is 0, 0 1 m or more, or the depth is 0. Ol ⁇ m or more, the anticorrosive property Found a marked improvement.
  • the present inventors have also intensively studied a means for obtaining particles having a crushing surface and / or a crack.
  • the primary particles collide with each other, or the particles collide with the solid, rather than using conventional methods such as a pole mill and a bead mill, which are used as a general crushing method.
  • a pole mill and a bead mill which are used as a general crushing method.
  • the above-mentioned fracture surface and Z alloy particles with Z or cracks provide excellent corrosion resistance and antifouling properties when used as they are as pigments for paints. It has been found that when used in combination with commonly used Zn particle pigments, it provides significantly better corrosion resistance and mildew resistance than pigments using Zn particles alone.
  • the paint of the present invention When the paint of the present invention is mixed with an organic paint as a pigment, it has excellent anti-corrosion and anti-corrosion properties that have not been available in the past even in harsh complex environments such as ultraviolet rays, moisture, and oxygen. I found that it brings inertia.
  • the present invention is based on the above knowledge, and the gist thereof is as follows.
  • Mg 0.01 to 30%, consisting of balance Zn and inevitable impurities, physical crushing surface, and Z or length of 0.01 m or more Or a crack with a depth of 0.01 / xm or more, with an average particle size of 0.05 to 200 m, and the aspect ratio of the maximum and minimum diameters (maximum diameter (2) Zn alloy particles for high corrosion resistance antifouling paints, characterized in that the average value of the minimum diameter is 1 to 1.5.
  • the Zn alloy particles further contain one or two kinds of A 1: 0.01 to 30% and Si: 0.01 to 3% by mass%.
  • [6] The method for producing a Zn alloy particle for high corrosion resistance antifouling paint according to any one of [1] to [5], wherein the method is described in [1] or [2]
  • the primary particles having an average particle size of 0.05 to 1 0 0 0 collide with each other, or the primary particles collide with a solid to crush the primary particles
  • a method for producing Zn alloy particles for anticorrosive antifouling paints characterized by producing Zn alloy particles having a mechanically fractured surface and / or cracks.
  • the primary particles are dispersed in an organic solvent to form a slurry, and then the slurry collides with each other, or the slurry collides with a solid to crush the primary particles.
  • a high corrosion resistance antifouling paint in which Zn metal particles comprising Zn having an average particle diameter of 0.05 to 50 m and inevitable impurities are dispersed, In the mass%, (mass% in the above Zn alloy particles): (mass% of the above Zn metal particles) is 1 / x, X is not more than 300. 8] The high corrosion resistance antifouling paint described in the above.
  • the Mg content is from 0.001 to less than 30%.
  • [1 2] A steel material in which a high corrosion resistance antifouling paint according to any one of the above [8] to [1 1] is coated on a steel surface, and the coating thickness is 2 to 70
  • a steel structure comprising the high corrosion resistance steel material according to [12] as a part or all of the steel structure.
  • the steel material and the like have excellent corrosion resistance and antifouling properties over a long period of time, It can be applied without sacrificing paintability and economy. As a result, it is possible to provide a highly corrosion-resistant steel material and steel structure that can significantly extend the maintenance cycle.
  • the corrosion-resistant Zn alloy particles of the present invention contain Mg: 0.01 to 30%, consist of the balance Zn and unavoidable impurities, have a physically fractured surface and Z or cracks,
  • the average particle size is 0.05 to 2 0 0 111, and the average value of the aspect ratio of the maximum diameter to the minimum diameter (maximum diameter Z minimum diameter) is 1 to 1.5.
  • Mg needs to be 0.01 to 30%.
  • a remarkable corrosion resistance and anticorrosion improvement effect by a Zn alloy particle having a physically crushed surface and / or a crack and containing 0.1% or more of Mg That is, the fundamental technical idea of the present invention is a remarkable effect of improving corrosion resistance and anticorrosion based on the synergistic effect of the physical crushing surface and Z or crack and Mg of not less than 0.01%.
  • Mg is contained in an amount exceeding 30%, the above improvement effect may be saturated, and the economy and manufacturability may be hindered. Therefore, Mg is set to not less than 0.01% and not more than 30%.
  • the optimum value of Mg varies depending on the average particle size.
  • the average particle size is 0.2 to 30 m, which is considered to be optimal for spray coating
  • the lower limit is set to 0.1%
  • the upper limit is set to 20% to improve the corrosion resistance and corrosion resistance.
  • the Mg content is preferably 0.2 to 15%.
  • the “physical fracture surface” in the present invention means a surface having a shape in which a part of spherical particles is missing. Since the Zn alloy particles have a physically fractured surface, as will be described later, the effect of improving corrosion resistance and anticorrosion can be obtained remarkably.
  • the term “crack” as used in the present invention refers to a crack that exists on the surface of a spherical particle and has a length of 0.01 ⁇ m or more, or a depth from the surface of 0.01 im or more. means. If the length or depth of the crack is less than 0. Ol ⁇ m, a sufficient effect of improving corrosion resistance cannot be obtained, and a length or depth of 0.01 £ m or more is required.
  • the average particle size of the Zn alloy particles is set to 0.05 m or more in order to ensure the necessary adhesion during spray coating, and 2 to 0 x m or less in order to ensure work stability during brush painting. To do. In consideration of coating stability, 0.2 to 50 m is preferable. Further, considering the coating film adhesion, 0.2 to 30 m is preferable.
  • the particle aspect ratio ensures the paintability. Therefore, the average value was set to 1 to 1.5.
  • the aspect ratio of the particle is set to an average value of 1 to 1.5. .
  • the range of the above-described aspect ratio defines the Zn alloy particles as a raw material, and absorbs moisture in the air and agglomerates until it is actually mixed with the paint and used. It does not prescribe the shape of the Zn alloy particles when bonded, or the shape of the Zn alloy particles when the particles hardened on the steel as a coating film are bonded.
  • grains of the said structure of this invention can contain 1 type or 2 types of A1: 0.01-30%, Si: 0.01-3%.
  • the amount of A 1 is 0.01% or more, in addition to antifungal properties, the corrosion resistance of the particles against self-corrosion is remarkably improved, but adding more than 30% not only saturates the effect, but also metal. Since it becomes difficult to form physical fracture surfaces and / or cracks in the particles, the amount of A 1 is set to 0.001 to 30%.
  • 8 1 amount is 0.5 to 20 % Is preferred. Furthermore, considering economic efficiency, 1.0 to 10% is preferable.
  • the amount of 31 is preferably 0.5 to 3%. Furthermore, if considering the economy, 1.0 to 1.5% is preferable.
  • the Mg solid solution phase and the Zn-Mg metal are formed on the fracture portion and the surface of the particle containing Z or crack.
  • Mg solid solution phase and the Zn_Mg intermetallic compound improve the corrosion resistance and the antifungal property by being exposed to the particle surface is not clear, but either or both of these phases are damaged.
  • the chemical properties of these phases change to better ones due to improved corrosion resistance and antifungal properties, and the corrosion resistance and antifungal properties are stably improved.
  • the present inventors have confirmed experimentally.
  • Mg solid solution phase and Zn-Mg intermetallic compound exist on the physical fracture surface or crack surface by X-ray diffraction method or scanning electron microscope observation with energy dispersive X-ray analyzer M It can be identified by analyzing the composition ratio of g and Zn.
  • Mg Gn 2 , Mg 2 Z ⁇ ,,, Mg 2 Z n 3 , Mg Z n, or Mg 7 Z n 3 By including the above, the corrosion resistance and anti-mold properties are further improved.
  • M g Z n 2 , M g 2 Z n, i, M g 2 Z n 3 , M g Z n, or M g 7 Z n 3 is an X-ray diffraction method or energy dispersive X-ray analyzer With It can be identified by analyzing the composition ratio of Mg and Zn on the physical fracture surface or crack surface by scanning electron microscope observation.
  • the Zn alloy particles having a physically crushed surface and a crack or crack control the chemical composition of the metal particles simultaneously with the provision of one or more physically crushed surfaces and / or cracks. By doing so, it is possible to improve the corrosion resistance and the anti-mold property compared to the conventional one.
  • the Zn alloy particles having a physically crushed surface and / or a crack according to the present invention have a shape of the particle having the crushed surface and a polyhedron close to a non-flat spherical shape (a crack is not included as a surface).
  • a shape having two or more surfaces it is possible to obtain more excellent corrosion resistance, anti-mold properties and paintability at the same time.
  • the average aspect ratio is more than 2 and the shape is extremely flat, workability during painting is reduced, which is not preferable.
  • the shape of the particles was defined as a non-flat, nearly spherical polyhedron (average aspect ratio of 1 to 1.5) and a shape having two or more faces.
  • the above shape range defines the Zn alloy particles as a raw material. During the period of mixing with the paint and actually using it, it absorbs moisture in the air and the Zn alloy particles agglomerate. It does not prescribe the shape of the Zn alloy particles when bonded or when cured as a coating film on steel.
  • a conventionally used pole mill or bead mill is used to physically break the fracture surface and / or crack. If Zn is added to the particles, the Zn alloy particles are greatly deformed.
  • the rolling force and the breaking force act greatly, satisfy the aspect ratio value of the present invention, and have a physical crushing surface and Z or crack. n It is extremely difficult to obtain alloy particles.
  • a Zn alloy particle having a physically fractured surface and / or crack In the production of a Zn alloy particle having a physically fractured surface and / or crack according to the present invention, primary particles having a chemical composition defined in claim 1 or 2 are produced in advance, and then the primary particles are produced. The particles collide with each other or collide with a solid to break up the primary particles, and form a physical fracture surface and / or crack on the Zn alloy particles as the primary particles.
  • Zn alloy particles with a minimum average particle size of 0.05 m with a physical fracture surface and / or cracks use primary particles with an average particle size of 0.05 m or more to increase the number of collisions. Can be obtained.
  • the average particle size of the primary particles is set to 0.05 to ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the average particle size of the primary particles is preferably 0.05 to 100 m in order to increase corrosion resistance and antifungal properties, and further ensure corrosion resistance and antifungal properties. In order to increase, it is preferably set to 0.05 to 30 m.
  • the primary particles refer to the Zn alloy particles before the collision or crushing, and when obtaining the primary particles, an arbitrary method such as a mist method, an atomizing method, an ingot method is used. can do.
  • a solid particle having a curved surface or a solid particle having only a flat surface is used. Can do.
  • the material of the solid and solid particles needs to have a higher hardness than that of the primary particles, and preferably has no reactivity when contacting each other in an aqueous environment.
  • solids that satisfy these requirements include metals and sintered bodies.
  • the primary particles collide with each other or solids to form physical fracture surfaces and Z or cracks on the Zn alloy particles.
  • a solvent is used as a medium for transporting the primary particles. Further, it is possible to produce Zn alloy particles having a target physical fracture surface and a crack or crack more efficiently.
  • the solvent is not limited as long as it has a higher specific gravity than various gases including air. However, since the primary particles and the Zn alloy particles to which fracture surfaces and / or cracks are imparted have a high reaction activity, the solvent must have a low reaction activity with the metal having the chemical composition of the present invention. It is. If the solvent has a particularly high reaction activity and contains water as an impurity, it is necessary to limit the water to 0.3 wt% or less.
  • the solvent is not limited, but an organic solvent such as toluene or xylene is suitable.
  • the Zn alloy particles having the above-mentioned crushed surface and / or crack of the present invention it is necessary to contain 30% or more in the coating film. If it is less than 30% by mass, effects such as corrosion resistance cannot be obtained.
  • the upper limit of the content is not particularly specified, but if it exceeds 85%, the resin component decreases and defects are likely to occur in the coating film, so 85% or less is desirable.
  • the resin component in the coating film is preferably at least 15% in order to ensure film forming properties.
  • other powder particles may be added.
  • metal powder such as A1, stainless steel, titanium oxide, etc.
  • An extender pigment such as oxide powder such as zinc oxide, talc or stone powder may be added.
  • Zn metal particles having an average particle diameter of 0.05 to 50 m When the ratio of the amount of alloy particles to the amount of Zn metal particles is 1 Zx, x can be mixed with the above Zn alloy particles within a range of 30: 0.0 or less.
  • Zn metal particles as used herein means particles composed of Zn and inevitable impurities.
  • X is set to 3 0 0.0 or less. In consideration of corrosion resistance and economy, X is preferably 1 to 120. Furthermore, considering mixing stability, X is preferably 1 to 30.
  • the average particle size of the Zn metal particles used for mixing is 0.05. ⁇ 5 0; ⁇ m.
  • the effect of improving the corrosion resistance in the present invention is recognized when the average particle size of the Zn metal particles to be mixed is in the range of 0.05 to 300 m.
  • the average particle diameter of the Zn metal particles was set to 0.05 to 50 m.
  • the mixing effect of the Zn alloy particles having fractured surfaces and / or cracks and Zn metal particles of the present invention can be roughly arranged by the content of Mg contained in all the antifungal pigments. is there.
  • the Mg content is set to 0.1%. 0 1 to less than 30% can be used.
  • the Mg content can be appropriately applied depending on the purpose, but the mixing effect of the Zn alloy particles and the Zn metal particles having the fracture surface and Z or crack becomes the most prominent 0.1 to 20% However, it is preferable from the viewpoint of the stability of the effect of improving the corrosion resistance. In addition, considering the economic efficiency, 0.5 to 15% is more preferable.
  • the resin component of the paint that is, the type of the base resin, is not particularly defined, and any of inorganic and organic binders can be used.
  • alkali silicates or alkyl silicates are suitable for inorganic systems, and epoxy resins, modified epoxy resins, acrylic resins, urethane resins, polyester resins, etc. are appropriately selected for organic systems. Can be applied.
  • an effect type by a plurality of liquids such as a one-liquid curing type or a two-liquid curing type can be appropriately applied depending on the purpose.
  • room temperature curing, heat curing, UV curing, electron beam curing, underwater curing, etc. can be applied as appropriate according to each purpose.
  • the steel material and steel structure to which the high corrosion resistance antifouling paint of the present invention is applied are not particularly specified, but in order to obtain the corrosion resistance and corrosion resistance by applying the paint of the present invention to the surface of the steel material and steel structure.
  • the coating thickness must be 2 xm or more.
  • the steel material and steel structure that are the subject of the present invention are those coated with the anticorrosion resistant coating material of the present invention in a thickness of 2 or more and 70 or less, and the chemical composition and shape of the steel material. It is not limited by the structure, and also includes those having a surface on which other anticorrosive means are used in combination.
  • the thickness of the highly anticorrosive paint of the present invention is preferably 2 to 300 m.
  • examples of objects to be painted include pig iron, carbon steel, special steel, stainless steel, corrosion-resistant steel, welded joints, etc., and shapes include thick plates, thin plates, and steel pipes. , Steel bars, and the shapes obtained by processing these.
  • the structure is as follows: (1) High-humidity and corrosive environment such as internal combustion engine exhaust systems such as automobiles and ships, boiler exhaust systems, low-temperature heat exchangers, and incinerator floors, (2) bridges, columns, exterior and interior materials for buildings, roofs Materials, joinery, kitchen components, various handrails, guardrails, various hooks, roof drains, railcars and other atmospheric corrosion environments, (3) various storage tanks, struts, piles, sheet piles, etc., and (4) can containers , Various containers, low-temperature heat exchangers, bathroom materials, automobile structural members, etc., including dew-condensation corrosive environments (including corrosive environments where freezing, wetting and drying are combined), Corrosion environment for tap water such as various containers, tableware, cooking equipment, bath tub, pool, vanity, etc.
  • High-humidity and corrosive environment such as internal combustion engine exhaust systems such as automobiles and ships, boiler exhaust systems, low-temperature heat exchangers, and inc
  • Corrosion environment for drinking water such as various containers, tableware, cooking equipment, (7) Various reinforcing bar structures, props, etc. Concrete corrosive environment, (8) ships List steel structures used in seawater corrosive environments such as bridges, piles, sheet piles, and ocean structures. Can do.
  • anti-corrosion means that can be used in combination include meth- od, painting, and anti-corrosion.
  • Coating test pieces were prepared under the conditions shown in Tables 1 to 14.
  • the primary particles of the Zn alloy particles were produced using the gas atomization method.
  • secondary particles are produced by collision between Zn alloy particles or collision between Zn alloy particles and a solid, or Zn alloy particles are placed in toluene or xylene with a moisture content of 0.3% or less. Secondary particles were produced by adding particles in a slurry state by a particle collision method or a solid collision method to produce Zn alloy particles having a physically fractured surface and / or cracks.
  • Zn alloy particles with no physical fracture surface and / or cracks were produced in a bead mill or pole mill.
  • the average particle size was measured by a laser single diffraction scattering method. Therefore, the particle size was evaluated as a sphere equivalent diameter.
  • the average aspect ratio was measured by observing randomly extracted particles of 50 to 100 with a scanning electron microscope.
  • the paint preparation was carried out by a general method, and the base resin, ie, the binder, was a commercially available alkaline silicate or alkyl silicate resin inorganic binder or four commercially available organic binders.
  • the base resin ie, the binder
  • the binder was a commercially available alkaline silicate or alkyl silicate resin inorganic binder or four commercially available organic binders.
  • the paint prepared on the steel plate was applied by brush painting or spray painting.
  • a salt spray test (5% NaCl spray, 35 degrees) shown in JISK 5600 was conducted.
  • a test piece of 150 ⁇ 70 ⁇ 3.2 mm was used as a coating test piece.
  • an X-cut was inserted with a cutter.
  • the corrosivity was evaluated by the occurrence time of red wrinkles from the test piece surface. X was generated when it occurred in 90 hours or less, ⁇ when it was generated in 90 00 to 2 00 hours, and ⁇ when it occurred in 2 00 hours or more.
  • Alkyl silicate 1 silicate 20 Spray coating ⁇
  • Example of the invention 768 9.3 ⁇ 12.2 1.49 1.8 0.9 43 ⁇ 18 Spray paint ⁇
  • Example of the invention 769 1.4 ⁇ 1.84 1.34 3.8 0.7 45 Alkyl silicate 22 Spray paint @ Example of the invention 770 4.2 ⁇ 16.02 1.29 2.9 1.8 66 Alkaline silicate 19 Spray paint ⁇
  • Example of the present invention 772 8.1 ⁇ 12.4 1.23 2.9 1.5
  • 66 Alkaline silicate one spray 23
  • Example of the present invention 773 7.6 ⁇ 17.2 1.27 16.8 1.3
  • 55 Alkyl silicate 21 Spray coating ⁇ Inventive single row
  • Zn alloy particles having chemical components shown in Tables 27 to 42 were produced in the same manner as in Example 1. Others are the same as in Example 1.
  • the Mg solid solution phase was identified by X-ray diffraction.
  • the composition ratio of Mg and Zn on the physical fracture surface or crack surface of the Zn-Mg intermetallic compound was determined by X-ray diffraction or observation with a scanning electron microscope equipped with an energy dispersive X-ray analyzer. Analyzed and identified.
  • the detected X-ray diffraction peak shows Mg 2 Z n! Or the peak of Mg Z n 2 occupies the main peak.
  • the Mg and Zn content on the physical fracture surface or crack surface can be determined by X-ray diffraction or scanning electron microscopy with an energy-dispersive X-ray analyzer. by analyzing the composition ratio, M g 2 Z n 3> M g Z n, or to confirm the presence of M g 7 Z n 3.
  • Table 4 Zn alloy particles having chemical components shown in 3 to 5 7 were produced in the same manner as in Example 1. Others are the same as in Example 3.
  • M g Z n 2 , M g 2 Z n H, M g 2 Z n 3 , M g Z n or M g 7 Z n 3 with X-ray diffraction method or energy dispersive X-ray analyzer The composition ratio of Mg and Zn on the physical fracture surface or crack surface was analyzed and identified by scanning electron microscope observation.
  • the number of faces of the Zn alloy particles was measured by observing randomly extracted particles of 50 to 100 with a scanning electron microscope.
  • the coated test piece using the Zn alloy particles of the present invention is a base resin. Regardless of the type, it can be seen that the inorganic and organic binders are further improved in corrosion resistance and antifungal properties.
  • Example of the invention 1 ⁇ 90 16.7 ⁇ 1.75 1.49 0,6 ⁇ .8 Yes Yes 6 43 Alkaline silicate 19 Spray coating Example of the invention 1 191 17.9 ⁇ 12.4 1.34 10.6 0.7 Yes Yes 7 45 Alkyl silicate 1 spray 15 ⁇ This invention Example 1192 19.5 ⁇ 17.2 1.29 9.5 0.7 Yes Yes 6 66 Alkaline silicate 18 Spray paint ⁇
  • Example 5 Zn alloy particles having chemical components shown in 8 to 75 were produced in the same manner as in Example 1. Zn metal particles having an average particle diameter of 0.05 to 50 m were mixed with the paint. Others are the same as in Example 1.
  • the coated test piece using the Zn alloy particles and the Zn metal particles of the present invention does not depend on the type of the base resin, that is, both inorganic and organic binders, It can be seen that the corrosion resistance and anti-mold properties are improved.
  • the coated test piece using the Zn alloy particles of the present invention does not depend on the type of the base resin, that is, both the inorganic and organic binders exhibit excellent corrosion resistance. I understand.
  • Zn alloy particles having chemical components shown in Tables 9 2 to 10 8 were produced in the same manner as in Example 5.
  • Four kinds of commercially available organic binders were used for paint formulation. Others are the same as in Example 5.
  • the Mg solid solution phase was identified by X-ray diffraction.
  • the composition of Mg and Zn on the physically fractured or cracked surface is determined by X-ray diffraction or scanning electron microscopy with an energy dispersive X-ray analyzer. The ratio was analyzed and identified. Its composition, M g Z n 2, M g 2 Z n u, M g 2 Z n 3, M g Z n, or were M g 7 Z n 3.
  • the Zn alloy of the present invention has a Mg solid solution phase and a Zn—Mg intermetallic compound on the surface of the particle including the fracture portion and / or the crack portion. It can be seen that the coated specimens using the particles have improved corrosion resistance and antifungal properties.
  • Mg crushing surface; average particle size aspect ratio average Si mixing average particle size MgMg-containing corrosion test for metal particles and metal particles in dry coating of MgaZnu between Zn and Mg metal
  • Zn alloy particles having chemical components shown in Tables 10 9 to 1 2 5 were produced in the same manner as in Example 5. Others are the same as in Example 5.
  • M g Z n 2 , g 2 Z n,,, M g 2 Z n 3 , M g Z n, or M g 7 Z n 3 is equipped with X-ray diffraction method or energy dispersive X-ray analyzer It was identified by analyzing the composition ratio of VI g and Zn on the physical fracture surface or crack surface by scanning electron microscope observation.
  • the number of faces of the Zn alloy particles was identified by observing randomly extracted particles of 50 to 100 using a scanning electron microscope.
  • M g Z n 2 and M g 2 Z n are used as intermetallic compounds on the surface of the particle including the fracture portion and / or the crack portion! ,, Mg 2 Z n 3 , Mg Z n, or Mg 7 Z n 3 , or the number of faces is two or more. Paint specimens using n-alloy particles and Zn metal particles are not dependent on the type of base resin, that is, both inorganic and organic binders have improved corrosion resistance and anti-mold properties. I understand.
  • Table 1 26 shows the method for producing Zn alloy particles.
  • Primary particles were prepared using the gas atomization method. Further, according to the present invention, secondary particles were produced by collision between Zn alloy particles or by collision between Zn alloy particles and a solid. In addition, Zn alloy particles are added to toluene or xylene with a moisture content of 0.3% or less to form a slurry, and secondary particles are produced by the same particle collision method or solid collision method. did.
  • the method for measuring the average particle size of Zn alloy particles and the average value of the aspect ratio is the same as in Example 1.
  • the method for identifying the Mg solid solution phase and the Zn—Mg intermetallic compound is the same as in Example 3.
  • M g Z n 2 , M g 2 Z n! ,, g 2 ⁇ 3> M g Z n or Mg 7 Z n 3 and the method for measuring the number of faces are the same as in Example 4.
  • the steel material and the like have excellent corrosion resistance and antifouling properties for a long time, It can be applied without sacrificing paintability and economy. As a result, it is possible to provide a highly corrosion-resistant steel material and steel structure that can significantly extend the maintenance cycle.
  • the present invention has high applicability in the steel industry.

Description

高耐食性防鲭塗料用 Z n合金粒子、 該粒子の製造方法、 該粒子を含 有する高耐食性防鲭塗料、 該塗料を塗装した高耐食性鉄鋼材料、 及 び、 該鉄鋼材料を有する鋼構造物
[技術分野]
本発明は、 物理的破砕面及明び/又はき裂を有し、 著しく優れた高 耐食性と防鲭性を付与することが田できる高耐食性防鲭塗料用 Z n合 金粒子、 該 Z n合金粒子の製造方法、書該 Z n合金粒子を含有する高 耐食性防鲭塗料、 該塗料を塗装した高耐食性鉄鋼材料、 及び、 該鉄 鋼材料を有する鋼構造物に関する。
[背景技術]
鉄鋼材料の腐食対策として、 不可避的不純物を含有する亜鉛粉末 を顔料とし、 有機材及び/又は無機材をビヒクル (液状バインダー 成分) として構成したジンクリ ッチペイントが多用されている。
ジンク リ ッチペイントは、 主に、 重防食塗装の下塗り に用いられ る。 その防食機構の特徴は、 塗膜に含まれる亜鉛粉末の犠牲防食作 用である。
そして、 ジンクリッチペイントの塗膜の防食能は、 亜鉛粉末の犠 牲防食作用の程度に強く依存するので、 使用環境によっては、 亜鉛 の消失速度が大きくなり、 鉄鋼材料に対する保護作用が長続きしな い場合がある。
そこで、 従来、 塗膜中の亜鉛粉末の含有量を高めたり、 膜厚を厚 く したりする等の対策がとられているが、 その結果、 鋼材面との密 着性の低下や、 塗膜のヒビ割れ又はダレなどが起こり易くなる。 結局、 塗膜の防食性能と、 物理的性質や施工性を両立させること は難しく、 塗膜中の亜鉛粉末の含有量を高める対策は、 万全な策で はない。
このような状況にあって、 従来のジンクリ ッチペイントの長所を 保持し、 更に、 長期にわたり犠牲防食作用を発揮し得る高性能ジン クリ ッチペイ ントの開発が期待され、 これまでに、 各種の提案がな されてきた。
例えば、 特開昭 5 9— 5 2 6 4 5号公報、 及び、 特開昭 5 9— 1 6 7 2 4 9号公報には、 亜鉛粉末の他に、 Z n— M g合金粉末を含 有させた有機系ジンクリッチペイントが提案され、 また、 特開昭 5 9 一 1 9 8 1 4 2号公報には、 亜鉛粉末の他に、 Z n— M g合金粉 末と Mn粉末を含有させた有機系ジンクリッチペイン卜が提案され ている。
更に、 特開平 1 一 3 1 1 1 7 8号公報には、 有機塗料における Z n— ( 5〜 1 5 %) M g合金粉末の高寿命防食性能が開示され、 特 開平 2 — 7 3 9 3 2号公報には、 金属組織が、 Z nと M g Z n 2 で 構成される Z n— M g合金粉末を含有する有機塗膜の高寿命防食性 能が開示されている。
また、 特開平 1 1 — 3 4 3 4 2 2号公報には、 A 1 と M g等を含 有する Z n合金フレーク状粒子を含有する有機系耐食性塗料用防鲭 顔料が提案されている。
以上に加え、 特開 2 0 0 1 - 1 6 4 1 9 4号公報には、 Z n— A 1 — M g系合金粉末で、 かつ、 該合金粉末の 5 0 %以上が A 1 Z Z n / Z n2M g共晶組織であるィンゴッ トを粉砕した有機系ジンク リツチ塗料が提案され、 特開平 2 0 0 5 — 3 1 4 5 0 1号公報には 、 Z n— A 1 合金、 及び、 これに、 M g又は S i を含有し、 球状又 は楕円球状で、 その最大径と最小径の比 (最大径 /最小径) の値が 1〜 1. 5である粉末を含有する高耐食性亜鉛系合金めつき鋼材の 切断部耐食性を改善するための有機系塗料が提案されている。
以上の提案は、.有機系塗料の防食性能と新たな合金粉末の組み合 わせによって耐食性を向上しょうとするものである。
しかしながら、 一般的な有機系塗料は、 紫外線、 水分、 酸素など が複合する複合環境では劣化し、 比較的短期間でメンテナンスが必 要になるという、 副次的な問題を抱えている。
このような状況の中、 これらの有機系塗料の欠点を有しない無機 系塗料の防食性能向上を目的に、 これまでに、 いくつかの提案がな されている。
例えば、 本発明とは目的が異なるが、 特開昭 6 1 _ 2 1 3 2 7 0 号公報には、 溶接 , 溶断時の塗装劣化の抑制を目標に、 亜鉛粉末と 、 M g又は M g合金の混合物を含有する塗料組成物が提案されてい る。
一方、 特開 2 0 0 0 — 8 0 3 0 9号公報には、 Z n相、 Z n— M g合金相、 及び、 Z nと M gの固溶体相の 3種を主成分とし、 かつ 、 これらが、 粉末粒子として無機系塗料中に混在する耐食性塗料、 及び、 該塗料を塗布した耐食性鉄鋼材料が提案されている。
特開 2 0 0 0 - 8 0 3 0 9号公報の提案は、 抜本的な耐食性向上 手段として注目されているが、 本発明者らの検討によれば、 耐食性 が向上する場合と、 耐食性の向上が明確でない場合が、 現実には存 在し、 耐食性向上効果の安定性に課題を抱えている。
また、 特開 2 0 0 2— 2 8 5 1 0 2号公報、 及び、 特開平 2 0 0 5 - 3 3 6 4 3 1号公報には、 M g等を含有する Z n合金フレーク 状粒子を含有する無機系耐食性塗料や、 塗料を塗布した耐食性鉄鋼 材料が提案されている。
しかし、 特開平 1 1 一 3 4 3 4 2 2号公報の提案を含め、 上記提 案においては、 粒子がフレーク状の形状を有するため、 スプレー塗 装が困難であるという、 新たな問題を惹起している。
[発明の開示]
本発明は、 従来にない、 長期にわたる優れた耐食性及び防鲭性を 鉄鋼材料等に付与することができ、 塗装性及び経済性を有する高耐 食性防鲭塗料用 Z n合金粒子、 該 Z n合金粒子の製造方法、 該 Z n 合金粒子を含有する高耐食性防鲭塗料、 及び、 該塗料を塗装した結 果、 メンテナンス周期が大幅に延長する高耐食性鉄鋼材料、 及び、 鋼構造物を提供することを目的とする。
本発明者らは、 種々検討の結果、 M gを、 0. 0 1質量%以上 3 0質量%以下含有し、 残部不可避的不純物を含む Z nからなり、 か つ、 物理的破碎面及び/又はき裂を有する非フレーク状の粒子が、 著しく優れた耐食性、 防鲭性及び塗装性を発揮することを新たに見 いだした。 この知見が、 本発明の基礎をなす知見である。
更に、 本発明者らは、 物理的破碎面及び/又はき裂を有する上記 粒子の耐食性及び防鲭性のさらなる向上の可能性を詳細に検討し、 その結果、 物理的破砕面及び Z又はき裂を有する Z n合金粒子が、 質量%で、 A 1 : 0. 0 1〜 3 0 %、 S i : 0. 0 1〜 3 %の 1種 又は 2種を含有すると、 より優れた防鲭性が発現すること、 また、 破砕面及び 又はき裂に、 M g Z n 2 、 M g2 Z n ,い M g 2 Z n 3 、 M g Z n、 又は、 M g 7 Z n3のうちの 1種以上を配置すると、 よ り優れた耐食性が発現することを見いだした。
本発明者らは、 同時に、 破砕後の粒子形状についても検討を行い 、 その結果、 破砕後の非球状多面体の面数が 2面以上有する場合に は、 上記防鲭性能、 即ち、 犠牲防食効果を損なう ことなく、 自己溶 解性を一層低減できることを見いだした。 また、 本発明者らは、 き裂の大きさについても検討を行い、 その 結果、 長さが 0 , 0 1 m以上、 又は、 深さが 0 . O l ^ m以上で あると、 防食性が著しく向上することを見だした。
粒子が表面き裂を有すると、 耐食性が向上するメカニズムは、 明 確ではない。
粒子表面にき裂が存在すると、 Z n合金粒子の表面積が大きくな り、 き裂表面に、 M g固溶相や金属間化合物が生じ易くなること、 また、 Z n合金粒子自身の活性度が向上することが、 耐食性向上の 理由の一部と推定されるが、 これらのことがもたらすと予想される 以上の効果が発現しており、 結局、 詳細は不明である。
また、 本発明者らは、 破砕面及び/又はき裂を有する粒子を得る 手段についても鋭意検討を重ねた。
その結果、 従来から、 一般的な破砕方法として用いられているポ 一ルミルやビーズミル等の手段によって破碎片を得るよりも、 1次 粒子を互いに衝突させるか、 又は、 粒子を固体に衝突させることで 、 耐食性及び防鲭性がより一層優れた物理的破砕面及び/又はき裂 を有する粒子が得られること、 更に、 溶媒中に 1次粒子を分散させ てスラリーとし、 衝突破砕を行うことで、 より一層優れた耐食性及 び防鲭性を損なうことなく、 作業効率良く、 物理的破砕面及び 又 はき裂を有する粒子が得られることを見いだした。
上記の破碎面及び Z又はき裂を有する Z n合金粒子は、 そのまま で塗料用の顔料として用いても、 優れた耐食性及び防鲭性をもたら すが、 さらなる検討の結果、 従来から顔料として一般的に用いられ ている Z n粒子顔料と混合して用いると、 Z n粒子を単独使用した 顔料に比較して、 著しく優れた耐食性及び防鲭性をもたらすことを 見いだした。
更に、 上記の破碎面及び/又はき裂を有する Z n合金粒子を用い て塗料とする際に、 本発明の粒子を顔料として、 有機塗料に混合し た場合には、 紫外線、 水分、 酸素などの厳しい複合環境下であって も、 従来にない、 優れた耐食性及び防鲭性をもたらすことを見いだ した。
本発明は、 以上の知見に基づく ものであって、 その要旨は、 以下 のとおりである。
〔 1〕 質量%で、 M g : 0. 0 1〜 3 0 %を含有し、 残部 Z n及 び不可避的不純物からなり、 物理的破砕面、 及び Z又は、 長さ 0. 0 1 m以上のき裂又は深さ 0. 0 1 /xm以上のき裂を有し、 平均 粒径が 0. 0 5〜 2 0 0 mで、 最大径と最小径のァスぺク ト比 ( 最大径ノ最小径) の平均値が 1〜 1. 5であることを特徴とする高 耐食性防鲭塗料用 Z n合金粒子。
〔 2〕 前記 Z n合金粒子が、 更に、 質量%で、 A 1 : 0. 0 1〜 3 0 %及び S i : 0. 0 1〜 3 %の 1種又は 2種を含有することを 特徴とする前記 〔 1〕 に記載の高耐食性防鲭塗料用 Z n合金粒子。
〔 3〕 前記 Z n合金粒子の表面に、 M g固溶相及び Z n— M g金 属間化合物を有することを特徴とする前記 〔 1〕 又は 〔 2〕 に記載 の高耐食性防鲭塗料用 Z n合金粒子。
〔 4〕 前記 Z n— M g金属間化合物が、 M g Z n2、 M g2 Z η , , 、 M g 2 Z n 3 > M g Z n、 又は、 M g7 Z n3のうちの 1種以上を含 むことを特徴とする前記 〔 3〕 に記載の高耐食性防鲭塗料用 Z n合 金粒子。
〔 5〕 前記 Z n合金粒子の形状が、 非球状多面体で、 2面以上の 面数を有することを特徴とする前記 〔 1〕 〜 〔 4〕 の何れかに記載 の高耐食性防鲭塗料用 Z n合金粒子。
〔 6〕 前記 〔 1〕 〜 〔5〕 の何れかに記載の高耐食性防鲭塗料用 Z n合金粒子の製造方法であって、 前記 〔 1〕 又は 〔 2〕 に記載の 成分組成からなる平均粒径 0. 0 5〜 1 0 0 0 の 1次粒子を互 いに衝突させるか、 又は、 該 1次粒子を固体に衝突させて、 上記 1 次粒子を破砕し、 物理的破砕面及び/又は、 き裂を有する Z n合金 粒子を製造することを特徴とする高耐食性防鲭塗料用 Z n合金粒子 の製造方法。
〔 7〕 前記 1次粒子を有機溶媒中に分散させてスラリーとし、 そ の後、 該スラリー同士を衝突させるか、 又は、 上記スラリーを固体 に衝突させて、 1次粒子を破砕することを特徴とする前記 〔 6〕 に 記載の高耐食性防鲭塗料用 Z n合金粒子の製造方法。
〔 8〕 前記 〔 1〕 〜 〔5〕 の何れかに記載の高耐食性防鲭塗料用 Z n合金粒子を、 乾燥塗膜換算で 3 0質量%以上含有することを特 徴とする高耐食性防鲭塗料。
〔 9〕 前記 Z n合金粒子に加え、 更に、 平均粒径 0. 0 5〜 5 0 mの Z n及び不可避的不純物からなる Z n金属粒子を分散させた 高耐食性防鑌塗料であって、 質量%で、 (上記 Z n合金粒子に質量 %) : (上記 Z n金属粒子の質量%) を 1 /xとしたとき、 Xが 3 0 0. 0以下であることを特徴とする前記 〔 8〕 に記載の高耐食性 防鲭塗料。
〔 1 0〕 質量%で、 前記 Z n合金粒子と前記 Z n金属粒子の合計 を 1 0 0 %としたとき、 M gの含有量が 0. 0 1〜 3 0 %未満であ ることを特徴とする前記 〔 8〕 又は 〔 9〕 に記載の高耐食性防鲭塗 料。
〔 1 1〕 前記高耐食性防鑌塗料のバインダーが、 無機系バインダ 一、 又は、 有機系バインダーであることを特徴とする前記 〔 8〕 〜 〔 1 0〕 の何れかに記載の高耐食性防鲭塗料。
〔 1 2〕 鋼材面に、 前記 〔 8〕 〜 〔 1 1〕 の何れかに記載の高耐 食性防鲭塗料が塗装された鉄鋼材料であって、 塗装厚みが 2〜7 0 0 / mで、 Z n合金粒子、 又は、 Z n合金粒子及び Z n金属粒子が 塗膜中に分散していることを特徴とする高耐食性鉄鋼材料。
〔 1 3〕 前記 〔 1 2〕 に記載の高耐食性鉄鋼材料を、 一部又は全 部として備えることを特徴とする鋼構造物。
本発明の物理的破砕面及びノ又はき裂を有する Z n合金粒子を含 有する高耐食性防鲭塗料を塗装すると、 鉄鋼材料等に、 従来にない 、 長期にわたる優れた耐食性及び防鲭性を、 塗装性及び経済性を損 なうことなく、 付与することができる。 そして、 その結果、 メンテ ナンスの周期を大幅に延長することが可能な高耐食性鉄鋼材料及び 鋼構造物を提供することができる。
[発明を実施するための最良の形態]
本発明の髙耐食性 Z n合金粒子は、 M g : 0. 0 1〜 3 0 %を含 有し、 残部 Z n及び不可避的不純物からなり、 物理的破砕面及び Z 又はき裂を有し、 平均粒径が 0. 0 5〜 2 0 0 111で、 最大径と最 小径のアスペク ト比 (最大径 Z最小径) の平均値が 1〜 1. 5であ ることを特徴とする。
本発明の Z n合金粒子において、 M gは、 0. 0 1〜 3 0 %必要 である。
物理的破砕面を有し、 かつ、 平均粒径が 0. 0 5〜 2 0 0 /i mの 場合に、 M g : 0. 0 1 %未満でも、 物理的破砕面を有せず、 かつ 、 同量の M gを含有する Z n合金粒子に比較して、 耐食性及び防食 性の有意な向上は認められるが、 物理的破砕面及び 又はき裂との 組み合わせによって見込まれる著しい耐食性及び防食性の向上効果 は得られない。
即ち、 物理的破砕面及び/又はき裂を有し M gを 0. 0 1 %以上 含有する Z n合金粒子による著しい耐食性及び防食性の向上効果、 即ち、 物理的破砕面及び Z又はき裂と、 0. 0 1 %以上の M gとの 相乗効果に基づく、 著しい耐食性及び防食性の向上効果が、 本発明 の基本的技術思想である。
M gを 3 0 %を超えて含有すると、 上記向上効果が飽和するばか りか、 経済性及び製造性を阻害するので、 Mgは、 0. 0 1 %以上 3 0 %以下とした。
但し、 Mg量の最適値は、 平均粒径によって変化する。 一般に、 スプレー塗装において最適と考えられる平均粒径 0. 2〜 3 0 m の場合には、 下限は 0. 1 %とし、 上限は 2 0 %とすることが、 耐 食性及び防食性の向上効果、 及び、 経済性の観点から好ましい。 更に、 製造安定性、 経済性、 耐食性を考慮すると、 Mg量は、 0 . 2〜 1 5 %が好ましい。
本発明でいう "物理的破砕面" とは、 球状の粒子の一部が欠落し た形状の面を意味する。 Z n合金粒子が物理的破砕面を有すること により、 後述するように、 耐食性及び防食性の向上効果が顕著に得 られるのである。
また、 本発明でいう "き裂" とは、 球状の粒子表面上に存在する 、 長さが 0. 0 1 ^ m以上、 又は、 表面からの深さが 0. 0 1 i m 以上の割れを意味する。 き裂は、 長さ又は深さが 0. O l ^m未満 であると、 十分な耐食性向上効果が得られず、 0. 0 1 £m以上の 長さ又は深さを必要とする。
Z n合金粒子の平均粒径は、 スプレー塗装時に必要な付着性を確 保するため、 0. 0 5 m以上とし、 刷毛塗り時の作業安定性を確 保するため、 2 0 0 xm以下とする。 塗装安定性を考慮すると、 0 . 2〜 5 0 mが好ましい。 また、 塗膜密着性を考慮すると、 0. 2〜 3 0 mが好ましい。
粒子のァスぺク ト比 (最大径 /最小径) は、 塗装性を確保するた め、 平均値で、 1〜 1. 5とした。
スプレー塗装を前提とする場合、 粒子のァスぺク ト比が 2 を超え ると、 粒子の噴霧及び飛行安定性が低下し、 塗膜厚及び塗膜中での 粒子分布安定性が低下する。
物理的破砕面及び Z又はき裂が粒子上に存在すると、 その安定性 がやや低下するので、 このことを考慮して、 粒子のアスペク ト比は 、 平均値で、 1〜 1. 5 とした。
したがって、 アスペク ト比が 1. 5を超える粒子が部分的に存在 しても、 問題とはならない。
更に、 上記のアスペク ト比の範囲は、 原料としての Z n合金粒子 を規定するものであり、 実際に塗料に混ぜて使用するまでの間に、 空気中の水分等を吸収して、 凝集し結合した場合の Z n合金粒子や 、 塗膜として鋼材上で硬化した粒子が結合した場合の Z n合金粒子 の形状までをも規定するものではない。
また、 製造時や保管時に、 Z n合金粒子表面に小さな凹凸が生じ ることもあるが、 これらによる形状変化も、 アスペク ト比の平均値 が 1〜 1. 5 という球状や楕円球状から逸脱するものではない。 更に、 本発明の上記構成の粒子は、 A 1 : 0. 0 1〜 3 0 %、 S i : 0. 0 1〜 3 %の 1種又は 2種を含有することができる。
A 1 を、 物理的破碎面及び/又はき裂を有する粒子に、 0. 0 1 %以上添加すると、 更に、 防鲭性が向上する。
A 1 量を 0. 0 1 %以上とすると、 防鯖性に加え、 粒子の自己腐 食に対する耐食性が著しく向上するが、 3 0 %を超えて添加しても 効果が飽和するばかりか、 金属粒子に、 物理的破砕面及び/又はき 裂を形成することが困難となるので、 A 1 量は、 0. 0 1〜 3 0 % とした。
更に、 製造安定性及び耐食性の観点から、 八 1量は 0. 5〜 2 0 %が好ましい。 更に、 経済性を考慮すると、 1. 0〜 1 0 %が好ま しい。
S i も、 同様に、 物理的破砕面及び/又はき裂を有する粒子に、 0. 0 1 %以上添加すると、 更に、 防鲭性が向上する。 しかし、 S i を、 3 %を超えて添加すると、 防鲭性が、 逆に低下するので、 S i 量は、 0. 0 1〜 3 %とした。
製造安定性及び耐食性の観点から、 3 1量は 0. 5〜 3 %が好ま しい。 更に、 経済性を考慮すると、 1 . 0〜 1. 5 %が好ましい。 本発明の物理的破砕面及び/又はき裂を有する Z n合金粒子にお いては、 破碎部及び Z又はき裂を含む粒子の表面に、 M g固溶相及 び Z n—M g金属間化合物を有することで、 更に、 耐食性と防鲭性 が向上する。
M g固溶相と Z n _ M g金属間化合物が、 粒子表面に露出するこ とで耐食性と防鑌性が向上する理由は明確でないが、 これらの相の いずれか一方又は両方が、 破碎面及び/又はき裂に共存すると、 こ れらの相の化学的性質が、 耐食性及び防鲭性の向上により好ましい ものに変化し、 耐食性と防鑌性が、 安定的に向上することを、 本発 明者らは、 実験的に確認している。
M g固溶相及び Z n— M g金属間化合物は、 X線回折法、 又は、 エネルギー分散型 X線分析装置付き走査電子顕微鏡観察により、 物 理的破碎面又はき裂表面に存在する M gと Z nの組成比を分析する ことによって、 同定することができる。
本発明においては、 上記金属間化合物相として、 M g Z n2、 M g 2 Z η , , , M g2 Z n 3、 M g Z n又は、 M g7 Z n3のうちの 1種 以上を含むことにより、 耐食性と防鲭性が、 より一層向上する。
M g Z n2、 M g 2 Z n , i , M g2 Z n3、 M g Z n、 又は、 M g 7 Z n 3は、 X線回折法、 又は、 エネルギー分散型 X線分析装置付き 走査電子顕微鏡観察により、 物理的破砕面又はき裂表面の M gと Z nの組成比を分析することによって、 同定することができる。
以上のように、 本発明の物理的破砕面及びノ又はき裂を有する Z n合金粒子は、 一面以上の物理的破砕面及び/又はき裂の付与と同 時に、 金属粒子の化学組成を制御することで、 耐食性及び防鲭性を 従来になく向上することが可能である。
そして、 更に、 本発明の物理的破砕面及び/又はき裂を有する Z n合金粒子は、 その破砕面を有する粒子の形状を、 非扁平の球状に 近い多面体 (き裂は面として含まない) で、 面数が 2面以上有する 形状とすることで、 一層優れた耐食性、 防鯖性、 及び、 塗装性を同 時に得ることができる。
耐食性ゃ防鲭性の向上の観点から、 物理的破砕面数は多いほど好 ましいが、 その破砕面数が 1面以下では、 現時点で理由は不明であ るが、 上記効果向上の効果のばらつきが大きくなる。
また、 平均のアスペク ト比の値が 2超で、 形状が、 極端に扁平な 場合には、 塗装時の作業性が低下し、 好ましくない。
したがって、 粒子の形状を、 非扁平の球状に近い多面体で (ァス ぺク ト比の平均値で 1〜 1 . 5 ) 、 面数が 2面以上有する形状と規 定した。
上記の形状範囲は、 原料としての Z n合金粒子を規定するもので あり、 実際に塗料に混ぜて使用するまでの間に、 空気中の水分等を 吸収して、 Z n合金粒子が凝集し結合した場合や、 塗膜として鋼材 上で硬化し、 結合した場合の Z n合金粒子の形状までをも規定する ものではない。
製造時や保管時に、 Z n合金粉末表面に、 小さな凹凸が生じるこ とがあるが、 これによる形状変化も、 アスペク ト比の平均値が 1 〜 1 . 5 という球状や楕円球状から逸脱するものではない。 次に、 本発明の Z n合金粒子の製造方法について説明する。
本発明の物理的破砕面及び/又はき裂を有する Z n合金粒子を製 造するに際し、 従来から、 一般的に使用されているポールミルゃビ ーズミルを用いて、 物理的破碎面及び 又はき裂を粒子に付与しよ うとすると、 Z n合金粒子が大きく変形する。
即ち、 破砕面及び Z又はき裂の中においても、 圧延力と分断力が 大きく作用し、 本発明のアスペク ト比の値を満足し、 かつ、 物理的 破砕面及び Z又はき裂を有する Z n合金粒子を得ることは極めて困 難である。
本発明の物理的破砕面及び/又はき裂を有する Z n合金粒子の製 造においては、 予め、 請求の範囲 1又は 2で規定する化学組成から なる 1次粒子を製造した後、 この 1次粒子を互いに衝突させるか、 又は、 固体に衝突させて、 該 1次粒子を破碎し、 1次粒子である Z n合金粒子上に、 物理的破碎面及び/又はき裂を形成する。
衝突によって、 物理的破砕面及び/又はき裂を得る際には、 一個 一個の質量が大きい方が、 衝突時の物理的表面破砕及び/又はき裂 に寄与する運動エネルギーを確保することができる一方で、 実験的 には、 1次粒子の平均粒径が 1 0 0 0 x mを超えると、 本発明で目 標とする最大平均粒径 2 0 0 t mを得るための作業時間が、 著しく 増大する。
一方、 物理的破碎面及び/又はき裂を有する最小平均粒径 0 . 0 5 mの Z n合金粒子は、 平均粒径 0 . 0 5 m以上の 1次粒子を 用い、 衝突回数を増大することで得ることが可能である。
以上の理由から、 本発明では、 1次粒子の平均粒径を 0 . 0 5〜 Ι Ο Ο Ο ΠΙとする。
1次粒子の平均粒径は、 耐食性及び防鲭性を高めるために、 好ま しくは、 0 . 0 5〜 1 0 0 m、 更に、 耐食性及び防鑌性を確実に 高めるために、 好ましくは、 0 . 0 5 〜 3 0 mとする。
ここで、 1次粒子とは、 前記の衝突又は破砕前の Z n合金粒子を いい、 1次粒子を得るに際しては、 ミス ト法、 ア トマイズ法、 イン ゴッ ト法など、 任意の方法を使用することができる。
また、 前記 1次粒子と衝突に用いる固体として、 平面及び/又は 曲面を有する固体に加えて、 表面が曲面で形成される固体粒子や、 表面が平面のみで構成される固体粒子を使用することができる。
ここで、 固体、 固体粒子の材質は、 前記 1 次粒子と比較して硬さ が高いことが必要で、 また、 水環境下で互いに接触したときに反応 性を有しないものが好ましい。 このような要求を満足する固体とし て、 金属や焼結体等をあげることができる。
1次粒子を互いに又は固体に衝突せしめ、 Z n合金粒子の上に物 理的破碎面及び Z又はき裂を形成する Z n合金粒子の製造において 、 1次粒子を搬送する媒体として溶媒を用い、 更に効率よく、 目標 とする物理的破碎面及びノ又はき裂を有する Z n合金粒子を製造す ることができる。
溶媒は、 空気を含む様々なガスと比較して、 比重の大きなもので あれば種類を問わない。 但し、 1次粒子及び破碎面及び/又はき裂 が付与された Z n合金粒子は反応活性が高いので、 溶媒には、 本発 明の化学組成を有する金属との反応活性が低いものが必要である。 溶媒が、 特に反応活性が高く、 不純物として水を含む場合には、 水を 0 . 3 w t %以下に制限することが必要である。
本発明においては、 溶媒を限定するものではないが、 トルエンや キシレンなどの有機溶媒が適当である。
本発明の上記の破砕面及び/又はき裂を有する Z n合金粒子の利 用に際しては、 塗膜中に、 3 0 %以上含有せしめることが必要であ る。 3 0質量%未満では、 耐食性等の効果が得られない。 含有量の上限は、 特に規定するものではないが、 8 5 %を超える と樹脂成分が少なくなり、 塗膜に欠陥が生じ易くなるので、 8 5 % 以下が望ましい。
なお、 塗膜中の樹脂成分は、 成膜性を確保するため、 少なく とも 、 1 5 %とすることが好ましい。
更に、 上記 Z n合金粒子を 3 0 %以上含有していれば、 それ以外 の粉末粒子を添加してもよく、 例えば、 意匠性を目的として、 A 1 、 ステンレス等の金属粉末や、 酸化チタン、 酸化亜鉛等の酸化物粉 末、 タルク、 石粉等の体質顔料を添加してもよい。
更に、 本発明の上記の破砕面及び Z又はき裂を有する Z n合金粒 子を利用する際、 平均粒径 0. 0 5〜 5 0 mの Z n金属粒子を、 質量%で、 Z n合金粒子量と Z n金属粒子量の比を 1 Zxとしたと き、 x : 3 0 0. 0以下の範囲で、 上記 Z n合金粒子に混在させる ことができる。
ここでいう Z n金属粒子とは、 Z n及び不可避的不純物からなる 粒子を意味する。
そして、 上記 Z n金属粒子と、 上記の破砕面及び/又はき裂を有 する Z n合金粒子を混合して塗料顔料に用いることにより、 従来の ように Z n金属粒子を単独で使用した顔料に比較し、 著しく優れた 耐食性及び防鲭性を得ることができる。
但し、 Z n合金粒子量と Z n金属粒子量の質量%の比を 1 /xと した時、 が 3 0 0. 0超であると、 耐食性及び防鲭性の向上に及 ぼす、 Z n合金粒子の効果が十分に発現しない。 したがって、 Xを 3 0 0. 0以下とした。 耐食性及び経済性を考慮すると、 Xは、 1 〜 1 2 0が好ましい。 更に、 混合安定性を考慮すると、 Xは、 1〜 3 0が好ましい。
本発明では、 混合に用いる Z n金属粒子の平均粒径は、 0. 0 5 〜 5 0 ;^ mとする。 本発明における耐食性の向上効果は、 混合する Z n金属粒子の平均粒径が 0 . 0 5〜 3 0 0 mの範囲で認められ るが、 工業的に安定でかつ安価に供給可能な平均粒径であることを 考慮して、 Z n金属粒子の平均粒径を 0 . 0 5〜 5 0 mとした。
一方、 本発明の破砕面及び/又はき裂を有する Z n合金粒子と Z n金属粒子の混合効果は、 おおよそ、 全防鲭顔料中に含まれる M g の含有量でも整理することが可能である。
質量%で、 本発明の物理的破碎面及び 又はき裂を有する Z n合 金粒子と Z n金属粒子の混合粒子の合計を 1 0 0 %とした時、 M g の含有量を、 0 . 0 1〜 3 0 %未満として使用することができる。
M gの含有量は、 目的に応じて適宜適用できるが、 破碎面及び Z 又はき裂を有する Z n合金粒子と Z n金属粒子の混合効果が最も顕 著となる 0 . 1〜 2 0 %が、 耐食性向上の効果安定性の点から好ま しく、 加えて、 経済性を考慮すると、 0 . 5〜 1 5 %がより好まし い。
なお、 本発明において、 塗料の樹脂成分、 即ち、 ベース樹脂の種 類は、 特に規定されるものではなく、 無機系、 有機系のいずれのバ インダ一でも利用できる。
本発明を限定するものではないが、 無機系では、 アルカリシリケ ートゃアルキルシリケート等が、 有機系では、 エポキシ系樹脂、 変 性エポキシ樹脂、 アクリル系樹脂、 ウレタン系樹脂、 ポリエステル 樹脂等を、 適宜、 適用することができる。
また、 硬化剤の配合タイプも、 1液硬化タイプや、 2液硬化タイ プ等の複数液による効果タイプを、 その目的に応じ、 適宜、 適用す ることができる。
硬化方法も、 常温硬化、 加熱硬化、 U V硬化、 電子線硬化、 水中 硬化等を、 それぞれの目的に応じて、 適宜、 適用することができる 本発明の高耐食性防鲭塗料を塗装する鋼材及び鋼構造物について は、 特に規定はないが、 本発明の塗料を、 鋼材及び鋼構造物の表面 に塗布して耐食性や防食性を得るためには、 塗装厚みを 2 x m以上 とすることが必要である。
また、 本発明で対象とする鉄鋼材料及び鋼構造物とは、 本発明の 高耐食防鲭塗料を、 厚さで、 2 以上 7 0 0 以下、 塗装した ものであって、 鋼材化学組成、 形状や構造により制限されず、 また 、 他の防食手段が併用される表面を有するものも含むものである。
なお、 経済性及び塗装作業性を考慮すると、 本発明の高耐食防鲭 塗料の厚さは、 2〜 3 0 0 mが好ましい。
本発明を規定するものではないが、 塗装対象としては、 铸鉄、 炭 素鋼、 特殊鋼、 ステンレス鋼、 耐食鋼、 溶接継手等を挙げることが でき、 形状としては、 厚板、 薄板、 鋼管、 棒鋼等、 及び、 これらを 加工して得られる形状を挙げることができる。
また、 構造としては、 (1)自動車や船舶等の内燃機関排気系統、 ボイラ排気系統、 低温熱交換機、 焼却炉床等の高温湿潤腐食環境、 (2)橋梁、 支柱、 建築内外装材、 屋根材、 建具、 厨房部材、 各種手 すり、 ガードレール、 各種フック、 ルーフ ドレイン、 鉄道車両等の 大気腐食環境、 (3)各種貯蔵タンク、 支柱、 杭、 矢板等の土壌腐食 環境、 (4)缶容器、 各種容器、 低温熱交換機、 浴室部材、 自動車構 造部材等の結露腐食環境 (冷凍、 湿潤、 乾燥が複合する腐食環境を 含む) 、 (5)貯水槽、 給水管、 給湯管、 缶容器、 各種容器、 食器、 調理機器、 浴槽、 プール、 洗面化粧台等の水道水腐食環境、 (6)各 種容器、 食器、 調理機器等の飲料水腐食環境、 (7)各種鉄筋構造物 、 支柱等のコンクリート腐食環境、 (8)船舶、 橋梁、 杭、 矢板、 海 洋構造物等の海水腐食環境等の下で使用する鋼構造物を挙げること ができる。
なお、 本発明において、 併用できる他の防食手段としては、 めつ き、 塗装、 電気防食等がある。
[実施例]
(実施例 1 )
以下に、 実施例を用いて本発明を説明する。
表 1 〜 1 4に示す条件で、 塗装試験片を作製した。 Z n合金粒子 の 1次粒子はガスァ トマイズ法を用いて作製した。
更に、 Z n合金粒子同士の衝突又は Z n合金粒子と固体との衝突 によって 2次粒子を作製するか、 又は、 含水率を 0 . 3 %以下とし たトルエン又はキシレン中に Z n合金粒子を添加してスラリー状と したものを、 粒子同士の衝突法又は固体との衝突法によって 2次粒 子を作製し、 物理的破砕面及び/又はき裂を有する Z n合金粒子を 製造した。
物理的破碎面及び 又はき裂のない Z n合金粒子は、 ビーズミル 又はポールミルで製造した。 平均粒径は、 レーザ一回折散乱法によ り測定した。 したがって、 粒径は、 球相当直径として評価した。 また、 アスペク ト比の平均値は、 無作為に抽出した 5 0〜 1 0 0 の粒子を、 走査型電子顕微鏡で観察することにより測定した。
塗料調合は、 一般的な方法で実施し、 ベース樹脂、 即ち、 バイン ダ一は、 市販のアルカリシリケート又はアルキルシリケ一ト樹脂の 無機系バインダー、 又は、 市販の 4種類の有機系バインダーを使用 した。
刷毛塗装又はスプレー塗装により、 鋼板に調合した塗料を塗布し た。 評価試験として、 J I S K 5 6 0 0 に示す塩水噴霧試験 ( 5 % N a C l 噴霧、 3 5度) を実施した。 塗装試験片として、 1 5 0 X 7 0 X 3. 2 mmの試験片を用いた 。 試験片下部には、 カッターで Xカッ トを挿入した。
腐食性は、 試験片表面からの赤鯖発生時間で評価した。 9 0 0時 間以下で発生した場合は X、 9 0 0〜 2 0 0 0時間で発生した場合 は〇、 2 0 0 0時間以上で発生した場合は◎とした。
表 1〜 1 4より、 本発明の Z n合金粒子を用いた塗装試験片は、 無機系のバインダー、 及び、 有機系のバインダ一とも、 優れた耐食 性を示すことが判る。
表 1
Figure imgf000021_0001
:破砕面有り、 ©破砕面および/き裂有り、 X:破砕面および/き裂無し(以下、同じ)
表 2
Figure imgf000022_0001
Figure imgf000023_0001
表 4
Figure imgf000024_0001
表 5
Figure imgf000025_0001
表 6
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
表 9
Figure imgf000029_0001
表 10
Figure imgf000030_0001
表 11
Figure imgf000031_0001
表 12
Figure imgf000032_0001
表 13
Figure imgf000033_0001
表 14
Figure imgf000034_0001
(実施例 2 )
表 1 5〜 2 6に化学成分を示すように、 更に、 A l 、 3 1 の 1種 又は 2種を含有する Z n合金粒子を製造した。 その他は、 実施例 1 と同様である。
表 1 5〜 2 6より、 本発明の Z n合金粒子を用いた塗装試験片は 、 無機系及び有機系のバインダーのいずれの場合も、 優れた耐食性 を示すことが判る。
表 15
Figure imgf000036_0001
: 面 り、 、 X: 以下、
表 16
Figure imgf000037_0001
表 17
Figure imgf000038_0001
表 18
Figure imgf000039_0001
表 19
Figure imgf000040_0001
表 20
Figure imgf000041_0001
表 21
Figure imgf000042_0001
Figure imgf000043_0001
表 23
Ζπ合金粒子 塗 β莫の内容
腐食試験
Mg; 度 破砕面.き 平均粒径 アスペクト比 AI濃度 Si; 乾燥塗膜中の金属粒子 塗膜厚み
ベース樹脂の種類 塗装方法 結果 (質量 裂の有無 ( i m) の平均値 (質量 %) (質量 ¾) の割合 (質量%) ( U m)
本発明例 766 7.5 ◎ 15.5 1.47 0.9 1.3 55 アルカリシリケ一ト 15 スプレー塗装 ◎ 本発明例 767 8.4 ◎ 0.67 1.48 1.1 1.8 77 アルキルシ1〗ケート 20 スプレー塗装 ◎ 本発明例 768 9.3 ◎ 12.2 1.49 1.8 0.9 43 アルカリシリケ一卜 18 スプレー塗装 ◎ 本発明例 769 1.4 ◎ 1.84 1.34 3.8 0.7 45 アルキルシリケート 22 スプレー塗装 @ 本発明例 770 4.2 ◎ 16.02 1.29 2.9 1.8 66 アルカリシリケート 19 スプレー塗装 ◎ 本発明例 771 4.8 ◎ 1.75 1.18 10.5 0.7 33 アルキルシリゲート 29 スプレー塗装 ◎ 本発明例 772 8.1 ◎ 12.4 1.23 2.9 1.5 66 アルカリシリケ一卜 23 スプレー塗装 ◎ 本発明例 773 7.6 ◎ 17.2 1.27 16.8 1.3 55 アルキルシリケ—ト 21 スプレー塗装 ◎ 本発明 1列 774 9.9 ◎ 13.1 1.17 2.7 1.8 49 アルカリシリケ一卜 19 スプレー塗装 ◎ 本発明 1列 775 0.4 ◎ 29.9 1.16 3.6 0.9 77 アルキルシリケート 15 スプレー塗装 ◎ 本発明 1 ?]776 10.5 ◎ 0.21 1.27 0 0.7 41 アルカリシリケ一ト 18 スプレー塗装 ◎ 本発明 1列 777 0.4 ◎ 0.22 1.17 0.06 1.8 64 アルキルシリケート 22 スプレー塗装 ◎ 本発明例 778 10.5 ◎ 29.5 1.27 0.02 0.7 58 アルキルシリケート 21 スプレー塗装 ◎ 本発明例 779 0.51 29.9 1.18 1.6 1.5 33 アルキルシリゲート 29 スプレー塗装 ◎ 本発明例 780 9.8 ◎ 0.21 1.23 3.5 0 66 アルカリシリケート 23 スプレー塗装 ◎ 本発明例 781 0.52 ◎ 0.22 1.27 9.8 1.8 55 アルキルシリゲート 21 スプレー塗装 ◎ 本発明例 782 9.9 ◎ 29.5 1.17 11.5 0.9 49 アルカリシリケート 19 スプレー塗装 ◎ 本発明例 783 14.8 ◎ 16.02 1.48 0.4 0.7 フ 7 アルキルシリケート 21 スプレー塗装 ◎ 本発明例 784 16.7 ◎ 1.75 1.49 0.6 1.8 43 アルカリシリケート 19 スプレー塗装 ◎ 本発明例 785 17.9 ◎ 12.4 1.34 10.6 0.7 45 アルキルシリケート 15 スプレー塗装 ◎ 本発明例 786 19.5 ◎ 17.2 1.29 9.5 0.7 66 アルカリシリゲート 18 スプレー塗装 © 比較例 18 2.3 ◎ 205.6 1.23 0.07 0 75 アルキルシリケート 25 スプレー塗装 比較例 19 2.3 ◎ 0.005 1.23 0 0.07 75 アルキルシリケート 25 スブレ一塗装 比較例 20 2.3 ◎ 205.6 1.23 0 0.02 75 アルキルシリケート 105 刷毛塗装
2.3 ◎ 0.005 1.23 22.1 0 75 アルキルシリケート 165 スプレー塗装
比較例 22 0.01 ◎ 0.4 1.24 1.2 0.5 58 アクリル系樹脂 5 スプレー塗装 X
表 24
Figure imgf000045_0001
表 25
Figure imgf000046_0001
表 26
Figure imgf000047_0001
(実施例 3 )
表 2 7〜 4 2に化学成分を示す Z n合金粒子を、 実施例 1 と同様 に製造した。 その他は、 実施例 1 と同様である。
M g固溶相は、 X線回折法により同定した。 また、 Z n—M g金 属間化合物は、 X線回折法又はエネルギー分散型 X線分析装置付き 走査電子顕微鏡観察により、 物理的破砕面又はき裂表面における M gと Z nの組成比を分析して同定した。
M gの含有量が 1 6質量%未満では、 検出した X線回折ピークに おいて、 M g 2 Z n! ,又は M g Z n 2のピーグが主ピークを占めた。 M gの含有量が 1 6質量%以上では、 X線回折法、 又は、 エネルギ —分散型 X線分析装置付き走査電子顕微鏡観察により、 物理的破砕 面又はき裂表面における M gと Z nの組成比を分析して、 M g2 Z n 3 > M g Z n、 又は、 M g 7 Z n 3の存在を確認した。
表 2 7〜 4 2より、 破砕部を含む粒子の表面に、 M g固溶相、 及 び、 Z n— M g金属間化合物が存在することで、 本発明の Z n合金 粒子を用いた塗装試験片は、 ベース樹脂の種類によらず、 即ち、 無 機系及び有機系のバインダーとも、 更に、 耐食性と防鲭性が向上し ていることが判る。
表 27
Figure imgf000049_0001
表 28
Figure imgf000050_0001
Figure imgf000051_0001
表 30
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
表 33
Figure imgf000055_0001
表 34
Figure imgf000056_0001
35
Figure imgf000057_0001
表 36
Figure imgf000058_0001
表 37
Figure imgf000059_0001
表 38
Figure imgf000060_0001
表 39
Figure imgf000061_0001
表 40
Figure imgf000062_0001
表 41
Figure imgf000063_0001
Figure imgf000064_0001
(実施例 4 )
表 4 3〜 5 7に化学成分を示す Z n合金粒子を、 実施例 1 と同様 に製造した。 その他は、 実施例 3 と同様である。
M g Z n2、 M g2 Z n H、 M g2 Z n3、 M g Z n、 又は、 M g7 Z n 3を、 X線回折法、 又は、 エネルギー分散型 X線分析装置付き 走査電子顕微鏡観察により、 物理的破砕面又はき裂表面における M gと Z nの組成比を分析して同定した。
また、 Z n合金粒子の面数は、 無作為に抽出した 5 0〜 1 0 0の 粒子を走査型電子顕微鏡で観察して測定した。
表 4 3〜 5 7より、 破碎部を含む粒子の表面に、 金属間化合物と して、 M g Z n2、 M g 2 Z n , J , M g2 Z n3、 M g Z n、 又は、 M g7 Z n 3のうちの 1種以上を有すること、 又は、 面数が 2面以上で あることにより、 本発明の Z n合金粒子を用いた塗装試験片は、 ベ —ス樹脂の種類によらず、 即ち、 無機系及び有機系のバインダーと も、 更に、 耐食性と防鲭性が向上していることが判る。
Figure imgf000066_0001
• 面 、 、 : 、
44
Figure imgf000067_0001
Figure imgf000068_0001
表 46
Figure imgf000069_0001
表 47
Figure imgf000070_0001
48
Figure imgf000071_0001
表 49
Figure imgf000072_0001
50
Figure imgf000073_0001
表 51
Figure imgf000074_0001
52
Figure imgf000075_0001
表 53
Zn合金粒子 塗 β莫の内容
破砕面.き 粒子表面の Mg固溶相 MgZn2または
Mg濃度 乾
平均粒径 アスペクト比の AI;辰,; ¾ 燥塗膜中の金属粒
Si濃度 腐食試験 裂 および Zn- Mg金属間 Mg2Zn|の 塗膜厚み
面数 子
(質量お) m) 平均値 (質量 5 (質量 ¾) ベース樹脂の種類 塗装方法 結果 の有無 化合物の有無 有無 の割合 (質量%)
本発明例 1〗90 16.7 ◎ 1.75 1.49 0,6 Ϊ.8 有り 有り 6 43 アルカリシリケ一ト 19 スプレー塗装 本発明例 1 191 17.9 ◎ 12.4 1.34 10.6 0.7 有り 有り 7 45 アルキルシリケ一卜 15 スプレー塗装 ◎ 本発明例 1192 19.5 ◎ 17.2 1.29 9.5 0.7 有り 有り 6 66 アルカリシリケ一ト 18 スプレー塗装 ◎
2.3 205.6 1.23 0.07 0 有り ◎
有り 6 75 アルキルシリケート 25 スプレー塗装 比較例 53 2.3 ◎ 0.005 1.23 0 0.07 有り 有り 7 75 アルキルシリケート 25 スプレー塗装 比較例 54 2.3 ◎ 205.6 1.23 0 0.02 有り 有り 6 75 アルキルシリケート 105 刷毛塗装 比較例 55 2.3 ◎ 0.005 1.23 22.1 0 有り 有り 6 75 アルキルシリゲート 165 スプレー塗装 比較例 56 2.3 ◎ 205.6 1.23 0.07 0 有り 有り 7 75 アルキルシリケート 25 スブレ一塗装 比較例 57 2.3 ◎ 0.005 1.23 0 0.07 有り 有り 6 75 アルキルシリケート 25 スプレー塗装 比較仞 58 2.3 205.6 1.23 0 0.02 有り 有り 7 75 アルキルシリケート 105 刷毛塗装 比較仞. 59 2.3 ◎ 0.005 1.23 22.1 0 有り 有り 6 75 アルキルシリケート 165 スプレー塗装 比較 60 0.01 ◎ 0.4 1.24 1.2 0.5 有り 有リ 6 58 アクリル系樹脂 5 スブレ一塗装 比較^ 61 0.8 ◎ 3.2 2.54 0.6 0,8 有り 有り 7 64 ウレタン系樹脂 2 スプレー塗装
62 8.47 0.67 1.25 2 1.9 有り 有り 6 54 ホ'リエス亍ル樹脂 12 刷毛塗装 比較 63 24.5 2.5 1.05 0.8 0.9 有り 有り 7 32 エホ'キシ系樹脂 15 刷毛塗装 比較^ 64 0.01 ◎ 0.4 1.24 0 0.02 有り 有り 6 57 アルカリシリケ一卜 2 スプレー塗装 比較例 65 0.8 © 0.2 1.78 25.8 0.05 有り 有り 6 70 アルキルシリケ—ト 5 スプレー塗装 比較例 66 8.47 0.67 1.25 22.1 0 有り 有 7 64 アルカリシリケ一ト 12 刷毛塗装 比較例 67 24.5 2.5 1.05 21.5 0.05 有り 有り 6 42 アルキルシリケ一ト 15 刷毛塗装 比較例 68 4.05 0.02 1.23 0.05 2.29 有り 有り 7 38 アルカリシリゲート 13 刷毛塗装 比較例 69 6.78 12.5 1.35 0 0 有り 有り 6 44 アルキルシリケ—ト 22 スプレー塗装
15.8 23.3 1.14 0 0 有り 有り 6 56 アルカリシリケ一ト 34 スプレー塗装 比較例 71 4.5 ◎ 3.5 2.84 22.1 0 有り 有り 6 76 アルキルシリケ一ト 15 刷毛塗装 比較例 72 3.2 ◎ 6.7 1.75 0.05 2.29 有り 有り 6 65 アルキルシリケ一卜 15 スプレー塗装
54
Figure imgf000077_0001
Figure imgf000078_0001
Figure imgf000079_0001
Figure imgf000080_0001
(実施例 5 )
表 5 8〜 7 5に化学成分を示す Z n合金粒子を、 実施例 1 と同様 に製造した。 塗料に、 平均粒径 0 . 0 5〜 5 0 mの Z n金属粒子 を混合した。 その他は、 実施例 1 と同様である。
表 5 8〜 7 5より、 本発明の Z n合金粒子と Z n金属粒子を用い た塗装試験片は、 ベース樹脂の種類によらず、 即ち、 無機系及び有 機系のバインダーとも、 更に、 耐食性と防鲭性が向上していること が判る。
表 58
Figure imgf000082_0001
表 59
Figure imgf000083_0001
Figure imgf000084_0001
表 61
Figure imgf000085_0001
62
Figure imgf000086_0001
表 63
Figure imgf000087_0001
表 64
Figure imgf000088_0001
65
Figure imgf000089_0001
表 66
Figure imgf000090_0001
表 67
Figure imgf000091_0001
表 68
Figure imgf000092_0001
表 69
Figure imgf000093_0001
表 70
Zn合金粒子 Zn金属粒子 Zn合金粒子: 全金属粒子に 塗 fl旲の内
腐食試験 破砕面,き 平均粒径 アスペクト比 の平均粒径 Zn金属粒子の対する Mg濃度 乾燥塗膜中の金属粒子 塗膜厚み
ベ一ス樹脂の種類 塗装方法
(質量 ) 裂の有無 ( jt m) の平均値 ( m) 混合蓳比 (質量%) の割合 (質量 ( jU m)
比較例 73 2.3 ◎ 205.6 1.23 10.5 1:5 0.38 77 アルキルシリケート 25 スプレー塗装 X 比較例 74 12.5 ◎ 0.005 1.36 12.6 1:3 3.13 77 ウレタン系樹脂 25 スプレー塗装 X 比較例 75 18.9 ◎ 205.6 1.11 7.8 1:19 0.95 43 アルキルシリケ—ト 105 刷毛塗装 X 比較例 76 29.5 ◎ 0.005 1.07 16.8 1:100 0.29 52 アルカリシリケ一ト 165 スプレー塗装 X 比較例 77 14.5 ◎ 205.6 1.42 10.5 1:260 0.06 66 アルキルシリケート 25 スプレー塗装 X 比較例 78 12.5 ◎ 0.005 1.38 12.6 1:3 3.13 72 アルキルシリケート 25 スプレー塗装 X 比較例フ 9 18.9 ◎ 205.6 1.22 7.8 1:19 0.95 40 アルキルシリケート 105 刷毛塗装 X 比較例 80 29.5 ◎ 0.005 1.14 16.8 1:100 0.29 36 アルカリシリゲート 165 スプレー塗装 X 比較例 81 2.3 ◎ 10.6 1.13 10.5 1:256 0.01 32 アルキルシリケート 25 スプレー塗装 X 比較例 82 12.5 ◎ 5.7 1.02 12.6 1:200 0.06 53 アルキルシリケ-ト 25 スプレー塗装 X 比較例 83 0.5 ◎ 6.4 ' 1.06 7.8 1:167 0.00 67 アルキルシリケ一卜 105 刷毛塗装 X
29.5 ◎ 3.2 1.23 16.8 1:300 0.10 53 ウレタン系樹脂 165 スプレー塗装 X 比較例 85 14.5 ◎ 4.5 1.36 10.5 1:260 0.06 67 アルキルシリケート 25 スプレー塗装 X 比較例 86 9.8 ◎ 5.2 1.11 12.6 1:100 0.10 72 アルキルシリケート 25 スプレー塗装 X 比較例 87 4.6 ◎ 1.9 1.07 7.8 1:47 0.10 77 アルキルシリケ一ト 105 刷毛塗装 X 比較例 88 3.2 ◎ 18.5 1.42 16.8 1:32 0.10 34 ウレタン系樹脂 55 スプレー塗装 X 比較例 89 29.9 ◎ 12.5 1.38 12.6 1:345 0.09 43 アルキルシリケート 28 スプレー塗装 X 比較例 90 7.6 ◎ 9.8 1.22 7.8 1:390 0.02 52 アルキルシリケート 15 スプレー塗装 X 比較例 91 29.9 ◎ 7.6 1.14 16.8 1:301 0.10 66 アルキルシリケ—ト 14 スプレー塗装 X 比較例 92 0.6 ◎ 6.9 1.13 10.5 1:333 0.00 72 ウレタン系樹脂 1 18 刷毛塗装 X 比較例 93 4.5 ◎ 10.5 1.02 12.6 1:325 0.01 40 アルキルシリケート 22 スプレー塗装 X 比較例 94 3.7 ◎ 12.6 1.06 7.8 1:456 0.01 36 アルキルシリケ一ト 54 スプレー塗装 X
Figure imgf000095_0001
O
Figure imgf000096_0001
73
Figure imgf000097_0001
Figure imgf000098_0001
75
Figure imgf000099_0001
(実施例 6 )
表 7 6〜 9 1 に化学成分を示すように、 更に、 A l 、 3 1 の 1種 又は 2種を含有する Z n合金粒子を製造した。 その他は、 実施例 5 と同様である。
表 7 6〜 9 1 より、 本発明の Z n合金粒子を用いた塗装試験片は 、 ベース樹脂の種類によらず、 即ち、 無機系及び有機系のバインダ 一とも、 優れた耐食性を示すことが判る。
表 76
Figure imgf000101_0001
77
Figure imgf000102_0001
表 78
Figure imgf000103_0001
表 79
Figure imgf000104_0001
Figure imgf000105_0001
81
Figure imgf000106_0001
表 82
Figure imgf000107_0001
83
Figure imgf000108_0001
Figure imgf000109_0001
表 85
Figure imgf000110_0001
Figure imgf000111_0001
Figure imgf000112_0001
88
Figure imgf000113_0001
89
Figure imgf000114_0001
Figure imgf000115_0001
Figure imgf000116_0001
(実施例 7 )
表 9 2〜 1 0 8に化学成分を示す Z n合金粒子を、 実施例 5 と同 様に製造した。 塗料調合に際し、 市販の 4種類の有機系バインダを 使用した。 その他は、 実施例 5 と同様である。
M g固溶相は、 X線回折法により同定した。 Z n— M g金属間化 合物は、 X線回折法、 又は、 エネルギー分散型 X線分析装置付き走 查電子顕微鏡観察により、 物理的破砕面又はき裂表面における M g と Z nの組成比を分析して同定した。 その組成は、 M g Z n2、 M g 2 Z n u、 M g 2 Z n3、 M g Z n、 又は、 M g7 Z n 3であった。 表 9 2〜 1 0 8より、 破碎部及び/又はき裂部を含む粒子の表面 に、 M g固溶相及び Z n— M g金属間化合物を有することで、 本発 明の Z n合金粒子を用いた塗装試験片は、 耐食性と防鲭性が向上し ていることが判る。
»— *
Figure imgf000118_0001
、 、
Figure imgf000119_0001
Figure imgf000120_0001
Figure imgf000121_0001
Figure imgf000122_0001
Figure imgf000123_0001
Figure imgf000124_0001
Figure imgf000125_0001
Figure imgf000126_0001
Figure imgf000127_0001
Figure imgf000128_0001
Ζπ合金粒子 塗膜の内容
Zn金属粒子 Ζπ合金粒子:
粒子表面の Mg固溶相 MgZn2または 全金属粒子に
Mg;ほ度 破砕面.き 平均粒径 アスペクト比 度 Si混度 の平均粒径 Ζπ金属粒子の 対する Mg含有 腐食試験 および Zn- Mg金属間 MgaZnuの 乾燥塗膜中の金属粒子
(質量 裂の有無 の平均値 (質量 ¾) (質量 (ii m) 混合显比 最 (質量%) ベース樹脂の種類 塗膜厚み
の剳合 (貧 途装方法 結果 化合物の有無 有無
比較例 ◎ 有り 無し アルキルシリケート スブレ一塗装 比較^ 有り 有り ウレタン系樹脂 スブレ一塗装 比較仞 有り 有り アルキルシリケート 刷毛塗装 比較仞 有り 有り アルカリシリケ一卜 スプレー塗装 比較伊 ◎ 有り 有り アルキルシリケ—ト スプレー塗装 比較伊 122 12.5 ◎ 0.005 1.38 0 0 有り 無し 12.6 1:3 3.13 72 アルキルシリケート 25 スフレ一塗装 比較伊 ◎ 有り 有り アルキルシリケート 刷毛塗装 比較伊 ◎ 有り 無し アルカリシリケ一ト スブレ一塗装 比較伊 ◎ 有リ 有リ アルキルシリケート スブレー塗装 比較 ◎ 有り 有り アルキルシリケ一ト スプレー塗装 比铰俘 ◎ 有 無し アルキルシリゲート 刷毛塗装 比較伢 ◎ 有り 有り ウレタン系樹脂 スプレー塗装 比較^ ◎ 有 有り アルキルシリケ一ト スブレ一塗装 比較 . ◎ 無し 無し アルキルシリケ一ト スブレー塗装 比較^ 有り 有り アルキルシリケ一ト 刷毛塗装 比較例 有り 無し ウレタン系樹脂 スプレー塗装 比較例 ◎ 有り 有リ アルキルシリケ一ト スプレー箜装 比較例 有り 有り アルキルシリケート スブレ一塗装 比較例 ◎ 有り 有り アルキルシリケート スプレー塗装 比较例 ® 有り 有り ウレタン系樹脂 刷毛塗装 比較例 ◎ 有り 有リ アルキルシリケ一ト スブレ一塗装 比較例 ◎ 有り 有り アルキルシリケート スブレー 装
表 104
Figure imgf000130_0001
表 105
Figure imgf000131_0001
表 106
Figure imgf000132_0001
Figure imgf000133_0001
Figure imgf000134_0001
(実施例 8 )
表 1 0 9〜 1 2 5 に化学成分を示す Z n合金粒子を、 実施例 5 と 同様に製造した。 その他は、 実施例 5 と同様である。
M g Z n 2 , g 2 Z n , , , M g2 Z n3、 M g Z n、 又は、 M g7 Z n3は、 X線回折法、 又は、 エネルギー分散型 X線分析装置付き 走査電子顕微鏡観察により、 物理的破碎面又はき裂表面における] VI g と Z nの組成比を分析することにより同定した。
Z n合金粒子の面数は、 無作為に抽出した 5 0〜 1 0 0の粒子を 、 走查型電子顕微鏡を用いて観察して同定した。
表 1 0 9〜 1 2 5より、 破碎部及び /又はき裂部を含む粒子の表 面に、 金属間化合物として、 M g Z n 2、 M g 2 Z n! , , M g2 Z n 3 、 M g Z n、 又は、 M g7 Z n 3のうちの 1種以上を有すること、 又 は、 面数が 2面以上であることで、 本発明の Z n合金粒子及び Z n 金属粒子を用いた塗装試験片は、 ベース樹脂の種類によらず、 即ち 、 無機系及び有機系のバインダーとも、 更に、 耐食性と防鲭性が向 上していることが判る。
Figure imgf000136_0001
Figure imgf000137_0001
Figure imgf000138_0001
Figure imgf000139_0001
Figure imgf000140_0001
Figure imgf000141_0001
Figure imgf000142_0001
Figure imgf000143_0001
Figure imgf000144_0001
Figure imgf000145_0001
Figure imgf000146_0001
Figure imgf000147_0001
Figure imgf000148_0001
表 122
Figure imgf000149_0001
Figure imgf000150_0001
Figure imgf000151_0001
表 125
Figure imgf000152_0001
(実施例 9 )
表 1 2 6に、 Z n合金粒子の製造方法を示す。 1次粒子は、 ガス アトマイズ法を用いて作製した。 更に、 本発明に従って、 Z n合金 粒子同士の衝突、 又は、 Z n合金粒子と固体との衝突によって、 2 次粒子を作製した。 また、 含水率を 0. 3 %以下としたトルエン又 はキシレン中に、 Z n合金粒子を添加してスラリー状とし、 粒子同 士の衝突法又は固体との衝突法によって、 2次粒子を作製した。
Z n合金粒子の平均粒径、 ァスぺク ト比の平均値の測定方法は、 実施例 1 と同じである。 また、 M g固溶相、 及び、 Z n— M g金属 間化合物の同定方法は、 実施例 3 と同じである。 M g Z n2、 M g 2 Z n! , , g 2 Ζ η 3 > M g Z n、 又は、 M g7 Z n 3の同定方法、 及 び、 面数の測定方法は、 実施例 4 と同じである。
表 1 2 6から、 本発明の範囲の Z n合金粒子が作製されているこ とが判る。
表 126
Figure imgf000154_0001
W
[産業上の利用可能性]
本発明の物理的破砕面及び Z又はき裂を有する Z n合金粒子を含 有する高耐食性防鲭塗料を塗装すると、 鉄鋼材料等に、 従来にない 、 長期にわたる優れた耐食性及び防鲭性を、 塗装性及び経済性を損 なう ことなく、 付与することができる。 そして、 その結果、 メンテ ナンスの周期を大幅に延長することが可能な高耐食性鉄鋼材料及び 鋼構造物を提供することができる。
よって、 本発明は、 鉄鋼産業において利用可能性の高いものであ る。

Claims

請 求 の 範 囲
1. 質量%で、 M g : 0. 0 1〜 3 0 %を含有し、 残部 Z n及び 不可避的不純物からなり、 物理的破砕面、 及び/又は、 長さ 0. 0 1 m以上のき裂又は深さ 0. 0 1 / m以上のき裂を有し、 平均粒 径が 0. 0 5〜 2 0 0 mで、 最大径と最小径のアスペク ト比 (最 大径 Z最小径) の平均値が 1〜 1. 5であることを特徴とする高耐 食性防鑌塗料用 Z n合金粒子。
2. 前記 Z n合金粒子が、 更に、 質量%で、 A 1 : 0. 0 1〜 3 0 %及び S i : 0. 0 1〜 3 %の 1種又は 2種を含有することを特 徴とする請求の範囲 1 に記載の高耐食性防鲭塗料用 Z n合金粒子。
3. 前記 Z n合金粒子の表面に、 M g固溶相及び Z n— M g金属 間化合物を有することを特徴とする請求の範囲 1又は 2に記載の高 耐食性防鳍塗料用 Z n合金粒子。
4. 前記 Z n—M g金属間化合物が、 M g Z n 2、 M g 2 Z η , , , M g 2 Z n 3 , M g Z n、 又は、 M g7 Z n3のうちの 1種以上を含む ことを特徴とする請求の範囲 3に記載の高耐食性防鲭塗料用 Z n合 金粒子。
5. 前記 Z n合金粒子の形状が、 非球状多面体で、 2面以上の面 数を有することを特徵とする請求の範囲 1〜 4の何れか 1項に記載 の高耐食性防鲭塗料用 Z n合金粒子。
6. 請求の範囲 1〜 5の何れか 1項に記載の高耐食性防鲭塗料用 Z n合金粒子の製造方法であって、 請求の範囲 1又は 2に記載の成 分組成からなる平均粒径 0. 0 5〜 1 0 0 0 111の 1次粒子を互い に衝突させるか、 又は、 該 1次粒子を固体に衝突させて、 上記 1次 粒子を破砕し、 物理的破砕面及び Z又はき裂を有する Z n合金粒子 を製造することを特徴とする高耐食性防鲭塗料用 Z n合金粒子の製 造方法。
7. 前記 1次粒子を有機溶媒中に分散させてスラリーとし、 その 後、 該スラリー同士を衝突させるか、 又は、 上記スラリーを固体に 衝突させて、 1次粒子を破砕することを特徴とする請求の範囲 6に 記載の高耐食性防鲭塗料用 Z n合金粒子の製造方法。
8. 請求の範囲 1〜 5の何れか 1項に記載の高耐食性防鲭塗料用 Z n合金粒子を、 乾燥塗膜換算で 3 0質量%以上含有することを特 徴とする高耐食性防鳍塗料。
9. 前記 Z n合金粒子に加え、 更に、 平均粒径 0. 0 5〜 5 0 mの Ζ n及び不可避的不純物からなる Z n金属粒子を分散させた高 耐食性防鲭塗料であって、 質量%で、 (上記 Z n合金粒子の質量% ) : (上記 Z n金属粒子の質量%) を 1 / xとしたとき、 X力 3 0 0. 0以下であることを特徴とする請求の範囲 8 に記載の高耐食性 防鲭塗料。
1 0. 質量%で、 前記 Z n合金粒子と前記 Z n金属粒子の合計を 1 0 0 %としたとき、 M gの含有量が 0. 0 1〜 3 0 %未満である ことを特徴とする請求の範囲 8又は 9に記載の高耐食性防鑌塗料。
1 1. 前記高耐食性防鲭塗料のバインダーが、 無機系バインダー 、 又は、 有機系バインダーであることを特徴とする請求の範囲 8〜 1 0の何れか 1項に記載の高耐食性防鐯塗料。
1 2. 鋼材面に、 請求の範囲 8〜 1 1 の何れか 1項に記載の高耐 食性防鲭塗料が塗装された鉄鋼材料であって、 塗装厚みが 2〜 7 0 0 _i mで、 Z n合金粒子、 又は、 Z n合金粒子及び Z n金属粒子が 塗膜中に分散していることを特徴とする高耐食性鉄鋼材料。
1 3. 請求の範囲 1 2に記載の高耐食性鉄鋼材料を、 一部又は全 部として備えることを特徴とする鋼構造物。
PCT/JP2007/067901 2006-09-08 2007-09-07 PARTICULES D'ALLIAGE DE Zn POUR PEINTURE HAUTEMENT ANTICORROSIVE ET ANTIROUILLE, PROCÉDÉ DE PRODUCTION DES PARTICULES, PEINTURE HAUTEMENT ANTICORROSIVE ET ANTIROUILLE CONTENANT LES PARTICULES, MATÉRIAU EN ACIER HAUTEMENT RÉSISTANT A LA CORROSION REVÊTU AVEC LA PEINTURE, ET STRUCTURES E WO2008029960A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07807308.7A EP2060345B1 (en) 2006-09-08 2007-09-07 Zn ALLOY PARTICLES FOR HIGHLY ANTICORROSIVE AND RUST-INHIBITING PAINT, PROCESS FOR PRODUCTION OF THE PARTICLES, HIGHLY ANTICORROSIVE AND RUST-INHIBITING PAINT CONTAINING THE PARTICLES, HIGHLY CORROSION-RESISTING STEEL MATERIAL COATED WITH THE PAINT, AND STEEL STRUCTURES MADE BY USING THE STEEL MATERIAL
CN2007800331360A CN101511510B (zh) 2006-09-08 2007-09-07 高耐腐蚀性防锈涂料用Zn合金粒子的制造方法
US12/310,574 US8105699B2 (en) 2006-09-08 2007-09-07 Zn alloy particles for high corrosion resistance rust protection paint, method of production of particles, high corrosion resistance rust protection paint containing particles, high corrosion resistance steel material coated with paint, and steel structure having steel material
KR1020097004443A KR101109166B1 (ko) 2006-09-08 2007-09-07 고내식성 방청 도료용 Zn 합금 입자, 상기 입자의 제조 방법, 상기 입자를 함유하는 고내식성 방청 도료, 상기 도료를 도장한 고내식성 철강 재료 및 상기 철강 재료를 가진 강 구조물
NO20090790A NO341767B1 (no) 2006-09-08 2009-02-19 Zn legeringspartikler for rustbeskyttende maling med høy korrosjonsmotstand, fremgangsmåte for fremstilling av partikler, rustbeskyttende maling med høy korrosjonsmotstand som inneholder partikler, stålmateriale med høy korrosjonsmotstand belagt med maling og stålstruktur som har stålmateriale

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-244346 2006-09-08
JP2006244346 2006-09-08
JP2007106040 2007-04-13
JP2007-106040 2007-04-13
JP2007-229254 2007-09-04
JP2007229254A JP5190235B2 (ja) 2006-09-08 2007-09-04 破砕面を有する高耐食性防錆塗料用Zn合金粒子、その製造方法、高耐食性防錆塗料、高耐食性鉄鋼材料および鋼構造物

Publications (1)

Publication Number Publication Date
WO2008029960A1 true WO2008029960A1 (fr) 2008-03-13

Family

ID=39157372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067901 WO2008029960A1 (fr) 2006-09-08 2007-09-07 PARTICULES D'ALLIAGE DE Zn POUR PEINTURE HAUTEMENT ANTICORROSIVE ET ANTIROUILLE, PROCÉDÉ DE PRODUCTION DES PARTICULES, PEINTURE HAUTEMENT ANTICORROSIVE ET ANTIROUILLE CONTENANT LES PARTICULES, MATÉRIAU EN ACIER HAUTEMENT RÉSISTANT A LA CORROSION REVÊTU AVEC LA PEINTURE, ET STRUCTURES E

Country Status (8)

Country Link
US (1) US8105699B2 (ja)
EP (1) EP2060345B1 (ja)
JP (1) JP5190235B2 (ja)
KR (1) KR101109166B1 (ja)
CN (2) CN102161093B (ja)
NO (1) NO341767B1 (ja)
TW (1) TW200837162A (ja)
WO (1) WO2008029960A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037949A (ja) * 2009-08-07 2011-02-24 Nippon Steel Corp 破砕面を有する高耐食性防錆塗料用Zn合金粒子、高耐食性防錆塗料、高耐食性鉄鋼材料および鋼構造物

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5190238B2 (ja) * 2006-09-28 2013-04-24 新日鐵住金株式会社 高耐食性防錆塗料、高耐食性鉄鋼材料及び鋼構造物
DE102012107634A1 (de) 2012-08-20 2014-02-20 Eckart Gmbh Zink-Magnesium-Korrosionsschutzpigmente, Korrosionsschutzlack und Verfahren zur Herstellung der Korrosionsschutzpigmente
DE102012107633A1 (de) * 2012-08-20 2014-02-20 Eckart Gmbh Zinkmagnesiumlegierung-Korrosionsschutzpigmente, Korrosionsschutzlack und Verfahren zur Herstellung der Korrosionsschutzpigmente
IN2014MN02589A (ja) * 2012-11-30 2015-07-24 Lg Chemical Ltd
WO2015160582A1 (en) * 2014-04-15 2015-10-22 Valspar Sourcing, Inc. Corrosion-resistant coating composition
KR101984653B1 (ko) * 2016-12-09 2019-05-31 주식회사 포스코 볼트 코팅용 조성물 및 이를 이용한 볼트의 코팅 방법
CN108568781A (zh) * 2018-04-27 2018-09-25 徐州光森电器工具有限公司 多功能工具
CN108568794A (zh) * 2018-04-27 2018-09-25 徐州光森电器工具有限公司 抽出式工具箱柜
CN108581969A (zh) * 2018-04-27 2018-09-28 徐州光森电器工具有限公司 电动工具
CN108406974A (zh) * 2018-04-27 2018-08-17 徐州光森电器工具有限公司 多功能木工电动工具的连接机构
CN108634596A (zh) * 2018-04-27 2018-10-12 徐州光森电器工具有限公司 工具台
CN110746822A (zh) * 2019-11-25 2020-02-04 苏州市相城区望亭镇天瑞机械配件加工厂 一种汽车传动轴防锈涂料

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129070A (ja) * 1982-01-29 1983-08-01 Mitsui Mining & Smelting Co Ltd 防錆塗料組成物
JPS5952645A (ja) 1982-09-17 1984-03-27 日新製鋼株式会社 耐パウダリング性に優れた溶接性塗装鋼板
JPS59167249A (ja) 1983-03-14 1984-09-20 日新製鋼株式会社 防食性の優れた溶接性塗装鋼板
JPS59198142A (ja) 1983-04-26 1984-11-09 日新製鋼株式会社 溶接性塗装鋼板
JPS61213270A (ja) 1985-03-20 1986-09-22 Kansai Paint Co Ltd 耐熱性防食被覆組成物
JPH01311178A (ja) 1988-06-09 1989-12-15 Kobe Steel Ltd 高耐食性防錆塗料
JPH0273932A (ja) 1988-09-08 1990-03-13 Kobe Steel Ltd 高耐食性Zn−Mg系合金粉末
JPH10280012A (ja) * 1997-04-07 1998-10-20 Nippon Steel Corp 塗料顔料用金属粉末およびその製造方法
JPH11343422A (ja) 1998-06-01 1999-12-14 Mitsui Mining & Smelting Co Ltd 有機防錆塗料用防錆顔料
JP2000080309A (ja) 1998-09-07 2000-03-21 Nippon Steel Chem Co Ltd 耐食性塗料及びこれを塗装した耐食性鉄鋼材料
JP2001164194A (ja) 1999-12-13 2001-06-19 Nippon Steel Corp 耐食性に優れたジンクリッチ塗料および塗装金属板
JP2002285102A (ja) 2001-02-14 2002-10-03 Metal Coatings Internatl Inc 腐蝕保護を与えるための粒状金属合金被覆
JP2004315871A (ja) * 2003-04-15 2004-11-11 Asahi Kasei Corp 金属超微粒子の製造方法およびその製造装置
JP2005314501A (ja) 2004-04-28 2005-11-10 Nippon Steel Corp 高耐食性亜鉛系合金めっき鋼材用塗料
JP2005336431A (ja) 2004-05-31 2005-12-08 Nippon Steel Corp 耐食性および防錆性に優れた鋼材用塗料

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1131351A (en) * 1966-03-09 1968-10-23 Durham Chem Improvements relating to electrophoretic deposition of metallic paints
US5135812A (en) * 1979-12-28 1992-08-04 Flex Products, Inc. Optically variable thin film flake and collection of the same
JPS58199805A (ja) * 1982-05-14 1983-11-21 Nippon Soda Co Ltd 合金粉末の製造方法
JPS5918765A (ja) * 1982-07-23 1984-01-31 Mitsui Mining & Smelting Co Ltd 塗装鋼板用塗料組成物
JPS59171645A (ja) * 1983-03-19 1984-09-28 日新製鋼株式会社 防食性の優れた溶接性塗装鋼板
JPS59212256A (ja) * 1983-05-17 1984-12-01 日新製鋼株式会社 防食性の優れた溶接性複層塗装鋼板
JPS60149788A (ja) * 1984-01-17 1985-08-07 Nisshin Steel Co Ltd 耐パウダリング性に優れた溶接性塗装鋼板
JPH11140511A (ja) * 1997-11-11 1999-05-25 Daiken Kagaku Kogyo Kk 単分散金属微粒子粉末の製造方法
JP2003213394A (ja) * 2002-01-25 2003-07-30 Nisshin Steel Co Ltd 塗装鋼板及びその製造方法
US20040191555A1 (en) * 2003-02-06 2004-09-30 Metal Coatings International Inc. Coating systems having an anti-corrosion layer and a powder coating layer
CN1186153C (zh) * 2003-05-28 2005-01-26 肖骁 片状锌及锌铝合金粉湿法生产工艺
JP2005336432A (ja) * 2004-05-31 2005-12-08 Nippon Steel Corp 耐食性および防錆性に優れた鋼材用塗料及び鉄鋼材料
JP5007424B2 (ja) * 2005-05-23 2012-08-22 Dowaエレクトロニクス株式会社 メカニカルプレーティング用投射材および高耐食性皮膜
JP5190238B2 (ja) * 2006-09-28 2013-04-24 新日鐵住金株式会社 高耐食性防錆塗料、高耐食性鉄鋼材料及び鋼構造物

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129070A (ja) * 1982-01-29 1983-08-01 Mitsui Mining & Smelting Co Ltd 防錆塗料組成物
JPS5952645A (ja) 1982-09-17 1984-03-27 日新製鋼株式会社 耐パウダリング性に優れた溶接性塗装鋼板
JPS59167249A (ja) 1983-03-14 1984-09-20 日新製鋼株式会社 防食性の優れた溶接性塗装鋼板
JPS59198142A (ja) 1983-04-26 1984-11-09 日新製鋼株式会社 溶接性塗装鋼板
JPS61213270A (ja) 1985-03-20 1986-09-22 Kansai Paint Co Ltd 耐熱性防食被覆組成物
JPH01311178A (ja) 1988-06-09 1989-12-15 Kobe Steel Ltd 高耐食性防錆塗料
JPH0273932A (ja) 1988-09-08 1990-03-13 Kobe Steel Ltd 高耐食性Zn−Mg系合金粉末
JPH10280012A (ja) * 1997-04-07 1998-10-20 Nippon Steel Corp 塗料顔料用金属粉末およびその製造方法
JPH11343422A (ja) 1998-06-01 1999-12-14 Mitsui Mining & Smelting Co Ltd 有機防錆塗料用防錆顔料
JP2000080309A (ja) 1998-09-07 2000-03-21 Nippon Steel Chem Co Ltd 耐食性塗料及びこれを塗装した耐食性鉄鋼材料
JP2001164194A (ja) 1999-12-13 2001-06-19 Nippon Steel Corp 耐食性に優れたジンクリッチ塗料および塗装金属板
JP2002285102A (ja) 2001-02-14 2002-10-03 Metal Coatings Internatl Inc 腐蝕保護を与えるための粒状金属合金被覆
JP2004315871A (ja) * 2003-04-15 2004-11-11 Asahi Kasei Corp 金属超微粒子の製造方法およびその製造装置
JP2005314501A (ja) 2004-04-28 2005-11-10 Nippon Steel Corp 高耐食性亜鉛系合金めっき鋼材用塗料
JP2005336431A (ja) 2004-05-31 2005-12-08 Nippon Steel Corp 耐食性および防錆性に優れた鋼材用塗料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2060345A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037949A (ja) * 2009-08-07 2011-02-24 Nippon Steel Corp 破砕面を有する高耐食性防錆塗料用Zn合金粒子、高耐食性防錆塗料、高耐食性鉄鋼材料および鋼構造物

Also Published As

Publication number Publication date
CN102161093B (zh) 2014-03-12
KR101109166B1 (ko) 2012-03-13
US20100247956A1 (en) 2010-09-30
EP2060345B1 (en) 2015-11-11
JP5190235B2 (ja) 2013-04-24
NO20090790L (no) 2009-06-03
CN102161093A (zh) 2011-08-24
EP2060345A1 (en) 2009-05-20
JP2008280607A (ja) 2008-11-20
CN101511510B (zh) 2011-11-16
KR20090038029A (ko) 2009-04-17
TW200837162A (en) 2008-09-16
US8105699B2 (en) 2012-01-31
TWI374170B (ja) 2012-10-11
CN101511510A (zh) 2009-08-19
NO341767B1 (no) 2018-01-15
EP2060345A4 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
WO2008029960A1 (fr) PARTICULES D'ALLIAGE DE Zn POUR PEINTURE HAUTEMENT ANTICORROSIVE ET ANTIROUILLE, PROCÉDÉ DE PRODUCTION DES PARTICULES, PEINTURE HAUTEMENT ANTICORROSIVE ET ANTIROUILLE CONTENANT LES PARTICULES, MATÉRIAU EN ACIER HAUTEMENT RÉSISTANT A LA CORROSION REVÊTU AVEC LA PEINTURE, ET STRUCTURES E
JP5190238B2 (ja) 高耐食性防錆塗料、高耐食性鉄鋼材料及び鋼構造物
US8025965B2 (en) Paint for highly corrosion-resistant zinc-alloy coated steels and steel structure having coated film of said paint
JP2009078450A (ja) 端面耐食性に優れた非クロム系樹脂塗装金属板
WO2010123028A1 (ja) 導電性金属塗料及び導電性金属塗料による防食方法並びに防食補修方法
JP5130058B2 (ja) 利用加工性に優れた高耐食性防錆塗料用ペースト、高耐食性防錆塗料、該塗料を塗装した高耐食鋼および鋼構造物
JP5130071B2 (ja) 船舶鋼材の防錆方法
Ahmed et al. Corrosion protection performance of silica fume waste-phosphates core-shell pigments
JP2011037949A (ja) 破砕面を有する高耐食性防錆塗料用Zn合金粒子、高耐食性防錆塗料、高耐食性鉄鋼材料および鋼構造物
JP2004322573A (ja) 防錆コーティング層を備えた金属部材
JP4355251B2 (ja) 鋼材の防錆方法および塗装鋼材
Subasri et al. Smart nanocontainers for anticorrosion applications
JP5130018B2 (ja) 長期保管性に優れた高耐食性防錆塗料用ペースト、本ペーストを調合した高耐食性防錆塗料ならびに本高耐食性防錆塗料を塗装した鋼材および鋼構造物
JP6733180B2 (ja) 塗料組成物およびそれを用いた塗装部材
JP6742140B2 (ja) めっき溶接形鋼及びめっき溶接形鋼の製造方法
JP5130062B2 (ja) 鋼材の塗装方法および塗装鋼材
JPS59122556A (ja) 無機質系防錆塗料
WO2022109651A2 (en) Anticorrosive coating composition
JP2023006722A (ja) 防食塗装方法
JP2023128912A (ja) エアゾール用の水性防錆塗料およびエアゾール品
JP2004285461A (ja) 表面処理剤
JPS61242669A (ja) 鋼板の前処理方法
JPS6176564A (ja) 塗料組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780033136.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807308

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12310574

Country of ref document: US

Ref document number: 2007807308

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097004443

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE