WO2008026727A1 - Procédé de fabrication d'une résine de polythiouréthane - Google Patents

Procédé de fabrication d'une résine de polythiouréthane Download PDF

Info

Publication number
WO2008026727A1
WO2008026727A1 PCT/JP2007/067019 JP2007067019W WO2008026727A1 WO 2008026727 A1 WO2008026727 A1 WO 2008026727A1 JP 2007067019 W JP2007067019 W JP 2007067019W WO 2008026727 A1 WO2008026727 A1 WO 2008026727A1
Authority
WO
WIPO (PCT)
Prior art keywords
thio
producing
polythiol
polythiourethane resin
catalyst
Prior art date
Application number
PCT/JP2007/067019
Other languages
English (en)
French (fr)
Inventor
Masahisa Kousaka
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to JP2008532132A priority Critical patent/JP5275030B2/ja
Priority to EP07806492.0A priority patent/EP2065415B1/en
Priority to US12/439,261 priority patent/US7872093B2/en
Publication of WO2008026727A1 publication Critical patent/WO2008026727A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0263Preparatory processes using elemental sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a method for producing a polythiourethane resin, and more specifically, a method for producing a polythiourethane resin excellent in optical properties suitable for various optical materials, using a polythiol oligomer having a disulfide bond as a raw material. It is about.
  • the polythiourethane resin obtained by the production method of the present invention is preferably used for, for example, optical lenses, spectacle lenses, contact lenses, intraocular lenses, prisms, optical filters, optical fibers, optical disk substrates, and the like. .
  • Plastics are lighter in weight and easier to crack, and are used in recent years for optical parts such as various lenses.
  • plastic optical materials that have been put to practical use include poly (diethylene glycol bisvalyl carbonate), polymethyl methacrylate, and polycarbonate.
  • an optical material made of transparent glass or plastic has a lower Abbe number when the refractive index is higher, and vice versa. Therefore, in general, it is extremely difficult to produce a plastic optical material having a refractive index and an Abbe number that are increased at the same time.
  • DMMD 2,5-dimercaptomethyl-1,4-dithiane
  • Patent Document 1 a polythiourethane lens
  • DMMD which is a raw material monomer used in the production of polythiourethane lenses described in Patent Document 1
  • DMMD was oxidized with air in the presence of a catalyst such as methyl sulfoxide and ferric chloride to obtain a DMMD oligomer mixture.
  • a catalyst such as methyl sulfoxide and ferric chloride.
  • This production method requires a solvent removal step and, if necessary, an isolation and purification step, and has a certain refractive index and Abbe number.
  • Patent Document 1 Japanese Patent Laid-Open No. 3-236386
  • Patent Document 2 JP-A-7-118263
  • Patent Document 3 Japanese Patent Laid-Open No. 7-118390
  • Patent Document 4 Japanese Patent No. 3415389
  • the present invention has been made to solve the above-described problems.
  • a polythiol oligomer having a higher refractive index and an Abbe number than that of a bifunctional or higher polythiol compound as a starting material is manufactured at low cost, and this is used as a raw material. It is an object of the present invention to provide an efficient method for producing a practical polythiourethane resin having a stable high refractive index and high Abbe number used in the present invention.
  • this invention provides the manufacturing method of the polythiourethane resin of the following (1)-(9). Is.
  • A a step of synthesizing a polythiol compound having a disulfide bond by reacting a polythiol compound having two or more functional groups with thio, and (B) a polythiol oligomer obtained in the step (A) and a poly (thio).
  • a process for producing a polythiourethane resin comprising a step of reacting with an isocyanate group-containing compound,
  • Polyethylene is characterized in that the step (A) is carried out under non-catalytic conditions or substantially without reacting with a poly (thio) isocyanate group-containing compound! /, Using a catalyst and under solvent-free conditions. Manufacturing method of resin.
  • Bifunctional or higher polythiol compounds are 2,5 bis (mercaptomethyl) 1,4-dithiane, 1,2,3 trimercaptopropane, bis (mercaptocetinole) sulfide, bis (mercaptoethyl) disulfide.
  • 1,2-bis (mercaptoethylthio) 3-mercaptopropane a method for producing a polythiourethane resin according to (1) or (2) above, which is a polythiol compound containing at least one selected from the group consisting of 3-mercaptopropane.
  • xylylene di (thio) isocyanate which is at least one selected from the above (1) to (3)! /, A method for producing a polythiourethane resin.
  • the blending ratio of the bifunctional or higher polythiol compound and Xio (S) is a molar equivalent ratio of S / 2 to the mercapto group of the bifunctional or higher polythiol compound, from 1: 0.01 to 1;
  • R 1 is a carbon number;! To 4 alkyl group, X represents a halogen atom, and each R 1 may be the same or different.
  • Imidazole catalyst is represented by the following general formula (II)
  • R 2 represents an alkyl group having 1 to 4 carbon atoms.
  • a polythiol oligomer having a higher refractive index than that of a bithiol or higher polythiol compound as a starting material is produced at a low cost, and this is used as a raw material. It is possible to provide an efficient method for producing a practical polythiourethane resin having a number.
  • the method for producing a polythiourethane resin according to the present invention comprises (i) a step of synthesizing a polythiol oligomer having a disulfide bond by reacting a bi- or higher functional polythiol compound with iow, and (ii) the step.
  • step (ii) will be described.
  • a compound containing no poly (thio) isocyanate group under non-catalytic conditions A polythiol oligomer having a disulfide bond is produced by reacting a bifunctional or higher polythiol compound with thio under a solvent-free condition using a catalyst that does not substantially react with the product.
  • step (A) The reaction in the step (A) is performed under solvent-free conditions. Accordingly, the step (B) described later can be performed subsequent to the step (A) without requiring a step of removing the solvent after the reaction.
  • a polythiol compound having two or more functions is used as a raw material.
  • This bifunctional or higher polythiol compound may be linear, branched or cyclic, and has two or more mercapto groups (one SH), other functional groups such as amines. It has a functional group with active hydrogen such as hydroxyl group!
  • bifunctional or higher polythiol compounds examples include 2,5 bis (mercaptomethyl) 1,4-dithiane, pentaerythritol tetrakismercaptoacetate, pentaptoacetate, trimethylolpropane trismercaptopropionate, 1, 2, Examples include 3 trimenorecaptopropane, 2,3 dimercapto 1 propanol, bis (mercaptoethyl) snoreuid, bis (mercaptoethyl) disulfide, 1,2-bis (mercaptoethylthio) 3 mercaptopropane, and the like. These may be used alone or in combination of two or more.
  • compounds having a solubility of iol at 80 ° C in a polythiol compound lOOg of bifunctional or higher are preferably lg or higher.
  • the solubility of this io is lg or more, the oligomerization reaction proceeds sufficiently under solvent-free conditions.
  • polythiol, which is difficult to dissolve iow can be mixed to modify various physical properties such as heat resistance and processability. From the above viewpoints, the solubility of this io is more preferably 3 g or more.
  • Bifunctional or higher polythiol compounds having such solubility of 2,5 bis (mercaptomethyl) 1,4-dithiane, 1,2,3 trimercaptopropane, bis (mercaptoethyl) sulfide, bis (mercapto) Ethyl) disulfide, 1,2-bis (menolecaptoethylthio) 3-mercaptopropane, and the like.
  • polythiol compounds are used alone or in combination of two or more. It may contain other difunctional or higher polythiol compounds. When two or more bifunctional or more polythiol compounds are used in combination, the solubility power of io at 80 ° C. with respect to 100 g of this mixture may be within the above range.
  • a combination of pentaerythritol tetrakis mercaptoacetate and 2,5 bis (mercaptomethyl) 1,4-dithiane, pentaerythritol tetrakismercaptoacetate and bis (mercaptoethyl) sulfide 1, 2-bis (mercaptoethylthio) 3-mercaptopropane and 2,5 bis (mercaptomethyl) 1,4-dithiane, 1, 2 bis (mercaptoethylthio) 3-mercaptopropane and bis (Mercaptoethyl) sulfide and the like are preferable.
  • the bifunctional or higher polythiol compound is reacted with iow to form a polythiol oligomer.
  • the reaction of the bifunctional or higher polythiol with iow is performed by, for example, When the oligomer is a dimer, it can be represented by the following reaction formula.
  • R 3 represents an organic group
  • n represents an integer of 1 or more, preferably 1, 2 or 3.
  • the blending ratio of the bifunctional or higher polythiol compound and thio (S) is the molar equivalent ratio of S / 2 to the mercapto group of the bifunctional or higher polythiol compound, and is in the range of 1: 0.01. It is preferable that When the equivalent ratio is 0.01 or more, the conversion rate of the polythiol compound is improved, and the effect of improving the refractive index of the resulting resin is exhibited. On the other hand, when it is 0.5 or less, it is preferable as a raw material for polythiourethane resin! /, The amount of polymer having a large molecular weight can be suppressed, and the fluidity can be maintained, so that workability is improved.
  • the blending ratio is a molar equivalent ratio of S / 2 to a mercapto group of a polythiol compound having a bifunctional or higher functionality, and it is more preferable that the blending ratio is in the range of 1: 0.;! ⁇ 1: 0.5. preferable.
  • the iow can be in any form, e.g. crystalline, colloidal, powder or iow. It may be Hua. Preferably, those having a purity of 98% or more, more preferably 99% or more are used.
  • step (A) a catalyst which does not substantially react with a compound containing a poly (thio) isocyanate group or under a catalyst-free condition is used.
  • the reaction proceeds under non-catalytic conditions, but when a catalyst is used, a catalyst that does not substantially react with the poly (thio) isocyanate group-containing compound described later is selected.
  • a catalyst that does not substantially react with the poly (thio) isocyanate group-containing compound described later is selected.
  • the basic catalyst comprising ammonia or amine described in Patent Document 4 described above reacts significantly with a poly (thio) isocyanate group-containing compound, and the viscosity exceeds 0.5 Pa's within 2 hours, for example. Since it rises to the extent that it becomes cloudy or solidifies, after removing these catalysts from the system, it is necessary to perform step (B) described below.
  • the step (B) can be carried out following the step (A) without requiring a step of removing the catalyst. ⁇ Ability to obtain the target without causing an IJ reaction.
  • the catalyst that does not substantially react with the poly (thio) isocyanate group-containing compound examples include a phosphorus catalyst and an imidazole catalyst.
  • the catalyst that does not substantially react with the poly (thio) isocyanate group-containing compound includes a catalyst that reacts with the poly (thio) isocyanate group-containing compound as long as the object of the present invention is not impaired. Means.
  • Preferred examples of the phosphorus catalyst include those represented by the following general formula (I).
  • R 1 is an alkyl group having carbon atoms;! To 4; X represents a halogen atom; and each R 1 may be the same or different.
  • the alkyl group may be linear or branched.
  • Chlorine and bromine atoms are preferred as halogen atoms!
  • tetramethylphosphonium bromide, tetraethylphosphonium bromide, tetrapropylphosphonium bromide, tetrabutyl phosphonium bromide, tetramethylphosphonium bromide, tetraethylphosphonium bromide, tetrapropyl Phosphonium chloride, tetrabutylphosphonium chloride, etc. are mentioned.
  • Preferred examples of the imidazole catalyst include those represented by the following general formula (II). [0023] [Chemical 3]
  • R 2 represents an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group may be linear or branched.
  • Specific examples include 2-mercapto 1-methylimidazole, 2-mercapto 1-ethylimidazole, 2-mercapto 1-propylimidazole, and 2-mercapto 1-butylimidazole.
  • the amount of these catalysts added is usually in the range of 0.01-0.50% by mass, preferably in the range of 0.05-0.30% by mass with respect to the thiol compound.
  • the basic catalyst comprising an amine described in Patent Document 4 described above as a catalyst that reacts with a poly (thio) isocyanate group-containing compound is added as necessary within a range that does not affect the object of the present invention. It doesn't matter. Specifically, a basic catalyst comprising an amine can be added as long as it does not cause an increase in viscosity, white turbidity or coagulation due to reaction with a compound containing an isocyanate group.
  • the addition amount of the catalyst is preferably 0.0001 mol% or less with respect to the thiol compound.
  • the reaction temperature in the step (A) is not limited as long as it is a temperature at which thiol dissolves in a bifunctional or higher polythiol compound, but is usually 30 to 80 ° C, preferably 40 to 60 ° C. is there.
  • the reaction time in the step (A) varies depending on various conditions such as the type of raw material, the mixing ratio of the polythiol compound and io, the presence / absence and amount of catalyst, the reaction temperature, etc. It is advantageous to carry out the reaction until no reaction is left.
  • step (A) it is preferable to remove the generated hydrogen sulfide by degassing during or after the reaction.
  • step (B) By removing hydrogen sulfide, in step (B) described later, In order for the functional group equivalent ratio of iso (thio) cyanate group and mercapto group to react without deviating from the original theoretical structure, bubbles are generated in the target polythiourethane resin.
  • step (Ci) The ability to react with a cyanate group-containing compound to form a brittle resin.
  • step (B) which will be described later, iou precipitation and whitening are suppressed. Can do.
  • the polythiol oligomer thus produced is an oligomer or oligomer mixture that contains at least one of dimer, trimer and tetramer and may contain an unreacted polythiol compound. . Therefore, the reaction solution usually contains an unreacted polythiol compound and a plurality of types of oligomers.
  • the obtained polythiol oligomer is substantially composed only of a compound having two or more mercapto groups, and contains a compound having a disulfide bond in the molecule.
  • the bifunctional or higher polythiol compound has a higher refractive index. Further, according to the method of the step (A), a polythiol oligomer as a raw material for the step (B) described later can be produced at a low cost.
  • Step (B) is a step of obtaining a polythiourethane resin by reacting the polythiol oligomer obtained in the step (A) with a poly (thio) isocyanate group-containing compound.
  • the production method of the present invention does not require the step of removing the solvent and the catalyst as described above after the step (A), and the step (A) is continuously performed in the same reactor used in the step (A). B) can also be performed, and a polythiourethane resin can be produced efficiently.
  • the polythiol oligomer reaction solution obtained in the step (A) can be used as it is without isolation and purification.
  • the reaction solution contains at least one of dimers, trimers, and tetramers of polythiol compounds having at least two functions, and may contain unreacted polythiol compounds.
  • the poly (thio) isocyanate group-containing compound means a polyisocyanate group-containing compound or a polythioisocyanate group-containing compound. That is, it consists of a compound having two or more isocyanate groups (—NCO) or thioisocyanate groups (one NCS). Po
  • the type of the li (thio) isocyanate group-containing compound is not particularly limited as long as it can be used in the field of optical materials, but the viscosity of the polythiol oligomer is relatively high. In general, a poly (thio) isocyanate group-containing compound having a low viscosity is preferred.
  • Polyisocyanate group-containing compounds such as xanthone, isophorone diisocyanate, hexamethylene diisocyanate, dicyclohexylenomethane diisocyanate, bis (isocyanatotomethinole) 4 -dithiane, xylylene diisocyanate, and the like And corresponding polythioisocyanate group-containing compounds.
  • a polyisocyanate group-containing compound is preferable from the viewpoint of the transparency, heat resistance, and weather resistance of the resin.
  • Particularly preferred are bis (isocyanatomethyl) bicyclo (2,2,1) heptane, bis (isocyanatomethinole) cyclohexane, isophorone diisocyanate, and xylylene diisocyanate.
  • the polythiourethane resin is contained in the polythiol oligomer mixture by these processes. Unreacted polythiol compounds may decrease. Therefore, when a urethanization reaction with a poly (thio) isocyanate group-containing compound is subsequently performed, depending on the degree of loss of the mercapto group contained in the polythiol oligomer mixture, the compounding of the poly (thio) isocyanate group-containing compound is performed. There is a problem that it is difficult to obtain a polythiourethane resin having a constant refractive index and an Abbe number.
  • the compounding amount of the poly (thio) isocyanate group-containing compound which does not take into account the loss of mercapto groups as described above is changed to the mercapto group of the polythiol compound described above. It can be easily determined stoichiometrically based on the blending ratio.
  • the blending ratio of the poly (thio) isocyanate group-containing compound is such that the poly (thio) isocyanate with respect to the mercapto group in the polythiol oligomer mixture obtained in the step (A) is used.
  • the equivalent ratio of functional groups of the group-containing compound is preferably in the range of 1: 0.9 to 1: 1.1.
  • the equivalence ratio of the functional groups of the poly (thio) isocyanate group-containing compound is 0.9 or more, good heat resistance can be obtained depending on the combination of polymerization raw materials used. In addition, mercapto odor can be suppressed during resin cutting.
  • the blending ratio is the equivalent ratio of the functional group of the poly (thio) isocyanate group-containing compound to the mercapto group of the polythiol oligomer mixture, and ranges from 1: 0.9.95 to 1: 1.05. It is particularly preferable to do this.
  • step (B) in addition to the above components, components such as an ultraviolet absorber, an antioxidant, and a dye can be appropriately added as necessary.
  • the poly (thio) isocyanate group-containing compound, and the optional component an appropriate amount of the polymerization catalyst.
  • a polythiourethane resin can be produced by a polymerization reaction using a known polymerization method such as thermal polymerization or photopolymerization in the presence of.
  • the conditions for the polymerization reaction are not particularly limited, and the polymerization may be performed according to the conditions usually used in the field of optical materials.
  • the polymerization catalyst include organic tin compounds such as dimethyltin dichloride.
  • An optical product made of the polythiourethane resin thus manufactured can be manufactured by a cast (cast polymerization) method, a cutting polishing method, an injection molding method, or the like.
  • an internal mold release agent may be mixed in advance in the polymerization raw material mixture.
  • the polythiourethane resin produced by the method of the present invention has a high refractive index and a high Abbe number (low dispersion), and has a constant refractive index and Abbe number between product lots. It can be suitably used as a material for optical products such as eyeglass lenses, prisms, optical fibers, information recording substrates, colored filters, and infrared absorption filters.
  • optical products such as eyeglass lenses, prisms, optical fibers, information recording substrates, colored filters, and infrared absorption filters.
  • the refractive index (nd, ne) and Abbe number (V d, ve) of the obtained polythiourethane resin were measured at 22 ° C using a precision refractometer KPR-200 manufactured by Shimadzu Corporation. Set.
  • the mixture was stirred and degassed at 133 mPa for 15 minutes, and then filtered through a poly-4-fluoroethylene (PTFE) filter (pore size: 5 m). Poured into a lens mold. This was gradually heated and polymerized from around 10 ° C. to around 120 ° C. over 24 hours so as not to cause striae to obtain a lens-shaped polythiourethane resin.
  • Table 1 shows the appearance, refractive index, and Abbe number of the obtained resin.
  • a lens was produced in the same manner as in Example 1 except that the polythiol compound and the polyisocyanate group-containing compound shown in Table 1 and Table 2 were used. Tables 1 and 2 show the appearance, refractive index, and Abbe number of the obtained resin. [0038] Example 15
  • Example 2 As in Example 1, except that 0.02 parts by mass of tetrabutyl phosphonium bromide as a polythiol compound, zeolite and oligomerization catalyst shown in Table 2 were weighed and dissolved at 80 ° C while stirring. By the method, a polythiol oligomer mixture (including unreacted) was obtained.
  • Example 2 a lens was produced in the same manner as in Example 1 except that the polyisocyanate group-containing compound shown in Table 2 was used. Table 2 shows the appearance of the obtained resin, its refractive index and Abbe number.
  • Example 1 except that 0.03 parts by mass of 2-mercapto 1-methylimidazole as a polythiol compound, iow and oligomerization catalyst shown in Table 2 was weighed and dissolved at 80 ° C with stirring. In the same manner as above, a polythiol oligomer mixture (including unreacted) was obtained.
  • Example 2 a lens was produced in the same manner as in Example 1 except that the polyisocyanate group-containing compound shown in Table 2 was used. Table 2 shows the appearance of the obtained resin, its refractive index and Abbe number.
  • the mixture was kept at 50 ° C, stirred under reduced pressure at 133 mPa to remove hydrogen sulfide dissolved in polythiol, and the polythiol oligomer mixture Got.
  • the solution was filtered through a polytetrafluoroethylene (PTFE) filter (pore diameter: 5 m) and injected into a spectacle lens mold. This was gradually heated and polymerized from around 10 ° C. to around 130 ° C. over 24 to 48 hours, so that a lens-shaped polythiourethane resin was obtained.
  • Table 3 shows the appearance, refractive index and Abbe number of the resulting resin.
  • a polythiol oligomer mixture was obtained in the same manner as in Example 17.
  • Comparative Example 2 2,5 bis (mercaptomethyl) 1,4-dithiane as a polythiol compound 53.00 parts by mass, pentaerythritol tetrakismercaptoacetate 54.00 parts by mass and 16.0 parts by mass, and cetylamine as a catalyst 0.0146 parts by mass and a solvent
  • 84.55 parts by mass of tetrahydrofuran (THF) was added and stirred while heating to 60 ° C. On the way, hydrogen sulfide bubbles were generated, but after 30 minutes, bubble generation began to decrease.
  • the obtained lens showed convection-like marks and bubbles, and was not able to obtain optical characteristics rather than a uniform transparent resin.
  • a polythiourethane resin having a high refractive index and a high Abbe number (low dispersion) and having a constant refractive index and abbe number between product lots is efficiently produced.
  • This polythiourethane resin can be suitably used as a material for optical products such as optical lenses, spectacle lenses, prisms, optical fibers, information recording substrates, colored filters, and infrared absorption filters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

明 細 書
ポリチォウレタン樹脂の製造方法
技術分野
[0001] 本発明は、ポリチォウレタン樹脂の製造方法に関し、さらに詳しくは、ジスルフイド結 合を有するポリチオールオリゴマーを原料とする、各種光学材料用として好適な光学 特性に優れるポリチォウレタン樹脂の製造方法に関するものである。本発明の製造 方法により得られるポリチォウレタン樹脂は、例えば、光学用レンズ、眼鏡レンズ、コ ンタクトレンズ、眼内レンズ、プリズム、光学フィルター、光ファイバ一、光学ディスク基 板等に好ましく使用される。
背景技術
[0002] プラスチックはガラスに比べると、軽量で割れにくぐ染色が容易なため、近年、各 種レンズ等の光学部品に使用されるようになった。実用化されているプラスチック光 学材料としては、ポリ(ジエチレングリコールビスァリルカーボネート)、ポリメチルメタク リレート、ポリカーボネート等が挙げられる。
[0003] 一般に、透明ガラスやプラスチックからなる光学材料は、屈折率が高くなるとアッベ 数が低くなり、逆もまた同様である。従って、一般には、屈折率とアッベ数を同時に高 めたプラスチック光学材料を製造するのは極めて困難である。
[0004] これに対して、屈折率とアッベ数を同時に高めたプラスチックレンズとして、 2, 5— ジメルカプトメチルー 1 , 4ージチアン(以下 DMMDという)からなるポリチオールをポ リイソシアナートと反応させて得たポリチォウレタンレンズが開示されている(特許文献 1参照)。特許文献 1に記載されて!/、るポリチォウレタンレンズの製造に用いた原料モ ノマーである DMMDは、その屈折率が 1. 646、アッベ数が 35. 2であり、高屈折率 、高アッベ数であるため、得られたポリチォウレタンレンズも高屈折率、高アッベ数を 有するが、さらに高い屈折率、アッベ数を有するプラスチックレンズの開発が望まれて いた。
[0005] そこで、 DMMDをメチルスルホキサイド、塩化第二鉄等の触媒の存在下、空気で 酸化して、 DMMDのオリゴマー混合物を得たのち、この DMMDオリゴマー混合物 をポリイソシアナートと反応させてポリチォウレタンレンズを製造する方法が提案され ている(特許文献 2および特許文献 3参照)。この製造方法では、溶媒除去の工程お よび必要に応じて単離精製の工程が必要となり、一定の屈折率及びアッベ数を有す
Figure imgf000003_0001
[0006] また、二官能以上ポリチオールとィォゥとを、オリゴマー化触媒としてアンモニアまた はァミンからなる塩基性触媒存在下、反応させるポリチオールオリゴマーの製造方法 が提案されている(特許文献 4参照)。し力もながら、特許文献 4に記載の実施例にお いて、溶媒を用いる方法が示され、溶媒除去の工程を必要とする。さらに得られたポ リチオールオリゴマーをポリ(チォ)イソシアナート基含有化合物と反応させて光学材 料用重合体を製造する際に、前記のオリゴマー化触媒は、ポリ(チォ)イソシアナート 基含有化合物と著しく反応し白濁もしくは凝固するため、触媒除去の工程が必要とな り、均質の屈折率及びアッベ数を有する光学材料用重合体を得るのは困難という問 題がある。
[0007] 特許文献 1 :特開平 3— 236386号公報
特許文献 2:特開平 7— 118263号公報
特許文献 3:特開平 7— 118390号公報
特許文献 4 :特許第 3415389号公報
発明の開示
[0008] 本発明は、前記問題を解決するためになされたもので、出発原料の二官能以上の ポリチオール化合物よりも高い屈折率およびアッベ数を有するポリチオールオリゴマ 一を安価に製造し、これを原料に用いた安定した高屈折率および高アッベ数を有す る実用的なポリチォウレタン樹脂の効率的な製造方法を提供することを目的とする。
[0009] 本発明者は、鋭意研究を重ねた結果、二官能以上のポリチオール化合物とィォゥ とを、無触媒条件下または特定の触媒を使用し、かつ無溶媒条件下で反応させてポ リチオールオリゴマーを合成し、得られたオリゴマーと、ポリ(チォ)イソシアナ一ト基含 有化合物とを反応させることにより、前記目的が達成されることを見出した。本発明は かかる知見に基づレ、て完成したものである。
すなわち、本発明は、以下(1)〜(9)のポリチォウレタン樹脂の製造方法を提供す るものである。
(1) (A)二官能以上のポリチオール化合物とィォゥとを反応させてジスルフイド結合 を有するポリチオールオリゴマーを合成する工程、および (B)該工程 (A)で得られた ポリチオールオリゴマーとポリ(チォ)イソシアナート基含有化合物とを反応させる工程 を有するポリチォウレタン樹脂の製造方法であって、
該工程 (A)を、無触媒条件下またはポリ(チォ)イソシアナート基含有化合物と実質 的に反応しな!/、触媒を使用し、かつ無溶媒条件下で行うことを特徴とするポリチォゥ レタン樹脂の製造方法。
(2)二官能以上のポリチオール化合物 lOOgに対する 80°Cにおけるィォゥの溶解度 が、 1 g以上である上記( 1 )記載のポリチォウレタン樹脂の製造方法。
(3)二官能以上のポリチオール化合物が、 2, 5 ビス(メルカプトメチル) 1 , 4ージ チアン、 1 , 2, 3 トリメルカプトプロパン、ビス(メルカプトェチノレ)スルフイド、ビス(メ ルカプトェチル)ジスルフイド、および 1 , 2—ビス(メルカプトェチルチオ) 3—メルカ プトプロパンの中から選ばれる少なくとも 1種を含むポリチオール化合物である上記( 1)または(2)記載のポリチォウレタン樹脂の製造方法。
(4)ポリ(チォ)イソシアナート基含有化合物力 S、ビス((チォ)イソシアナ一トメチル)ビ シクロ (2, 2, 1)ヘプタン、ビス((チォ)イソシアナ一トメチノレ)シクロへキサン、イソホロ
よびキシリレンジ (チォ)イソシアナートの中から選ばれる少なくとも 1種である上記(1) 〜(3)の!/、ずれかに記載のポリチォウレタン樹脂の製造方法。
(5)二官能以上のポリチオール化合物とィォゥ(S)との配合割合が、二官能以上の ポリチオール化合物のメルカプト基に対する S/2のモル当量比で、 1 : 0. 01〜; 1 : 0 . 5の範囲である上記(1)〜(4)の!/、ずれかに記載のポリチォウレタン樹脂の製造方 法。
(6)ポリ(チォ)イソシアナート基含有化合物と実質的に反応しない触媒が、リン触媒 またはイミダゾール系触媒である上記(1)〜(5)のいずれかに記載のポリチォウレタ ン樹脂の製造方法。 (7)リン触媒が、下記一般式 (I)
[R1 -Ρ(θ)]Χ · ' · (Ι)
4
(式中、 R1は炭素数;!〜 4のアルキル基、 Xはハロゲン原子を示し、各 R1は同一でも 異なってもよい。 )
で表わされる化合物の中から選ばれる少なくとも 1種である上記(6)に記載のポリチォ ウレタン樹脂の製造方法。
(8)イミダゾール系触媒が、下記一般式 (II)
[0010] [化 1]
Figure imgf000005_0001
[0011] (式中、 R2は炭素数 1〜4のアルキル基を示す。)
で表される化合物の中から選ばれる少なくとも 1種である上記(6)に記載のポリチォゥ レタン樹脂の製造方法。
(9)工程 (Α)の反応において、該反応中または該反応終了後に脱気をする上記(1) 〜(8)の!/、ずれかに記載のポリチォウレタン樹脂の製造方法。
[0012] 本発明の製造方法によれば、出発原料の二官能以上のポリチオール化合物よりも 高い屈折率を有するポリチオールオリゴマーを安価に製造し、これを原料に用いた 安定した高屈折率および高アッベ数を有する実用的なポリチォウレタン樹脂の効率 的な製造方法を提供することができる。
発明を実施するための最良の形態
[0013] 本発明のポリチォウレタン樹脂の製造方法は、(Α)二官能以上のポリチオール化 合物とィォゥとを反応させてジスルフイド結合を有するポリチオールオリゴマーを合成 する工程、および (Β)該工程 (Α)で得られたポリチオールオリゴマーとポリ(チォ)イソ シアナート基含有化合物とを反応させる工程を有する。
[0014] まず、前記工程 (Α)について説明する。
該工程 (Α)においては、無触媒条件下またはポリ(チォ)イソシアナート基含有化合 物と実質的に反応しない触媒を使用し、かつ無溶媒条件下で、二官能以上のポリチ オール化合物とィォゥとを反応させて、ジスルフイド結合を有するポリチオールオリゴ マーを生成させることを特徴とする。
該工程 (A)における反応は、無溶媒条件下で行う。これにより、反応後に溶媒を除 去する工程を必要とせずに、該工程 (A)に続いて後述する工程 (B)を行うことができ
[0015] 該工程 (A)においては、原料として二官能以上のポリチオール化合物を使用する 。この二官能以上のポリチオール化合物は、直鎖状、分岐鎖状、環状のいずれであ つてもよく、またメルカプト基(一 SH)を 2個以上有していれば、他の官能基、例えば アミン基ゃヒドロキシル基などの活性水素をもつ官能基を有して!/、てもよレ、。
このような二官能以上のポリチオール化合物の例としては、 2, 5 ビス(メルカプトメ チル) 1 , 4ージチアン、ペンタエリスリトールテトラキスメルカプトアセテート、ペンタ プトアセテート、トリメチロールプロパントリスメルカプトプロピオナート、 1 , 2, 3 トリメ ノレカプトプロパン、 2, 3 ジメルカプト 1 プロパノール、ビス(メルカプトェチル)ス ノレフイド、ビス(メルカプトェチル)ジスルフイド、 1 , 2—ビス(メルカプトェチルチオ) 3 メルカプトプロパン等が挙げられる。これらは単独でもよいし、 2種以上を組み合 わせて使用してもよい。
[0016] これらの中で、二官能以上のポリチオール化合物 lOOgに対する 80°Cにおけるィォ ゥの溶解度が lg以上である化合物が好ましい。このィォゥの溶解度が lg以上である と、無溶媒条件下でオリゴマー化反応が十分に進行する。またィォゥを溶解し難いポ リチオールを混合して、耐熱性、加工性等の諸物性を改質することができる。以上の 観点から、このィォゥの溶解度は、 3g以上であることがより好ましい。
このようなィォゥの溶解度を有する二官能以上のポリチオール化合物としては、 2, 5 ビス(メルカプトメチル) 1 , 4ージチアン、 1 , 2, 3 トリメルカプトプロパン、ビス (メルカプトェチル)スルフイド、ビス(メルカプトェチル)ジスルフイド、 1 , 2—ビス(メノレ カプトェチルチオ) 3—メルカプトプロパン等が挙げられる。
これらのポリチオール化合物は、 1種単独で又は 2種類以上を組み合わせて使用 すること力 Sでき、さらにその他の二官能以上のポリチオール化合物を含んでいてもよ い。二官能以上のポリチオール化合物を 2種以上組み合わせて使用する場合、この 混合物 100gに対する 80°Cにおけるィォゥの溶解度力 前記の範囲内であればよい 。高い屈折率およびアッベ数を得る観点から、例えば、ペンタエリスリトールテトラキス メルカプトアセテートと 2, 5 ビス(メルカプトメチル) 1 , 4ージチアンとの組み合わ せ、ペンタエリスリトールテトラキスメルカプトアセテートとビス(メルカプトェチル)スル フイドとの組み合わせ、 1 , 2—ビス(メルカプトェチルチオ) 3—メルカプトプロパンと 2, 5 ビス(メルカプトメチル) 1 , 4ージチアンとの組み合わせ、 1 , 2 ビス(メルカ プトェチルチオ) 3—メルカプトプロパンとビス(メルカプトェチル)スルフイド等が好 適に挙げられる。
[0017] 該工程 (A)においては、前記二官能以上のポリチオール化合物とィォゥとを反応さ せて、ポリチオールオリゴマーを生成させるが、二官能以上のポリチオールとィォゥと の反応は、例えば生成物のオリゴマーが二量体の場合、下記反応式で表すことがで きる。
[0018] [化 2]
2 HS— R3+SH )n + S { HS n ^SS^ で SH ) n + H2S
[0019] ここで、 R3は有機基を示し、 nは 1以上の整数、好ましくは 1、 2または 3を示す。
二官能以上のポリチオール化合物とィォゥ(S)との配合割合としては、二官能以上 のポリチオール化合物のメルカプト基に対する S/2のモル当量比で、 1 : 0. 01— 1 : 0. 5の範囲とすることが好ましい。この当量比が 0. 01以上であると、ポリチオール化 合物の転化率が向上し、得られる樹脂の屈折率向上の効果を発揮する。一方、 0. 5 以下であると、ポリチォウレタン樹脂の原料として好ましくな!/、分子量の大きな多量体 の生成量を抑えることができ、また流動性を維持できるため作業性が良好となる。以 上の観点から、前記の配合割合は、二官能以上のポリチオール化合物のメルカプト 基に対する S/2のモル当量比で、 1 : 0. ;!〜 1 : 0. 5の範囲とするのがより好ましい。 前記ィォゥはいかなる形態でもよぐ例えば、結晶状、コロイド状、粉末あるいはィォ ゥ華でもよい。好ましくは、純度 98%以上、さらに好ましくは純度 99%以上のものを 用いる。
[0020] 該工程 (A)においては、無触媒条件下またはポリ(チォ)イソシアナート基含有化合 物と実質的に反応しない触媒を使用する。
該工程 (A)は、無触媒条件下で反応が進行するが、触媒を使用する場合には、後 述するポリ(チォ)イソシアナート基含有化合物と実質的に反応しない触媒が選択さ れる。例えば、前述した特許文献 4に記載のアンモニアまたはァミンからなる塩基性 触媒は、ポリ(チォ)イソシアナート基含有化合物と著しく反応して、粘度が例えば 2時 間以内に 0. 5Pa ' sを超える程度に上昇し、白濁もしくは凝固するため、これらの触媒 を系から除去した後に、後述する工程 (B)を行う必要がある。
しかしながら、本発明の製造方法によれば、触媒を除去する工程を必要とせずに、 該工程 (A)に続いて該工程 (B)を行うことができ、該工程 (B)において該触媒による 畐 IJ反応カ起こることなく、 目的物を得ること力 Sできる。
ポリ(チォ)イソシアナート基含有化合物と実質的に反応しない触媒としては、リン触 媒またはイミダゾール系触媒等が挙げられる。ここで、ポリ(チォ)イソシアナ一ト基含 有化合物と実質的に反応しない触媒とは、本発明の目的を損なわない範囲で、ポリ( チォ)イソシアナート基含有化合物と反応する触媒も含むことを意味する。
[0021] リン触媒としては、下記一般式 (I)で表わされるものが好適に挙げられる。
[R1 -Ρ(0)]Χ· · · (Ι)
4
ここで、 R1は炭素数;!〜 4のアルキル基、 Xはハロゲン原子を示し、各 R1は同一でも 異なってもよい。また、該アルキル基は、直鎖状でも分岐鎖状であってもよい。
ハロゲン原子としては、塩素原子および臭素原子が好まし!/、。
具体的には、テトラメチルホスホニゥムブロマイド、テトラエチルホスホニゥムブロマイ ド、テトラプロピルホスホニゥムブロマイド、テトラブチルホフホニゥムブロマイド、テトラ メチルホスホニゥムクロライド、テトラエチルホスホニゥムクロライド、テトラプロピルホス ホニゥムクロライド、テトラブチルホスホニゥムクロライド等が挙げられる。
[0022] イミダゾール系触媒としては、下記一般式 (II)で表わされるものが好適に挙げられ [0023] [化 3]
Figure imgf000009_0001
[0024] ここで、 R2は炭素数 1〜4のアルキル基を示す。該アルキル基は、直鎖状でも分岐 鎖状であってもよい。
具体的には、 2—メルカプト 1ーメチルイミダゾール、 2—メルカプト 1ーェチルイ ミダゾ一ノレ、 2—メルカプト 1 プロピルイミダゾーノレ、 2—メルカプト 1ーブチルイ ミダゾールが挙げられる。
これらの触媒の添加量は、チオール化合物に対して通常 0. 01-0. 50質量%の 範囲、好ましくは 0. 05-0. 30質量%の範囲である。
なお、ポリ(チォ)イソシアナート基含有化合物と反応する触媒として前記した特許 文献 4に記載のァミンからなる塩基性触媒は、本発明の目的に影響を及ぼさない範 囲で、必要に応じて添加しても差し支えない。具体的には、ァミンからなる塩基性触 媒は、げォ)イソシアナート基含有化合物との反応により上記のような粘度の上昇、 白濁もしくは凝固が生じない程度であれば添加することができ、該触媒の添加量とし ては、チオール化合物に対して 0. 0001モル%以下が好ましい。
[0025] 前記工程 (A)における反応温度は、二官能以上のポリチオール化合物中にィォゥ が溶解する温度であれば制限はないが、通常は 30〜80°C、好ましくは 40〜60°Cで ある。
前記工程 (A)における反応時間は、原料の種類、ポリチオール化合物とィォゥとの 配合割合、触媒の有無や量、反応温度等の様々な条件により異なり、一概に定める ことはできないが、実質上未反応のィォゥが残存しなくなるまで反応させるのが有利 である。
[0026] 前記工程 (A)において、反応中または反応終了後に脱気して、発生する硫化水素 を除去することが好ましい。硫化水素を除去することにより、後述する工程 (B)におい て、イソ(チォ)シアナート基とメルカプト基との官能基当量比が当初の理論構成から ずれることなく反応するために、 目的物のポリチォウレタン樹脂中に気泡を生じること カ ぐ硫化水素とイソ(チォ)シアナート基含有化合物とが反応をして脆い樹脂がで きること力 Sない。また、硫化水素を除去することにより、オリゴマー化反応が進行して 未反応のィォゥが残存しなくなるまで反応させることができ、後述する工程 (B)におい て、ィォゥの析出や白化等を抑えることができる。
[0027] このようにして生成したポリチオールオリゴマーとしては、二量体、三量体および四 量体の少なくとも 1種を含有し、かつ未反応ポリチオール化合物を含んでいてもよい オリゴマーまたはオリゴマー混合物である。よって通常、反応液中には、未反応ポリチ オール化合物及び複数種のオリゴマーが含有されている。
得られたポリチオールオリゴマーは、実質上メルカプト基 2個以上を有する化合物 のみから構成されており、また分子内にジスルフイド結合を有する化合物を含有して いることから、反応条件を定めることにより、出発原料の二官能以上のポリチオール 化合物より高い屈折率を有するものになる。また、前記工程 (A)の方法によれば、後 述する工程 (B)の原料となるポリチオールオリゴマーを安価に製造することができる。
[0028] 次に、前記工程 (B)について説明する。
工程 (B)は、前記工程 (A)で得られたポリチオールオリゴマーとポリ(チォ)イソシァ ナート基含有化合物とを反応させてポリチォウレタン樹脂を得る工程である。
本発明の製造方法は、該工程 (A)の後に、前述したように溶媒や触媒を除去する 工程を必要とせず、該工程 (A)で使用した同一反応器内で連続的に該工程 (B)を 行うこともでき、効率的にポリチォウレタン樹脂を製造することができる。
[0029] 該工程 (B)において、原料としては、前記工程 (A)で得られたポリチオールオリゴ マー反応液をそのまま単離精製することなく使用することができる。該反応液は、二 官能以上のポリチオール化合物の二量体、三量体および四量体の少なくとも 1種を 含有し、かつ未反応ポリチオール化合物を含有してもよレ、。
[0030] 前記ポリ(チォ)イソシアナート基含有化合物は、ポリイソシアナート基含有化合物ま たはポリチオイソシアナ一ト基含有化合物を意味する。すなわち、イソシアナート基( — NCO)またはチォイソシアナート基(一 NCS)を 2個以上有する化合物からなる。ポ リ(チォ)イソシアナート基含有化合物としては、光学材料の分野で用いることができ るものであればよぐその種類は特に制限されるものではないが、ポリチオールオリゴ マーの粘度が比較的高いことから、一般に粘度の低いポリ(チォ)イソシアナ一ト基含 有化合物が好ましい。
本発明で使用することができるポリ(チォ)イソシアナート基含有化合物の具体例と しては、ビス(イソシアナ一トメチル)ビシクロ (2, 2, 1)ヘプタン、ビス(イソシアナ一トメ チノレ)シクロへキサン、イソホロンジイソシアナート、へキサメチレンジイソシアナート、 ジシクロへキシノレメタンジイソシアナート、ビス (イソシアナ一トメチノレ) 4-ジチアン、 キシリレンジイソシアナート等のポリイソシアナート基含有化合物、およびこれらに対 応するポリチオイソシアナ一ト基含有化合物が挙げられる。これらの中で、樹脂の透 明性、耐熱性、及び耐候性の観点から、ポリイソシアナート基含有化合物が好ましい 。特に好ましくはビス(イソシアナ一トメチル)ビシクロ (2, 2, 1)ヘプタン、ビス(イソシァ ナートメチノレ)シクロへキサン、イソホロンジイソシアナート、キシリレンジイソシアナート である。
[0031] また、前述した従来のポリチォウレタン樹脂の製造方法のように、オリゴマー化反応 に使用した溶媒や触媒を除去する工程を必要とする場合、これらの工程によってポリ チオールオリゴマー混合物に含有する未反応ポリチオール化合物等が減少すること がある。そのために、その後にポリ(チォ)イソシアナート基含有化合物とのウレタン化 反応を行う際に、ポリチオールオリゴマー混合物に含有するメルカプト基の損失の程 度によって、ポリ(チォ)イソシアナート基含有化合物の配合量を変える必要があり、 一定の屈折率及びアッベ数を有するポリチォウレタン樹脂を得るのは困難となるとい う問題がある。
一方、本発明の製造方法によれば、前述のようなメルカプト基の損失を考慮するこ となぐポリ(チォ)イソシアナート基含有化合物の配合量を、前述したポリチオール化 合物のメルカプト基とィォゥとの配合割合に基づいて化学量論的に簡便に定めること ができる。
[0032] ポリ(チォ)イソシアナート基含有化合物の配合割合としては、前記工程 (A)で得ら れたポリチオールオリゴマー混合物のメルカプト基に対するポリ(チォ)イソシアナート 基含有化合物の官能基の当量比で、 1 : 0. 9〜; 1 : 1. 1の範囲とすることが好ましい。 ポリ(チォ)イソシアナート基含有化合物の官能基の当量比が 0. 9以上であると、使 用する重合原料の組み合わせにもよる力 良好な耐熱性が得られる。また樹脂の切 削加工の際、メルカプト臭を抑えることができる。一方、 1. 1以下であると、重合後の 樹脂が黄色く着色することがなぐ良好な耐候性が得られる。以上の観点から、前記 の配合割合は、ポリチオールオリゴマー混合物のメルカプト基に対するポリ(チォ)ィ ソシアナート基含有化合物の官能基の当量比で、 1 : 0. 95〜; 1 : 1. 05の範囲とする ことが特に好ましい。
[0033] なお、前記工程 (B)において、前記成分以外に、紫外線吸収剤、酸化防止剤、染 料等の成分を必要に応じて適宜加えることができる。
[0034] 前記工程 (B)において、前記工程 (A)で得られたポリチオールオリゴマー、ポリ(チ ォ)イソシアナート基含有化合物、および前記任意成分を含む混合物を調製したの ち、適量の重合触媒の存在下、熱重合、光重合などの公知の重合方法を用いて重 合反応させることによりポリチォウレタン樹脂を製造することができる。重合反応の条 件は特に制限はなぐ光学材料の分野で通常用いられている条件に従い重合すれ ばよい。重合触媒としては、例えばジメチルスズジクロライド等の有機スズ化合物等が 挙げられる。
このように製造されたポリチォウレタン樹脂からなる光学製品の製造は、キャスト(注 型重合)法、切削研磨法、射出成形法などによって行うことができる。キャスト(注型重 合)法で製品を製造する際は、場合によって予め重合原料混合物中に内部離型剤 を混合してもよい。
本発明の方法により製造されたポリチォウレタン樹脂は、高屈折率及び高アッベ数 (低分散性)を有し、かつ製品ロット間の屈折率及びアッベ数が一定であるので、光 学レンズ、眼鏡レンズ、プリズム、光ファイバ一、情報記録用基板、着色フィルター、 赤外線吸収フィルタ一等の光学製品の材料として好適に使用することができる。 実施例
[0035] 以下、実施例により本発明を更に詳しく説明するが、本発明はこれらの実施例によ つて限定されるものではない。なお、各物性は下記の方法に従って測定した。 (1)外観
得られたポリチォウレタン樹脂の透明性を肉眼により観察した。
(2)屈折率およびアッベ数
得られたポリチォウレタン樹脂の屈折率(nd、 ne)およびアッベ数( V d、 v e)を株 式会社島津デバイス製造製の精密屈折計 KPR— 200を用いて、温度は 22°Cで測 定した。
[0036] 実施例 1
ポリチオール化合物として 2, 5 ビス(メルカプトメチル) 1 , 4ージチアン 31. 80 質量部とペンタエリスリトールテトラキスメルカプトアセテート 21 · 60質量部とィォゥ 0· 80質量部を秤量し、 80°Cにて攪拌しながらィォゥを溶解させた。初め黄色に着色し ていた溶解液は硫化水素を発生させながら徐々に透明体に退色していき反応が進 行した。 60分後にガスの発生が無くなり溶液が透明になった後に、室温まで冷却し 1 33mPaにて減圧攪拌しポリチオール化合物中に溶存している硫化水素を除去して、 ポリチオールオリゴマー混合物(未反応を含む)を得た。
続いてポリイソシアナート基含有化合物としてビス (イソシアナ一トメチル)ビシクロ (2 , 2, 1)ヘプタン 46. 40質量部、紫外線吸収剤としてシプロ化成(株)製 SEESORB 7070. 10質量部、内部離型剤として酸性リン酸エステル (商品名: JP506H、城北化 学工業 (株)製) 0. 15質量部、および重合触媒としてジメチルスズジクロライド 0. 10 質量部を加えて攪拌溶解したものを、上記で得たポリチオールオリゴマー混合物(未 反応を含む)に加えて混合し、 133mPaで 15分間攪拌脱気を行った後に、ポリ 4フッ 化工チレン (PTFE)フィルター(孔径: 5 m)にて濾過して眼鏡レンズ用成型型に注 入した。これを 10°C近傍から 120°C近傍まで 24時間かけて脈理が生じないように徐 々に加熱重合させてレンズ形状のポリチォウレタン樹脂を得た。得られた樹脂の外観 、その屈折率およびアッベ数を表 1に示す。
[0037] 実施例 2〜; 14
表 1および表 2に示すポリチオール化合物およびポリイソシアナート基含有化合物と した以外は実施例 1と同様の方法でレンズを作製した。得られた樹脂の外観、その屈 折率およびアッベ数を表 1および表 2に示す。 [0038] 実施例 15
表 2に示すポリチオール化合物、ィォゥおよびオリゴマー化触媒としてテトラブチル ホスホニゥムブロマイド 0. 02質量部を秤量し、 80°Cにて攪拌しながらィォゥを溶解さ せたこと以外は実施例 1と同様の方法でポリチオールオリゴマー混合物(未反応を含 む)を得た。
続いて表 2に示すポリイソシアナート基含有化合物を使用したこと以外は実施例 1と 同様の方法でレンズを作製した。得られた樹脂の外観、その屈折率およびアッベ数 を表 2に示す。
実施例 16
表 2に示すポリチオール化合物、ィォゥおよびオリゴマー化触媒として 2—メルカプ トー 1ーメチルイミダゾール 0. 03質量部を秤量し、 80°Cにて攪拌しながらィォゥを溶 解させたこと以外は実施例 1と同様の方法でポリチオールオリゴマー混合物(未反応 を含む)を得た。
続いて表 2に示すポリイソシアナート基含有化合物を使用したこと以外は実施例 1と 同様の方法でレンズを作製した。得られた樹脂の外観、その屈折率およびアッベ数 を表 2に示す。
[0039] 実施例 17
ポリチオール化合物として 2, 5 ビス(メルカプトメチル) 1 , 4ージチアン 37. 01 質量部、ビス(メルカプトェチル)スルフイド 26· 88質量部、ペンタエリスリトールテトラ キスメルカプトアセテート 32. 32質量部とィォゥ 3. 78質量部を秤量し、 60°Cにて攪 拌しながらィォゥを溶解させた。ィォゥが溶解すると共に溶液中から硫化水素が発生 し、黄色く着色していた溶液が徐々に透明な溶液に退色していき、反応が進行した。 およそ 24時間後、ガスの発生もほとんどなくなつたことを確認したのち、 50°Cに保温 し、 133mPaにて減圧攪拌し、ポリチオール中に溶存している硫化水素を除去して、 ポリチオールオリゴマー混合物を得た。
続いてポリイシシアナ一ト基を含む化合物としてイソホロンジイソシアナート 46. 85 質量部、紫外線吸収剤としてシプロ化成(株)製 SEESORB707を 1. 0質量部、内 部離型剤として酸性リン酸エステル(商品名: JP506H、城北化学工業 (株)製) 0. 18 質量部、および重合触媒としてジメチルスズジクロライド 0. 40質量部を加えて攪拌溶 解したものに、上記で得たポリチオールオリゴマー混合物のうちの 53. 15質量部を 加えて混合し、 133mPaで 45分間攪拌脱気を行った後に、ポリ 4フッ化工チレン (PT FE)フィルター(孔径: 5 m)にて濾過して眼鏡レンズ用成型型に注入した。これを 1 0°C近傍から 130°C近傍まで 24〜48時間かけて脈理が生じないように徐々に加熱 重合させてレンズ形状のポリチォウレタン樹脂を得た。得られた樹脂の外観、その屈 折率およびアッベ数を表 3に示す。
実施例 18
実施例 17と同様の方法でポリチオールオリゴマー混合物を得た。
続いて、ポリイソシアナ一ト基を含む化合物としてイソホロンジイソシアナートを 38. 85質量部、へキサメチレンジイソシアナートを 6. 10質量部、および上記で得たポリ チオールオリゴマー混合物のうちの 55. 05質量部を用いたこと以外は、実施例 17と 同様の方法でレンズ形状のポリチォウレタン樹脂を得た。得られた樹脂の外観、その 屈折率およびアッベ数を表 3に示す。
[0040] 比較例 1
ポリチオール化合物として 2, 5 ビス(メルカプトメチル) 1 , 4ージチアン 26. 50 質量部とペンタエリスリトールテトラキスメルカプトアセテート 27. 00質量部を秤量し 混合する。
続いてポリイソシアナート基含有化合物としてビス (イソシアナ一トメチル)ビシクロ (2 , 2, 1)ヘプタンを 51. 50質量部と紫外線吸収剤としてシプロ化成(株)製 SEESOR B707を 0. 10質量部、内部離型剤として酸性リン酸エステル (商品名: JP506H、城 北化学工業 (株)製)を 0. 15質量部、重合触媒としてジメチルスズジクロライドを 0. 1 0質量部加えて攪拌溶解したものを加えて混合し、 133mPaで 15分間攪拌脱気を行 つた後に、 PTFEフィルター(孔径: 5 m)にて濾過して眼鏡レンズ用成型型に注入 した。これを 10°C近傍から 120°C近傍まで 24時間かけて脈理が生じないように徐々 に加熱重合させてレンズ形状のポリチォウレタン樹脂を得た。得られた樹脂の外観、 その屈折率およびアッベ数を表 2に示す。
[0041] 比較例 2 ポリチオール化合物として 2, 5 ビス(メルカプトメチル) 1 , 4ージチアン 53. 00 質量部とペンタエリスリトールテトラキスメルカプトアセテート 54· 00質量部とィォゥを 16. 00質量部、触媒としてジェチルァミン 0. 0146質量部及び溶媒としてテトラヒドロ フラン (THF) 84. 55質量部を入れ、 60°Cに加温しながら攪拌した。途中、硫化水 素の気泡が発生するが、 30分間後には気泡の発生は減少しはじめた。気泡の発生 が完全になくなった時点で 100°Cに温度を上げて THFを留去し、 133mPaの真空 度で 30分間、減圧処理を行ってポリチオールオリゴマー混合物(未反応を含む;混 合物 A)を得た。続いて、その混合物 A中から 53. 50質量部をビーカーに取出し、ポ リイソシアナート基含有化合物としてキシリレンジイソシアナートを 42. 30質量部、紫 外線吸収剤としてシプロ化成 (株)製 SEESORB707を 0. 10質量部、内部離型剤と して酸性リン酸エステル (商品名: JP506H、城北化学工業 (株)製)を 0. 15質量部、 および重合触媒としてジメチルスズジクロライドを 0. 02質量部加えて攪拌溶解したも のを、混合物 Aの入ったビーカーに加えて混合し、 133mPaで 15分間攪拌脱気を行 つた後に、 PTFEフィルター(孔径: 5 m)にて濾過して眼鏡レンズ用成型型に注入 した。注入中、調合済みの原料が徐々に発熱し、注入が困難になってきたので操作 を終了した。
得られたレンズは、対流のような痕と気泡の発生がみられ、均一な透明樹脂ではな く光学特性を得ることができな力 た。
[表 1]
Figure imgf000017_0001
[z [ε^οο] T0.90/.00Zdf/X3d L V LZL9immZ OAV 2
Figure imgf000019_0001
[0044] [表 3]
Figure imgf000020_0001
産業上の利用可能性
[0045] 本発明の製造方法により、高屈折率及び高アッベ数 (低分散性)を有し、かつ製品 ロット間の屈折率及びアッベ数が一定であるポリチォウレタン樹脂を効率的に製造す ることができる。このポリチォウレタン樹脂は、光学レンズ、眼鏡レンズ、プリズム、光フ アイバー、情報記録用基板、着色フィルター、赤外線吸収フィルタ一等の光学製品の 材料として好適に使用することができる。

Claims

請求の範囲
[1] (A)二官能以上のポリチオール化合物とィォゥとを反応させてジスルフイド結合を 有するポリチオールオリゴマーを合成する工程、および (B)該工程 (A)で得られたポ リチオールオリゴマーとポリ(チォ)イソシアナート基含有化合物とを反応させる工程を 有するポリチォウレタン樹脂の製造方法であって、
該工程 (A)を、無触媒条件下またはポリ(チォ)イソシアナート基含有化合物と実質 的に反応しな!/、触媒を使用し、かつ無溶媒条件下で行うことを特徴とするポリチォゥ レタン樹脂の製造方法。
[2] 二官能以上のポリチオール化合物 lOOgに対する 80°Cにおけるィォゥの溶解度が
、 lg以上である請求項 1に記載のポリチォウレタン樹脂の製造方法。
[3] 二官能以上のポリチオール化合物が、 2, 5 ビス(メルカプトメチル) 1 , 4ージチ アン、 1 , 2, 3 トリメルカプトプロパン、ビス(メルカプトェチノレ)スルフイド、ビス(メノレ カプトェチル)ジスルフイド、および 1 , 2 ビス(メルカプトェチルチオ) 3 メルカプ トプロパンの中から選ばれる少なくとも 1種を含むポリチオール化合物である請求項 1 または 2に記載のポリチォウレタン樹脂の製造方法。
[4] ポリ(チォ)イソシアナート基含有化合物が、ビス((チォ)イソシアナ一トメチル)ビシ クロ (2, 2, 1)ヘプタン、ビス((チォ)イソシアナ一トメチノレ)シクロへキサン、イソホロン ジ(チォ)イソシアナート、へキサメチレンジ(チォ)イソシアナート、ジシクロへキシノレメ びキシリレンジ (チォ)イソシアナートの中から選ばれる少なくとも 1種である請求項 1ま たは 2に記載のポリチォウレタン樹脂の製造方法。
[5] 二官能以上のポリチオール化合物とィォゥ(S)との配合割合が、二官能以上のポリ チオール化合物のメルカプト基に対する S/2のモル当量比で、 1 : 0. 01— 1 : 0. 5 の範囲である請求項 1または 2に記載のポリチォウレタン樹脂の製造方法。
[6] ポリ(チォ)イソシアナート基含有化合物と実質的に反応しない触媒が、リン触媒ま たはイミダゾール系触媒である請求項 1または 2に記載のポリチォウレタン樹脂の製 造方法。
[7] リン触媒が、下記一般式 (I) [R1 -Ρ(θ)]Χ · ' · (Ι)
4
(式中、 R1は炭素数;!〜 4のアルキル基、 Xはハロゲン原子を示し、各 R1は同一でも 異なってもよい。 )
で表わされる化合物の中から選ばれる少なくとも 1種である請求項 6に記載のポリチォ ウレタン樹脂の製造方法。
イミダゾール系触媒が、下記一般式 (II)
[化 1]
Figure imgf000022_0001
(式中、 R2は炭素数 1〜4のアルキル基を示す。)
で表される化合物の中から選ばれる少なくとも 1種である請求項 6に記載のポリチォゥ レタン樹脂の製造方法。
工程 (A)の反応において、該反応中または該反応終了後に脱気をする請求項 11 または 2に記載のポリチォウレタン樹脂の製造方法。
PCT/JP2007/067019 2006-08-31 2007-08-31 Procédé de fabrication d'une résine de polythiouréthane WO2008026727A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008532132A JP5275030B2 (ja) 2006-08-31 2007-08-31 ポリチオウレタン樹脂の製造方法
EP07806492.0A EP2065415B1 (en) 2006-08-31 2007-08-31 Method for producing polythiourethane resin
US12/439,261 US7872093B2 (en) 2006-08-31 2007-08-31 Method for producing polythiourethane resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-236358 2006-08-31
JP2006236358 2006-08-31

Publications (1)

Publication Number Publication Date
WO2008026727A1 true WO2008026727A1 (fr) 2008-03-06

Family

ID=39136008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067019 WO2008026727A1 (fr) 2006-08-31 2007-08-31 Procédé de fabrication d'une résine de polythiouréthane

Country Status (4)

Country Link
US (1) US7872093B2 (ja)
EP (1) EP2065415B1 (ja)
JP (1) JP5275030B2 (ja)
WO (1) WO2008026727A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083773A (ja) * 2008-09-30 2010-04-15 Mitsui Chemicals Inc チオール化合物、これを含む重合性組成物、チオール化合物の製造方法
WO2012147708A1 (ja) * 2011-04-28 2012-11-01 三菱瓦斯化学株式会社 硬化性組成物および光学用接着剤
WO2012118351A3 (ko) * 2011-03-02 2012-12-20 주식회사 케이오씨솔루션 범용의 폴리이소시아네이트화합물을 이용한 티오우레탄계 광학재료용 수지의 제조방법과 수지 조성물 및 제조된 광학재료
WO2014077369A1 (ja) 2012-11-16 2014-05-22 三井化学株式会社 重合性組成物、光学材料およびその製造方法
JP2015517018A (ja) * 2012-04-23 2015-06-18 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG 耐光性ポリウレタン組成物
WO2015125817A1 (ja) * 2014-02-20 2015-08-27 三井化学株式会社 光学材料の製造方法
WO2016143898A1 (ja) * 2015-03-12 2016-09-15 ホヤ レンズ タイランド リミテッド イソ(チオ)シアネート組成物及びそれを用いた光学部材用樹脂組成物
CN106061960A (zh) * 2013-12-11 2016-10-26 三菱瓦斯化学株式会社 新型硫醇化合物和使用了其的光学材料用组合物
WO2021157702A1 (ja) * 2020-02-05 2021-08-12 三井化学株式会社 ポリアミン化合物の製造方法及びその応用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812168B (zh) * 2010-04-27 2012-02-22 锦西化工研究院 一种改性聚硫橡胶及其制备方法
DE102010031683A1 (de) 2010-07-20 2012-01-26 Bayer Materialscience Ag Polyisocyanatgemische
JP6710159B2 (ja) * 2014-04-11 2020-06-17 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag 気相中においてキシリレンジイソシアネートを製造するための方法
ES2970734T3 (es) 2014-06-13 2024-05-30 Covestro Intellectual Property Gmbh & Co Kg Poliisocianatos de tioalofanato que contienen grupos silano
CN104849782B (zh) * 2015-06-01 2016-05-18 南开大学 基于人眼剩余调节力的大焦深人工晶体
US11421082B2 (en) * 2019-03-13 2022-08-23 Hrl Laboratories, Llc Broadband-transparent polysulfide-based copolymers
JP7296755B2 (ja) * 2019-03-28 2023-06-23 ホヤ レンズ タイランド リミテッド 光学部材用樹脂組成物、光学部材、及び眼鏡レンズ
JP7296754B2 (ja) * 2019-03-28 2023-06-23 ホヤ レンズ タイランド リミテッド 光学部材用重合性組成物、光学部材、及び眼鏡レンズ

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026465A (ja) * 1988-04-14 1990-01-10 Soc Natl Elf Aquitaine <Snea> 有機ジスルフィド及びポリスルフィドの製造方法
JPH03236386A (ja) 1989-12-28 1991-10-22 Hoya Corp ポリチオール化合物を用いて得られた光学材料及び光学製品
JPH07118263A (ja) 1993-10-19 1995-05-09 Hoya Corp 反応性オリゴマー
JPH07118390A (ja) 1993-10-19 1995-05-09 Hoya Corp 光学材料及びその製造方法
JPH10120676A (ja) * 1996-04-26 1998-05-12 Hoya Corp ポリチオールオリゴマーの製造方法および光学材料用重合体
JP2001342172A (ja) * 2000-03-27 2001-12-11 Mitsui Chemicals Inc チオール化合物の製造方法
WO2004108787A1 (ja) * 2003-06-09 2004-12-16 Hoya Corporation 透明成形体
JP2005121679A (ja) * 2003-09-22 2005-05-12 Hoya Corp プラスチックレンズの製造方法及びプラスチックレンズ
JP2005281527A (ja) * 2004-03-30 2005-10-13 Hoya Corp 硫黄含有プレポリマーの製造方法及びプラスチックレンズの製造方法
JP2006509901A (ja) * 2002-12-20 2006-03-23 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 強衝撃ポリ(ウレタン尿素)ポリスルフィド

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69706749T2 (de) * 1996-04-26 2002-07-04 Hoya Corp., Tokio/Tokyo Verfahren zur Herstellung von Polythiol-Oligomer
DE60110967T2 (de) 2000-03-27 2005-10-27 Mitsui Chemicals, Inc. Polythiol, polymerisierbare Zusammensetzung, Harz und Linse und Verfahren zur Herstellung der Thiolverbindung
JP4692696B2 (ja) * 2000-09-08 2011-06-01 三菱瓦斯化学株式会社 光学材料用樹脂組成物
JP4822495B2 (ja) * 2004-11-05 2011-11-24 三井化学株式会社 ポリチオールの製造方法
JP4783103B2 (ja) * 2005-09-28 2011-09-28 Hoya株式会社 プラスチックレンズ
JP5060036B2 (ja) * 2005-09-29 2012-10-31 Hoya株式会社 ポリチオールオリゴマーの製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026465A (ja) * 1988-04-14 1990-01-10 Soc Natl Elf Aquitaine <Snea> 有機ジスルフィド及びポリスルフィドの製造方法
JPH03236386A (ja) 1989-12-28 1991-10-22 Hoya Corp ポリチオール化合物を用いて得られた光学材料及び光学製品
JPH07118263A (ja) 1993-10-19 1995-05-09 Hoya Corp 反応性オリゴマー
JPH07118390A (ja) 1993-10-19 1995-05-09 Hoya Corp 光学材料及びその製造方法
JPH10120676A (ja) * 1996-04-26 1998-05-12 Hoya Corp ポリチオールオリゴマーの製造方法および光学材料用重合体
JP3415389B2 (ja) 1996-04-26 2003-06-09 Hoya株式会社 ポリチオールオリゴマーの製造方法
JP2001342172A (ja) * 2000-03-27 2001-12-11 Mitsui Chemicals Inc チオール化合物の製造方法
JP2006509901A (ja) * 2002-12-20 2006-03-23 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 強衝撃ポリ(ウレタン尿素)ポリスルフィド
WO2004108787A1 (ja) * 2003-06-09 2004-12-16 Hoya Corporation 透明成形体
JP2005121679A (ja) * 2003-09-22 2005-05-12 Hoya Corp プラスチックレンズの製造方法及びプラスチックレンズ
JP2005281527A (ja) * 2004-03-30 2005-10-13 Hoya Corp 硫黄含有プレポリマーの製造方法及びプラスチックレンズの製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083773A (ja) * 2008-09-30 2010-04-15 Mitsui Chemicals Inc チオール化合物、これを含む重合性組成物、チオール化合物の製造方法
WO2012118351A3 (ko) * 2011-03-02 2012-12-20 주식회사 케이오씨솔루션 범용의 폴리이소시아네이트화합물을 이용한 티오우레탄계 광학재료용 수지의 제조방법과 수지 조성물 및 제조된 광학재료
US10067266B2 (en) 2011-03-02 2018-09-04 Koc Solution Co., Ltd. Method of producing resin for thiourethane-based optical material using general-purpose polyisocyanate compound, resin composition for thiourethane-based optical material and thiourethane-based optical material including resin produced by the method
WO2012147708A1 (ja) * 2011-04-28 2012-11-01 三菱瓦斯化学株式会社 硬化性組成物および光学用接着剤
JP2015517018A (ja) * 2012-04-23 2015-06-18 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG 耐光性ポリウレタン組成物
KR102057747B1 (ko) 2012-04-23 2019-12-19 코베스트로 도이칠란드 아게 내광성 폴리우레탄 조성물
WO2014077369A1 (ja) 2012-11-16 2014-05-22 三井化学株式会社 重合性組成物、光学材料およびその製造方法
US9778397B2 (en) 2012-11-16 2017-10-03 Mitsui Chemicals, Inc. Polymerizable composition, optical material, and manufacturing method of the same
CN106061960A (zh) * 2013-12-11 2016-10-26 三菱瓦斯化学株式会社 新型硫醇化合物和使用了其的光学材料用组合物
WO2015125817A1 (ja) * 2014-02-20 2015-08-27 三井化学株式会社 光学材料の製造方法
JPWO2015125817A1 (ja) * 2014-02-20 2017-03-30 三井化学株式会社 光学材料の製造方法
CN105992781A (zh) * 2014-02-20 2016-10-05 三井化学株式会社 光学材料的制造方法
US9944029B2 (en) 2014-02-20 2018-04-17 Mitsui Chemicals, Inc. Process for producing optical material
KR101853574B1 (ko) * 2014-02-20 2018-06-20 미쯔이가가꾸가부시끼가이샤 광학 재료의 제조 방법
KR20160103059A (ko) * 2014-02-20 2016-08-31 미쯔이가가꾸가부시끼가이샤 광학 재료의 제조 방법
JPWO2016143898A1 (ja) * 2015-03-12 2017-12-21 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd イソ(チオ)シアネート組成物及びそれを用いた光学部材用樹脂組成物
WO2016143898A1 (ja) * 2015-03-12 2016-09-15 ホヤ レンズ タイランド リミテッド イソ(チオ)シアネート組成物及びそれを用いた光学部材用樹脂組成物
US10544283B2 (en) 2015-03-12 2020-01-28 Hoya Lens Thailand Ltd. Iso(thio)cyanate composition, and resin composition including same for optical member
US11267953B2 (en) 2015-03-12 2022-03-08 Hoya Lens Thailand Ltd. Iso(thio)cyanate composition, and resin composition including same for optical member
WO2021157702A1 (ja) * 2020-02-05 2021-08-12 三井化学株式会社 ポリアミン化合物の製造方法及びその応用
JP6980949B1 (ja) * 2020-02-05 2021-12-15 三井化学株式会社 ポリアミン化合物の製造方法及びその応用

Also Published As

Publication number Publication date
EP2065415A1 (en) 2009-06-03
JP5275030B2 (ja) 2013-08-28
EP2065415B1 (en) 2019-03-06
JPWO2008026727A1 (ja) 2010-01-21
US7872093B2 (en) 2011-01-18
EP2065415A4 (en) 2017-11-22
US20090259001A1 (en) 2009-10-15

Similar Documents

Publication Publication Date Title
WO2008026727A1 (fr) Procédé de fabrication d&#39;une résine de polythiouréthane
EP2845847B1 (en) Production method for polythiol compound, polymerizable composition for optical material and use therefor
JP2016153478A (ja) ウレタン系光学材料用樹脂の製造方法、樹脂組成物、及び製造された光学材料
KR20110133631A (ko) 광학재료용 수지의 제조방법
WO2007125636A1 (ja) 重合性組成物ならびにこれを用いた樹脂および光学部品
KR101923369B1 (ko) 우레탄계 광학 부재 및 그 제조방법
JP5823220B2 (ja) ウレタン系光学部材の製造方法
EP1348726B1 (en) Process for producing plastic lens and plastic lens
CN108610481B (zh) 改善长期储存稳定性的聚硫醇组成物以及使用其的光学镜片
CN114031744A (zh) 双异氰酸酯甲酯基环己烷组合物、其改性物组合物及制备方法
JP2004002712A (ja) プラスチックレンズの製造方法及びプラスチックレンズ
JP5747001B2 (ja) ウレタン系光学部材及びその製造方法
JPWO2014027428A1 (ja) ポリチオール化合物の製造方法
EP3125002B1 (en) Polyisocyanate monomer composition for optical members, and optical member and production method therefor
KR101813258B1 (ko) 광학 재료용 실록산 티올 올리고머
JP2022156321A (ja) 化合物、混合物、ポリチオウレタン樹脂、眼鏡レンズ及び化合物の製造方法
JPWO2014027427A1 (ja) ポリチオール化合物の製造方法
KR20190138145A (ko) 폴리티올 조성물 및 이의 제조방법
JP2005220207A (ja) 高屈折率樹脂用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806492

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008532132

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007806492

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12439261

Country of ref document: US