WO2008026328A1 - Détecteur de magnétisme et son procédé de fabrication - Google Patents

Détecteur de magnétisme et son procédé de fabrication Download PDF

Info

Publication number
WO2008026328A1
WO2008026328A1 PCT/JP2007/052103 JP2007052103W WO2008026328A1 WO 2008026328 A1 WO2008026328 A1 WO 2008026328A1 JP 2007052103 W JP2007052103 W JP 2007052103W WO 2008026328 A1 WO2008026328 A1 WO 2008026328A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic detection
insulating protective
hole
protective layer
Prior art date
Application number
PCT/JP2007/052103
Other languages
English (en)
French (fr)
Inventor
Yoshito Sasaki
Shinichi Sasaki
Motoki Hirayama
Hideto Ando
Daigo Aoki
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Priority to EP07713901A priority Critical patent/EP2071349B1/en
Priority to JP2008531962A priority patent/JP5066525B2/ja
Publication of WO2008026328A1 publication Critical patent/WO2008026328A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips

Definitions

  • the present invention relates to a magnetic sensing element that detects an external magnetic field using an anisotropic magnetoresistance effect (AMR effect), a giant magnetoresistance effect (GMR effect), or a tunnel magnetoresistance effect (TMR effect).
  • AMR effect anisotropic magnetoresistance effect
  • GMR effect giant magnetoresistance effect
  • TMR effect tunnel magnetoresistance effect
  • the present invention also relates to a magnetic detection device having a detection circuit for detecting the electric resistance of the detection element and a method for manufacturing the same.
  • a magnetic detection device that detects an external magnetic field is used as a non-contact ON / OFF switch, a rotary encoder that detects a rotational phase or a rotational speed, and the like.
  • Conventional magnetic detection devices of this type have mainly used Hall elements as magnetic detection elements.
  • the magnetic detection device using the Hall element has a drawback that a detection output correction circuit is required and the circuit configuration of the detection circuit is complicated.
  • the magnetic detection element using the magnetoresistive effect has the advantage that the circuit configuration of the detection circuit can be made relatively simple and the external magnetic field can be detected with high accuracy. .
  • the magnetic detection device includes a detection circuit formed on a substrate and a magnetic detection element formed on the detection circuit via an insulating layer, and the magnetic detection element and the magnetic detection device
  • the wiring layer constituting the air circuit is electrically connected through a hole formed in the insulating layer.
  • a functional element such as an aluminum wiring or IC formed on a substrate is covered with an insulating protective layer (passivation film) for protection.
  • the protective layer is generally formed in order to isolate and protect the device from the external environment, and to protect it mechanically and chemically.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-45616
  • Patent Document 2 Japanese Patent Laid-Open No. 4 257238
  • the present invention solves the above-described conventional problems, and in particular, by optimizing the formation range of the resist layer covering the insulating protective layer, the magnetic detection element and the connection with high accuracy on the surface with small unevenness
  • An object of the present invention is to provide a magnetic detecting element capable of forming a layer and preventing film peeling of the resist layer and having stable characteristics, and a manufacturing method thereof! Speak.
  • a magnetic detecting element using a magnetoresistive effect in which the electric resistance is changed by an external magnetic field and a detecting circuit for detecting a change in the electric resistance of the magnetic detecting element
  • the detection circuit having a wiring layer is formed on a substrate, and the detection circuit and the substrate are covered with an insulating layer,
  • the insulating layer is formed from the detection circuit to the substrate, and is overlaid on the insulating protective layer, and an insulating protective layer having a hole formed in a part of the wiring layer. A hole provided at a position facing the formed hole in the film thickness direction, and a resist layer for relaxing a step on the surface of the insulating protective layer based on a step between the substrate and the detection circuit.
  • the resist layer is formed to extend to the wiring layer through the insulating protective layer, and the resist layer has a hole shape so as not to directly contact the upper surface of the wiring layer.
  • the lower surface side edge of the surface is disposed on the insulating protective layer,
  • the magnetic detection element is formed on the surface of the insulating layer, and a conductive connection layer connected to the magnetic detection element is formed through the hole to the exposed surface of the wiring layer, whereby the magnetic detection element The element and the wiring layer are conductively connected through the connection layer.
  • the surface of the insulating layer can be brought close to a flat surface and the resist layer is extended to the wiring layer.
  • the position of the lower side edge of the hole forming surface of the resist layer is optimized so that the resist layer does not directly contact the wiring layer where the hole force is exposed! Therefore, according to the present invention, the magnetic detection element and the connection layer can be formed on an insulating surface with small irregularities, and the resist layer can be prevented from peeling off, and a magnetic detection device having stable characteristics can be obtained.
  • the hole forming surface of the resist layer is formed with an inclined surface that is inclined so that the size of the hole gradually increases from the lower surface side toward the upper surface side. .
  • the hole forming surface of the insulating protective layer is formed with an inclined surface that is inclined so that the size of the hole gradually increases from the lower surface side toward the upper surface side.
  • connection layer By forming the inclined surface as described above, the connection layer can be formed on a gentle inclined surface, and the magnetic detection element and the wiring layer can be electrically connected appropriately and easily.
  • the insulating protective layer is any of SiN, SiO, Al 2 O, TEOS, and Ta 2 O.
  • the detection circuit is formed of one or two or more layers.
  • the insulating protective layer is preferably formed of SiN.
  • the detection circuit can be appropriately protected mechanically and mechanically during the manufacturing process, and the detection circuit can be appropriately protected from the external environment and the like even after commercialization.
  • the wiring layer may be any one of Al, Cu, Al—Si, Al—Si—Cu, Cr, Ta, W, Au, Ag—Pd, and Ag—Pt—Pd.
  • it is preferably formed of a laminate of two or more.
  • the wiring layer is preferably formed of A1.
  • the low resistance of the wiring layer can be realized, and it is also suitable for wire bonding and the like.
  • the resist layer is not directly formed on the wiring layer. Therefore, film peeling of the resist layer can be prevented appropriately.
  • a fixed resistance element that does not change in electrical resistance due to an external magnetic field connected in series with the magnetic detection element is formed on the surface of the insulating layer, and between the magnetic detection element and the fixed resistance element.
  • the provided connection layer can be configured to be electrically connected to the wiring layer through the hole.
  • the fixed resistance element is preferably formed of the same material layer as the magnetic detection element. As a result, the temperature coefficient between the magnetic sensing element and the fixed resistance element (
  • TCR variation can be suppressed.
  • the present invention also provides:
  • a magnetic detection device having a magnetic detection element using a magnetoresistive effect in which electric resistance changes due to an external magnetic field, and a detection circuit that detects a change in electric resistance of the magnetic detection element
  • the magnetic detection element and the connection layer can be formed on an insulating surface with small irregularities.
  • the resist layer is directly on the wiring layer exposed from the hole. Since the positions of the lower edge portions of the hole forming surface of the resist layer are optimized so that they do not come into contact with each other, there is no problem of peeling of the resist layer. Therefore, it is possible to manufacture a magnetic detection device that has no disconnection or the like and has superior electrical stability or the like as compared with the conventional case.
  • the hole forming surface formed in the insulating protective layer is inclined so that the size of the hole gradually increases toward the lower surface side force and the upper surface side. It is preferable to form with.
  • the hole forming surface formed in the resist layer is formed as an inclined surface inclined so that the size of the hole gradually increases from the lower surface side toward the upper surface side. It is preferable. At this time, it is preferable that the inclined layer is formed by heat treatment before the resist layer is thermally cured.
  • connection layer By forming the inclined surface as described above, the connection layer can be formed on a gentle slope, and the magnetic detection element and the wiring layer can be appropriately and easily electrically connected via the connection layer.
  • the resist layer is formed in the resist layer by using the resist layer formed in the step (c) as a mask without forming a hole in the insulating protective layer. It is preferable that the insulating protective layer exposed from the formed hole is removed to form a hole where the upper surface of the wiring layer is exposed in the insulating protective layer because the manufacturing process can be simplified.
  • the magnetic detection element can be appropriately formed.
  • the surface of the insulating layer can be brought close to a flat surface, and the resist layer is extended to the wiring layer.
  • the position of the lower edge of the hole forming surface of the resist layer is optimized so that the resist layer does not directly contact the wiring layer exposed from the hole. Therefore, according to the present invention, the magnetic sensing element and the connection layer can be formed on an insulating surface with small irregularities, and the resist layer can be prevented from peeling off, and the magnetic layer has stable characteristics. A detection device can be obtained.
  • FIG. 1 is a perspective view showing the magnetic detection device of the present embodiment
  • FIG. 2 is a longitudinal sectional view of the magnetic detection device of FIG. 1, taken along line II-II
  • FIG. 3 is an enlarged view of a part of FIG. It is an enlarged vertical sectional view.
  • a magnetic detection device 1 shown in FIG. 1 is an IC package in which a magnetic detection element 10, a fixed resistance element 20, and a detection circuit are combined, and is configured to be small and thin.
  • This magnetic detection device 1 can obtain, for example, a pulsed ON output when a magnetic field generating member such as a magnet M approaches.
  • the magnetic detection device 1 is built in a main body in which key switches are arranged in a foldable mobile phone.
  • a magnet M is mounted on the folding part having a display device such as a liquid crystal device. When the main body part and the folding part are in the folded state, the magnet M approaches the magnetic detection device 1, and the magnet M A magnetic field that generates a force is detected by the magnetic detection device 1, and an ON output is obtained from the magnetic detection device 1.
  • the location of the magnetic detection device 1 is not limited to the mobile phone, but can be used for a seat position detection unit, a seat belt attachment / detachment detection unit, and the like, for example, mounted in an automobile. Alternatively, it can be used to detect the rotation phase and rotation speed of a rotating magnet by changing the circuit configuration.
  • the magnetic detection element 10 changes its electric resistance by an external magnetic field using the magnetoresistance effect.
  • the fixed resistance element 20 has substantially the same electric resistance as the magnetic detection element 10 and the same temperature coefficient, and the electric resistance is substantially different depending on the external magnetic field with a magnitude to which the magnetic detection element 10 reacts. It will not change.
  • the magnetic detection element 10 detects an external magnetic field using a giant magnetoresistance effect (GMR effect).
  • the magnetic sensing element 10 has a basic laminated structure of an antiferromagnetic layer, a Z pinned magnetic layer, a Z nonmagnetic layer, and a Z free magnetic layer.
  • the antiferromagnetic layer is formed of an Ir′Mn alloy (iridium / manganese alloy), a Pt′Mn alloy (platinum / manganese alloy), or the like.
  • the pinned magnetic layer and the free magnetic layer are formed of a Co'Fe alloy (cobalt'iron alloy) or a Ni'Fe alloy (nickel / iron alloy).
  • the nonmagnetic layer is formed of a nonmagnetic conductive material such as Cu (copper).
  • the magnetic detection element 10 includes a protective layer, an underlayer, and the like.
  • the fixed resistance element 20 is preferably formed of the same material layer as the magnetic detection element 10. That is, the fixed resistance element 20 also includes antiferromagnetic layers, fixed magnetic layers, nonmagnetic layers, and free magnetic layers made of the same material as the magnetic detection element 10. However, the stacking order is different from that of the magnetic sensing element 10, and in the fixed resistance element 20, for example, the antiferromagnetic layer, Z pinned magnetic layer, Z free magnetic layer, Z nonmagnetic layer from the bottom (or vice versa).
  • the free magnetic layer that forms the fixed resistance element 20 is a magnetic layer in which the direction of the magnetic field is fixed together with the fixed magnetic layer, and the resistance value does not change even when the external magnetic field fluctuates. (No longer a free magnetic layer).
  • TCR temperature coefficient
  • the magnetic detection element 10 may be an AMR element using an anisotropic magnetoresistance effect or a TMR element using a tunnel magnetoresistance effect.
  • the magnetic detection element 10 and the fixed resistance element 20 have a planar shape formed with a meander pattern, and their basic electrical resistance values are high. By forming with the meander pattern, current consumption can be reduced.
  • the pinned magnetic layer constituting the magnetic detecting element 10 is magnetically pinned in the Pin direction shown in FIG. 1 by antiferromagnetic coupling of the antiferromagnetic layer. That is, the magnetic detection element 10 is fixed in a direction perpendicular to the longitudinal direction. Therefore, as shown in FIG. 1, for example, when the N pole of the magnet M approaches and the free magnetic layer constituting the magnetic detection element 10 is magnetized in the direction opposite to the Pin direction, the electric resistance value of the magnetic detection element 10 Is the maximum. Further, when the magnet M moves away and the external magnetic field acting on the free magnetic layer is eliminated, the resistance value of the magnetic detection element 10 is minimized.
  • an electrode layer (connection layer) 15 formed of a low-resistance material is provided at one end of the magnetic detection element 10, and the low-resistance material is also provided at the other end.
  • the electrode layer (connection layer) 18 formed in (1) is provided.
  • An electrode layer (connection layer) 16 made of a low-resistance material is provided at one end of the fixed resistance element 20, and an electrode layer (connection) made of a low-resistance material is also provided at the other end.
  • Layer) 19 is provided.
  • the electrode layer 15 of the magnetic detection element 10 and the electrode layer 16 of the fixed resistance element 20 are connected by a lead layer (connection layer) 17 to detect the magnetic detection.
  • Element 10 and fixed resistance element 20 are connected in series. Electrode and lead layers are gold
  • the electrode layers 15 and 16 and the lead layer 17 are integrally formed.
  • One of the electrode layers 18 and 19 is an input terminal, the other is a ground terminal, and the lead layer 17 is an output terminal.
  • the potential of the output terminal is a midpoint potential.
  • the resistance value of the magnetic detection element 10 fluctuates, and based on this, the potential at the lead layer 17 fluctuates. To do.
  • the detection circuit connected to the lead layer 17 detects a potential change based on a change in electrical resistance of the magnetic detection element 10 with respect to an external magnetic field, and further generates an ON'OFF switching signal based on the detection result. .
  • the magnetic detection device 1 includes a substrate 2 made of, for example, silicon (Si), and a base film of silicon dioxide (SiO 2) (not shown) having a constant thickness. Is formed.
  • a wiring layer 35 constituting the detection circuit On the base film, a wiring layer 35 constituting the detection circuit, active elements 36 to 38, a resistor 39, and the like are formed.
  • the active elements 36 to 38 are an IC, a differential amplifier, a comparator, an output transistor, and the like.
  • the wiring layer 35 is made of Al, Cu-Al-Si-Al-Si-Cu, Cr, Ta, W, Au, Ag-Pd, A8-? 1;-? (It is preferably formed of one or two or more laminated layers of one. Of these, it is more preferably formed of aluminum (A1). This makes the wiring layer 35 low resistance. In addition, wire bonding and the like can be appropriately performed.
  • the upper surface 35a of the wiring layer 35 is a force formed by a flat surface.
  • the exposed surface 35b of the wiring layer 35 exposed from a hole 44 formed in the insulating layer 40 described later is slightly exposed. It becomes a concave surface formed lower than the peripheral surface 35c of the surface 35b! /!
  • a lower force insulating protective layer 41, a resist layer 42, and over the wiring layer 35, the active elements 36 to 39, the resistor 39, and the substrate 2 An insulating layer 40 formed in the order of the insulating covering layer 43 is formed.
  • a hole 44 is formed in a part on the wiring layer 35, and the force of the hole 44 exposes the upper surface 35 a of the wiring layer 35.
  • the planar shape of the hole 44 is circular, There is no particular limitation such as a rectangular shape.
  • the insulating protective layer (passivation film) 41 is formed on the wiring layer 35, the active elements 36 to 38, the resistor 39, and the substrate 2 except for the hole 44. It is formed over the entire area.
  • the insulating protective layer 41 is formed by sputtering or CVD, and any one of SiN, SiO, Al 2 O, TEOS (tetraethoxysilane), and Ta 2 O is used.
  • the insulating protective layer 41 is more preferably formed of silicon nitride (SiN).
  • SiN silicon nitride
  • the wiring layer 35, the active elements 36 to 38, and the resistor 39 can be appropriately insulated and protected.
  • the insulating protective layer 41 plays a role of an adhesive layer that improves the adhesion between the resist layer 42 and the wiring layer 35 in particular.
  • the average thickness of the insulating protective layer 41 formed by sputtering is as thin as about 0.5 m.
  • the wiring layer 35, the active elements 36 to 38, etc. are formed with a film thickness of about 0.1 to 1.5 m, the step between the wiring layer 35 and the substrate 2, the active element
  • the surface 41 a of the insulating protective layer 41 becomes a steep uneven surface due to a step between 36 to 38 and the substrate 2.
  • a resist layer (flattening resist) 42 is formed on the insulating protective layer 41.
  • the resist layer 42 is filled in the recess formed in the surface 41a of the insulating protective layer 41, and the surface 42a of the resist layer 42 is generally flatter than the surface 4la of the insulating protective layer 41. Close to the surface.
  • the surface 41a of the insulating protective layer 41 also has a high flatness like the surface 42a of the resist layer 42, but in the portion where the detection circuit is formed.
  • the surface 41a of the insulating protective layer 41 has a lower flatness than the surface 42a of the resist layer 42.
  • the step between the substrate and the detection circuit can be relaxed to the insulating protective layer 41 or more, and as a whole, the surface 42a of the resist layer 42 is the insulating layer.
  • the surface of the protective layer 41 is closer to a flat surface than the surface 41a.
  • the resist layer 42 is provided in order to ensure higher insulation and further bring the insulating surface closer to a flat surface.
  • the flatness degree can be determined by using an average roughness (Ra) of the center line.
  • the average film thickness of the resist layer 42 on the wiring layer 35 is about 0.5 to 1.O ⁇ m.
  • an insulating coating layer (inorganic insulating layer) 43 formed of any one or two or more laminated layers is formed.
  • the insulating coating layer 43 formed of an inorganic insulating layer is optimal as a base film for the magnetic detection element 10 formed on the insulating layer 40.
  • the formation of the insulating coating layer 43 is not essential.
  • the resist layer 42 is formed on the wiring layer 35 excluding the hole 44, on the active elements 36 to 38, and on the resistor 39 via the insulating protective layer 41. And formed over the entire area of the substrate 2.
  • the lower surface side edge portion 42bl of the hole forming surface 42b of the resist layer 42 is lower than the lower surface side edge portion 41bl of the hole forming surface 41b of the insulating protective layer 41.
  • the wiring layer 35 is provided on the insulating protective layer 41 in a direction away from the exposed surface 35b of the wiring layer 35 (direction XI in the drawing). That is, the resist layer 42 does not extend to the exposed surface 35b of the wiring layer 35, and the resist layer 42 and the wiring layer 35 are not in direct contact.
  • the magnetic detection element 10 and the fixed resistance element 20 are formed on the insulating coating layer 43 formed on the resist layer 42, and the magnetic detection element 10 and the fixed resistance element are formed.
  • the electrode layers 15, 16, 18, and 19 are formed at each end of the electrode 20, and as shown in FIGS. 2 and 3, the electrode layer 15 of the magnetic detection element 10 and the electrode of the fixed resistance element 20
  • the lead layer 17 connecting the layers 16 is formed on the hole forming surface 43a of the insulating coating layer 43 in the hole 44, on the hole forming surface 42b of the resist layer 42, and on the hole forming surface 4 of the insulating protective layer 41. It is formed on lb and on the exposed surface 35b of the wiring layer 35. Thereby, the magnetic detection element 10 and the fixed resistance element 20 are electrically connected to the wiring layer 35 via the electrode layers 15 and 16 and the lead layer 17.
  • the hole 44 formed in the insulating layer 40 is also formed at a position facing the electrode layer 18 of the magnetic detection element 10 and the electrode layer 19 of the fixed resistance element 20, and is the same as in FIG.
  • the magnetic sensing element 10 is electrically connected to the wiring layer via the electrode layer 18 and the fixed resistance element 20 is not shown on the wiring layer (not shown). Electrical connection is made via the electrode layer 19.
  • a characteristic part of the present embodiment is that the resist layer 42 is formed on the wiring layer 35 so as to overlap with the insulating protective layer 41, and the resist layer 42 is formed on the wiring layer.
  • the lower surface side edge 42a1 of the hole forming surface 42a of the resist layer 42 is disposed on the insulating protective layer 41 so as not to extend to the exposed surface 35b of 35.
  • the surface 42a of the resist layer 42 has a shape closer to a flat surface than the surface 41a of the insulating protective layer 41 as a whole. If the wiring layer 35 is formed not on the wiring layer 35 but apart from the wiring layer 35 in a plane direction, a steep step is formed between the resist layer 42 and the wiring layer 35, and the resist layer 42 is exposed. The electrode layers 15, 16, 18, 19 and the lead layer 17 formed on the exposed surface 35b of the wiring layer 35 are easily disconnected.
  • FIG. 5 is a FIB photograph showing a cross-sectional shape when the resist layer 42 is not actually stacked on the wiring layer 35 but formed away from the wiring layer 35 in the plane direction. As shown in FIG. 5, the force on the resist layer 42 is also extended to the exposed surface 35b of the insulating protective layer 41 and the wiring layer 35. It was found that the disconnection was caused by the step.
  • the resist layer 42 by forming the resist layer 42 so as to extend onto the wiring layer 35 excluding the hole 44, the electrode layers 15, 16, 18, 19 and the lead layer
  • the entire formation surface of 17 can be formed on a smooth surface with small irregularities, and the electrode layers 15, 16, 18, 19 and the lead layer 17 do not break!
  • the resist layer 42 is not formed so as to extend to the exposed surface 35b of the wiring layer 35. That is, the resist layer 42 and the wiring layer 35 are not in direct contact.
  • the adhesion between the resist layer 42 and the wiring layer 35, particularly the wiring layer 35 formed of A1, is poor.
  • the resist layer 42 is easy to peel on the wiring layer 35. Further, the resist layer 42 is particularly easily peeled off by heat treatment or the like performed in the process of forming the magnetic detection element 10.
  • the adhesion force between the insulating protective layer 41 and the wiring layer 35 and the adhesion force between the insulating protective layer 41 and the resist layer 42 cause the resist layer 42 and the wiring layer 35 to adhere to each other.
  • the lower surface side edge of the hole forming surface 42b of the resist layer 42 42bl is disposed on the insulating protective layer 41 so that the resist layer 42 does not extend to the exposed surface 35b of the wiring layer 35, thereby forming the resist layer 42 on the wiring layer 35.
  • Film peeling can be appropriately prevented. Therefore, the electrode layers 15, 16, 18, 19 and the lead layer 17 formed on the resist layer 42 are not cracked or disconnected due to the film peeling.
  • the detection circuit is easily corroded by coming into contact with the external environment, but in this embodiment, the detection circuit can be appropriately sealed with the insulating layer 40. As described above, in the present embodiment, it is possible to obtain the magnetic detection device 1 having stable characteristics.
  • the lower surface side edge portion 42b 1 of the hole forming surface 42b of the resist layer 42 may be located at the same position as the lower surface side edge portion 41bl of the hole forming surface 41b of the insulating protective layer 41. “On the insulating protective layer 41” includes the lower surface side edge 41 b 1 of the insulating protective layer 41. However, it is more reliable that the lower surface side edge portion 42bl of the resist layer 42 is retracted in a direction away from the exposed surface 35b of the wiring layer 35 than the lower surface side edge portion 41bl of the insulating protective layer 41. The entire layer 42 can be formed only on the insulating protective layer 41, and the resist layer 42 can be appropriately prevented from peeling off on the wiring layer 35.
  • the magnetic sensing element 10 having a multilayer structure is formed with high accuracy by forming the magnetic sensing element 10 on the resist layer 42 whose surface is closer to the flattened surface than the insulating protective layer 41.
  • the magnetic sensing element 10 having stable characteristics can be formed.
  • the wiring layer 35 of the detection circuit and the lead layer 17 are arranged in an overlapping position and are electrically connected to each other in the vertical direction, the wiring layer 35 and the lead layer 17 are arranged in a flat plane. Compared to the above, the apparatus can be configured with a small area, which is preferable.
  • the hole forming surface 41b of the insulating protective layer 41 gradually increases from the lower surface side to the upper surface side (that is, as it moves in the Z1 direction shown in FIG. 3).
  • the hole 44 is formed with an inclined surface so that the size (planar area of the hole) is increased.
  • the hole formation surface 42b of the resist layer 42 gradually increases in size as the hole portion 44 increases in size from the lower surface side to the upper surface side (ie, in the direction Z1 shown in FIG. 3). It is formed with an inclined surface so as to be large.
  • the inclined surface may be either a straight line or a curved line when viewed from a cross section in which the film thickness direction force is cut as shown in FIG.
  • the curved shape may be either a convex shape in which the hole forming surfaces 41b and 42b swell or a concave shape in which the hole forming surfaces 4lb and 42b are recessed.
  • the hole forming surface 41b (when the cross section of the hole forming surface is curved, a tangent at the point (contact point) where the straight line passing through the center of film thickness of the insulating protective layer 41 and the hole forming surface intersect,
  • the angle ⁇ 2 formed between the point where the straight line L passing through the thickness center intersects with the hole forming surface 42b (tangent T at the contact point P) and the lower surface of the insulating protective layer 41 is about 45 °.
  • the hole forming surface 42b of the resist layer 42 and the hole forming surface 41b of the insulating protective layer 41 are formed with the inclined surfaces described above, the exposure of the wiring layer 35 from the hole forming surfaces 41b and 42b.
  • the surface reaching the exit surface 35b can be formed with a gentle slope, and the electrode layers 15, 16, 18, 19 and the lead layer 17 are formed on the hole forming surface 42b of the resist layer 42 and the hole forming surface 41b of the insulating protective layer 41.
  • the hole forming surface 42b of the resist layer 42 and the hole forming surface 41b of the insulating protective layer 41 are formed as inclined surfaces that are continuous without a step. Such a shape can be formed by a manufacturing method described later. As a result, the electrode layers 15, 16, 18, 19, and the lead layer 17 can be appropriately formed with a predetermined thickness without disconnection.
  • the insulating coating layer 43 is formed only on the resist layer 42.
  • the force may be formed to extend to the hole forming surface 41b of the insulating protective layer 41. Further, the insulating coating layer 43 may be partially extended on the exposed surface 35b so as not to cover the entire exposed surface 35b of the wiring layer 35.
  • a detection circuit 60 having a plurality of sets of wiring layers 35, active elements 36 to 38, resistors 39, and the like is formed on the substrate 2.
  • the detection circuit 60 is performed by a thin film forming process such as a CVD process, a sputtering process, and a plating process.
  • an insulating protective layer (passivation film) 41 formed of silicon nitride (SiN) or the like is formed on each detection circuit 60 and the substrate 2 by sputtering or CVD.
  • the surface 41a of the insulating protective layer 41 on the detection circuit 60 is illustrated in a flat shape. However, this is only a simplification and does not mean that the uneven shape is not formed. As in FIG. 2, the surface 41a of the insulating protective layer 41 formed on the detection circuit 60 has an uneven shape.
  • a resist layer 42 is applied on the entire surface of the insulating protective layer 41 by, for example, screen printing, and the resist layer 42 is exposed to light so that the upper surface of the wiring layer 35 is formed.
  • a hole 42d is formed at a position facing a part in the film thickness direction.
  • the insulating protective layer 41 not covered with the hole 42d is removed by etching.
  • a part of the wiring layer 35 may be slightly cut so that the exposed surface 35b of the wiring layer 35 is slightly recessed.
  • a hole 41d is formed in the insulating protective layer 41, and an upper surface of the wiring layer 35 is formed from the hole 41d. Part is exposed as exposed surface 35b.
  • the resist layer 42 is then thermally cured.
  • a predetermined heat treatment is performed before the resist layer 42 is heat-cured so that the hole formation surface 42b of the resist layer 42 is bent to have the inclined surface shape shown in FIG.
  • post-beta is performed on the resist layer 42, for example, at 130 ° C for about 10 minutes, and then, for example, thermosetting is performed in a nitrogen atmosphere at 300 ° C for 60 minutes.
  • the above-mentioned heat treatment is performed on the resist layer 42, so that the hole forming surface 42b of the resist layer 42 is inclined and becomes an inclined surface as shown in FIG. Then, by forming the hole forming surface 42b of the resist layer 42 as an inclined surface in this way, the insulating protective layer 41 exposed from the hole 42d of the resist layer 42 is removed by etching, so that the inclined surface shape is obtained.
  • the hole forming surface 41b formed in the insulating protective layer 41 by following the etching is also formed as an inclined surface as shown in FIG.
  • the resist layer 42 can be appropriately extended to the wiring layer 35, and the hole forming surface 42b of the resist layer 42 and the insulating insulating layer can be formed as shown in FIG.
  • Both the hole forming surface 41b of the protective layer 41 can be formed as an inclined surface, and the hole forming surfaces 41b and 42b can be formed as continuous surfaces.
  • the lower surface side edge portion 42b of the hole forming surface 42b of the resist layer 42 is more disposed than the lower surface side edge portion 41bl of the hole forming surface 41b of the insulating protective layer 41. It can be formed at a position retreated on the insulating protective layer 41 in a direction away from the exposed surface 35b of 35 (see FIG. 3).
  • the resist layer 42 and the insulating protective layer 41 having a predetermined shape can be easily formed, which is preferable.
  • the above-described manufacturing method uses the resist layer 42 as a mask and etches the insulating protective layer 41 exposed from the hole 42d formed in the resist layer 42, so that the insulating protective layer 41 is also applied.
  • the hole 41d can be easily formed.
  • the formation of the resist layer 42 and the formation of the hole 41d in the resist layer 42 may be performed.
  • the upper surface 35a of the wiring layer 35 is easily affected by etching.
  • FIG. Before the insulating protective layer 41 is formed by sputtering, a lift-off resist layer is partially formed on the wiring layer 35 and is covered with the lift-off resist layer. The insulating protective layer 41 is formed on the substrate 2 by sputtering, and then the lift-off resist layer is removed. Thereafter, the formation of the resist layer 42—the formation of the hole 41d in the resist layer 42 is performed.
  • a lift-off resist layer 70 is formed in the holes 41d and 42d formed in the insulating protective layer 41 and the resist layer 42, and Al 2 O 3 is formed on the resist layer 42.
  • the insulating coating layer 43 formed by 2 3 etc. is formed by sputtering or the like. At this time, the same material layer as the insulating coating layer 43 is deposited on the lift-off resist layer 70. Then, the lift-off resist layer 70 is removed.
  • the magnetic detection element 10 and the fixed resistance element 20 are formed on the insulating coating layer 43, and the electrode layers 15, 16, 18, 19, and the lead layer 17 are formed. At this time, the wiring The lead layer 17 and the electrode layers 18 and 19 are extended and formed on the exposed surface 35b of the layer 35 to electrically connect the wiring layer 35 and the magnetic detection element 10 and between the wiring layer 35 and the fixed resistance element 20. Connect.
  • the electrode layers 15, 16, 18, 19 and the lead layer 17 can be formed of a nonmagnetic conductive material by a sputtering method or a plating method.
  • the magnetic detection element 10 and the fixed resistance element 20 are moved over. After packaging with grease 80, etc., each package is separated by dicing for each magnetic detector 1. Alternatively, the packaging may be performed for each separated magnetic detection device 1 after dicing and separating each magnetic detection device 1 before molding the resin 80.
  • the insulating surface can be made closer to the flat surface than the surface of the insulating protective layer 41.
  • the magnetic detection element 10 and the fixed resistance element 20 can be formed on the insulating surface close to the conversion surface.
  • the resist layer 42 can be appropriately extended to the wiring layer 35, and the hole forming surface 42b of the resist layer 42 and the insulating protective layer can be formed as shown in FIG.
  • the hole forming surface 41b of 41 can be formed as a continuous surface, and the lower surface side edge portion 42b of the hole forming surface 42b of the resist layer 42 is formed from the lower surface side edge portion 4 lbl of the hole forming surface 41b of the insulating protective layer 41.
  • the wiring layer 35 can be formed at a position retracted on the insulating protection layer 41 in a direction away from the exposed surface 35b of the wiring layer 35. Therefore, the formation surfaces of the electrode layers 15, 16, 18, 19 and the lead layer 17 are formed with gentle slopes, and the resist layer 42 and the wiring layer 35 are not in direct contact with each other.
  • the electrode layers 15, 16, 18, 19, and the lead layer 17 can be appropriately connected without disconnection without causing the resist layer 42 to peel off the force on the wiring layer 35 even by heat treatment performed in the formation process of the detection element 10.
  • the electrical stability between the magnetic detection element 10 and the wiring layer 35 and between the fixed resistance element 20 and the wiring layer 35 can be improved.
  • the insulating layer 40 has a three-layer structure.
  • the insulating layer 40 may have a two-layer structure of an insulating protective layer 41 and a resist layer 42, or may have four or more layers.
  • one magnetic detection element 10 and one fixed resistance element 20 are provided.
  • two magnetic detection elements 10 and two fixed resistance elements 20 are provided to form a bridge circuit. Therefore, it is preferable to make a magnetic detection device with better magnetic sensitivity.
  • the combination of the magnetic detection element 10 and the fixed resistance element 20 is used.
  • a circuit configured with magnetic detection elements having different Pin directions, or the N pole of the magnet is approaching.
  • the resistance changes when the S pole approaches, and the resistance changes when the S pole of the magnet approaches the S pole of the magnet, and changes when the N pole approaches.
  • It may be a circuit or the like combined with a second magnetic detection element that is not converted.
  • FIG. 1 is a perspective view showing a magnetic detection device of the present embodiment
  • FIG. 2 is a longitudinal sectional view taken along line II-II in FIG. 1, showing the magnetic detection device of the first embodiment.
  • FIG. 3 is an enlarged longitudinal sectional view showing a part of FIG.
  • FIG. 4 is a process diagram showing the manufacturing process of the magnetic detection device of the present embodiment (each figure is the same longitudinal sectional view as FIG. 2);
  • FIG.5 FIB photo showing a longitudinal section of a magnetic detector formed without a resist layer on the wiring layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Description

明 細 書
磁気検出装置およびその製造方法
技術分野
[0001] 本発明は、異方性磁気抵抗効果 (AMR効果)、巨大磁気抵抗効果 (GMR効果)、 あるいはトンネル磁気抵抗効果 (TMR効果)を利用して、外部磁界を検出する磁気 検出素子と、この検出素子の電気抵抗を検出する検出回路とを有する磁気検出装 置およびその製造方法に関する。
背景技術
[0002] 外部磁界を検出する磁気検出装置は、非接触式の ON— OFFスィッチや、回転位 相または回転数を検出する回転エンコーダなどとして使用されている。従来のこの種 の磁気検出装置は、磁気検出素子としてホール素子を使用したものが主であった。 しかし、ホール素子を使用した磁気検出装置は、検出出力の補正回路が必要となり 、検出回路の回路構成が複雑になる欠点があった。その点、磁気抵抗効果を利用し た磁気検出素子は、検出回路の回路構成を比較的単純にでき、しかも高精度な外 部磁界の検出が可能であると 、う利点を有して 、る。
[0003] 磁気検出装置は、基板上に形成された検出回路と、前記検出回路上に絶縁層を 介して形成される磁気検出素子とを有して構成され、前記磁気検出素子と、前記磁 気回路を構成する配線層とが前記絶縁層に形成された穴を介して電気的に接続さ れた構造となっている。
[0004] 半導体装置においては、特許文献 1の例えば図 2等に示すように基板上に形成さ れたアルミ配線や IC等の機能素子上を絶縁性の保護層 (パッシベーシヨン膜)で覆 つて保護する。前記保護層の形成は、外部環境からデバイスを隔離保護し、機械的 、化学的に保護するために一般的に行われている。
特許文献 1 :特開平 7—45616号公報
特許文献 2:特開平 4 257238号公報
発明の開示
発明が解決しょうとする課題 [0005] し力しながら、前記保護層の表面は凹凸面であり、前記保護層上に、磁気検出素 子を成膜するときに前記磁気検出素子を高精度に成膜できない。よって特許文献 1 では、前記保護層表面に形成された凹凸面をプラズマ酸ィ匕層で覆い、その後、前記 プラズマ酸ィ匕層の表面を研磨処理しているが、かかる手法では製造工程の複雑ィ匕を 招き好ましくない。
[0006] そこで前記保護層の表面の凹凸面を覆う材質としてレジスト層を用いると、上記した 研磨処理等が必要なぐ平坦ィ匕面に近い表面を得ることが出来るが、ここで問題とさ れたのが、前記レジスト層の形成範囲であった。すなわち前記レジスト層の形成範囲 によっては、その上に形成される磁気検出素子と接続される電極層等の亀裂や断線 、あるいはレジスト層の剥離が問題となり、安定した特性を有する磁気検出装置を製 造できなかった。
[0007] そこで本発明は、上記従来の課題を解決するものであり、特に絶縁保護層上を覆う レジスト層の形成範囲を適正化して、凹凸が小さい表面上に高精度に磁気検出素子 及び接続層を形成できるとともに、前記レジスト層の膜剥がれを防止でき、安定した 特性を有する磁気検出素子及びその製造方法を提供することを目的として!ヽる。 課題を解決するための手段
[0008] 本発明における磁気検出装置は、
外部磁界により電気抵抗が変化する磁気抵抗効果を利用した磁気検出素子と、前 記磁気検出素子の電気抵抗の変化を検出する検出回路とを有し、
基板上に、配線層を有する前記検出回路が形成され、前記検出回路上及び前記 基板上は絶縁層で覆われ、
前記絶縁層は、前記検出回路上から前記基板上にかけて形成され、前記配線層 上の一部に穴が形成された絶縁保護層と、前記絶縁保護層上に重ねられるとともに 、前記絶縁保護層に形成された前記穴と膜厚方向に対向する位置に穴が設けられ、 前記基板と前記検出回路間の段差に基づく前記絶縁保護層の表面の段差を緩和 するためのレジスト層と、を有して構成され、
前記レジスト層は、前記絶縁保護層を介して前記配線層上にまで延出形成され、 前記レジスト層が前記配線層の上面に直接接触しないように、前記レジスト層の穴形 成面の下面側縁部は、前記絶縁保護層上に配置されており、
前記磁気検出素子は、前記絶縁層の表面に形成され、前記磁気検出素子に接続 される導電性の接続層が前記穴内を通って前記配線層の露出面上にまで形成され て、前記磁気検出素子と前記配線層とが前記接続層を介して導通接続されているこ とを特徴とするものである。
[0009] 本発明では、前記絶縁保護層上に重ねてレジスト層を設けることで、絶縁層の表面 を、平坦ィ匕面に近づけることができるとともに、前記レジスト層を前記配線層上にまで 延出して形成し、さらに前記レジスト層が前記穴力 露出する前記配線層上に直接 接触しな!、ように、前記レジスト層の穴形成面の下面側縁部の位置を適正化して 、る 。したがって本発明では、前記磁気検出素子及び接続層を、凹凸が小さい絶縁表面 上に形成できるとともに、前記レジスト層の膜剥がれを防止でき、安定した特性を有 する磁気検出装置を得ることが出来る。
[0010] また本発明では、前記レジスト層の前記穴形成面は、下面側から上面側に向けて 前記穴の大きさが徐々に大きくなるように傾く傾斜面で形成されることが好まし 、。
[0011] また、前記絶縁保護層の穴形成面は、下面側から上面側に向けて前記穴の大きさ が徐々に大きくなるように傾く傾斜面で形成されることが好ま 、。
[0012] 上記した傾斜面形成によって、前記接続層をなだらかな傾斜面上に形成でき、前 記磁気検出素子と前記配線層間を適切に且つ容易に電気的に接続できる。
[0013] 本発明では、前記絶縁保護層は、 SiN、 SiO、 Al O、 TEOS、 Ta Oのうちいず
2 2 3 2 5 れか 1種、あるいは 2種以上の積層で形成されることが好ましい。特に、前記絶縁保 護層は、 SiNで形成されることが好ましい。これにより、製造プロセス中において前記 検出回路を機械的、及びィ匕学的に適切に保護でき、また製品化後においても、前記 検出回路を外部環境等から適切に保護できる。
[0014] 本発明では、前記配線層は、 Al、 Cu、 Al— Si、 Al— Si— Cu, Cr, Ta, W, Au, A g-Pd, Ag— Pt— Pdのうちいずれ力 1種、あるいは 2種以上の積層で形成されること が好ましい。特に、前記配線層は、 A1で形成されることが好ましい。前記配線層の低 抵抗を実現でき、またワイヤボンディング等にも適している。本発明では前記配線層 を上記した材質で形成しても、前記レジスト層が直接、前記配線層上に形成されない ので、前記レジスト層の膜剥がれを適切に防止できる。
[0015] 本発明では、前記磁気検出素子と直列に接続された外部磁界により電気抵抗が変 化しない固定抵抗素子が前記絶縁層の表面に形成され、前記磁気検出素子と前記 固定抵抗素子間に設けられた接続層が、前記穴を介して前記配線層と導通されてい る構成に出来る。
[0016] 本発明では、前記固定抵抗素子は、前記磁気検出素子と同じ材料層で形成される ことが好ましい。これにより、前記磁気検出素子と前記固定抵抗素子との温度係数(
TCR)のばらつきを抑制できる。
[0017] また本発明は、
外部磁界により電気抵抗が変化する磁気抵抗効果を利用した磁気検出素子と、前 記磁気検出素子の電気抵抗の変化を検出する検出回路とを有する磁気検出装置の 製造方法において、
(a) 基板上に、前記検出回路を形成する工程、
(b) 前記検出回路上力も前記基板上に絶縁保護層をスパッタあるいは CVD成膜し 、このとき前記検出回路を構成する配線層上の一部が露出するように前記絶縁保護 層に穴を形成する工程、
(c) 前記絶縁保護層上にレジスト層を塗布して、少なくとも前記絶縁保護層で覆わ れた前記基板と前記検出回路間の段差を緩和するとともに、前記絶縁保護層に形成 された前記配線層上での穴と膜厚方向で重なる穴を前記レジスト層に形成し、このと き、前記レジスト層が前記配線層の上面に直接接触しないように、前記レジスト層の 穴形成面の下面側縁部を、前記絶縁保護層上に配置する工程、
(d) 前記絶縁表面に前記磁気検出素子を形成し、且つ、前記磁気検出素子に接 続される導電性の接続層を、前記穴内を通って前記配線層の露出面上にまで延出 形成して、前記磁気検出素子と前記配線層とを前記接続層を介して導通させる工程 を有することを特徴とするものである。
[0018] これにより、本発明では、前記磁気検出素子及び接続層を凹凸の小さい絶縁表面 上に形成できる。さら〖こ、前記レジスト層が前記穴から露出する前記配線層上に直接 接触しな!、ように、前記レジスト層の穴形成面の下面側縁部の位置を適正化して 、る ので、前記レジスト層の剥離の問題もない。よって断線等がなく従来に比べて、電気 的安定性等に優れた磁気検出装置を製造できる。
[0019] 本発明では、前記 (b)工程で、前記絶縁保護層に形成された穴形成面を、下面側 力 上面側に向けて徐々に前記穴の大きさが大きくなるように傾く傾斜面で形成する ことが好ましい。
[0020] また、前記 (c)工程で、前記レジスト層に形成された穴形成面を、下面側から上面 側に向けて徐々に前記穴の大きさが大きくなるように傾く傾斜面で形成することが好 ましい。このとき、前記レジスト層に対し熱硬化を行う前に、熱処理を施して、前記傾 斜面を形成することが好まし ヽ。
[0021] 上記した傾斜面形成によって、前記接続層をなだらかな斜面上に形成でき、前記 磁気検出素子と前記配線層とを前記接続層を介して適切に且つ容易に電気的に接 続できる。
[0022] また本発明では、前記 (b)工程で、前記絶縁保護層に対し穴を形成せずに、前記( c)工程で形成されたレジスト層をマスクとして利用して、前記レジスト層に形成された 穴から露出する前記絶縁保護層を除去して、前記絶縁保護層に前記配線層の上面 が露出する穴を形成することが、製造プロセスを簡単にできて好適である。
[0023] また本発明では、前記 (c)工程と前記 (d)工程の間に、
(e) 前記レジスト層上に、前記磁気検出素子の下地膜として無機絶縁層を形成する 工程、
を有することが、前記磁気検出素子を適切に形成でき好適である。
発明の効果
[0024] 本発明では、絶縁保護層上に重ねてレジスト層を設けることで、絶縁層の表面を、 平坦ィ匕面に近づけることができるとともに、前記レジスト層を配線層上にまで延出して 形成し、さらに前記レジスト層が前記穴カゝら露出する前記配線層上に直接接触しな いように、前記レジスト層の穴形成面の下面側縁部の位置を適正化している。したが つて本発明では、前記磁気検出素子及び接続層を、凹凸が小さい絶縁表面上に形 成できるとともに、前記レジスト層の膜剥がれを防止でき、安定した特性を有する磁気 検出装置を得ることが出来る。
発明を実施するための最良の形態
[0025] 図 1は本実施の形態の磁気検出装置を示す斜視図、図 2は、図 1の磁気検出装置 の II II線での縦断面図、図 3は図 2の一部を拡大した拡大縦断面図である。
[0026] 図 1に示す磁気検出装置 1は、磁気検出素子 10と固定抵抗素子 20および検出回 路がー体ィ匕された ICパッケージであり、小型で且つ薄型に構成されている。
[0027] この磁気検出装置 1は、マグネット Mなどの磁界発生部材が接近したときに、例え ばパルス状の ON出力を得ることができる。例えば、この磁気検出装置 1は、折り畳み 式の携帯電話においてキースィッチが配列された本体部に内蔵される。液晶デバィ スなどの表示装置を有する折り畳み部には、マグネット Mが搭載され、本体部と折り 畳み部とが折り畳み状態となったときに、前記マグネット Mが磁気検出装置 1に接近 し、マグネット M力も発せられる磁界が磁気検出装置 1で検出されて、この磁気検出 装置 1から ON出力が得られる。
[0028] この磁気検出装置 1の配置箇所は、前記携帯電話に限られるものではなぐ例えば 自動車に搭載されて、シートポジションの検出部や、シートベルトの着脱検出部など に使用することができる。または、回路構成を変えることにより、回転するマグネットの 回転位相や回転数の検出に使用することも可能である。
[0029] 磁気検出素子 10は、磁気抵抗効果を利用して、外部磁界によって電気抵抗が変 ィ匕するものである。固定抵抗素子 20は、磁気検出素子 10と実質的に同じ電気抵抗 を有し且つ同じ温度係数を有し、し力も、磁気検出素子 10が反応する大きさの外部 磁界によっては電気抵抗が実質的に変化しないものである。
[0030] 磁気検出素子 10は巨大磁気抵抗効果 (GMR効果)を利用して外部磁界を検出す るものである。前記磁気検出素子 10は、反強磁性層 Z固定磁性層 Z非磁性層 Zフ リー磁性層の基本積層構造を有する。前記反強磁性層は、 Ir'Mn合金 (イリジウム · マンガン合金)や Pt'Mn合金 (白金'マンガン合金)などで形成される。固定磁性層 やフリー磁性層は、 Co 'Fe合金 (コバルト '鉄合金)や Ni'Fe合金 (ニッケル ·鉄合金) などで形成される。前記非磁性層は、 Cu (銅)などの非磁性導電材料で形成される。 前記磁気検出素子 10は、そのほか、保護層や下地層等を有して構成される。 [0031] 前記固定抵抗素子 20は、磁気検出素子 10と同じ材料層で形成されることが好まし い。すなわち前記固定抵抗素子 20も前記磁気検出素子 10と同じ材料から成る反強 磁性層、固定磁性層、非磁性層、及びフリー磁性層の各層を有している。ただし、積 層順が前記磁気検出素子 10とは異なって、前記固定抵抗素子 20では、例えば下か ら反強磁性層 Z固定磁性層 Zフリー磁性層 Z非磁性層の順 (あるいは、その逆)に 形成され、前記固定抵抗素子 20を構成するフリー磁性層は、前記固定磁性層ととも に磁ィ匕方向が固定された磁性層となり、外部磁界の変動によっても抵抗値は変化し な ヽ (もはやフリー磁性層ではな 、)。なお前記固定抵抗素子 20を構成する各層は、 対応する前記磁気検出素子 10の各層と同じ材質で且つ膜厚で形成されることが、温 度係数 (TCR)のばらつきを抑制する上で最適である。
[0032] 前記磁気検出素子 10は、 GMR素子以外に、異方性磁気抵抗効果を利用した A MR素子、トンネル磁気抵抗効果を利用した TMR素子であってもよ 、。
[0033] 図 1に示すように、磁気検出素子 10及び固定抵抗素子 20は、その平面形状がミア ンダパターンで形成されており、その基本的な電気抵抗値が高くなつている。前記ミ アンダパターンで形成することで、消費電流を低減させることができる。前記磁気検 出素子 10を構成する固定磁性層は、反強磁性層の反強磁性結合により、図 1に示 す Pin方向に磁ィ匕固定されている。すなわち、磁気検出素子 10の長手方向と直交す る方向に固定されている。そのため、図 1に示すように、例えばマグネット Mの N極が 接近し、前記磁気検出素子 10を構成するフリー磁性層が Pin方向と逆方向に磁化さ れると、磁気検出素子 10の電気抵抗値が最大となる。また、マグネット Mが遠ざかり、 フリー磁性層に作用する外部磁ィ匕が無くなると、磁気検出素子 10の抵抗値が最小に なる。
[0034] 図 1に示すように、磁気検出素子 10の一方の端部には、低抵抗材料で形成された 電極層 (接続層) 15が設けられ、他方の端部には同じく低抵抗材料で形成された電 極層(接続層) 18が設けられている。固定抵抗素子 20の一方の端部には、低抵抗材 料で形成された電極層 (接続層) 16が設けられ、他方の端部にも、低抵抗材料で形 成された電極層(接続層) 19が設けられている。そして、磁気検出素子 10の電極層 1 5と固定抵抗素子 20の電極層 16とが、リード層(接続層) 17で接続され、磁気検出 素子 10と固定抵抗素子 20とが直列に接続されている。電極層およびリード層は、金
、銀、銅などの低抵抗材料を主体として形成され、例えばクロム Z銅 Zクロムが積層 されて形成される。なお前記電極層 15、 16及び前記リード層 17は一体的に形成さ れている。
[0035] 前記電極層 18, 19のどちから一方は、入力端子、他方はアース端子であり、前記リ ード層 17は出力端子である。外部磁界が及ばないとき、前記出力端子の電位は中 点電位であり、外部磁界が及ぶと、前記磁気検出素子 10の抵抗値が変動し、それに 基づいて、前記リード層 17での電位が変動する。前記リード層 17と接続される検出 回路では、外部磁界に対する前記磁気検出素子 10の電気抵抗変化に基づく電位 変化を検出し、さらにその検出結果に基づいて ON 'OFFの切換信号を生成してい る。
[0036] 図 2に示すように、前記磁気検出装置 1は、例えばケィ素(Si)で形成された基板 2 上に、図示しない二酸ィ匕ケィ素(SiO )の下地膜が一定の厚さで形成される。
2
[0037] 前記下地膜上に、検出回路を構成する配線層 35や、能動素子 36〜38及び抵抗 器 39等が形成されている。前記能動素子 36〜38は、 IC、差動増幅器、コンパレー タ、出力トランジスタ等である。
[0038] 前記配線層 35は、 Al、 Cuゝ Al— Siゝ Al— Si— Cu, Cr, Ta, W, Au, Ag-Pd, A 8—?1;ー?(1のぅちぃずれカ 1種、あるいは 2種以上の積層で形成されることが好まし い。このうちアルミニウム (A1)で形成されることがより好ましい。これにより前記配線層 35を低抵抗で形成でき、また図示しな 、ワイヤボンディング等も適切に行える。
[0039] 前記配線層 35の上面 35aは平坦ィ匕面で形成されている力 後述する絶縁層 40に 形成された穴部 44から露出する前記配線層 35の露出面 35bが、若干、前記露出面 35bの周囲面 35cよりも低く形成された凹面となって!/、てもよ!/、。
[0040] 図 2に示すように、前記配線層 35上から、前記能動素子 36〜39上、前記抵抗器 3 9上及び前記基板 2上にかけて、下力 絶縁保護層 41、レジスト層 42、及び絶縁被 覆層 43の順に形成されて成る絶縁層 40が形成されている。
[0041] 前記絶縁層 40には、前記配線層 35上の一部に穴部 44が形成され、前記穴部 44 力も前記配線層 35の上面 35aが露出している。前記穴部 44の平面形状は円形状、 矩形状等、特に限定されるものではない。
[0042] 図 2に示すように、前記絶縁保護層(パッシベーシヨン膜) 41は、前記穴部 44を除く 前記配線層 35上、前記能動素子 36〜38上、前記抵抗器 39上及び前記基板 2上の 全域に形成されている。前記絶縁保護層 41は例えば、スパッタあるいは CVD成膜さ れ、 SiN、 SiO、 Al O、 TEOS (テトラエトキシシラン)、 Ta Oのうちいずれ力 1種、
2 2 3 2 5 あるいは 2種以上の積層で形成されることが好ましい。このうち前記絶縁保護層 41は 、窒化ケィ素(SiN)で形成されることがより好ましい。これにより前記配線層 35上、前 記能動素子 36〜38上、前記抵抗器 39上を適切に絶縁保護できる。また、前記絶縁 保護層 41は、特に、前記レジスト層 42と前記配線層 35間の密着性を向上させる接 着層的役割を担っている。スパッタ成膜される前記絶縁保護層 41の平均膜厚は 0. 5 m程度の薄い膜厚で形成されている。一方、前記配線層 35や、前記能動素子 36 〜38等の膜厚は、 0. 1〜1. 5 m程度の膜厚で形成され、前記配線層 35と基板 2 間の段差、前記能動素子 36〜38と基板 2間の段差等により、前記絶縁保護層 41の 表面 41 aは急峻な凹凸表面となつて、る。
[0043] 本実施形態では、前記絶縁保護層 41上にレジスト層(平坦化レジスト) 42が形成さ れている。前記絶縁保護層 41の表面 41aに形成された凹部内には前記レジスト層 4 2が埋められ、前記レジスト層 42の表面 42aは全体的に前記絶縁保護層 41の表面 4 laよりも平坦ィ匕面に近くなつている。特に、検出回路が形成されていない部分では、 前記絶縁保護層 41の表面 41aも前記レジスト層 42の表面 42aと同様に高い平坦ィ匕 度を有するが、前記検出回路が形成されている部分では、前記絶縁保護層 41の表 面 41aは、前記レジスト層 42の表面 42aに比べて平坦ィ匕度が悪い。前記レジスト層を 前記絶縁保護層上に重ねることで、少なくとも、前記基板と検出回路間の段差を前 記絶縁保護層 41以上に緩和でき、全体的に、前記レジスト層 42の表面 42aは前記 絶縁保護層 41の表面 41aよりも平坦ィ匕面に近くなつている。
[0044] 前記レジスト層 42は、より高い絶縁性の確保と、さらに前記絶縁表面をより平坦ィ匕 面に近づけるべく設けられている。平坦化度は、例えば中心線平均粗さ (Ra)を指標 とできる。なお前記レジスト層 42の前記配線層 35上での平均膜厚は 0. 5〜1. O ^ m 程度である。 [0045] 前記レジスト層 42上には、窒化ケィ素(SiN)、二酸化ケイ素(SiO )、アルミナ (A12
2
03)のうちいずれか 1種又は 2種以上の積層で形成された絶縁被覆層(無機絶縁層 ) 43が形成されている。前記絶縁被覆層 43を設けることで、より確実に絶縁性を確保 できる。また無機絶縁層で形成された前記絶縁被覆層 43は、前記絶縁層 40上に形 成される磁気検出素子 10の下地膜として最適である。なお前記絶縁被覆層 43の形 成は必須ではない。
[0046] 図 2に示すように、前記レジスト層 42は、前記絶縁保護層 41を介して、前記穴部 44 を除く前記配線層 35上、前記能動素子 36〜38上、前記抵抗器 39上及び前記基板 2上の全域に形成されて 、る。
[0047] 本実施形態では、図 3に示すように、前記レジスト層 42の穴形成面 42bの下面側縁 部 42blは、前記絶縁保護層 41の穴形成面 41bの下面側縁部 41blよりも、前記配 線層 35の露出面 35bから離れる方向(図示 XI方向)での前記絶縁保護層 41上に後 退して設けられている。すなわち前記レジスト層 42は前記配線層 35の露出面 35b上 にまで延出しておらず、前記レジスト層 42と前記配線層 35とが直接接触していない。
[0048] 図 2,図 3に示すように前記レジスト層 42上に形成された絶縁被覆層 43上に磁気 検出素子 10及び固定抵抗素子 20が形成され、前記磁気検出素子 10及び固定抵 抗素子 20の各端部には、前記電極層 15, 16, 18, 19が形成され、図 2,図 3に示す ように、前記磁気検出素子 10の電極層 15と、前記固定抵抗素子 20の電極層 16間 を繋ぐ前記リード層 17が前記穴部 44内での前記絶縁被覆層 43の穴形成面 43a上、 前記レジスト層 42の穴形成面 42b上、前記絶縁保護層 41の穴形成面 4 lb上、及び 前記配線層 35の露出面 35b上にかけて形成される。これにより、前記磁気検出素子 10と前記固定抵抗素子 20とが前記配線層 35に、前記電極層 15, 16及び前記リー ド層 17を介して電気的に接続されて!ヽる。
[0049] なお前記絶縁層 40に形成された穴部 44は、前記磁気検出素子 10の電極層 18、 及び前記固定抵抗素子 20の電極層 19と対向する位置にも形成され、図 3と同様の 断面形状を有して、前記磁気検出素子 10が図示しな ヽ配線層上に前記電極層 18 を介して電気的に接続され、また、前記固定抵抗素子 20が、図示しない配線層上に 前記電極層 19を介して電気的に接続される。 [0050] 本実施形態の特徴的部分は、前記レジスト層 42が、前記配線層 35上に前記絶縁 保護層 41を介して重ねて形成されていること、及び、前記レジスト層 42を前記配線 層 35の露出面 35bにまで延出しないように、前記レジスト層 42の穴形成面 42aの下 面側縁部 42a 1が、前記絶縁保護層 41上に配置されて 、る点にある。
[0051] 図 2に示すように、前記レジスト層 42の表面 42aは、全体的に前記絶縁保護層 41 の表面 41aよりも平坦ィ匕面に近い形状となるが、例えば、前記レジスト層 42を前記配 線層 35上に重ねずに、前記配線層 35から平面方向に離して形成すると、前記レジ スト層 42と前記配線層 35間に急激な段差ができてしまい、前記レジスト層 42上から 前記配線層 35の露出面 35b上にかけて形成される電極層 15、 16、 18、 19やリード 層 17が断線しやすい。
[0052] 図 5は実際に前記レジスト層 42を前記配線層 35上に重ねずに、前記配線層 35か ら平面方向に離して形成したときの断面形状を示す FIB写真である。図 5に示すよう に、レジスト層 42上力も前記絶縁保護層 41及び配線層 35の露出面 35b上にまで延 出形成された電極層には、図 5の丸で囲った箇所での急激な段差によって断線が生 じていることがわかった。
[0053] よって、図 3のように、前記レジスト層 42を、前記穴部 44を除く前記配線層 35上に まで延出形成することで、前記電極層 15, 16, 18, 19やリード層 17の形成面全体を 凹凸が小さく且つなだらかな面に形成でき、前記電極層 15, 16, 18, 19やリード層 17に断線が生じることがな!、。
[0054] し力も本実施形態では、前記レジスト層 42が前記配線層 35の露出面 35b上にまで 延出形成されていない。すなわち前記レジスト層 42と前記配線層 35とが直接接触し ていない。前記レジスト層 42と前記配線層 35、特に A1で形成された配線層 35との密 着性は悪ぐ前記レジスト層 42は前記配線層 35上にて剥離しやすい。また、前記レ ジスト層 42は前記磁気検出素子 10の形成過程で施される熱処理等によって、特に 剥がれやすくなる。一方、前記絶縁保護層 41と前記配線層 35との両者間の密着力 、及び前記絶縁保護層 41とレジスト層 42との両者間の密着力は、前記レジスト層 42 と前記配線層 35とを上記のように直接接合させた際の両者間の密着力に比べて十 分に高い。よって本実施形態では、前記レジスト層 42の穴形成面 42bの下面側縁部 42blを、前記絶縁保護層 41上に配置して、前記レジスト層 42が前記配線層 35の 露出面 35b上にまで延出しないようにすることで、前記配線層 35上でのレジスト層 42 の膜剥がれを適切に防止できる。したがって、前記レジスト層 42上に形成される前記 電極層 15, 16, 18, 19やリード層 17に前記膜剥がれに起因する亀裂や断線が生じ ない。また前記膜剥がれが生じると、そこから、外部環境に触れて、検出回路の腐食 等が生じやすくなるが、本実施形態では、適切に検出回路を絶縁層 40によって封止 できる。以上により本実施形態では、安定した特性を有する磁気検出装置 1を得るこ とが可能である。
[0055] なお前記レジスト層 42の穴形成面 42bの下面側縁部 42b 1は、前記絶縁保護層 4 1の穴形成面 41bの下面側縁部 41blと同位置であってもよい。「絶縁保護層 41上」 には、前記絶縁保護層 41の前記下面側縁部 41b 1上も含む。ただし、前記レジスト 層 42の下面側縁部 42blを、前記絶縁保護層 41の下面側縁部 41blよりも、前記配 線層 35の露出面 35bから離れる方向に後退させたほうが、確実に前記レジスト層 42 全体を前記絶縁保護層 41上にのみ重ねて形成でき、前記配線層 35上でのレジスト 層 42の膜剥がれを適切に防止できる。
[0056] また本実施形態では、前記絶縁保護層 41よりも表面が平坦化面に近いレジスト層 42上に前記磁気検出素子 10を形成することで、多層構造の前記磁気検出素子 10 を高精度に形成でき、安定した特性を有する前記磁気検出素子 10を形成できる。
[0057] また検出回路の配線層 35と、リード層 17とが重ねられた位置に配置されて上下で 導通されているため、配線層 35とリード層 17とを平面に展開して配置したものに比べ て、小さい面積で装置を構成でき好ましい。
[0058] 図 3に示すように、前記絶縁保護層 41の穴形成面 41bは、下面側から上面側に向 力うにしたがって(すなわち図 3に示す図示 Z1方向に向力うにしたがって)、徐々に 前記穴部 44の大きさ(穴の平面面積)が大きくなるように傾斜面で形成される。同様 に、前記レジスト層 42の穴形成面 42bは、下面側から上面側に向力うにしたがって( すなわち図 3に示す図示 Z1方向に向力うにしたがって)、徐々に前記穴部 44の大き さが大きくなるように傾斜面で形成されている。前記傾斜面は、図 3のように膜厚方向 力も切断した断面から見たときに、直線状、あるいは曲線状のどちらであってもよい。 前記曲線状は、前記穴形成面 41b、 42bが膨らむ凸形状、あるいは前記穴形成面 4 lb、 42bが凹む凹形状のどちらでもよい。前記穴形成面 41b (前記穴形成面の断面 が曲線状であるときは、前記絶縁保護層 41の膜厚中心を通る直線と穴形成面とが交 わる点 (接点)での接線、以下の穴形成面 42bを参照)と前記絶縁保護層 41の下面 間が成す角度 Θ 1、及び前記穴形成面 42b (前記穴形成面の断面が曲線状であると きは、前記レジスト層 42の膜厚中心を通る直線 Lと穴形成面 42bとが交わる点 (接点 ) Pでの接線 T)と前記絶縁保護層 41の下面間が成す角度 Θ 2は 45° 程度であるこ とが好ましい。
[0059] 前記レジスト層 42の穴形成面 42b及び前記絶縁保護層 41の穴形成面 41bが上記 した傾斜面で形成され 1ることで、前記穴形成面 41b, 42bから前記配線層 35の露 出面 35b上に至る面をなだらかな斜面で形成でき、前記レジスト層 42の穴形成面 42 b及び前記絶縁保護層 41の穴形成面 41b上に電極層 15, 16, 18, 19及びリード層 17を断線等なく所定厚さで適切に形成できる。
[0060] また図 3に示す実施形態では、前記レジスト層 42の穴形成面 42bと前記絶縁保護 層 41の穴形成面 41bとが段差なく連続した傾斜面で形成されている。このような形状 は後述する製造方法によって形成できる。これにより、より効果的に、電極層 15, 16 , 18, 19及びリード層 17を断線等なく所定厚さで適切に形成できる。
[0061] 図 3に示すように前記絶縁被覆層 43は前記レジスト層 42上にのみ形成されている 力 前記絶縁保護層 41の穴形成面 41b上にまで延出して形成されてもよいし、また 、前記配線層 35の露出面 35b上全てを塞がないように、前記露出面 35b上に一部、 前記絶縁被覆層 43が延出して形成されてもよい。
[0062] 本実施形態の磁気検出装置 1の製造方法について図 4を用いて説明する。図 4A に示す工程では、基板 2上に、複数組の配線層 35と能動素子 36〜38及び抵抗器 3 9等を有する検出回路 60を形成する。前記検出回路 60を CVD工程、スパッタリング 工程、さらにはメツキ工程などの薄膜形成プロセスにより行う。
[0063] 次に、各検出回路 60上及び前記基板 2上にかけて、窒化ケィ素(SiN)等で形成さ れた絶縁保護層(パッシベーシヨン膜) 41をスパッタあるいは CVD成膜する。なお図 4では、前記検出回路 60上における絶縁保護層 41の表面 41aを平坦状で図示して いるが、これは簡略ィ匕しただけであり、凹凸形状が形成されていないことを意味する ものでない。図 2と同様に検出回路 60上に形成された絶縁保護層 41の表面 41aは 凹凸形状となっている。
[0064] 次に図 4Bに示す工程では、前記絶縁保護層 41上にレジスト層 42を全面に例えば スクリーン印刷等で塗布し、前記レジスト層 42を露光現象してちょうど前記配線層 35 の上面の一部と膜厚方向で対向する位置に穴部 42dを形成する。そして前記穴部 4 2dに覆われていない前記絶縁保護層 41をエッチングで除去する。このとき、前記配 線層 35の一部も若干削られて、前記配線層 35の露出面 35bが若干凹んだ形状とな つてもよい。
[0065] 図 4Bに示すように、前記絶縁保護層 41をエッチングで除去するこで、前記絶縁保 護層 41には穴部 41dが形成され、前記穴部 41dから前記配線層 35の上面の一部が 露出面 35bとして露出する。
[0066] 前記レジスト層 42は、その後、熱硬化させられる。本実施形態では、前記レジスト層 42を熱硬化する前に、所定の熱処理を施して、前記レジスト層 42の穴形成面 42bに だれを生じさせ図 3に示す傾斜面形状とすることが好ましい。
[0067] 例えば前記レジスト層 42に対し例えば、 130°C、 10分程度のポストベータを行い、 その後、例えば、 300°Cで、 60分、窒素雰囲気で熱硬化を行う。
[0068] 図 4Bに示す工程では、前記レジスト層 42に対し上記した熱処理を行うことで、前記 レジスト層 42の穴形成面 42bがだれて図 3に示すような傾斜面となる。そして、このよ うに前記レジスト層 42の穴形成面 42bを傾斜面で形成することで、前記レジスト層 42 の穴部 42dから露出した前記絶縁保護層 41をエッチングで除去すると、その傾斜面 形状に追従してエッチングされて前記絶縁保護層 41に形成された穴形成面 41bも 図 3に示すような傾斜面として形成される。
[0069] 上記した製造方法によれば、前記レジスト層 42を前記配線層 35上にまで適切に延 出形成できるとともに、図 3のように、前記レジスト層 42の穴形成面 42bと前記絶縁保 護層 41の穴形成面 41bを共に傾斜面で形成できるとともに、前記穴形成面 41b, 42 bを連続面として形成できる。さらに、前記レジスト層 42の穴形成面 42bの下面側縁 部 42bを、前記絶縁保護層 41の穴形成面 41bの下面側縁部 41blよりも前記配線層 35の露出面 35bから離れる方向での前記絶縁保護層 41上に後退した位置に形成 できる(図 3を参照)。
[0070] 上記した図 4B工程では、所定形状のレジスト層 42及び絶縁保護層 41を簡単に形 成できて好適である。特に上記した製造方法では前記レジスト層 42をマスクとして利 用し、前記レジスト層 42に形成された穴部 42dから露出する前記絶縁保護層 41をェ ツチングすることで、前記絶縁保護層 41にも穴部 41dを簡単に形成できる。
[0071] ただし、前記絶縁保護層 41にまず穴部 41dを形成した後、前記レジスト層 42の形 成一前記レジスト層 42への穴部 41dの形成、を行ってもよい。
[0072] また、上記した製造方法では、前記配線層 35の上面 35aがエッチングの影響を受 けやすいが、前記配線層 35の上面 35aがエッチングの影響を受けないようにするに は、図 4Aの前記絶縁保護層 41をスパッタ成膜する前に、前記配線層 35上に一部、 リフトオフ用レジスト層を形成し、前記リフトオフ用レジスト層に覆われて 、な 、前記検 出回路 60上及び基板 2上に前記絶縁保護層 41をスパッタ成膜し、その後、前記リフ トオフ用レジスト層を除去する。そして、その後、前記レジスト層 42の形成—前記レジ スト層 42への穴部 41dの形成、を行う。
[0073] 図 4Cに示す工程では、前記絶縁保護層 41及び前記レジスト層 42に形成された穴 部 41d, 42d内にリフトオフ用レジスト層 70を形成し、前記レジスト層 42上に、 Al O
2 3 等で形成された絶縁被覆層 43をスパッタ法等にて成膜する。このとき、前記リフトォ フ用レジスト層 70上にも絶縁被覆層 43と同じ材質層が付着する。そして前記リフトォ フ用レジスト層 70を除去する。
[0074] その後、前記絶縁被覆層 43上へ磁気検出素子 10、及び固定抵抗素子 20を形成 するとともに、前記電極層 15, 16, 18, 19、リード層 17の形成を行い、このとき前記 配線層 35の露出面 35b上にまで前記リード層 17や電極層 18, 19を延出形成して 前記配線層 35と前記磁気検出素子 10間、及び前記配線層 35と固定抵抗素子 20 間を電気的に接続する。
[0075] 前記電極層 15, 16, 18, 19やリード層 17を非磁性導電材料によりスパッタ法ゃメ ツキ法等で形成することが可能である。
[0076] 次に、図 4Dに示す工程では、前記磁気検出素子 10及び固定抵抗素子 20上を榭 脂 80でモールド成形する等してパッケージ化した後、各磁気検出装置 1ごとに、ダイ シングにより分離する。あるいはパッケージィ匕は、前記榭脂 80をモールド成形する前 の各磁気検出装置 1ごとに、ダイシングし分離した後、分離された各磁気検出装置 1 ごとに行ってもよい。
[0077] 本実施形態では、前記絶縁保護層 41上にレジスト層 42を塗布することで、絶縁表 面を前記絶縁保護層 41の表面よりも平坦ィ匕面に近づけることができ、したがって平 坦化面に近い絶縁表面上に前記磁気検出素子 10や固定抵抗素子 20を形成できる 。しかも本実施形態の製造方法では、前記レジスト層 42を前記配線層 35上にまで適 切に延出形成できるとともに、図 3のように、前記レジスト層 42の穴形成面 42bと前記 絶縁保護層 41の穴形成面 41bとを連続面として形成でき、前記レジスト層 42の穴形 成面 42bの下面側縁部 42bを、前記絶縁保護層 41の穴形成面 41bの下面側縁部 4 lblよりも前記配線層 35の露出面 35bから離れる方向での前記絶縁保護層 41上に 後退した位置に形成できる。よって、前記電極層 15, 16, 18, 19及びリード層 17の 形成面がなだらかな斜面で形成され、しカゝも前記レジスト層 42と配線層 35とが直接 接触していないので、前記磁気検出素子 10の形成過程等で施される熱処理によつ ても前記レジスト層 42が前記配線層 35上力も剥離することなぐ前記電極層 15, 16 , 18, 19及びリード層 17を断線無く適切に形成でき、前記磁気検出素子 10と配線 層 35間、及び固定抵抗素子 20と配線層 35間の電気的安定性を向上させることが可 能である。
[0078] 本実施形態では前記絶縁層 40は 3層構造であった力 絶縁保護層 41とレジスト層 42との 2層構造であってもよいし、さらには 4層以上であってもよい。
[0079] また実施形態では、磁気検出素子 10と固定抵抗素子 20とが一つづつ設けられて いるが、例えば磁気検出素子 10と固定抵抗素子 20とが夫々 2つ設けられブリッジ回 路を構成して 、ると、より磁気感度に優れた磁気検出装置にできて好ま ヽ。
[0080] また上記の実施形態では、磁気検出素子 10と固定抵抗素子 20との組み合わせで あつたが、例えば Pin方向が異なる磁気検出素子で回路を構成したもの、あるいはマ グネットの N極が接近すると抵抗変化し、 S極が接近すると抵抗変化しない第 1の磁 気検出素子と、マグネットの S極が接近すると抵抗変化し、 N極が接近すると抵抗変 化しない第 2の磁気検出素子とを組みあわせた回路等であってもよい。 図面の簡単な説明
[0081] [図 1]本実施形態の磁気検出装置を示す斜視図、
[図 2]第 1の実施の形態の磁気検出装置を示す、図 1の II II線での縦断面図、 [図 3]図 2の一部を拡大した拡大縦断面図、
[図 4]本実施形態の磁気検出装置の製造工程を示す工程図 (各図は、図 2と同じ縦 断面図である)、
[図 5]レジスト層を配線層上に重ねずに形成した磁気検出装置の縦断面を示す FIB 写真、
符号の説明
[0082] 1 磁気検出装置
2 基板
15、 16、 18、 19 電極層
17 リード層
10 磁気検出素子
20 固定抵抗素子
35 配線層
35b 露出面
36〜38 能動素子
39 抵抗器
40 絶縁層
41 絶縁保護層 (パッシベーシヨン膜)
42 レジスト層
42b, 43b 穴形成面
42bl、43bl 下面側縁部
43 絶縁被覆層
44 穴
60 検出回路 リフトオフ用レジスト層 榭脂

Claims

請求の範囲
[1] 外部磁界により電気抵抗が変化する磁気抵抗効果を利用した磁気検出素子と、前 記磁気検出素子の電気抵抗の変化を検出する検出回路とを有し、
基板上に、配線層を有する前記検出回路が形成され、前記検出回路上及び前記 基板上は絶縁層で覆われ、
前記絶縁層は、前記検出回路上から前記基板上にかけて形成され、前記配線層 上の一部に穴が形成された絶縁保護層と、前記絶縁保護層上に重ねられるとともに 、前記絶縁保護層に形成された前記穴と膜厚方向に対向する位置に穴が設けられ、 前記基板と前記検出回路間の段差に基づく前記絶縁保護層の表面の段差を緩和 するためのレジスト層と、を有して構成され、
前記レジスト層は、前記絶縁保護層を介して前記配線層上にまで延出形成され、 前記レジスト層が前記配線層の上面に直接接触しないように、前記レジスト層の穴形 成面の下面側縁部は、前記絶縁保護層上に配置されており、
前記磁気検出素子は、前記絶縁層の表面に形成され、前記磁気検出素子に接続 される導電性の接続層が前記穴内を通って前記配線層の露出面上にまで形成され て、前記磁気検出素子と前記配線層とが前記接続層を介して導通接続されているこ とを特徴とする磁気検出装置。
[2] 前記レジスト層の前記穴形成面は、下面側から上面側に向けて前記穴の大きさが 徐々に大きくなるように傾く傾斜面で形成される請求項 1記載の磁気検出装置。
[3] 前記絶縁保護層の穴形成面は、下面側力 上面側に向けて前記穴の大きさが徐 々に大きくなるように傾く傾斜面で形成される請求項 1または 2に記載の磁気検出装 置。
[4] 前記絶縁保護層は、 SiN、 SiO、 Al O、 TEOS、 Ta Oのうちいずれ力 1種、ある
2 2 3 2 5
いは 2種以上の積層で形成される請求項 1な 、し 3の 、ずれかに記載の磁気検出装 置。
[5] 前記絶縁保護層は、 SiNで形成される請求項 4記載の磁気検出装置。
[6] 前記配線層は、 Al、 Cu、 Al— Siゝ Al-Si-Cu, Cr, Ta, W, Au, Ag-Pd, Ag
Pt— Pdのうちいずれ力 1種、あるいは 2種以上の積層で形成される請求項 1ないし 5の 、ずれかに記載の磁気検出装置。
[7] 前記配線層は、 A1で形成される請求項 6記載の磁気検出装置。
[8] 前記磁気検出素子と直列に接続された外部磁界により電気抵抗が変化しない固定 抵抗素子が前記絶縁層の表面に形成され、前記磁気検出素子と前記固定抵抗素子 間に設けられた接続層力 前記穴を介して前記配線層と導通されている請求項 1な
V、し 7の 、ずれかに記載の磁気検出装置。
[9] 前記固定抵抗素子は、前記磁気検出素子と同じ材料層で形成される請求項 8記載 の磁気検出装置。
[10] 外部磁界により電気抵抗が変化する磁気抵抗効果を利用した磁気検出素子と、前 記磁気検出素子の電気抵抗の変化を検出する検出回路とを有する磁気検出装置の 製造方法において、
(a) 基板上に、前記検出回路を形成する工程、
(b) 前記検出回路上力も前記基板上に絶縁保護層をスパッタあるいは CVD成膜し このとき前記検出回路を構成する配線層上の一部が露出するように前記絶縁保護層 に穴を形成する工程、
(c) 前記絶縁保護層上にレジスト層を塗布して、少なくとも前記絶縁保護層で覆わ れた前記基板と前記検出回路間の段差を緩和するとともに、前記絶縁保護層に形成 された前記配線層上での穴と膜厚方向で重なる穴を前記レジスト層に形成し、このと き、前記レジスト層が前記配線層の上面に直接接触しないように、前記レジスト層の 穴形成面の下面側縁部を、前記絶縁保護層上に配置する工程、
(d) 前記絶縁表面に前記磁気検出素子を形成し、且つ、前記磁気検出素子に接 続される導電性の接続層を、前記穴内を通って前記配線層の露出面上にまで延出 形成して、前記磁気検出素子と前記配線層とを前記接続層を介して導通させる工程 を有することを特徴とする磁気検出装置の製造方法。
[11] 前記 (b)工程で、前記絶縁保護層に形成された穴形成面を、下面側から上面側に 向けて徐々に前記穴の大きさが大きくなるように傾く傾斜面で形成する請求項 10記 載の磁気検出装置の製造方法。
[12] 前記 (c)工程で、前記レジスト層に形成された穴形成面を、下面側から上面側に向 けて徐々に前記穴の大きさが大きくなるように傾く傾斜面で形成する請求項 10また は 11に記載の磁気検出装置の製造方法。
[13] 前記レジスト層に対し熱硬化を行う前に、熱処理を施して、前記傾斜面を形成する 請求項 12記載の磁気検出装置の製造方法。
[14] 前記 (b)工程で、前記絶縁保護層に対し穴を形成せずに、前記 (c)工程で形成さ れたレジスト層をマスクとして利用して、前記レジスト層に形成された穴力も露出する 前記絶縁保護層を除去して、前記絶縁保護層に前記配線層の上面が露出する穴を 形成する請求項 10ないし 13のいずれかに記載の磁気検出装置の製造方法。
[15] 前記 (c)工程と前記 (d)工程の間に、
(e) 前記レジスト層上に、前記磁気検出素子の下地膜として無機絶縁層を形成する 工程、
を有する請求項 10ないし 14のいずれかに記載の磁気検出装置の製造方法。
PCT/JP2007/052103 2006-08-30 2007-02-07 Détecteur de magnétisme et son procédé de fabrication WO2008026328A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07713901A EP2071349B1 (en) 2006-08-30 2007-02-07 Magnetism detector and its manufacturing method
JP2008531962A JP5066525B2 (ja) 2006-08-30 2007-02-07 磁気検出装置およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006234404 2006-08-30
JP2006-234404 2006-08-30

Publications (1)

Publication Number Publication Date
WO2008026328A1 true WO2008026328A1 (fr) 2008-03-06

Family

ID=39135617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052103 WO2008026328A1 (fr) 2006-08-30 2007-02-07 Détecteur de magnétisme et son procédé de fabrication

Country Status (5)

Country Link
US (1) US7564238B2 (ja)
EP (1) EP2071349B1 (ja)
JP (1) JP5066525B2 (ja)
CN (1) CN101512367A (ja)
WO (1) WO2008026328A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090095A (ja) * 2015-11-04 2017-05-25 アルプス電気株式会社 反射型光学式エンコーダのコード板

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5909822B2 (ja) * 2012-02-27 2016-04-27 アルプス・グリーンデバイス株式会社 電流センサ及びその作製方法
JP6121311B2 (ja) * 2013-11-14 2017-04-26 アルプス電気株式会社 磁気検知装置
CN103647022B (zh) * 2013-12-25 2016-04-27 杭州士兰集成电路有限公司 各向异性磁阻传感器垂直结构及其制造方法
CN106103094B (zh) * 2014-03-07 2018-11-09 富士胶片株式会社 带有装饰材料的基板及其制造方法、触控面板、以及信息显示装置
US10727402B2 (en) * 2017-01-24 2020-07-28 Tohoku University Method for producing tunnel magnetoresistive element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293763A (ja) * 1986-06-13 1987-12-21 Seiko Epson Corp 固体撮像装置
JPH03175634A (ja) * 1989-12-04 1991-07-30 Nec Corp 半導体装置の製造方法
JPH04257238A (ja) 1991-02-12 1992-09-11 Matsushita Electron Corp 半導体装置の製造方法
JPH04265819A (ja) * 1990-11-06 1992-09-22 Santa Barbara Res Center 磁界変化感知システムおよびその製造方法
JPH0745616A (ja) 1993-07-29 1995-02-14 Nec Corp 半導体装置の製造方法
JPH10268011A (ja) * 1997-03-26 1998-10-09 Mitsubishi Electric Corp 磁気センサ
JP2002277281A (ja) * 2001-01-09 2002-09-25 Hitachi Metals Ltd 磁気式エンコーダー
JP2003315432A (ja) * 2002-04-19 2003-11-06 Mitsubishi Electric Corp 磁気抵抗センサ装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902131A (en) * 1997-05-09 1999-05-11 Ramtron International Corporation Dual-level metalization method for integrated circuit ferroelectric devices
KR100683321B1 (ko) * 2000-05-15 2007-02-15 미쓰비시덴키 가부시키가이샤 센서 소자 및 그의 제조 방법
US6512369B2 (en) * 2001-05-22 2003-01-28 Delphi Technologies, Inc. Temperature compensated voltage divider with a magnetoresistor and a reference resistor
JP2005150457A (ja) * 2003-11-17 2005-06-09 Toshiba Corp 磁気記憶装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293763A (ja) * 1986-06-13 1987-12-21 Seiko Epson Corp 固体撮像装置
JPH03175634A (ja) * 1989-12-04 1991-07-30 Nec Corp 半導体装置の製造方法
JPH04265819A (ja) * 1990-11-06 1992-09-22 Santa Barbara Res Center 磁界変化感知システムおよびその製造方法
JPH04257238A (ja) 1991-02-12 1992-09-11 Matsushita Electron Corp 半導体装置の製造方法
JPH0745616A (ja) 1993-07-29 1995-02-14 Nec Corp 半導体装置の製造方法
JPH10268011A (ja) * 1997-03-26 1998-10-09 Mitsubishi Electric Corp 磁気センサ
JP2002277281A (ja) * 2001-01-09 2002-09-25 Hitachi Metals Ltd 磁気式エンコーダー
JP2003315432A (ja) * 2002-04-19 2003-11-06 Mitsubishi Electric Corp 磁気抵抗センサ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2071349A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090095A (ja) * 2015-11-04 2017-05-25 アルプス電気株式会社 反射型光学式エンコーダのコード板

Also Published As

Publication number Publication date
JPWO2008026328A1 (ja) 2010-01-14
JP5066525B2 (ja) 2012-11-07
US20080054890A1 (en) 2008-03-06
EP2071349A1 (en) 2009-06-17
US7564238B2 (en) 2009-07-21
EP2071349B1 (en) 2013-01-09
EP2071349A4 (en) 2012-01-25
CN101512367A (zh) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4739963B2 (ja) 車載用gmr角度センサ
JP4984408B2 (ja) 磁気センサおよびその製法
JP5066525B2 (ja) 磁気検出装置およびその製造方法
JP4411223B2 (ja) 車載用gmr角度センサ
JP3260921B2 (ja) 可動体変位検出装置
JP4689516B2 (ja) 磁気検出装置
JP2008096358A (ja) 磁気検出装置及びその製造方法
JP4485499B2 (ja) 磁気検出装置およびその製造方法
JP5000665B2 (ja) 磁気検出装置およびその製造方法
CN206059436U (zh) 集成型磁开关
JP4961736B2 (ja) 磁気センサの製造方法
JP4760073B2 (ja) 磁気センサおよびその製法
JP5284288B2 (ja) 磁気センサ及びその製造方法
JP5447412B2 (ja) 磁気センサの製法
JP4029376B2 (ja) 磁気式センサーとその製造方法、およびエンコーダー
JP4133758B2 (ja) 磁気検出素子および磁気検出装置
JPH1146023A (ja) 薄膜センサ素子及びその製造方法
JPH11330586A (ja) 磁電変換素子およびそれを用いた磁気センサ、磁電変換素子の製造方法
JP2018085395A (ja) センサデバイス装置
JP3085147B2 (ja) 磁電変換素子
JP4984424B2 (ja) 磁気センサおよびその製造方法
JP2932824B2 (ja) 磁気抵抗センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780032066.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07713901

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008531962

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007713901

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU