WO2008023462A1 - Moulage d'os, charge d'os et procédé de production d'une charge d'os - Google Patents

Moulage d'os, charge d'os et procédé de production d'une charge d'os Download PDF

Info

Publication number
WO2008023462A1
WO2008023462A1 PCT/JP2007/000885 JP2007000885W WO2008023462A1 WO 2008023462 A1 WO2008023462 A1 WO 2008023462A1 JP 2007000885 W JP2007000885 W JP 2007000885W WO 2008023462 A1 WO2008023462 A1 WO 2008023462A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
image forming
model
forming agent
manufacturing
Prior art date
Application number
PCT/JP2007/000885
Other languages
English (en)
French (fr)
Inventor
Tsuyoshi Takato
Hideto Saijo
Yuichi Tei
Shigeki Suzuki
Koutaro Shimizu
Shinya Wasada
Original Assignee
Next21 K.K.
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Next21 K.K., The University Of Tokyo filed Critical Next21 K.K.
Priority to CN2007800392133A priority Critical patent/CN101528158B/zh
Priority to US12/438,284 priority patent/US20100069455A1/en
Priority to CA002661195A priority patent/CA2661195A1/en
Priority to AU2007287154A priority patent/AU2007287154A1/en
Priority to JP2008530807A priority patent/JPWO2008023462A1/ja
Priority to EP07790372A priority patent/EP2055268A4/en
Publication of WO2008023462A1 publication Critical patent/WO2008023462A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2/2875Skull or cranium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4644Preparation of bone graft, bone plugs or bone dowels, e.g. grinding or milling bone material

Definitions

  • Bone model and bone filler or method for producing bone filler
  • the present invention relates to a bone model, a custom-made bone filler, or a method for producing a custom-made bone filler. More specifically, the present invention relates to a bone model in which the undulations and asymmetry of the model are obvious at a glance, such as contour lines and round eyes (ban maps).
  • the present invention also digitizes a patient's bone by CT imaging or MRI, manufactures a bone model based on the digitized information, and the operator fills the model with an image forming agent.
  • the present invention relates to a method for producing a bone filler that can produce bone filler and the like with high accuracy by creating an image, digitizing again using the created image, and producing the bone filler based on the digital information.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-284 45 1
  • an internal fixation member such as an artificial bone head is inserted using a tomographic image (tomographic image) of X-ray CT or MRI.
  • a part for example, a defective part
  • the three-dimensional data is used to display a three-dimensional image of the insertion part while moving the image of the internal fixation member on the screen.
  • a technique is disclosed in which the suitability of the member to the insertion site can be simulated before surgery.
  • Patent Document 2 X-ray CT or MRI tomographic images are used to represent the insertion site of an internal fixation member such as an artificial bone head as three-dimensional data.
  • An apparatus for producing a replica (model) of an insertion site is disclosed.
  • Patent Document 3 describes “a bone grafting material processing system in which a three-dimensional measuring device and a three-dimensional processing machine are connected to each other”. And a bone grafting material processing system characterized in that a bone grafting material is machined by the three-dimensional processing machine based on the three-dimensional shape data of the bone defect acquired by the three-dimensional measuring device. (Claim 1).
  • Patent Document 4 Japanese Laid-Open Patent Publication No. 2 0 1 _ 9 2 9 5 0
  • a bone candidate region extracting means for extracting a pixel region of a predetermined density level as a bone candidate region, and among the bone candidate regions
  • the region selection means for selecting what will eventually be used as the bone region (hereinafter referred to as the confirmed bone region), and the outline of the region to be finally determined as the bone based on the determined bone region
  • the bone outline information generating means for generating bone outline information as information, and the bone outline information for each tomographic position, three-dimensional shape data of the bone defect is generated.
  • Specially equipped with 3D shape data generation means And compensating for human E bone design system is disclosed (claim 1).
  • Patent Document 5 includes “a polymer matrix forming step of forming a continuous layer of a polymer material using a solid-free form manufacturing method, Medical device manufacturing method "is disclosed (Claim 1).
  • Patent Document 6 discloses a method of manufacturing an artificial bone by a powder lamination method using an RP device. .
  • the shape of the defect site is assumed by computer simulation, and the bone filler is based on the assumed shape of the defect site.
  • the shape of the bone filler is determined based solely on computer assumptions. Therefore, like this Although bone fillers manufactured based on the method often match the shape of the actual defect site, it is difficult to incorporate the know-how of doctors and other surgeons.
  • the shape of the bone filler is determined without knowing his / her own feeling, so it is difficult to imagine the actual treatment.
  • Patent Document 7 Japanese Patent Application Laid-Open No. 9_1 5 4 8 6 5 (Patent Document 7) states that “a jig imitating the shape of a bone body for determining the shape of a bone defect replacement material is used. And a shape determining tool for a bone defect filling material characterized by being formed of a transparent material or a semi-transparent material in a shape along the surface of the bone body ”(Claim 1), “A shape determination jig is applied to the defect in the bone body, and through the shape determination jig, the conformity with the defect or the surrounding shape including the defect is observed, and the most suitable shape is obtained.
  • the method of determining the shape of the bone defect replacement material characterized by selecting the determination jig and determining the corresponding bone defect replacement material ”(Claim 7), and the bone defect replacement material
  • a bone defect portion filling material is prepared along the outline of the defect portion, and the corresponding bone defect portion filling material is cut to fill the defect portion based on the application for the shape determining jig.
  • “A method for determining the shape of a bone defect replacement material characterized by forming” (Claim 8).
  • Patent Document 7 The invention disclosed in Japanese Patent Application Laid-Open No. 9_1 5 4 8 6 5 (Patent Document 7) can be summarized as follows: a jig for determining the shape of a transparent or translucent bone defect replacement material Then, select the most suitable jig from multiple patterns, and then estimate the shape of the defect through the optimum transparent jig and make a written contribution (paragraph [0 0 1 3]), By cutting the jig, a bone filler plate fitted to the shape of the defect is obtained (paragraph [0 0 1 4]).
  • the transparent jig is applied to the defect and the shape of the defect is estimated. For this reason, whether or not the bone filler has a shape that fits the defect part depends on the experience of the practitioner. However, there is a problem that a bone filler having an appropriate shape cannot be obtained.
  • bone fillers are generally weak in strength, there is a problem that they are damaged when an impact or strong force is applied from the outside.
  • the bone filler is not the patient's bone itself, there is a problem that even if the bone filler is implanted in the bone defect, it may come off when force is applied from the outside.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-2 8 4 5 0 1
  • Patent Literature 2 Japanese Patent Publication No. 6-2 1 3 7
  • Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 3 _ 1 2 6 1 2 4
  • Patent Document 4 Japanese Patent Laid-Open No. 2 0 0 1 _ 9 2 9 5 0
  • Patent Document 5 Japanese Patent Nos. 2, 9 30 and 4 20
  • Patent Document 6 International Publication 2 0 0 5-0 1 1 5 3 6
  • Patent Document 7 Japanese Patent Laid-Open No. 9-1 5 4 8 6 5
  • An object of the present invention is to provide a bone model capable of grasping bone distortion of a patient or the like.
  • An object of the present invention is to provide a method for producing a bone filler capable of accurately producing a bone filler for filling a bone defect.
  • An object of the present invention is to provide a method for producing a bone filler that can effectively correct bone distortion (such as poor objectivity).
  • An object of the present invention is to provide a method for producing a cast having an appropriate shape while preventing the bone filler from external impact and grasping the shape of the bone filler.
  • An object of the present invention is to provide an appearance model that can objectively show how much the appearance of a specific part is distorted in a patient with osteoarthritis or the like. It is another object of the present invention to provide an appearance model that can show how much the appearance has changed before and after the operation in a surgical operation or the like, and a manufacturing method thereof.
  • an object of the present invention is to provide a method for producing an epithese that is excellent in symmetry and less painful for a patient, or a method for producing a saddle for producing an epithesis.
  • the bone filler when the bone filler is manufactured based on analog information, it is obtained based on the skill level of the other practitioner than that based on the experience of the practitioner. The accuracy of the bone filler to be obtained will change greatly.
  • a bone filler is manufactured based solely on digital information, knowledge based on the operator's experience is less likely to be reflected in the bone filler. Therefore, based on digital information, Processes that are preferable to be performed are based on digital information.
  • the operator's knowledge is reflected in an analog fashion, resulting in extremely high accuracy. This is based on the knowledge that bone filler can be manufactured.
  • the present invention is based on the knowledge that it is possible to grasp the bone distortion and asymmetry of the patient's bone by drawing a contour line or a grid pattern on the patient's bone model. Furthermore, the present invention has an appropriate shape by providing an image forming agent to compensate for the grasped distortion and obtaining an appropriate bone filler or bone filler based on the image forming agent. Based on the knowledge that bone fillers can be obtained
  • the present invention also basically manufactures a bone model of a patient by manufacturing a bone model of a patient's tailor-made and filling the image forming agent into the defect using the model.
  • the present invention also relates to a method for producing a bone filler that can be produced with high accuracy by producing the bone filler using the bone filler image produced.
  • the present invention also digitizes the patient's bone by CT imaging, etc., and based on the digitized information, for example, manufactures a bone model in which contour lines or squares are drawn, and the operator draws on the model. Based on the line, grasp the patient's bone distortion, fill with an imaging agent to make up for the distortion, install and create a bone filler image, digitize it again using the created image, This is based on the knowledge that a bone filler having an optimal shape can be obtained by producing bone filler based on information.
  • a first aspect of the present invention is a bone digital information acquisition step of imaging a specific part of a patient and acquiring digital information of the bone including cross-sectional views of a plurality of bones at the specific part of the patient.
  • Image forming agent A bone filler manufacturing process for manufacturing a bone filler based on the digital information of the image forming agent acquired in the image forming agent digital information acquiring step; and a bone filler manufacturing method comprising: About.
  • the processes that are preferable to be performed digitally such as model formation and bone filler production after image formation, are performed based on digital information, while contour lines are drawn on the bone model as described later.
  • the preparation of an environment that easily reflects the knowledge of the operator, and the installation of an imaging agent by the operator makes it possible to accurately reflect the knowledge of the operator to produce an extremely accurate bone filler. it can.
  • the step of imaging the specific region of the patient includes digital information of bone including a cross-sectional view of a plurality of bones at the specific region of the patient by CT scan or MRI.
  • the image forming agent digital information acquiring step is a step of acquiring digital information of the image forming agent by CT scan or MRI.
  • the bone filler preparation method described above In other words, according to CT scan or MRI, it is possible to easily obtain multiple cross-sectional views of an image containing bone or an imaging agent, and using the CT image or MRI image, it is easy to use a computer or the like. In addition, 3D digital information of bones or imaging agents can be obtained.
  • a preferred embodiment of the first aspect of the present invention is the bone according to any one of the above, wherein the specific part of the patient is a part including any of the skull, mandible, maxilla, extremities, and pelvis of the patient.
  • the present invention relates to a method for producing a filler. Since these parts include symmetrical parts, distortion can be easily grasped.
  • a preferred embodiment of the first aspect of the present invention is the bone filling according to any one of the above, wherein the bone model manufactured in the bone model manufacturing process is a bone model in which contour lines or a grid pattern is drawn.
  • the present invention relates to a method for producing an agent. If contours and squares are drawn, it is very easy to understand bone distortion and indentation when the imaging agent is installed based on the bone model obtained by the practitioner. A high bone filler can be obtained.
  • a preferred embodiment of the first aspect of the present invention is that the bone model manufactured in the bone model manufacturing step is a bone model containing gypsum. It relates to the manufacturing method.
  • the bone model manufacturing process is performed by a rapid prototyping method, an injection molding method, an additive manufacturing method by cutting, or a molding method using a processing apparatus having a machining center.
  • the present invention relates to a method for producing a bone filler according to any one of the above, which is a production process. If the bone model contains gypsum as the main component, the rapid prototyping method; a mold is designed based on the digital information of the bone taken by CT scan or MRI, and the bone model is used using the mold.
  • An injection molding method for manufacturing a bone Molding method using a processing machine with a machining center based on the obtained bone digital information; NC control with a multi-axis pole disc based on the obtained bone digital information
  • a bone model can be easily manufactured by a molding method using a simple cutting device.
  • the bone model manufactured in the bone model manufacturing process includes a calcium-based material and a polyvinyl alcohol resin, and the force-based material and the polyvinyl alcohol resin
  • the bone model With such a bone model, it is possible to obtain a bone model extremely quickly and with high accuracy, particularly by injection molding. As a result, the bone filler can be manufactured with high accuracy.
  • the bone model manufactured in the bone pattern manufacturing process is made from a composition containing model hemihydrate gypsum and polyvinyl alcohol resin, and the calcium-based substance and
  • the polyvinyl alcohol resin is blended so as to be 2 parts by weight to 8 parts by weight. It relates to a manufacturing method.
  • the bone model is mainly composed of gypsum; the imaging agent contains 90% by weight or more of wax or plastic; To a method for producing the bone filler described in 1. above.
  • the bone model is mainly composed of gypsum; and the imaging agent contains 90% by weight or more of wax based on the total weight;
  • the present invention relates to a method for producing a bone filler.
  • the bone model includes gypsum as a main component; the imaging agent contains 90% by weight or more of wax, and contains rutile-type titanium oxide.
  • the bone model part and the imaging agent part can be accurately obtained when imaging is performed by CT scanning or MRI.
  • the bone filler can be manufactured with high accuracy.
  • the bone filler manufacturing step is a step of manufacturing a bone filler by a rapid prototyping method.
  • a rapid prototyping method a custom-made bone filler can be manufactured quickly and accurately.
  • the bone filler obtained in the bone filler production process is selected from the group consisting of hydroxyapatite, carbonate apatite, fluorine apatite, chlorine apatite, and yS_TCP. , a-JCP, calcium metaphosphate, tetracalcium phosphate, octacalcium phosphate, calcium hydrogen phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, calcium pyrophosphate, their salts, or their solvates
  • the present invention relates to a method for producing a bone filler according to any one of the above, which is a bone filler produced using any one or more of the products. For example, when bone fillers are manufactured using these raw materials by the injection molding method, phase change occurs during molding, and the bone fillers have favorable characteristics.
  • a second aspect of the present invention relates to a bone model on which contour lines or a grid pattern is drawn. Since such contour lines and grids (lattice lines) are drawn, the distortion of the bone model can be easily grasped.
  • a preferred embodiment of this aspect relates to the bone model described above, wherein the bone model is a reproduction of a bone shape of a specific part of a patient.
  • Another preferred embodiment relates to the bone model described above, wherein the bone model is a reproduction of the bone shape of a patient's skull. That is, if the bone model is tailor-made for a specific patient, the bone distortion of that patient can be accurately grasped. It will be possible. Therefore, such a bone model is effective in properly grasping the shape of the bone filler, and it is possible to obtain a bone filler having an appropriate shape.
  • a third aspect of the present invention is a bone model manufacturing process for manufacturing a bone model; filling an image forming agent into the bone defect portion of the bone model obtained in the bone model manufacturing process; And a bone filler manufacturing process for manufacturing a bone filler to be filled in the bone defect based on the image forming agent filled in the bone defect of the bone model in the imaging agent filling step.
  • the present invention relates to a method for producing a filler.
  • a preferred embodiment of the third aspect of the present invention relates to the method for manufacturing a bone filler according to any one of the above, wherein the bone model manufacturing step is a step of manufacturing a bone model by a rapid prototyping method.
  • the rapid prototyping method for example, a bone model of a patient with a missing bone can be quickly and accurately created.
  • a preferred embodiment of the third aspect of the present invention is the method for producing a bone filler according to any one of the above, wherein the bone model obtained in the bone model production process is a bone model in which contour lines or a grid pattern is drawn.
  • the bone model obtained in the bone model production process is a bone model in which contour lines or a grid pattern is drawn.
  • the bone distortion of the patient can be properly grasped, so that an appropriate bone filler for the patient can be manufactured.
  • a preferred embodiment of the third aspect of the present invention is that the image forming agent used in the image forming agent filling step is any one of the bone model and X-ray transmittance, infrared transmittance, or ultraviolet transmittance.
  • the present invention relates to a method for producing a bone filler according to any one of the above. Since the imaging agent differs from the bone model in any of X-ray transmittance, infrared transmittance, or ultraviolet transmittance, the shape of the imaging agent can be maintained with the imaging agent still attached to the bone model. Can be analyzed. As a result, when the image forming agent is removed from the bone model, the shape of the image forming agent changes, and a part of the image forming agent remains in the bone model. It is possible to prevent the situation where the user cannot grasp the situation.
  • a preferred embodiment of the third aspect of the present invention is that the image forming agent used in the image forming agent filling step comprises rutile-type titanium oxide in an amount of 2% by weight to 5% by weight of the total weight.
  • the present invention relates to a method for producing a bone filler according to any one of the above. By containing rutile titanium oxide, the imaging agent and bone model can be distinguished by X-ray CT.
  • the bone model manufactured in the bone model manufacturing step is mainly composed of gypsum; and the image forming agent used in the image forming agent filling step is wax. It contains 90% by weight or more of the total weight and contains 2% by weight or more and 5% by weight or less of the rutile-type titanium oxide; By containing rutile titanium oxide, the imaging agent and bone model can be distinguished by X-ray CT.
  • a preferred embodiment of the third aspect of the present invention relates to the method for producing a bone filler according to any one of the above, wherein the bone filler production step is a step of producing a bone filler by a rapid prototyping method. .
  • the bone filler production step is a step of producing a bone filler by a rapid prototyping method.
  • information on the shape of the bone defect can be obtained by X-ray CT, etc., so that the bone filler can be quickly and accurately manufactured by the rapid prototyping method.
  • the bone filler manufacturing step includes a kneading step for kneading a raw material containing a calcium-based substance and a material containing a binder; A molding step for obtaining a molded body having a predetermined shape by injection molding using an injection molding machine having a mold using the obtained kneaded material; and included in the molded body obtained in the molding step A debinding (degreasing) step for removing the binder to obtain a degreased body; and a sintering step for heating and sintering the degreased body after the debinding step to obtain a sintered body.
  • the present invention relates to a method for producing the described bone filler. Information about the shape of the bone defect can be obtained by X-ray CT, etc., so that a mold can be created using this shape information to produce a bone filler with an accurate shape.
  • a preferred embodiment of the third aspect of the present invention is that the bone filler obtained in the bone filler manufacturing process includes a bone / cartilage formation promoter, a joint disease therapeutic agent, a bone / cartilage disease preventive / therapeutic agent. , Bone regenerative agent, bone resorption inhibitor, angiogenesis promoter, antibacterial agent, antibiotic or anticancer agent Regarding the method. Since the bone filler is impregnated with or coated with a predetermined drug, bone fillers having various medicinal effects can be provided.
  • the fourth aspect of the present invention is a bone model manufacturing process for manufacturing a bone model; an image forming agent installation process for installing an image forming agent on the bone model obtained in the bone model manufacturing process; And a bone filler manufacturing process for manufacturing a bone filler based on the image forming agent set on the bone model in the forming agent setting process.
  • the image forming agent installation step is preferably a step of installing an image forming agent so as to correct asymmetry of the bone model using the bone model obtained in the bone model manufacturing step. By doing so, a bone filler that can reinforce bone distortion can be obtained.
  • the bone model obtained in the bone model manufacturing process is a bone model in which a contour line or a grid pattern is drawn. It relates to a manufacturing method.
  • a preferred embodiment of the fourth aspect of the present invention is that the imaging agent used in the imaging agent filling step is one of the bone model and X-ray transmittance, infrared transmittance, or ultraviolet transmittance.
  • a preferred embodiment of the fourth aspect of the present invention is the method for producing a bone filler according to any one of the above, wherein the bone model is a bone model of a bone defect patient, a bone deformity patient or a cosmetic surgery patient. is there.
  • a fifth aspect of the present invention is a bone digital information acquisition step of imaging a specific part of a patient and acquiring digital information of the bone including cross-sectional views of a plurality of bones at the specific part of the patient.
  • a bone model manufacturing process for manufacturing a bone model at the specific site of the patient based on digital information including cross-sectional views of a plurality of bones acquired in the bone digital information acquisition process;
  • An image forming agent is installed in the manufactured bone model, and an image forming agent for forming a cast containing a material different from the image forming agent for the bone filler is installed.
  • a bone filler suitable for an affected area can be obtained, and a cast that can appropriately support the bone filler can be designed. Since the image forming agent for forming the cast contains different materials from the image forming agent for the bone filler, it is possible to distinguish the shapes when photographing with CT scan or MRI.
  • a preferred embodiment of the fifth aspect of the present invention is that a specific part of a patient is imaged, digital information of a bone including cross-sectional views of a plurality of bones in the specific part of the patient, and soft tissue around the bone
  • the present invention relates to a cast manufacturing method for manufacturing a cast at a site. Since the cast is manufactured based on the digital information of the soft tissue, a custom-made cast having a shape suitable for the patient can be manufactured.
  • the bone filler and cast production method of the present invention or the cast production method, preferred embodiments and configurations in the above-described bone filler production method can be appropriately employed.
  • a sixth aspect of the present invention relates to an appearance model of a part of a body on which a contour line or a pattern is drawn. Since contour lines or squares are drawn, it is possible to objectively grasp the distortion of a specific part. In particular, by comparing appearance models before and after treatment, it is possible to objectively understand how much the treatment has changed.
  • a preferred embodiment of the sixth aspect of the present invention relates to the appearance model described above, wherein the appearance model is a reproduction of a body surface of a specific part of a patient.
  • Specific parts of the patient can include the parts mentioned above, and specifically include the heel, head, limbs, chest, lower abdomen, and hips.
  • a method for manufacturing an appearance model including: According to such a manufacturing method, the appearance model can be manufactured appropriately. Since the appearance model before and after the operation can be obtained, it is possible to show how much the appearance has changed before and after the operation in surgery.
  • a specific part of a patient is imaged, and digital information relating to the cross-sectional view of the specific part including cross-sectional views of a plurality of bones and soft tissues in the specific part of the patient is acquired.
  • a cross-sectional digital information acquisition step a three-dimensional digital image for obtaining a three-dimensional digital image of the specific site based on digital information including cross-sectional views of a plurality of bones and soft tissues acquired in the cross-sectional information acquisition step
  • An image acquisition step an epithesis image data acquisition step for acquiring epithesis image data based on the three-dimensional digital image of the specific part obtained in the three-dimensional digital image acquisition step;
  • a method for producing an epithesis by a rapid prototyping method using the obtained epithesis image data a rapid prototyping method using the obtained epithesis image data.
  • a preferred embodiment of the seventh aspect of the present invention is the digital information relating to the cross-sectional view of the specific site, including a cross-sectional view of a plurality of bones and soft tissues taken at the specific site of the patient, by imaging a specific site of the patient Obtaining a three-dimensional digital image of the specific site based on digital information including a plurality of bone and soft tissue sectional views obtained in the sectional view information obtaining step.
  • a three-dimensional digital image acquisition step; and the specific part obtained in the three-dimensional digital image acquisition step Based on the 3D digital image of
  • An appearance model manufacturing process for manufacturing the appearance model of the specific part; an image forming agent installation process for installing an image forming agent on the appearance model obtained in the appearance model manufacturing process; and an image forming agent in the image forming agent installation process An image forming agent digital information acquisition step of photographing a bone model in which an image sensor is installed and acquiring digital information of the image forming agent; and based on the digital information of the image forming agent acquired in the image forming agent digital information acquisition step.
  • a manufacturing method of an epithese excellent in symmetry or a manufacturing method of a mold for manufacturing an epithesis can be provided.
  • shape information of a specific part is acquired by CT scan or the like, and an epithesis is designed on a computer according to the information, so that it is not necessary to directly apply an impression agent or the like to a patient.
  • a method for producing a mold for producing an epithesis can be provided.
  • contour lines or squares are drawn on the bone model, so that it is possible to provide a bone model that can grasp bone distortion of a patient or the like.
  • the bone filler is designed using the patient's bone model
  • a method for manufacturing the bone filler that can accurately manufacture the bone filler for filling the bone defect portion is provided.
  • the bone defect and distortion of the patient's bone can be properly grasped, so the bone filler for filling the bone defect is accurate.
  • the bone filler is designed using the patient's bone model, it is possible to provide a method for manufacturing a bone filler that can effectively correct bone distortion (such as poor objectivity). wear.
  • bone distortion such as poor objectivity
  • wear if a patient's bone model with contour lines or grids is used, the patient's bone distortion can be properly grasped.
  • the bone filler can be manufactured with high accuracy.
  • an appearance model that can objectively show how much the appearance of a specific part is distorted in a patient with osteoarthritis or the like.
  • an appearance model before and after a procedure can be obtained, and thus an appearance model that can indicate how much the appearance has changed before and after a procedure in a surgical operation and the like, and a method of manufacturing the same. be able to.
  • the shape of the part missing from the remaining part is assumed. It is possible to provide a method for producing a saddle mold for producing an epithesis. According to the present invention, shape information of a specific part is obtained by CT scan or the like, and the epithesis is designed on a computer according to the information, so that it is not necessary to directly apply an impression agent or the like to the patient. , Or a manufacturing method of a mold for manufacturing an epithesis can be provided.
  • FIG. 1 is an example of a flow showing the basic steps of the method for producing a bone filler of the present invention.
  • FIG. 2 is a schematic diagram of each step in the present example.
  • FIG. 3 is a diagram showing a CT image converted into a drawing taken by CT.
  • Figure 3 (a) shows a CT image of the buttocks
  • Fig. 3 (b) shows a CT image of the lower jaw.
  • Fig. 4 shows a photograph and a three-dimensional image replacing the drawing of the bone model obtained in the example.
  • Fig. 4 (a) shows the obtained gypsum model (bone model)
  • Fig. 4 (b) shows a side view of the bone model
  • Fig. 4 (c) shows a design drawing of the bone model with contour lines drawn.
  • FIG. 5 Fig. 5 is a photograph replacing the drawing after the image forming agent was placed on the bone model.
  • Fig. 5 (a) is a front view
  • Fig. 5 (b) is a side view
  • Fig. 5 (c) is a bottom view.
  • Fig. 6 shows a CT image replacing the drawing of the bone model with the imaging agent.
  • Figure 6 (a) shows a CT image of the buttocks
  • Fig. 6 (b) shows a CT image of the lower jaw.
  • FIG. 7 is a photograph replacing the drawing of the bone filler obtained in this example.
  • Figure 7 (a) is a diagram showing the bone filler buried in the buttock
  • Fig. 7 (b) is a diagram showing the back side.
  • Fig. 7 (c) shows the bone filler buried in the mandible
  • Fig. 7 (d) shows the back side.
  • FIG. 8 is a photograph replacing a drawing of a gypsum image (appearance model) in which contour lines of the face showing the undulations of the patient treated with the bone filler obtained in the example are drawn.
  • Fig. 8 (a) is before treatment and Fig. 8 (b) is after treatment.
  • a bone model manufacturing process for manufacturing a bone model at a specific site of the patient based on digital information including cross-sectional views of a plurality of bones acquired in the digital information acquisition process of the above; and manufactured in the bone model manufacturing process An image forming agent installation step of installing an image forming agent on a bone model; and an image forming agent that captures digital information of the image forming agent by photographing the bone model on which the image forming agent has been installed in the image forming agent installation step.
  • the step of imaging the specific site of the patient includes digital information of bone including a cross-sectional view of a plurality of bones at the specific site of the patient by CT scan or MRI.
  • the image forming agent digital information acquiring step is a step of acquiring digital information of the image forming agent by CT scan or MRI.
  • the bone filler preparation method described above In other words, according to CT scan or MRI, it is possible to easily obtain multiple cross-sectional views of an image containing bone or an imaging agent, and using the CT image or MRI image, it is easy to use a computer or the like. In addition, 3D digital information of bones or imaging agents can be obtained.
  • a preferred embodiment of the first aspect of the present invention is the bone according to any one of the above, wherein the specific part of the patient is a part including any of the skull, mandible, maxilla, extremities, and pelvis of the patient.
  • the present invention relates to a method for producing a filler. Since these parts include symmetrical parts, distortion can be easily grasped.
  • a well-known CT imaging device can be used as appropriate for CT scanning or MRI.
  • the CT camera is preferably connected to a computer.
  • the computer has an input / output device for connection with a CT device and a monitor, a storage unit for storing image data by CT or MRI, a control unit (calculation unit) for performing various calculations, and an image by CT or MRI. It has a main memory that stores a program for digitizing data and acquiring three-dimensional digital data of the imaged target region based on multiple CT image data or MRI image data, and a bus that connects various devices.
  • a preferred embodiment of the first aspect of the present invention is that the bone model manufactured in the bone model manufacturing process is a bone model in which a contour line or a grid pattern is drawn.
  • the present invention relates to a method for producing an agent. If contours and masu eyes are drawn Based on the bone model obtained by the practitioner, when installing the imaging agent, it is very easy to understand bone distortion and dents, and as a result, a highly accurate bone filler can be obtained. It becomes.
  • a preferred embodiment of the first aspect of the present invention relates to the method for producing a bone filler according to any one of the above, wherein the bone model produced in the bone model production step is a bone model containing gypsum.
  • the bone model manufacturing process is performed by a rapid prototyping method, an injection molding method, an additive manufacturing method by cutting, or a molding method using a processing apparatus having a machining center.
  • the present invention relates to a method for producing a bone filler according to any one of the above, which is a production process.
  • the rapid prototyping method C molds are designed based on the digital information of bones taken by C-scan or MRI, and bones are used using the molds.
  • Injection molding method for manufacturing a model molding method using a processing machine with a machining center based on the obtained bone digital information; NC control equipped with a multi-axis pole board based on the obtained bone digital information
  • a bone model can be easily manufactured by a molding method using a possible cutting device.
  • the additive manufacturing method by cutting for example, disclosed in Japanese Patent Application Laid-Open No. H8-29003 47, “a three-dimensional shape is divided into a plurality of layers, each layer is formed, and these are sequentially formed.
  • the plate material is subjected to tertiary using a tool such as a cutting tool or a grinding tool in accordance with a three-dimensional machining program created for each layer based on three-dimensional numerical data.
  • a tool such as a cutting tool or a grinding tool
  • Three-dimensional by repeating the process of forming the original curved surface shape, laminating the raw plate material on this processed plate material, and forming the raw plate material into a three-dimensional shape again using the tool. What is necessary is just to carry out by the layered manufacturing method characterized by forming a shaped object.
  • the sheet-like member is cut based on the two-dimensional shape data of each layer of the target molded product disclosed in JP-A-3-2 4 4 5 10 or JP-A-5-3 1 3 5 8 4.
  • a method of laminating and modeling a three-dimensional shape object into a two-dimensional half shape by sequentially laminating these may be used.
  • liquid photocuring The surface of the curable resin is irradiated with a light beam to form a cured layer of a predetermined shape, and an uncured liquid photocurable resin is further supplied onto the cured layer, and then the light beam is irradiated again to form a cured layer.
  • molding of the three-dimensional shape thing into a two-dimensional half shape may be sufficient by repeating the process of laminating
  • the machining center known ones can be used as appropriate.
  • Japanese Patent Laid-Open No. 2 0 0 4-0 7 4 3 7 6, Japanese Patent Laid-Open No. 2 0 3 _ 9 4 2 6 4, Or what is indicated by Unexamined-Japanese-Patent No. 2 0 0 1-1 5 0 2 6 2 can be used suitably.
  • a multi-axis pole board for example, a 5-axis pole board
  • the bone model manufactured in the bone model manufacturing process includes a calcium-based material and a polyvinyl alcohol resin, and the force-based material and the polyvinyl alcohol resin
  • the polyvinyl alcohol resin is a bone model blended so as to be 2 parts by weight to 8 parts by weight.
  • the bone model manufactured in the bone pattern manufacturing process is made from a composition containing model hemihydrate gypsum and polyvinyl alcohol resin, and the calcium-based substance and
  • the polyvinyl alcohol resin is blended so as to be 2 parts by weight to 8 parts by weight. It relates to a manufacturing method.
  • the bone model is mainly composed of gypsum; and the imaging agent contains 90% by weight or more of wax or plastic; Relates to a method for producing the bone filler described in 1. above.
  • the bone model is mainly composed of gypsum; and the imaging agent contains 90% by weight or more of wax based on the total weight;
  • the present invention relates to a method for producing a bone filler.
  • the bone model is mainly composed of gypsum; the imaging agent contains 90% by weight or more of the total weight of wax, and the total weight of rutile-type titanium oxide.
  • the present invention relates to a method for producing a bone filler according to any one of the above.
  • a bone model having such a composition and an image forming agent the bone model portion and the image forming agent portion can be analyzed with high accuracy when imaging is performed using a CT scan or MR I.
  • the bone filler can be manufactured with high accuracy.
  • the bone filler manufacturing step is a step of manufacturing a bone filler by a rapid prototyping method.
  • a rapid prototyping method a custom-made bone filler can be manufactured quickly and accurately.
  • the bone filler obtained in the bone filler production step is a hydroxyapatite, a carbonate apatite, a fluorapatite, a chlorine apatite, yS_TCP , a- JCP, calcium metaphosphate, tetracalcium phosphate, octacalcium phosphate, calcium hydrogen phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, calcium pyrophosphate, their salts, or their solvates
  • the present invention relates to a method for producing a bone filler according to any one of the above, which is a bone filler produced using any one or more of the products. For example, when bone fillers are manufactured using these raw materials by the injection molding method, phase change occurs during molding, and the bone fillers have favorable characteristics.
  • the second aspect of the present invention relates to a bone model on which contour lines or mesh patterns are drawn. Since such contour lines and grids (lattice lines) are drawn, the distortion of the bone model can be easily grasped.
  • the contour line is based on a point on the bone model.
  • the height may be set every 0.1 mm to 1 cm, preferably every 0.5 mm to 5 mm, more preferably every 0.5 mm to 2 mm.
  • the bone model is a skull model
  • the place where the contour line is drawn may be the entire bone model or a part of it.
  • the skull model may be a model of the entire skull or a model of a necessary part.
  • the necessary part may be the front half of the skull (the part that looks like a mask).
  • only the lower jaw, only the upper jaw, or the lower and upper jaw may be used.
  • the grid drawn on the bone model is not particularly limited as long as it has a lattice shape.
  • the first and second diameters may be provided every 0.1 mm to 3 cm, preferably every 0.5 mm to 1 cm, and more preferably every 1 mm to 5 mm. More and more eyes may be provided on the entire bone model or partially.
  • Such a bone model can be manufactured by a known method, for example, the rapid prototype method described later. Specifically, for example, when a bone model is manufactured by the rapid prototyping method, three-dimensional information of the bone model is obtained using a plurality of digital images.
  • the bone model Since it is possible to obtain information related to the height of the surface part, a rapid prototyping method that can obtain drawing information related to the position where contour lines are drawn based on the obtained height information and spray ink etc. at the position set by the computer.
  • the contour line may be drawn using the obtained drawing information.
  • 3D information of the bone model is obtained using a plurality of digital images.
  • drawing information about the eye-catching position is obtained, and ink etc. is set at the position set by the computer.
  • a preferred embodiment of this aspect relates to the bone model described above, wherein the bone model is a reproduction of a bone shape of a specific part of a patient.
  • the bone model is a reproduction of a bone shape of a patient's skull.
  • Regarding bone models In other words, if the bone model is tailor-made for a specific patient, the bone distortion of that patient can be accurately grasped. Therefore, such a bone model is effective in properly grasping the shape of the bone filler, and furthermore, a bone filler having an appropriate shape can be obtained.
  • plaster thermosetting resin, thermoplastic resin, photo-curing resin,
  • Fig. 1 is a flow example showing the basic steps of the method for producing a bone filler according to the present invention.
  • S means a step.
  • S means a step.
  • the bone filler manufacturing method of the present invention is basically obtained by a bone model manufacturing process (step 1) for manufacturing a bone model (1); An imaging agent filling step (step 2) for filling the bone defect (2) of the bone model (1) with the imaging agent (3); and filling the bone defect of the bone model in the imaging agent filling step
  • the present invention relates to a bone filler manufacturing process (step 3) for manufacturing a bone filler (4) for filling a bone defect based on the image forming agent, and a bone filler manufacturing method including: By filling the bone filler and treating it, the defect is recovered and the bone defect is treated.
  • symbol 5 indicates the bone after recovery.
  • Fig. 1 a conceptual diagram for explaining the situation of the bone defect model, etc. in each process is attached to the right of each process.
  • the bone model manufacturing process is a process for manufacturing a bone model.
  • the bone model is not particularly limited as long as it can produce a bone model of a patient, and a known method can be adopted as appropriate.
  • a bone model manufacturing method a bone model such as a lentogen is manufactured using a photographic image of a bone, and a bone model is manufactured by pouring a model raw material into the mold, or a rapid prototyping method.
  • the bone model is manufactured based on digital data, it is preferable to manufacture the bone model by the rapid prototyping method.
  • the three-dimensional 3D object is used as a device prototype (prototype) to examine its performance.
  • a stereolithography method in which a thin layer is formed from cross-sectional shape data, and the thin layer is laminated, a powder sintering method, a powder binding method, and a solid ground hardening method.
  • a liquid resin material photo-curing resin
  • the shape is reproduced in sequence.
  • the bone model and the like in this specification may be formed of a resin such as a photocurable resin.
  • the light source for curing the photo-curing resin and the photo-curing resin those described in Japanese Patent Application Laid-Open No. 2000-049 8 7 can be used as appropriate.
  • the powder binding method the powder material is spread thinly into layers, the adhesive is ejected according to the drawing pattern stored in the computer, and the powder material is combined, and layer formation and adhesive ejection are repeated.
  • a three-dimensional structure is formed as a combination of powder materials. That is, the bone model and the like in this specification may be formed of a polymer such as a thermoplastic resin or a thermosetting resin.
  • a bone model or the like may be obtained by sintering the powder binder once formed at a high temperature.
  • thermosetting resin may be used as a raw material.
  • metal fine powder may be used as the powder
  • the bone model in this specification may be any of titanium, iron, aluminum, copper, silver, gold, nickel, lead, tin, or a mixture of two or more. There may be.
  • Platinum Since alloys such as palladium are cured by receiving the output of a laser or the like, a thin layer of these metal powders is formed, and laser light is irradiated according to the irradiation pattern stored in the computer. The shape may be reproduced sequentially.
  • the bone model manufacturing step includes a cross-sectional shape acquisition step for obtaining information on a cross-sectional shape in each layer obtained by dividing the three-dimensional shape into a plurality of layers based on information on the three-dimensional shape of a patient's bone.
  • the cross-sectional shape A first tomographic image forming step for forming a first cross-sectional image that reproduces the shape;
  • Information on the cross-sectional shape of the layer is read out, and based on the read-out information, a second cross-sectional image that reproduces the cross-sectional shape using the image forming composition is overlapped with the first cross-sectional image.
  • the second tomographic image forming step to be formed and the second tomographic image forming step information on the cross-sectional shape in the layer to be formed is obtained from the cross-sectional shape information obtained in the cross-sectional shape obtaining step. And forming a cross-sectional image of the layer that reproduces the cross-sectional shape using the image forming composition based on the read information so as to overlap the cross-sectional image obtained in the previous step. And a three-dimensional image acquisition step for obtaining a three-dimensional image that reproduces the shape of the object. At least one step of the layered image forming step is to form an image by forming the powder of the image forming composition into layers.
  • the image forming composition known ones can be used as appropriate.
  • an image forming composition an image forming composition in which a polyvinyl alcohol resin is blended with a calcium-based material, wherein the polyvinyl alcohol resin has a total weight of the calcium-based material and the polyvinyl alcohol resin of 10%.
  • Examples of the composition for image formation include 2 parts by weight to 8 parts by weight with 0 part by weight.
  • a preferred embodiment of the image forming composition is an image forming composition in which a polyvinyl alcohol resin and a curing accelerator are blended with a calcium-based substance;
  • the curing accelerator includes dihydrate gypsum, One or more selected from the group consisting of alkali metal sulfates, alkaline earth metal sulfates, alkali metals, alkaline metal chloride salts, alkaline earth metal chloride salts, ammonium salts of inorganic acids, and alums A curing accelerator; when the total weight of the calcium-based substance and the polyvinyl alcohol resin is 100 parts by weight, the polyvinyl alcohol resin is blended in an amount of 2 to 8 parts by weight.
  • the curing accelerator is an image-forming composition that is blended in an amount of 0.1 to 5 parts by weight.
  • the image forming composition according to this embodiment is preferably composed of only a calcium-based substance, a polyvinyl alcohol resin, and a curing accelerator.
  • These image-forming compositions are preferably those which are substantially free of water other than crystal water and are preferably in powder form.
  • the particle size of the gypsum powder used as a raw material is not particularly a problem because it is sufficiently stirred and dissolved with water.
  • the image-forming composition of the present invention is not necessarily intended to be in the form of a slurry, it is preferable that the particle size of the calcium-based material powder is substantially uniform. From this point of view, the calcium-based substance of the present invention has a positive effect from the maximum distribution in the particle distribution measurement based on JISR 16 19 (Method for measuring particle size distribution by liquid phase precipitation light transmission method of fine ceramic powder).
  • gypsum is a preferred example of the calcium-based substance in the image forming composition.
  • model hemihydrate gypsum, ⁇ -type hemihydrate gypsum, or a mixture thereof can be used as appropriate, but model hemihydrate gypsum is preferred. This is because the model hemihydrate gypsum is capable of achieving a kneading state with less water than the type 3 hemihydrate gypsum and allowing the curing to proceed.
  • Polyvinyl alcohol resin in the present invention is not particularly limited, and known port polyvinyl alcohol resin (polyvinyl alcohol (_ [C (OH) HCH 2] n -) or polyvinyl alcohol resin having a functional group as appropriate) the It can be used as appropriate.
  • the polyvinyl alcohol resin generally, a saponified product obtained by saponifying a lower alcohol solution of polyvinyl acetate with a saponification catalyst such as alric acid is used.
  • a monomer copolymerizable with vinyl acetate and a saponified product of a copolymer of vinyl acetate can be used.
  • Examples of monomers copolymerizable with vinyl acetate include olefins such as ethylene, propylene, isoprene, hi-octene, hi-dedecene, hi-octadecene, acrylic acid, methacrylic acid, crotonic acid, malein.
  • olefins such as ethylene, propylene, isoprene, hi-octene, hi-dedecene, hi-octadecene, acrylic acid, methacrylic acid, crotonic acid, malein.
  • Acid maleic anhydride, unsaturated acids such as itaconic acid, or salts thereof, mono- or dialkyl esters, nitriles such as acrylonitrile, methacrylonitrile, amides such as acrylamide, methacrylamide, Olefin sulfonic acid such as ethylene sulfonic acid, allylic sulfonic acid, methallyl sulfonic acid or its salts, alkyl vinyl ethers N-acrylamidomethyltrimethylammonium chloride, arlytrimethylammonium chloride, dimethyldiaryl Ammonu Kurori de, Jimechiruarirubi two ketone, N _ Binirupirori pyrrolidone, vinyl chloride, Polyoxyalkylenes such as vinylidene, polyoxyethylene (meth) aryl ether, polyoxypropylene (meth) aryl ether, and other polyoxyalkylene (meth) aryl ether, polyoxyethylene (meth
  • (Meth) acrylate polyoxyethylene (meth) acrylamide, polyoxyalkylene (meth) acrylamide such as polyoxypropylene (meth) acrylamide, polyoxyethylene (1- (meth) acrylamide 1, 1 —Dimethylpropyl
  • Esters polyoxyethylene vinyl ether, polyoxypropylene vinyl ether, polyoxyethylene arylamine, polyoxypropylene vinylamine, polyoxyethylene vinylamine, polyoxypropylene vinylamine, etc. are preferred. Saponification products of homopolymers of vinyl acetate, saponification products of copolymers of vinyl acetate and ethylene, unsaturated acids or their salts, alkyl esters and olefin sulfonic acids or their salts are used. In the present invention, unlike a building material, it is not necessary to put an image forming composition into a mold or the like, and it is not necessary to knead, so that the saponification degree and average polymerization degree of the polyvinyl alcohol resin are not particularly limited.
  • the saponification degree is less than 70 mol%, since no observed improvement in mechanical strength of the three-dimensional image, saponification degree preferably 70 mol% or more member 80 mole 0 / & ⁇ 99.5 mole 0 / If o, it is more preferable.
  • the average degree of polymerization of the polyvinyl alcohol resin the degree of polymerization is low, the viscosity of the slurry was less than 2 X 1 0 2, in water too high viscosity of the inverse to 3 X 1 0 3 a exceeds the mud-like material since dissolved hardly 2 X 1 0 2 ⁇ 3 X 1 0 3 may be mentioned as the polymerization degree, 5 X 1 0 2 ⁇ 2.
  • the image forming composition of the present invention since the need to put in etc. type is not necessary to Nag also triturated, for example, the degree of polymerization is used as the 3 X 1 0 3 ⁇ 1 X 1 0 4 Also good. In addition, if the degree of polymerization is small, the problem is that gypsum settles when water is added to form a slurry. However, the image-forming composition of the present invention does not need to be made into a slurry and has a viscosity. since low, is also preferred that easily dissolved in a small amount of water, as a polymerization degree, 5 X 1 0 ⁇ 1. 9 X 1 0 2 may be mentioned, 1 X 1 0 2 ⁇ 1. 5 X 1 0 2 even better .
  • the degree of polymerization and molecular weight are It can be controlled by appropriately adjusting the reaction time and reaction conditions according to known methods.
  • the degree of saponification is 90 mol% or more and 99.5 mol0 / o or less, and 98.5 mol0 / o above 9 9. more preferably not more than 5 mole 0/0 or less. Further, it is preferable to use a viscosity of 1 X 10 to 2 xl 0 m Pas. Viscosity may be measured according to standards such as JIS (for example, JISK 7 3 6 7).
  • the polyvinyl alcohol resin may be a polyvinyl alcohol resin itself or a resin of a polyvinyl alcohol derivative into which a functional group is appropriately introduced. Further, such a functional group may be partially introduced, or a mixture of plural kinds of polyvinyl alcohol resins may be used.
  • Such functional groups include: acetoacetyl group, silyl group, quaternary ammonium base, carboxylic acid group, carboxylic acid inorganic base, sulfonic acid group, sulfonic acid inorganic base, ketone group, mercapto group, amino group, etc. Can be given. One or more of these may be included.
  • acetoacetyl or silyl groups are preferred, and most preferred are those having a acetoacetyl group as a functional group.
  • the ratio of the functional group may be one in which all hydroxyl groups (one OH) are substituted with functional groups, or 5 to 95% of the total hydroxyl groups may be substituted with functional groups. It can be 10% to 20%, 70% to 90%, or 30% to 70%.
  • those having a acetoacetyl group in the molecule can form a chelate with a metal ion contained in a curing accelerator, etc., by having the acetoacetyl group in the molecule, and quickly achieve a certain hardness with a small amount of moisture. It will be possible.
  • These functional groups can be introduced into the polyvinyl alcohol resin obtained as appropriate according to the usual methods in organic synthesis, and the types and ratios of the introduced functional groups can be controlled according to the usual methods in organic synthesis.
  • the polyvinyl alcohol resin is blended in an amount of 2 to 8 parts by weight when the total weight of the calcium-based substance and the polyvinyl alcohol resin is 100 parts by weight.
  • the vinyl alcohol resin is preferably 3 parts by weight to 7 parts by weight, may be 3 parts by weight to 6 parts by weight, 4 parts by weight to 7 parts by weight, 4 parts by weight to 6 parts by weight, or 4. It may be 5 to 5.5 parts by weight. If there is little polyvinyl alcohol resin, appropriate hardness cannot be obtained.
  • the image forming composition of the present invention may be a blend in which the polyvinyl alcohol resin is contained separately from the calcium-based substance, or a calcium-based substance and a polyvinyl alcohol resin are mixed. It may be. In any case, it is preferably in the form of powder, and the size of the powder is preferably in the same range as described above.
  • the curing accelerator of the present invention includes dihydrate gypsum, alkali metal sulfate, alkaline earth metal sulfate, alkali metal chloride salt, alkaline earth metal chloride salt, ammonium salt of inorganic acid, and One or more curing accelerators selected from the group consisting of alums.
  • alkali metal sulfate include sodium sulfate and potassium sulfate.
  • Alkaline earth metal sulfates include magnesium sulfate, calcium sulfate, and barium sulfate.
  • Alkali metal chloride salts include lithium chloride, sodium chloride, and potassium chloride.
  • Alkaline earth metal chloride salts include magnesium chloride and calcium chloride.
  • Ammonium salt of inorganic acid is ammonium chloride.
  • alums aluminum sulfate ⁇ Potassium 12 2 water (sulfuric acid lithium aluminum 1 2 water): AIK (S 0 4 ) 2 ⁇ 1 2 H 2 0 and other forces Ryum alum (AIN a (S 0 4 ) 2 ⁇ 1 2 H 2 0 and so on, and NH 4 AI (S 0 4 ) 2-1 2 H 2 0 and so on.
  • one or more selected from the group consisting of magnesium sulfate, sodium chloride, sodium sulfate, and calcium sulfate can be preferably used.
  • dihydrate gypsum and other components of dihydrate gypsum preferably used in combination with one or more selected from the group consisting of magnesium sulfate, sodium chloride, sodium sulfate, and calcium sulfate are also preferably used. You can.
  • those containing metal salts as curing accelerators are This is preferable because it forms a chelate structure with polyvinyl alcohol having a functional group and enhances the strength of the three-dimensional image or bone model.
  • a curing accelerator When a curing accelerator is added, it may be blended so as to be 0.1 to 5 parts by weight when the total weight of the calcium-based substance and the polyvinyl alcohol resin is 100 parts by weight. .
  • dihydrate gypsum When dihydrate gypsum is used as a hardening accelerator, the amount of dihydrate gypsum is 0.5 to 5 parts by weight.
  • the content of the curing accelerator is 0.1 wt.% When the total weight of gypsum and polyvinyl alcohol resin is 100 wt.
  • To 5 parts by weight preferably 0.1 to 3 parts by weight, more preferably 0.3 to 2 parts by weight, more preferably 0.4 to 1 part by weight. 5 parts by weight.
  • the curing accelerator may be blended in the image forming composition according to a known method in the image forming composition.
  • the image forming composition of the present invention may appropriately contain a known composition other than those described above as long as the function of the image forming composition of the present invention can be maintained.
  • a method for producing a three-dimensional image for forming a bone model is basically a method for producing a three-dimensional image based on the rapid prototyping method (RP method).
  • the shape is used. Since the image forming composition as described above is used, even if a plurality of layers to which a small amount of water (water, an aqueous solution of a crosslinking agent, a known aqueous binder solution used in an RP apparatus, etc.) is added are stacked, a temporary shape is obtained. Therefore, it is possible to quickly form a stereoscopic image having sufficient strength to maintain the above.
  • the layer has a certain level of strength with a small amount of water, but is bonded to the adjacent layers above and below to form an integral three-dimensional image. If the conventional image forming composition is used as it is, a three-dimensional image having such characteristics cannot be obtained.
  • a method for producing a three-dimensional image according to this aspect is provided. The law can be realized.
  • a method for producing a three-dimensional image for forming a bone model is obtained by dividing the three-dimensional shape into a plurality of layers based on information on the three-dimensional shape of an object.
  • a cross-sectional shape acquisition step (step A 1) for obtaining information on the cross-sectional shape in each layer; and reading out information on the cross-sectional shape in the first layer from the cross-sectional shape information obtained in the cross-sectional shape acquisition step,
  • a first tomographic image forming step step A2-1) for forming a first cross-sectional image in which the cross-sectional shape is reproduced using the image forming composition, and obtaining the cross-sectional shape From the cross-sectional shape information obtained in the process, information on the cross-sectional shape in the second layer corresponding to the layer above the first cross-sectional image is read, and based on the read information, an image forming composition
  • a second tomographic image forming step (step A2-2) for forming a second cross-sectional image
  • 3D image acquisition process to obtain a 3D image that reproduces the shape of the object by repeating the process of forming a cross-sectional image of the layer that reproduces the cross-sectional shape by using it so that it overlaps the cross-sectional image obtained in the previous process.
  • Step A 2 _n wherein at least one of the tomographic image forming steps forms an image forming composition layer by layering the powder of the image forming composition according to any one of the above
  • the image-forming composition layer Comprising the moisture addition step of wetting a constant portion, a method of producing a three-dimensional image that reproduces the shape of an object.
  • the cross-sectional shape acquisition step is a step for obtaining information on the cross-sectional shape in each layer obtained by dividing the three-dimensional shape into a plurality of layers based on the information on the three-dimensional shape of the object (step A 1).
  • the information on the cross-sectional shape in each layer includes color-coding information in each layer.
  • coloring is performed according to the color-coding information. The method for producing a three-dimensional image as described above, wherein water containing components is added.
  • a method for producing a three-dimensional image for forming a bone model can be easily performed by programming a process or the like using a known apparatus used in a so-called rapid prototyping method. Specifically, it can be easily executed by a computer equipped with a rapid prototype program.
  • This computer includes an input / output unit, a control unit such as a CPU, a calculation unit, and a memory, and is connected to a stereoscopic image manufacturing unit for producing a stereoscopic image through an input / output unit such as an interface.
  • the stereoscopic image manufacturing unit includes a movable table that can move up and down to form a solid image in accordance with a command from the computer; and an image forming composition on the movable table in accordance with a command from the computer.
  • An image forming composition layer forming section for taking out the image forming composition powder from the image forming composition powder storage section to form an image forming composition layer;
  • a printing section for adding water or a predetermined aqueous solution to the image forming composition layer.
  • the cross-sectional shape acquisition process information on the three-dimensional shape of the target object is obtained from multiple radiographs, and an image obtained by dividing the three-dimensional shape into cross-sectional shapes composed of multiple layers is obtained.
  • the three-dimensional shape of an implant or artificial bone can be obtained, for example, as follows. First, when obtaining an implant or artificial bone to replenish the defect, the defect generally has a portion that is essentially symmetrical (for example, the right foot bone and the left foot bone). Computer simulation may be performed to target the shape of the bone at the target site, and information on the three-dimensional shape of the target object may be obtained. Also, the shape of the affected area itself may not be the preferred shape to reproduce, such as when manufacturing dental implants.
  • the shape of the object is drawn using 3DCG (3D computer graphics), etc., referring to the shape of the surrounding teeth and bones, and input to the computer.
  • Information about the three-dimensional shape may be obtained, and the computer may obtain information about each cross-sectional shape based on the three-dimensional shape.
  • the control program stored in the storage unit such as a CD-ROM or hard disk is read.
  • the CPU scans X-ray images stored in the storage unit based on instructions from the control program and collects multiple scanned 2D images to obtain an image related to the 3D shape.
  • the density of the bones and soft tissues are different in X-rays and so on, so when scanning the X-rays to obtain an image, the contours have parts with greatly different levels of density.
  • the part of the bone and the part of the soft tissue Patterning information may be obtained and this patterning information stored.
  • the cross-sectional shape of each layer is obtained by slicing the three-dimensional shape according to a certain direction such as the z-axis (from the ground to the sky).
  • contour lines on a bone model it is only necessary to insert contour lines for each height that has been analyzed by a known method based on the shape of the acquired object (the shape of the bone model to be created). Specifically, since the rapid prototyping method produces a 3D image by overlaying multiple layers, when creating each layer, the bottom of each layer or the top of each layer may be separated by color. . Also, for example, every two to 100 layers may be a colored layer. In this way, a bone model with contour lines drawn at appropriate heights can be obtained. Specifically, a predetermined part of each layer is provided with a mixture of pigment ink or programmed to form a layer to which pigment is added for each predetermined layer, and a bone model is manufactured according to that program. That's fine.
  • contour lines are drawn on a bone model
  • the orientation of the obtained bone model is such that the 3D data of the bone model can be drawn on a 2D monitor (front view), and a grid is applied to the 2D data.
  • the grid can be programmed to draw on the model.
  • the thickness of the layer depends on input information from a pointing device, etc. May be adjusted as needed, or may be controlled according to a preset value. If the thickness of the layer is large, an elaborate hardened body cannot be obtained, and there is a problem that the hardness cannot be maintained by simply adding water droplets using a printing mechanism. On the other hand, if the thickness of the layer is too thin, many cross-sectional images must be obtained, which not only imposes a burden on the hardware capacity of the computer but also takes a lot of time to manufacture. Become. From this point of view, the thickness of each layer can be 1 X 10 m to 5 mm, lxl 0 m to 5 mm, or I xl 0 2 m to 1 mm. The thickness of each layer is preferably uniform, but may be non-uniform.
  • the first tomographic image forming step reads out information related to the cross-sectional shape in the first layer from the cross-sectional shape information obtained in the cross-sectional shape acquisition step, and based on the read information, an image is obtained.
  • This is a step (step A2-1) for forming a first cross-sectional image in which the cross-sectional shape is reproduced using the forming composition.
  • Step A 2 _ 2 information related to the cross-sectional shape in the second layer corresponding to the layer above the first cross-sectional image is read from the cross-sectional shape information obtained in the cross-sectional shape obtaining step. And forming a second cross-sectional image in which the cross-sectional shape is reproduced using the image forming composition based on the read information so as to overlap the first cross-sectional image.
  • At least one or more of the tomographic image forming steps includes obtaining an image forming composition layer by forming a layer of an image forming composition powder as described above to form an image forming composition layer. Adding the moisture to the layer of the image forming composition formed in the step of obtaining the image forming composition layer based on information on the cross-sectional shape of the layer. Including a moisture addition step to wet In other words, it is a method for producing a stereoscopic image that reproduces the shape of an object.
  • each tomographic image forming process C P U receives a control program command, reads information on the thickness of the composition layer for image formation, and outputs it from the input / output device.
  • the solid image manufacturing unit moves the movable table downward in accordance with a command from the computer.
  • this movement distance is also output from the computer, and the table moves according to the movement distance information.
  • the storage unit of the stereoscopic image manufacturing unit may store this information and use the same information when forming each layer.
  • the CPU receives a command from the control program, for example, reads information on the thickness of the image forming composition layer, and forms an image forming composition layer suitable for forming an image forming composition layer. Calculate the amount of the composition and output it from the input / output section. This amount may be fixed, or once it is communicated to the stereoscopic image production unit, the storage unit of the stereoscopic image production unit stores this information and uses the same information when forming each layer. May be.
  • the three-dimensional image manufacturing unit which has received the information on the image forming composition layer, transfers the image forming composition layer forming unit to the image forming composition powder storage unit in accordance with the command from the computer. Remove the powder and open the powder on the table.
  • the squeegee spatula or the like may be moved as appropriate to control the image forming composition layer to be uniform.
  • an image-forming composition layer is formed on the movable table (if the layer is already formed, on the previously formed image-forming composition layer).
  • the CPU receives commands from the control program, reads the cross-sectional shape of each layer and information on the patterning and outputs them from the input / output section.
  • the stereoscopic image production unit operates the printing unit in accordance with a command from the computer, and adds water or a predetermined aqueous solution (water, an aqueous solution of a crosslinking agent, an aqueous binder solution for a rapid prototype, etc.) to the image forming composition layer.
  • a predetermined aqueous solution water, an aqueous solution of a crosslinking agent, an aqueous binder solution for a rapid prototype, etc.
  • water added at this time or Conditions such as the composition, concentration, and amount of the aqueous solution can be adjusted as appropriate.
  • the liquid binder material added to the image forming composition layer may be an organic substance or an inorganic substance. Typical organic binder materials used are polymer precursors or ceramic precursors such as polycarposilazane. Inorganic binders are used when the binder is incorporated into the final article, and silica is generally used for such applications.
  • the gypsum hydration reaction does not proceed completely.
  • the tomographic image forming step After the tomographic image forming step is repeated, it is preferable to dry the obtained laminate until it has a certain strength. Drying is performed at low humidity and high temperature. It may be performed in an atmosphere (for example, humidity 0% to 10%, temperature 50 ° C to 2X10 ° 2 ° C), but may also be performed in a normal temperature and normal pressure environment. The drying time at room temperature and normal pressure may be adjusted appropriately according to the size of the obtained stereoscopic image, moisture content, thickness of each layer, etc., but it can be 1 minute to 1 hour, 5 minutes to 3 X 1 0 minutes can be given, and it may be between 5 minutes and 2 X 10 minutes.
  • the drying time can be greatly reduced. Then, after drying, a three-dimensional image reproducing the shape of the object is obtained. Drying is preferable when it is performed by a degassing process such as degassing under reduced pressure, because the drying can be performed very quickly.
  • the three-dimensional image obtained as described above is highly likely that the hydration reaction of gypsum has not progressed. For this reason, it is assumed that the strength is lower than that of a completely hydrated reaction. However, by performing patterning in a state where there is little moisture, it is possible to prevent the moisture from seeping out to the unintended part and curing such part. Therefore, it can be said that this method for producing a stereoscopic image is useful for producing a stereoscopic image having a quick and elaborate shape. On the other hand, the three-dimensional image obtained as described above is assumed to be low in strength because the hydration reaction does not proceed sufficiently even though it has an elaborate shape. Therefore, if sufficient strength is desired, the hydration reaction can be carried out according to the method for producing a cured product described later.
  • the method of manufacturing a bone model is basically to apply water by, for example, immersing the three-dimensional image obtained in each of the above steps in water or an aqueous solution. By proceeding with the hydration reaction and drying it, a cured product with sufficient hardness is obtained.
  • the bone model manufacturing method basically removes the powder of the uncured image forming composition from the three-dimensional image obtained by any one of the three-dimensional image manufacturing methods described above.
  • Gypsum powder removal process step B 1
  • a moisture addition step step B 2 for adding moisture to the stereoscopic image from which the powder has been removed in the last step
  • a drying step step B 3) for drying the stereoscopic image to which moisture has been added in the moisture addition step.
  • the gypsum powder removal process is a process for removing the uncured powder of the image forming composition from the three-dimensional image (step B 1).
  • the uncured gypsum powder can be blown away by blowing air onto the solid image with an air-brush.
  • the air volume and the shape of the air brush can be adjusted as appropriate, and known ones can be used.
  • the time required for the gypsum powder removal process may be adjusted as appropriate, but specific examples include 5 minutes to 1 hour, preferably 10 minutes to 30 minutes.
  • the moisture addition step is a step for adding moisture to the stereoscopic image from which the powder has been removed in the gypsum powder removal step (step B 2).
  • this water addition process it is preferable to give sufficient water to the three-dimensional image because the hydration reaction of gypsum proceeds.
  • An example of such a water addition step is to immerse the stereoscopic image in water or a predetermined aqueous solution. At this time, since the powder has been removed in the previous gypsum powder removal process, it is not related to the shape, and it is possible to prevent the powder of the image forming composition from adhering to the three-dimensional image.
  • the water addition step (step B 2) is performed by spraying mist-like water on the stereoscopic image from which the powder has been removed in the gypsum powder removal step.
  • water is attached to the surface of the stereoscopic image by exposing the stereoscopic image to a high humidity atmosphere. Then, after spraying with water, it can be dried and then dipped. Drying may be performed in a low-humidity and high-temperature atmosphere (for example, humidity 0% to 10%, temperature 50 ° C to 2X10 ° 2 ° C), but may also be performed in a normal temperature and normal pressure environment. And. The drying time at room temperature and normal pressure may be adjusted appropriately according to the size of the obtained stereoscopic image, moisture content, thickness of each layer, etc. 5 minutes to 1 hour can be given, and it may be 2 X 10 minutes to 4 X 10 minutes.
  • a low-humidity and high-temperature atmosphere for example, humidity 0% to 10%, temperature 50 ° C to 2X10 ° 2 ° C
  • the drying time at room temperature and normal pressure may be adjusted appropriately according to the size of the obtained stereoscopic image, moisture content, thickness of each layer, etc. 5 minutes to 1
  • the stereoscopic image is immersed in sufficient water or aqueous solution.
  • the immersion time may be adjusted as appropriate according to the size of the 3D image, but 1 X 10 minutes to 2 hours can be raised, 15 minutes to 1 hour can be raised, and 2 X 10 minutes to 4 hours.
  • X 10 may be 0 minutes.
  • the water addition step (step B 2) includes: (1) spraying mist-like water on the stereoscopic image from which the powder has been removed in the gypsum powder removal step; A spraying step in which moisture is attached to the surface of the stereoscopic image by exposing the stereoscopic image to a high-humidity atmosphere; an immersion step in which the stereoscopic image is immersed in an aqueous crosslinking agent solution after the spraying step; (2) in the gypsum powder removing step A spraying step in which the aqueous solution of the crosslinking agent is adhered to the surface of the stereoscopic image by spraying a mist-like aqueous solution of the crosslinking agent on the solid image from which the powder has been removed or by exposing the stereoscopic image to a high-humidity atmosphere of the aqueous crosslinking agent solution; After the process, an immersion process in which the stereoscopic image is immer
  • a spraying step for attaching moisture to the image surface, and a dipping step for immersing the three-dimensional image in water after the spraying step and further immersing the solid image in an aqueous crosslinking agent solution is a bone model manufacturing method.
  • the step (1) or (3) is preferable. This is because, first, after promoting the chelate structure with water, it is preferable to promote the bridge with a crosslinking agent from the viewpoint of strength and uniformity of the bone model.
  • a cross-linking agent such as an aqueous solution of the cross-linking agent in this way, cross-linking proceeds in a three-dimensional image, and a bone model having sufficient strength can be obtained.
  • the spraying step and the dipping step may be performed in the same manner as described above.
  • the concentration of the aqueous crosslinking agent solution in the aqueous crosslinking agent solution may be adjusted as appropriate according to the type of polyvinyl alcohol resin used and the hardness of the cured product to be obtained.
  • aqueous solution in the aqueous crosslinking agent solution 1 X 1 0 - 2 X volume% ⁇ 2 X 1 0 volume 0 / o the like, preferably 1 X 1 0 - 1 volume 0 / & ⁇ 1.5 x 10% by volume.
  • an aldehyde-based compound such as formaldehyde glyoxal, melamine-formaldehyde condensate, urea-formaldehyde condensate, etc.
  • Methylol compounds boron-containing compounds such as boric acid and borax, 2, 4_tolylene diisocyanate, 2, 6_tolylene diisocyanate, m-phenylene diisocyanate, p-phenol Diisocyanate, isocyanate compounds such as 4,4′-diphenylmethane diisocyanate, or silane coupling agents may be used as appropriate.
  • an amine amine crosslinking agent such as ethylene diamine or jetanolamine is preferable. Specifically, as demonstrated in the examples described later, either ethylenediamine or jetanolamine or Both are more preferred.
  • the drying step is a step for drying the stereoscopic image to which moisture has been added in the moisture addition step (step B 3). Drying may be performed in a low-humidity and high-temperature atmosphere (for example, humidity 0% to 10%, temperature 50 ° C to 2 X 10 ° C), but may also be performed under normal temperature and pressure conditions. .
  • the drying time at room temperature and normal pressure may be adjusted as appropriate according to the size of the three-dimensional image, moisture content, thickness of each layer, etc., but it can be 1 to 4 days, and 4 to 3 days is acceptable. It may be 6 hours to 2 days.
  • the drying time is preferably 1 hour to 4 hours.
  • the imaging agent filling process is a process for filling the bone defect part of the bone model obtained in the bone model manufacturing process with the imaging agent. By filling the image forming agent, a bone filler image can be obtained.
  • the image forming agent is not particularly limited as long as it can obtain a bone filler image, and a known image forming agent can be appropriately used.
  • the image forming agent is preferably one that can be distinguished from a bone model.
  • the bone model is different in X-ray transmittance, infrared transmittance, or ultraviolet transmittance from the bone model. Is the X-ray transmittance, infrared transmittance, or ultraviolet transmittance in the case of Natsu no less than 90% compared to the X-ray transmittance, infrared transmittance, or ultraviolet transmittance of the bone model? % Or more.
  • the image forming agent has such X-ray transmittance, infrared transmittance, or ultraviolet transmittance, it is possible to easily distinguish the bone filler image on which the image forming agent is fixed from the bone model.
  • Examples of such an image-forming agent include those that are the same raw materials as bone-shaped raw materials and contain pigments, metal powders or metal oxide powders.
  • Examples of the image forming agent include those containing a wax component (for example, dental wax) as a main component.
  • the wax component may be beeswax, microcrystalline wax, danmar, rosin, candelilla wax, carnauba wax, beeswax or montane wax, or a mixture thereof.
  • those mainly composed of paraffin wax are preferred.
  • the main component of paraffin wax is beeswax or microcrystalline wax that has been given flexibility and stickiness; the addition of dammar or rosin to improve hardness and strength and toughness And a glossy surface that is made by adding a high melting point carnauba wax.
  • paraffin wax and ethylene vinyl acetate copolymer resin are preferably 1 to 5% by weight.
  • examples include blended ones. More specific dental scissors
  • the wax include paraffin wax, lip ring wax, proline wax, Kolben wax, utility wax, bi-trim stick, or force bing wax.
  • the wax has a number average molecular weight (Mn) measured by gel permeation chromatography (GPC) of 400 to 5,000, preferably 800 to 5,000, more preferably 1,000 to 3000, particularly preferably 1. , 500 to 2,500 is desirable.
  • the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) measured by GPC should be 4.0 or less, preferably 3.5 or less, more preferably 3.0 or less.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) are polystyrene equivalent values measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • white, yellow, or black wax can be used as appropriate.
  • White wax is made by mixing titanium oxide, which is a white pigment, with wax such as baraque wax.
  • Yellow wax is produced, for example, by mixing titanium yellow, a type of titanium oxide, which is a yellow pigment, in a wax such as paraffin wax.
  • Black wax is produced, for example, by mixing aniline black, a black pigment, with wax such as paraffin wax.
  • the image forming agent should be distinguished from the bone model by the bone filler image formed by fixing the image forming agent, for example, in terms of X-ray transmittance, infrared transmittance, or ultraviolet transmittance. It is preferable to contain inorganic powder, organic powder, surfactant metal salt powder, pigment, pigment, metal powder or metal oxide powder, etc.
  • inorganic powders include titanium oxide, zirconium oxide, zinc oxide, cerium oxide, magnesium oxide, barium sulfate, calcium sulfate, and magnesium sulfate. Gnesium, calcium carbonate, magnesium carbonate, talc, my force, force ore, sericite, muscovite, synthetic mica, phlogopite, biotite, biotite, lithia mica, kaic acid, anhydrous caustic acid, aluminum silicate, key Magnesium oxide, magnesium aluminum silicate, calcium silicate, barium silicate, strontium silicate, metal tungstate, hydroxyapatite, vermiculite, hydrite, bentonite, montmorillonite, hexite, Examples include zeolite, ceramic powder, dicalcium phosphate, alumina, aluminum hydroxide, boron nitride, boron nitride, and silica.
  • organic powders include polyamide powder, polyester powder, polyethylene powder, polypropylene powder, polystyrene powder, polyurethane, benzoguanamine powder, polymethylbenzoguanamine powder, tetrafluoroethylene powder, polymethylmethacrylate.
  • organic powders consisting mostly of [S i-0-] n — skeletons can also be used. In this case, one S i (CH 2 CH 2 ) m -S i — bond may be present in a part of the molecule.
  • surfactant metal salt powder examples include zinc stearate, aluminum stearate, calcium stearate, magnesium stearate, zinc myristate, magnesium myristate, cetyl phosphate, Examples include calcium cetyl phosphate and zinc sodium cetyl phosphate.
  • colored pigments include inorganic red pigments such as iron oxide, iron hydroxide and iron titanate; r inorganic brown pigments such as iron monoxide; inorganic yellow pigments such as yellow iron oxide and loess Inorganic black pigments such as black iron oxide and carbon black; inorganic purple pigments such as manganese violet and cobalt violet; inorganic green pigments such as chromium hydroxide, chromium oxide, cobalt oxide and cobalt titanate; bitumen, ultramarine blue, etc. Inorganic blue pigments; tar pigments raked; natural pigments raked; and synthetic resin powders obtained by combining these powders.
  • inorganic red pigments such as iron oxide, iron hydroxide and iron titanate
  • r inorganic brown pigments such as iron monoxide
  • inorganic yellow pigments such as yellow iron oxide and loess
  • Inorganic black pigments such as black iron oxide and carbon black
  • inorganic purple pigments such as manganese violet and co
  • pearl pigment examples include titanium oxide-coated my strength, bismuth oxychloride, titanium oxide-coated bismuth oxychloride, titanium oxide-coated talc, fish scale foil, and titanium oxide-coated colored mica.
  • metal powder pigments examples include aluminum powder, kappa powder, and stainless powder.
  • Examples of natural pigments include powders selected from carminic acid, laccaic acid, calsamine, bradylin, crocin, and the like. These powders are within the range that does not impede the effects of the present invention, and powdered composites or treated with general oils, silicone oils, fluorinated compounds, surfactants, etc., reactive organohydrogen polysiloxanes , Organopolysiloxanes having hydrolyzable alkoxysilane groups, acryl-silicone copolymers having hydrolyzable silyl groups, etc. can be used, and one or a combination of two or more can be used as necessary. Can be used. Specific examples of the dye include titanium oxide described above.
  • the metal powder or metal oxide powder is not particularly limited, and any known powder can be used as appropriate.
  • the metal powder or metal oxide powder preferably ⁇ is titanium oxide, more preferably anatase type or rutile type titanium oxide.
  • the particle size of metal powder or metal oxide powder (analyzed based on JISR 16 19) is 1 X 10 2 nm or more and 5 X 10 3 nm or less, preferably 5 X 1 0 2 nm or more and 3 X 10 3 nm or less.
  • the wax contains 90% by weight or more (preferably 95% by weight or more) of the total weight of the wax as an image forming agent, and 2% of the total weight of metal powder or metal oxide powder.
  • metal powder or metal oxide powder is 3% by weight to 4% by weight of the total weight It contains.
  • a doctor or the like may fill the bone defect portion of the bone model with an imaging agent.
  • the person who performs the operation on an accurate bone model directly forms an image of the bone filler, so that it is possible to obtain a bone filler that is easy to use for the operator.
  • the image forming agent is mainly composed of paraffin wax or the like, for example, since the flexibility is easily increased by warming with hot water or the like, the bone defect portion should be filled in such a state.
  • An image forming agent may be applied.
  • the bone defect part of the bone model may be automatically filled with the bone filler.
  • the image forming agent filled in the bone defect part of the bone model is mainly composed of paraffin wax, for example, it solidifies upon standing and becomes a bone filler image.
  • This bone filler image is a bone filler used to treat patients, etc., and also accurately matches the shape of the bone defect.
  • the bone filler manufacturing process uses the image forming agent (or bone filler image) filled in the bone defect part of the bone model in the image forming agent filling process to produce a bone filler filling the bone defect part. It is this process.
  • the bone defect part of the bone model is filled with the image forming agent, and the bone filler image to which the image forming agent has settled is distinguished from the bone model in some form. Therefore, bone filler can be manufactured using this bone filler image.
  • the bone filler may be manufactured by manufacturing a mold based on the shape of the obtained bone filler image and by a powder injection molding method or a modified method thereof.
  • the bone filler image differs from the bone model in terms of X-ray transmittance or reflectivity. Therefore, the entire bone model including the bone filler image is photographed by X-ray CT and the like.
  • the transmittance or reflectance of the line is transmitted to a control device such as a PC, and the control device grasps the shape of the bone filler image based on the difference in the transmittance or reflectance of the X-ray and sends it to the bone filler manufacturing device.
  • Information on the shape of the bone filler and outputs a command for the bone filler manufacturing device to manufacture the bone filler according to the shape. this In this way, the bone filler is manufactured.
  • a manufacturing device is a bone filler manufacturing device based on the RP method, and the bone filler may be manufactured according to the RP method or the method described above.
  • the compound powders described below, such as calcium phosphate materials may be used as appropriate as the raw material powder.
  • the method for producing a bone filler basically includes a kneading step for kneading a raw material containing a calcium-based substance and a material containing a binder; and using the kneaded material obtained in the kneading step, A molding step for obtaining a molded body having a predetermined shape by injection molding using an injection molding machine having; a binder for removing a binder contained in the molded body obtained in the molding step to obtain a degreased body ( A degreasing step; and a sintering step for heating and sintering the degreased body after the debinding step to obtain a sintered body. It should be noted that a known process such as a post-processing process for post-processing the molded body may be included as appropriate.
  • the bone filler obtained by the bone filler manufacturing method has a uniform size for each bone filler. Therefore, even if the bone filler contains a drug, an appropriate amount of the drug can be used. Can be administered. Furthermore, since the density is uniform and the size can be controlled, an appropriate porosity can be obtained when multiple bone fillers are administered while maintaining the strength of each bone filler. .
  • each step of the method for producing the bone filler will be described.
  • the kneading step is a step for kneading the raw material containing the calcium-based substance and the material containing the binder. It is preferable to use powdered raw materials. In the kneading process, the raw material powder and auxiliary materials such as a binder are mixed to make them suitable for injection molding.
  • the raw material powder includes calcium-based substances.
  • the calcium-based material include calcium phosphate-based materials, calcium carbonate-based materials, calcium lactate, and calcium gluconate. Among these, calcium phosphate-based materials or calcium carbonate-based materials are preferable.
  • Calcium phosphate as raw powder More specifically, the hydroxamic acid, carbonate apatite, fluorine apatite, chlorine apatite, S-TCP, a-JCP, calcium metaphosphate, tetracalcium phosphate, calcium hydrogen phosphate , Calcium dihydrogen phosphate, calcium dihydrogen phosphate, calcium pyrophosphate, octacalcium phosphate, their salts, or their solvate dihydrate.
  • the raw material powder is not particularly limited to these, and a known powder used as a raw material for the bone filler can be appropriately used.
  • the size of the raw material powder is, for example, from 0.01 m to 100 m (0.01 m to 100 m, the same shall apply hereinafter), preferably 0 1 m-20; Um.
  • powder with a size of about 10 Om is used.
  • Patent Document 1 a hydroxyapatite powder having a particle size of 150 m or less is used (paragraph [0025] of the same publication).
  • a powder having a relatively small particle size in order to improve the fluidity of the mixture obtained by mixing the raw material powder with the binder and kneading, and to improve the density after sintering.
  • the bone filler produced by the present invention is expected to be eroded by osteoclasts and the like when it is implanted in the living body, although a certain degree of strength is required. From such a point of view, the size of the powder is 0.1 rr! ⁇ Preferably 0.5 rr! Up to 10 m
  • materials other than raw materials such as binders (one or more types of materials) Mix) with the ingredients.
  • a binder include (meth) acrylic resins, oral lubricants (preferably thermoplastic resins other than (meth) acrylic resins), and those containing a lubricant.
  • the methacrylic resin or acrylic resin include methacrylic resin or acrylic resin. Specifically, n-butyl methacrylate or a polymer of methyl methacrylate, or n_butyl methacrylate and methyl methacrylate are used. And a copolymer thereof.
  • the molecular weight of the methacrylic resin or acrylic resin is not particularly limited and may be appropriately adjusted so as not to impair the physical properties of the obtained bone filler.
  • the weight average molecular weight is 1 X 10 3 to 1 X 1 0 5 is given.
  • the content of methacrylic resin or acrylic resin in the binder is not particularly limited and may be appropriately adjusted so as not to impair the properties of the obtained bone filler. For example, 1% by weight to 50% by weight Is given.
  • wax lubricants examples include waxes having a melting point of 40 ° C to 100 ° C, preferably 40 ° C to 70 ° C.
  • a wax having such a melting point for example, a known paraffin wax can be appropriately used.
  • the molded product can be easily removed from the mold during injection molding.
  • wax lubricants include hydrocarbon oils such as liquid paraffin, squalene, and squalane; higher fatty acids such as oleic acid, tall oil, and isostearic acid; lauryl alcohol, oleyl alcohol, isostearyl alcohol, and octyl Higher alcohols such as dodecanol; silicone oils such as methylpolysiloxane, methylphenylpolysiloxane, methylhydrenepolysiloxane, and decamethylpolysiloxane; myristate isopyl pill, isopropyl palmitate, hexyl laurate, olein Estes such as oleyl acid, decyl oleate, octyldodecyl myristate, hexyldecyl dimethyloctanoate, jetyl phthalate, and dibutyl phthalate
  • hydrocarbon oils such as liquid paraffin, squalen
  • wax molecular weight of the lubricant is not particularly limited, and may be bone filler properties impaired lest appropriate adjustments to be obtained, for example, 1 X 1 0 2 ⁇ 1 X 1 0 6 having a weight average molecular weight of can give.
  • the content of wax lubricant in the binders is not particularly limited, but may be adjusted as appropriate so as not to impair the physical properties of the obtained bone filler, For example, 1 wt 0 / & ⁇ 5 0 weight 0 / o the like .
  • thermoplastic resin one or more of polyacetal resin, (meth) acrylic resin, polyolefin resin, ethylene-vinyl acetate copolymer, or polyvinyl butyral can be used.
  • a thermoplastic resin having a resin other than (meth) acrylic resin and (meth) acrylic resin is preferable. Of these, ethylene monoacetate copolymer is preferred.
  • the molecular weight of the thermoplastic resin is not particularly limited, the physical properties of the bone filler obtained may be appropriately adjusted so as not to compromise its a but, for example, a weight average molecular weight in 1 X 1 0 3 ⁇ 1 X 1 0 5 is given.
  • the content of the wax lubricant in the binder is not particularly limited, and may be adjusted as appropriate so as not to impair the physical properties of the obtained bone filler. For example, 1 wt.
  • a lubricant (a lubricant other than wax lubricant), stearic acid, a salt of stearic acid, stearic acid or a hydrate of the salt, C 1 _C 5 alkyl stearic acid
  • 5 alkyl represents an alkyl group having 1 to 5 carbon atoms. The same shall apply hereinafter); Any of these may be polyethylene glycol or polyglycene.
  • the lubricant content is not particularly limited and may be appropriately adjusted so as not to impair the physical properties of the obtained bone filler. Since these lubricants are used, the molded product can be easily removed from the mold. The lubricant may function as a dispersant.
  • phthalates Phthalate esters have been reported to be dangerous to the body, but in a preferred embodiment, the binder is almost completely pyrolyzed, so such compounds with poor biocompatibility can also be included in the binder. .
  • the molecular weight of the phthalates is not particularly limited and may be appropriately adjusted so as not to impair the physical properties of the obtained bone filler.
  • the weight average molecular weight is 1 X 10 4 to 1 X 1 0 7 is given.
  • Phthalate esters are preferred because of their low volatility.
  • the content of phthalates in the binder is not particularly limited, and may be adjusted as appropriate so as not to impair the physical properties of the resulting bone filler. For example, 0 to 20% by weight is preferable. Is from 0.5% to 15% by weight.
  • the binder is removed by thermal decomposition or the like in a subsequent debinding step.
  • the part where the binder was present basically becomes a void. Therefore, the porosity and strength of the resulting bone filler can be adjusted by controlling the amount of binder added to the raw material. In general, however, a sufficient amount of binder is required to fill the gaps between the raw material particles. This is because if the amount of the binder added is small, it will not be possible to obtain adequate fluidity, and this will cause variations in molding defects such as short mold welds and the shape and density of the resulting molded product.
  • the binder addition amount is from 10 parts by weight to 100 parts by weight. Parts may be mentioned, and may be 20 to 50 parts by weight.
  • the mixing ratio of the binder in the raw material and the binder is 25 to 70% by volume, preferably 30 to 0 / & to 55 to 0 / o, more preferably 3 to 5%. Volume 0 / & ⁇ 4 5 volume 0 / o.
  • a preferred embodiment of the method for producing a bone filler is a method for producing a bone filler containing a glass component in "a raw material containing a calcium-based substance and a material containing a binder".
  • glass component quartz glass as a main component silicon dioxide; containing lead 5 wt ° / & ⁇ 4 0 by weight%; B 2 0 3 5 wt ° / & ⁇ 2 0 wt% Houkei acid glass containing Lead glass; power-thin glass containing 5% to 30% by weight of power-thin; fluoroaluminosilicate glass containing sodium fluoride, aluminum fluoride, and strontium fluoride; or those glasses, Boric acid, lanthanum oxide, gadolinium oxide, niobium oxide, zirconium oxide, or a mixture of one or more of barium as appropriate can be used as appropriate.
  • the glass component By deliberately adding a glass component, it is possible to darely lower the sinterability of the sintered body and to insert fine cracks and holes, resulting in a preferred bone filler for culturing cells. . On the other hand, since the glass component increases the strength of the bone filler, it is considered that a bone filler having a desirable strength can be obtained even if cracks or pores occur. Titanium, titanium alloy, cobalt-chromium alloy, stainless steel, alumina, zirconia may be used as the glass component.
  • the addition amount of the glass component may be adjusted as appropriate according to the required physical properties of the bone filler. For example, when the weight of the raw material is 100 parts by weight, 1 to 20 parts by weight may be mentioned, and 2 to 10 parts by weight may be used.
  • the mixing ratio of the glass component in the kneaded material is from 1% by volume to 20% by volume, preferably from 2% by volume to 10% by volume, and more preferably from 3% by volume to 10% by volume.
  • a preferred embodiment of the method for producing a bone filler is a method for producing a bone filler, wherein "a raw material containing a calcium-based substance and a material containing a binder" contains salt or sugar (preferably salt).
  • salt or sugar By including such salt or sugar, it is possible to darely lower the sinterability of the sintered body and insert microcracks, and as a result, obtain a preferable bone filler for culturing cells. . In addition, after obtaining the bone filler, it is possible to obtain a porous bone filler by immersing it in water or the like to remove the salt or sugar, and thus obtain a preferable bone filler for culturing cells. be able to.
  • the salt or sugar a known salt or sugar can be appropriately used. Salts that dissolve in water and are not thermally decomposed at the temperature at which the binder is thermally decomposed, especially inorganic salts are preferred. Specific examples include sodium chloride, potassium chloride, calcium chloride, or calcium carbonate.
  • a thermally decomposable component means a component that does not thermally decompose in the mixing process, but decomposes at a temperature higher than the heating temperature in the molding process or sintering process, or the molding process or sintering process. If such a pyrolysis component is appropriately contained, it can be pyrolyzed at any stage during molding, sintering, or after sintering, so that a bone filler having appropriate voids can be obtained.
  • the amount of salt or sugar added may be adjusted as appropriate according to the required physical properties of the bone filler. For example, when the weight of the raw material is 100 parts by weight, The added amount is 1 to 20 parts by weight, and may be 2 to 10 parts by weight.
  • the blending ratio of salt or sugar in the kneaded material is 1 volume% to 30 volume%, preferably 2 volume% to 20 volume%, and more preferably 3 volume% to 10 volume%. .
  • the same amount as that of salt or sugar may be added.
  • the raw material powder and a binder are mixed. In this way, a compound that is a material for injection molding is obtained. If the raw material powder is not mixed uniformly, problems such as deterioration of the shape and size of the molded product arise.
  • the bone filler obtained by the manufacturing method should have a uniform shape from the viewpoint of keeping the dose of the drug constant, so it is desirable to mix the raw materials as uniformly as possible.
  • the temperature in the kneading process may be adjusted as appropriate according to the type of binder, etc. However, if the temperature is low, it will not mix, and if the temperature is high, the binder will be thermally decomposed.
  • C to 240 ° C. is preferred, preferably 130 ° C. to 190 ° C., more preferably 140 ° C. to 160 ° C.
  • the time in the kneading process requires a long time to uniformly knead the raw materials. If the time is too long, the binder may be thermally decomposed during the kneading. It may be adjusted accordingly, but it can be 30 minutes to 5 hours, or 45 minutes to 1.5 hours.
  • a kneader in the kneading step for example, a pressure kneader, a uniaxial or biaxial extrusion kneader can be used as appropriate.
  • the bone filler obtained by the present invention is a medical device that can be used for transplantation, it is preferable to avoid the situation where the blades of the kneader are worn and impurities are mixed. From this point of view, it is desirable to use high-hardness blades for the kneader. Use blades that have been surface-treated to form a surface protective layer such as TiN coating. Is preferred.
  • the kneading step may be performed, for example, as follows. After heating the kneader to a preset temperature, first add a binder with a high melting point to the kneader.
  • the raw material powder is charged after the melting of the binder has progressed. After that, both the binder with a low melting point and the raw material powder are put into the kneader, and the raw material of 1/2 volume to 4/5 volume is charged, and then low volatile components such as DBP (dibutyl phthalate) are charged. Then, add the remaining raw materials.
  • DBP dibutyl phthalate
  • the (meth) acrylic resin and the ethylene vinyl acetate copolymer are charged into a kneader and the raw material, the paraffin wax and The stearic acid is charged into a kneader and the dibutyl phthalate is charged into the kneader while kneading.
  • kneading in this way, it is possible to obtain a compound that is a material for injection molding.
  • the obtained bone filler is to be replaced with bone in the future, it is possible to intentionally introduce a minute crack in the molded article to promote replacement with bone.
  • the kneading time may be 15 minutes to 30 minutes, and the kneading temperature may be 80 ° C. to 100 ° C.
  • the molding process is a process for obtaining a molded body having a predetermined shape by injection molding. Since the bone filler preferably has four shapes extending in the direction from the center of the regular tetrahedron to each apex, an example of a mold for producing such a bone filler will be described below.
  • the mold includes a fixed mold provided with an injection port (gate) for injecting a material, and a movable side that comes into contact with the fixed side when injecting the material but is separated from the fixed side after molding.
  • gate injection port
  • injection molding is preferably performed using an injection molding machine.
  • the injection molding machine is not particularly limited, and a known injection molding machine can be used as appropriate.
  • Injection molding machines include vertical or horizontal type; high-pressure type, medium-pressure type or low-pressure type; plunger type or screw type.
  • Horizontal and screw-type (preferably high-pressure) injection molding machines can be preferably used.
  • a wear protection layer such as a TiN coating layer on the surface of the screw.
  • the binder removal step is a step for removing the binder contained in the molded body obtained in the molding step to obtain a degreased body.
  • the debinding process is also called degreasing process. If the binder is not removed sufficiently during this debinding process, cracks may occur in the molded body during the subsequent sintering process, and blistering may occur. In the degreasing process, defects such as deformation and cracks are not generated. It is expected to complete the debinding. Examples of methods for removing the binder include a sublimation method, natural drying method, solvent extraction method, and heat degreasing method, with the heat degreasing method being preferred.
  • the heat degreasing method includes an air atmosphere, a reduced pressure atmosphere, a pressurized atmosphere, and a gas atmosphere.
  • the degreasing is performed by heating in an air atmosphere.
  • a ceramic setter porous or dense. If the compact is large (thick), a porous setter such as alumina is preferred.
  • the binder removal process has, for example, a multi-step heating time and a maintenance period depending on the thermal decomposition temperature of the resin contained in the binder.
  • the sinterability can be increased by effectively thermally decomposing a resin with a particularly low thermal decomposition temperature.
  • the temperature is raised as described above, it is possible to effectively thermally decompose a resin having a low thermal decomposition temperature.
  • a compound that does not have excellent biocompatibility even though the bone filler is administered in vivo may be included in the binder. Such compounds are often binders with a particularly low melting point.
  • the first temperature from 110 ° C to 300 ° C is preferred.
  • the temperature rises from 1 ° C / hour to 3 X 10 2 ° C / hour until it is achieved during the maintenance period (preferably until it reaches 230 ° C to 25 ° C)
  • the temperature is preferably increased from 1 X 10 ° C / hour to 2 X 10 2 ° C / hour, more preferably from 2 X 10 ° C / hour to 5 X 10 ° C.
  • the temperature rises at a rate of 3 X 10 ° C / hour to 4 X 10 ° C / hour.
  • the maintenance step is, for example, 2 ⁇ 10 minutes to 5 hours, preferably 3 ⁇ 10 minutes to 2 hours.
  • the sintering process is a process for heating the compact after the debinding process.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 4 _ 9 7 2 5 9 (Patent Document 1 above)
  • sintering is performed at 1 250 ° C. for 1 hour (paragraph [0 0 2 5] in the same publication) .
  • the air is heated from the atmospheric temperature to a maximum temperature of 9 X 10 2 ° C to 1.1 X 10 3 ° C. This is because, for example, when using raw materials such as Hiichi TCP, it is effectively converted to S_TCP.
  • Hot holding time is, for example, 3 hours to between hours 5 chi 1 0- 1 and the like.
  • the sintering process is usually accompanied by a cooling process after the heating process (and maintenance process).
  • the sintering time including the cooling time is, for example, 6 hours to 5 X 10 hours, preferably 1 X 10 hours to 3 X 10 hours.
  • the molding temperature is 1 X 10 2 ° C to 1.5 X 10 2 ° C.
  • the mold temperature ranges from 1 X 10 ° C to 3 X 10 ° C.
  • the post-treatment step is an optional step for post-treatment of the sintered compact.
  • a material to which a known drug is added is a preferred embodiment.
  • the bone filler functions as an appropriate drug carrier.
  • the drugs added in this way are preferably those that do not impair the activity even at high temperatures.
  • Bone filler also called bone filler, is used to fill bone defects.
  • the bone filler may be maintained as it is in the living body, but is preferably replaced with bone tissue in the living body.
  • a specific bone filler composition a known composition can be appropriately used.
  • Specific examples of the composition of the bone filler include those containing a calcium-based material, and examples of the calcium-based material include one or both of a calcium phosphate-based material and a calcium carbonate-based material.
  • a material appropriately containing a drug is a preferred embodiment of the present invention.
  • a drug may be added as appropriate to the main component of the bone filler, such as calcium phosphate.
  • the manufactured bone filler is appropriately impregnated or coated with a drug.
  • a drug composition is obtained by dissolving the drug in a known pharmaceutically acceptable diluent (solvent), and dip coating, spray coating, or spin coating using the pharmaceutical composition. To do. Of these, dipping is preferred.
  • the drug is applied by dip coating, the drug impregnates the surface or inside of the bone filler. That is, the present invention can also provide a bone filler impregnated or coated with a predetermined drug.
  • the chemicals described below may be mixed with the raw materials used when producing the bone filler by the RP method.
  • a preferred embodiment of the bone filler of the present invention includes, as the drug, a bone / cartilage formation promoting agent (including a chondrogenesis promoting factor), a joint disease treatment agent, a bone / cartilage disease prevention / treatment agent, and bone regeneration.
  • a bone filler as described above comprising an agent, a bone resorption inhibitor, an angiogenesis promoter, an antibacterial agent, an antibiotic or an anticancer agent.
  • a preferred embodiment of the bone filler of the present invention is the bone filler as described above, which comprises a thienoindazole derivative represented by the following formula (I) as the drug.
  • the thienoindazole derivative represented by the formula (I) (4,5-dihydrodolyl 1_methyl_1H-thieno [3,4_g] indazole derivative) is disclosed in, for example, It can be produced according to the method described in Japanese Patent No. 3 5 6 4 1 9. It should be noted that the drug is preferably contained in the bone filler of the present invention in an effective amount for obtaining a predetermined medicinal effect. In other words, in the present invention, since a known drug can be used, an amount of the drug (effective amount) necessary for the drug to function effectively for a specific use can be administered. What is necessary is just to adjust content suitably.
  • R 1 is a carboxamide group (—CH (NH 2 ) (C0 2 H)), _C H (NH 2 ) (S0 3 H), —CH (NH 2 ) ( S 0 2 NHR 11 ), _CH (NH 2 ) (PO (NH 2 ) OH), and —CH (NH 2 ) (PO (OR M ) OH) (wherein R 11 has the carbon number) Represents a straight-chain alkyl group of 1 to 5.) Among these, the most preferred is a carboxy group.
  • bone and cartilage formation promoter known agents can be appropriately used as long as they can promote the formation of bone or cartilage.
  • 2_ [1-(2, 2-Jetoxy-Cetyl)-3- (3-p-tolyl-urezide) 1, 2, 3 disclosed in WO 2002/087620 pamphlet —Dihydro 1 H—indole _3_yl] _N_p_Tolyl-acetoamide (2- [1- (2, 2- Diethoxy- e thy I) -3- (3-p-to lyl-ureido)- 2,3-dihydro-1H-indoI-3-yI] -Np-toIyI-acetamide).
  • BMP Bone formation promoting factor
  • This BMP acts on undifferentiated mesenchymal cells from outside the cell, differentiates its genetic traits into chondrocytes and osteoblasts, It is a substance that induces and induces bone.
  • BMP 1 to 13 are examples of factors that promote bone formation.
  • BMP in the case of using BMP as a drug in the present invention is obtained by genetic modification or isolation and purification from Dunn osteosarcoma (Takaoka, Tsuji, Biomedical Research, 2 (5) 466-471 (1981)). Any of them can be obtained by a known production method.
  • p 38 MAP kinase inhibitors (thiazol compounds as described in WO 00/648 94, etc.); matrix meta-protease inhibitors (MMP I); prednisolone, hydrocortisone, Anti-inflammatory steroids such as methylprednisolone, dexabetamethasone, and betamethasone; and non-steroidal anti-inflammatory analgesics such as indomethacin, diclofenac, loxoprofen, ibuprofen, piroxicam, and sulindac.
  • MMP I matrix meta-protease inhibitors
  • prednisolone hydrocortisone
  • Anti-inflammatory steroids such as methylprednisolone, dexabetamethasone, and betamethasone
  • non-steroidal anti-inflammatory analgesics such as indomethacin, diclofenac, loxoprofen, ibuprofen, piroxicam, and sulindac.
  • prostaglandin A 1 derivative for example, prostaglandin A 1 derivative, vitamin D derivative, vitamin K2 derivative, eicosapentaenoic acid derivative, benzylphosphonic acid, bisphosphonic acid derivative, sex hormone derivative, phenol — Any of non-peptide osteogenesis-promoting substances such as rusulfophthalein derivatives, benzothiopyran or benzochepine derivatives, thienoindazol derivatives, menatetrenone derivatives, helioxanthin derivatives, poorly soluble peptide osteogenesis promoters One type or a mixture of two or more types can be mentioned. Any of these can be obtained by known methods.
  • the bone / cartilage disease preventive agent include either or both of an agent for preventing the occurrence of bone / cartilage disease and an agent for preventing the occurrence of bone / cartilage disease.
  • calmodulin As a bone regenerant, calmodulin, actinomycin D, cyclosporin A, glucosamine sulfate, glucosamine hydrochloride, bone marrow extract, calcium phosphate, lactic acid / glycolic acid / dextrose prolacton copolymer, platelet-rich plasma
  • actinomycin D As a bone regenerant, calmodulin, actinomycin D, cyclosporin A, glucosamine sulfate, glucosamine hydrochloride, bone marrow extract, calcium phosphate, lactic acid / glycolic acid / dextrose prolacton copolymer, platelet-rich plasma
  • platelet-rich plasma One or a mixture of two or more human bone marrow mesenchymal cells. All of these can be obtained by known methods.
  • a bone resorption inhibitory substance one of estrogen, calcitonin and bisphosphone-koji, or one or a mixture of two or more may be mentioned. All of these can be obtained by publicly known methods.
  • HG F Hepatocyte growth factor
  • angiopoietin including angiopoietin 1-1 and angiopoietin 1-2
  • PDG F platelet-derived growth factor
  • IGF insulin-like growth factor
  • fibroblast growth factor is preferred (Hockel, M. et al.
  • fibroblast growth factor basic fibroblast growth factor (bFGF) is preferred. More specifically, trough ermin (genetical recombination) can be mentioned. That is, one of the preferred embodiments of the bone filler of the present invention is the bone filler as described above, wherein the drug comprises trophermin, a salt thereof, a solvate thereof or a prodrug thereof. “Salt” means the salt of Trafelmin, and the specific salt is the same as the salt described above. “The solvate” means the solvate of trough elmine, and the specific solvate is the same as the solvate described above.
  • the prodrug means a prodrug of trough elmin, which is an agent that is replaced by trafermin, its ionized substance (ion) or its salt in vivo after administration. Specifically, those having a protecting group such as an amino group and having the same function as that of trafelmin after the protecting group is removed in vivo.
  • antibacterial agent or antibiotic a known antibacterial agent or antibiotic can be used as appropriate.
  • Specific antibacterial agents or antibiotics include sulfacetamid (sulfaceta mide), sulfamethizol, sulfadi midine, sulfazolazine (.sulfamerazine), suzolephanan (sulfad iazine), etc.
  • Chloramphenicol chloraphenicol: CP
  • chloramphenicol tiamphenicol
  • other chloramphenicol antibacterial agents ofloxacin (ofloxacin: 0FLX) ciprofloxa cin (CPFX), Sacin (enrof loxacin), lomefloxacin (lo mef loxacin (LFLX), rufloxacin (rufloxacin), repofloxacin (I evof I oxac in: LVFX), fleroxacin (f leroxacin: FLRX), nadifloxacin (NDFX), norfloxacin (parf oxacin) loxacin (SPFX) and other quinolone antibacterial agents; fusidic acid (FA); fusafungi ne; fosfomycin (F0M); mupirocin (MUP); brodimopr im Benzylpenici 11 in G procaine,
  • Penicillin antibiotics such as SBT, sultamicillin (siHtamici 11 in: SBTPG), piperacillin-tazobactam (TAZ), and streptomycin antibiotics such as streptomycin (SM) Chlortetracycl ine, aureomycin, chloramphenicol (CP), oxytetracycl ine (0TG), demethyl chlortetracycl ine, Demeclocycline, redamycin : Registered trademark), lime cyclin (lymecycl ine), doxycycline (doxyc yc I ne ne: DOXY), minocycline (minocycline: ⁇ 0), and other tetracycline antibiotics; neomycin, spectinomycin (spect i) nomyc in: SPCM), gentamycin (GM), tobramycin (TOB), amikacin (amikacin), micronomycin (micr), isepamicin (ISP), azorebekacin (ISPA)
  • Anticancer drugs are drugs for treating or preventing cancer.
  • Known anticancer agents can be used as appropriate as anticancer agents.
  • anti-cancer streptococcal preparations such as OK-432 (trade name: Pisibanil); anti-cancer polysaccharides such as krestin, lentinan, lentinan, schizophyllan, sonifiran; mitomycin C (trade name, mitomycin, etc.), Actinomycin D (trade name Cosmegen), Breomycin hydrochloride (trade name bleo), Bleomycin sulfate (trade name bleo S), Daunorubicin hydrochloride (trade name daunomycin), Doxorubicin hydrochloride (trade name Adriacin), Neocartinostatin (trade name)
  • Anti-cancer antibiotics such as neocartinostatin), aclarubicin hydrochloride (trade name Acracinone), or ebubirubicin hydrochloride
  • the bone filler of the present invention is expected to promote the replacement of bone in the living body, the bone filler is impregnated or surface-filled with a drug containing a specific polypeptide or gene. It may be applied to.
  • polypeptides or genes include basic fibroblast growth factor (b FG F), platelet differentiation and growth factor (PDG F), insulin, insulin-like growth factor (IGF), hepatocyte growth factor (HG F), glia-induced neurotrophic factor (GDN F), neurotrophic factor (NF), hormone, site force-in, bone morphogenetic factor (BMP), transforming growth factor (TG F), vascular endothelial growth factor ( VEG F).
  • growth factors that promote angiogenesis and / or bone formation are preferred.
  • growth factors examples include bone morphogenetic factor (BMP), bone growth factor (BG F), vascular endothelial growth factor (VEG F) and transforming growth factor (TG F).
  • BMP bone morphogenetic factor
  • BG F bone growth factor
  • VEG F vascular endothelial growth factor
  • TG F transforming growth factor
  • Specific examples include the force luponin gene disclosed in Japanese Patent 37 1 3 290.
  • the gene should be included in the bone filler in an amount effective for gene therapy.
  • the gene may be included as it is (naked), in the form of a micelle, or in the form of a recombinant vector transformed into a known vector such as a viral vector.
  • the drug may be an antibody of a known gene.
  • RNA is extracted from osteoblasts and a primer is prepared based on a known sequence
  • the cDNA can be adjusted by PCR method. Commercially available products may be purchased and used.
  • a preferred embodiment of the bone filler of the present invention is the bone filler described above containing a stabilizer.
  • a stabilizer known stabilizers used for polymers and the like, especially pharmaceutically acceptable stabilizers can be used as appropriate. Note that the strength of the bone filler of the present invention is maintained mainly for a long time in vivo. In addition, since enzymes such as protease exist in the body, it is assumed that the bone filler will be degraded early. Therefore, in a preferred embodiment of the present invention, a stabilizer containing an inhibitor such as a protease inhibitor can be used. As such an inhibitor, a known enzyme inhibitor can be appropriately used.
  • proteazeinhibitors include 4_ (2_aminoethyl) benzenesulfonyl fluoride, aprotinin (Aprotinin), vestin (Bestain), calpine inhibitor _ ⁇ , calpine inhibitor _l I, shimostine (Ghymostain), 3 , 4-Dichloroisoco umain, E-64, EDTA, EGTA, Lactacysti (Lactacysti ⁇ ), Leupeptin, MG-115, MG-132, Pepstain A , Phenylmethylsulfonyl fluoride, proteasome inhibitor _ ⁇ , ⁇ -toluenesulfonyl _ L-lysine chloromethyl ketone, ⁇ _toluenesulfonyl _ L-phenylalanine chloromethyl ketone, or tyrosine inhibitor Or one or more.
  • the bone filler of the present invention preferably contains 2 to 100 times the dose of the above-mentioned proteazein inhibitor, more preferably ⁇ 2 times. Contains up to 50 times the amount.
  • the specific amount of the protease inhibitor may vary depending on the type of protease inhibitor used, but may include an amount that effectively functions as a protease inhibitor (effective amount). In general, 0.1 g to 0.5 mg per 1 g of bone filler is included, and 1 microg to 0.1 mg is acceptable. It may contain 0.1 mg. The specific dose will increase in proportion to the volume of the site where the bone filler is administered.
  • Another preferred embodiment of the present invention is that the produced bone filler (or the sintered body obtained after the sintering step) is appropriately impregnated or coated with an adhesion-imparting agent.
  • an adhesiveness-imparting agent may be mixed with the raw material powder to obtain a bone filler in which the adhesiveness-imparting agent is mixed with the powder.
  • the adhesiveness can also be maintained because the adhesion-imparting agent also exists on the surface that appears after the surface is replaced with bone).
  • the adhesion-imparting agent may be sprayed in powder form on the surface of the compact or sintered body.
  • a plurality of bone fillers and powder adhesion promoters may be mixed and mixed with powder by stirring as appropriate, thereby attaching the adhesion promoter to the surface of the bone filler.
  • the adhesion-imparting agent may be impregnated or applied together with the aforementioned agent, or only the adhesion-imparting agent may be impregnated or applied.
  • the adhesion-imparting agent is an agent for enhancing the adhesive cohesiveness between the bone fillers.
  • the adhesion-imparting agent alone does not have high adhesiveness, but adheres by contact with somatic cells in vivo.
  • thrombin is a type of enzyme that makes blood easier to clot.
  • the function of thrombin in vivo is to produce fibrin, a blood clotting substance that solidifies blood.
  • fibrin produced by thrombin makes it easier for blood to clot. Therefore, if thrombin is used as an adhesion-imparting agent, the adhesive cohesiveness on the surface of the bone filler is increased, thereby fixing the bone fillers and increasing the strength of the bone filler as a whole. .
  • Thrombin can be impregnated or applied in the same amount as the above drug in the same way as the above drug.
  • Salt thereof means a salt of the above compound, particularly a pharmaceutically acceptable salt of the above compound.
  • pharmaceutically acceptable means that the recipient has It means no harm.
  • the polyphosphoric acid of the present invention can be converted into a salt according to a conventional method.
  • salts include: Al salt metal salts such as sodium salt, potassium salt and lithium salt; Al force earth metal salts such as calcium salt and magnesium salt; Aluminum salt, iron salt, zinc salt and copper salt Metal salts such as nickel salts and cobalt salts; Inorganic salts such as ammonium salts; t-octylamine salts, dibenzylamine salts, morpholine salts, glucosamine salts, phenylglycine alkyl ester salts, ethylenediamine salts, N-methylglucamine salts , Guanidine salt, jetylamine salt, triethylamine salt, dicyclohexylamine salt, N, N'-dibenzylethylenediamine salt, black pro-in salt, pro-power in salt, diethanolamine salt, N-benzyl-N-phenethylamine Salt, piperazine salt, tetramethylammonium salt, tris (hydride) Amine salts such as organic salts such as K
  • the alkali metal salt is preferred as the polyphosphate salt, and the sodium salt is more preferred.
  • the salt may include not only anhydrous salts but also hydrated salts. These salts, for example, ionize in vivo and function in the same way as the above compounds.
  • Solvate means a solvate of the above compound.
  • Solvates include hydrates.
  • the agent of the present invention may absorb moisture, adhere to adsorbed water, or become a hydrate when left in the atmosphere or by recrystallization. Such solvates are also included in “the solvate”. These solvates function like the above compounds by ionizing in vivo.
  • the bone filler manufactured as described above is used for filling a bone defect by, for example, surgery or orthopedic treatment.
  • the patient filled with the bone filler of the present invention in the bone defect portion is filled with the bone filler because the bone filler of the present invention matches the shape of the bone defect portion.
  • the strength of the filled part is maintained.
  • the bone filler is quickly replaced with the bone tissue, so that the bone tissue is regenerated early. That is, the present invention is manufactured as described above. It is also possible to provide a method for treating a patient who has lost bone using the produced bone filler.
  • the fourth aspect of the present invention includes: a bone model manufacturing process for manufacturing a bone model; an image forming agent installation process for installing an image forming agent on the bone model obtained in the bone model manufacturing process; and the image forming agent installation And a bone filler manufacturing process for manufacturing a bone filler based on an image forming agent placed on a bone model in the process.
  • the image forming agent installation step is preferably a step of installing an image forming agent so as to correct asymmetry of the bone model using the bone model obtained in the bone model manufacturing step. By doing so, a bone filler that can reinforce bone distortion can be obtained.
  • a preferred embodiment of the fourth aspect of the present invention relates to the method for producing a bone filler according to the above, wherein the bone model obtained in the bone model production process is a bone model in which contour lines or a grid pattern is drawn. .
  • the image forming agent used in the image forming agent filling step is different from the bone model in any of X-ray transmittance, infrared transmittance, or ultraviolet transmittance.
  • the present invention relates to a method for producing the bone filler according to any one of the above.
  • the bone model is a bone model of any one of the above, wherein the bone model is a bone model of a patient with bone deficiency, a patient with bone deformity, or a patient with cosmetic surgery. It is a manufacturing method.
  • the bone filler obtained by the method for producing a bone filler of the present invention can correct bone distortion and beautifully correct the skeleton, so that it can be effectively used for treatment of bone deformity and cosmetic surgery. Can be used.
  • the present invention relates to a bone filler and a cast manufacturing process for producing a bone filler and a cast based on the digital information of
  • a bone filler suitable for an affected area can be obtained, and a cast that can appropriately support the bone filler can be designed.
  • the image forming agent for forming the cast contains different materials from the image forming agent for the bone filler, it is possible to distinguish the shapes when photographing with CT scan or MRI.
  • the cast may be manufactured in the same manner as the bone filler manufacturing method described above.
  • a known material used for the cast may be used as appropriate.
  • casts may be manufactured using the same material as the bone filler.
  • a preferred embodiment of the fifth aspect of the present invention is a method for imaging a specific part of a patient, digital information of bone including a cross-sectional view of a plurality of bones at the specific part of the patient, and soft tissue surrounding the bone
  • the present invention relates to a cast manufacturing method for manufacturing a cast at a site. Since the cast is manufactured based on the digital information of the soft tissue, a custom-made cast having a shape suitable for the patient can be manufactured.
  • soft tissue means a relatively soft part of a living body other than bone, and specifically means a viscera, meat, skin, and the like.
  • the method for producing a bone filler and a cast, or the method for producing a cast according to the present invention preferred embodiments and configurations in the above-described method for producing a bone filler can be appropriately employed.
  • the target part is a part having a symmetrical part (for example, skull, upper and lower jaw, extremities, or pelvis), and is lower than the corresponding part by a predetermined threshold (for example, 5 mm).
  • the part which is present is extracted, and the bone filler is installed in the area It is only necessary to simulate the shape of the case and design a cast that covers the area where the bone filler is placed.
  • Such a design can be easily achieved by creating a program that operates the computer as described above.
  • a computer that has obtained the bone information and soft tissue information of the target part needs only to obtain the cast design data by reading the program stored in the main memory and performing the prescribed calculations.
  • the sixth aspect of the present invention relates to an appearance model of a part of a body on which contour lines or a cell pattern is drawn. Since contour lines or squares are drawn, it is possible to objectively grasp the distortion of a specific part. In particular, by comparing appearance models before and after treatment, it is possible to objectively understand how much the treatment has changed.
  • a preferred embodiment of the sixth aspect of the present invention relates to the appearance model described above, wherein the appearance model is a reproduction of a body surface of a specific part of a patient.
  • Specific parts of the patient can include the parts mentioned above, and specifically include the heel, head, limbs, chest, lower abdomen, or lower back.
  • a digital image relating to a cross-sectional view of the specific region including a cross-sectional view of a plurality of bones and soft tissues in the specific region of the patient is photographed.
  • Sectional information digital information acquisition step for acquiring information; for each part of the outer surface of the specific part based on digital information including a plurality of bone and soft tissue sectional views acquired in the sectional view information acquisition step.
  • a drawing information acquisition process for obtaining an altitude from a reference plane or obtaining a deviation on a plane from a reference point for each part of the outer surface at the specific part, and the specific part at the specific part of the patient by a rapid prototype method.
  • the outer surface model at the site is manufactured, and contour lines or a grid pattern are drawn based on the altitude or the deviation on the plane obtained in the drawing information acquisition process.
  • appearance model producing step a method for producing an outer look model including.
  • the appearance model can be manufactured appropriately.
  • the specific part of the patient is, for example, the part missing due to an accident. This includes sites where bone fillers are to be implanted, such as sites where bone distortion is seen due to bone deformity, bone deformity, etc. Since an appearance model before and after the procedure can be obtained, it is possible to show how much the appearance has changed before and after the procedure in surgery.
  • the appearance model can be manufactured in the same way using the same materials and materials as the bone model described above. That is, an appearance model can be manufactured by appropriately using the apparatus and method disclosed in this specification for manufacturing a bone model. The description shall apply mutatis mutandis to avoid repetition.
  • a cross-sectional view digital image obtained by photographing a specific part of a patient and acquiring digital information related to the cross-sectional view of the specific part including cross-sectional views of a plurality of bones and soft tissues in the specific part of the patient
  • An information acquisition step a three-dimensional digital image acquisition step for obtaining a three-dimensional digital image of the specific part based on digital information including cross-sectional views of a plurality of bones and soft tissues acquired in the cross-section information acquisition step
  • An epithesis image data acquisition step for acquiring epithesis image data based on the three-dimensional digital image of the specific part obtained in the three-dimensional digital image acquisition step; and obtained in the epithesis image data acquisition step
  • a method for producing an epithesis by a rapid prototyping method using epithesis image data
  • Epithese means prosthesis (a mortar) or a prosthesis device, which means an artificial object that is mainly attached to the surface of the body.
  • a prosthesis device which means an artificial object that is mainly attached to the surface of the body.
  • epithesis image data based on a three-dimensional digital image of a specific part, for example, a digital image of a symmetrical part of a specific part such as the heel, jaw, eyes, limbs, pelvis, and surrounding soft tissue.
  • Even if the obtained epithesis image is obtained by performing affine transformation so that the information on the symmetrical part obtained is symmetric, superposed on the digital information of the target part to which the epithesis is attached, and obtaining the difference. Good.
  • Such a method can also be used in other methods herein.
  • the practitioner creates an epithesis image from the pointing device.
  • Information on the epithesis image may be obtained by inputting using a computer.
  • a computer-aided image formation method such as the above-described rapid prototyping method may be appropriately used.
  • the color information of the target part is also acquired by MRI or the like
  • the outer surface part information and the color information of the part are stored in association with each other when the epithesis image is manufactured by the rapid prototyping method.
  • an epithesis that reflects the color information can be manufactured by applying a pigment such as ink according to the color information stored in association with the outer surface part.
  • the basic color of the epithesis image produced by the rapid prototyping method may be set to obtain an epithesis that reflects that color.
  • a specific part of a patient is photographed, and digital information relating to the cross-sectional view of the specific part including cross-sectional views of a plurality of bones and soft tissues in the specific part of the patient is acquired.
  • a cross-sectional digital information acquisition step a three-dimensional digital image that obtains a three-dimensional digital image of the specific site based on digital information including cross-sectional views of a plurality of bones and soft tissues acquired in the cross-sectional information acquisition step.
  • a tall image acquisition step based on the three-dimensional digital image of the specific part obtained in the three-dimensional digital image acquisition step;
  • An appearance model manufacturing process for manufacturing the appearance model of the specific part; an image forming agent installation process for installing an image forming agent on the appearance model obtained in the appearance model manufacturing process; and an image forming agent in the image forming agent installation process An image forming agent digital information acquisition step of photographing a bone model in which an image sensor is installed and acquiring digital information of the image forming agent; A mold information acquisition step for obtaining digital data relating to a mold for manufacturing an epithesis image; and a mold manufacturing process for manufacturing the mold obtained in the mold information acquisition process; It relates to the manufacturing method. For example, if a part of a symmetrical part is missing, the shape of the missing part is assumed from the remaining part.
  • a method for producing an epithesis with excellent symmetry or a mold for producing an epithesis The manufacturing method of can be provided.
  • shape information of a specific part is acquired by CT scan or the like, and the epithesis is designed on a computer according to the information.
  • a method for producing a mold for producing an epithesis can be provided.
  • the mold for manufacturing the epithesis obtained in this way may be colored by, for example, manufacturing the epithesis base material by putting silicone wax in the mold and performing fine adjustments such as engraving by the practitioner. After obtaining the epithesis in this way, the epithesis may be attached according to a known method of operation performed in plastic surgery or the like.
  • FIG. 2 is a schematic diagram of each step in this example.
  • a bone filler for correcting bone distortion of a patient with osteopathy was manufactured and implanted into the patient to correct the bone distortion.
  • the bone filler manufacturing method in this example was digitized by imaging the patient's skull (front half) with CT.
  • Figure 3 shows a CT image that replaces a drawing taken by CT.
  • Figure 3 (a) shows a CT image of the buttocks
  • Fig. 3 (b) shows a CT image of the lower jaw.
  • Figs. 3 (a) and 3 (b) the patient who took the CT image had asymmetric bones and left and right asymmetry.
  • a 3D digital image of the patient's skull was acquired by a computer, and a bone model (1) was manufactured by the rapid prototyping method.
  • Fig. 4 (a) shows the obtained gypsum model (bone model)
  • Fig. 4 (b) shows a side view of the bone model
  • Fig. 4 (c) shows a design drawing of the bone model with contour lines drawn.
  • a bone model without contour lines (or cells) was used, but if a bone model with contour lines as shown in Fig.
  • Fig. 5 (a) is a front view
  • Fig. 5 (b) is a side view
  • (c) is a bottom view.
  • the image forming agent is pink, it is easy to see the area where the ink is up (installing the image forming agent).
  • FIG. 6 (a) shows a CT image of the buttocks
  • Fig. 6 (b) shows a CT image of the lower jaw.
  • the bone model part and the imaging agent part can be clearly distinguished by CT scan.
  • a bone filler was manufactured by the rapid prototyping method. Three holes each with a diameter of 0.5 mm to 1.5 mm were drilled in the obtained bone filler. This hole is used for threading the fixation thread when embedding the bone filler.
  • Fig. 7 is a photograph replacing the drawing of the bone filler obtained in this example.
  • Figure 7 (a) is a diagram showing the bone filler buried in the buttock, and Fig. 7 (b) is a diagram showing the back side.
  • Fig. 7 (c) shows the bone filler buried in the mandible, and Fig. 7 (d) shows the reverse side.
  • Fig. 8 is a photograph replacing a drawing of a gypsum image (appearance model) in which contour lines of the face showing the undulations of the patient who was treated with the bone filler obtained in the example were drawn.
  • This appearance model was also manufactured using the rapid prototyping method.
  • Fig. 8 (a) is before treatment and Fig. 8 (b) is after treatment. Comparing Fig. 8 (b) with Fig. 8 (a), it can be seen that the bone distortion is smaller than before the operation.
  • the bone model or appearance model of the present invention can be suitably used in fields such as the medical device industry because a doctor or the like can easily and accurately grasp the shape of a patient's bone. Since the method for producing a bone filler of the present invention can be effectively used for correction and correction of bone defects and bone deformation, it can be suitably used in the medical device industry.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Neurosurgery (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Description

明 細 書
骨模型, 及び骨充填剤又は骨充填剤の製造方法
技術分野
[0001 ] 本発明は, 骨模型, オーダーメードの骨充填剤又はオーダーメードの骨充 填剤の製造方法に関する。 より具体的に説明すると, 本発明は, 等高線やま す目 (番地図) など, 模型の起伏や非対称性などを一目瞭然とした骨模型に 関する。 本発明はまた, 患者の骨を C T撮影又は M R Iなどでデジタル化し , そのデジタル化情報に基づいて骨模型を製造し, 施術者がその模型に像形 成剤を充填■設置して骨充填剤像を作成し, その作成した像を用いて, 再度 デジタル化し, そのデジタル情報に基づいて骨充填剤を製造することにより , 骨充填剤などを精度よく製造できる骨充填剤の製造方法に関する。
背景技術
[0002] 交通事故などにより骨に欠損を生じた患者 (骨欠損症の患者) を治療する ために, その欠損部を人工骨で埋める手術が整形外科などの分野にて行われ ている。 また, 外科医療において, 骨腫瘍などに罹患した病変部を除去する ことがある。 この際に除去した病変部を修復するために, 骨欠損部に骨充填 剤を補填する治療が行われている。 この治療の際にも, 骨欠損部の形状に一 致した骨充填剤を得ることが望まれる。
[0003] 例えば特開平 7— 2 8 4 5 0 1号公報 (下記特許文献 1 ) には, X線 C T 又は M R Iの断層イメージ (断層画像) を用いて, 人工骨頭等の内固定部材 の挿入部位 (例えば欠損部) を三次元データとして取得し, その三次元デ一 タを用いて該揷入部位の三次元イメージを表示しつつ, 内固定部材の画像を その画面上にて移動させて, 手術前に, 部材の揷入部位に対する適合性をシ ミュレ一シヨンできるようにした技術が開示されている。
[0004] 特公平 6— 2 1 3 7号公報 (下記特許文献 2 ) には, X線 C Tあるいは M R Iの断層イメージを用いて, 人工骨頭等の内固定部材の揷入部位を三次元 データとして取得し, その三次元データを切削装置に出力することにより, 挿入部位のレプリカ (模型) を作製する装置が開示されている。
[0005] 特開 2 0 0 3 _ 1 2 6 1 2 4号公報 (下記特許文献 3 ) には, 「三次元測 定装置と, 三次元加工機とを接続した骨補填材加工システムであって, 上記 三次元測定装置にて取得した骨欠損部の三次元形状データに基づいて, 上記 三次元加工機で骨補填材を加工することを特徴とする骨補填材加工システム 」 が開示されている (請求項 1 ) 。
[0006] 特開 2 0 0 1 _ 9 2 9 5 0号公報 (下記特許文献 4 ) には, 「人体断層画 像に基づいて骨部欠損部を埋める補填用人工骨を設計するシステムにおいて , 互いに異なる複数の断層位置にて撮影された断層画像のそれぞれにおいて , 予め定められた濃度レベルの画素領域を, 骨部候補領域として抽出する骨 部候補領域抽出手段と, その骨部候補領域のうち, 最終的に骨部領域として 使用するもの (以下, 確定骨部領域という) を選択する領域選択手段と, そ の確定骨部領域に基づいて, 最終的に骨部として定めるべき領域の外形線情 報である骨部外形線情報を生成する骨部外形線情報生成手段と, 各断層位置 毎の骨部外形線情報に基づいて, 前記骨部の欠損部の三次元形状データを生 成する三次元形状データ生成手段を備えたことを特徴とする補填用人ェ骨設 計システム」 が開示されている (請求項 1 ) 。
[0007] 特許第 2 , 9 3 0 , 4 2 0号公報 (下記特許文献 5 ) には, 「無固体形態 製作法を用いてポリマー材料の連続層を形成するポリマーマトリックス形成 工程を包含する, 医用デバイス製造方法」 が開示されている (請求項 1 ) 。
[0008] また, 国際公開 2 0 0 5— 0 1 1 5 3 6号パンフレット (下記特許文献 6 ) には, R P装置を用いた粉末積層法により人工骨を製造する方法が開示さ れている。
[0009] このように, 骨欠損部位の形状に関する情報を何らかの形で得て, コンビ ュ一タシミュレ一ションにより欠損部位の形状を想定し, その想定した欠損 部位の形状に基づいて, 骨充填剤の形状を決定するという方法が知られてい る。 しかしながら, このような方法は, あくまでコンピュータによる推測に 基づいて骨充填剤の形状が決定されるものである。 したがって, このような 方法に基づいて製造された骨充填剤は, 実際の欠損部位の形状と一致するこ とも多々あるものの, 医師などの術者のノゥハウを盛り込んだものとするこ とは難しい。 また, 術者としても, 自らの実感がわかないまま, 骨充填剤の 形状が決定されてしまうので, 実際の施術の様子などをイメージしにくいと いう問題がある。
[0010] —方, 特開平 9 _ 1 5 4 8 6 5号公報 (特許文献 7 ) には, 「骨欠損部補 填材の形状を決定するための骨体の形状を模した治具であって, その骨体部 の表面に沿う形状に, 透明材または半透明材によって形成したこと, を特徴 とする骨欠損部補填材の形状決定用治具」 (請求項 1 ) , そのような 「形状 決定用治具を骨体部の欠損部に当てて, その形状決定用治具を透かしてその 欠損部またはその欠損部を含む周辺形状との適合状態を観察して最も適合し た形状決定用治具を選択し, 対応する骨欠損部補填材を決定すること, を特 徵とする骨欠損部補填材の形状決定方法」 (請求項 7 ) や, その骨欠損部補 填材の形状決定方法により 「選択した形状決定用治具を前記欠損部を覆う適 合位置に当付けて, この形状決定用治具の表面に, 前記欠損部の輪郭に沿つ て募書し, この形状決定用治具の募書に基づいて, 対応する骨欠損部補填材 を切削して前記欠損部を補填する骨欠損部補填材を形成すること, を特徴と する骨欠損部補填材の形状決定方法」 (請求項 8 ) が開示されている。
[001 1 ] 特開平 9 _ 1 5 4 8 6 5号公報 (特許文献 7 ) に開示される発明は, 要約 すると, 透明又は半透明の骨欠損部補填材の形状決定用治具を欠損部に当て て, 複数パターンの治具から最適なものを選択し, その上で, 最適な透明治 具を通して欠損部の形状を推定し,募書きした上で (段落 [ 0 0 1 3 ] ) , 治 具を切削することで, 欠損部の形状にフイツ卜した骨充填剤プレートを得る (段落 [ 0 0 1 4 ] ) というものである。
[0012] この方法によれば, 施術者の知見が骨充填剤に反映される可能性が高い。
しかしながら, この方法では, あくまで透明治具を欠損部に当てて, 欠損部 の形状を推測するというものである。 そのため, 骨充填剤が欠損部にフイツ 卜した形状を有するかどうかは, 施術者の経験によるところが多ぐ 必ずし も適切な形状を有する骨充填剤を得ることができないという問題がある。
[0013] また, 骨変形症の患者などは, 特定部位の骨の形状が歪み, 骨の対称性が 悪くなるという問題がある。 したがって, 対象性を回復するために, 骨充填 剤をへこんだ部位に設置することが行われている。 しかしながら, 適切な形 状を有する骨充填剤を製造することは困難であった。
[0014] また, 従来の形成外科や美容整形の分野では, 骨を削ることで, 所望の骨 格を達成する技術や, シリコン, セルライ トなどを特定部位に挿入して, 顏 の形状を変えるなどの手術が行われていた。 しかしながら, シリコンなどの 非自己物質を埋入すると, 多くの免疫抑制剤を必要とするほか, 永久に非自 己であるから, 定期的に検査をしなければならないという問題がある。 その 他, シリコンなどが生体になじまず炎症を起こすなどの問題があった。
[0015] 骨充填剤は, 一般に強度が弱いので, 外から衝撃や強い力が加わると, 破 損するという問題がある。 また, 骨充填剤は, 患者の骨そのものではないの で,いったん骨欠損部などに骨充填剤を埋入しても, 外から力が加わると, 外 れる場合があるという問題がある。
[0016] 骨変形症などの患者では, 目視により骨が変形していることは把握できる ものの, どの程度骨が変形しているかについての客観的な情報は入手しがた いという問題がある。 また, 特に骨変形症の治療や, 形成外科, 又は美容整 形などにおいては, 施術前後でどの程度外見 (例えば, 顔の表面の起伏など ) が変化したかについて客観的にわからないという問題がある。
特許文献 1 :特開平 7— 2 8 4 5 0 1号公報
特許文献 2:特公平 6— 2 1 3 7号公報
特許文献 3:特開 2 0 0 3 _ 1 2 6 1 2 4号公報
特許文献 4:特開 2 0 0 1 _ 9 2 9 5 0号公報
特許文献 5:特許第 2 , 9 3 0 , 4 2 0号公報
特許文献 6: 国際公開 2 0 0 5 - 0 1 1 5 3 6号パンフレツト
特許文献 7:特開平 9— 1 5 4 8 6 5号公報
発明の開示 発明が解決しょうとする課題
[001 7] 本発明は, 患者などの骨の歪みを把握できる骨模型を提供することを目的 とする。
[0018] 本発明は, 骨欠損部を充填するための骨充填剤を精度よく製造することが できる骨充填剤の製造方法を提供することを目的とする。
[001 9] 本発明は, 骨の歪み (対象性の悪さなど) を効果的に補正できる骨充填剤 の製造方法を提供することを目的とする。
[0020] 本発明は, 骨充填剤を外的衝撃から防ぎ, 骨充填剤を形状をも把握した上 で, 適切な形状を有するギプスの製造方法を提供することを目的とする。
[0021 ] 本発明は, 骨変形症などの患者について, その特定部位の外見がどの程度 歪んでいるか客観的に示すことができる外見模型を提供することを目的とす る。 本発明はまた, 外科等の手術において, 施術前後でどの程度外見が変化 したかを示すことができる外見模型, 及びその製造方法を提供することを目 的とする。
[0022] 従来, ェピテーゼは, 製作者の経験に基づいて製造されていたので, 製作 者の熟練度により, 得られるェピテーゼに大きな差が生じていた。 また, 左 右非対称なェピテーゼが得られ, 外見上なじまないものができることもあつ た。 さらに, 例えば, 顔のある部分のェピテーゼを製造する場合, その部位 に印象剤を当てるなどして型取りをしていたので, 患者にとって苦痛である という問題もあった。 そこで, 本発明は, 対称性に優れ, また患者にとって 苦痛の少ないェピテーゼの製造方法, 又はェピテーゼ製造用錶型の製造方法 を提供することを目的とする。
課題を解決するための手段
[0023] 本発明は, 骨充填剤を製造する際に, 完全にアナログ情報に基づいて製造 を行えば, 施術者の経験に基づいて行うより他なぐ 施術者の熟練度によつ て, 得られる骨充填剤の精度が大きく変化してしまう。 また, 完全にデジタ ル情報のみに基づいて, 骨充填剤を製造すれば, 施術者の経験に基づく知見 が得られる骨充填剤に反映されにくい。 そこで, デジタル情報に基づいて行 うことが好ましい工程については, デジタル情報に基づいて行い, 一方, 施 術者の知見を反映させやすい環境を整えた上で, 施術者の知見をアナログ的 に反映させることで, 極めて精度の高い骨充填剤を製造できるという知見に 基づくものである。
[0024] 本発明は, 特に患者の骨模型に, 等高線, 又はます目模様を描画すること で, 患者の骨の歪みや非対称性を把握できるという知見に基づく。 更に本発 明は, その把握した歪みを補うように, 像形成剤を設け, その像形成剤に基 づいて, 適切な骨充填剤また骨充填剤を得ることにより, 適切な形状を有す る骨充填剤また骨充填剤を得ることができるという知見に基づくものである
[0025] 本発明は, また基本的には, 患者のオーダーメードの骨模型を製造し, 施 術者がその模型を用いて欠損部に像形成剤を充填することにより骨充填剤像 を作成し, その作製した骨充填剤像を用いて, 骨充填剤を製造することによ り, 骨充填剤を精度よく製造できる骨充填剤の製造方法に関する。
[0026] 本発明はまた, 患者の骨を C T撮影などでデジタル化し, そのデジタル化 情報に基づいて例えば等高線又はます目が描画された骨模型を製造し, 施術 者がその模型に描画された線に基づいて, 患者の骨の歪みを把握し, 歪みを 補うように像形成剤を充填■設置して骨充填剤像を作成し, その作製した像 を用いて, 再度デジタル化し, そのデジタル情報に基づいて骨充填剤を製造 することにより, 最適な形状を有する骨充填剤を得ることができるという知 見に基づくものである。
[0027] 本発明の第 1の側面は, 患者の特定部位を撮影し, 前記患者の特定部位に おける複数の骨の断面図を含む骨のデジタル情報を取得する骨のデジタル情 報取得工程と ;前記骨のデジタル情報取得工程で取得された複数の骨の断面 図を含むデジタル情報に基づいて, 前記患者の特定部位における骨の模型を 製造する骨模型製造工程と ;前記骨模型製造工程で製造された骨模型に像形 成剤を設置する像形成剤設置工程と ;前記像形成剤設置工程で像形成剤が設 置された骨模型を撮影し, 像形成剤のデジタル情報を取得する像形成剤デジ タル情報取得工程と ;前記像形成剤デジタル情報取得工程で取得された像形 成剤のデジタル情報に基づいて, 骨充填剤を製造する骨充填剤製造工程と ; を含む骨充填剤の製造方法に関する。 すなわち, 模型形成や, 像形成後に骨 充填剤を製造するといった, デジタルで行うことが好ましい工程については , デジタル情報に基づいて行い, 一方, 後述するように骨模型に等高線を描 画するなど施術者の知見を反映させやすい環境を整えた上で, 施術者により 像形成剤を設置させることにより施術者の知見をアナ口グ的に反映させるこ とで, 極めて精度の高い骨充填剤を製造できる。
[0028] 本発明の第 1の側面の好ましい態様は, 前記患者の特定部位を撮影するェ 程は, C Tスキャン又は M R Iにより前記患者の特定部位における複数の骨 の断面図を含む骨のデジタル情報を取得する工程であり ;前記像形成剤デジ タル情報取得工程は, C Tスキャン又は M R Iにより像形成剤のデジタル情 報を取得する工程である ;上記に記載の骨充填剤の製造方法である。 すなわ ち, C Tスキャン又は M R Iによれば, 容易に骨又は像形成剤を含む像の断 面図を複数得ることができ, その C T撮影された像又は M R I像を用いれば , コンピュータなどにより容易に骨又は像形成剤の 3次元デジタル情報を得 ることができる。 本発明の第 1の側面の好ましい態様は, 前記患者の特定部 位は, 患者の頭蓋骨, 下顎部, 上顎部, 四肢, 又は骨盤のいずれかを含む部 位である上記いずれかに記載の骨充填剤の製造方法に関する。 これらの部位 は, 左右対称な部分を含むので, 容易に歪みを把握することができる。
[0029] 本発明の第 1の側面の好ましい態様は, 前記骨模型製造工程で製造される 骨模型は, 等高線, 又はます目模様が描画された骨模型である上記いずれか に記載の骨充填剤の製造方法に関する。 等高線やます目が描画されていれば , 施術者が得られた骨模型に基づいて, 像形成剤を設置する際に, 骨の歪み や, くぼみなどを極めて容易に理解でき, その結果, 精度の高い骨充填剤を 得ることができることとなる。
[0030] 本発明の第 1の側面の好ましい態様は, 前記骨模型製造工程で製造される 骨模型は, 石膏を含有する骨模型である上記いずれかに記載の骨充填剤の製 造方法に関する。 本発明の第 1の側面の好ましい態様は, 前記骨模型製造ェ 程は, ラビッドプロ トタイプ法, 射出成形法, 切削による積層造形方法, 又 はマシニングセンタを有する加工装置を用いた成形法により骨模型を製造す る工程である, 上記いずれかに記載の骨充填剤の製造方法に関する。 骨模型 が石膏を主成分として含有するものであれば, ラピッドプロ トタイプ法; C Tスキャン又は M R Iなどで撮影された骨のデジタル情報に基づいて金型を 設計し, その金型を用いて骨模型を製造する射出成形法;得られた骨のデジ タル情報に基づいて, マシニングセンタを有する加工装置を用いた成形法; 得られた骨のデジタル情報に基づいて, 多軸ポール盤を備える N C制御可能 な切削装置を用いた成形法などにより容易に骨模型を製造できる。
[0031 ] 本発明の第 1の側面の好ましい態様は, 前記骨模型製造工程で製造される 骨模型は, カルシウム系物質とポリビニルアルコール樹脂を含有し, 前記力 ルシゥム系物質と前記ポリビニルアルコール樹脂の合計重量を 1 0 0重量部 とした場合に, 前記ポリビニルアルコール樹脂は, 2重量部〜 8重量部とな るように配合される骨模型である上記いずれかに記載の骨充填剤の製造方法 に関する。 このような骨模型であれば, 特に射出成形により, 極めて迅速で かつ精度高く骨模型を得ることができるので, その結果, 骨充填剤を精度よ く製造できることとなる。 本発明の第 1の側面の好ましい態様は, 前記骨模 型製造工程で製造される骨模型は, ひ型半水石膏とポリビニルアルコール樹 脂を含有する組成物を原料とし, 前記カルシウム系物質と前記ポリビニルァ ルコール樹脂の合計重量を 1 0 0重量部とした場合に, 前記ポリビニルアル コール樹脂は, 2重量部〜 8重量部となるように配合される, 上記いずれか に記載の骨充填剤の製造方法に関する。
[0032] 本発明の第 1の側面の好ましい態様は, 前記骨模型は, 石膏を主成分とし ;前記像形成剤は, ワックス又はプラスティックを全重量の 9 0重量%以上 含有する ;上記いずれかに記載の骨充填剤の製造方法に関する。 本発明の第 1の側面の好ましい態様は, 前記骨模型は, 石膏を主成分とし;前記像形成 剤は, ワックスを全重量の 9 0重量%以上含有する ; 上記いずれかに記載 の骨充填剤の製造方法に関する。 本発明の第 1の側面の好ましい態様は, 前 記骨模型は, 石膏を主成分とし;前記像形成剤は, ワックスを全重量の 9 0 重量%以上含有し, ルチル型の酸化チタンを全重量の 2重量%以上 5重量% 以下含有する ;上記いずれかに記載の骨充填剤の製造方法に関する。 すなわ ち, このような組成を有する骨模型と, 像形成剤を用いることで, C Tスキ ヤン又は M R Iなどにより撮影を行った場合に, 骨模型部分と, 像形成剤部 分とを精度良く分析できるので, その結果骨充填剤を精度よく製造できるこ ととなる。
[0033] 本発明の第 1の側面の好ましい態様は, 前記骨充填剤製造工程は, ラピッ ドプロ トタイプ法により骨充填剤を製造する工程である, 上記いずれかに記 載の骨充填剤の製造方法に関する。 ラビッドプロ トタイプ法によれば, ォ一 ダーメ一ドの骨充填剤を迅速かつ精度よく製造できることとなる。
[0034] 本発明の第 1の側面の好ましい態様は, 前記骨充填剤製造工程で得られる 骨充填剤は, 水酸アパタイ ト, 炭酸アパタイ ト, フッ素アパタイ ト, 塩素ァ パタイ ト, yS _ T C P , a - J C P , メタリン酸カルシウム, リン酸四カル シゥム, リン酸八カルシウム, リン酸水素カルシウム, リン酸水素カルシゥ ム, リン酸二水素カルシウム, ピロリン酸カルシウム, それらの塩, 又はそ れらの溶媒和物のうちいずれか 1種又は 2種以上を用いて製造される骨充填 剤である, 上記いずれかに記載の骨充填剤の製造方法に関する。 例えば, 射 出成形法によりこれらの原料を用いて骨充填剤を製造すると, 成形時に相変 化が起こり, 好ましい特性を有する骨充填剤へと変化することとなる。
[0035] 本発明の第 2の側面は, 等高線, 又はます目模様が描画された骨模型に関 する。 このような等高線やます目 (格子状の線) が描画されているので, 骨 模型の歪みを容易に把握できる。 この側面の好ましい態様は, 前記骨模型は , 患者の特定部分の骨形状を再現したものである上記に記載の骨模型に関す る。 また, 別の好ましい態様は, 前記骨模型は, 患者の頭蓋骨の骨形状を再 現したものである上記に記載の骨模型に関する。 すなわち, 骨模型が, 特定 の患者のオーダーメードなものであれば, その患者の骨の歪みを正確に把握 できることとなる。 よって, そのような骨模型は, 骨充填剤の形状を適切に 把握する上でも効果的であり, 更には適切な形状を有する骨充填剤を得るこ とができることとなる。
[0036] 本発明の第 3の側面は, 骨模型を製造する骨模型製造工程と ;前記骨模型 製造工程で得られた骨模型の骨欠損部に, 像形成剤を充填する像形成剤充填 工程と ;前記像形成剤充填工程で骨模型の骨欠損部に充填した像形成剤に基 づいて, 骨欠損部に充填する骨充填剤を製造する骨充填剤製造工程と ; を含 む骨充填剤の製造方法に関する。
[0037] 本発明の第 3の側面の好ましい態様は, 前記骨模型製造工程は, ラビッド プロ トタイプ法により骨模型を製造する工程である上記いずれかに記載の骨 充填剤の製造方法に関する。 ラビッドプロ トタイプ法によれば, たとえば, 骨の一部が欠損した患者の骨模型を迅速かつ精度よく作成することができる 。 本発明の第 3の側面の好ましい態様は, 骨模型製造工程で得られる前記骨 模型が, 等高線, 又はます目模様が描画された骨模型である上記いずれかに 記載の骨充填剤の製造方法に関する。 すなわち, そのような骨模型を用いれ ば患者の骨の歪みを適切に把握できるので, 患者に対して適切な骨充填剤を 製造できることとなる。
[0038] 本発明の第 3の側面の好ましい態様は, 前記像形成剤充填工程で用いられ る像形成剤は, 前記骨模型と X線透過率, 赤外線透過率, 又は紫外線透過 率のいずれかが異なるものである上記いずれかに記載の骨充填剤の製造方法 に関する。 像形成剤が, 骨模型と X線透過率, 赤外線透過率, 又は紫外線透 過率のいずれかの点で異なるので, 骨模型に像形成剤をつけたままの状態で , 像形成剤の形状を分析できる。 これにより, 像形成剤を骨模型から取り外 す際に像形成剤の形状が変わることや, 像形成剤の一部が骨模型に残留する ことに起因して, 骨欠損部の正確な形状が把握できなくなるという事態を防 止できる。
[0039] 本発明の第 3の側面の好ましい態様は, 前記像形成剤充填工程で用いられ る像形成剤は, ルチル型の酸化チタンを全重量の 2重量%以上 5重量%以 下含有する上記いずれかに記載の骨充填剤の製造方法に関する。 ルチル型の 酸化チタンを含有することで, 像形成剤と骨模型とを X線 C Tなどで区別で さる。
[0040] 本発明の第 3の側面の好ましい態様は, 前記骨模型製造工程で製造される 骨模型は, 石膏を主成分とし;前記像形成剤充填工程で用いられる像形成剤 は, ワックスを全重量の 9 0重量%以上含有し, ルチル型の酸化チタンを全 重量の 2重量%以上 5重量%以下含有する ;上記いずれかに記載の骨充填剤 の製造方法に関する。 ルチル型の酸化チタンを含有することで, 像形成剤と 骨模型とを X線 C Tなどで区別できる。
[0041 ] 本発明の第 3の側面の好ましい態様は, 前記骨充填剤製造工程は, ラピッ ドプロ トタイプ法により骨充填剤を製造する工程である上記いずれかに記載 の骨充填剤の製造方法に関する。 すなわち, X線 C Tなどにより, 骨欠損部 の形状に関する情報を入手できるので, ラピッドプロ トタイプ法により骨充 填剤を製造することで, 迅速かつ正確に骨充填剤を製造できる。
[0042] 本発明の第 3の側面の好ましい態様は, 前記骨充填剤製造工程は, カルシ ゥム系物質を含む原材料, 及びバインダーを含む材料を混練するための混練 工程と ;前記混練工程で得られた混練物を用いて, 金型を有する射出成形機 を用いた射出成形により所定の形状を持つた成形体を得るための成形工程と ;前記成形工程で得られた成形体に含まれるバインダーを取り除き脱脂体を 得るための脱バインダー (脱脂) 工程と ;前記脱バインダー工程後の脱脂体 を加熱し, 焼結し焼結体を得るための焼結工程と ; を含む上記いずれかに記 載の骨充填剤の製造方法に関する。 X線 C Tなどにより, 骨欠損部の形状に 関する情報を入手できるので, この形状情報を利用して金型を作成し, 正確 な形状を有する骨充填剤を製造できる。
[0043] 本発明の第 3の側面の好ましい態様は, 前記骨充填剤製造工程で得られた 骨充填剤に, 骨 ·軟骨形成促進剤, 関節疾患治療剤, 骨 ·軟骨疾患予防 ·治 療剤, 骨再生剤, 骨吸収抑制物質, 血管新生促進剤, 抗菌剤, 抗生物質又は 抗癌剤を含浸又は塗布する工程を含む上記いずれかに記載の骨充填剤の製造 方法に関する。 骨充填剤に, 所定の薬剤を含浸又は塗布するので, 様々な薬 効を有する骨充填剤を提供できることとなる。
[0044] 本発明の第 4の側面は, 骨模型を製造する骨模型製造工程と ;前記骨模型 製造工程で得られた骨模型に像形成剤を設置する像形成剤設置工程と ;前記 像形成剤設置工程で骨模型に設置した像形成剤に基づいて, 骨充填剤を製造 する骨充填剤製造工程と ; を含む骨充填剤の製造方法に関する。 なお, 像形 成剤設置工程は, 好ましくは, 前記骨模型製造工程で得られた骨模型を用い て, 骨模型の非対称性を補正するように像形成剤を設置する工程である。 そ のようにすることで, 骨のゆがみを補強できる骨充填剤を得ることができる こととなる。
[0045] 本発明の第 4の側面の好ましい態様は, 前記骨模型製造工程で得られる前記 骨模型が, 等高線, 又はます目模様が描画された骨模型である上記に記載の 骨充填剤の製造方法に関する。
[0046] 本発明の第 4の側面の好ましい態様は, 前記像形成剤充填工程で用いられる 像形成剤が, 前記骨模型と X線透過率, 赤外線透過率, 又は紫外線透過率 のいずれかが異なるものである上記いずれかに記載の骨充填剤の製造方法に 関する。 本発明の第 4の側面の好ましい態様は, 骨模型が, 骨欠損症の患者 , 骨変形症の患者又は美容整形の患者の骨模型である上記いずれかに記載の 骨充填剤の製造方法である。
[0047] 本発明の第 5の側面は, 患者の特定部位を撮影し, 前記患者の特定部位に おける複数の骨の断面図を含む骨のデジタル情報を取得する骨のデジタル情 報取得工程と ;前記骨のデジタル情報取得工程で取得された複数の骨の断面 図を含むデジタル情報に基づいて, 前記患者の特定部位における骨の模型を 製造する骨模型製造工程と ;前記骨模型製造工程で製造された骨模型に骨充 填剤用の像形成剤を設置するとともに, 前記骨充填剤用の像形成剤とは異な る素材を含むギプス形成用の像形成剤を設置する像形成剤設置工程と ;前記 像形成剤設置工程で像形成剤が設置された骨模型を撮影し, 像形成剤のデジ タル情報を取得する像形成剤デジタル情報取得工程と ;前記像形成剤デジタ ル情報取得工程で取得された像形成剤のデジタル情報に基づいて, 骨充填剤 及びギプスを製造する骨充填剤及びギプスの製造工程と ; を含む骨充填剤及 びギプスの製造方法に関する。
[0048] この側面に係る骨充填剤及びギプスの製造方法によれば, 患部にふさわし い骨充填剤を得ることができるとともに, その骨充填剤を適切に支持できる ギプスをも設計できることとなる。 ギプス形成用の像形成剤が, 骨充填剤用 の像形成剤とは異なる素材を含むので, C Tスキャンや M R Iなどで撮影す る際に, それらの形状を区別することができる。
[0049] 本発明の第 5の側面の好ましい態様は, 患者の特定部位を撮影し, 前記患 者の特定部位における複数の骨の断面図を含む骨のデジタル情報, 及び前記 骨の周囲の軟組織に関するデジタル情報を取得する骨及び軟組織のデジタル 情報取得工程と ;前記骨及び軟組織のデジタル情報取得工程で取得された複 数の骨及び軟組織の断面図を含むデジタル情報に基づいて, 前記患者の特定 部位におけるギプスを製造する, ギプスの製造方法に関する。 前記軟組織の デジタル情報に基づいて, ギプスを製造するので, 患者にふさわしい形状を 有するオーダーメードのギプスを製造できることとなる。 なお, 本発明の骨 充填剤及びギプスの製造方法, 又はギプスの製造方法については, 上記した 骨充填剤の製造方法における好ましい態様, 構成を適宜採用することができ る。
[0050] 本発明の第 6の側面は, 等高線, 又はます目模様が描画された体のある部 位の外見模型に関する。 等高線又はます目が描画されているので, 特定部位 の歪みを客観的に把握できる。 特に施術前後の外見模型を比較すると, 施術 によってどの程度変化したか客観的に把握することができる。
[0051 ] 本発明の第 6の側面の好ましい態様は, 前記外見模型は, 患者の特定部分 の体表を再現したものである上記に記載の外見模型に関する。 患者の特定部 位としては, 先に述べた部位などをあげることができ, 具体的には, 顏, 頭 , 四肢, 胸, 下腹部, 腰, などがあげられる。
[0052] 本発明の第 6の側面の好ましい態様は, 患者の特定部位を撮影し, 前記患 者の特定部位における複数の骨, 及び軟組織の断面図を含む前記特定部位の 断面図に関するデジタル情報を取得する断面図デジタル情報取得工程と ;前 記断面図情報取得工程で取得された複数の骨, 及び軟組織の断面図を含むデ ジタル情報に基づいて, 前記特定部位における外表の各部位について基準面 からの高度を求めるか, 又は前記特定部位における外表の各部位について基 準点からの平面上のずれを求める描画情報取得工程と, ラピッドプロ トタイ プ法により前記患者の特定部位における前記特定部位における外表模型を製 造するとともに, 前記描画情報取得工程で得られた高度又は平面上のずれに 基づいて, 等高線又はます目模様を描画する外見模型製造工程と ; を含む外 見模型の製造方法に関する。 このような製造方法によれば, 外見模型を適切 に製造できる。 施術前後の外見模型を得ることができるので, 外科等の手術 において, 施術前後でどの程度外見が変化したかを示すことができる。
[0053] 本発明の第 7の側面は, 患者の特定部位を撮影し, 前記患者の特定部位に おける複数の骨, 及び軟組織の断面図を含む前記特定部位の断面図に関する デジタル情報を取得する断面図デジタル情報取得工程と ;前記断面図情報取 得工程で取得された複数の骨, 及び軟組織の断面図を含むデジタル情報に基 づいて, 前記特定部位の 3次元デジタル像を得る 3次元デジタル像取得工程 と ;前記 3次元デジタル像取得工程で得られた前記特定部位の 3次元デジタ ル像に基づいて, ェピテーゼ像データを取得するェピテーゼ像データ取得ェ 程と ;前記ェピテーゼ像データ取得工程で得られたェピテーゼ像データを用 いてラピッドプロ トタイプ法によりェピテーゼを製造する工程と ; を含む, ェピテーゼの製造方法に関する。
[0054] 本発明の第 7の側面の好ましい態様は, 患者の特定部位を撮影し, 前記患 者の特定部位における複数の骨, 及び軟組織の断面図を含む前記特定部位の 断面図に関するデジタル情報を取得する断面図デジタル情報取得工程と ;前 記断面図情報取得工程で取得された複数の骨, 及び軟組織の断面図を含むデ ジタル情報に基づいて, 前記特定部位の 3次元デジタル像を得る 3次元デジ タル像取得工程と ;前記 3次元デジタル像取得工程で得られた前記特定部位 の 3次元デジタル像に基づいて,
前記特定部位の外見模型を製造する外見模型製造工程と ;前記外見模型製造 工程で得られた外見模型に像形成剤を設置する像形成剤設置工程と ;前記像 形成剤設置工程で像形成剤が設置された骨模型を撮影し, 像形成剤のデジタ ル情報を取得する像形成剤デジタル情報取得工程と ;前記像形成剤デジタル 情報取得工程で取得された像形成剤のデジタル情報に基づいて, ェピテーゼ 像を製造するための錶型に関するデジタルデータを得る錶型情報取得工程と ;前記錶型情報取得工程で得られた錶型を製造する錶型製造工程と ; を含む ェピテーゼ製造用錶型の製造方法に関する。 たとえば, 左右対称な部位の一 部が欠損等した場合では残されている部位から欠損した部位の形状を想定す るので, 対称性に優れるェピテーゼの製造方法, 又はェピテーゼ製造用錶型 の製造方法を提供することができる。 本発明によれば, C Tスキャンなどで 特定部位の形状情報を取得し, その情報に従ってェピテーゼをコンピュータ 上で設計するので,印象剤などを患者に直接当てる必要がなくなり低侵襲なェ ピテーゼの製造方法, 又はェピテーゼ製造用錶型の製造方法を提供すること ができる。
発明の効果
[0055] 本発明によれば, 骨模型に等高線又はます目が描画されるので, 患者など の骨の歪みを把握できる骨模型を提供できる。
[0056] 本発明によれば, 患者の骨模型を用いて骨充填剤を設計するので, 骨欠損 部を充填するための骨充填剤を精度よく製造することができる骨充填剤の製 造方法を提供できる。 特に, 患者の骨模型に等高線又はます目が描画された ものを用いた場合は, 患者の骨の欠損部や歪みを適切に把握できるので, 骨 欠損部を充填するための骨充填剤を精度よく製造することができる。
[0057] 本発明によれば, 患者の骨模型を用いて骨充填剤を設計するので, 骨の歪 み (対象性の悪さなど) を効果的に補正できる骨充填剤の製造方法を提供で きる。 特に, 患者の骨模型に等高線又はます目が描画されたものを用いた場 合は, 患者の骨の歪みを適切に把握できるので, 骨欠損部を充填するための 骨充填剤を精度よく製造することができる。
[0058] 本発明によれば, 骨充填剤を外的衝撃から防ぎ, 骨充填剤を形状をも把握 した上で, 適切な形状を有するギプスの製造方法を提供することができる。
[0059] 本発明によれば, 骨変形症などの患者について, その特定部位の外見がど の程度歪んでいるか客観的に示すことができる外見模型を提供することがで きる。 本発明によれば, 施術前後の外見模型を得ることができるので, 外科 等の手術において, 施術前後でどの程度外見が変化したかを示すことができ る外見模型, 及びその製造方法を提供することができる。
[0060] 本発明によれば, たとえば, 左右対称な部位の一部が欠損等した場合では 残されている部位から欠損した部位の形状を想定するので, 対称性に優れる ェピテーゼの製造方法, 又はェピテーゼ製造用錶型の製造方法を提供するこ とができる。 本発明によれば, CTスキャンなどで特定部位の形状情報を取 得し, その情報に従ってェピテーゼをコンピュータ上で設計するので,印象剤 などを患者に直接当てる必要がなくなり低侵襲なェピテーゼの製造方法, 又 はェピテーゼ製造用錶型の製造方法を提供することができる。
図面の簡単な説明
[0061] [図 1]図 1は, 本発明の骨充填剤の製造方法の基本工程を示すフロー例である
[図 2]図 2は, 本実施例における各ステップの概略図である。
[図 3]図 3は, CTにより撮影された図面に変る CT画像を示す図である。 図 3 (a) は, 頰部の CT画像を示す図であり, 図 3 (b) は下顎部の CT画 像を示す図である。
[図 4]図 4は, 実施例において得られた骨模型の図面に替わる写真及び 3次元 画像である。 図 4 (a) は, 得られた石膏モデル (骨模型) を示し, 図 4 ( b) 骨模型の側面図を示し, 図 4 (c) は等高線を描画した骨模型の設計図 を示す。
[図 5]図 5は, 骨模型に像形成剤を設置した後の図面に替わる写真である。 図 5 (a) は正面図, 図 5 (b) は側面図, 図 5 (c) は下面図である。 [図 6]図 6は, 像形成剤を設置した骨模型の図面に替わる CT画像である。 図 6 (a) は, 頰部の CT画像を示す図であり, 図 6 (b) は下顎部の CT画 像を示す図である。
[図 7]図 7は, 本実施例により得られた骨充填剤の図面に替わる写真である。 図 7 (a) は, 頰部に埋められる骨充填剤を示す図であり, 図 7 (b) はそ の裏面を示す図である。 図 7 (c) は下顎部に埋められる骨充填剤を示す図 であり, 図 7 (d) はその裏面を示す図である。
[図 8]図 8は, 実施例で得られた骨充填剤を用いて施術した患者の起伏を示す 顔面の等高線が描画された石膏像 (外見模型) の図面に替わる写真である。 図 8 (a) は施術前, 図 8 (b) は施術後のものである。
符号の説明
[0062] 1 骨模型
2 骨欠損部
3 像形成剤
4 骨充填剤
発明を実施するための最良の形態
[0063] 1. 骨充填剤の製造方法
本発明の第 1の側面は, 患者の特定部位を撮影し, 前記患者の特定部位に おける複数の骨の断面図を含む骨のデジタル情報を取得する骨のデジタル情 報取得工程と ;前記骨のデジタル情報取得工程で取得された複数の骨の断面 図を含むデジタル情報に基づいて, 前記患者の特定部位における骨の模型を 製造する骨模型製造工程と ;前記骨模型製造工程で製造された骨模型に像形 成剤を設置する像形成剤設置工程と ;前記像形成剤設置工程で像形成剤が設 置された骨模型を撮影し, 像形成剤のデジタル情報を取得する像形成剤デジ タル情報取得工程と ;前記像形成剤デジタル情報取得工程で取得された像形 成剤のデジタル情報に基づいて, 骨充填剤を製造する骨充填剤製造工程と ; を含む骨充填剤の製造方法に関する。 すなわち, 模型形成や, 像形成後に骨 充填剤を製造するといった, デジタルで行うことが好ましい工程については , デジタル情報に基づいて行い, 一方, 後述するように骨模型に等高線を描 画するなど施術者の知見を反映させやすい環境を整えた上で, 施術者により 像形成剤を設置させることにより施術者の知見をアナ口グ的に反映させるこ とで, 極めて精度の高い骨充填剤を製造できる。
[0064] 本発明の第 1の側面の好ましい態様は, 前記患者の特定部位を撮影するェ 程は, C Tスキャン又は M R Iにより前記患者の特定部位における複数の骨 の断面図を含む骨のデジタル情報を取得する工程であり ;前記像形成剤デジ タル情報取得工程は, C Tスキャン又は M R Iにより像形成剤のデジタル情 報を取得する工程である ;上記に記載の骨充填剤の製造方法である。 すなわ ち, C Tスキャン又は M R Iによれば, 容易に骨又は像形成剤を含む像の断 面図を複数得ることができ, その C T撮影された像又は M R I像を用いれば , コンピュータなどにより容易に骨又は像形成剤の 3次元デジタル情報を得 ることができる。 本発明の第 1の側面の好ましい態様は, 前記患者の特定部 位は, 患者の頭蓋骨, 下顎部, 上顎部, 四肢, 又は骨盤のいずれかを含む部 位である上記いずれかに記載の骨充填剤の製造方法に関する。 これらの部位 は, 左右対称な部分を含むので, 容易に歪みを把握することができる。 C T スキャン又は M R Iに用いられる C T撮影装置として, 公知のものを適宜用 いることができる。 なお, C T撮影装置は, コンピュータと接続されている ものが好ましい。 そして, コンピュータは, C T装置やモニタと接続するた めの入出力装置, C T又は M R Iによる画像データを記憶する記憶部のほか , 各種演算を行う制御部 (演算部) , 及び C T又は M R Iによる画像データ をデジタル化し, 複数の C T画像データ又は M R I画像データに基づいて, 撮影された対象部位の三次元デジタルデータを取得するためのプログラムが 記憶されるメインメモリ, 及び各種装置を接続するバスを有していれば良い
[0065] 本発明の第 1の側面の好ましい態様は, 前記骨模型製造工程で製造される 骨模型は, 等高線, 又はます目模様が描画された骨模型である上記いずれか に記載の骨充填剤の製造方法に関する。 等高線やます目が描画されていれば , 施術者が得られた骨模型に基づいて, 像形成剤を設置する際に, 骨の歪み や, くぼみなどを極めて容易に理解でき, その結果, 精度の高い骨充填剤を 得ることができることとなる。
本発明の第 1の側面の好ましい態様は, 前記骨模型製造工程で製造される 骨模型は, 石膏を含有する骨模型である上記いずれかに記載の骨充填剤の製 造方法に関する。 本発明の第 1の側面の好ましい態様は, 前記骨模型製造ェ 程は, ラビッドプロ トタイプ法, 射出成形法, 切削による積層造形方法, 又 はマシニングセンタを有する加工装置を用いた成形法により骨模型を製造す る工程である, 上記いずれかに記載の骨充填剤の製造方法に関する。 骨模型 が石膏を主成分として含有するものであれば, ラピッドプロ トタイプ法; C Τスキャン又は M R Iなどで撮影された骨のデジタル情報に基づいて金型を 設計し, その金型を用いて骨模型を製造する射出成形法;得られた骨のデジ タル情報に基づいて, マシニングセンタを有する加工装置を用いた成形法; 得られた骨のデジタル情報に基づいて, 多軸ポール盤を備える N C制御可能 な切削装置を用いた成形法などにより容易に骨模型を製造できる。 切削によ る積層造形方法については, 例えば, 特開平 8 _ 2 9 0 3 4 7号公報に開示 される 「三次元形状を複数の階層に分割し、 各階層ごとに成形し、 順次これ らを積層することにより三次元形状物を造形する方法において、 三次元の数 値データに基づいて各階層ごとに作成した三次元加工プログラムに従い、 プ レート材を切削工具又は研削工具等の工具により三次元曲面形状に成形加工 し、 この加工済みプレート材に未加工のプレート材を積層し、 再び前記工具 により未加工のプレート材を三次元形状に成形加工するという工程を繰り返 すことにより三次元形状物を成形することを特徴とする積層造形方法」 によ り行えばよい。 また, 特開平 3— 2 4 4 5 1 0公報ゃ特開平 5— 3 1 3 5 8 4号に開示される、 目標成形物の各層の二次元形状データに基づきシ一ト状 部材を裁断し、 これを順次積層することにより三次元形状物を二次元半形状 に積層造形する方法であってもよい。 また, 特開昭 6 2— 3 5 9 6 6号公報 ゃ特開平 4 _ 1 0 3 3 3 9号公報等に開示されているように、 液状の光硬化 性樹脂の表面に光ビームを照射し、 所定形状の硬化層を形成し、 この硬化層 の上にさらに未硬化の液状光硬化性樹脂を供給し、 再び光ビームを照射して 硬化層を形成し、 先の硬化層の上に積層するという工程を繰り返して三次元 形状物を二次元半形状に積層造形する方法であってもよい。 また, マシニン グセンタは, 公知のものを適宜用いることができるが, 例えば, 特開 2 0 0 4 - 0 7 4 3 7 6号公報, 特開 2 0 0 3 _ 9 4 2 6 4号公報, 又は特開 2 0 0 1 - 1 5 0 2 6 2号公報に開示されるものを適宜用いることができる。 ま た, 多軸ポール盤 (たとえば, 5軸ポール盤) として, 特開 2 0 0 6— 5 2
5 7号公報, 特開 2 0 0 1 _ 2 3 0 2 2 3号公報, 又は特開 2 0 0 0— 1 7
6 7 1 5号公報に開示されるものを適宜用いることができる。
[0067] 本発明の第 1の側面の好ましい態様は, 前記骨模型製造工程で製造される 骨模型は, カルシウム系物質とポリビニルアルコール樹脂を含有し, 前記力 ルシゥム系物質と前記ポリビニルアルコール樹脂の合計重量を 1 0 0重量部 とした場合に, 前記ポリビニルアルコール樹脂は, 2重量部〜 8重量部とな るように配合される骨模型である上記いずれかに記載の骨充填剤の製造方法 に関する。 このような骨模型であれば, 特に射出成形により, 極めて迅速で かつ精度高く骨模型を得ることができるので, その結果, 骨系製剤を精度よ く製造できることとなる。 本発明の第 1の側面の好ましい態様は, 前記骨模 型製造工程で製造される骨模型は, ひ型半水石膏とポリビニルアルコール樹 脂を含有する組成物を原料とし, 前記カルシウム系物質と前記ポリビニルァ ルコール樹脂の合計重量を 1 0 0重量部とした場合に, 前記ポリビニルアル コール樹脂は, 2重量部〜 8重量部となるように配合される, 上記いずれか に記載の骨充填剤の製造方法に関する。
[0068] 本発明の第 1の側面の好ましい態様は, 前記骨模型は, 石膏を主成分とし ;前記像形成剤は, ワックス又はプラスティックを全重量の 9 0重量%以上 含有する ;上記いずれかに記載の骨充填剤の製造方法に関する。 本発明の第 1の側面の好ましい態様は, 前記骨模型は, 石膏を主成分とし;前記像形成 剤は, ワックスを全重量の 9 0重量%以上含有する ;上記いずれかに記載の 骨充填剤の製造方法に関する。 本発明の第 1の側面の好ましい態様は, 前記 骨模型は, 石膏を主成分とし;前記像形成剤は, ワックスを全重量の 90重 量%以上含有し, ルチル型の酸化チタンを全重量の 2重量%以上 5重量%以 下含有する ;上記いずれかに記載の骨充填剤の製造方法に関する。 すなわち , このような組成を有する骨模型と, 像形成剤を用いることで, CTスキヤ ン又は MR Iなどにより撮影を行った場合に, 骨模型部分と, 像形成剤部分 とを精度良く分析できるので, その結果骨充填剤を精度よく製造できること となる。
[0069] 本発明の第 1の側面の好ましい態様は, 前記骨充填剤製造工程は, ラピッ ドプロ トタイプ法により骨充填剤を製造する工程である, 上記いずれかに記 載の骨充填剤の製造方法に関する。 ラビッドプロ トタイプ法によれば, ォ一 ダーメ一ドの骨充填剤を迅速かつ精度よく製造できることとなる。
[0070] 本発明の第 1の側面の好ましい態様は, 前記骨充填剤製造工程で得られる 骨充填剤は, 水酸アパタイ ト, 炭酸アパタイ ト, フッ素アパタイ ト, 塩素ァ パタイ ト, yS _T C P, a- J C P, メタリン酸カルシウム, リン酸四カル シゥム, リン酸八カルシウム, リン酸水素カルシウム, リン酸水素カルシゥ ム, リン酸二水素カルシウム, ピロリン酸カルシウム, それらの塩, 又はそ れらの溶媒和物のうちいずれか 1種又は 2種以上を用いて製造される骨充填 剤である, 上記いずれかに記載の骨充填剤の製造方法に関する。 例えば, 射 出成形法によりこれらの原料を用いて骨充填剤を製造すると, 成形時に相変 化が起こり, 好ましい特性を有する骨充填剤へと変化することとなる。
[0071] 2. 骨模型
本発明の第 2の側面は, 等高線, 又はます目模様が描画された骨模型に関 する。 このような等高線やます目 (格子状の線) が描画されているので, 骨 模型の歪みを容易に把握できる。 等高線は, 例えば, 骨模型のある点を基底
(もっとも高度が低い点) として, 例えば, 高さ 0. 1 mm〜 1 cmごと, 好ましくは 0. 5mm〜5mmごと, 更に好ましくは 0. 5mm〜2mmご とに設ければよい。 例えば, 骨模型が, 頭蓋骨の模型であれば, 後頭部を基 底とした等高線を描けばよい。 また, 等高線が描かれる場所は, 骨模型全体 であってもよいし, 一部であってもよい。 また, 頭蓋骨の模型は, 頭蓋骨全 体の模型であってもよいし, 必要な部分の模型であってもよい。 必要な部分 として, 頭蓋骨のうち前半分のもの (お面のようになる部分) であってもよ い。 また, 口腔内の骨充填剤を作成するためには, 下顎部のみ, 上顎部のみ , 又は下顎部及び上顎部などであってもよい。 骨模型に描画されるます目は , 格子状のものであれば特に限定されない。 格子点のみを骨模型に描画した ものであってもよい。 ます目は, 例えば 0 . 1 m m〜3 c mごと, 好ましく は 0 . 5 m m〜 1 c mごと, 更に好ましくは 1 m m〜 5 m mごとに設ければ よい。 ます目も, 骨模型全体に設けられてもよいし, 部分的に設けられても よい。 このような骨模型は, 公知の方法, 例えば, 後述するラビッドプロ ト タイプ法などにより製造できる。 具体的には, 例えば, ラビッドプロ トタイ プ法により骨模型を製造する際に, 複数枚のデジタル画像を用いて骨模型の 3次元情報を入手するので, その 3次元情報に基づいて, 骨模型の表面部位に 関する高さに関する情報を得ることができるので, 得られた高さ情報に基づ いて等高線を引く位置に関する描画情報を取得し, コンピュータで設定した 位置にインクなどを散布できるラビッドプロ トタイプ法により骨模型を製造 する際に, 前記入手した描画情報を用いて等高線を描画すればよい。 また, ます目を描画する場合は, 例えば, ラビッドプロ トタイプ法により骨模型を 製造する際に, 複数枚のデジタル画像を用いて骨模型の 3次元情報を入手す るので, その 3次元情報に基づいて, 骨模型の表面部位に関する 2次元位置 に関する情報を得ることができるので, 得られた 2次元位置情報に基づいて ます目を引く位置に関する描画情報を取得し, コンピュータで設定した位置 にインクなどを散布できるラビッドプロ トタイプ法により骨模型を製造する 際に, 前記入手した描画情報を用いてます目を描画すればよい。
この側面の好ましい態様は, 前記骨模型は, 患者の特定部分の骨形状を再 現したものである上記に記載の骨模型に関する。 また, 別の好ましい態様は , 前記骨模型は, 患者の頭蓋骨の骨形状を再現したものである上記に記載の 骨模型に関する。 すなわち, 骨模型が, 特定の患者のオーダーメードなもの であれば, その患者の骨の歪みを正確に把握できることとなる。 よって, そ のような骨模型は, 骨充填剤の形状を適切に把握する上でも効果的であり, 更には適切な形状を有する骨充填剤を得ることができることとなる。 骨模型 の材質として, 後述するように, 石膏;熱硬化性樹脂, 熱可塑性樹脂, 光硬 化性樹脂,
[0073] 3 . 骨充填剤の製造方法
以下, 図面に従って, 骨充填剤の製造方法について説明する。 図 1は, 本 発明の骨充填剤の製造方法の基本工程を示すフロー例である。 なお, 図中 S は, ステップを意味する。 図 1に示されるように, 本発明の骨充填剤の製造 方法は, 基本的には, 骨模型 (1 ) を製造する骨模型製造工程 (ステップ 1 ) と ;前記骨模型製造工程で得られた骨模型 (1 ) の骨欠損部 (2 ) に, 像 形成剤 (3 ) を充填する像形成剤充填工程 (ステップ 2 ) と ;前記像形成剤 充填工程で骨模型の骨欠損部に充填した像形成剤に基づいて, 骨欠損部に充 填する骨充填剤 (4 ) を製造する骨充填剤製造工程 (ステップ 3 ) と ; を含 む骨充填剤の製造方法に関する。 そして, この骨充填剤を充填し, 治療等を 行うことで, 欠損部分が回復し, 骨の欠損が治療される。 図中, 符号 5は, 回復後の骨を示す。 なお, 図 1においては, 各工程の右にそれぞれの工程に おける骨欠陥模型等の状況を説明するための概念図を付している。
[0074] 3 - 1 . 骨模型製造工程 (ステップ 1 )
骨模型製造工程は, 骨模型を製造するための工程である。 骨模型は, 基本 的には, 患者の骨模型を製造するものであれば特に限定されるものではなく , 公知の方法を適宜採用することができる。 骨模型の製造方法として, レン トゲンなどの骨の写真像を用いて金型を製造し, その金型に模型原料を流し 込むことにより骨模型を製造する方法や, ラピッドプロ トタイプ法により骨 模型を製造する方法があげられるが, これらの中では, デジタルデータに基 づいて骨模型を製造するので, ラピッドプロ トタイプ法により骨模型を製造 するものが好ましい。 近年, 簡易に 3次元構造体を製造するものとして, ラビッドプロ トタイピ ング装置 (例えば, 特表 2 0 0 1—5 2 4 8 9 7号公報, 特表 2 0 0 3 _ 5 3 1 2 2 0号公報, 特表 2 0 0 4— 5 3 8 1 9 1号公報, 特表 2 0 0 5— 5 0 3 9 3 9号公報, 米国特許 5 2 0 4 0 5 5号明細書, 米国特許 5 3 4 0 6 5 6号明細書, 米国特許 5 3 8 7 3 8 0号明細書, 米国特許 6 0 0 7 3 1 8 号明細書, 米国特許 6 3 7 5 8 7 4号明細書, 米国特許 5 9 0 2 4 4 1号明 細書及び 6 4 1 6 8 5 0号明細書などがあげられ, これらは参照のために本 明細書中に取り入れられる。 ) やラビッドプロ トタイプ方法が, 急速に普及 している。 立体造形された三次元物体は, 装置の部品のプロ トタイプ (試作 品) などとして, その性能を調べるために利用される。 ラビッドプロ トタイ プ法として, 断面形状データから薄層を成形し, その薄層を積層する光造形 法, 粉体焼結法, 粉体結着法及び固体下地硬化法などが知られている。 光造 形法は, 所定の光が照射されると硬化する液状の樹脂材料 (光硬化性樹脂) に対して, コンピュータに記憶された照射/ ターンに従ってレーザ光を照射 することにより, 造形対象物の形状を順次に再現していくものである。 すな わち, 本明細書における骨模型などは, 光硬化性樹脂などの樹脂により形成 されていても良い。 なお, 光硬化性樹脂及び光硬化性樹脂を硬化させる光源 として, 特開 2 0 0 4— 4 9 8 7 7号公報に記載のものなどを適宜用いるこ とができる。 粉末結着法は, 粉末材料を薄く層状に伸展し, コンピュータに 記憶された描画パターンに従って接着剤を吐出して粉末材料を結合させると ともに, 層形成と接着剤の吐出とを繰り返していくことで, 粉末材料の結合 体として三次元造形物を形成するものである。 すなわち, 本明細書における 骨模型などは, 熱可塑性樹脂や熱硬化性樹脂など高分子 (ポリマー) によつ て形成されても良い。 いったん形成された粉体結着物を高温で焼結すること により骨模型などを得てもよい。 そのような場合, 熱硬化性樹脂を原料とし て用いればよい。 また, 粉末として金属微粉を用いても良いので, 本明細書 における骨模型などは, チタン, 鉄, アルミニウム, 銅, 銀, 金, ニッケル , 鉛, 錫などのいずれか又は 2種以上の混合であってもよい。 また, 白金, パラジウムなどの合金は, レーザなどの出力を受けて硬化するので, これら の金属粉末の薄い層を形成し, コンピュータに記憶された照射パターンに従 つてレーザ光を照射することにより, 造形対象物の形状を順次に再現しても よい。
[0076] 本発明においては, 骨模型を製造するために適宜修正した R P法に基づく 方法を採用することが好ましい。 具体的には, 前記骨模型製造工程は, 患者 の骨の 3次元形状に関する情報に基づいて, 前記 3次元形状を複数層に分割 して得られる各層における断面形状に関する情報を得る断面形状取得工程と ;前記断面形状取得工程において得られた前記断面形状情報から, 第 1の層に おける断面形状に関する情報を読み出して, 読み出された情報に基づいて, 像形成用組成物を用いて前記断面形状を再現した第 1の断面像を形成する第 1 の断層像形成工程と, 前記断面形状取得工程において得られた前記断面形状 情報から, 前記第 1の断面像の上の層に当たる第 2の層における断面形状に 関する情報を読み出して, 読み出された情報に基づいて, 像形成用組成物を 用いて前記断面形状を再現した第 2の断面像を, 前記第 1の断面像に重なる ように形成する第 2の断層像形成工程と, 前記第 2の断層像形成工程と同様 に, 前記断面形状取得工程において得られた前記断面形状情報から, 前記形 成しようとする層における断面形状に関する情報を読み出して, 読み出され た情報に基づいて, 像形成用組成物を用いて前記断面形状を再現した層の断 面像を, 前の工程で得られた断面像に重なるように形成する工程を繰り返し , 物体の形状を再現した立体像を得るための立体像取得工程を含み, 前記断 層像形成工程の少なくとも一つ以上の工程は, 像形成用組成物の粉末を層状 にして像形成用組成物層を形成する像形成用組成物層取得工程と, 前記像形 成用組成物層取得工程で形成された像形成用組成物の層に, その層の断面形 状に関する情報に基づいて水分を添加することにより, 前記像形成用組成物 層の所定箇所を湿潤させる水分添加工程を含む, 骨充填剤の製造方法があげ られる。
[0077] 像形成用組成物として, 公知のものを適宜用いることができるが, 好まし い像形成用組成物として, カルシウム系物質にポリビニルアルコール樹脂を 配合させた像形成用組成物であって, 前記ポリビニルアルコール樹脂は, 前 記カルシウム系物質と前記ポリビニルアルコール樹脂の合計重量を 1 0 0重 量部とした場合に, 2重量部〜 8重量部となるように配合される, 像形成用 組成物があげられる。
[0078] 像形成用組成物の好ましい態様は, カルシウム系物質にポリビニルアルコ ール樹脂及び硬化促進剤を配合させた像形成用組成物であって;前記硬化促 進剤は, 二水石膏, アルカリ金属硫酸塩, アルカリ土類金属硫酸塩, アル力 リ金属塩化物塩, アルカリ土類金属塩化物塩, 無機酸のアンモニゥム塩, 及 びミョゥバン類からなる群より選ばれる 1種又は 2種以上の硬化促進剤であ り ;前記カルシウム系物質と前記ポリビニルアルコール樹脂の合計重量を 1 0 0重量部とした場合に, 前記ポリビニルアルコール樹脂は, 2重量部〜 8 重量部となるように配合され, 前記硬化促進剤は, 0 . 1重量部〜 5重量部 となるように配合される, 像形成用組成物である。 なお, この態様に係る像 形成用組成物は, カルシウム系物質, ポリビニルアルコール樹脂及び硬化促 進剤のみからなるものが好ましい。
[0079] これらの像形成用組成物は, 結晶水以外に実質的に水分を含まないものが 好ましぐ 粉末状とされるものが好ましい。 建材用の像形成用組成物であれ ば, 水などとともに十分に攪拌して溶解させるため, 原料となる石膏粉末の 粒子径は特に問題とされない。 しかしながら, 本発明の像形成用組成物は, スラリー状とすることが必ずしも意図されていないのでカルシウム系物質粉 末の粒子径はほぼ一様であることが好ましい。 このような観点から, 本発明 のカルシウム系物質は, J I S R 1 6 1 9 (ファインセラミックス粉末の液 相沈降光透過法による粒子径分布測定方法) に基づく粒子分布の測定におい て, 最大分布からプラスマイナス 1 0 %の粒子径分布の範囲内に, 5 0重量 <½以上, 好ましくは 7 0重量%以上, 更に好ましくは 8 5重量%以上, より 好ましくは 9 5重量%以上の分子が含まれるものがあげられる。 このような 分布を得るためには, 原料粉末をふるいにかける作業を繰り返し行うことで 達成できる。
[0080] 本発明においては, 像形成用組成物におけるカルシウム系物質の好ましい 例として石膏があげられる。 そして, 石膏の例として, ひ型の半水石膏, β 型の半水石膏, 又はこれらの混合物を適宜用いることができるが, ひ型の半 水石膏が好ましい。 ひ型の半水石膏の方が, ;3型の半水石膏に比べて少ない 水分で, 練和状態を達成でき, 硬化を進行させることができるからである。 粉体が形成できる斜面の最大傾斜角である安息角の小さいものを用いれば, 成形時に粉を均一に広げることができるので好ましい。 このような観点から 半水石膏 (又は像形成用組成物) の安息角として, 3 0度〜 4 5度があげら れ, 好ましくは 3 5度〜 4 0度である。
[0081 ] 本発明におけるポリビニルアルコール樹脂は, 特に限定されず, 公知のポ リビニルアルコール樹脂 (ポリビニルアルコール (_ [ C (O H ) H C H 2 ] n -) 又は官能基を適宜有するポリビニルアルコール樹脂) を適宜用いることがで きる。 ポリビニルアルコール樹脂として, 一般的にはポリ酢酸ビニルの低級 アルコール溶液をアル力リゃ酸などのケン化触媒によってケン化したケン化 物又はその誘導体を採用できる。 またポリビニルアルコール樹脂として, 酢 酸ビニルと共重合性を有する単量体と, 酢酸ビニルとの共重合体のケン化物 等を用いることもできる。 そのような酢酸ビニルと共重合性を有する単量体 として, 例えばエチレン, プロピレン, イソプチレン, ひ一ォクテン, ひ一 ドデセン, ひ一ォクタデセン等のォレフィン類, アクリル酸, メタクリル酸 , クロ トン酸, マレイン酸, 無水マレイン酸, ィタコン酸等の不飽和酸類あ るいはその塩あるいはモノ又はジアルキルエステル等, ァクリロ二トリル, メタアクリロニトリル等の二トリル類, アクリルアミ ド, メタクリルアミ ド 等のアミ ド類, エチレンスルホン酸, ァリルスルホン酸, メタァリルスルホ ン酸等のォレフインスルホン酸あるいはその塩, アルキルビニルエーテル類 N—アクリルアミ ドメチルトリメチルアンモニゥムクロライ ド, ァリルト リメチルアンモニゥムクロライ ド, ジメチルジァリルアンモニゥムクロリ ド , ジメチルァリルビ二ルケトン, N _ビニルピロリ ドン, 塩化ビニル, 塩化 ビニリデン, ポリオキシエチレン (メタ) ァリルエーテル, ポリオキシプロ ピレン (メタ) ァリルエーテルなどのポリオキシアルキレン (メタ) ァリル エーテル, ポリオキシエチレン (メタ) ァクリレート, ポリオキシプロピレ ン (メタ) ァクリレート等のポリオキシアルキレン (メタ) ァクリレート, ポリオキシエチレン (メタ) アクリルアミ ド, ポリオキシプロピレン (メタ ) アクリルアミ ド等のポリオキシアルキレン (メタ) アクリルアミ ド, ポリ ォキシエチレン (1— (メタ) アクリルアミ ド一 1 , 1—ジメチルプロピル
) エステル, ポリオキシエチレンビニルエーテル, ポリオキシプロピレンビ 二ルェ一テル, ポリオキシエチレンァリルァミン, ポリオキシプロピレンァ リルァミン, ポリオキシエチレンビニルァミン, ポリオキシプロピレンビニ ルァミンなどがあげられるが, 好適には酢酸ビニルの単独重合体のケン化物 , 酢酸ビニルとエチレン, 不飽和酸或いはその塩, アルキルエステル及びォ レフインスルホン酸或いはその塩との共重合体のケン化物が用いられる。 本発明では, 建材などと異なり, 像形成用組成物を型などに入れる必要が なく, また練和する必要がないので, ポリビニルアルコール樹脂のケン化度 や平均重合度も特に限定されない。 一方, ケン化度が 70モル%未満では, 立体像の機械的強度の向上が見られないので, ケン化度は 70モル%以上が 好ましぐ 80モル0/ &〜 99. 5モル0 /oであれば, より好ましい。 ポリビニ ルアルコール樹脂の平均重合度は, 重合度が 2 X 1 02未満では泥状物の粘度 が低くなり, 逆に 3 X 1 03を越えると泥状物の粘度が上がりすぎて水に溶解 しにくくなるので重合度として 2 X 1 02〜3 X 1 03があげられ, 5 X 1 02 〜2. 5 X 1 03でもよい。 ただし, 本発明における像形成用組成物は, 型な どに入れる必要がなぐ また練和する必要がないので, 例えば, 重合度が 3 X 1 03〜1 X 1 04のものを用いてもよい。 また, 重合度が小さいと, 水を 加えてスラリーとした際に石膏の沈降が起こることが問題とされるが, 本発 明の像形成用組成物ではスラリ一状にする必要がなく, 粘度が低く, 少量の 水に溶解しやすいものも好ましいので, 重合度として, 5 X 1 0〜1. 9 X 1 02があげられ, 1 X 1 02〜1. 5 X 1 02でもよい。 重合度や分子量は, 公知の方法に従って, 反応時間や反応条件を適宜調整することにより制御で さる。
[0083] ポリビニルアルコール樹脂として, 完全ケン化型の場合は, ケン化度とし て, 9 0モル%以上9 9 . 5モル0 /o以下のものがあげられ, 9 8 . 5モル0 /o 以上 9 9 . 5モル0 /0以下であればより好ましい。 また, 粘度として, 1 X 1 0〜2 x l 0 m P a . sのものを用いることが好ましい。 粘度は, J I Sな どの規格 (例えば, J I S K 7 3 6 7 ) にしたがって測定すればよい。
[0084] なお, ポリビニルアルコール樹脂は,ポリビニルアルコール樹脂そのもので あってもよいし, 適宜官能基を導入したポリビニルアルコール誘導体の樹脂 であってもよい。 また, そのような官能基が部分的に導入されたものであつ てもよいし, 複数種類のポリビニルアルコール樹脂の混合物であってもよい 。 このような官能基として, ァセトァセチル基, シリル基, 第四級アンモニ ゥム塩基, カルボン酸基, カルボン酸の無機塩基, スルホン酸基, スルホン 酸の無機塩基, ケトン基, メルカプト基, アミノ基などがあげられる。 これ らは 1種又は 2種以上含まれていてもよい。 これらのなかでは, ァセトァセ チル基又はシリル基が好ましぐ 最も好ましいものは, 官能基としてァセト ァセチル基を有するものである。 なお, 官能基の割合は, 全ての水酸基 (一 O H ) が官能基で置換されたものであってもよいし, 全体の 5 %〜 9 5 %の 水酸基が官能基で置換されてもよぐ 1 0 %〜 2 0 %でも, 7 0 %〜 9 0 % でも, 3 0 %〜7 0 %でもよい。 特に分子内にァセトァセチル基を有するも のは, 分子内にァセトァセチル基を有することにより, 硬化促進剤などに含 まれる金属イオンとキレートを形成し, 少量の水分で迅速に所定の硬度を達 成できることとなる。 なお, これらの官能基は, 有機合成における通常の方 法に従って, 適宜得られるポリビニルアルコール樹脂に導入でき, 導入する 官能基の種類や割合も, 有機合成における通常の方法に従って制御できる。
[0085] 前記ポリビニルアルコール樹脂は, 前記カルシウム系物質と前記ポリビニ ルアルコール樹脂の合計重量を 1 0 0重量部とした場合に, 2重量部〜 8重 量部となるように配合される。 後述の実施例により実証されたとおり, ポリ ビニルアルコール樹脂は, 3重量部〜 7重量部であることが好ましく, 3重 量部〜 6重量部又は 4重量部〜 7重量部でもよく, 4重量部〜 6重量部でも よいし, 4 . 5重量部〜 5 . 5重量部でもよい。 ポリビニルアルコール樹脂 が少ないと, 適切な硬度を得ることができない。
[0086] 本発明の像形成用組成物は, 前記ポリビニルアルコール樹脂が, カルシゥ ム系物質とは別に含まれる配合体であってもよいし, カルシウム系物質とポ リビニルアルコール樹脂などが混合されたものであってもよい。 いずれの場 合も, 粉末状であることが好ましく, 粉末の大きさは, 上記したと同様の範 囲であることが好ましい。
[0087] 本発明の硬化促進剤は, 二水石膏, アルカリ金属硫酸塩, アルカリ土類金 属硫酸塩, アルカリ金属塩化物塩, アルカリ土類金属塩化物塩, 無機酸のァ ンモニゥム塩, 及びミヨゥバン類からなる群より選ばれる 1種又は 2種以上 の硬化促進剤である。 アル力リ金属硫酸塩として, 硫酸ナトリゥム, 及び硫 酸カリウムがあげられる。 アルカリ土類金属硫酸塩として, 硫酸マグネシゥ ム, 硫酸カルシウム, 及び硫酸バリウムがあげられる。 アルカリ金属塩化物 塩として, 塩化リチウム, 塩化ナトリウム, 及び塩化カリウムがあげられる 。 アルカリ土類金属塩化物塩として, 塩化マグネシウム, 及び塩化カルシゥ ムがあげられる。 無機酸のアンモニゥム塩として, 塩酸アンモニゥムがあげ られる。 ミヨウバン類として, 硫酸アルミニウム■カリウム 1 2水 (硫酸力 リゥムアルミニウム 1 2水) : A I K ( S 0 4 ) 2■ 1 2 H 2 0などの力リゥム ミョゥバン, A I N a ( S 0 4 ) 2■ 1 2 H 2 0などのナトリゥムミョゥバン, N H 4 A I ( S 0 4) 2 - 1 2 H 2 0などのアンモニゥムミヨウバンなどがあげ られる。 これらの中では, 硫酸マグネシウム,塩化ナトリウム, 硫酸ナトリウ ム, 及び硫酸カルシウムからなる群より選ばれる 1種又は 2種以上を好まし く用いることができる。 また, 二水石膏と ;二水石膏の他の成分として, 硫 酸マグネシウム,塩化ナトリゥム, 硫酸ナトリゥム, 及び硫酸カルシウムから なる群より選ばれる 1種又は 2種以上をあわせたものも, 好ましく用いるこ とができる。 また, 硬化促進剤として, 金属塩を含有するものは, 所定の官 能基を有するポリビニルアルコールとの間でキレート構造を構成し, 立体像 又は骨模型の強度を高めるので好ましい。
[0088] 硬化促進剤を添加する場合, カルシウム系物質とポリビニルアルコール樹 脂の合計重量を 1 0 0重量部とした場合に, 0 . 1重量部〜 5重量部となる ように配合すればよい。 硬化促進剤として, 二水石膏を用いる場合の二水石 膏の量は, 0 . 5重量部〜 5重量部があげられる。 一方, 二水石膏を含まな い硬化促進剤を用いる場合は, 硬化促進剤の含有量として, 水石膏とポリビ ニルアルコール樹脂の合計重量を 1 0 0重量部とした場合に, 0 . 1重量部 〜 5重量部があげられ, 好ましくは 0 . 1重量部〜 3重量部であり, 更に好 ましくは 0 . 3重量部〜 2重量部であり, より好ましくは 0 . 4重量部〜 1 . 5重量部である。
[0089] 硬化促進剤は, 像形成用組成物における公知の方法に従って, 像形成用組 成物に配合すればよい。 本発明の像形成用組成物は, 本発明の像形成用組成 物の機能を維持できる範囲で, 上記した以外にも公知の組成を適宜含んでも よい。
[0090] 骨模型形成用の立体像の製造方法は, 基本的には, ラビッドプロ トタイプ 法 (R P法) に基づいて立体像を製造するに当たり, 上記いずれかの像形成 用組成物であつて粉末状のものを用いるものである。 上記のような像形成用 組成物を用いるので, 少ない水分 (水, 架橋剤の水溶液, R P装置に用いら れる公知のバインダー水溶液など) を添加した層を複数層重ねても, 仮の形 状を保っためには十分な強度を有する立体像を迅速に形成できることとなる 。 また, 少量の水によりある程度の強度を有する層となりつつ, 上下に隣接 する層と接着し, 一体的な立体像となることが好ましい。 従来の像形成用組 成物をそのまま用いると, そのような特性を有する立体像を得ることができ ず, 本発明の像形成用組成物を用いることで, 本側面に係る立体像の製造方 法を実現できると考えられる。
[0091 ] より具体的に説明すると, 骨模型形成用の立体像の製造方法は, 物体の 3 次元形状に関する情報に基づいて, 前記 3次元形状を複数層に分割して得ら れる各層における断面形状に関する情報を得る断面形状取得工程 (ステップ A 1 ) と ;前記断面形状取得工程において得られた前記断面形状情報から, 第 1の層における断面形状に関する情報を読み出して, 読み出された情報に基 づいて, 像形成用組成物を用いて前記断面形状を再現した第 1の断面像を形成 する第 1の断層像形成工程 (ステップ A 2— 1 ) と, 前記断面形状取得工程に おいて得られた前記断面形状情報から, 前記第 1の断面像の上の層に当たる 第 2の層における断面形状に関する情報を読み出して, 読み出された情報に 基づいて, 像形成用組成物を用いて前記断面形状を再現した第 2の断面像を , 前記第 1の断面像に重なるように形成する第 2の断層像形成工程 (ステツ プ A 2— 2 ) と, 前記第 2の断層像形成工程と同様に, 前記断面形状取得ェ 程において得られた前記断面形状情報から, 前記形成しょうとする層におけ る断面形状に関する情報を読み出して, 読み出された情報に基づいて, 像形 成用組成物を用いて前記断面形状を再現した層の断面像を, 前の工程で得ら れた断面像に重なるように形成する工程を繰り返し, 物体の形状を再現した 立体像を得るための立体像取得工程 (ステップ A 2 _ n ) を含み, 前記断層 像形成工程の少なくとも一つ以上の工程は, 上記いずれかに記載の像形成用 組成物の粉末を層状にして像形成用組成物層を形成する像形成用組成物層取 得工程と, 前記像形成用組成物層取得工程で形成された像形成用組成物の層 に, その層の断面形状に関する情報に基づいて水分を添加することにより, 前記像形成用組成物層の所定箇所を湿潤させる水分添加工程を含む, 物体の 形状を再現した立体像の製造方法である。 以下, 各工程について説明する。 断面形状取得工程は, 物体の 3次元形状に関する情報に基づいて, 前記 3 次元形状を複数層に分割して得られる各層における断面形状に関する情報を 得るための工程である (ステップ A 1 ) 。 骨模型形成用の立体像の製造方法 の好ましい態様は, 前記各層における断面形状に関する情報には, 各層にお ける色分け情報が含まれており, 前記水分添加工程では, 前記色分け情報に 従って, 着色成分を含む水分が添加される, 上記に記載の立体像の製造方法 である。 [0093] 骨模型形成用の立体像の製造方法は, いわゆるラピッドプロ トタイプ法に 用いられる公知の装置を用い, 工程等をプログラムすることで容易に行うこ とができる。 具体的には, ラピッドプロ トタイプ用のプログラムを搭載した コンピュータなどにより容易に実行できる。 このコンピュータは, 入出力部 , C P Uなどの制御部, 演算部, 及びメモリを具備しており, インタ一フエ イスなどの入出力部を通じて, 立体像を製造するための立体像製造部と接続 される。 そして, 立体像製造部は, 前記コンピュータからの指令に従って立 体像を形成するための上下に移動できる可動式テーブルと ;前記コンビユー タからの指令に従つて前記可動式テーブル上に像形成用組成物の層を形成す るために像形成用組成物粉末貯蔵部から像形成用組成物粉末を取り出して像 形成用組成物層を形成する像形成用組成物層形成部と ; コンピュータからの 指令に従って前記像形成用組成物層に水又は所定の水溶液を添加する印刷部 とを具備する。
[0094] 断面形状取得工程では, 複数のレントゲン写真などから, 対象とする物体 の 3次元形状に関する情報を得て, その 3次元形状を複数の層によって構成 される断面形状に分割した像を得ればよい。 また, インプラントや人工骨の 3次元形状は, 例えば以下のようにして得ればよい。 まず, 欠損部を補充す るためのインプラントゃ人工骨を得る場合は, 一般に欠損部は本来左右対称 に近い形状を有する部分 (例えば, 右足の骨と左足の骨) を有しているので , その対象となる部位の骨の形状を対象にするようにコンピュータシミュレ ーシヨンを行って, 対象とする物体の 3次元形状に関する情報を得てもよい 。 また, 歯用のインプラントなどを製造する場合など, 患部自体の形状が, 再現するために好ましい形状ではない場合がある。 そこで, そのような場合 は, 周囲の歯や骨の形状などを参考にして, 3 D C G ( 3次元コンピュータ グラフィックス) などを用いて, 対象物の形状を描画し, コンピュータに入 力することで 3次元形状に関する情報を得て, コンピュータがその 3次元形 状に基づいて各断面形状に関する情報を得てもよい。 具体的には, ポインテ ィングデバイスからの入力信号が C P Uに入力されると, C P Uは入力され た信号に基づいて, C D— R O Mやハードディスクなどの記憶部に格納され る制御プログラムを読み出す。 そして, C P Uは, 制御プログラムからの指 令に基づいて, 記憶部に記憶されるレントゲン写真像などをスキャンし, ス キャンした 2次元像を複数集めることで, 3次元形状に関する像を得る。 な お, この際に, レントゲン写真などでは, 骨などの部位と軟組織などの部位 の濃淡が異なるので, レントゲン写真をスキャニングして像を得る際に, 濃 淡が大きく異なる部位を持って輪郭を得るほか, その輪郭によって囲まれる 部位の濃淡が所定の値の範囲であるかどうかを判断するか, 輪郭で囲まれる 部位間の濃淡を比較することで, 骨などの部位と軟組織などの部位のパター ニング情報を得て, このパターニング情報を記憶するようにしてもよい。 さ らに, 3次元形状に関する像を得た場合, 例えば, z軸 (地上から空方向) などのある方向に従って, 前記 3次元形状を輪切りにして, 複数の層ごとの 断面形状を得る。
[0095] 骨模型に等高線を描画する場合, 取得した物体の形状 (作成する骨模型の 形状) に基づいて, 公知の方法により高さを分析してある高さごとに等高線 をいれればよい。 具体的には, ラビッドプロ トタイプ法は, 複数の層を重ね て立体像を製造するものなので, 各層を作成する際に, 各層の最下部又は層 の最上部には色で区切るようにしてもよい。 また, 例えば, 2層〜 1 0 0層 ごとに 1層を色つきの層とすればよい。 このようにすれば, 適切な高さごと に等高線が描画された骨模型を得ることができる。 具体的には, 各層の所定 の部分に色素ゃィンクを混在した箇所を設けるか, 所定の層ごとに色素など を添加した層を形成するようにプログラムし, そのプログラムにしたがって 骨模型を製造すればよい。
[0096] 骨模型に等高線を描画する場合, 例えば, 得られた骨模型の 3次元データ を 2次元のモニタに描画できるような向き (正面向き) とし, その 2次元デ ータに格子を当てはめ, その格子を模型に描画するようにプログラムすれば よい。
[0097] 層の厚さについては, ポインティングデバイスなどからの入力情報に応じ て適宜調整できるようにされてもよいし, あらかじめ設定された値にしたが つて制御されるようにしてもよい。 層の厚さが厚ければ, 精巧な硬化体を得 ることができないし, 印刷機構などを用いて水滴を添加するだけでは形状を 保てる硬度にならないという問題がある。 一方, 層の厚さが薄すぎると, 多 くの断面画像を得なければならず, コンピュータのハードウエア容量に負担 がかかることとなるばかりか, 製造を行うために多くの時間がかかることと なる。 このような観点から,各層の厚さとして, 1 X 1 0 m〜 5 m mがあげ られ, l x l 0 m〜5 m mでもよく, I x l 0 2 m〜1 m mでもよし、。 な お, 各層の厚さは均一であることが好ましいが, 不均一であってもよい。
[0098] 第 1の断層像形成工程は, 前記断面形状取得工程において得られた前記断面 形状情報から, 第 1の層における断面形状に関する情報を読み出して, 読み出 された情報に基づいて, 像形成用組成物を用いて前記断面形状を再現した第 1 の断面像を形成するための工程 (ステップ A 2— 1 ) である。
[0099] 第 2の断層像形成工程は, 前記断面形状取得工程において得られた前記断 面形状情報から, 前記第 1の断面像の上の層に当たる第 2の層における断面 形状に関する情報を読み出して, 読み出された情報に基づいて, 像形成用組 成物を用いて前記断面形状を再現した第 2の断面像を, 前記第 1の断面像に 重なるように形成するための工程である (ステップ A 2 _ 2 )
[0100] 次に, 前記第 2の断層像形成工程と同様に, 前記断面形状取得工程におい て得られた前記断面形状情報から, 前記形成しょうとする層における断面形 状に関する情報を読み出して, 読み出された情報に基づいて, 像形成用組成 物を用いて前記断面形状を再現した層の断面像を, 前の工程で得られた断面 像に重なるように形成する工程を繰り返す。
[0101 ] 前記断層像形成工程の少なくとも一つ以上の工程は, 上記いずれかに記載 の像形成用組成物の粉末を層状にして像形成用組成物層を形成する像形成用 組成物層取得工程と, 前記像形成用組成物層取得工程で形成された像形成用 組成物の層に, その層の断面形状に関する情報に基づいて水分を添加するこ とにより, 前記像形成用組成物層の所定箇所を湿潤させる水分添加工程を含 む, 物体の形状を再現した立体像の製造方法である。
[0102] 以下, 各断層像形成工程の例を説明する。 各断層像形成工程では, C P U が制御プログラムの指令を受け, 像形成用組成物層の厚さに関する情報を読 み出して, 入出力装置から出力する。 この厚さに関する情報を受け取った立 体像製造部は, 前記コンピュータからの指令に従って可動式テーブルを下方 に移動させる。 この際に, 下方に移動させる距離が像形成用組成物層の厚さ となるので, この移動距離に関してもコンピュータから出力され, その移動 距離情報に従って, テーブルが移動することとなる。 なお, 各層の厚さが同 じ場合は, 立体像製造部の記憶部がこの情報を記憶して, 各層を形成する際 に同じ情報を用いてもよい。
[0103] 次に, C P Uが制御プログラムの指令を受け, 例えば, 像形成用組成物層 の厚さに関する情報を読み出して, 像形成用組成物の層を形成するためにふ さわしい像形成用組成物の量を演算し, 入出力部から出力する。 この量は, 一定とされていてもよいし, いったん立体像製造部に伝えられた後は, 立体 像製造部の記憶部がこの情報を記憶して, 各層を形成する際に同じ情報を用 いてもよい。 この像形成用組成物層に関する情報を受け取った, 立体像製造 部は, 前記コンピュータからの指令に従って, 像形成用組成物層形成部に, 像形成用組成物粉末貯蔵部から像形成用組成物粉末を取り出させ, テーブル 上に粉末を開放させる。 そして, 適宜スキージゃへらなどを移動させて, 像 形成用組成物の層を均一にするように制御させてもよい。 このようにして, 可動式テーブル上 (すでに層が形成されている場合は, 先に形成された像形 成用組成物層の上) に像形成用組成物の層が形成される。
[0104] 次に, C P Uが制御プログラムの指令を受け, 各層の断面形状や, パター ニングに関する情報を読み出して, 入出力部から出力する。 立体像製造部は , コンピュータからの指令に従って, 印刷部を作動させ, 前記像形成用組成 物層に水又は所定の水溶液 (水, 架橋剤水溶液, ラビッドプロ トタイプ用の バインダー水溶液など) を添加する。 このような機構は, 公知の印刷機の制 御機構を用いることで容易に達成できる。 なお, この際に添加される水又は 水溶液の組成, 濃度, 及び量などの諸条件は, 適宜調整することができる。 例えば, ポインティングデバイスなどから諸条件に関する情報を入力し, 入 力した情報をコンピュータの記憶部に記憶させ, この諸条件に関する情報に 従って, C P Uが必要な情報を読み出して演算部により演算を行わせ, 印刷 部の動作を制御すればよい。 印刷部では, 通常の印刷技術と同様にして, ィ ンクの代わりに水滴などが添加されるようにすればよい。 なお, 前記像形成 用組成物層に添加される液体バインダー材料は, 有機物であっても無機物で あってもよい。 使用される代表的な有機バインダー材料は, ポリマー樹脂ま たはポリカルポシラザンのようなセラミック前駆体である。 無機バインダー は, バインダーが最終物品に配合される場合に使用され, このような用途に は, 一般にシリカが用いられる。
[0105] 技術常識では, 各層を形成する段階で, 水和反応を進めるために必要とさ れる水分量以上の水分を与えて乾燥させることを繰り返す。 しかし, 本発明 の立体像の製造方法 (本発明の硬化物の製造方法) では, 上記の段階で, 石 膏の水和反応を完全に進める必要がない。 そのため, 各断層像形成工程では , 例えば, 像形成用組成物を完全に水和させるために必要な水の量を 1 0 0 重量部とした場合に, 例えば 1重量部〜 5 0重量部添加すればよぐ また, 1重量部〜 2 0重量部でもよく, 2重量部〜 1 0重量部でもよく, 3重量部〜 5重量部でもよい。 このような少量の水分では, 完全に石膏の水和反応が進 行しない。 しかしながら, 本発明では, 最低限の強度を維持するために十分 な強度の層を迅速に得ることができるし, 水が少量であるから, 水が意図し ない部分へ拡散する事態を防止でき, 所望の断面構造を有する層を得ること ができる。 特に, 2種類以上のパターニングを有する断面構造を得る場合な どは, 2種以上の水又は水溶液が混合しないことが重要となるが, 添加する 水分を少量とすることで, これらが混ざる事態を効果的に防止できることと なる。
[0106] 断層像形成工程を繰り返し行った後は, 得られた積層体がある程度の強度 を有することとなるまで, 乾燥させることが好ましい。 乾燥は, 低湿高温雰 囲気 (例えば, 湿度 0 %〜 1 0 %, 温度 5 0 °C〜2 X 1 0 2°C) にて行っても よいが, 常温常圧環境の下で行ってもよい。 常温常圧における乾燥時間は, 得られた立体像の大きさや, 水分率, 各層の厚さなどに応じて適宜調整すれ ばよいが, 1分〜 1時間があげられ, 5分〜 3 X 1 0分があげられ, 5分〜 2 X 1 0分でもよい。 すなわち, 本発明では, ラピッドプロ トタイプ法を用 いるに当たり, ポリビニルアルコール樹脂を多く含有するものを用いたので , 迅速に比較的硬度の高い立体像を得ることができ, しかもこの段階では十 分に水を含んでいる必要もないので, 乾燥時間を大いに短縮できることとな る。 そして,乾燥後,物体の形状を再現した立体像が得られることとなる。 な お, 乾燥は, 例えば減圧による脱気など脱気工程により行う場合は, 極めて 迅速に乾燥を行うことができるので好ましい。
[0107] 上記のようにして得られた立体像は, 石膏の水和反応が進行していない可 能性が高い。 そのため, 完全に水和反応が進行したものに比べて強度が低い ことが想定される。 しかしながら, 水分が少ない状態で, パターニングを行 うことで, 水分が意図しない部分にまで染み出して, そのような部分が硬化 する事態を防止できることとなる。 そのため, この立体像の製造方法は, 迅 速かつ精巧な形状を有する立体像を製造するために有用といえる。 一方, 上 記のようにして得られた立体像は, 精巧な形状を有しているにもかかわらず , 水和反応が十分に進行していないため強度が低いことが想定される。 そこ で, 十分な強度を得たい場合は, 後述する硬化物の製造方法に従って, 水和 反応を進めればよい。
[0108] 上記したとおりであるから, 骨模型の製造方法は, 基本的には, 上記した 各工程によって得られた立体像を水又は水溶液に浸漬することなどにより, 水分を与えて, 石膏の水和反応を進め, これを乾燥させることにより十分な 硬度を有する硬化物を得るというものである。
[0109] すなわち, 骨模型の製造方法は, 基本的には, 上記いずれかに記載の立体 像の製造方法により得られた立体像から硬化していない像形成用組成物の粉 末を取り除くための石膏粉末除去工程 (ステップ B 1 ) と ;前記石膏粉末除 去工程で粉末が除去された立体像に水分を添加するための水分添加工程 (ス テツプ B 2 ) と ;前記水分添加工程で水分が添加された立体像を乾燥させる 乾燥工程 (ステップ B 3 ) とを含む; 骨模型の製造方法に関する。 以下, 各 工程について説明する。
[0110] 石膏粉末除去工程は, 立体像から硬化していない像形成用組成物の粉末を 取り除くための工程である (ステップ B 1 ) 。 この工程では, 例えば, エア —ブラシにより立体像に空気を吹き当てることで, 硬化していない石膏粉末 を吹き飛ばせばよい。 風量や, エアーブラシの形状などは適宜調整すればよ く公知のものを用いることができる。 石膏粉末除去工程に要する時間も適宜 調整すればよいが, 具体的には 5分〜 1時間があげられ, 1 0分〜 3 0分が 好ましい。
[0111 ] 水分添加工程は, 前記石膏粉末除去工程で粉末が除去された立体像に水分 を添加するための工程である (ステップ B 2 ) 。 この水分添加工程では, 好 ましくは, 石膏の水和反応が進行するために十分な水分を立体像に与えるも のである。 そのような水分添加工程として, 立体像を水又は所定の水溶液に 浸漬するものがあげられる。 この際, 先の石膏粉末除去工程で粉末が除去さ れているので, 形状に関係のなし、像形成用組成物の粉末が立体像に付着する 事態を防止できる。
[0112] 本発明の骨模型の製造方法の好ましい態様は, 前記水分添加工程 (ステツ プ B 2 ) は, 前記石膏粉末除去工程で粉末が除去された立体像に霧状の水分 を吹き付ける又は立体像を高湿度雰囲気にさらすことで立体像表面に水分を 付着させる噴霧工程 (ステップ B 2— 1 ) と, 前記噴霧工程の後に, 立体像 を水中に浸漬する浸漬工程 (ステップ B 2 _ 2 ) を含むものである。
[0113] 得られた立体像をいきなり水に浸漬すると, 形が崩れるなどの問題が生ず る場合もある。 そこで, この態様の骨模型の製造方法では, 上記の問題を考 慮して, まずは表面 (好ましくは表面全体) に水分を添加し, 表面だけでも 水和による石膏の硬化反応を促進させ (好ましくは乾燥させて) , 型崩れを 防止した後, 水中に浸漬することにより, 十分に硬化反応を促進するという ものである。 噴霧工程では, 例えば, 公知の霧吹きを用いて, 水又は所定の 水溶液 (好ましくは水, 架橋剤の水溶液, 又はバインダーの水溶液) を立体 像の表面に吹きかける。 又は立体像を高湿度雰囲気にさらすことで立体像表 面に水などを付着させる。 そして, 水分を吹きかけた後, 乾燥させたのち浸 漬すればよい。 乾燥は, 低湿高温雰囲気 (例えば, 湿度 0 %〜 1 0 %, 温度 5 0 °C〜2 X 1 0 2°C) にて行ってもよいが, 常温常圧環境の下で行ってもよ し、。 常温常圧における乾燥時間は, 得られた立体像の大きさや, 水分率, 各 層の厚さなどに応じて適宜調整すればよいが, 1 X 1 0分〜 2時間があげら れ, 1 5分〜 1時間があげられ, 2 X 1 0分〜 4 X 1 0分でもよい。 浸漬ェ 程では, 十分な水又は水溶液中に, 立体像を浸漬する。 浸漬時間は, 立体像 の大きさなどに応じて適宜調整すればよいが, 1 X 1 0分〜 2時間があげら れ, 1 5分〜 1時間があげられ, 2 X 1 0分〜 4 X 1 0分でもよい。
本発明の骨模型の製造方法の好ましい態様は, 前記水分添加工程 (ステツ プ B 2 ) は, (1 ) 前記石膏粉末除去工程で粉末が除去された立体像に霧状 の水分を吹き付けるか又は立体像を高湿度雰囲気にさらすことで立体像表面 に水分を付着させる噴霧工程と, 前記噴霧工程の後に,立体像を架橋剤水溶液 中に浸漬する浸漬工程, (2 ) 前記石膏粉末除去工程で粉末が除去された立 体像に霧状の架橋剤水溶液を吹き付けるか又は立体像を架橋剤水溶液の高湿 度雰囲気にさらすことで立体像表面に架橋剤水溶液を付着させる噴霧工程と , 前記噴霧工程の後に,立体像を架橋剤水溶液中に浸漬する浸漬工程, 又は ( 3 ) 前記石膏粉末除去工程で粉末が除去された立体像に霧状の水分を吹き付 けるか又は立体像を高湿度雰囲気にさらすことで立体像表面に水分を付着さ せる噴霧工程と, 前記噴霧工程の後に,立体像を水中に浸潰し, さらに前記立 体像を架橋剤水溶液中に浸漬する浸漬工程, のいずれかを含む上記に記載の 骨模型の製造方法である。 特に, ァセトァセチル基変性ポリビニルアルコ一 ル樹脂を用いたものは, 上記のなかでは (1 ) 又は (3 ) の工程が好ましい 。 なぜなら, まずは, 水によりキレート構造を促進させた後に, 架橋剤で架 橋を促進することが強度や骨模型の均一さの観点から好ましいからである。 [01 15] このように架橋剤水溶液などの架橋剤を添加することで, 立体像中で架橋 が進み, 十分な強度を有する骨模型を得ることができることとなる。 そして , 噴霧工程及び浸漬工程は, 先に説明したと同様にして行えばよい。 なお, 架橋剤水溶液における架橋剤水溶液の濃度は, 用いたポリビニルアルコール 樹脂の種類や得ようとする硬化物の硬度などに応じて適宜調整すればよい。 具体的な, 架橋剤水溶液における架橋剤水溶液の濃度として, 1 X 1 0 - 2 X 容積%〜 2 X 1 0容積0 /oがあげられ, 好ましくは 1 X 1 0 - 1容積0/ &〜 1 . 5 X 1 0容積%である。 なお, 架橋剤として, エチレンジァミン又はジェタノ —ルァミンなどのアミン系架橋剤に替えて, 又はこれらともに, ホルムアル デヒドゃグリオキザ一ルなどのアルデヒド系化合物, メラミン一ホルムアル デヒド縮合物や尿素一ホルムアルデヒド縮合物などのメチロール系化合物, ホウ酸やホウ砂等のホウ素含有化合物, 2 , 4 _トリレンジィソシァネート , 2 , 6 _トリレンジイソシァネート, m—フエ二レンジイソシァネート, p—フエ二レンジイソシァネート又は 4 , 4 ' —ジフエニルメタンジイソシ ァネートなどのィソシァネート系化合物, 又はシラン力ップリング剤などを 適宜用いてもよい。 なお, これらの中では, 架橋剤として, エチレンジアミ ン又はジェタノ一ルァミンなどのァミン系架橋剤が好ましく, 具体的には, 後述する実施例によって実証されたとおり, エチレンジァミン又はジェタノ —ルァミンのいずれか又は両方がより好ましい。
[01 16] 乾燥工程は, 前記水分添加工程で水分が添加された立体像を乾燥させるた めの工程である (ステップ B 3 ) 。 乾燥は, 低湿高温雰囲気 (例えば, 湿度 0 %〜 1 0 %, 温度 5 0 °C〜2 X 1 0 2°C) にて行ってもよいが, 常温常圧環 境の下で行ってもよい。 常温常圧における乾燥時間は, 立体像の大きさや, 水分率, 各層の厚さなどに応じて適宜調整すればよいが, 1時間〜 4日があ げられ, 4時間〜 3日でもよぐ 6時間〜 2日でもよい。
[01 17] ただし, 本発明においては, 骨模型を比較的迅速に製造することが好まし いので, 乾燥時間として, 1時間〜 4時間とすることが好ましい。
[01 18] 3 - 2 . 像形成剤充填工程 (ステップ 2 ) 像形成剤充填工程は, 骨模型製造工程で得られた骨模型の骨欠損部に, 像 形成剤を充填するための工程である。 像形成剤を充填することにより, 骨充 填剤像を得ることができる。
[01 19] 像形成剤は, 骨充填剤像を得ることができるものであれば特に限定されず 公知の像形成剤を適宜用いることができる。 但し, 像形成剤は, 骨模型と区 別することができるものであることが好ましい。 具体的には, 像形成剤とし て, 前記骨模型と X線透過率, 赤外線透過率, 又は紫外線透過率のいずれか が異なるものが好ましぐ 像形成剤が定着して骨充填剤像となつた場合の X 線透過率, 赤外線透過率, 又は紫外線透過率が, 骨模型の X線透過率, 赤外 線透過率, 又は紫外線透過率に比べて 9 0 %以下であるか 1 1 0 %以上であ るものがあげられる。 像形成剤がそのような X線透過率, 赤外線透過率, 又 は紫外線透過率を有するものであれば, 像形成剤が定着した骨充填剤像と, 骨模型とを容易に区別できることとなる。 そのような像形成剤として, 骨模 型の原料と同一の原料であって, 色素, 金属粉末又は金属酸化物の粉末など を含有するものがあげられる。
[0120] 像形成剤として, 例えば, ワックス成分 (例えば, 歯科用ワックス) を主 成分とするものがあげられる。 ワックス成分として, パラフィンワックスの ほか, みつろう, マイクロクリスタリンワックス, ダンマ一, ロジン, キヤ ンデリラワックス, カルナゥバワックス, みつろう若しくはモンタンヮック スのいずれか又はこれらの混合物があげられる力《, これらの中ではパラフィ ンワックスを主成分とするものが好ましい。 パラフィンワックスを主成分と するものが, みつろう, マイクロクリスタリンワックスにより柔軟性, およ び粘着性を与えたもの; ダンマー, 又はロジンを加えて, 硬さや強度を改善 するとともに粘り強さを与えたもの;高融点のカルナバワックスを加えてヮッ クスの表面に光沢を与えたものなどがあげられる。 また, 合成樹脂である, 炭化水素樹脂とエチレン■酢酸ビニル共重合樹脂とを組合わせて用いたもの , 具体的にはパラフィンワックスにエチレン■酢酸ビニル共重合樹脂を好ま しくは 1〜 5重量%配合したものなどがあげられる。 より具体的な歯科用ヮ ックスとして, パラフィンワックス, 口一リングワックス, プロラインヮッ クス, コルベンワックス, プロュ一ティリティ一ワックス, バイ トリムステ イツク, 又は力一ビングワックスなどがあげられる。 ワックスは, ゲルパ一 ミエ一シヨンクロマトグラフィー (GPC) で測定した数平均分子量 (Mn ) が 400〜 5, 000, 好ましくは 800〜 5, 000, より好ましくは 1 , 000〜 3000, 特に好ましくは 1 , 500〜2, 500の範囲にあ ることが望ましい。 ワックスは, G PCで測定した重量平均分子量と数平均 分子量との比 (Mw/Mn) が 4. 0以下, 好ましくは 3. 5以下, より好 ましくは 3. 0以下であることが望ましい。 なお, 重量平均分子量 (Mw) , 数平均分子量 (Mn) は, ゲルパ一ミエ一シヨンクロマトグラフィー (G PC) により測定される, ポリスチレン換算値である。 ここで, GPCによ る測定は, 温度: 1 40°C, 溶媒:オルトジクロロベンゼンの条件下で行う
[0121] ワックスは, 歯科用に一般に用いられている赤色のもののほか, 白, 黄色 , 又は黒色などのものを適宜用いることができる。 白色ワックスは, バラフ インワックスなどのワックスに白色顔料である酸化チタンを混合することに より作製される。 黄色ワックスは, 例えば, パラフィンワックスなどのヮッ クスに黄色顔料である酸化チタンの一種であるチタンイエロ一を混合するこ とにより作製される。 黒色ワックスは, 例えば, パラフィンワックスなどの ワックスに, 黒色顔料であるァニリンブラックを混合することにより作製さ れる。
[0122] 像形成剤は, 像形成剤が定着して形成される骨充填剤像が, たとえば, X 線透過率, 赤外線透過率, 又は紫外線透過率のいずれかにおいて骨模型と区 別することができるように, 無機粉体, 有機粉体, 界面活性剤金属塩粉体, 顔料, 色素, 金属粉末又は金属酸化物の粉末などを含有することが好ましい
[0123] 無機粉体の具体例としては, 酸化チタン, 酸化ジルコニウム, 酸化亜鉛, 酸化セリウム, 酸化マグネシウム, 硫酸バリウム, 硫酸カルシウム, 硫酸マ グネシゥム, 炭酸カルシウム, 炭酸マグネシウム, タルク, マイ力, 力オリ ン, セリサイ ト, 白雲母, 合成雲母, 金雲母, 紅雲母, 黒雲母, リチア雲母 , ケィ酸, 無水ケィ酸, ケィ酸アルミニウム, ケィ酸マグネシウム, ケィ酸 アルミニウムマグネシウム, ケィ酸カルシウム, ケィ酸バリウム, ケィ酸ス トロンチウム, タングステン酸金属塩, ヒドロキシアパタイ ト, バ一ミキュ ライ ト, ハイジライ ト, ベントナイ ト, モンモリロナイ ト, ヘク トライ ト, ゼォライ ト, セラミックスパウダー, 第二リン酸カルシウム, アルミナ, 水 酸化アルミニウム, 窒化ホウ素, 窒化ポロン, シリカなどがあげられる。
[0124] 有機粉体の具体例としては, ポリアミ ドパウダー, ポリエステルパウダー , ポリエチレンパウダー, ポリプロピレンパウダー, ポリスチレンパウダー , ポリウレタン, ベンゾグアナミンパウダー, ポリメチルベンゾグアナミン パウダー, テトラフルォロエチレンパウダー, ポリメチルメタクリレ一トパ ウダ一, セルロース, シルクパウダー, ナイロンパウダー, 1 2ナイロン, 6ナイロン, ジメチルシリコーンを架橋した構造を持つ架橋型シリコーン微 粉末, ポリメチルシルセスキォキサンの微粉末, スチレン■ァクリル酸共重 合体, ジビニルベンゼン■スチレン共重合体, ビニル樹脂, 尿素樹脂, フエ ノール樹脂, フッ素樹脂, ケィ素樹脂, アクリル樹脂, メラミン樹脂, ェポ キシ樹脂, ポリカーボネート樹脂, 微結晶繊維粉体, デンプン粉末, ラウ口 ィルリジンなどが挙げられる。 さらに, 大部分が一 [ S i - 0 - ] n—骨格か らなる有機粉末も用いることができる。 この場合, 分子内の一部に一 S i ( C H 2 C H 2 ) m- S i —結合を有してもよい。
[0125] 界面活性剤金属塩粉体 (金属石鹼) の具体例としては, ステアリン酸亜鉛 , ステアリン酸アルミニウム, ステアリン酸カルシウム, ステアリン酸マグ ネシゥム, ミリスチン酸亜鉛, ミリスチン酸マグネシウム, セチルリン酸亜 鉛, セチルリン酸カルシウム, セチルリン酸亜鉛ナトリウムなどがあげられ る。
[0126] 有色顔料の具体例としては, 酸化鉄, 水酸化鉄, チタン酸鉄の無機赤色顏 料; r一酸化鉄などの無機褐色系顔料;黄酸化鉄, 黄土などの無機黄色系顏 料;黒酸化鉄, カーボンブラックなどの無機黒色顔料; マンガンバイオレツ ト, コバルトバイオレットなどの無機紫色顔料;水酸化クロム, 酸化クロム , 酸化コバルト, チタン酸コバルトなどの無機緑色顔料;紺青, 群青などの 無機青色系顔料; タール系色素をレーキ化したもの;天然色素をレーキ化し たもの; およびこれらの粉体を複合化した合成樹脂粉体などがあげられる。
[0127] パール顔料の具体例としては, 酸化チタン被覆マイ力, ォキシ塩化ビスマ ス, 酸化チタン被覆ォキシ塩化ビスマス, 酸化チタン被覆タルク, 魚鱗箔, 酸化チタン被覆着色雲母などがあげられる。
[0128] 金属粉末顔料としては, アルミニウムパウダー, カッパ一パウダー, ステ ンレスパウダーなどがあげられる。
[0129] 天然色素としては, カルミン酸, ラッカイン酸, カルサミン, ブラジリン , クロシンなどから選ばれる粉体があげられる。 これらの粉体は本発明の効 果を妨げない範囲で, 粉体の複合化や一般油剤, シリコーン油, フッ素化合 物, 界面活性剤などで処理したもの, 反応性を持つオルガノハイ ドロジェン ポリシロキサン, 加水分解性アルコキシシラン基を有するオルガノポリシロ キサン, 加水分解性シリル基を有するァクリル—シリコーン系共重合体など も使用することができ, 必要に応じて 1種, または 2種以上を組み合わせて 用いることができる。 具体的な色素として, 上記した酸化チタンなどがあげ られる。 金属粉末又は金属酸化物の粉末も, 特に限定されず, 公知のものを 適宜採用することができる。 金属粉末又は金属酸化物の粉末として, 好まし <は酸化チタンであり, より好ましくはアナターゼ型又はルチル型の酸化チ タンである。 金属粉末又は金属酸化物の粉末の粒子径 (J I S R 1 6 1 9に 基づいて分析したもの) として, 1 X 1 0 2 n m以上 5 X 1 0 3 n m以下があ げられ, 好ましくは 5 X 1 0 2 n m以上 3 X 1 0 3 n m以下である。 後述する 実施例により実証されたとおり, 像形成剤として, ワックスを全重量の 9 0 重量%以上 (好ましくは 9 5重量%以上) 含有し, 金属粉末又は金属酸化物 の粉末を全重量の 2重量%以上 5重量%以下含有するものがあげられ, 好ま しくは金属粉末又は金属酸化物の粉末を全重量の 3重量%以上 4重量%以下 含有するものである。
[0130] R P法などにより患者の骨の状態を反映した骨模型が形成されているので , 医者などが, その骨模型の骨欠損部に像形成剤を充填してもよい。 そのよ うにすれば, 正確な骨模型に施術を行う者が直接骨充填剤の像を形成するの で, 施術者にとつて使い勝手のよい骨充填剤を得ることができることとなる 。 具体的には, 像形成剤は, 例えば, パラフィンワックスなどを主成分とす るので, お湯などで温めることで容易に柔軟性を増すため, そのような状態 で, 骨欠損部を詰めるように像形成剤を塗りこめばよい。 また, 骨模型の骨 欠損部に像形成剤を充填する際, 骨模型の骨欠損部に自動的に骨充填剤が充 填されるようにしてもよい。
[0131 ] 骨模型の骨欠損部に充填された像形成剤は, 例えばパラフィンワックスな どを主成分とするので, 静置することにより固化し骨充填剤像となる。 この 骨充填剤像は, 患者の治療などに用いられる骨充填剤であり, しかも骨欠損 部の形状に精度よく一致したものである。
[0132] 3 - 3 . 骨充填剤製造工程 (ステップ 3 )
骨充填剤製造工程は, 像形成剤充填工程で骨模型の骨欠損部に充填した像 形成剤 (または骨充填剤像) に基づいて, 骨欠損部に充填する骨充填剤を製 造するための工程である。 像形成剤充填工程で骨模型の骨欠損部には像形成 剤が充填されており, 像形成剤が定着した骨充填剤像は, 骨模型と何らかの 形で区別される。 そこで, この骨充填剤像などを用いて, 骨充填剤を製造す ればよい。 また, 得られた骨充填剤像の形状に基づき, 金型を製造し, 粉末 射出成型法又は, それを修正した方法により骨充填剤を製造してもよい。
[0133] 具体的には, 骨充填剤像は, 骨模型と X線の透過率又は反射率が異なるの で, X線 C Tなどにより, 骨充填剤像を含む骨模型ごと撮影し, その X線の 透過率又は反射率を P Cなどの制御装置に送信し, 制御装置は X線の透過率 又は反射率の相違により骨充填剤像の形状を把握して, 骨充填剤の製造装置 に対して骨充填剤の形状に関する情報を伝えるとともに, 骨充填剤の製造装 置が前記形状にしたがって骨充填剤を製造するように指令を出力する。 この ようにして, 骨充填剤が製造される。 このような製造装置として, R P法に 基づく骨充填剤の製造装置があげられ, R P法または先に説明した方法に従 つて, 骨充填剤が製造されればよい。 なお, 骨充填剤を R P法で製造する場 合は, 原料粉末としてリン酸カルシウム系物質など, 以下説明する化合物粉 末を適宜用いればよい。
[0134] 以下, 粉末射出成形法に基づく, 骨充填剤の製造方法について説明する。
骨充填剤の製造方法は, 基本的には, カルシウム系物質を含む原材料, 及び バインダーを含む材料を混練するための混練工程と ;前記混練工程で得られ た混練物を用いて, 金型を有する射出成形機を用いた射出成形により所定の 形状を持った成形体を得るための成形工程と ;前記成形工程で得られた成形 体に含まれるバインダーを取り除き脱脂体を得るための脱バインダー (脱脂 ) 工程と ;前記脱バインダー工程後の脱脂体を加熱し, 焼結し焼結体を得る ための焼結工程とを含む骨充填剤の製造方法である。 なお, 成形体の後処理 を行うための後処理工程など公知の工程を適宜含んでもよい。
[0135] 骨充填剤の製造方法によって得られた骨充填剤は, ひとつひとつの骨充填 剤の大きさが均一なので, 骨充填剤に薬剤を含有させた場合であっても, 適 切な量の薬剤を投与できることとなる。 さらには, 密度が均一でありしかも 大きさを制御できるので, それぞれの骨充填剤の強度を維持しつつも, 複数 の骨充填剤を投与した場合に適切な空隙率を得ることができることとなる。 以下, 骨充填剤の製造方法の各工程について説明する。
[0136] 混練工程は, カルシウム系物質を含む原材料, 及びバインダーを含む材料 を混練するための工程である。 原料として, 粉末の原料を用いることが好ま しい。 混練工程では, 原料粉末とバインダーなどの副素材とを混ぜ, 射出成 形に適した状態のものとする。
[0137] 原料粉末として, カルシウム系の物質があげられる。 前記カルシウム系物 質は, リン酸カルシウム系物質, 炭酸カルシウム系物質, 乳酸カルシウム及 びグルコン酸カルシウムがあげられ, これらの中ではリン酸カルシウム系物 質又は炭酸カルシウム系物質が好ましい。 原料粉末としてのリン酸カルシゥ ム系物質を, より具体的に説明すると, 水酸アパタイ ト, 炭酸アパタイ ト, フッ素アパタイ ト, 塩素アパタイ ト, S - T C P, a- J C P, メタリン酸 カルシウム, リン酸四カルシウム, リン酸水素カルシウム, リン酸水素カル シゥムリン酸二水素カルシウム, ピロリン酸カルシウム, リン酸八カルシゥ ム, それらの塩, 又はそれらの溶媒和物二水和物などのいずれか 1種または 2種以上があげられ, これらの中では; S _T C P, 又は水酸アパタイ トが好 ましい。 また, 炭酸カルシウム系物質として, 炭酸カルシウム及び炭酸水素 カルシウムがあげられ, これらの中では炭酸カルシウムが好ましい。 ただし , 原料粉末は, これらに特に限定されず, 骨充填剤の原料として用いられる 公知のものを適宜用いることができる。
[0138] 原料粉末は, 小さすぎると多くのバインダーが必要となり, 得られる骨充 填剤の物性が悪くなる。 一方, 原料粉末が大きすぎると, 成形機のスクリュ 一とシリンダとの隙間に入り込んで嚙む場合や, 焼結が進まない場合がある 。 本発明では, 基本的には粉末射出成形を行うが, 金属を原料粉末とするも のでは必ずしも無い。 よって, 実験を行った結果, 原料粉末の大きさは, 例 えば, 0. 0 1 m〜 1 00 m (0. 0 1 m以上 1 00 m以下。 以下 同様。 ) があげられ, 好ましくは 0. 1 m〜20 ;Umである。 通常の粉末 冶金では, 例えば, 1 0 O m程度の大きさの粉末を用いる。 例えば, 特開 2004-97259号公報 (上記特許文献 1 ) では, 粒径が 1 50 m以 下の水酸アパタイ ト粉を用いている (同公報の段落 [0025] ) 。 しかし , 本発明では, 原料粉末をバインダーと混合し, 混練したものの流動性をよ <し, 焼結後の密度を向上させるために比較的小さい粒径を有する粉末を用 いることが好ましい。 一方, 本発明によって製造される骨充填剤は, ある程 度の強度が要求されるものの, 生体内に埋め込んだ場合に破骨細胞などによ り侵食されることが想定される。 そのような観点からは, 粉末の大きさをあ えて 0. 1 rr!〜 好ましくは 0. 5 rr!〜 1 0 mとしてもよい
[0139] 混練工程では, バインダーなどの原材料以外の材料 (1又は複数種類の化 合物) を, 原材料に混ぜる。 このようなバインダーとして, (メタ) アクリル 系樹脂, 口ゥ滑剤, (好ましくは(メタ)ァクリル系樹脂以外の熱可塑性樹脂 ) , 及び滑剤を含むものがあげられる。 メタクリル系樹脂又はアクリル系樹 脂として, メタクリル樹脂又はァクリル樹脂があげられ, 具体的には n—ブ チルメタクリレ一ト又はメチルメタクリレ一卜の重合体, 又は n _プチルメ タクリレート及びメチルメタクリレ一卜の共重合体があげられる。 メタクリ ル系樹脂又はアクリル系樹脂の分子量は, 特に限定されず, 得られる骨充填 剤の物性を損なわないよう適宜調整すればよいが, 例えば, 重量平均分子量 で 1 X 1 0 3〜 1 X 1 0 5があげられる。 バインダ一におけるメタクリル系樹 脂又はアクリル系樹脂の含有量は, 特に限定されず, 得られる骨充填剤の物 性を損なわないよう適宜調整すればよいが, 例えば, 1重量%〜 5 0重量% があげられる。
[0140] ロウ滑剤として, 融点が 4 0 °C〜 1 0 0 °Cのワックスがあげられ, 好ましく は 4 0 °C〜7 0 °Cである。 このような融点を有するワックスとして, 例えば , 公知のパラフィンワックスを適宜用いることができる。 このような融点を 有するワックスを用いることで, 射出成形時に成形体を金型からはずしやす くすることができる。 また, 融点が, 6 0 °C〜 6 5 °Cであるロウ滑剤を用い れば, 金型をそれほど冷却せずに成形体を取り出すことができるので, より 好ましい。
[0141 ] ロウ滑剤の例として, 流動パラフィン, スクワレン, スクヮランなどの炭 化水素油;ォレイン酸, トール油, 及びィソステアリン酸などの高級脂肪酸 ; ラウリルアルコール, ォレイルアルコール, イソステアリルアルコール, 及びォクチルドデカノールなどの高級アルコール; , メチルポリシロキサン , メチルフエ二ルポリシロキサン, メチルハイ ドロジエンポリシロキサン, 及びデカメチルポリシロキサンなどのシリコーン油; ミリスチン酸ィソプ口 ピル, パルミチン酸イソプロピル, ラウリン酸へキシル, ォレイン酸ォレイ ル, ォレイン酸デシル, ミリスチン酸ォクチルドデシル, ジメチルオクタン 酸へキシルデシル, フタル酸ジェチル, 及びフタル酸ジブチルなどのエステ ル; アボカ ド油, ツバキ油, タ一トル油, マカデミアナッツ油, トウモロコ シ油, ゴマ油, パ一シック油, 小麦胚芽油, サザン力油, ヒマシ油, アマ二 油, サフラワー油, 綿実油, エノ油, 大豆油, 落花生油, 茶実油, カャ油, コメヌ力油, ホホバ油, キヨ一ニン油, オリ一ブ油, 力ロット油, グレープ シード油, ナタネ油, ツバキ油, ホホバ油, 卵黄油, ラノリン油及びミンク 油などの動植物油類;及びグリセリン, ジグリセリン, トリグリセリン, ト リオクタン酸グリセリン, 及びトリイソパルミチン酸グリセリンなどのグリ セリンの 1種又は 2種以上があげられる。 なお,ロウ滑剤の融点は, これらの 原料の分子量や組成比を適宜調整することにより調整できる。
[0142] ロウ滑剤の分子量は, 特に限定されず, 得られる骨充填剤の物性を損なわ ないよう適宜調整すればよいが, 例えば, 重量平均分子量で 1 X 1 0 2〜 1 X 1 0 6があげられる。 バインダーにおけるロウ滑剤の含有量は, 特に限定され ず, 得られる骨充填剤の物性を損なわないよう適宜調整すればよいが, 例え ば, 1重量0/ &〜 5 0重量0 /oがあげられる。
[0143] 熱可塑性樹脂として, ポリアセタール樹脂, (メタ) アクリル樹脂, ポリ ォレフィン樹脂, エチレン一酢酸ビニル共重合体, 又はポリビニルブチラ一 ルのうちいずれか 1種又は 2種以上を用いることができる。 ただし, 本発明 では, 熱可塑性樹脂として (メタ) アクリル樹脂と (メタ) アクリル系樹脂 以外の樹脂を有するものが好ましい。 これらの中では, エチレン一酢酸ビニ ル共重合体が好ましい。
[0144] 熱可塑性樹脂の分子量は, 特に限定されず, 得られる骨充填剤の物性を損 なわないよう適宜調整すればよいが, 例えば, 重量平均分子量で 1 X 1 0 3〜 1 X 1 0 5があげられる。 バインダーにおけるロウ滑剤の含有量は, 特に限定 されず, 得られる骨充填剤の物性を損なわないよう適宜調整すればよいが, 例えば, 1重量 ° /&〜 5 0重量%があげられる。
[0145] 滑剤 (ロウ滑剤以外の滑剤) として, ステアリン酸, ステアリン酸の塩, ステアリン酸又はその塩の水和物, C 1 _ C 5アルキルステアリン酸
5アルキルは炭素数が 1〜 5のアルキル基を示す。 以下同様である) ;又はこ れらのいずれかと,ポリエチレングリコール又はポリグリセンがあげられる。 滑剤含有量は, 特に限定されず, 得られる骨充填剤の物性を損なわないよう 適宜調整すればよいが, 例えば, 0 . 5重量%〜 1 5重量%があげられる。 これら滑剤を用いるので, 成形体を金型から容易に取り出すことができる。 なお, 滑剤は, 分散剤として機能してもよい。
[0146] そのほかバインダーを構成する化合物として, フタル酸エステル類があげ られる。 フタル酸エステル類は, 生体への危険性が報告されているが, 好ま しい態様では, バインダーをほぼ完全に熱分解させるので, このような生体 親和性に乏しい化合物をもバインダーに含めることができる。 このようなフ タル酸エステル類として, ジブチルフタレ一トなどの d _ C 5アルキルフタ レ一卜があげられる。 このようなフタル酸エステル類をあえて用いることで , より好ましい物性を有する骨充填剤を得ることができた。
[0147] フタル酸エステル類の分子量は, 特に限定されず, 得られる骨充填剤の物 性を損なわないよう適宜調整すればよいが, 例えば, 重量平均分子量で 1 X 1 0 4〜 1 X 1 0 7があげられる。 フタル酸エステル類は, 揮発性に乏しいも のが好ましい。 バインダーにおけるフタル酸エステル類の含有量は, 特に限 定されず, 得られる骨充填剤の物性を損なわないよう適宜調整すればよいが , 例えば, 0重量%〜2 0重量%があげられ, 好ましくは 0 . 5重量%〜1 5重量%である。
[0148] バインダーは, 後の脱バインダー工程などで, 熱分解することなどにより 除去される。 すなわち, バインダーが存在した部分は, 基本的には空隙とな る。 よって, 原材料に加えるバインダーの量を制御することで, 得られる骨 充填剤の空隙率や強度を調整できる。 ただし, 一般的には, バインダーは, 原材料の粒子間を埋めるに十分なだけの量が必要とされる。 なぜなら, バイ ンダ一の添加量が少なければ, 適切な流動性を得ることができず, ショート モールドゃゥエルドなどの成形欠陥や, 得られる成形体の形状や密度がばら つく原因となる。 よって, バインダーの添加量として, 原材料の重量を 1 0 0重量部としたとき, バインダーの添加量として, 1 0重量部〜 1 0 0重量 部があげられ, 2 0重量部〜 5 0重量部でもよい。 原材料とバインダーにお けるバインダーの配合割合は, 2 5容積%〜7 0容積%があげられ, 好まし くは 3 0容積0/ &〜 5 5容積0 /oであり, さらに好ましくは 3 5容積0/ &〜 4 5容 積0 /oである。
[0149] 骨充填剤の製造方法の好ましい態様は, "カルシウム系物質を含む原材料 , 及びバインダーを含む材料" に, ガラス成分を含む骨充填剤の製造方法で ある。 ガラス成分として, 二酸化ケイ素を主成分とする石英ガラス; B 2 0 3 を 5重量 °/ &〜 2 0重量%含有するホウケィ酸ガラス;鉛を 5重量 °/ &〜 4 0重 量%含有する鉛ガラス; 力リウムを 5重量%〜3 0重量%含有する力リウム ガラス; フッ化ナトリウム, フッ化アルミニウム, 及びフッ化ストロンチウ ムを含むフルォロアルミノシリケ一トガラス;又はそれらのガラスに, ホウ 酸, 酸化ランタン, 酸化ガドリニウム, 酸化ニオブ, 酸化ジルコニウム, 又 はバリウムの 1種又は 2種以上を適宜混入したもの; を適宜用いることができ る。 ガラス成分をあえて加えることで, 焼結体の焼結性をあえて低めて, 微 小なクラックゃ孔を入れることができ, その結果細胞を培養するために好ま しい骨充填剤を得ることができる。 一方, ガラス成分は, 骨充填剤の強度を 高めるので, クラックゃ孔を生じても, 好ましい強度を有する骨充填剤を得 ることができると考えられる。 ガラス成分として, チタン, チタン合金, コ バルト一クロム合金, ステンレス, アルミナ, ジルコニァを用いてもよいし
, それらの適量を適宜混合してもよい。 アパタイ ト (c a i。 (P O 4) 6 o) などのリン酸カルシウム系結晶や C a O— S i 0 2 _ M g O _ P 2 0 5系結晶化 ガラスなどのリン酸カルシゥム系結晶化ガラスを適宜用いてもよい。
[0150] ガラス成分の添加量は, 要求される骨充填剤の物性に応じて適宜調整すれ ばよいが, 例えば, 原材料の重量を 1 0 0重量部としたとき, ガラス成分の 添加量として, 1重量部〜 2 0重量部があげられ, 2重量部〜 1 0重量部で もよい。 混練材におけるガラス成分の配合割合は, 1容積%〜2 0容積%が あげられ, 好ましくは 2容積%〜 1 0容積%であり, さらに好ましくは 3容 積%〜 1 0容積%である。 [0151 ] 骨充填剤の製造方法の好ましい態様は, "カルシウム系物質を含む原材料 , 及びバインダーを含む材料" に, 塩分又は糖分 (好ましくは塩分) を含む , 骨充填剤の製造方法である。 このような塩分又は糖分を含めば, 焼結体の 焼結性をあえて低めて, 微小なクラックゃ孔を入れることができ, その結果 細胞を培養するために好ましい骨充填剤を得ることができる。 また, 骨充填 剤を得た後に, 水などに浸漬することで, 塩分又は糖分を除去し, 多孔質な 骨充填剤を得ることができるので, 細胞を培養するために好ましい骨充填剤 を得ることができる。 塩分又は糖分は, 公知の塩分又は糖分を適宜用いるこ とができる。 塩分として, 水などで溶解し, バインダーが熱分解される温度 で熱分解されないもの, 特に無機塩が好ましぐ 具体的には, 塩化ナトリウ ム, 塩化カリウム, 塩化カルシウム, 又は炭酸カルシウム, があげられる。 糖分として, ショ糖, ブドウ糖, 果糖など公知の糖分を適宜用いることがで きる。 なお, 塩分又は糖分とは別に, もしくは塩分又は糖分とともに熱分解 性成分を適宜含むものは好ましい態様である。 熱分解性成分とは, 混合工程 では, 熱分解しないが, 成形工程や焼結工程, 又は成形工程や焼結工程にお ける加熱温度よりも高い温度において熱分解する成分を意味する。 そのよう な熱分解成分を適宜含有すれば, 成形中, 焼結中, 焼結後のいずれかの段階 で熱分解されるので, 適切な空隙を有する骨充填剤を得ることができる。
[0152] 塩分又は糖分の添加量は, 要求される骨充填剤の物性に応じて適宜調整す ればよいが, 例えば, 原材料の重量を 1 0 0重量部としたとき, 塩分又は糖 分の添加量として, 1重量部〜 2 0重量部があげられ, 2重量部〜 1 0重量 部でもよい。 混練材における塩分又は糖分の配合割合は, 1容積%〜3 0容 積%があげられ, 好ましくは 2容積%〜 2 0容積%であり, さらに好ましく は 3容積%〜 1 0容積%である。 なお, 熱分解性成分を添加する場合も塩分 又は糖分と同様の量を添加すればよい。
[0153] 混練工程では, 上記した原料粉末とバインダーなどとを混合する。 これに より射出成形用の材料であるコンパゥンドを得る。 原料粉末が均一に混合さ れていなければ, 成形体の形状寸法が悪くなるなどの問題が生ずる。 特に, 製造方法により得られる骨充填剤は, 薬物の投与量を一定にする観点から, —つ一つの形状が一定であることが望ましいので, できるだけ原料を均一に 混合することが望ましい。
[0154] 混練工程における温度は, バインダーの種類などに応じて適宜調整すれば よいが, 温度が低いと混ざらないし, 温度が高いと /くィンダ一が熱分解して しまうので, 1 1 0 °C〜2 4 0 °Cがあげられ, 好ましくは 1 3 0 °C〜 1 9 0 °Cであり, より好ましくは 1 4 0 °C〜1 6 0 °Cである。
[0155] 混練工程における時間は, 原料を均一に混練するためには長時間を必要と し, 時間が長すぎれば混練中にバインダーが熱分解することがあるため, バ ィンダ一の種類などに応じて適宜調整すればよいが, 3 0分〜 5時間があげ られ, 4 5分〜1 . 5時間でもよい。
[0156] 混練工程における混練機として, 例えば, 加圧式ニーダ一, 一軸又は二軸 の押出式ニーダーを適宜使用できる。 本発明により得られる骨充填剤は, 移 植に用いることが考えれる医療機器であるから, 混練機の羽根が磨耗して不 純物が混入する事態を避けることが好ましい。 このような観点から, 混練機 の羽根は高硬度の高いものを用いることが望ましぐ T i Nコーティングな どの表面保護層が形成されるように表面処理が施されている羽根を用いるこ とが好ましい。
[0157] 混練工程は, 例えば以下のようにすればよい。 あらかじめ設定した温度に ニーダーを加熱した後 融点が高いバインダーをはじめに混練機へ投入する
。 バインダーの溶融が進んだ後に原料粉末を投入する。 その後, 融点が低い バインダ一と原料粉末とをともに混練機へ投入し, 1 / 2容積量〜 4 / 5容 積量の原料を投入した後, D B P (ジブチルフタレート) などの低揮発成分 を投入し, その後, 残りの原材料を投入する。 このように, 高融点のバイン ダ (高粘性) と原料粉末をはじめに混練することで, 粉末の凝集を分散させ る効果を得ることができた。
[0158] 具体的には, (メタ) アクリル系樹脂及び前記エチレン一酢酸ビニル共重合 体を混練機へ投入し, 混練しつつ前記原材料, 前記パラフィンワックス及び 前記ステアリン酸を混練機へ投入し, 混練しつつ前記ジブチルフタレートを 混練機へ投入するものがあげられる。 このように混練を行うことで, 射出成 形用の材料であるコンパウンドを得ることができる。
[0159] ただし, 本発明では, 得られる骨充填剤が, 将来的には骨と置き換わるも のであるから, あえて成形品に微小なクラックを入れて, 骨と置き換わるこ とを促進してもよい。 そのような観点からは, 例えば, 混練時間を 1 5分〜 3 0分としてもよく , 混練温度を 8 0 °C〜 1 0 0 °Cとしてもよい。
[01 60] 成形工程は, 射出成形により所定の形状を持った成形体を得るための工程 である。 骨充填剤は, 正四面体の中心から各頂点へ向けた方向に伸びる 4つ の形状が好ましいので, 以下このような骨充填剤を製造するための金型の例 を説明する。 前記金型は, 材料を注入するための注入口 (ゲート) が設けら れる固定側金型と, 材料を注入する際は前記固定側と接触するが, 成形後は 前記固定側から離れる可動側金型とを有するものがあげられる。
[01 61 ] 成形工程では, 好ましくは射出成形機を用いて射出成形を行う。 射出成形 機は, 特に限定されず公知の射出成形機を適宜用いることができる。 射出成 形機として, 縦型又は横型;高圧式, 中圧式又は低圧式; プランジャ式又は スクリュー式などがあげられる, ただし, このリン酸カルシウム系物質を用 いて微小な骨充填剤を製造するためには, 横型でスクリユー式 (好ましくは 高圧式) の射出成形機を好ましく用いることができる。 ただし, スクリュー ■シリンダが磨耗するなどして生ずる不純物が成形体へ混入すると,通常の成 形体であれば, 特に問題とならないが, 骨充填剤は生体内に投与されること が意図されているので問題が生ずるおそれがある。 そこで, スクリューの表 面に, T i Nコーティング層などの磨耗保護層を設けることが好ましい。
[01 62] 脱バインダー工程は, 前記成形工程で得られた成形体に含まれるバインダ 一を取り除き脱脂体を得るための工程である。 脱バインダー工程は, 脱脂ェ 程ともよばれる。 この脱バインダー工程で, バインダーを十分に取り除いて おかなければ, 後の焼結工程で, 成形体に亀裂が生じる場合や, ふくれが生 ずる場合がある。 脱脂工程では, 変形やクラックなどの欠陥を発生させずに 脱バインダーを完了することが期待される。 バインダーを除去するための方 法には, 昇華法, 自然乾燥法, 溶剤抽出法及び加熱脱脂法などがあげられ, 好ましくは加熱脱脂法である。 加熱脱脂法には, 大気雰囲気, 減圧雰囲気, 加圧雰囲気, 及びガス雰囲気で行う方法などがあるが, 好ましくは大気雰囲 気下で加熱して脱脂を行うものである。 脱脂炉に, 成形体を投入する際は, 好ましくはセラミックスセッター(多孔質, 緻密質)に載せる。 成形体が大き い場合(肉厚が厚い), アルミナなどの多孔質であるセッターが好ましい。 ま た セッターの汚れや, 加熱によるセッター材質から来る成分が不純物にな らないように配慮することが望ましい。
[0163] 脱バインダー工程は, たとえば, バインダーに含まれる樹脂の熱分解温度 に応じて, 複数段階の昇温時間と維持期間を有する。 そして, 特に熱分解温 度の低い樹脂を効果的に熱分解させることで焼結性を上げることができる。 本発明では, 上記のように温度を上げるので, 効果的に熱分解温度の低い樹 脂を熱分解させることができる。 好ましい態様では, 骨充填剤が生体内に投 与されるにもかかわらず, 生体親和性に優れない化合物をバインダーに含め てもよい。 そのような化合物は特に融点が低いバインダーであることが多い 。 そこで, 昇温工程では, 融点が低いバインダーを確実に蒸発させるため, 比較的緩やかに温度をあげることが好ましぐ 具体的には, 1 1 0 °C〜3 0 0 °Cの第一の維持期間に達成するまでの間 (好ましくは 2 3 0 °C〜2 5 0 °C に達するまでの間) , 1 °C /時間〜 3 X 1 0 2°C/時間で昇温するものがあげ られ, 好ましくは 1 X 1 0 °C/時間〜 2 X 1 0 2°C/時間で昇温するものであ り, さらに好ましくは 2 X 1 0 °C/時間〜 5 X 1 0 °C/時間で昇温するもの であり, 3 X 1 0 °C/時間〜 4 X 1 0 °C/時間で昇温するものであってもよ し、。 維持工程は, 例えば 2 X 1 0分〜 5時間があげられ, 好ましくは 3 X 1 0分〜 2時間である。
[0164] 焼結工程は, 脱バインダー工程後の成形体を加熱するための工程である。
例えば, 特開 2 0 0 4 _ 9 7 2 5 9号公報 (上記特許文献 1 ) では, 1 2 5 0 °Cで 1時間焼結している (同公報の段落 [ 0 0 2 5 ] ) 。 しかし, 好ましい態 様では, 大気雰囲気から最高温度 9 X 1 02°C〜1. 1 X 1 03°Cまで加熱す る。 これは, 例えば, ひ一 TCPなどの原材料を用いた場合に, 効果的に; S _T C Pに変換するためである。 高温の維持時間は, 例えば, 5 Χ 1 0-1時 間〜 3時間があげられる。 なお, 焼結工程には, 昇温工程 (及び維持工程) 後に, 通常冷却工程をともなう。 冷却工程は, 公知の冷却方法を適宜用いれ ばよい。 冷却時間を含んだ焼結時間は, 例えば 6時間〜 5 X 1 0時間があげ られ, 好ましくは 1 X 1 0時間〜 3 X 1 0時間である。 成形温度として 1 X 1 02°C〜 1 . 5 X 1 02°Cがあげられる。 また, 金型温度として, 1 X 1 0 °C〜3 X 1 0°Cがあげられる。
[0165] 後処理工程は, 焼結後の成形体の後処理を行うための任意の工程である。
具体的には, ェジェクタピン跡をきれいにすることや, 成形体を洗浄するも のがあげられる。
[0166] 原料粉末の他に, 公知の薬剤を添加するものは, 好ましい態様である。 こ のようにすれば, 本発明により製造される骨充填剤の体積はほぼ一様なので , 骨充填剤は適切な薬剤の担体として機能する。 このように添加される薬剤 は, 高温にしても活性を損なわないものが好ましい。
[0167] 骨充填剤は, 骨補填剤などともよばれ, 骨欠損部位に充填されるものであ る。 骨充填剤は, そのまま生体内で維持されてもよいが, 生体内において骨 組織と置換されるものが好ましい。 具体的な骨充填剤の組成として, 公知の 組成のものを適宜用いることができる。 具体的な, 骨充填剤の組成として, カルシウム系物質を含有するものがあげられ, カルシウム系物質として, リ ン酸カルシウム系物質又は炭酸カルシウム系物質のいずれか又は両方があげ られ, 具体的には, 水酸アパタイ ト, 炭酸アパタイ ト, フッ素アパタイ ト, 塩素アパタイ ト, ;S -T C P, ひ一TCP, メタリン酸カルシウム, リン酸 四カルシウム, リン酸水素カルシウム, リン酸水素カルシウム, リン酸二水 素カルシウム, ピロリン酸カルシウム, それらの塩, 又はそれらの溶媒和物 のうちいずれか 1種又は 2種以上があげられる。
[0168] 骨充填剤として, 適宜薬剤を含有するものは, 本発明の好ましい態様であ る。 具体的には, 骨充填剤を製造する工程において, リン酸カルシウム系物 質など骨充填剤の主成分となる成分に, 適宜薬剤を添加すればよい。
[01 69] また, 製造された骨充填剤に, 適宜薬剤を含浸又は塗布するものは, 本発 明の別の好ましい実施態様である。 薬剤の塗布方法として, 薬剤を公知の薬 学的に許容される希釈剤 (溶媒) に溶解させて医薬組成物を得て, その医薬 組成物を用いて浸漬塗布, スプレー塗布, 又はスピンコート塗布するものが あげられる。 これらの中では, 浸漬塗布が好ましい。 薬剤を浸漬塗布すると 薬剤が骨充填剤の表面又は内部に含浸することとなる。 すなわち, 本発明で は, 所定の薬剤を含浸又は塗布した骨充填剤をも提供できる。 なお, 下記に 説明する薬剤は, R P法などにより骨充填剤を製造する際の原料に混ぜても よい。
[01 70] 本発明の骨充填剤の好ましい態様は, 前記薬剤として, 骨■軟骨形成促進 剤 (軟骨形成促進因子を含む) , 関節疾患治療剤, 骨■軟骨疾患予防■治療 剤, 骨再生剤, 骨吸収抑制物質, 血管新生促進剤, 抗菌剤, 抗生物質又は抗 癌剤を具備する上記に記載の骨充填剤である。 本発明の骨充填剤の好ましい 態様は, 前記薬剤として, 下記式(I )で示されるチエノインダゾ一ル誘導体を 具備する, 上記に記載の骨充填剤である。 式(I )で示されるチエノインダゾー ル誘導体 (4 , 5 -ジヒロ ドロ一 1 _メチル _ 1 H—チエノ [ 3 , 4 _ g ] イン ダゾ一ル誘導体) は, 例えば, 特開 2 0 0 2 _ 3 5 6 4 1 9号公報に記載の 方法に従って製造できる。 なお, 薬剤は, 所定の薬効を得るための有効量が , 本発明の骨充填剤に含まれることが望ましい。 すわなち, 本発明では, 公 知の薬剤を用いることができるので, 薬剤が特定の用途に有効に機能するた めに必要な量 (有効量) を投与できることとなるように, その薬剤の含有量 を適宜調整すればよい。
[01 71 ] [化 1]
Figure imgf000061_0001
[0172] (式(I)中, R1は, カルポキシアミ ド基 (- CH (N H2) (C02H) ) , _C H (N H2) (S03H) , -C H (N H2) (S 02 N H R11) , _CH (N H2 ) (PO (N H2) OH) , 及び- CH (N H2) (PO(ORM)OH) があげ られ (ただし, 式中 R11は炭素数が 1〜5の直鎖アルキル基を示す。 ) , これら の中でもっとも好ましいものは, カルポキシアミ ド基である。 )
[0173] 骨■軟骨形成促進剤は, 骨又は軟骨の形成を促進できる剤であれば公知の 剤を適宜利用できる。 具体的な, 軟骨形成促進剤として, 国際公開 2002 _087620号パンフレットに開示される 2_ [ 1 - (2, 2—ジェトキ シ—ェチル)— 3— (3— p—トリル—ウレジド)一2, 3—ジヒドロ一 1 H—ィ ンドール _3_ィル] _N_p_トリル-ァセトアミ ド (2- [1- (2, 2- Diethoxy- e thy I ) -3- (3-p-to lyl-ureido) -2, 3-d i hydro- 1 H- i ndo I -3-y I ] -N-p-to I y I -aceta mide) があげられる。 軟骨形成促進剤として, 骨形成促進因子があげられる 。 骨形成促進因子は, 一般に BM P (Bonemorphogenetic protein)と称され, この BMPは未分化の間葉系細胞に細胞外から作用し, その遺伝形質を軟骨 細胞や骨芽細胞へと分化させ, 軟骨誘導, 骨誘導する物質である。 骨形成促 進因子として, BMP 1〜1 3があげられる。 本発明において薬剤として B M Pを用いる場合の B M Pは, 遺伝子組み換えあるいは Dunn骨肉腫から分離 , 精製して得られたもの(Takaoka, Κ· , Biomedical Research, 2(5)466-471 ( 1981))のいずれでもよぐ 公知の製造方法により得ることができる。 [0174] 関節疾患治療剤として, p 38 M A Pキナーゼ阻害剤 (WO 00/648 94などに記載のチアゾ一ル系化合物等) ; マトリックスメタ口プロテア一 ゼ阻害剤 (MMP I ) ; プレドニゾロン, ヒドロコルチゾン, メチルプレド ニゾロン, デキサベタメタゾン, ベタメタゾン等の抗炎症ステロイ ド剤;及び インドメタシン, ジクロフエナク, ロキソプロフェン, イブプロフェン, ピ ロキシカム, スリンダク等の非ステロイ ド性消炎鎮痛剤があげられる。
[0175] 骨■軟骨疾患予防■治療剤として, 例えば, プロスタグランジン A 1誘導 体, ビタミン D誘導体, ビタミン K2誘導体, エイコサペンタエン酸誘導体 , ベンジルホスホン酸, ビスホスホン酸誘導体, 性ホルモン誘導体, フエノ —ルスルフォフタレイン誘導体, ベンゾチォピランまたはべンゾチェピン誘 導体, チエノインダゾ一ル誘導体, メナテトレノン誘導体, ヘリォキサンチ ン誘導体などの非べプチド性骨形成促進作用物質, 難溶性のぺプチド性骨形 成促進物質のいずれか 1種又は 2種以上の混合物があげられる。 これらはいず れも公知の方法により得ることができる。 骨■軟骨疾患予防剤は, 骨■軟骨 疾患に罹患する事態を予防する剤又は骨■軟骨疾患が発症する事態を防止す る剤のいずれか又は両方があげられる。
[0176] 骨再生剤として, カルモジュリン, ァクチノマイシン D, サイクロスポリ ン A, 硫酸グルコサミン, 塩酸グルコサミン, 骨髄エキス, リン酸カルシゥ ム, 乳酸/グリコール酸/ど—力プロラク トン共重合体, 多血小板血漿, 又 はヒト骨髄間葉細胞のいずれか 1種又は 2種以上の混合物があげられる。 これ らはいずれも公知の方法により得ることができる。
[0177] 骨吸収抑制物質として, エストロゲン剤, カルシトニン及びビスホスホネ -卜のいずれ力、 1種又は 2種以上の混合物があげられる。 これらはいずれも公 知の方法により得ることができる。
[0178] 血管新生促進剤として, インジゴカルミン, 4_ [!\1_メチル_1\1_ (2 —フエニルェチル) ァミノ] _ 1 _ (3, 5—ジメチル一 4 _プロピオニル ァミノべンゾィル) ピぺリジン, 4_(5 7,8,9, 10_テトラヒドロ_5,7,7, 10, 10 -ペンタメチルベンゾ [e]ナフト [2, 3-b] [1,4]ジァゼピン- 13-ィル) 安息香酸 , 活性化プロテイン C, ゥロテンシン I I様ペプチド化合物, 繊維芽細胞成長 因子 (FG F) (塩基性 FG F及び酸性 FG Fを含む) , 血管内皮細胞成長 因子 (V EG F) (血小板由来が好ましい。 ) , 肝細胞成長因子 (HG F) , アンギオポェチン (アンギオポェチン一 1及びアンギオポェチン一 2を含 む。 ) , 血小板由来成長因子 (P DG F) ,インシュリン様成長因子 ( I G F ) , 又は胎児型平滑筋ミオシン重鎖 (SMemb) の 1種又は 2種以上の混合 物があげられる。 これらの中では, 繊維芽細胞成長因子が好ましい (Hockel, M. et
a I. , Arch. Surg. , No.128, p.423, 1993) 。 繊維芽細胞成長因子として, 塩基性 繊維芽細胞成長因子 (bFGF) が好ましぐ より具体的には, トラフエルミン (遺伝子組み換え) があげられる。 すなわち, 本発明の骨充填剤の好ましい 態様のひとつは, 前記薬剤として, トラフエルミン, その塩, その溶媒和物 又はそのプロ ドラッグを具備する, 上記に記載の骨充填剤である。 "その塩 " は, トラフエルミンの塩を意味し, 具体的な塩は, 先に説明した塩と同様 である。 "その溶媒和物" は, トラフエルミンの溶媒和物を意味し, 具体的 な溶媒和物は, 先に説明した溶媒和物と同様である。 "そのプロ ドラッグ" は, トラフエルミンのプロ ドラッグを意味し, 投与後, 生体内などでトラフ エルミン, その電離物(イオン)又はその塩などに替わる剤を意味する。 具体 的には, アミノ基などの保護基を有しており, 生体内で保護基が外れて, ト ラフエルミンと同様の機能を有するものがあげられる。
抗菌剤又は抗生物質として, 公知の抗菌剤や抗生物質を適宜用いることが できる。 具体的な抗菌剤又は抗生物質として, スルファセタミ ド (sulfaceta mide) , スルファメチゾール (sufamethizol) , スルフアジミジン (sulfadi midine) , スゾレファメラシン (.sulfamerazine) , スゾレフアンアンン (sulfad iazine) などのサルファ剤; クロラムフエニコ一ル (chloramphenicol : CP) , チアムフエニコ一ル (tiamphenicol) , などのクロラムフエニコ一ル系抗 菌剤;オフロキサシン (of loxacin: 0FLX) シプロフロキサシン (ciprofloxa c i n: CPFX) , ェンロフロキサシン (enrof loxacin) , ロメフロキサシン (lo mef loxacin: LFLX) , ルフロキサシン (rufloxacin) , レポフロキサシン (I evof I oxac i n: LVFX) , フレロキサシン (f leroxacin: FLRX) , ナジフロキサ シン (nadif loxacin: NDFX) , ノルフロキサシン (norfloxacin: NFLX) , ス パフロキサシン (sparf loxacin: SPFX) などのキノロン系抗菌剤; フシジ ン酸 (fusidic acid: FA) ; フサファンギン (fusafungi ne) ; フォスフォマ イシン (fosfomycin: F0M) ;ムピロシン (mupi roci n: MUP) ; ブロデモプリ ム (brodimopr im) ; シリスロマイシン (.dirithromycin) ;ベンシゾレぺニシ リン (benzylpenici 11 in: PGG) ペニシリン G . プロ力イン (ペニシリン G プロ力イン塩, penici 11 in G procaine) , ベンジルペニシリン■ベンザ 'チン
(ベンジゾレペニシリンベンザチン塩, benzathine penici 11 in) , フエノキシ メチゾレペニシリン (phenoxymethylpenici 11 in| ; Penici 11 in V) , メチシリ ン (methici 11 in) アンピシリン (ampici 11 in : ABPG) クロキサシリン ( cloxaci 11 in: MCI PC) , カルペニシリン (carbenici 11 in) , ピヴアンピシリ ン (pivampici 11 in: PVPG) ァモキシシリン (AMPG) タランピシリン (ta lampici 11 in: TAPG) , /くカンピシリン (bacampici 11 in: BAPC) , チカルシ リン (ticarci 11 in: TIPG) ァゾシリン (azloci l l in) メズロシリン (me zloci 11 in) , ピブメシリナム (pivmeci 11 inam: PMPC) , ピぺラシリン (pip eraci 11 in: PIPC) , ァモキシシリン-クラブラン酸 (amoxici 11 in: AMPG/cla vu I an i c-ac i d: CVA; co-amoxiclav) ) , ァパラシリン (.apalci 11 in) , テモ シリン (temoci 11 in) , チカルシリン—クラブラン酸 (ticarci 11 in/clavulani c acid: CVA) , アンピシリン-スルバクタム (ampici 11 in: ABPG/sulbactam
: SBT) , スルタミシリン (siHtamici 11 in: SBTPG) , ピぺラシリン-タゾバ クタム (piperaci 11 in: PIPG/tazobactam: TAZ) , などのペニシリン系抗生 物質;ストレプトマイシン (streptomycin: SM) などのストレプトマイシン 系抗生物質; クロ口テトラサイクリン (chlortetracycl ine) , ォ一レオマイ シン (aureomycin) , クロラムフエニコ一ゾレ (chloramphenicol : CP) , 才キ シテトラサイクリン (oxytetracycl ine: 0TG) , デメチルクロルテトラサイ クリン (demethyl chlortetracycl ine) , デメクロサイクリン, レダマイシン :登録商標) , ライムサイクリン (lymecycl ine) , ドキシサイクリン (doxyc yc I i ne: DOXY) , ミノサイクリン (minocycl ine: ΜΙΝ0) , などのテトラサイ クリン系抗生物質; ネオマイシン (neomycin) , スぺクチノマイシン (spect i nomyc i n: SPCM) , ゲンタマイシン (gentamycin: GM) , トブラマイシン (t obramycin: TOB) , アミカシン (amikacin: ΑΜΚ) , ミクロノマイシン (micr onomicin: MCR) , イセ/ヽンン (isepamicin: ISP) , ァゾレベカシン (arbekac i n: ABK) , などのアミノグリコシド系抗生物質; エリスロマイシン (erythr omycin: EM) , スピラマイシン (spi ramycin: SPM) , ロキシスロマイシン ( roxithromycin: RXM) , アジスロマイシン (azithromycin: AZM) , ミデカマ イシン (midecamycin: MDM) , クラリスロマイシン (clarithromycin: CAM) , などのマクロライ ド系抗生物質;バンコマイシン (vancomycin: VCM) , テ ィコブラニン (teicoplanin: TEIG) , などのグリコペプチド系抗生物質; コ リスチン (col istin: CL) などのポリべプチド系抗生物質;バージニアマイ シン (vi rginiamycin) , プリスチナマイシン (pr istinamycin) などのス卜 レプトグラミン系抗生物質; クリンダマイシン (c I i ndamyc i n: CLDM) , など のリンコマイシン系抗生物質;セファレキシン (cephalexin: GEX) , セファ ゾリン (cefazol in: GEZ) , セフラジン (cefradine: GED) , セフアドロキ シル (cefadroxi l : CDX) , セフアマンドール (cefamandole: GMD) , セフロ キシム (cefuroxime: GXM) , セファクロル (cefaclor: GGL) , セフォタキ シム (cefotaxime: GTX) , セフスロジン (cefsulodin: GFS) , セフペラゾ ン (cefperazone) , セフォチアム (cefotiam: GTM) , セフトリアキソン (c eftriaxone: CTRX) セフメノキシム (cefmenoxime: GMX) , セフタジジム (c eftazidime: CAZ) , セフ卜口キシム (cefti roxime) , セフォニシド (cefon icid) , セフピラミ ド (cefpiramide: GPM) , セフオペラゾン一スルバクタ ム (cefoperazone: CPZ/sulbactam: SBT) , セフポドキシム (cefpodoxime: CPDX) , セフォジジム (cefozidime) , セフジニル (cefdini r: GFDN) , セ フエタメ ト (cefetamet: GEMT) , セフエピロム (cefpi rome: GPR) , セフエ プロジル (cefprozi l) , セフエティブフェン (ceftibufen) , セフエピム ( cefepime: CFPM) , などのセファロスポリン系抗生物質;セフォキシチン (c efoxitin: CFX) , セフメタゾ一ル (cefmetazole: GMZ) , セフォテタン (ce fotetan: CTT) , などのセファマイシン系抗生物質; ラタモキセフ (latamox ef : LM0X) フロモキセフ (f lomoxef : FM0X) などのォキサセフエム系抗 生物質; イミぺネム -シラスタチン (imipenem: IPM/ci lastatin: CS; チェナ ム:登録商標) などの力ルバぺネム系抗生物質; ァズトレオナム (aztreonam : AZT) などのモノバクタム系抗生物質; 口ラカルべフ (loracarbef : LCBF) などのカルバセフエム系抗生物質;パニネム-ぺタミブロン (panipenem : PAP M/betamipron: BP) , などの力ルバぺネム系抗生物質; リスロマイシン (tel ithromycin: TEL) などのケトライ ド系抗生物質のうち, 1種又は 2種以上を適 宜混合したものがあげられる。
抗癌剤は, 癌を治療又は予防するための医薬である。 抗癌剤として公知の 抗癌剤を適宜用いることができる。 具体的には, OK—432 (商品名ピシ バニ一ル) などの抗癌溶連菌製剤; クレスチン, レンチナン, レンチナン, シゾフィラン, ソニフイランなどの抗癌多糖体; マイ トマイシン C (商品名 マイ トマイシン他) , ァクチノマイシン D (商品名コスメゲン) , 塩酸ブレ ォマイシン (商品名ブレオ) , 硫酸ブレオマイシン (商品名ブレオ S) , 塩 酸ダウノルビシン (商品名ダウノマイシン) , 塩酸ドキソルビシン (商品名 アドリアシン) , ネオカルチノスタチン (商品名ネオカルチノスタチン) , 塩酸アクラルビシン (商品名ァクラシノン) , 又は塩酸ェビルビシン (商品 名フアルモルビシン) などの抗癌抗生物質; ビンブラスチンのような有糸分 裂阻害剤; シス一ブラチン, カルポプラチン及びシクロホスフアミ ドのよう なアルキル化剤;例えば 5 _フルォロウラシル, シトシンァラビノシド及び ォキシ尿素 (hydroxyurea) , N - { 5 - [N - (3, 4—ジヒドロ一 2—メチ ル _4_ォキソキナゾリン一 6_ィルメチル) 一N—メチルァミノ] _2_ テノィル } _ L—グルタミン酸のような抗代謝剤; アドリアマイシンゃブレ ォマイシンのような層間抗生物質;例えばァスパラギナーゼのような酵素; ェトポシドのようなトポイソメラ一ゼ阻害剤; インタ一フエロンのような生 物的反応修飾剤; "NOLVADEX" (タモキシフヱン) のような抗エストロゲン剤 , "GAS0DEX"のような抗アンドロゲン物質; フルォロウラシル, テガフール , テガフール■ゥラシル, 及びメ トトレキサ一卜のような代謝拮抗剤; ビン クリスチンのような植物アル力ロイ ド; マイ トマイシン C, ァクチノマイシ ン D, 塩酸ブレオマイシン, 硫酸ブレオマイシン, 塩酸ダウノルビシン, 塩 酸ドキソルビシン, ネオカルチノスタチン, 塩酸アクラルビシン, ァクラシ ノン, 及び塩酸ェピルビシンのような抗癌抗生物質; シクロ トリホスファゼ ン一白金錯体複合体, シスブラチン一白金錯体複合体のような白金錯体があ げられる。
[0181] なお, 本発明の骨充填剤は, 生体内において骨と置き換わることを促進す ることが期待されるので, 特定のポリべプチド又は遺伝子を含む薬剤が骨充 填剤に含浸又は表面に塗布されていてもよい。 そのようなポリべプチド又は 遺伝子として, 塩基性線維芽細胞増殖因子 (b FG F) , 血小板分化増殖因 子 (PDG F) , インスリン, インスリン様増殖因子 ( I G F) , 肝細胞増 殖因子 (HG F) , グリア誘導神経栄養因子 (GDN F) , 神経栄養因子 ( N F) , ホルモン, サイ ト力イン, 骨形成因子 (BMP) , トランスフォー ミング増殖因子 (TG F) , 血管内皮細胞増殖因子 (VEG F) などがあげ られる。 これらのなかでは, 血管新生および/または骨形成を促す増殖因子 が好ましい。 そのような増殖因子としては, 例えば骨形成因子 (BMP) , 骨増殖因子 (BG F) , 血管内皮細胞増殖因子 (VEG F) およびトランス フォーミング増殖因子 (TG F) があげられる。 具体的には, 特許 37 1 3 290号に開示される力ルポニン遺伝子などがあげられる。 遺伝子は, 骨充 填剤中に, 遺伝子治療に有効な量含まれていればよい。 遺伝子は, そのまま (ネイキッド) , ミセル状, 又はウィルスベクターなどの公知のベクターに 形質転換された組換えベクターの形で含まれればよい。 また, 薬剤は, 公知 の遺伝子の抗体であってもよい。
[0182] 遺伝子は, 通常の方法に従い, 公知の配列を基に調整することができる。
例えば, 骨芽細胞から RN Aを抽出し, 公知の配列を元にプライマ一を作製 し, PCR法でクロ一ニングすることにより目的とする遺伝子の c DN A力《 調整できる。 また, 市販のものを購入して用いても良い。
本発明の骨充填剤の好ましい態様は, 安定化剤を含む上記に記載の骨充填 剤である。 安定化剤として, ポリマーなどに用いられる公知の安定化剤, 特 に薬学的に許容される安定化剤を適宜用いることができる。 なお, 本発明の 骨充填剤は, 主に生体内において長期間にわたって強度が維持される。 そし て, 生体内には, プロテアーゼなどの酵素が存在するので, 骨充填剤が早期 に分解される事態が想定される。 そこで, 本発明の好ましい態様では, 安定 化剤として, プロテアーゼインヒビターなどの阻害剤を含ませるものがあげ られる。 このような阻害剤として, 公知の酵素阻害剤を適宜用いることがで きる。 具体的な, プロテア一ゼインヒビタ一として, 4_(2_アミノエチル)ベ ンゼンスルフォニルフルオライ ド, ァプロチニン (Aprotinin) , ベスティン (Bestain) , カルパインインヒビタ _Ι , カルパインインヒビタ _l I , シモ スティン (Ghymostain) , 3, 4 -ジククロ口イソクマイン (3, 4_Dichloroisoco umain) , E-64, EDTA, EGTA, ラクタシスチン (Lactacysti η) , ロイべプチ ン (Leupeptin) , MG-115, MG-132, ぺプスティン A (PepstainA) , フエ二 ルメチルスルフォニルフルオライ ド, プロテアソ一ムインヒビタ _Ι, ρ—ト ルエンスルフォニル _ L—リシンクロロメチルケトン, ρ _トルエンスルフ ォニル _ L—フエ二ルァラニンクロロメチルケトン, 又はチロシンインヒビ ターのいずれか 1種または 2種以上があげられる。 これらのプロテア一ゼイン ヒビタ一は, 市販されており, これらのプロテア一ゼインヒビターの阻害濃 度も公知である。 本発明の骨充填剤によって形成される化合物の好ましい態 様は, 生体内で長期間維持し, 薬剤に対して徐放性を有するものである。 し たがって, 本発明の骨充填剤は, 好ましくは, 上記のプロテア一ゼインヒビ ターの 1回当りの投与量の 2倍〜 1 00倍の量を含むものであり, より好まし <は 2倍〜 50倍の量を含むものである。 プロテア一ゼインヒビターの具体 的な量は, 用いるプロテア一ゼィンヒビタ一の種類などによっても異なるが , プロテアーゼインヒビターとして有効に機能する量 (有効量) 含まれるこ とが好ましく, 一般的に, 骨充填剤 1 g当たり, 0 . 1 g〜0 . 5 mg含ま れるものがあげられ, 1マイクロ g〜0 . 1 m g含まれるものでもよぐ 1 0マイクロ g〜0 . 1 m g含まれるものであってもよい。 具体的な投与量は , 骨充填剤を投与する部位の容積にほぼ比例して増大することとなる。
[0184] 製造された骨充填剤 (又は, 焼結工程後に得られた焼結体) に, 適宜接着 性付与剤を含浸又は塗布するものは, 本発明の別の好ましい実施態様である 。 また, 接着性付与剤が熱で変性しにくいものの場合は, 原料粉末に接着性 付与剤を混ぜておき接着性付与剤が粉体混合された骨充填剤を得てもよい ( このような場合, 骨充填剤の表面にも接着性付与剤が存在するほか, 表面が 骨と置換され新たに現れる表面にも接着性付与剤が存在するので接着性を維 持できることとなる) 。 また, 接着性付与剤は, 成形体又は焼結体の表面に 粉状のまま散布してもよい。 さらに, 複数の骨充填剤と粉末の接着性付与剤 とを混合し適宜攪拌することにより粉体混合し, これにより骨充填剤の表面 に接着性付与剤を付着させてもよい。 接着性付与剤は, 前記の薬剤とともに 含浸又は塗布されてもよいし, 接着性付与剤のみが含浸又は塗布されてもよ し、。 接着性付与剤は, 骨充填剤同士の接着凝集性を高めるための剤であり, 好ましくは接着性付与剤のみでは高い接着性を有しないが, 生体内において 体細胞などと接触することで接着凝集性が高くなる物質が好ましい。 具体的 な,接着性付与剤として, トロンビンがあげられる。 トロンビンは, 血液を固 まりやすくする酵素の一種である。 トロンビンの生体内での働きは, 血液を 固める血液凝固物質であるフイブリンを作り出すことである。 トロンビンに より生成されたフイブリンによって, 血液が固まりやすくなる。 よって, 接 着性付与剤としてトロンビンを用いれば,骨充填剤表面の接着凝集性が高まり , これによつて骨充填剤同士が固定され, 骨充填剤全体としての強度が高ま ることとなる。 トロンビンは, 上記の薬剤と同様の量を上記の薬剤と同様に して含浸又は塗布させることができる。
[0185] "その塩" とは, 上記化合物の塩, 特に薬学的に許容される上記化合物の 塩を意味する。 本明細書において "薬学的に許容される" とは, 受容者に有 害でないことを意味する。 本発明のポリリン酸は, 常法に従って塩にするこ とができる。 その塩としては, 例えば, ナトリウム塩, カリウム塩, リチウ ム塩などのアル力リ金属塩; カルシウム塩, マグネシウム塩などのアル力リ 土類金属塩; アルミニウム塩, 鉄塩, 亜鉛塩, 銅塩, ニッケル塩, コバルト 塩などの金属塩; アンモニゥム塩などの無機塩; t -ォクチルァミン塩, ジべ ンジルァミン塩, モルホリン塩, グルコサミン塩, フエニルグリシンアルキ ルエステル塩, エチレンジァミン塩, N -メチルグルカミン塩, グァニジン塩 , ジェチルァミン塩, トリェチルァミン塩, ジシクロへキシルァミン塩, N , N ' -ジベンジルエチレンジァミン塩, クロ口プロ力イン塩, プロ力イン塩 , ジエタノールアミン塩, N -ベンジル - N -フエネチルァミン塩, ピぺラジン 塩, テトラメチルアンモニゥム塩, トリス(ヒドロキシメチル)ァミノメタン 塩などの有機塩などのアミン塩;があげられる。 これらのうちで, ポリリン 酸の塩として, アルカリ金属塩が好ましく, ナトリウム塩がより好ましい。 本明細書において, "その塩" には, 無水塩のみならず含水塩が含まれても 良い。 これらの塩は, 例えば, 生体内などで電離して上記の化合物と同様に 機能する。
[0186] "その溶媒和物" とは, 上記化合物の溶媒和物を意味する。 溶媒和物とし て, 水和物があげられる。 また, 本発明の剤は, 大気中に放置したり, 再結 晶することにより, 水分を吸収し, 吸着水が付いたり, 水和物となる場合が ある。 そのような溶媒和物を形成する場合も, "その溶媒和物" に含む。 こ れらの溶媒和物は, 生体内などで電離して上記の化合物と同様に機能する。
[0187] 3 - 4 . 骨充填剤の使用方法
上記のようにして製造された骨充填剤は, 例えば, 外科又は整形外科によ る治療により骨欠損部を充填するために用いられる。 図 1に示したように, 本発明の骨充填剤を骨欠損部に充填された患者は, 本発明の骨充填剤が骨欠 損部の形状と一致しているので, 骨充填剤を充填した際に, 充填部の強度が 維持される。 さらに, 骨充填剤が, 骨組織と迅速に置換されるので, 早期に 骨組織が再生されることとなる。 すなわち, 本発明は, 上記のようにして製 造された骨充填剤を用いた骨を欠損した患者の治療方法をも提供できる。
[0188] 4 . 骨充填剤の製造方法
本発明の第 4の側面は, 骨模型を製造する骨模型製造工程と ;前記骨模型 製造工程で得られた骨模型に像形成剤を設置する像形成剤設置工程と ;前記 像形成剤設置工程で骨模型に設置した像形成剤に基づいて, 骨充填剤を製造 する骨充填剤製造工程と ; を含む骨充填剤の製造方法に関する。 なお, 像形 成剤設置工程は, 好ましくは, 前記骨模型製造工程で得られた骨模型を用い て, 骨模型の非対称性を補正するように像形成剤を設置する工程である。 そ のようにすることで, 骨のゆがみを補強できる骨充填剤を得ることができる こととなる。 本発明の第 4の側面の好ましい態様は, 前記骨模型製造工程で 得られる前記骨模型が, 等高線, 又はます目模様が描画された骨模型である 上記に記載の骨充填剤の製造方法に関する。 本発明の第 4の側面の好ましい 態様は, 前記像形成剤充填工程で用いられる像形成剤が, 前記骨模型と X線 透過率, 赤外線透過率, 又は紫外線透過率のいずれかが異なるものである上 記いずれかに記載の骨充填剤の製造方法に関する。 なお, 本発明の第 4の側 面の好ましい態様は, 骨模型が, 骨欠損症の患者, 骨変形症の患者又は美容 整形の患者の骨模型である上記いずれかに記載の骨充填剤の製造方法である 。 本発明の骨充填剤の製造方法で得られた骨充填剤は, 骨の歪みを補正した り, 骨格を美しく補正することができるので, 骨変形症の治療や, 美容整形 などに効果的に利用することができる。
[0189] 5 . ギプスの製造方法
本発明の第 5の側面は, 患者の特定部位を撮影し, 前記患者の特定部位に おける複数の骨の断面図を含む骨のデジタル情報を取得する骨のデジタル情 報取得工程と ;前記骨のデジタル情報取得工程で取得された複数の骨の断面 図を含むデジタル情報に基づいて, 前記患者の特定部位における骨の模型を 製造する骨模型製造工程と ;前記骨模型製造工程で製造された骨模型に骨充 填剤用の像形成剤を設置するとともに, 前記骨充填剤用の像形成剤とは異な る素材を含むギプス形成用の像形成剤を設置する像形成剤設置工程と ;前記 像形成剤設置工程で像形成剤が設置された骨模型を撮影し, 像形成剤のデジ タル情報を取得する像形成剤デジタル情報取得工程と ;前記像形成剤デジタ ル情報取得工程で取得された像形成剤のデジタル情報に基づいて, 骨充填剤 及びギプスを製造する骨充填剤及びギプスの製造工程と ; を含む骨充填剤及 びギプスの製造方法に関する。
[0190] この側面に係る骨充填剤及びギプスの製造方法によれば, 患部にふさわし い骨充填剤を得ることができるとともに, その骨充填剤を適切に支持できる ギプスをも設計できることとなる。 ギプス形成用の像形成剤が, 骨充填剤用 の像形成剤とは異なる素材を含むので, C Tスキャンや M R Iなどで撮影す る際に, それらの形状を区別することができる。 具体的には, これまで説明 した骨充填剤の製造方法と同様にしてギプスをも製造すればよい。 なお, ギ ブスの素材は, ギプスに用いられる公知の素材を適宜用いればよい。 また, 骨充填剤と同じ素材を用いてギプスを製造しても良い。
[0191 ] 本発明の第 5の側面の好ましい態様は, 患者の特定部位を撮影し, 前記患 者の特定部位における複数の骨の断面図を含む骨のデジタル情報, 及び前記 骨の周囲の軟組織に関するデジタル情報を取得する骨及び軟組織のデジタル 情報取得工程と ;前記骨及び軟組織のデジタル情報取得工程で取得された複 数の骨及び軟組織の断面図を含むデジタル情報に基づいて, 前記患者の特定 部位におけるギプスを製造する, ギプスの製造方法に関する。 前記軟組織の デジタル情報に基づいて, ギプスを製造するので, 患者にふさわしい形状を 有するオーダーメードのギプスを製造できることとなる。 なお, 本明細書に おいて, 軟組織とは, 生体のうち骨以外の比較的やわらかい部位を意味し, 具体的には, 内臓, 肉及び皮膚などを意味する。 本発明の骨充填剤及びギブ スの製造方法, 又はギプスの製造方法については, 上記した骨充填剤の製造 方法における好ましい態様, 構成を適宜採用することができる。 具体的には , 例えば, 対象部位として, 左右対称な部位のある部位 (例えば, 頭蓋骨, 上下顎, 四肢, 又は骨盤など) とし, 対応する部位より所定の閾値 (例えば 5 m m) 以上低くなつている部分を抽出し, その領域に骨充填剤を設置した 場合の形状をシミュレーションし, その上で骨充填剤を設置した領域を覆う ような形状のギプスを設計するようにすればよい。 そのような設計は, コン ピュータを上記のように動作させるプログラムを作成することで容易に達成 できる。 すなわち, 対象部分の骨情報及び軟組織情報を入手したコンビユー タは, メインメモリに格納されるプログラムを読み出して, 所定の演算を行 うことにより, ギプスの設計データを得ればよい。 なお, 単純に軟組織部分 に所定値 (例えば 1 c m ) 高くなるような形状のギプスを設計しても良い。
[01 92] 6 . 外見模型, 及びその製造方法
本発明の第 6の側面は, 等高線, 又はます目模様が描画された体のある部 位の外見模型に関する。 等高線又はます目が描画されているので, 特定部位 の歪みを客観的に把握できる。 特に施術前後の外見模型を比較すると, 施術 によってどの程度変化したか客観的に把握することができる。
[01 93] 本発明の第 6の側面の好ましい態様は, 前記外見模型は, 患者の特定部分 の体表を再現したものである上記に記載の外見模型に関する。 患者の特定部 位としては, 先に述べた部位などをあげることができ, 具体的には, 顏, 頭 , 四肢, 胸, 下腹部, 又は腰などがあげられる。
[01 94] 本発明の第 6の側面の好ましい態様は, 患者の特定部位を撮影し, 前記患 者の特定部位における複数の骨, 及び軟組織の断面図を含む前記特定部位の 断面図に関するデジタル情報を取得する断面図デジタル情報取得工程と ;前 記断面図情報取得工程で取得された複数の骨, 及び軟組織の断面図を含むデ ジタル情報に基づいて, 前記特定部位における外表の各部位について基準面 からの高度を求めるか, 又は前記特定部位における外表の各部位について基 準点からの平面上のずれを求める描画情報取得工程と, ラピッドプロ トタイ プ法により前記患者の特定部位における前記特定部位における外表模型を製 造するとともに, 前記描画情報取得工程で得られた高度又は平面上のずれに 基づいて, 等高線又はます目模様を描画する外見模型製造工程と ; を含む外 見模型の製造方法に関する。 このような製造方法によれば, 外見模型を適切 に製造できる。 なお, 患者の特定部位とは, 例えば, 事故などで欠損した部 位, 骨変形症などにより骨の歪みが見られる部位など, 骨充填剤を埋入する 部位を含む部位である。 施術前後の外見模型を得ることができるので, 外科 等の手術において, 施術前後でどの程度外見が変化したかを示すことができ る。 なお, 外見模型については, 先に説明した骨模型と同様の素材, 原料を 用いて同様にして製造できる。 すなわち, 本明細書において骨模型を製造す るための装置, 及び方法として開示したものを適宜用いて外見模型を製造で きる。 繰り返しを避けるため, 記載を準用する。
7 . ェピテーゼ又はェピテーゼ製造用錶型の製造方法
本発明の第 7の側面は, 患者の特定部位を撮影し, 前記患者の特定部位に おける複数の骨, 及び軟組織の断面図を含む前記特定部位の断面図に関する デジタル情報を取得する断面図デジタル情報取得工程と ;前記断面図情報取 得工程で取得された複数の骨, 及び軟組織の断面図を含むデジタル情報に基 づいて, 前記特定部位の 3次元デジタル像を得る 3次元デジタル像取得工程 と ;前記 3次元デジタル像取得工程で得られた前記特定部位の 3次元デジタ ル像に基づいて, ェピテーゼ像データを取得するェピテーゼ像データ取得ェ 程と ;前記ェピテーゼ像データ取得工程で得られたェピテーゼ像データを用 いてラピッドプロ トタイプ法によりェピテーゼを製造する工程と ; を含む, ェピテーゼの製造方法に関する。 このェピテーゼの製造方法においては, 先 に説明した各製造方法において説明した技術を適宜用いればよい。 ェピテ一 ゼとは, 補綴物 (ほてつぶつ) 又は補綴装置の意味であり主に体の表面に取 り付けるための人工物を意味する。 特定部位の 3次元デジタル像に基づいて , ェピテーゼ像データを取得するためには, 例えば, 顏, 顎, 目, 四肢, 骨 盤, 及びその周辺の軟組織など特定部位の左右対称な部位のデジタル像を得 て, その得られた左右対称な部位の情報を左右対称となるようにァフィン変 換を行い, ェピテーゼを取り付ける対象部位のデジタル情報と重ね合わせ, 差分を求めることでェピテーゼ像を得てもよい。 このような方法は, 本明細 書における他の方法においても用いることができる。 また, 患者の特定部位 のデジタル情報に基づいて, 施術者がェピテーゼ像をポインティングデバイ スなどを用いて入力することによりェピテーゼ像に関する情報を得てもよい 。 得られたェピテーゼ像データを用いてェピテーゼ像を製造するためには, 先に説明したラビッドプロ トタイプ法などコンピュータ支援像形成方法を適 宜用いればよい。 特に, M R Iなどで対象部位の色情報も含めて取得してお けば, ラビッドプロ トタイプ法などでェピテーゼ像を製造する際に, 外表部 位情報とその部位の色情報とを関連して記憶させ, その外表部位を製造する 際には, 外表部位と関連して記憶された色情報に従って, インクなどの色素 を塗布することで, 色情報を反映したェピテーゼを製造することができる。 また, 患者の特定部位の外表の色を平均化した情報などに基づいて, ラピッ ドプロ トタイプ法で製造されるェピテーゼ像の基本色を設定して, その色を 反映したェピテーゼを得てもよい。
本発明の第 7の側面の好ましい態様は, 患者の特定部位を撮影し, 前記患 者の特定部位における複数の骨, 及び軟組織の断面図を含む前記特定部位の 断面図に関するデジタル情報を取得する断面図デジタル情報取得工程と ;前 記断面図情報取得工程で取得された複数の骨, 及び軟組織の断面図を含むデ ジタル情報に基づいて, 前記特定部位の 3次元デジタル像を得る 3次元デジ タル像取得工程と ;前記 3次元デジタル像取得工程で得られた前記特定部位 の 3次元デジタル像に基づいて,
前記特定部位の外見模型を製造する外見模型製造工程と ;前記外見模型製造 工程で得られた外見模型に像形成剤を設置する像形成剤設置工程と ;前記像 形成剤設置工程で像形成剤が設置された骨模型を撮影し, 像形成剤のデジタ ル情報を取得する像形成剤デジタル情報取得工程と ;前記像形成剤デジタル 情報取得工程で取得された像形成剤のデジタル情報に基づいて, ェピテーゼ 像を製造するための錶型に関するデジタルデータを得る錶型情報取得工程と ;前記錶型情報取得工程で得られた錶型を製造する錶型製造工程と ; を含む ェピテーゼ製造用錶型の製造方法に関する。 たとえば, 左右対称な部位の一 部が欠損等した場合では残されている部位から欠損した部位の形状を想定す るので, 対称性に優れるェピテーゼの製造方法, 又はェピテーゼ製造用錶型 の製造方法を提供することができる。 本発明によれば, CTスキャンなどで 特定部位の形状情報を取得し, その情報に従ってェピテーゼをコンピュータ 上で設計するので,印象剤などを患者に直接当てる必要がなくなり低侵襲なェ ピテーゼの製造方法, 又はェピテーゼ製造用錶型の製造方法を提供すること ができる。 なお, このようにして得られたェピテーゼ製造用錶型は, 例えば , 錶型内にシリコーンワックスを入れてェピテーゼ基材を製造し, 施術者が 彫刻などの微調整を行い, 着色すればよい。 このようにしてェピテーゼを取 得した後は, 形成外科などにおいて行われる公知の施術方法に従つてェピテ ーゼを取り付ければよい。
実施例 1
以下, 実施例を用いて本発明を具体的に説明する。 しかしながら, 本発明 は, 以下の実施例に限定されるものではなぐ 本明細書に開示された事項に 適宜調整を加えて実施することができるものである。 図 2は, 本実施例にお ける各ステップの概略図である。 すなわち, 本実施例では, 骨変形症の患者 の骨の歪みを補正するための骨充填剤を製造し, 患者に埋め込むことで骨の 歪みを矯正した。 図 2に示されるように, 本実施例における骨充填剤の製造 方法は, 患者の頭蓋骨 (前半分部分) を CTにて撮影しデジタル化した。 図 3は, CTにより撮影された図面に替わる CT画像を示す図である。 図 3 ( a) は, 頰部の CT画像を示す図であり, 図 3 (b) は下顎部の CT画像を 示す図である。 図 3 (a) , 及び図 3 (b) に示されるとおり, CT画像を 撮影した患者は, 骨が左右で非対称であり歪みが生じていた。 この CT画像 をもとに, 患者の頭蓋骨の 3次元デジタル像をコンピュータにより取得し, ラビッドプロ トタイプ法により骨模型 (1 ) を製造した。 図 4 (a) は, 得 られた石膏モデル (骨模型) を示し, 図 4 (b) 骨模型の側面図を示し, 図 4 (c) は等高線を描画した骨模型の設計図を示す。 本実施例では, 等高線 (又はます目) が描画されていない骨模型を用いたが, 図 4 (c) に示され るような等高線などが描画された骨模型を用いれば, 骨の歪みや骨を形成し たい部位を容易に把握できるので好ましい。 [0198] 次に, 骨模型に, 像形成剤を設置した。 すなわち, 歪みが生じている部分 の歪みを補正するように像形成剤をもった。 具体的には, 図 3 (a) , 図 3
(b) 及び図 4 (a) に示される骨補填関心領域 (凹みが認められる部位) に, 骨充填剤を設置した。 図 5 (a) は正面図, 図 5 (b) は側面図, 図 5
(c) は下面図である。 本実施例では, 像形成剤がピンク色なので, ヮック スアップ (像形成剤を設置すること) された部分がよくわかる。
[0199] 次に, 像形成剤を設置した骨模型を CTスキャンにて画像化した。 図 6は
, 像形成剤を設置した骨模型の図面に替わる CT画像である。 図 6 (a) は , 頰部の CT画像を示す図であり, 図 6 (b) は下顎部の CT画像を示す図 である。 図 6 (a) 及び図 6 (b) に示されるように, CTスキャンにより 骨模型部分と, 像形成剤部分とは, 明確に区別できる。 そして, 得られた像 形成剤部分の 3次元デジタルデータに基づいて, ラピッドプロ トタイプ法に より, 骨充填剤を製造した。 得られた骨充填剤にそれぞれ 3箇所, 直径 0. 5mm〜 1. 5mmの穴をそれぞれ 3箇所あけた。 この穴は, 骨充填剤を埋 め込む際に固定用の糸などを通すための穴である。 図 7は, 本実施例により 得られた骨充填剤の図面に替わる写真である。 図 7 (a) は, 頰部に埋めら れる骨充填剤を示す図であり, 図 7 (b) はその裏面を示す図である。 図 7 (c) は下顎部に埋められる骨充填剤を示す図であり, 図 7 (d) はその裏 面を示す図である。
[0200] 得られた骨充填剤を患者に入れる手術を行った。 その結果を図 8に示す。
図 8は, 実施例で得られた骨充填剤を用いて施術した患者の起伏を示す顔面 の等高線が描画された石膏像 (外見模型) の図面に替わる写真である。 この 外見模型もラビッドプロ トタイプ法を用いて製造した。 図 8 (a) は施術前 , 図 8 (b) は施術後のものである。 図 8 (b) を図 8 (a) と比較すると , 施術前に比べて骨の歪みが小さくなっていることがわかる。
産業上の利用可能性
[0201] 本発明の骨模型又は外見模型は, 医師などが, 患者の骨の形状を容易且つ 正確に把握できるので医療用機器産業などの分野で好適に利用される。 本発明の骨充填剤の製造方法は, 骨欠損や骨変形などの補正や矯正に効果 的に利用されうるので, 医療機器産業などにおいて好適に利用されうる。

Claims

請求の範囲
[1 ] 患者の特定部位を撮影し, 前記患者の特定部位における複数の骨の断面図 を含む骨のデジタル情報を取得する骨のデジタル情報取得工程と ;
前記骨のデジタル情報取得工程で取得された複数の骨の断面図を含むデジ タル情報に基づいて, 前記患者の特定部位における骨の模型を製造する骨模 型製造工程と ;
前記骨模型製造工程で製造された骨模型に像形成剤を設置する像形成剤設 置工程と ;
前記像形成剤設置工程で像形成剤が設置された骨模型を撮影し, 像形成剤 のデジタル情報を取得する像形成剤デジタル情報取得工程と ;
前記像形成剤デジタル情報取得工程で取得された像形成剤のデジタル情報 に基づいて, 骨充填剤を製造する骨充填剤製造工程と ;
を含む骨充填剤の製造方法。
[2] 前記患者の特定部位を撮影する工程は, C Tスキャン又は M R Iにより前 記患者の特定部位における複数の骨の断面図を含む骨のデジタル情報を取得 する工程であり ;
前記像形成剤デジタル情報取得工程は, C Tスキャン又は M R Iにより像 形成剤のデジタル情報を取得する工程である ;請求項 1に記載の骨充填剤の 製造方法。
[3] 前記患者の特定部位は, 患者の頭蓋骨, 下顎部, 上顎部, 四肢, 又は骨盤 のいずれかを含む部位である請求項 1に記載の骨充填剤の製造方法。
[4] 前記骨模型製造工程で製造される骨模型は, 等高線, 又はます目模様が描 画された骨模型である請求項 1に記載の骨充填剤の製造方法。
[5] 前記骨模型製造工程で製造される骨模型は, 石膏を含有する骨模型である 請求項 1に記載の骨充填剤の製造方法。
[6] 前記骨模型製造工程で製造される骨模型は, カルシウム系物質とポリビニ ルアルコール樹脂を含有し, 前記カルシウム系物質と前記ポリビニルアルコ ール樹脂の合計重量を 1 0 0重量部とした場合に, 前記ポリビニルアルコ一 ル樹脂は, 2重量部〜 8重量部となるように配合される骨模型である請求項 1に記載の骨充填剤の製造方法。
[7] 前記骨模型製造工程で製造される骨模型は, α型半水石膏とポリビニルァ ルコール樹脂を含有する組成物を原料とし, 前記カルシウム系物質と前記ポ リビニルアルコール樹脂の合計重量を 1 0 0重量部とした場合に, 前記ポリ ビニルアルコール樹脂は, 2重量部〜 8重量部となるように配合される, 請 求項 1に記載の骨充填剤の製造方法。
[8] 前記骨模型製造工程は, ラビッドプロ トタイプ法, 射出成形法, 切削によ る積層造形方法, 又はマシニングセンタを有する加工装置を用いた成形法に より骨模型を製造する工程である, 請求項 1に記載の骨充填剤の製造方法。
[9] 前記骨模型は, 石膏を主成分とし;
前記像形成剤は, ワックス又はプラスティックを全重量の 9 0重量%以上 含有する ;
請求項 1に記載の骨充填剤の製造方法。
[10] 前記骨模型は, 石膏を主成分とし;
前記像形成剤は, ワックスを全重量の 9 0重量%以上含有する ; 請求項 1に記載の骨充填剤の製造方法。
[1 1 ] 前記骨模型は, 石膏を主成分とし;
前記像形成剤は,
ワックスを全重量の 9 0重量%以上含有し,
ルチル型の酸化チタンを全重量の 2重量%以上 5重量%以下含有する ; 請求項 1に記載の骨充填剤の製造方法。
[12] 前記骨充填剤製造工程は, ラピッドプロ トタイプ法により骨充填剤を製造 する工程である, 請求項 1に記載の骨充填剤の製造方法。
[13] 前記骨充填剤製造工程で得られる骨充填剤は, 水酸アパタイ ト, 炭酸アバ タイ ト, フッ素アパタイ ト, 塩素アパタイ ト, S - T C Ρ , a - J C P , メ タリン酸カルシウム, リン酸四カルシウム, リン酸八カルシウム, リン酸水 素カルシウム, リン酸水素カルシウム, リン酸二水素カルシウム, ピロリン 酸カルシウム, それらの塩, 又はそれらの溶媒和物のうちいずれか 1種又は 2種以上を用いて製造される骨充填剤である,
請求項 1に記載の骨充填剤の製造方法。
[14] 等高線, 又はます目模様が描画された骨模型。
[15] 前記骨模型は, 患者の特定部分の骨形状を再現したものである請求項 1 4 に記載の骨模型。
[16] 前記骨模型は, 患者の頭蓋骨の骨形状を再現したものである請求項 1 4に 記載の骨模型。
[17] 骨模型を製造する骨模型製造工程と ;
前記骨模型製造工程で得られた骨模型の骨欠損部に, 像形成剤を充填する 像形成剤充填工程と ;
前記像形成剤充填工程で骨模型の骨欠損部に充填した像形成剤に基づいて , 骨欠損部に充填する骨充填剤を製造する骨充填剤製造工程と ;
を含む骨充填剤の製造方法。
[18] 前記骨模型製造工程は, ラビッドプロ トタイプ法により骨模型を製造する 工程である請求項 1 7に記載の骨充填剤の製造方法。
[19] 前記骨模型製造工程で得られる前記骨模型は, 等高線, 又はます目模様が 描画された骨模型である請求項 1 7に記載の骨充填剤の製造方法。
[20] 前記像形成剤充填工程で用いられる像形成剤は,
前記骨模型と X線透過率, 赤外線透過率, 又は紫外線透過率のいずれかが 異なるものである請求項 1 7に記載の骨充填剤の製造方法。
[21 ] 前記像形成剤充填工程で用いられる像形成剤は,
ルチル型の酸化チタンを全重量の 2重量%以上 5重量%以下含有する請求 項 1 7に記載の骨充填剤の製造方法。
[22] 前記骨模型製造工程で製造される骨模型は, 石膏を主成分とし;
前記像形成剤充填工程で用いられる像形成剤は,
ワックスを全重量の 9 0重量%以上含有し,
ルチル型の酸化チタンを全重量の 2重量%以上 5重量%以下含有する ; 請求項 1 7に記載の骨充填剤の製造方法。
[23] 前記骨充填剤製造工程は, ラピッドプロ トタイプ法により骨充填剤を製造 する工程である請求項 1 7に記載の骨充填剤の製造方法。
[24] 前記骨充填剤製造工程は,
カルシウム系物質を含む原材料, 及びバインダーを含む材料を混練するた めの混練工程と ;
前記混練工程で得られた混練物を用いて, 金型を有する射出成形機を用い た射出成形により所定の形状を持った成形体を得るための成形工程と ; 前記成形工程で得られた成形体に含まれるバインダーを取り除き脱脂体を 得るための脱バインダー工程と ;
前記脱バインダー工程後の脱脂体を加熱し, 焼結し焼結体を得るための焼 結工程と ;
を含む
請求項 1 7に記載の骨充填剤の製造方法。
[25] 前記骨充填剤製造工程で得られた骨充填剤に, 骨■軟骨形成促進剤, 関節 疾患治療剤, 骨 ·軟骨疾患予防 ·治療剤, 骨再生剤, 骨吸収抑制物質, 血管 新生促進剤, 抗菌剤, 抗生物質又は抗癌剤を含浸又は塗布する工程を含む請 求項 1 7に記載の骨充填剤の製造方法。
[26] 骨模型を製造する骨模型製造工程と ;
前記骨模型製造工程で得られた骨模型に像形成剤を設置する像形成剤設置 工程と ;
前記像形成剤設置工程で骨模型に設置した像形成剤に基づいて, 骨充填剤 を製造する骨充填剤製造工程と ;
を含む骨充填剤の製造方法。
[27] 前記骨模型製造工程で得られる前記骨模型は, 等高線, 又はます目模様が描 画された骨模型である請求項 2 6に記載の骨充填剤の製造方法。
[28] 前記像形成剤充填工程で用いられる像形成剤は,
前記骨模型と X線透過率, 赤外線透過率, 又は紫外線透過率のいずれかが 異なるものである請求項 2 6に記載の骨充填剤の製造方法。
[29] 前記骨模型は, 骨欠損症の患者, 骨変形症の患者又は美容整形の患者の骨 模型である, 請求項 2 6に記載の骨充填剤の製造方法。
[30] 患者の特定部位を撮影し, 前記患者の特定部位における複数の骨の断面図 を含む骨のデジタル情報を取得する骨のデジタル情報取得工程と ;
前記骨のデジタル情報取得工程で取得された複数の骨の断面図を含むデジ タル情報に基づいて, 前記患者の特定部位における骨の模型を製造する骨模 型製造工程と ;
前記骨模型製造工程で製造された骨模型に骨充填剤用の像形成剤を設置す るとともに, 前記骨充填剤用の像形成剤とは異なる素材を含むギプス形成用 の像形成剤を設置する像形成剤設置工程と ;
前記像形成剤設置工程で像形成剤が設置された骨模型を撮影し, 像形成剤 のデジタル情報を取得する像形成剤デジタル情報取得工程と ;
前記像形成剤デジタル情報取得工程で取得された像形成剤のデジタル情報 に基づいて, 骨充填剤及びギプスを製造する骨充填剤及びギプスの製造工程 と ;
を含む骨充填剤及びギプスの製造方法。
[31 ] 患者の特定部位を撮影し, 前記患者の特定部位における複数の骨の断面図 を含む骨のデジタル情報, 及び前記骨の周囲の軟組織に関するデジタル情報 を取得する骨及び軟組織のデジタル情報取得工程と ;
前記骨及び軟組織のデジタル情報取得工程で取得された複数の骨及び軟組 織の断面図を含むデジタル情報に基づいて, 前記患者の特定部位におけるギ ブスを製造する,
ギプスの製造方法。
[32] 等高線, 又はます目模様が描画された体のある部位の外見模型。
[33] 前記外見模型は, 患者の特定部分の体表を再現したものである請求項 3 2 に記載の外見模型。
[34] 患者の特定部位を撮影し, 前記患者の特定部位における複数の骨, 及び軟 組織の断面図を含む前記特定部位の断面図に関するデジタル情報を取得する 断面図デジタル情報取得工程と ;
前記断面図情報取得工程で取得された複数の骨, 及び軟組織の断面図を含 むデジタル情報に基づいて, 前記特定部位における外表の各部位について基 準面からの高度を求めるか, 又は前記特定部位における外表の各部位につい て基準点からの平面上のずれを求める描画情報取得工程と,
ラビッドプロ トタイプ法により前記患者の特定部位における前記特定部位 における外表模型を製造するとともに, 前記描画情報取得工程で得られた高 度又は平面上のずれに基づいて, 等高線又はます目模様を描画する外見模型 製造工程と ;
を含む外見模型の製造方法。
[35] 患者の特定部位を撮影し, 前記患者の特定部位における複数の骨, 及び軟 組織の断面図を含む前記特定部位の断面図に関するデジタル情報を取得する 断面図デジタル情報取得工程と ;
前記断面図情報取得工程で取得された複数の骨, 及び軟組織の断面図を含 むデジタル情報に基づいて, 前記特定部位の 3次元デジタル像を得る 3次元 デジタル像取得工程と ;
前記 3次元デジタル像取得工程で得られた前記特定部位の 3次元デジタル 像に基づいて, ェピテーゼ像データを取得するェピテーゼ像データ取得工程 と ;
前記ェピテーゼ像データ取得工程で得られたェピテーゼ像データを用いて ラピッドプロ トタイプ法によりェピテーゼを製造する工程と ;
を含む, ェピテーゼの製造方法。
[36] 患者の特定部位を撮影し, 前記患者の特定部位における複数の骨, 及び軟 組織の断面図を含む前記特定部位の断面図に関するデジタル情報を取得する 断面図デジタル情報取得工程と ;
前記断面図情報取得工程で取得された複数の骨, 及び軟組織の断面図を含 むデジタル情報に基づいて, 前記特定部位の 3次元デジタル像を得る 3次元 デジタル像取得工程と ;
前記 3次元デジタル像取得工程で得られた前記特定部位の 3次元デジタル 像に基づいて,
前記特定部位の外見模型を製造する外見模型製造工程と ;
前記外見模型製造工程で得られた外見模型に像形成剤を設置する像形成剤 設置工程と ;
前記像形成剤設置工程で像形成剤が設置された骨模型を撮影し, 像形成剤 のデジタル情報を取得する像形成剤デジタル情報取得工程と ;
前記像形成剤デジタル情報取得工程で取得された像形成剤のデジタル情報 に基づいて, ェピテーゼ像を製造するための錶型に関するデジタルデータを 得る錶型情報取得工程と ;
前記錶型情報取得工程で得られた錶型を製造する錶型製造工程と ; を含むェピテーゼ製造用錶型の製造方法。
PCT/JP2007/000885 2006-08-21 2007-08-20 Moulage d'os, charge d'os et procédé de production d'une charge d'os WO2008023462A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2007800392133A CN101528158B (zh) 2006-08-21 2007-08-20 骨模型、骨填充材以及骨填充材的制造方法
US12/438,284 US20100069455A1 (en) 2006-08-21 2007-08-20 Bone model, bone filler and process for producing bone filler
CA002661195A CA2661195A1 (en) 2006-08-21 2007-08-20 Bone model, bone filler and process for producing bone filler
AU2007287154A AU2007287154A1 (en) 2006-08-21 2007-08-20 Bone model, bone filler and process for producing bone filler
JP2008530807A JPWO2008023462A1 (ja) 2006-08-21 2007-08-20 骨模型,及び骨充填剤又は骨充填剤の製造方法
EP07790372A EP2055268A4 (en) 2006-08-21 2007-08-20 BONE MODEL, BONE FILLER AND METHOD FOR PRODUCING THE BONE FILLER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006224785 2006-08-21
JP2006-224785 2006-08-21

Publications (1)

Publication Number Publication Date
WO2008023462A1 true WO2008023462A1 (fr) 2008-02-28

Family

ID=39106556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000885 WO2008023462A1 (fr) 2006-08-21 2007-08-20 Moulage d'os, charge d'os et procédé de production d'une charge d'os

Country Status (7)

Country Link
US (1) US20100069455A1 (ja)
EP (1) EP2055268A4 (ja)
JP (1) JPWO2008023462A1 (ja)
CN (1) CN101528158B (ja)
AU (1) AU2007287154A1 (ja)
CA (1) CA2661195A1 (ja)
WO (1) WO2008023462A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131130A (ja) * 2008-12-03 2010-06-17 Univ Of Tokyo 歯槽骨再生用生体吸収性3次元メンブレンの製造方法
WO2011096484A1 (ja) * 2010-02-03 2011-08-11 財団法人微生物化学研究会 リードスルー誘導剤、及びナンセンス変異型遺伝性疾患治療薬
JP2011189662A (ja) * 2010-03-16 2011-09-29 Seiko Epson Corp 造形方法
JP2011189661A (ja) * 2010-03-16 2011-09-29 Seiko Epson Corp 造形方法
JP2011529349A (ja) * 2008-05-23 2011-12-08 ロンゴーニ,サルヴァトーレ 人間または動物の生体組職内に移植されるための装置及び/または物質をデザイン及び/または選択する方法及びその方法による装置及び/または物質
JP2013165862A (ja) * 2012-02-16 2013-08-29 Medeikku Engineering:Kk 身体再建モデル形状データ作成装置及び方法並びにプログラム
JP2014031025A (ja) * 2013-11-20 2014-02-20 Seiko Epson Corp 造形装置
KR101514237B1 (ko) * 2014-01-10 2015-04-22 연세대학교 산학협력단 광대뼈 절단 가이드 템플릿 및 그 제작방법
JP2016128547A (ja) * 2015-01-09 2016-07-14 株式会社リコー 立体造形用硬化液及び立体造形用材料セット、並びに、立体造形物の製造方法及び製造装置
JP2018015122A (ja) * 2016-07-26 2018-02-01 株式会社DentalBank 再建用器具および再建用器具の設計支援装置
JP7529262B2 (ja) 2020-12-08 2024-08-06 株式会社ニッケン 人工骨成形方法および人工骨成形キット
JP7546265B2 (ja) 2020-05-22 2024-09-06 ウェトラブホールディング株式会社 生体組織用二液型バインダーおよび生体組織用二液型充填材

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007045000A2 (en) * 2005-10-14 2007-04-19 Vantus Technology Corporation Personal fit medical implants and orthopedic surgical instruments and methods for making
TWI381828B (zh) * 2009-09-01 2013-01-11 Univ Chang Gung Method of making artificial implants
US9463046B2 (en) 2011-08-22 2016-10-11 Ossdsign Ab Implants and methods for using such implants to fill holes in bone tissue
CN102504452B (zh) * 2011-10-21 2013-09-25 广东海洋大学 一种马氏珠母贝有核珍珠层间缝隙填补剂及其制备方法
US9474611B2 (en) * 2011-12-14 2016-10-25 Industrias Medicas Sampedro S.A. Cost-effective method for manufacturing metal cranial prostheses
CN102764888B (zh) * 2012-06-07 2014-07-16 中国人民解放军第四军医大学 一种复合多孔β-TCP的钛合金人距骨支撑棒及其制备方法
GB2504679A (en) * 2012-08-03 2014-02-12 Nobel Biocare Services Ag Bone substitute structure and material
CN103876862A (zh) * 2012-12-22 2014-06-25 深圳先进技术研究院 骨支架成型系统
CN104981219B (zh) * 2013-01-08 2018-03-06 实践粉体技术有限公司 高强度注塑模制的矫形装置
WO2014125381A2 (en) 2013-02-12 2014-08-21 Ossdsign Ab Mosaic implants, kits and methods for correcting bone defects
WO2014169217A2 (en) 2013-04-11 2014-10-16 Ohio University Systems and methods for establishing the stiffness of a bone using mechanical response tissue analysis
CN103284815A (zh) * 2013-05-17 2013-09-11 中山大学 纳米复合可降解骨修复材料的三维打印快速成型制备方法
WO2015081025A1 (en) 2013-11-29 2015-06-04 The Johns Hopkins University Cranial reference mount
CN103784218B (zh) * 2014-01-27 2017-04-19 步星耀 带肌蒂窗的颅脑三维成形修复体及其制备方法
CN103860291B (zh) * 2014-03-19 2016-07-06 武汉亚洲心脏病医院 法洛氏四联症室间隔缺损补片的制作方法
CN103919632A (zh) * 2014-05-03 2014-07-16 王学建 一种人工颅骨修复假体制备方法
EP3179961B1 (en) 2014-08-14 2020-12-02 OssDsign AB Bone implants for correcting bone defects
JP6653096B2 (ja) * 2014-11-28 2020-02-26 大学共同利用機関法人自然科学研究機構 透光性生体留置デバイス及びその利用
CN105013006A (zh) * 2015-06-24 2015-11-04 东莞天天向上医疗科技有限公司 一种生物可吸收骨修复材料及其应用与制作方法
KR102537926B1 (ko) 2015-09-04 2023-05-31 더 존스 홉킨스 유니버시티 저 프로파일의 두개내 장치
US10898332B2 (en) 2015-11-24 2021-01-26 Ossdsign Ab Bone implants and methods for correcting bone defects
CN105617468B (zh) * 2016-03-02 2018-09-04 安徽省上德慧科科技有限公司 一种可塑性生物活性骨科外部固定材料及其制备方法
CN106580523B (zh) * 2016-11-30 2019-07-23 北京爱康宜诚医疗器材有限公司 股骨髁前脸骨缺损填充假体
CN106910403B (zh) * 2017-03-29 2019-09-13 广州迈普再生医学科技股份有限公司 血管模型及其制备方法和应用
EP3629902B1 (en) * 2017-05-31 2022-07-06 Ohio University Systems and methods for patient specific modeling of the mechanical properties of bone
CN107714697B (zh) * 2017-11-08 2018-08-07 海南通用三洋药业有限公司 负载有替卡西林钠克拉维酸钾药物组合物的生物活性植骨材料及其制备方法
CN109883885B (zh) * 2017-12-06 2021-09-10 南京理工大学 茶对铀解吸效果的评价方法
EP3742977A4 (en) 2018-01-24 2021-10-13 Ohio University METHODS FOR ESTABLISHING BONE RIGIDITY USING MECHANICAL RESPONSE TISSUE ANALYSIS
CN110025823B (zh) * 2019-03-29 2021-06-29 太原理工大学 一种骨水泥材料及其制备方法
US11684699B2 (en) 2020-02-25 2023-06-27 ADA Science and Research Institute LLC Three-dimensional printed hydroxyapatite composite scaffolds for bone regeneration, precursor compositions and methods of printing
CN113336537B (zh) * 2021-05-12 2022-08-09 四川凯歌微纳科技有限公司 一种用于工业污水处理的管式陶瓷膜及制备工艺
CN113476651A (zh) * 2021-07-12 2021-10-08 南通美韦德生命科学有限公司 一种骨固定用抗菌树脂
CN114404112B (zh) * 2022-01-26 2024-03-05 四川大学华西医院 一种一体成型的颅骨和颞肌填充假体及其制备方法

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03244510A (ja) 1990-02-23 1991-10-31 Hitachi Koki Co Ltd 穿孔工具の給水機構
US5204055A (en) 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
JPH05313584A (ja) 1992-05-14 1993-11-26 Miwa Rubber Kogyo Kk 立体模型
JPH062137B2 (ja) 1982-06-03 1994-01-12 セマツクス・メデイカル・プロダクツ・インコ−ポレ−テツド 三次元の哺乳動物体模型の製造装置
US5387380A (en) 1989-12-08 1995-02-07 Massachusetts Institute Of Technology Three-dimensional printing techniques
JPH07284501A (ja) 1994-04-18 1995-10-31 Toshiba Corp 三次元表示装置
JPH08290347A (ja) 1995-04-21 1996-11-05 Osaka Kiko Co Ltd 切削による積層造形方法及び装置
JPH0910234A (ja) * 1995-06-28 1997-01-14 Shiyuukai 人体補綴物の製作方法
JPH09154865A (ja) 1995-12-11 1997-06-17 Asahi Optical Co Ltd 骨欠損部補填材の形状決定用治具および形状決定方法
US5902441A (en) 1996-09-04 1999-05-11 Z Corporation Method of three dimensional printing
JP2930420B2 (ja) 1993-10-18 1999-08-03 マサチューセッツ インスティチュート オブ テクノロジー 無固体形態製作法による医用デバイスの調製
US6007318A (en) 1996-12-20 1999-12-28 Z Corporation Method and apparatus for prototyping a three-dimensional object
JP2000176715A (ja) 1998-12-08 2000-06-27 Toyo Tekkosho:Kk 多軸ボール盤
WO2000064894A1 (fr) 1999-04-23 2000-11-02 Takeda Chemical Industries, Ltd. Composes 5-pyridyle-1,3-azole, leur procede de fabrication et leur utilisation
JP2001087258A (ja) * 1999-09-24 2001-04-03 Ngk Spark Plug Co Ltd 補填用人工骨設計システム及びそれを用いた補填用人工骨の製造方法
JP2001092950A (ja) 1999-09-24 2001-04-06 Ngk Spark Plug Co Ltd 補填用人工骨設計システム及びそれを用いた補填用人工骨の製造方法
JP2001150262A (ja) 1999-11-24 2001-06-05 Olympus Optical Co Ltd マシニングセンタ
JP2001230223A (ja) 2000-02-16 2001-08-24 Disco Abrasive Syst Ltd 切削装置
JP2001252347A (ja) * 2000-03-09 2001-09-18 Natl Inst Of Advanced Industrial Science & Technology Meti 人工骨
JP2001517972A (ja) * 1996-09-25 2001-10-09 ペキット,ニーニアン,スペンスレー 人工インプラント
JP2001524897A (ja) 1997-05-14 2001-12-04 ブス・ミユラー・テクノロジー・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 成形体を製造する方法及び装置
WO2002087620A1 (fr) 2001-04-27 2002-11-07 Chugai Seiyaku Kabushiki Kaisha Promoteurs de la chondrogenese
JP2002356419A (ja) 2001-03-29 2002-12-13 Takeda Chem Ind Ltd 微粒薬物の製造法
JP2003094264A (ja) 2001-09-19 2003-04-03 It Techno Kk 3軸制御マシニングセンタによる2面加工方法、及びその装置
JP2003126124A (ja) 2001-10-19 2003-05-07 Olympus Optical Co Ltd 骨補填材加工システム
JP2003531220A (ja) 2000-04-14 2003-10-21 ゼット コーポレーション 固形物体を三次元印刷するための組成物
JP2004049877A (ja) 2002-05-31 2004-02-19 Kazuo Okuma 光硬化性樹脂成形物の製造方法
JP2004074376A (ja) 2002-08-22 2004-03-11 It Techno Kk マシニングセンタによるワークの加工方法、及びワーク取付台
JP2004097259A (ja) 2002-09-05 2004-04-02 National Institute Of Advanced Industrial & Technology 自己組織化的に安定構造・骨再生空間を形成する有突起人工骨ユニット及び用途
WO2004050131A1 (en) * 2002-12-03 2004-06-17 Kyphon Inc. Formulation for a cement preparation as bone substitute
JP2004538191A (ja) 2001-05-08 2004-12-24 ゼット コーポレーション 3次元物体の模型を製作する方法および装置
WO2005011536A1 (ja) 2003-07-31 2005-02-10 Riken 粉末積層法による人工骨成形方法
JP2005503939A (ja) 2001-09-27 2005-02-10 ゼット コーポレーション 3次元プリンタ
JP3713290B2 (ja) 1994-09-02 2005-11-09 独立行政法人科学技術振興機構 抗癌剤
JP2006005257A (ja) 2004-06-18 2006-01-05 Apic Yamada Corp 半導体装置の製造装置
JP2006176522A (ja) * 2004-12-22 2006-07-06 Ivoclar Vivadent Ag (メタ)アクリルアミドホスフェートベースの自己エッチング歯科材料

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575330A (en) * 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
US5156777A (en) * 1991-03-21 1992-10-20 Kaye Alan H Process for making a prosthetic implant
US6176874B1 (en) * 1993-10-18 2001-01-23 Masschusetts Institute Of Technology Vascularized tissue regeneration matrices formed by solid free form fabrication techniques
US7037382B2 (en) * 1996-12-20 2006-05-02 Z Corporation Three-dimensional printer
US5976457A (en) * 1997-08-19 1999-11-02 Amaya; Herman E. Method for fabrication of molds and mold components
SE512083C2 (sv) * 1998-05-29 2000-01-24 Nobel Biocare Ab Metod att producera dental första påbyggnadsdel till implantat eller annan påbyggnadsdel samt hållare för modell av den första påbyggnadsdelen
DE19922279A1 (de) * 1999-05-11 2000-11-16 Friedrich Schiller Uni Jena Bu Verfahren zur Generierung patientenspezifischer Implantate
CA2371914A1 (en) * 1999-05-20 2000-11-30 Russell A. Giordano Polymer re-inforced anatomically accurate bioactive prostheses
US20010050031A1 (en) * 2000-04-14 2001-12-13 Z Corporation Compositions for three-dimensional printing of solid objects
SG92703A1 (en) * 2000-05-10 2002-11-19 Nanyang Polytechnic Method of producing profiled sheets as prosthesis
US6786930B2 (en) * 2000-12-04 2004-09-07 Spineco, Inc. Molded surgical implant and method
JP2003070816A (ja) * 2001-08-30 2003-03-11 Pentax Corp インプラントの設計方法およびインプラント
CN1188090C (zh) * 2002-11-15 2005-02-09 清华大学 一种生物材料整体植入式耳软骨仿生支架的制备方法
US20050287071A1 (en) * 2002-12-03 2005-12-29 Kyphon Inc. Formulation for a cement preparation as bone substitute
WO2004110309A2 (en) * 2003-06-11 2004-12-23 Case Western Reserve University Computer-aided-design of skeletal implants
CN1561927A (zh) * 2004-04-02 2005-01-12 清华大学 Ct辅助仿骨制造人工骨方法

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062137B2 (ja) 1982-06-03 1994-01-12 セマツクス・メデイカル・プロダクツ・インコ−ポレ−テツド 三次元の哺乳動物体模型の製造装置
US5204055A (en) 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5340656A (en) 1989-12-08 1994-08-23 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5387380A (en) 1989-12-08 1995-02-07 Massachusetts Institute Of Technology Three-dimensional printing techniques
JPH03244510A (ja) 1990-02-23 1991-10-31 Hitachi Koki Co Ltd 穿孔工具の給水機構
JPH05313584A (ja) 1992-05-14 1993-11-26 Miwa Rubber Kogyo Kk 立体模型
JP2930420B2 (ja) 1993-10-18 1999-08-03 マサチューセッツ インスティチュート オブ テクノロジー 無固体形態製作法による医用デバイスの調製
JPH07284501A (ja) 1994-04-18 1995-10-31 Toshiba Corp 三次元表示装置
JP3713290B2 (ja) 1994-09-02 2005-11-09 独立行政法人科学技術振興機構 抗癌剤
JPH08290347A (ja) 1995-04-21 1996-11-05 Osaka Kiko Co Ltd 切削による積層造形方法及び装置
JPH0910234A (ja) * 1995-06-28 1997-01-14 Shiyuukai 人体補綴物の製作方法
JPH09154865A (ja) 1995-12-11 1997-06-17 Asahi Optical Co Ltd 骨欠損部補填材の形状決定用治具および形状決定方法
US5902441A (en) 1996-09-04 1999-05-11 Z Corporation Method of three dimensional printing
US6416850B1 (en) 1996-09-04 2002-07-09 Z Corporation Three dimensional printing materials system
JP2001517972A (ja) * 1996-09-25 2001-10-09 ペキット,ニーニアン,スペンスレー 人工インプラント
US6007318A (en) 1996-12-20 1999-12-28 Z Corporation Method and apparatus for prototyping a three-dimensional object
US6375874B1 (en) 1996-12-20 2002-04-23 Z Corporation Method and apparatus for prototyping a three-dimensional object
JP2001524897A (ja) 1997-05-14 2001-12-04 ブス・ミユラー・テクノロジー・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 成形体を製造する方法及び装置
JP2000176715A (ja) 1998-12-08 2000-06-27 Toyo Tekkosho:Kk 多軸ボール盤
WO2000064894A1 (fr) 1999-04-23 2000-11-02 Takeda Chemical Industries, Ltd. Composes 5-pyridyle-1,3-azole, leur procede de fabrication et leur utilisation
JP2001087258A (ja) * 1999-09-24 2001-04-03 Ngk Spark Plug Co Ltd 補填用人工骨設計システム及びそれを用いた補填用人工骨の製造方法
JP2001092950A (ja) 1999-09-24 2001-04-06 Ngk Spark Plug Co Ltd 補填用人工骨設計システム及びそれを用いた補填用人工骨の製造方法
JP2001150262A (ja) 1999-11-24 2001-06-05 Olympus Optical Co Ltd マシニングセンタ
JP2001230223A (ja) 2000-02-16 2001-08-24 Disco Abrasive Syst Ltd 切削装置
JP2001252347A (ja) * 2000-03-09 2001-09-18 Natl Inst Of Advanced Industrial Science & Technology Meti 人工骨
JP2003531220A (ja) 2000-04-14 2003-10-21 ゼット コーポレーション 固形物体を三次元印刷するための組成物
JP2002356419A (ja) 2001-03-29 2002-12-13 Takeda Chem Ind Ltd 微粒薬物の製造法
WO2002087620A1 (fr) 2001-04-27 2002-11-07 Chugai Seiyaku Kabushiki Kaisha Promoteurs de la chondrogenese
JP2004538191A (ja) 2001-05-08 2004-12-24 ゼット コーポレーション 3次元物体の模型を製作する方法および装置
JP2003094264A (ja) 2001-09-19 2003-04-03 It Techno Kk 3軸制御マシニングセンタによる2面加工方法、及びその装置
JP2005503939A (ja) 2001-09-27 2005-02-10 ゼット コーポレーション 3次元プリンタ
JP2003126124A (ja) 2001-10-19 2003-05-07 Olympus Optical Co Ltd 骨補填材加工システム
JP2004049877A (ja) 2002-05-31 2004-02-19 Kazuo Okuma 光硬化性樹脂成形物の製造方法
JP2004074376A (ja) 2002-08-22 2004-03-11 It Techno Kk マシニングセンタによるワークの加工方法、及びワーク取付台
JP2004097259A (ja) 2002-09-05 2004-04-02 National Institute Of Advanced Industrial & Technology 自己組織化的に安定構造・骨再生空間を形成する有突起人工骨ユニット及び用途
WO2004050131A1 (en) * 2002-12-03 2004-06-17 Kyphon Inc. Formulation for a cement preparation as bone substitute
WO2005011536A1 (ja) 2003-07-31 2005-02-10 Riken 粉末積層法による人工骨成形方法
JP2006005257A (ja) 2004-06-18 2006-01-05 Apic Yamada Corp 半導体装置の製造装置
JP2006176522A (ja) * 2004-12-22 2006-07-06 Ivoclar Vivadent Ag (メタ)アクリルアミドホスフェートベースの自己エッチング歯科材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOCKEL, M. ET AL., ARCH. SURG., no. 128, 1993, pages 423
See also references of EP2055268A4 *
TAKAOKA, K., BIOMEDICAL RESEARCH, vol. 2, no. 5, 1981, pages 466 - 471

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529349A (ja) * 2008-05-23 2011-12-08 ロンゴーニ,サルヴァトーレ 人間または動物の生体組職内に移植されるための装置及び/または物質をデザイン及び/または選択する方法及びその方法による装置及び/または物質
JP2010131130A (ja) * 2008-12-03 2010-06-17 Univ Of Tokyo 歯槽骨再生用生体吸収性3次元メンブレンの製造方法
US9358246B2 (en) 2010-02-03 2016-06-07 Microbial Chemistry Research Foundation Readthrough inducing agent and drug for treating genetic disease caused by nonsense mutation
WO2011096484A1 (ja) * 2010-02-03 2011-08-11 財団法人微生物化学研究会 リードスルー誘導剤、及びナンセンス変異型遺伝性疾患治療薬
JP2011189662A (ja) * 2010-03-16 2011-09-29 Seiko Epson Corp 造形方法
JP2011189661A (ja) * 2010-03-16 2011-09-29 Seiko Epson Corp 造形方法
JP2013165862A (ja) * 2012-02-16 2013-08-29 Medeikku Engineering:Kk 身体再建モデル形状データ作成装置及び方法並びにプログラム
JP2014031025A (ja) * 2013-11-20 2014-02-20 Seiko Epson Corp 造形装置
KR101514237B1 (ko) * 2014-01-10 2015-04-22 연세대학교 산학협력단 광대뼈 절단 가이드 템플릿 및 그 제작방법
JP2016128547A (ja) * 2015-01-09 2016-07-14 株式会社リコー 立体造形用硬化液及び立体造形用材料セット、並びに、立体造形物の製造方法及び製造装置
JP2018015122A (ja) * 2016-07-26 2018-02-01 株式会社DentalBank 再建用器具および再建用器具の設計支援装置
JP7546265B2 (ja) 2020-05-22 2024-09-06 ウェトラブホールディング株式会社 生体組織用二液型バインダーおよび生体組織用二液型充填材
JP7529262B2 (ja) 2020-12-08 2024-08-06 株式会社ニッケン 人工骨成形方法および人工骨成形キット

Also Published As

Publication number Publication date
CN101528158B (zh) 2011-10-05
EP2055268A1 (en) 2009-05-06
CA2661195A1 (en) 2008-02-28
US20100069455A1 (en) 2010-03-18
CN101528158A (zh) 2009-09-09
AU2007287154A1 (en) 2008-02-28
EP2055268A4 (en) 2012-05-30
JPWO2008023462A1 (ja) 2010-01-07

Similar Documents

Publication Publication Date Title
WO2008023462A1 (fr) Moulage d&#39;os, charge d&#39;os et procédé de production d&#39;une charge d&#39;os
Galante et al. Additive manufacturing of ceramics for dental applications: A review
Lin et al. 3D printing and digital processing techniques in dentistry: a review of literature
Vorndran et al. 3D printing of ceramic implants
US6458162B1 (en) Composite shaped bodies and methods for their production and use
US20060039951A1 (en) Inorganic shaped bodies and methods for their production and use
US20100145469A1 (en) Bioceramic implants having bioactive substance
WO2009046987A1 (en) Computer implemented planning and providing of mass customized bone structure
JP5405119B2 (ja) 骨補填剤,放出制御担体,及びそれらの製造方法
Arcos Calcium phosphate bioceramics
Demiralp et al. Additive manufacturing (3D PRINTING) methods and applications in dentistry
Kouhi et al. Recent advances in additive manufacturing of patient-specific devices for dental and maxillofacial rehabilitation
Choi Biomaterials and bioceramics—part 1: traditional, natural, and nano
Su et al. 3D printed zirconia used as dental materials: a critical review
Kumaresan et al. Perspective chapter: Additive manufactured zirconia-based bio-ceramics for biomedical applications
Herranz et al. Design and manufacturing by fused filament technique of novel YSZ porous grafts infiltrated with PCL/PVA/AgNPs for large bone defects repairing
US9034225B2 (en) Process for producing implants and components by directing shaping
Alqutaibi et al. Advanced additive manufacturing in implant dentistry: 3D printing technologies, printable materials, current applications and future requirements.
Magnaterra Additive manufacturing of hydroxyapatite scaffolds for bone repair
Ivvala et al. A Review on the selection of Dental Implant Material and Suitable Additive Manufacturing Technique in Dentistry
Lee Selective laser sintering of calcium phosphate materials for orthopedic implants
de Carvalho et al. Personalized bioceramic grafts for craniomaxillofacial bone regeneration
SUKKHAWAN et al. DEVELOPMENT OF ZIRCONIA CERAMICS BY 3D PRINTING FOR DENTAL APPLICATION
Latimer Abaloparatide to Treat Alveolar Bone Loss for Dental Implant Reconstruction
Baino et al. Tesi di Laurea Magistrale

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780039213.3

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530807

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2661195

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007287154

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007790372

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: 2007287154

Country of ref document: AU

Date of ref document: 20070820

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12438284

Country of ref document: US

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)