WO2008013130A1 - Méthode de production d'un composé 3-amino-azoté optiquement actif - Google Patents

Méthode de production d'un composé 3-amino-azoté optiquement actif Download PDF

Info

Publication number
WO2008013130A1
WO2008013130A1 PCT/JP2007/064406 JP2007064406W WO2008013130A1 WO 2008013130 A1 WO2008013130 A1 WO 2008013130A1 JP 2007064406 W JP2007064406 W JP 2007064406W WO 2008013130 A1 WO2008013130 A1 WO 2008013130A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
acid
carbon atoms
optically active
Prior art date
Application number
PCT/JP2007/064406
Other languages
English (en)
French (fr)
Inventor
Masatoshi Ohnuki
Masashi Izumida
Akira Nishiyama
Shingo Matsumoto
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to EP07791139A priority Critical patent/EP2050735A4/en
Priority to US12/375,141 priority patent/US8030501B2/en
Priority to JP2008526753A priority patent/JP5164842B2/ja
Publication of WO2008013130A1 publication Critical patent/WO2008013130A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/14Nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/12Oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
    • C07D207/272-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with substituted hydrocarbon radicals directly attached to the ring nitrogen atom

Definitions

  • the present invention relates to a method for producing an optically active 3-amino amino-containing compound, particularly an optically active 1-protected-3-aminopyrrolidine derivative, useful as a synthetic intermediate for pharmaceuticals and agricultural chemicals.
  • Patent Document 1 It is described in.
  • one of the most efficient production methods is to use an optically active 3-hydroxypyrrolidine derivative that is industrially inexpensive and readily available as a starting material. Therefore, a method for producing an optically active 3-amino pyrrolidine derivative using an optically active 3-hydroxypyridine derivative as a starting material is shown below.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-204086
  • Patent Document 2 JP 2001-114759 A
  • Patent Document 3 Japanese Patent No. 2948857
  • Patent Document 4 JP 2006-8518 A
  • Patent Document 5 Japanese Patent No. 3639449
  • Patent Document 6 US Patent No. 6140347
  • Patent Document 7 Japanese Patent Laid-Open No. 2-290870
  • Non-Patent Document 1 J. Med. Chem., 1992, 35, 1764-1773.
  • Non-Patent Document 2 J. Med. Chem., 1992, 35, 4205-4213.
  • the prior art (1) uses an azidating agent that is explosive and difficult to handle, and further passes through a thermally unstable 11 (tert-butoxycarbonyl) -3-azidopyrrolidine as an intermediate.
  • a thermally unstable 11 (tert-butoxycarbonyl) -3-azidopyrrolidine is passed through an intermediate.
  • an azidating agent that is explosive and difficult to handle is used, and furthermore, a thermally unstable 1-tert-butoxycarbonyl) -3-azidopyrrolidine is passed through an intermediate.
  • liquid ammonia which is extremely low boiling point and difficult to handle is used, and furthermore, it is a reaction under ultra-high pressure, so it is difficult to say that it is versatile for implementation on an industrial scale.
  • the conventional technology (4) Like the prior art (3), it is a reaction at an ultra-high temperature of 140 ° C, so it is presumed that the reaction is at an ultra-high pressure, although there is no mention of pressure.
  • the prior art (5) is not suitable for industrial implementation in that expensive N benzylmethylamine is used and silica gel column chromatography is used to purify the product.
  • the prior art (6) also has a problem in that it uses a azodicarboxylate jetyl which has a problem in impact stability and separates waste and products such as triphenylphosphine oxide by-produced after the reaction.
  • an optically active 3-substituted nitrogen-containing compound by reacting an optically active 3-substituted nitrogen-containing compound with ammonia, methylamine, ethylamine or dimethylamine. It has been found that the yield and optical purity can be maintained and further improved by coexisting water even under low temperature and low pressure conditions. Furthermore, it has been found that by forming a salt from the obtained optically active 3-amino nitrogen-containing compound and an acid, and crystallization from an organic solvent, a 3-amino amino-containing compound having higher purity and optical purity can be obtained. The present invention has been completed.
  • the present inventors have made it possible to react methanol, ethanol, n when reacting an optically active 1-protected 1- (sulfonyloxy) pyrrolidine derivative with ammonia, methylamine, ethylamine, or dimethylamine easily available. -By coexistence of either propanol or isopropanol! /, The reaction proceeds efficiently even under the pressure of less than 30! /, Even under high pressure! / One protection of high optical purity It was found that a 3-aminopyrrolidine derivative can be obtained.
  • the first aspect of the present invention is the following formula (1);
  • R 1 may have a substituent, an alkyl group having 1 to 20 carbon atoms, may have a substituent V, a cycloalkyl group having 3 to 20 carbon atoms, and has a substituent.
  • L represents a leaving group
  • * represents an asymmetric carbon atom
  • n represents an integer of !!
  • R 2 is an amino group, a methylamino group, an ethylamino group or a dimethylamino group
  • a method for producing an optically active 3-amino nitrogen-containing compound represented by is there
  • the first aspect of the present invention is to form a salt from the compound (2) produced by the above method and an acid, and crystallize using an organic solvent, thereby leaving mixed impurities in the mother liquor. It is also a method for producing a salt of an optically active 3-amino nitrogen-containing compound, characterized in that the salt is obtained as crystals.
  • the second present invention provides the following formula (5):
  • R 3 may have a substituent, an alkyl group having 1 to 20 carbon atoms, an optionally substituted aryl group having 6 to 20 carbon atoms, or a substituent.
  • R 4 may be an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms.
  • an aryl group having 6 to 20 carbon atoms or an optionally substituted aralkyl group having 7 to 20 carbon atoms * represents an asymmetric carbon atom.
  • the reaction of the optically active 1-protected 3- (sulfonyloxy) pyrrolidine derivative represented by the following formula with ammonia, methylamine, ethylamine, or dimethylamine consists of methanol, ethanol, n-propanol, and isopropanol.
  • R 5 is an amino group, a methylamino group, an ethylamino group, or a dimethyl group. It is a tyramino group.
  • the second aspect of the present invention is to form a salt from the compound (6) produced by the method and an acid, and crystallize from an organic solvent, thereby leaving mixed impurities in the mother liquor. It is also a method for producing a salt of an optically active 1-protected-1-3-aminopyrrolidine derivative characterized in that the salt is obtained as crystals.
  • optically active 3-amino amino-containing nitrogen of good quality (high purity and high optical purity) can be easily and efficiently produced by an industrially feasible method from inexpensive and readily available raw materials. It becomes possible to produce a compound, particularly an optically active 1-protected 1-3-aminopyrrolidine derivative.
  • optically active 3-substituted nitrogen-containing compound is represented by the following formula (1).
  • R 1 may have a substituent, an alkyl group having 1 to 20 carbon atoms, a substituent, a cycloalkyl group having 3 to 20 carbon atoms, or a substituent.
  • Y! / An alkenyl group having 2 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms which may have a substituent, an aryl group having 6 to 20 carbon atoms which may have a substituent, and a substituent
  • the alkyl group having 20 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and a tert-butyl group, and a cycloalkyl group having 3 to 20 carbon atoms.
  • Examples include a cyclopropyl group, a cyclopentyl group, or a cyclohexyl group.
  • the alkenyl group having 2 to 20 carbon atoms include a bur group, an aryl group, and a methallyl group.
  • Examples of the aralkyl group of ⁇ 20 include a benzyl group or a 1 phenethyl group, and examples of the aryl group of 6 to 20 carbon atoms include a phenyl group, a naphthyl group, a biphenyl group, and the like.
  • Examples of the heteroaryl group of 3 to 20 include, for example, a pyridyl group, a furanyl group, a chenyl group, a pyrrolyl group, an oxazolyl group, an isoxazolyl group, a pyrazolyl group, An azofuranyl group, a benzothiazolyl group, an indolyl group, and the like.
  • Examples of the alkyloxy group having 1 to 20 carbon atoms include a methoxy group, an ethoxy group, an isopropoxy group, and a tertbutoxy group.
  • Examples of the ⁇ 20 aralkyloxy group include a benzyloxy group or 1 phenethyloxy group, and examples of the aralkyloxy group having 6 to 20 carbon atoms include a phenoxy group or a biphenyloxy group.
  • Examples of the substituent include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, nitro group, nitroso group, cyano group, amino group, hydroxyamino group, and alkylamino having!
  • 12 acyloxy groups 7 to carbon atoms; 12 arrooxy group, 3 to carbon atoms; Examples thereof include a siloxy group, an alkylsulfonyloxy group having 1 to 12 carbon atoms, and an alkylthio group having 1 to 12 carbon atoms.
  • Protecting groups for amino groups include PROTECTIVE GROUPS in ORGANIC SYNTH ESIS Third edition by JOHN WILEY & SO NS, INC., Theodora W. Greene (Theodora W.
  • R 1 is preferably a benzyl group, an aryl group, a hydroxyl group, a acetyl group, a benzoyl group, a methoxycarbonyl group, an ethoxycarbonyl group, an isopropoxycarbonyl group, a tert-butoxycarbonyl group, or a benzyloxycarbonyl group. More preferred is a benzyl group, a tert-butoxycarbonyl group, or a benzyloxycarbonyl group.
  • * represents an asymmetric carbon atom.
  • the compound (1) usually has an optical purity of 80% e.e. or higher.
  • 90% ee or higher, more preferably 95% ee or higher is used.
  • L represents a leaving group.
  • an optionally substituted carbon number;! To 20 alkylsulfonyloxy group, an optionally substituted 6-20 carbonyl arylsulfonyloxy group, or a chlorine atom. is there.
  • n an integer of 1 to 3.
  • a pyrrolidine derivative in which n is 1, or n is
  • a piperidine derivative which is 2, more preferably a pyrrolidine derivative wherein n is 1.
  • optically active 3-amino amino-containing compound is represented by the following formula (2).
  • R 2 is an amino group, a methylamino group, an ethylamino group, or a dimethylamino group.
  • an optically active 3-substituted nitrogen-containing compound represented by the formula (1), ammonia By reacting ruamine, ethylamine or dimethylamine in the presence of water, the optically active 3 amino nitrogen-containing compound represented by the above formula (2) is produced. At this time, since the stereochemistry at the 3-position proceeds with inversion, (S) -3-substituted nitrogen-containing compounds produce (R) -3-amino-containing nitrogen compounds and (R) 3-substituted nitrogen-containing compounds. From the nitrogen compound, a (S) -3-amino-containing nitrogen compound is produced.
  • the amount of ammonia, methylamine, ethylamine, or dimethylamine to be used is preferably 5 to 300-fold mol amount, more preferably 10 to 100-fold mol amount based on the compound (1).
  • the amount of water used is preferably 0.3;! To 10 times the weight, more preferably 0.3 to 3 times the weight with respect to the ammonia, methylamine, ethylamine or dimethylamine. That is, it is preferably 9 to 91% by weight, more preferably 25 to 77% by weight when converted as the concentration of ammonia, methylamine, ethylamine or dimethylamine in an aqueous solution.
  • ammonia, methylamine, ethylamine, or dimethylamine in an aqueous solution may be used.
  • ammonia (boiling point: 33 ° C), methylamine (boiling point: 6 ° C), ethylamine (boiling point: 17 ° C), and dimethylamine (boiling point: 7 ° C) are gases near room temperature and are usually in cylinders. Entered and handled. Therefore, it is subject to various restrictions as a high-pressure gas during transportation, storage, and use.
  • an aqueous solution of ammonia, methylamine, ethylamine, or dimethylamine is preferable from the viewpoint of ease of handling even when it is used with few restrictions on transportation and storage.
  • reaction solvent examples include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert butanol, and ethylene glycol; tetrahydrofuran, jetinoreethenole, 1,4 divalent xylene, ethylene glycono regimen.
  • Ether solvents such as chinole ether; aromatic hydrocarbon solvents such as benzene and toluene; aliphatic hydrocarbon solvents such as pentane, hexane, heptane and methylcyclohexane; methylene chloride, 1,2-dichloroethane Halogen solvents such as benzene, benzene; Sulfoxide solvents such as dimethyl sulfoxide; N, N dimethylformamide, N, N dimethylacetamide Amide solvents such as dimethylpropylene urea; Urea solvents such as dimethylpropylene urea; Phosphonic acid triamide solvents such as hexamethylphosphonic acid triamide; Ketone solvents such as acetone and methyl ethyl ketone; Acetonitrile, propionitrile, etc.
  • nitrile solvents can be used.
  • the pressure of this reaction is particularly important because it is closely related to the reaction rate and the optical purity (racematization) of the product.
  • the larger the reaction pressure the more advantageous it is that the reaction proceeds faster and maintains optical purity (suppressing the racemization).
  • the preferred pressure of the present invention is less than 30 bar, which is usually industrially feasible, more preferably less than 20 bar, and particularly preferably less than 10 bar.
  • the lower limit of the pressure is not particularly limited. 1S is preferably atmospheric pressure or higher.
  • the temperature of this reaction is suitably set from the concentration of the aqueous solution of ammonia, methylamine, ethylamine, or dimethylamine used and the upper limit pressure of the reaction equipment, and is preferably less than 100 ° C, more preferably. 40-90 ° C.
  • the reaction time is preferably set appropriately from the equivalent amount of ammonia, methylamine, ethylamine, or dimethylamine, the maximum pressure, and the reaction temperature, and it is preferably 1 to 48 hours, and more preferably 3 to 24 hours.
  • the optical purity is usually 80% ee or higher, preferably 90% ee or higher, more preferably 95%, depending on the optical purity of the compound (1).
  • a general treatment for obtaining a product from the reaction solution is performed. Just do it. For example, ammonia, methylamine, ethylamine, or dimethylamine is distilled off from the reaction solution after completion of the reaction by an operation such as heating under reduced pressure, and an aqueous alkali solution such as an aqueous sodium hydroxide solution or an aqueous sodium hydrogen carbonate solution is added to the residue as necessary. Then, a general extraction solvent such as ethyl acetate, jetyl ether, toluene, hexane, and methyl chloride is added to perform the extraction operation. The compound (2) is obtained by evaporating the reaction solvent and the extraction solvent from the extract by heating under reduced pressure or the like. The compound (2) thus obtained includes the compound (1), the enantiomer of the compound (2), the following formula (3); [0035]
  • At least one of the dehydronitrogen-containing compounds represented by may be contained as an impurity. If it is used as it is in the subsequent process, the yield of the subsequent process or the purity of the compound obtained in the subsequent process will be low. Next, a method for removing these impurities will be described.
  • examples of the acid include inorganic acids such as hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide, sulfuric acid, nitric acid, phosphoric acid, and boric acid; formic acid, acetic acid, propionic acid, and butyric acid.
  • inorganic acids such as hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide, sulfuric acid, nitric acid, phosphoric acid, and boric acid
  • formic acid acetic acid, propionic acid, and butyric acid.
  • Pivalic acid chloroacetic acid, trichroic acetic acid, trifluoroacetic acid, oxalic acid, carboxylic acids such as L-tartaric acid, D-tartaric acid, mandelic acid; methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p- Examples thereof include sulfonic acids such as toluenesulfonic acid and camphorsulfonic acid.
  • the amount of the acid used is preferably 0.5 to 5 times the molar amount, more preferably 0.5 to 1.5 times the molar amount relative to the compound (2).
  • organic solvent examples include alcohol solvents such as methanol, ethanol, n propanol, isopropanol, n butanol, tert butanol and ethylene glycol; ester solvents such as ethyl acetate, n propyl acetate and isopropyl acetate; Etherole solvents such as hydrofuran, jetyl ether, 1,4 dioxane, methyl tert butyl ether, ethylene glyconoresin methinoreethenole; Ketone solvents such as acetone and methinoretinoleketone; Nitriles such as acetonitrile and propionitrile Solvents; aromatic hydrocarbon solvents such as benzene and toluene; aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and methylcyclohexane; halogens such as methylene chloride, 1,2-dichloroethane,
  • the method of crystallization using the organic solvent in this step is not particularly limited, and examples thereof include the following methods.
  • the crystallization method is appropriately selected depending on the combination of the acid type and the organic solvent. It ’s fine. For example, since it is easier to handle hydrogen chloride or hydrogen bromide with hydrochloric acid or hydrobromic acid which is an aqueous solution, the method (a) is suitable, and methanesulfonic acid, acetic acid and the like are usually used. When an acid that is easy to use as a non-hydrated material is used, it is preferable to select the method (b).
  • the salt obtained by the method (a), (b) or (c) is carried out in combination with the following crystallization methods (d) to (f), or (a), (b) or (c
  • the salt obtained by the above method may be dissolved in an organic solvent and further subjected to the following crystallization methods ((! To (f). Needless to say, the crystallization methods (d) to (f). May be repeated.
  • crystallization is performed by appropriately combining the methods (a), (b), (c), (d), (e), and (f).
  • Examples of the organic solvent used in the crystallization method include the same organic solvents as those described above, and examples of the poor solvent used in the method (e) include toluene, hexane, and the like. Also, add seed crystals during crystallization.
  • the implementation temperature in the crystallization methods (a) to (f) is not particularly limited, and may be appropriately selected depending on the type of salt and the type of solvent used. What is necessary is just to set according to the target precipitation amount and the quality of a crystal
  • the salt of the compound (2) precipitated by the crystallization methods (a) to (f) can be separated and obtained by a method such as vacuum filtration, pressure filtration, or centrifugation. .
  • a method such as vacuum filtration, pressure filtration, or centrifugation.
  • the mother liquor remains in the obtained crystal and the purity of the crystal is lowered, the quality can be improved by further washing with an organic solvent as necessary.
  • the salt of the compound (2) obtained by the above method is further treated with a base such as an alkali metal hydroxide to liberate the compound (2), and then subjected to operations such as extraction and concentration. It can also be obtained as the compound (2) with improved chemical purity.
  • a base such as an alkali metal hydroxide
  • optically active 1-protected-3- (sulfonyloxy) pyrrolidine derivative is represented by the following formula (5).
  • R 3 is an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted aryl group having 6 to 20 carbon atoms, or an optionally substituted carbon.
  • the alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n propyl group, an isopropyl group, an n butyl group, or a tert butyl group.
  • Examples of the aryl group having 6 to 20 carbon atoms include Examples thereof include phenyl group, p-methylphenyl group, naphthyl group, and biphenyl group.
  • Examples of aralkyl groups having 7 to 20 carbon atoms include For example, a benzyl group or a 1 phenethyl group can be mentioned.
  • substituent include halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a nitro group, a nitroso group, a cyano group, an amino group, a hydroxyamino group, and an alkylamino group having! Carbon number;!
  • R 3 is preferably a methyl group, an ethyl group, a trifluoromethyl group, a p-methylphenyl group or a p-chlorophenyl group, more preferably a methyl group or a p-methylphenyl group, and particularly preferably a methyl group.
  • R 4 is an optionally substituted carbon number;! To 20 alkyl group, an optionally substituted carbon number 2 to 20 anorekenino group, an optionally substituted carbon An aryl group having 6 to 20 carbon atoms or a substituent may be included! /, And an aralkyl group having 7 to 20 carbon atoms.
  • Specific examples of the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 20 carbon atoms, and the aralkyl group having 7 to 20 carbon atoms include those described above.
  • Examples of the alkenyl group having 2 to 20 carbon atoms include a bur group, a allyl group, and a methallyl group.
  • R 4 is preferably a methyl group, a chloromethyl group, an ethyl group, an n propyl group, an isopropyl group, a tert butyl group, an aryl group, a phenyl group, or a benzyl group, and more preferably a methyl group, an ethyl group, n A propyl group, an isopropyl group, a tert butyl group, or a benzyl group is preferred, and a tert butyl group is particularly preferred.
  • * represents an asymmetric carbon atom.
  • the compound (5) usually has an optical purity of 80% e.e. or higher. Preferably, 90% ee or higher, more preferably 95% ee or higher is used.
  • the acquisition of the compound (5) is not particularly limited. Specifically, for example, in addition to these methods, the methods described in Japanese Patent No. 2948857 and Japanese Patent No. 3639449 can be cited.
  • optically active 1-protected 1 3-aminopyrrolidine derivative is represented by the following formula:
  • R 5 is an amino group, a methylamino group, an ethylamino group, or a dimethylamino group.
  • the 1-benzyl-3- (sulfonyloxy) pyrrolidine derivative is represented by the following formula (7).
  • the compound (7) can be produced by reacting optically active 1-benzil 3-hydroxypyrrolidine with a sulfonylating agent in the presence of a base.
  • a sulfonylating agent such as methanesulfonyl chloride p-toluenesulfonyl chloride in a two-layer reaction system of an organic solvent and water. be able to.
  • the method for producing the compound (5) is not particularly limited.
  • the benzyl group of the compound (7) is first deprotected by catalytic reduction, and then, in the presence of a base in the presence of a base. This can be accomplished by force rubamate protection on the nitrogen atom using a sooting agent.
  • the compound represented by the formula (7) is represented by the following formula (8):
  • R 4 is the same as above
  • R 4 can also be produced by catalytic reduction in the presence of an acid anhydride.
  • the compound represented by the formula (7) is catalytically reduced in the presence of the acid anhydride represented by the formula (8), it is possible to simultaneously perform deprotection of the benzyl group and force rubamate protection. This is preferable because it can be produced very advantageously industrially, such as reducing reagents, shortening reaction time, and increasing yield.
  • a method for simultaneously deprotecting a benzyl group and protecting a strong rubamate by catalytically reducing the compound represented by the formula (7) in the presence of the acid anhydride represented by the formula (8) will be described.
  • the catalytic reduction include hydrogenation in the presence of a transition metal catalyst.
  • the transition metal catalyst include platinum, rhodium, palladium, nickel, ruthenium, iridium, and rhenium. Specifically, platinum, rhodium, palladium, nickel, ruthenium, iridium, rhenium, and other metals, alloys, or The chloride etc. are mentioned.
  • These catalysts are preferably used in the form of a catalyst dispersed in a powder carrier from the viewpoints of catalyst activity, reproducibility, storage stability, operability, and recycling.
  • the powder carrier include carbon, alumina, silica-alumina, silica, barium carbonate, barium sulfate, calcium carbonate, titanium oxide, zirconium oxide, zeolite, and asbestos.
  • these powder carriers are supported on these powder carriers. Platinum, rhodium, or palladium metal, sulfides or hydroxides thereof.
  • Palladium-carbon, rhodium-carbon, platinum-carbon or palladium hydroxide (II) -carbon is preferable, and palladium-carbon is more preferable.
  • These transition metal catalysts may be used alone or in combination of two or more. When the amount of the transition metal catalyst used is too large, it is not preferable from the viewpoint of cost and post-treatment, and therefore it is preferably 5 times or less by weight, more preferably 0.01 to the above compound (7). 0.5 times the weight.
  • the acid anhydride represented by the formula (8) is dimethyl dicarbonate, diethanol dicarbonate, dipropyl dicarbonate, diisopropyl dicarbonate, ditert-butyl dicarbonate, dibenzyl dicarbonate. More preferred is ditertbutyl dicarbonate.
  • the amount of the compound (8) to be used is preferably 1 to 10-fold molar amount, more preferably !! to 2-fold molar amount relative to the compound (7).
  • the reaction temperature of this reaction is preferably 20 to 100 ° C, more preferably 0 to 50 ° C.
  • the hydrogen pressure in this reaction is preferably 50 bar or less, more preferably 1 to 10 barore.
  • the solvent for this reaction is not particularly limited as long as it is not involved in the reaction.
  • water alcohols such as methanol, ethanol, n propanol, isopropanol, n butanol, tert butanol, ethylene glycol, etc.
  • Solvents such as tetrahydrofuran, jetyl ether, 1,4 di-dioxane, methino tert butynole ether, ethylene glycol enoresmethyl ether; aromatic hydrocarbon solvents such as benzene and toluene; Examples thereof include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and methylcyclohexane.
  • alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol and ethylene glycol; aromatic hydrocarbon solvents such as benzene and toluene, and more preferred are methanol, Is toluene. These may be used alone or in combination of two or more. When two or more kinds are used in combination, the mixing ratio is not particularly limited. When the amount of the solvent used is too large, it is not preferable in terms of cost and post-treatment, and therefore it is preferably 50 times or less by weight, more preferably 20 times or less by weight with respect to the compound (7).
  • the reaction temperature is not particularly limited and may be set as appropriate. In order to reduce the formation of by-products, it is preferably 20 to 100 ° C, more preferably 0 to 50 ° C. .
  • the reaction time may be appropriately set from the amount of catalyst used and the upper limit pressure of the reaction equipment, preferably 1 to 24 hours, more preferably 3 to 12 hours.
  • the method for adding the compound (7), the compound (8), the transition metal catalyst, and hydrogen during the reaction is not particularly limited! /.
  • the order of addition is not particularly limited as long as hydrogen is added last.
  • a general treatment for obtaining a product from the reaction solution may be performed.
  • the catalyst is filtered off from the reaction solution after completion of the reaction, and the reaction solvent is distilled off from the filtrate by heating under reduced pressure or the like to obtain the desired product.
  • the target product obtained in this way has sufficient purity that can be used in the subsequent steps.
  • general purification techniques such as crystallization, fractional distillation, and column chromatography can be used. Further purity may be increased.
  • the (R) -1 -protected-3-(sulfonyloxy) pyrrolidine derivative produces the (S) -1 monoprotected 1 3-aminopyrrolidine derivative.
  • this step by coexisting at least one selected from the group consisting of methanol, ethanol, n-propanol and isopropanol in the reaction system, even under a relatively low pressure of less than 30 bar, A particular advantage is that the compound (6) having high optical purity can be obtained in good yield.
  • the amount of ammonia, methylamine, ethylamine, or dimethylamine to be used is preferably 5 to 300-fold molar amount, more preferably 10 to 100-fold molar amount with respect to the compound (5).
  • methanol, ethanol, ⁇ -propanol, or isopropanol present in the reaction system may be used alone or in combination of two or more. When two or more kinds are used in combination, the mixing ratio is not particularly limited.
  • the amount of methanol, ethanol, ⁇ -propanol, or isopropanol used is preferably 0.;!
  • the weight more preferably 0.3 to 3 times that of the ammonia, methylamine, ethylamine, or dimethylamine. It is weight. That is, it is preferably 9 to 91% by weight, more preferably 25 to 77% by weight in terms of ammonia, methylamine, ethylamine or dimethylamine concentration.
  • ammonia, methylamine, ethylamine, or dimethylamine may be used in advance as an alcohol solution.
  • ammonia (boiling point: 33 ° C), methylamine (boiling point: 6 ° C), ethylamine (boiling point: 17 ° C), and dimethylamine (boiling point: 7 ° C) are gases near room temperature and are usually in cylinders. Entered and handled. Therefore, it is subject to various restrictions as a high-pressure gas during transportation, storage and use.
  • an alcohol solution of ammonia, methylamine, ethylamine, or dimethylamine is preferred in terms of ease of handling even when used with few restrictions on transportation and storage.
  • This reaction does not require any other reaction solvent if at least one solvent selected from the group consisting of methanol, ethanol, n-propanol and isopropanol is present, but stirring is difficult due to the low solubility of the substrate. In such a case, a reaction solvent may be further added.
  • reaction solvent examples include tetrahydrofuran, jetyl ether, 1,4-divalent xanthane, ethylene glycol-based methinoreethenole and other ethereal solvents; benzene, toluene and other aromatic hydrocarbon solvents; pentane, hexane, heptane , Methylcyclo Aliphatic hydrocarbon solvents such as hexane; Halogen solvents such as methylene chloride, 1,2-dichloroethane, and black benzene; Sulfoxide solvents such as dimethyl sulfoxide; N, N-Dimethylolenolemamide, N, Amide solvents such as N-dimethylacetamide; Urea solvents such as dimethylpropylene urea; Phosphonic acid triamide solvents such as hexamethylphosphonic acid triamide; Ketone solvents such as acetone and methyl ethyl ketone; Acetonitrile,
  • the mixing ratio is not particularly limited.
  • the amount of the reaction solvent used is too large, it is not preferable in terms of cost and post-treatment, and therefore it is preferably 50 times weight or less, more preferably 20 times weight or less with respect to the compound (5).
  • the pressure in the second main reaction is less than 30 bar, more preferably less than 20 bar, which can be generally carried out industrially.
  • the lower limit of the pressure is not particularly limited, but is preferably at least atmospheric pressure.
  • the temperature of this reaction may be suitably set from the concentration of the ammonia, methylamine, ethylamine, or dimethylamine solution used and the upper limit pressure of the reaction equipment, and is preferably less than 110 ° C, more preferably 40. ⁇ 90 ° C.
  • the reaction time is preferably set appropriately from the equivalent amount of ammonia, methylamine, ethylamine, or dimethylamine, the maximum pressure, and the reaction temperature, preferably 1 to 24 hours, more preferably 3 to 12 hours.
  • the optical purity is usually 80% ee or higher, preferably 90% ee or higher, more preferably 95%, depending on the optical purity of the compound (5).
  • a general treatment for obtaining a product from the reaction solution may be performed.
  • ammonia, methylamine, ethynoleamine, or dimethylamine is distilled off from the reaction solution after completion of the reaction by an operation such as heating under reduced pressure, and an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous sodium hydrogen carbonate solution is added to the residue as required
  • a general extraction solvent for example, ethyl acetate, jetyl ether, toluene, hexane, methylene chloride, etc. is added to perform the extraction operation.
  • the compound (6) is obtained by evaporating the reaction solvent and the extraction solvent from the extract by heating under reduced pressure or the like.
  • the compound (6) thus obtained includes the compound (5), the enantiomer of the compound (6), the following formula (9);
  • R 6 represents a methyl group, an ethyl group, an n-propyl group, or an isopropyl group), or the following formula (10);
  • R 4 is the same as above.
  • at least one of the compounds represented by the formula (I) is contained as an impurity. If it is used as it is in the subsequent step, the yield of the subsequent step or the purity of the compound obtained in the subsequent step will be low. Next, a method for removing these impurities will be described.
  • the contaminated impurities can be left in the mother liquor and the salt can be obtained as crystals.
  • examples of the acid include inorganic acids such as hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide, sulfuric acid, nitric acid, phosphoric acid, and boric acid; formic acid, acetic acid, propionic acid, and butyric acid.
  • inorganic acids such as hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide, sulfuric acid, nitric acid, phosphoric acid, and boric acid
  • formic acid acetic acid, propionic acid, and butyric acid.
  • Pivalic acid chloroacetic acid, trichroic acetic acid, trifluoroacetic acid, oxalic acid, mandelic acid and other carboxylic acids; methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid
  • sulfonic acids such as Preferred are hydrogen chloride, hydrogen bromide, sulfuric acid, acetic acid, pivalic acid, oxalic acid, mandelic acid, methanesulfonic acid, p-toluenesulfonic acid, or camphorsulfonic acid, and more preferred are hydrogen chloride, hydrogen bromide, acetic acid.
  • Methanesulfonic acid or p-toluenesulfonic acid, particularly preferably acetic acid.
  • the amount of the acid used is preferably 0.5 to 5 times the molar amount, more preferably 0.5 to 5 times, and more preferably 5 times the molar amount relative to the compound (6).
  • organic solvent examples include methanol, ethanol, n-propanol, isopropyl Alcohol solvents such as panol, n butanol, tert butanol, ethylene glycol; ester solvents such as ethyl acetate, n propyl acetate, isopropyl acetate; tetrahydrofuran, jetyl ether, 1,4 dioxane, methyl tert butyl ether, ethylene glycol Ethereal solvents such as dimethylenoatenole; Ketone solvents such as acetone and methinoreethinoleketone; Nitryl solvents such as acetonitrile and propionitrile; Aromatic hydrocarbon solvents such as benzene and toluene; Aliphatic hydrocarbon solvents such as xane, heptane and methylcyclohexane; Halogen solvents such as methylene chloride, 1,2-dichloroethanethane
  • Ethyl, n-propyl acetate, isopropyl acetate, and toluene may be used alone or in combination of two or more. When two or more kinds are used in combination, the mixing ratio is not particularly limited. As the amount of the organic solvent used is too large, it is not preferable in terms of cost and post-treatment, and therefore it is preferably 50 times weight or less, more preferably 20 times weight or less with respect to the compound (6). .
  • the method of crystallization using the organic solvent in this step is not particularly limited, and examples thereof include the following methods.
  • the crystallization method may be appropriately selected depending on the combination of the type of acid and the organic solvent.
  • hydrogen chloride or hydrogen bromide is an aqueous solution of hydrochloric acid or hydrogen bromide
  • the method (a) is suitable because it is easier to handle with acid, and the method (b) is selected when using an acid that is easily used as a non-hydrated substance such as methanesulfonic acid or acetic acid. It is preferable to do this.
  • the salt obtained by the method (a), (b) or (c) is carried out in combination with the following crystallization methods (d) to (f), or (a), (b) or (c ) May be dissolved in an organic solvent and further subjected to the following crystallization methods (d) to (f).
  • the crystallization methods (d) to (f) may be repeated as appropriate.
  • crystallization is performed by appropriately combining the methods (a), (b), (c), (d), (e), and (f).
  • Examples of the organic solvent used in the crystallization method include the same organic solvents as described above, and examples of the poor solvent used in the method (e) include toluene, hexane, and the like. Also, add seed crystals during crystallization.
  • the implementation temperature in the crystallization methods (a) to (f) is not particularly limited, and may be appropriately selected depending on the type of salt and the type of solvent used. What is necessary is just to set according to the target precipitation amount and the quality of a crystal
  • the salt of the compound (6) precipitated by the crystallization methods (a) to (f) can be separated and obtained by a method such as vacuum filtration, pressure filtration, or centrifugation. .
  • a method such as vacuum filtration, pressure filtration, or centrifugation.
  • the mother liquor remains in the obtained crystal and the purity of the crystal is lowered, the quality can be improved by further washing with an organic solvent as necessary.
  • the impurities described above can be removed by performing the crystallization method, the chemical purity of the salt of the compound (6) can be improved, and the optical purity can also be improved. Become capable.
  • the salt of the compound (6) obtained by the above method is further treated with a base such as an alkali metal hydroxide to liberate the compound (6), followed by operations such as extraction and concentration. It can also be obtained as the compound (6) with improved chemical purity.
  • a base such as an alkali metal hydroxide
  • Retention time acetic acid; 2.4 minutes, l- (t-butoxycarbonyl) -3 aminopyrrolidine; 2.7 minutes, 1-benzyl-1- (methanesulfonyloxy) pyrrolidine; 3.9 minutes, 1- (tert-butoxycarbonyl) -3 (methanesulfonyloxy) pyrrolidine; 8.2 minutes
  • Example 5 Comparative Example 1, Comparative Example 2, and Example 1 of Japanese Patent No. 3639449 are shown below. I summarized it.
  • Example 5 of Japanese Patent No. 3639449 shows that it is difficult to implement industrially. Under a reaction temperature of 110 ° C and a pressure of 80 bar, 96 ⁇ 8% ee of (R) -1-benzyl-1- Aminopyrrolidine has been obtained. However, referring to Example 5 of Patent No. 3639449, when the reaction temperature and reaction pressure were lowered, the reaction proceeded well, but its optical purity decreased to 91.2% e.e. Example 1). When methanol was added instead of water used in the present invention and the reaction was carried out at a reaction temperature of 100 ° C and a pressure of 10 bar, the optical purity of the product was 85.8% ee (Comparative Example 2). .
  • Step 5-1 Production of (R) -1 (tert-butoxycarbonyl) -3-amino pyrrolidine (S) -1 produced by the method described in Production Example 2 (tert-butoxycarbonyl) 3- (methansenorefu Norre old carboxymethyl) pyrrolidine 5 Caro give a 28 weight 0/0 Anmoyua water ⁇ night 36-4g to 56 g, and stirred 90 ° C, 19 h (internal pressure of about 4 bar). After cooling, the ammonia was distilled off and 10 ml of water and 3.21 g of a 30 wt% aqueous sodium hydroxide solution were added.
  • the crystals were washed with 16 ml of toluene and then vacuum dried to obtain 4.81 g of the title compound as a white solid (chemical purity 99.6 area%, yield 90%, optical purity 99.9% ee).
  • the optically active 1- (tert-butoxycarbonyl) 1-3-hydroxypyrrolidine represented by the above formula (3) decreases to 0.30% with respect to the HPLC area value of the title compound. It was confirmed by HPLC that 1- (tert-butoxycarbonyl) -3,4-dehydropyrrolidine was not detected.
  • the optically active 11 (tert-butoxycarbonyl) 3-hydroxypyrrolidine represented by the above formula (3) decreased to 0.03% with respect to the HPLC area value of the title compound (6. 4%). It was confirmed that 11 (tert-butoxycarbonyl) 3,4-dehydropyrrolidine represented by the above formula (4) was not detected by HP LC (1.6% before crystallization).
  • Step 7 (R) — 1 (tert-butoxycarbonyl) -3 methylaminopyrrolidine hydrochloride 1 ⁇ 18 g (chemical purity 99 ⁇ 9 area%) obtained by the method described in 1 Brine 2.30 g, toluene 4.71 g and 30 wt% aqueous sodium hydroxide solution 734 mg were added and stirred. After separation, the organic layer was concentrated and dried under vacuum to obtain the title compound as a colorless transparent liquid 946 mg (chemical purity 99.3 area%, yield 97%).
  • Step 8 (R) -1 mono (tert-butoxycarbonyl) 1-ethylaminobi obtained in 1 Mouth lysine hydrochloride 1. 25 g (I ⁇ purity 99. 7area%) to 23 wt. 0/0 saline 2. 46 g, was added and stirred Bok Noree down 5. 03G, 30 wt% aqueous solution of sodium hydroxide 733 mg. After separation, the organic layer was concentrated and vacuum-dried to obtain 1.005 g of the title compound as a colorless transparent liquid (chemical purity 99.2ar ea %, yield 98%).
  • Step 9 1-1 (R) -1 mono (tert-butoxycarbonyl) 1-dimethylaminobi obtained in 1 Mouth lysine hydrochloride 1. 25 g (I ⁇ purity 99. 9area%) to 23 wt. 0/0 saline 2. 46 g, was added and stirred Bok Noree down 5. 03G, 30 wt% aqueous solution of sodium hydroxide 738 mg. After separation, the organic layer was concentrated and vacuum-dried to obtain 999 mg of the title compound as a colorless transparent liquid (chemical purity 99.5 area%, yield 95%).
  • Step 10-1 (R) — 1— (tert-Butoxycarbonyl) -3 Production of Amaminopyrrolidine (S) — 1- (tert-Butoxycarbonyl) -1 3 (Methanesulfonyl) produced by the method described in Production Example 2
  • Xyl) pyrrolidine (5.52 g) was dissolved in 10 ml of methanol, 56 ml of a premixed ammonia / methanol solution (10.7 mol / l) was added, and the mixture was stirred at 80 ° C. for 16 hours (internal pressure about 9 bar).
  • step 10-1 (chemical purity 48. Oarea%, optical purity 96.6% ee, optical represented by the above formula (9)
  • Active 11 (tert-butoxycarbonyl) -3-methoxypyrrolidine is the HPLC of the title compound 48.4% mixed with area value.
  • 11 (tert-butoxycarbonyl) 3,4 dehydropyrrolidine represented by the above formula (10) is mixed with 31.5% of the HPLC value of the title compound. ) was dissolved in 50 ml of ethyl acetate, and 951 mg of acetic acid was added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrrole Compounds (AREA)

Description

明 細 書
光学活性 3—ァミノ含窒素化合物の製造法
技術分野
[0001] 本発明は、医薬及び農薬の合成中間体として有用な光学活性 3—ァミノ含窒素化 合物、特に光学活性な 1—保護— 3—ァミノピロリジン誘導体の製造法に関する。 背景技術
[0002] 光学活性 3 ァミノ含窒素化合物のうち、特に高い光学純度を有する 1一保護一 3 —ァミノピロリジン誘導体は、医薬及び農薬の製造原料として重要であることが、例え ば、特許文献 1に記載されている。その製造法は数多く知られている力 中でもとりわ け、工業的に安価で入手容易な光学活性 3—ヒドロキシピロリジン誘導体を出発原料 に用いる方法が、最も効率的な製法の一つである。そこで、光学活性 3—ヒドロキシピ 口リジン誘導体を出発原料に用いて、光学活性 3—ァミノピロリジン誘導体を製造する 方法を以下に示す。 (1) (R)—3—ヒドロキシピロリジン塩酸塩を出発物質とし、 tert ブトキシカルボニル保護した後、水酸基をメシル化、アジドで置換し、続いてアジド 基の接触還元を行い、(S)— 1一(tert ブトキシカルボニル) 3—ァミノピロリジン を製造する方法 (特許文献 2及び 3、非特許文献 1)。
(2)光学活性な 4ーヒドロキシプロリンを脱炭酸して得られた光学活性な 3 ヒドロキシ ピロリジンを tert ブトキシカルボニル保護し、続いて 3位の水酸基をメシル化後、ァ ジド化、更に接触還元することにより、対応する光学活性な 1一(tert ブトキシカル ボニル) 3—ァミノピロリジンを製造する方法(特許文献 4)。
(3) (R)—3—ヒドロキシピロリジンを tert ブトキシカルボニル保護し、続いて 3位の 水酸基をメシル化後、液体アンモニアとの反応を 150°C、 132バールの圧力下で行う ことにより、対応する(S)—1 (tert ブトキシカルボニル) 3—ァミノピロリジンを 製造する方法 (特許文献 5)。
(4) (S)— 1 ペンジノレー 3—ヒドロキシピロリジンの水酸基をトシノレ化し、続いてメチ ルァミンとエタノール中で 140°C、 20時間反応させることにより、(R)— 1—ベンジル 3 (メチルァミノ)ピロリジンを製造する方法 (非特許文献 2)。 (5) (S)—1— (tert ブトキシカルボニル)ー3—(メタンスルホニルォキシ)ピロリジ ンと N ベンジルメチルァミンを反応させた後、パラジウム触媒存在下にベンジル基 を加水素分解することにより、(R)—1 (tert ブトキシカルボニル) 3—(メチルァ ミノ)ピロリジンを製造する方法 (特許文献 6)。
(6) (S)—1—ベンジル一 3—ヒドロキシピロリジンとフタルイミドを光延試薬(ァゾジカ ルボン酸ジェチルとトリフエニルホスフィン)を用いてカップリングさせることにより対応 するフタルイミド体を得、酸水溶液で脱フタル化させることにより、(R)— 1一べンジノレ — 3—ァミノピロリジンを製造する方法 (特許文献 7)。
特許文献 1 :特開平 10— 204086号公報
特許文献 2:特開 2001— 114759号公報
特許文献 3:特許第 2948857号公報
特許文献 4:特開 2006— 8518号公報
特許文献 5:特許 3639449号公報
特許文献 6 :米国特許第 6140347号明細書
特許文献 7:特開平 2— 290870号公報
非特許文献 1 :J. Med. Chem. , 1992、 35、 1764 - 1773.
非特許文献 2 :J. Med. Chem. , 1992、 35、 4205— 4213.
発明の開示
発明が解決しょうとする課題
しかしながら、従来技術(1)では、爆発性があって取り扱い困難なアジド化剤を使 用し、更に熱的に不安定な 1一(tert ブトキシカルボニル)ー3—アジドーピロリジン を中間体に経由する点や、各工程で煩雑なシリカゲルカラムクロマトグラフィーにて 精製を行っている事から、商業的規模での実施が困難である。従来技術 (2)では、 爆発性があって取り扱い困難なアジド化剤を使用し、更に熱的に不安定な 1一(tert ブトキシカルボニル)ー3—アジドーピロリジンを中間体に経由するため、工業的に 製造する方法としては必ずしも適切な方法ではな力、つた。従来技術(3)では、極めて 低沸点で取り扱い困難な液体アンモニアを使用しており、更に超高圧下での反応で もあること力、ら、工業的規模での実施に汎用的とは言い難い。また、従来技術 (4)も 従来技術(3)と同様に 140°Cという超高温下での反応であることから、圧力に関する 記載はないものの超高圧下での反応と推察される。また、従来技術(5)は高価な N ベンジルメチルァミンを使用し、更に生成物の精製にシリカゲルカラムクロマトダラ フィーを使用する点で工業的実施に向いていない。従来技術 (6)も衝撃安定性に問 題のあるァゾジカルボン酸ジェチルを用いる点と反応後に副生するトリフエニルホス フィンォキシド等の廃棄物と生成物を分離する点に問題を有している。
[0004] そのため、工業的規模で実施可能な方法で、かつ、高品質な光学活性 3 ァミノ含 窒素化合物を効率的に得る方法の開発が必要とされていた。
課題を解決するための手段
[0005] 上記に鑑み、本発明者らは鋭意検討の結果、光学活性 3 置換含窒素化合物と、 アンモニア、メチルァミン、ェチルァミン又はジメチルァミンを反応させて光学活性 3 ーァミノ含窒素化合物を製造する際に、水を共存させることにより、低温且つ低圧条 件下においても収率及び光学純度が維持、更には向上できることを見出した。更に、 得られた光学活性 3—ァミノ含窒素化合物と酸から塩を形成させ、有機溶媒から晶析 することによって、更に高純度且つ高光学純度の 3—ァミノ含窒素化合物が得られる ことを見出し、本発明を完成するに至った。
[0006] さらに、本発明者らは、容易に入手可能な光学活性 1一保護一 3—(スルホニルォ キシ)ピロリジン誘導体をアンモニア、メチルァミン、ェチルァミン、又はジメチルァミン と反応させる際に、メタノール、エタノール、 n—プロパノール、又はイソプロパノール の!/、ずれかを共存させることにより、 30ノ ール未満と!/、う圧力下にお!/、ても効率良く 反応が進行し、高光学純度の 1一保護一 3—ァミノピロリジン誘導体が得られることを 見出した。更に、得られた光学活性な 1—保護— 3—ァミノピロリジン誘導体と酸から 塩を形成させ、有機溶媒から晶析することによって、更に高純度且つ高光学純度の 1 一保護一 3—ァミノピロリジン誘導体が得られることを見出し、本発明を完成するに至 つた。
[0007] 即ち、第一の本発明は、下記式(1) ;
[0008] [化 1]
Figure imgf000005_0001
(式中、 R1は置換基を有してもよい炭素数 1〜20のアルキル基、置換基を有してもよ V、炭素数 3〜20のシクロアルキル基、置換基を有してもよ!/、炭素数 2〜20のァルケ ニル基、置換基を有してもよい炭素数 7〜20のァラルキル基、置換基を有してもよい 炭素数 6〜20のァリール基、置換基を有してもよ!/、炭素数 3〜20のへテロアリール 基、ヒドロキシル基、炭素数 1〜20のアルキルォキシ基、炭素数 6〜20のァリールォ キシ基、炭素数 7〜20のァラルキルォキシ基、又はアミノ基の保護基を表す。 Lは脱 離基を表す。 *は不斉炭素原子を表す。 nは;!〜 3の整数を表す。)で表される光学 活性 3—置換含窒素化合物と、アンモニア、メチルァミン、ェチルァミン又はジメチル ァミンとの反応を、水の存在下で行うことを特徴とする、 3位の立体が反転した下記式 (2) ;
[化 2]
Figure imgf000006_0001
(式中、 *、 R1, nは前記に同じ。 R2はァミノ基、メチルァミノ基、ェチルァミノ基又はジ メチルァミノ基である。)で表される光学活性 3—ァミノ含窒素化合物の製造法である
[0010] また、第一の本発明は、前記方法により製造した化合物(2)と酸から塩を形成させ 、有機溶媒を用いて晶析することにより、混入している不純物を母液に残し、該塩を 結晶として取得することを特徴とする、光学活性 3—ァミノ含窒素化合物の塩の製造 法でもある。
[0011] 第二の本発明は、下記式(5);
[0012] [化 3]
OS02
(式中、 R3は置換基を有してもよい炭素数 1〜20のアルキル基、置換基を有してもよ い炭素数 6〜20のァリール基、又は置換基を有してもよい炭素数 7〜20のァラルキ ル基を表す。 R4は置換基を有してもよい炭素数 1〜20のアルキル基、置換基を有し てもよレ、炭素数 2〜20のアルケニル基、置換基を有してもよ!/、炭素数 6〜20のァリー ル基、又は置換基を有してもよい炭素数 7〜20のァラルキル基を表す。 *は不斉炭 素原子を表す。)で表される光学活性な 1—保護— 3— (スルホニルォキシ)ピロリジン 誘導体と、アンモニア、メチルァミン、ェチルァミン、又はジメチルァミンの反応を、メタ ノール、エタノール、 n—プロパノール及びイソプロパノールからなる群より選択される 少なくとも 1つの存在下、 30バール未満の圧力下で行うことを特徴とする、 3位の立 体配置が反転した下記式(6);
[化 4]
Figure imgf000007_0001
(式中、 *、 R4は前記に同じ。 R5はァミノ基、メチルァミノ基、ェチルァミノ基、又はジメ チルァミノ基である。)で表される光学活性な 1一保護一 3—ァミノピロリジン誘導体の 製造法である。
[0014] また、第二の本発明は、前記方法により製造した前記化合物(6)と酸から塩を形成 させ、有機溶媒から晶析することによって、混入している不純物を母液に残し、該塩 を結晶として取得することを特徴とする、光学活性な 1一保護一 3—ァミノピロリジン誘 導体の塩の製造法でもある。
発明の効果
[0015] 本発明によれば、安価且つ入手容易な原料から工業的に実施可能な方法で、簡 便且つ効率的に良品質(高純度、及び高光学純度)の光学活性 3—ァミノ含窒素化 合物、特に光学活性な 1一保護一 3—ァミノピロリジン誘導体を製造することが可能と なる。
発明を実施するための最良の形態
[0016] 第一の本発明
まず、第一の本発明で使用する原料並びに生成物について説明する。
[0017] 本発明において、光学活性 3—置換含窒素化合物は、下記式(1)で表される。
[0018] [化 5]
Figure imgf000008_0001
ここで、 R1は置換基を有してもよい炭素数 1〜20のアルキル基、置換基を有しても ょレ、炭素数 3〜20のシクロアルキル基、置換基を有してもよ!/、炭素数 2〜20のアル ケニル基、置換基を有してもよい炭素数 7〜20のァラルキル基、置換基を有してもよ い炭素数 6〜20のァリール基、置換基を有してもよい炭素数 3〜20のへテロアリール 基、ヒドロキシル基、炭素数 1〜20のアルキルォキシ基、炭素数 7〜20のァラルキル ォキシ基、炭素数 6〜20のァリールォキシ基、又はアミノ基の保護基を表す。炭素数 ;!〜 20のアルキル基としては例えば、メチル基、ェチル基、 n—プロピル基、イソプロ ピル基、 n ブチル基、又は tert ブチル基等が挙げられ、炭素数 3〜20のシクロア ルキル基としては例えば、シクロプロピル基、シクロペンチル基、又はシクロへキシル 基等が挙げられ、炭素数 2〜20のアルケニル基としては例えば、ビュル基、ァリル基 、又はメタリル基等が挙げられ、炭素数 7〜20のァラルキル基としては例えば、ベン ジル基、又は 1 フエネチル基等が挙げられ、炭素数 6〜20のァリール基としては例 えば、フエニル基、ナフチル基、又はビフエニル基等が挙げられ、炭素数 3〜20のへ テロアリール基としては例えば、ピリジル基、フラニル基、チェニル基、ピロ一リル基、 ォキサゾリル基、イソォキサゾリル基、ピラゾリル基、ベンゾフラニル基、ベンゾチアゾリ ル基、又はインドリル基等が挙げられ、炭素数 1〜20のアルキルォキシ基としては例 えば、メトキシ基、エトキシ基、イソプロポキシ基、又は tert ブトキシ基等が挙げられ 、炭素数 7〜20のァラルキルォキシ基としては例えば、ベンジルォキシ基、又は 1 フエネチルォキシ基等が挙げられ、炭素数 6〜20のァリールォキシ基としては例えば 、フエノキシ基、又はビフエニルォキシ基等が挙げられる。置換基としては例えば、フ ッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ニトロ基、ニトロソ基 、シァノ基、アミノ基、ヒドロキシァミノ基、炭素数;!〜 12のアルキルアミノ基、炭素数 1 〜 12のジアルキルアミノ基、炭素数 7〜; 12のァラルキルアミノ基、炭素数 7〜; 12のジ ァラルキルアミノ基、炭素数 1〜 12のアルキルスルホニルァミノ基、スルホン酸基、ス ルホンアミド基、アジド基、トリフルォロメチル基、カルボキシル基、炭素数 1〜; 12のァ シル基、炭素数 7〜 12のァロイル基、ヒドロキシル基、炭素数;!〜 12のアルキルォキ シ基、炭素数 7〜; 12のァラルキルォキシ基、炭素数 6〜; 12のァリールォキシ基、炭素 数;!〜 12のァシルォキシ基、炭素数 7〜; 12のァロイルォキシ基、炭素数 3〜; 12のシリ ルォキシ基、炭素数 1〜 12のアルキルスルホニルォキシ基、又は炭素数 1〜 12のァ ルキルチオ基等が挙げられる。ァミノ基の保護基としては、 JOHN WILEY & SO NS, INC. (ジョン ·ウィリー ·アンド'サンズ)社、 Theodora W. Greene (テオドラ' ダブリュー-グリーン)著の PROTECTIVE GROUPS in ORGANIC SYNTH ESIS Third edition (プロテクティヴ'グループス'イン'オーガニック 'シンセシス 第 3版)の 494〜653頁に記載の 2級ァミンの保護基、具体的には、炭素数 2〜21の アルキルォキシカルボニル基、炭素数 8〜21のァラルキルォキシカルボニル基、炭 素数 7〜21のァリールォキシカルボニル基等が挙げられる。 R1として好ましくは、ベ ンジル基、ァリル基、ヒドロキシル基、ァセチル基、ベンゾィル基、メトキシカルボニル 基、エトキシカルボニル基、イソプロポキシカルボニル基、 tert—ブトキシカルボニル 基、又はべンジロキシカルボニル基であり、更に好ましくは、ベンジル基、 tert—ブト キシカルボニル基、又はべンジロキシカルボニル基である。
[0019] ここで、 *は不斉炭素原子を表す。なお両対掌体の内、僅かに一方の対掌体が過 剰なものは全て本発明に含まれるが、化合物(1)としては、通常、光学純度が 80%e . e.以上のもの、好ましくは 90%e. e.以上のもの、より好ましくは 95%e. e.以上の ものを使用する。
[0020] ここで、 Lは脱離基を表す。例えば、置換基を有してもよい炭素数;!〜 20のアルキ ルスルホニルォキシ基、置換基を有してもよい炭素数 6〜20のァリールスルホニルォ キシ基、置換基を有してもよい炭素数 7〜20のァラルキルスルホニルォキシ基、ハロ ゲン原子等が挙げられる。好ましくは、置換基を有してもよい炭素数;!〜 20のアルキ ルスルホニルォキシ基、置換基を有してもよい炭素数 6〜20のァリールスルホニルォ キシ基、又は塩素原子である。更に好ましくは、メタンスルホニルォキシ基、エタンス ノレホニルォキシ基、トリフルォロメタンスルホニルォキシ基、ベンゼンスルホ二ルォキ シ基、 p—メチルベンゼンスルホニルォキシ基、 p—クロ口ベンゼンスルホニルォキシ 基、 o—二トロベンゼンスルホニルォキシ基、 m—二トロベンゼンスルホニルォキシ基 、 p—二トロベンゼンスルホニルォキシ基、又は塩素原子であり、特に好ましくは、メタ ンスルホニルォキシ基である。
[0021] ここで、 nは 1〜3の整数を表す。好ましくは、 nが 1であるピロリジン誘導体、又は nが
2であるピぺリジン誘導体であり、更に好ましくは、 nが 1であるピロリジン誘導体である
[0022] なお、前記化合物(1)の入手に関しては例えば、 Synlett (シンレット), 1995, 1 , 55— 57. 、 Bioorganic & Medicinal Chemistry Letters (ノ ィォォ一刀ニッ ク'アンド ·メデイシナノレ'ケミストリー ·レターズ), 2000, 10 (21) , 2417 - 2419. 、 特許第 2948857号、特許第 3639449号等に記載の方法により製造できる。
[0023] また本発明において光学活性 3—ァミノ含窒素化合物は、下記式(2)で表される。
[0024] [化 6]
Figure imgf000011_0001
ここで、 *、
Figure imgf000011_0002
nは前記に同じである。 R2はァミノ基、メチルァミノ基、ェチルァミノ 基、又はジメチルァミノ基である。
[0025] 次に、第一の本発明における製造法について説明する。
[0026] 即ち、前記式(1)で表される光学活性 3—置換含窒素化合物と、アンモニア、メチ ルァミン、ェチルァミン又はジメチルァミンを水の存在下で反応させることにより、前記 式(2)で表される光学活性 3 ァミノ含窒素化合物を製造する。この際、 3位の立体 化学は反転を伴って進行するので、(S)— 3—置換含窒素化合物からは (R)— 3— アミノ含窒素化合物が生成し、 (R) 3—置換含窒素化合物からは(S)— 3—ァミノ 含窒素化合物が生成することになる。
[0027] ここで、アンモニア、メチルァミン、ェチルァミン、又はジメチルァミンの使用量として は、前記化合物(1)に対し、好ましくは 5〜300倍モル量、更に好ましくは 10〜; 100 倍モル量である。また、水の使用量としては前記アンモニア、メチルァミン、ェチルァ ミン、又はジメチルァミンに対し、好ましくは 0. ;!〜 10倍重量であり、更に好ましくは 0 . 3〜3倍重量である。即ち、アンモニア、メチルァミン、ェチルァミン、又はジメチルァ ミンの水溶液中の濃度として換算すると、好ましくは 9〜91重量%となり、更に好まし くは 25〜77重量%となる。
[0028] また第一の本発明ではアンモニア、メチルァミン、ェチルァミン、又はジメチルァミン が予め水溶液となっているものを使用してもよい。即ち、アンモニア(沸点:一 33°C)、 メチルァミン (沸点: 6°C)、ェチルァミン (沸点: 17°C)、及びジメチルァミン(沸点: 7 °C)は常温付近では気体であり、通常ボンベに入れられて取り扱われる。そのため、 輸送や貯蔵、また使用の際に高圧ガスとして種々の制約を受けることになる。これに 対してアンモニア、メチルァミン、ェチルァミン、又はジメチルァミンの水溶液は、輸送 や貯蔵の制約が少なぐ使用の際も取り扱い易さの点で好ましい。
[0029] 本反応は反応系中に水が存在すれば、特に反応溶媒を必要としないが、基質の溶 解度が低いために攪拌が困難な場合などに、更に反応溶媒を添加してもよい。反応 溶媒としては例えば、メタノール、エタノール、 n—プロパノール、イソプロパノール、 n ーブタノール、 tert ブタノール、エチレングリコール等のアルコール系溶媒;テトラヒ ドロフラン、ジェチノレエーテノレ、 1 , 4 ジ才キサン、エチレングリコーノレジメチノレエ一 テル等のエーテル系溶媒;ベンゼン、トルエン等の芳香族炭化水素系溶媒;ペンタン 、へキサン、ヘプタン、メチルシクロへキサン等の脂肪族炭化水素系溶媒;塩化メチ レン、 1 , 2—ジクロロェタン、クロ口ベンゼン等のハロゲン系溶媒;ジメチルスルホキシ ド等のスルホキシド系溶媒; N, N ジメチルホルムアミド、 N, N ジメチルァセトアミ ド等のアミド系溶媒;ジメチルプロピレンゥレア等のウレァ系溶媒;へキサメチルホスホ ン酸トリアミド等のホスホン酸トリアミド系溶媒;アセトン、メチルェチルケトン等のケトン 系溶媒;ァセトニトリル、プロピオ二トリル等の二トリル系溶媒を用いることができる。好 ましくは、メタノーノレ、エタノーノレ、 n—プロパノール、イソプロパノール、 1ーブタノ一 ノレ、 tert—ブタノール、エチレングリコール等のアルコール系溶媒である。これらは単 独で用いても良ぐ 2種以上を併用してもよい。 2種以上を併用する場合、その混合 比は特に制限されない。前記反応溶媒の使用量としては、多すぎるとコストや後処理 の点で好ましくないため、前記化合物(1)に対して好ましくは 50倍重量以下、更に好 ましくは 20倍重量以下である。
[0030] 本反応の圧力は、反応速度と生成物の光学純度(ラセミ化)に密接に関係しており 、特に重要である。反応圧力が大きい程、反応は速く進行して光学純度を維持 (ラセ ミ化を抑制)できる点で有利であるが、ある一定以上の圧力となると特殊な設備を必 要とするため、工業的規模で実施することが困難である。本発明の好ましい圧力とし ては、工業的に通常実施可能な 30バール未満であり、更に好ましくは 20バール未 満であり、とりわけ好ましくは 10バール未満である。圧力の下限は特に制限されない 1S 好ましくは大気圧以上である。
[0031] また本反応の温度は、用いるアンモニア、メチルァミン、ェチルァミン、又はジメチル ァミンの水溶液の濃度と反応設備の上限圧力から適宜設定すればよぐ好ましくは 1 00°C未満であり、更に好ましくは 40〜90°Cである。反応時間も用いるアンモニア、メ チルァミン、ェチルァミン、又はジメチルァミンの当量と上限圧力、反応温度から適宜 設定すればよぐ好ましくは 1〜48時間であり、更に好ましくは 3〜24時間である。
[0032] 本反応の試剤の添加順序については任意であり、特に限定されない。
[0033] 本反応によって、ラセミ化を抑制し化合物(1)の光学純度を維持した状態で化合物
(2)を製造すること力 Sできる。ラセミ化が抑制され光学純度はほとんど低下しな!/、ので 、化合物(1)が持つ光学純度に応じて、通常、光学純度が 80%e. e.以上、好ましく は 90%e. e.以上、より好ましくは 95%e. e.以上の化合物(2)を製造することができ
[0034] 反応後の後処理としては、反応液から生成物を取得するための一般的な処理を行 えばよい。例えば、反応終了後の反応液からアンモニア、メチルァミン、ェチルァミン 、又はジメチルァミンを減圧加熱等の操作により留去させ、残渣に必要に応じて水酸 化ナトリウム水溶液、炭酸水素ナトリウム水溶液等のアルカリ水溶液を加えて、一般的 な抽出溶媒、例えば酢酸ェチル、ジェチルエーテル、トルエン、へキサン、塩化メチ レン等を加えて抽出操作を行う。抽出液は減圧加熱等の操作により、反応溶媒及び 抽出溶媒を留去すると前記化合物(2)が得られる。このようにして得られた前記化合 物(2)には、前記化合物(1)、前記化合物(2)のェナンチォマー、下記式(3); [0035] [化 7]
Figure imgf000014_0001
(式中、 R1, nは前記に同じ)で表される 3—ヒドロキシ含窒素化合物、又は下記式 (4)
[0036] [化 8]
Figure imgf000015_0001
(式中、 R1, nは前記に同じ)で表されるデヒドロ含窒素化合物の内、少なくとも 1つを 不純物として含んでいる場合がある。そのまま後続工程に使用すると、後続工程の収 率、若しくは後続工程で得られる化合物の純度が低くなるため、次にこれら不純物の 除去方法について説明する。
[0037] 即ち、前記化合物(2)と酸から塩を形成させ、有機溶媒を用いて晶析することにより 、混入している不純物を母液に残し、該塩を結晶として取得することができる。
[0038] ここで、前記酸としては例えば、フッ化水素、塩化水素、臭化水素、ヨウ化水素、硫 酸、硝酸、リン酸、ホウ酸等の無機酸;蟻酸、酢酸、プロピオン酸、酪酸、ピバル酸、ク ロロ酢酸、トリクロ口酢酸、トリフルォロ酢酸、シユウ酸、 L—酒石酸、 D—酒石酸、マン デル酸等のカルボン酸;メタンスルホン酸、トリフルォロメタンスルホン酸、ベンゼンス ノレホン酸、 p—トルエンスルホン酸、カンファースルホン酸等のスルホン酸が挙げられ る。好ましくは塩化水素、臭化水素、硫酸、酢酸、ピバル酸、シユウ酸、 L 酒石酸、 D—酒石酸、マンデル酸、メタンスルホン酸、 p—トルエンスルホン酸、又はカンファー スルホン酸であり、更に好ましくは塩化水素、臭化水素、酢酸、メタンスルホン酸、又 は p トルエンスルホン酸である。前記酸の使用量としては前記化合物(2)に対し、 好ましくは 0. 5〜5倍モル量であり、更に好ましくは 0. 5〜; 1. 5倍モル量である。 [0039] 前記有機溶媒としては例えば、メタノール、エタノール、 n プロパノール、イソプロ パノール、 n ブタノール、 tert ブタノール、エチレングリコール等のアルコール系 溶媒;酢酸ェチル、酢酸 n プロピル、酢酸イソプロピル等のエステル系溶媒;テトラ ヒドロフラン、ジェチルエーテル、 1 , 4 ジォキサン、メチル tert ブチルエーテル、 エチレングリコーノレジメチノレエーテノレ等のエーテノレ系溶媒;アセトン、メチノレエチノレケ トン等のケトン系溶媒;ァセトニトリル、プロピオ二トリル等の二トリル系溶媒;ベンゼン、 トルエン等の芳香族炭化水素系溶媒;ペンタン、へキサン、ヘプタン、メチルシクロへ キサン等の脂肪族炭化水素系溶媒;塩化メチレン、 1 , 2—ジクロロェタン、クロ口ベン ゼン等のハロゲン系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒; N, N ジ メチノレホノレムアミド、 N, N ジメチルァセトアミド等のアミド系溶媒;ジメチルプロピレ ンゥレア等のウレァ系溶媒;へキサメチルホスホン酸トリアミド等のホスホン酸トリアミド 系溶媒を用いることができる。好ましくはメタノール、エタノール、イソプロパノール、酢 酸ェチル、酢酸 n—プロピル、酢酸イソプロピル、テトラヒドロフラン、メチル tert ブ チルエーテル、アセトン、ァセトニトリル、トルエン、へキサン、ヘプタン、又はメチルシ クロへキサンであり、更に好ましくはイソプロパノール、酢酸ェチル、又はトルエンであ る。これらは単独で用いても良ぐ 2種以上を併用してもよい。 2種以上を併用する場 合、その混合比は特に制限されない。前記有機溶媒の使用量としては、多すぎるとコ ストや後処理の点で好ましくないため、前記化合物(2)に対して好ましくは 50倍重量 以下であり、更に好ましくは 20倍重量以下である。
[0040] 本工程の有機溶媒を用いて結晶化する方法としては特に限定されないが、例えば 以下のような方法が挙げられる。
(a)前記化合物(2)と酸の水溶液または酸と水を有機溶媒中、混合した後、濃縮して 水分を留去することにより結晶化させる方法。この場合、水と共沸しうる有機溶媒 (例 えば、エタノール、イソプロパノール、酢酸ェチル、トルエン等)を使用し、共沸効果に より水分を留去することもできる。
(b)前記化合物(2)を有機溶媒中で、酸と混合することにより結晶化させる方法。
(c)前記化合物(2)と酸を有機溶媒中で混合後、冷却して結晶化させる方法。
[0041] 前記の結晶化方法は、酸の種類と有機溶媒の組み合わせにより、適切に選択すれ ば良い。例えば、塩化水素、又は臭化水素はその水溶液である塩酸、又は臭化水素 酸で取り扱う方が容易であるため、(a)の方法が適しており、また、メタンスルホン酸、 酢酸等の通常非含水物として使用し易い酸を用いる場合は、(b)の方法を選択する のが好ましい。さらに、(a)、 (b)又は(c)の方法で得られた塩を下記(d)〜(f)の晶析 方法と組み合わせて実施するか、(a)、 (b)または(c)の方法で得られた塩を有機溶 媒に溶解してさらに下記((!)〜(f)の晶析方法に付してもよい。言うまでもなぐ(d)〜 (f)の晶析方法を繰り返し実施しても良い。
(d)有機溶媒に溶解した前記化合物(2)の塩を、冷却して結晶化させる方法。
(e)前記化合物(2)の塩の溶解した有機溶媒に、貧溶媒を添加または貧溶媒に濃縮 置換することにより結晶化させる方法。
(f)有機溶媒に前記化合物(2)の塩を溶解させた後、別の酸を添加して結晶化させ る方法。
[0042] 前記のように(a)、 (b)、 (c)、 (d)、 (e)、 (f)の方法を適宜組み合わせて結晶化させ ることあでさる。
[0043] 前記結晶化方法で用いる有機溶媒としては、前述の有機溶媒と同じものが挙げら れ、(e)の方法で用いる貧溶媒としては例えば、トルエン、へキサン等が挙げられる。 また、結晶化の際には種晶を加えてもょレ、。
[0044] 前記(a)〜(f)の結晶化方法における実施温度は、特に限定されないが、塩の種類 と使用する溶媒の種類により適宜選択すればよぐ好ましくは使用する溶媒種又は混 合溶媒種に、前記化合物(2)の塩が溶解する温度未満で、 目標とする析出量と結晶 の品質に応じて設定すればよい。
[0045] 前記(a)〜(f)の結晶化方法により、析出した前記化合物(2)の塩は、減圧濾過、 加圧濾過、又は遠心分離等の方法により分離、取得すること力 Sできる。また、取得結 晶中に母液が残存して結晶の純度が低下する場合は必要に応じて、更に有機溶媒 で洗净することにより、品質を高めることもできる。
[0046] 結晶の乾燥方法としては、熱分解や溶融を避けて約 60°C以下で、減圧乾燥 (真空 乾燥)するのが望ましい。
[0047] 前記結晶化方法を行うことによって上述した不純物を除去することができるので、化 合物(2)の塩の化学純度が向上するとともに、光学純度についても向上することが可 能になる。
[0048] 前記方法によって取得した前記化合物(2)の塩は、更に水酸化アルカリ金属等の 塩基で処理することにより前記化合物(2)を遊離させ、抽出、濃縮等の操作を行うこ とにより、化学純度の向上した前記化合物(2)として取得することもできる。
第二の本発明
まず、第二の本発明で使用する原料並びに生成物について説明する。
[0049] 本発明において、光学活性な 1—保護— 3— (スルホニルォキシ)ピロリジン誘導体 は、下記式(5)で表される。
[0050] [化 9]
Figure imgf000018_0001
ここで、 R3は置換基を有してもよい炭素数 1〜20のアルキル基、置換基を有しても よい炭素数 6〜20のァリール基、又は置換基を有してもよい炭素数 7〜20のァラル キル基を表す。炭素数 1〜20のアルキル基としては例えば、メチル基、ェチル基、 n プロピル基、イソプロピル基、 n ブチル基、又は tert ブチル基等が挙げられ、 炭素数 6〜20のァリール基としては例えば、フエニル基、 p メチルフエニル基、ナフ チル基、又はビフエニル基等が挙げられ、炭素数 7〜20のァラルキル基としては例え ば、ベンジル基、又は 1 フエネチル基等が挙げられる。置換基としては例えば、フッ 素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ニトロ基、ニトロソ基、 シァノ基、アミノ基、ヒドロキシァミノ基、炭素数;!〜 12のアルキルアミノ基、炭素数;!〜 12のジアルキルアミノ基、炭素数 7〜; 12のァラルキルアミノ基、炭素数 7〜; 12のジァ ラルキルアミノ基、炭素数 1〜 12のアルキルスルホニルァミノ基、スルホン酸基、スル ホンアミド基、アジド基、トリフルォロメチル基、カルボキシル基、炭素数;!〜 12のァシ ル基、炭素数 7〜 12のァロイル基、ヒドロキシル基、炭素数 1〜 12のアルキルォキシ 基、炭素数 7〜; 12のァラルキルォキシ基、炭素数 6〜; 12のァリールォキシ基、炭素 数;!〜 12のァシルォキシ基、炭素数 7〜; 12のァロイルォキシ基、炭素数 3〜; 12のシリ ルォキシ基、炭素数 1〜 12のアルキルスルホニルォキシ基、又は炭素数 1〜 12のァ ルキルチオ基等が挙げられる。 R3として好ましくはメチル基、ェチル基、トリフルォロメ チル基、 p メチルフエニル基、 p—クロ口フエニル基であり、更に好ましくはメチル基 、又は p メチルフエニル基であり、特に好ましくはメチル基である。
[0051] R4は置換基を有してもよい炭素数;!〜 20のアルキル基、置換基を有してもよい炭素 数 2〜20のァノレケニノレ基、置換基を有してもよい炭素数 6〜20のァリール基、又は 置換基を有してもよ!/、炭素数 7〜20のァラルキル基を表す。炭素数 1〜20のアルキ ル基、炭素数 6〜20のァリール基、炭素数 7〜20のァラルキル基の具体例としては、 前述のものがあげられる。炭素数 2〜20のアルケニル基としては例えば、ビュル基、 ァリル基、又はメタリル基等が挙げられる。置換基の具体例としては、前述と同じもの があげられる。 R4として好ましくは、メチル基、クロロメチル基、ェチル基、 n プロピル 基、イソプロピル基、 tert ブチル基、ァリル基、フエニル基、又はべンジル基であり、 更に好ましくはメチル基、ェチル基、 n プロピル基、イソプロピル基、 tert ブチル 基、又はべンジル基であり、特に好ましくは tert ブチル基である。
[0052] ここで、 *は不斉炭素原子を表す。なお両対掌体の内、僅かに一方の対掌体が過 剰なものは全て本発明に含まれるが、化合物(5)としては、通常、光学純度が 80%e . e.以上のもの、好ましくは 90%e. e.以上のもの、より好ましくは 95%e. e.以上の ものを使用する。
[0053] 前記化合物(5)の入手に関しては、特に限定されない。具体的には、例えば後述 する方法以外にも、特許 2948857号や特許第 3639449号に記載の方法等が挙げ られる。
[0054] また本発明において、光学活性な 1一保護一 3—ァミノピロリジン誘導体は、下記式
(6)で表される。
[0055] [化 10]
Figure imgf000020_0001
ここで、 *、 R4は前記に同じ。 R5はァミノ基、メチルァミノ基、ェチルァミノ基、又はジメ チルァミノ基である。
[0056] また本発明において、 1一べンジルー 3—(スルホニルォキシ)ピロリジン誘導体は、 下記式(7)で表される。
[0057] [化 11]
Figure imgf000021_0001
ここで、 R3、 *は前記に同じである。前記化合物(7)は、光学活性な 1一べンジルー 3—ヒドロキシピロリジンを、塩基存在下にスルホニル化剤と反応させることにより製造 すること力 Sできる。例えば、 WO01/94304に記載の方法に従って、有機溶媒と水 の 2層反応系で水酸化ナトリウムを塩基として、塩化メタンスルホニルゃ塩化 p—トル エンスルホニル等のスルホニル化剤と反応させることによって製造することができる。
[0058] 次に、第二の本発明における製造法について説明する。まず、前記式(5)で表され る光学活性な 1—保護— 3— (スルホニルォキシ)ピロリジン誘導体を製造する工程に ついて説明する。
[0059] 前記化合物(5)を製造する方法としては、特に制限されないが、例えば、前記化合 物(7)のベンジル基を先に接触還元により脱保護した後、続いて塩基共存下にカル ノ ート化剤を用いて窒素原子上を力ルバメート保護することによって行うことができ る。また、前記式(7)で表される化合物を下記式(8):
[0060] [化 12] 4 (8)
ヽ〇z ヽ〇z ヽ O
(式中、 R4は前記に同じ)で表される酸無水物存在下、接触還元することにより製造 することもできる。前記式(7)で表される化合物を前記式(8)で表される酸無水物存 在下、接触還元すると、ベンジル基の脱保護及び力ルバメート保護を同時に実施す ること力 Sでき、副試剤の低減、反応時間の短縮、更に収率の増加等工業的に非常に 有利に製造できるため好ましい。
以下に前記式(7)で表される化合物を前記式(8)で表される酸無水物存在下、接 触還元することでベンジル基の脱保護及び力ルバメート保護を同時に実施する方法 について説明する。接触還元する方法としては、遷移金属触媒存在下に水素化する 方法が挙げられる。前記遷移金属触媒としては、例えば白金、ロジウム、パラジウム、 ニッケル、ルテニウム、イリジウム、又はレニウムであり、具体的には白金、ロジウム、 パラジウム、ニッケル、ルテニウム、イリジウム、又はレニウム等の金属、合金、若しくは その塩化物等が挙げられる。またこれらの触媒は、触媒活性、再現性、保存安定性、 操作性、リサイクルの観点から、粉末担体に分散させた触媒を用いる方が好ましい。 前記粉末担体としては例えば、炭素、アルミナ、シリカ一アルミナ、シリカ、炭酸バリゥ ム、硫酸バリウム、炭酸カルシウム、酸化チタン、酸化ジルコニウム、ゼォライト、又は アスベスト等が挙げられ、好ましくは、これら粉末担体に担持された白金、ロジウム、 又はパラジウムの金属、若しくはその硫化物、又は水酸化物等である。具体的には、 例えば白金 炭素、白金 (II)スルフイド 炭素、白金 アルミナ、白金 シリカーァ ルミナ、白金—シリカ、白金—炭酸バリウム、白金—硫酸バリウム、白金—炭酸カルシ ゥム、白金一酸化チタン、白金一酸化ジルコニウム、白金一ゼォライト、白金一ァスべ スト、白金ロジウム合金 炭素、白金パラジウム合金 炭素、ロジウム 炭素、ロジゥ ムーアルミナ、ロジウム シリカ、ロジウム 炭酸カルシウム、パラジウム 炭素、水酸 化パラジウム(II) 炭素、パラジウム(II)スルフイド 炭素、パラジウム アルミナ、パ ラジウム シリカ一アルミナ、パラジウム シリカ、パラジウム 炭酸バリウム、パラジゥ ム一硫酸バリウム、パラジウム 炭酸カルシウム、パラジウム一酸化チタン、パラジゥ ム一酸化ジルコニウム、パラジウムーゼオライト、パラジウム アスベスト、ノレテニゥム —炭素、ルテニウム—アルミナ、ノレテニゥム—シリカ、ノレテニゥム一炭酸カルシウム、 イリジウム 炭素、イリジウム アルミナ、イリジウム シリカ、イリジウム 炭酸カルシ ゥム等が挙げられる。好ましくは、パラジウム—炭素、ロジウム—炭素、白金—炭素、 又は水酸化パラジウム(II)—炭素であり、更に好ましくはパラジウム—炭素である。ま たこれら遷移金属触媒は、単独で用いてもよぐ 2種以上を併用してもよい。前記遷 移金属触媒の使用量としては多すぎるとコストや後処理の点で好ましくないため、前 記化合物(7)に対して、好ましくは 5倍重量以下であり、更に好ましくは 0. 01 -0. 5 倍重量である。
[0062] 前記式(8)で表される酸無水物として好ましくは、二炭酸ジメチル、二炭酸ジェチ ノレ、二炭酸ジ n プロピル、二炭酸ジイソプロピル、二炭酸ジ tert—プチル、二炭酸 ジベンジルであり、更に好ましくは二炭酸ジ tert ブチルである。前記化合物(8)の 使用量としては、前記化合物(7)に対し、好ましくは 1〜; 10倍モル量であり、更に好ま しくは;!〜 2倍モル量である。
[0063] 本反応の反応温度としては、好ましくは 20〜; 100°C、更に好ましくは 0〜50°Cで ある。本反応における水素圧は、好ましくは 50バール以下であり、更に好ましくは 1〜 10バーノレである。
[0064] 本反応の溶媒としては、反応に関与しなければ特に制限はないが、例えば、水;メ タノ一ノレ、エタノール、 n プロパノール、イソプロパノール、 n ブタノール、 tert ブ タノール、エチレングリコール等のアルコール系溶媒;テトラヒドロフラン、ジェチルェ ーテノレ、 1 , 4 ジ才キサン、メチノレ tert ブチノレエーテノレ、エチレングリコーノレジメチ ルエーテル等のエーテル系溶媒;ベンゼン、トルエン等の芳香族炭化水素系溶媒; ペンタン、へキサン、ヘプタン、メチルシクロへキサン等の脂肪族炭化水素系溶媒等 が挙げられる。好ましくは、メタノール、エタノール、 n—プロパノール、イソプロパノー ノレ、 n—ブタノール、 tert—ブタノール、エチレングリコール等のアルコール系溶媒; ベンゼン、トルエン等の芳香族炭化水素系溶媒であり、更に好ましくはメタノール、又 はトルエンである。これらは単独で用いても良ぐ 2種以上を併用してもよい。 2種以上 を併用する場合、その混合比は特に制限されない。前記溶媒の使用量としては、多 すぎるとコストや後処理の点で好ましくないため、前記化合物(7)に対して好ましくは 50倍重量以下であり、更に好ましくは 20倍重量以下である。
[0065] 反応温度には特に制限はなぐ適宜設定すればよいが、副生成物の生成を少なく するため、好ましくは一 20〜; 100°Cであり、更に好ましくは 0〜50°Cである。また、反 応時間については、用いる触媒量と反応設備の上限圧力から適宜設定すればよぐ 好ましくは 1〜24時間であり、更に好ましくは 3〜; 12時間である。
[0066] 反応の際の前記化合物(7)、前記化合物(8)、遷移金属触媒、水素の添加方法は 特に制限されな!/、。添加順序は水素を最後に添加すれば、その他の順序は特に制 限されない。
[0067] 反応後の後処理としては、反応液から生成物を取得するための一般的な処理を行 えばよい。例えば、反応終了後の反応液から触媒を濾別し、濾液から減圧加熱等の 操作により反応溶媒を留去すると目的物が得られる。このようにして得られた目的物 は、後続工程に使用できる十分な純度を有している力 純度をさらに高める目的で、 晶析、分別蒸留、カラムクロマトグラフィー等の一般的な精製手法により、さらに純度 を高めてもよい。
[0068] 次に、前記式(5)で表される光学活性な 1—保護— 3— (スルホニルォキシ)ピロリジ ン誘導体とアンモニア、メチルァミン、ェチルァミン、又はジメチルァミンを反応させる ことにより、前記式 (6)で表される光学活性な 1一保護一 3—ァミノピロリジン誘導体を 製造する工程について説明する。この際、 3位の立体化学は反転を伴って進行する ので、 (S)— 1—保護— 3— (スルホニルォキシ)ピロリジン誘導体からは (R)—1—保 護— 3—ァミノピロリジン誘導体が生成し、(R)— 1—保護— 3— (スルホニルォキシ) ピロリジン誘導体からは(S)— 1一保護一 3—ァミノピロリジン誘導体が生成することに なる。なお本工程では、反応系中にメタノール、エタノール、 n—プロパノール及びィ ソプロパノールからなる群より選択される少なくとも 1つを共存させることにより、 30バ ール未満という比較的低い圧力下においても、高光学純度の前記化合物(6)が収率 よく得られることに特 ί毁がある。
[0069] ここで、アンモニア、メチルァミン、ェチルァミン、又はジメチルァミンの使用量として は、前記化合物(5)に対し、好ましくは 5〜300倍モル量、更に好ましくは 10〜; 100 倍モル量である。また、反応系に存在するメタノール、エタノール、 η—プロパノール、 又はイソプロパノールは、単独で用いても良ぐ 2種以上を併用してもよい。 2種以上 を併用する場合、その混合比は特に制限されない。前記メタノール、エタノール、 η— プロパノール、又はイソプロパノールの使用量としては前記アンモニア、メチルァミン 、ェチルァミン、又はジメチルァミンに対し、好ましくは 0. ;!〜 10倍重量であり、更に 好ましくは 0. 3〜3倍重量である。即ち、アンモニア、メチルァミン、ェチルァミン、又 はジメチルァミン濃度に換算すると、好ましくは 9〜91重量%となり、更に好ましくは 2 5〜77重量%となる。
[0070] また第二の本発明ではアンモニア、メチルァミン、ェチルァミン、又はジメチルァミン が予めアルコール溶液となっているものを使用してもよい。即ち、アンモニア(沸点: 33°C)、メチルァミン (沸点: 6°C)、ェチルァミン (沸点: 17°C)、及びジメチルアミ ン(沸点: 7°C)は常温付近では気体であり、通常ボンベに入れられて取り扱われる。 そのため、輸送や貯蔵、また使用の際に高圧ガスとして種々の制約を受けることにな る。これに対してアンモニア、メチルァミン、ェチルァミン、又はジメチルァミンのアル コール溶液は、輸送や貯蔵の制約が少なぐ使用の際も取り扱い易さの点で好まし い。
[0071] 本反応はメタノール、エタノール、 n プロパノール及びイソプロパノールからなる群 より選択される少なくとも 1つの溶媒が存在すればその他は特に反応溶媒を必要とし ないが、基質の溶解度が低いために攪拌が困難な場合などに、更に反応溶媒を添 カロしてもよい。反応溶媒としては例えば、テトラヒドロフラン、ジェチルエーテル、 1, 4 ジ才キサン、エチレングリコーノレジメチノレエーテノレ等のエーテノレ系溶媒;ベンゼン 、トルエン等の芳香族炭化水素系溶媒;ペンタン、へキサン、ヘプタン、メチルシクロ へキサン等の脂肪族炭化水素系溶媒;塩化メチレン、 1 , 2—ジクロロェタン、クロ口べ ンゼン等のハロゲン系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒; N, N— ジメチノレホノレムアミド、 N, N—ジメチルァセトアミド等のアミド系溶媒;ジメチルプロピ レンウレァ等のウレァ系溶媒;へキサメチルホスホン酸トリアミド等のホスホン酸トリアミ ド系溶媒;アセトン、メチルェチルケトン等のケトン系溶媒;ァセトニトリル、プロピオニト リル等の二トリル系溶媒を用いることができる。これらは単独で用いても良ぐ 2種以上 を併用してもよい。 2種以上を併用する場合、その混合比は特に制限されない。前記 反応溶媒の使用量としては、多すぎるとコストや後処理の点で好ましくないため、前 記化合物(5)に対して好ましくは 50倍重量以下、更に好ましくは 20倍重量以下であ
[0072] 第二の本反応における圧力としては、工業的に通常実施可能な 30バール未満で あり、更に好ましくは 20バール未満である。圧力の下限は特に制限されないが、好ま しくは大気圧以上である。
[0073] また本反応の温度は、用いるアンモニア、メチルァミン、ェチルァミン、又はジメチル ァミンの溶液の濃度と反応設備の上限圧力から適宜設定すればよぐ好ましくは 110 °C未満であり、更に好ましくは 40〜90°Cである。反応時間も用いるアンモニア、メチ ルァミン、ェチルァミン、又はジメチルァミンの当量と上限圧力、反応温度から適宜設 定すればよぐ好ましくは 1〜24時間であり、更に好ましくは 3〜; 12時間である。
[0074] 本反応の試剤の添加順序については任意であり、特に限定されない。
[0075] 本反応によって、ラセミ化を抑制し化合物(5)の光学純度を維持した状態で化合物
(6)を製造すること力 Sできる。ラセミ化が抑制され光学純度はほとんど低下しな!/、ので 、化合物(5)が持つ光学純度に応じて、通常、光学純度が 80%e. e.以上、好ましく は 90%e. e.以上、より好ましくは 95%e. e.以上の化合物(6)を製造することができ
[0076] アミノ化反応後の後処理としては、反応液から生成物を取得するための一般的な処 理を行えばよい。例えば、反応終了後の反応液からアンモニア、メチルァミン、ェチ ノレアミン、又はジメチルァミンを減圧加熱等の操作により留去させ、残渣に必要に応 じて水酸化ナトリウム水溶液、炭酸水素ナトリウム水溶液等のアルカリ水溶液を加え て、一般的な抽出溶媒、例えば酢酸ェチル、ジェチルエーテル、トルエン、へキサン 、塩化メチレン等を加えて抽出操作を行う。抽出液は減圧加熱等の操作により、反応 溶媒及び抽出溶媒を留去すると前記化合物(6)が得られる。このようにして得られた 前記化合物(6)には、前記化合物(5)、前記化合物(6)のェナンチォマー、下記式 ( 9) ;
[化 13]
Figure imgf000027_0001
(式中、 *、 R4は前記に同じ。 R6はメチル基、ェチル基、 n—プロピル基、又はイソプ 口ピル基を表す。)で表される化合物、又は下記式(10);
[化 14]
Figure imgf000028_0001
(式中、 R4は前記に同じ。)で表される化合物の内、少なくとも 1つを不純物として含ん でいる場合がある。そのまま後続工程に使用すると、後続工程の収率、若しくは後続 工程で得られる化合物の純度が低くなるため、次にこれら不純物の除去方法につい て説明する。
[0079] 即ち、前記化合物(6)と酸から塩を形成させ、有機溶媒を用いて晶析することにより 、混入している不純物を母液に残し、該塩を結晶として取得することができる。
[0080] ここで、前記酸としては例えば、フッ化水素、塩化水素、臭化水素、ヨウ化水素、硫 酸、硝酸、リン酸、ホウ酸等の無機酸;蟻酸、酢酸、プロピオン酸、酪酸、ピバル酸、ク ロロ酢酸、トリクロ口酢酸、トリフルォロ酢酸、シユウ酸、マンデル酸等のカルボン酸;メ タンスルホン酸、トリフルォロメタンスルホン酸、ベンゼンスルホン酸、 p—トルエンスル ホン酸、カンファースルホン酸等のスルホン酸が挙げられる。好ましくは塩化水素、臭 化水素、硫酸、酢酸、ピバル酸、シユウ酸、マンデル酸、メタンスルホン酸、 p—トルェ ンスルホン酸、又はカンファースルホン酸であり、更に好ましくは塩化水素、臭化水素 、酢酸、メタンスルホン酸、又は p—トルエンスルホン酸であり、特に好ましくは酢酸で ある。前記酸の使用量としては前記化合物(6)に対し、好ましくは 0. 5〜5倍モル量 であり、更に好ましくは 0· 5〜; ! · 5倍モル量である。
[0081] 前記有機溶媒としては例えば、メタノール、エタノール、 n—プロパノール、イソプロ パノール、 n ブタノール、 tert ブタノール、エチレングリコール等のアルコール系 溶媒;酢酸ェチル、酢酸 n プロピル、酢酸イソプロピル等のエステル系溶媒;テトラ ヒドロフラン、ジェチルエーテル、 1 , 4 ジォキサン、メチル tert ブチルエーテル、 エチレングリコーノレジメチノレエーテノレ等のエーテノレ系溶媒;アセトン、メチノレエチノレケ トン等のケトン系溶媒;ァセトニトリル、プロピオ二トリル等の二トリル系溶媒;ベンゼン、 トルエン等の芳香族炭化水素系溶媒;ペンタン、へキサン、ヘプタン、メチルシクロへ キサン等の脂肪族炭化水素系溶媒;塩化メチレン、 1 , 2—ジクロロェタン、クロ口ベン ゼン等のハロゲン系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒; N, N ジ メチノレホノレムアミド、 N, N ジメチルァセトアミド等のアミド系溶媒;ジメチルプロピレ ンゥレア等のウレァ系溶媒;へキサメチルホスホン酸トリアミド等のホスホン酸トリアミド 系溶媒を用いることができる。好ましくはメタノール、エタノール、イソプロパノール、酢 酸ェチル、酢酸 n—プロピル、酢酸イソプロピル、テトラヒドロフラン、メチル tert ブ チルエーテル、アセトン、ァセトニトリル、トルエン、へキサン、ヘプタン、又はメチルシ クロへキサンであり、更に好ましくは酢酸ェチル、酢酸 n プロピル、酢酸イソプロピ ノレ、トルエンである。これらは単独で用いても良ぐ 2種以上を併用してもよい。 2種以 上を併用する場合、その混合比は特に制限されない。前記有機溶媒の使用量として は、多すぎるとコストや後処理の点で好ましくないため、前記化合物(6)に対して好ま しくは 50倍重量以下であり、更に好ましくは 20倍重量以下である。
[0082] 本工程の有機溶媒を用いて結晶化する方法としては特に限定されないが、例えば 以下のような方法が挙げられる。
(a)前記化合物(6)と酸の水溶液または酸と水を有機溶媒中、混合した後、濃縮して 水分を留去することにより結晶化させる方法。この場合、水と共沸しうる有機溶媒 (例 えば、酢酸ェチル、トルエン等)を使用し、共沸効果により水分を留去することもでき
(b)前記化合物(6)を有機溶媒中で、酸と混合することにより結晶化させる方法。
(c)前記化合物(6)と酸を有機溶媒中で混合後、冷却して結晶化させる方法。
[0083] 前記の結晶化方法は、酸の種類と有機溶媒の組み合わせにより、適切に選択すれ ば良い。例えば、塩化水素、又は臭化水素はその水溶液である塩酸、又は臭化水素 酸で取り扱う方が容易であるため、(a)の方法が適しており、また、メタンスルホン酸、 酢酸等の通常非含水物として使用し易い酸を用いる場合は、(b)の方法を選択する のが好ましい。さらに、(a)、 (b)又は(c)の方法で得られた塩を下記(d)〜(f)の晶析 方法と組み合わせて実施するか、 (a) , (b)又は (c)の方法で得られた塩を有機溶媒 に溶解してさらに下記(d)〜(f)の晶析方法に付してもよい。もちろん、(d)〜(f)の晶 析方法を適宜繰り返しても良い。
(d)有機溶媒に溶解した前記化合物(6)の塩を冷却して結晶化させる方法。
(e)前記化合物(6)の塩の溶解した有機溶媒に、貧溶媒を添加または貧溶媒に濃縮 置換することにより結晶化させる方法。
(f)有機溶媒に前記化合物(6)の塩を溶解させた後、別の酸を添加して結晶化させ る方法。
[0084] 前記のように(a)、 (b)、 (c)、 (d)、 (e)、 (f)の方法を適宜組み合わせて結晶化させ ることあでさる。
[0085] 前記結晶化方法で用いる有機溶媒としては、前述の有機溶媒と同じものが挙げら れ、(e)の方法で用いる貧溶媒としては例えば、トルエン、へキサン等が挙げられる。 また、結晶化の際には種晶を加えてもょレ、。
[0086] 前記(a)〜(f)の結晶化方法における実施温度は、特に限定されないが、塩の種類 と使用する溶媒の種類により適宜選択すればよぐ好ましくは使用する溶媒種又は混 合溶媒種に、前記化合物 ½)の塩が溶解する温度未満で、 目標とする析出量と結晶 の品質に応じて設定すればよい。
[0087] 前記(a)〜(f)の結晶化方法により、析出した前記化合物(6)の塩は、減圧濾過、 加圧濾過、又は遠心分離等の方法により分離、取得すること力 Sできる。また、取得結 晶中に母液が残存して結晶の純度が低下する場合は必要に応じて、更に有機溶媒 で洗净することにより、品質を高めることもできる。
[0088] 結晶の乾燥方法としては、熱分解や溶融を避けて約 60°C以下で、減圧乾燥 (真空 乾燥)するのが望ましい。
[0089] 前記結晶化方法を行うことによって上述した不純物を除去することができるので、化 合物(6)の塩の化学純度が向上するとともに、光学純度についても向上することが可 能になる。
[0090] 前記方法によって取得した前記化合物(6)の塩は、更に水酸化アルカリ金属等の 塩基で処理することにより前記化合物(6)を遊離させ、抽出、濃縮等の操作を行うこ とにより、化学純度の向上した前記化合物(6)として取得することもできる。
実施例
[0091] 以下に実施例を挙げて、本発明を更に具体的に説明するが、本発明はこれら実施 例のみに限定されるものではない。尚、比較製造例 1以降に記載しているピロリジン 誘導体の化学純度、光学純度は、以下の HPLC法により分析した。
「 , ネ斤 1
カラム ナカライ製 {コスモシル 5C18ARII 250 X 4. 6mm}、移動相: KH PO
2 4 バッファー(pH4. 6) /ァセトニトリル = 60/40 (v/v)、流速: 1. Oml/min、検出: UV 210應、カラム温度:40。。
保持時間:酢酸; 2. 4分、 l—(t—ブトキシカルボニル)ー3 ァミノピロリジン; 2. 7分 、 1—ベンジル一 3— (メタンスルホニルォキシ)ピロリジン; 3. 9分、 1— (tert ブトキ シカルボニル)ー3 (メタンスルホニルォキシ)ピロリジン; 8. 2分
「光学純度分析法: 1一(tert ブトキシカルボニル) 3—ァミノピロリジン Ί
カラム ダイセル化学製 {CROWNPAK 150 X 4. 6mm}、移動相:過塩素酸水 溶液(pHl . 5)、流速: 1. Oml/min、検出: UV 210nm、カラム温度: 35°C保持 時間:(S)—l— (tert ブトキシカルボ二ル)一 3—ァミノピロリジン; 24· 1分、(R)— 1一(tert ブトキシカルボニル)ー3—ァミノピロリジン; 27· 0分
「光学純度分析法: 1一(tert ブトキシカルボニル) 3—(メチルァミノ)ピロリジン Ί 本方法は、 1一(tert ブトキシカルボニル) 3—(メチルァミノ)ピロリジンの 3位の メチルアミノ基を Boc保護した後に測定する。
[0092] カラム ダイセル化学製 {CHIRALCEL OD— H 250 X 4· 6mm}、移動相:へ キサン/イソプロピルアルコール = 97. 5/2. 5 (v/v)、流速: 1. Oml/min、検出 : UV 210應、カラム温度:30。。
保持時間:(R)—1— (tert ブトキシカルボニル) 3—メチルァミノピロリジンの Boc 保護体; 6. 0分、(S)—l— (tert ブトキシカルボニル)ー3 メチルァミノピロリジン の Boc保護体; 6. 9分
<第一の本発明〉
比較例 1 (R)— 1 ペンジノレー 3—ァミノピロリジンの製造
オートクレーブをアセトン/ドライアイスバスで冷却し、アンモニアガスを吹き込んで 液体アンモニアを 477cc ( (S)—1一べンジルー 3 (メタンスルホニルォキシ)ピロリ ジンの 25当量分に相当)貯めた。ここに、 (S)— 1一べンジルー 3 (メタンスルホ二 ノレ才キシ)ピロリジン 180g (672. lmmol、光学純度: 100%e. e. )をカロ免、 100°C に加熱すると内圧が 55バールとなった。 5時間反応後に室温まで冷却し、アンモニア を減圧留去した。残渣として褐色油状物 306. 7gを得た (反応収率: 88%、光学純度 : 91. 2%e. e. )。
比較例 2 (R)—1—ベンジノレ— 3 ァミノピロリジンの 告
オートクレーブをアセトン/ドライアイスバスで冷却し、アンモニアガスを吹き込んで 液体アンモニアを 64cc ( (S)—1一べンジルー 3 (メタンスルホニルォキシ)ピロリジ ンの 25当量分に相当)貯めた。ここに、 (S)— 1一べンジルー 3 (メタンスルホニル 才キシ)ピロリジン 30g (108. 4mmol、光学純度: 100%e. e. )とメタノーノレ 118gを 加え、 100°Cに加熱すると内圧が 10バールとなった。 7時間反応後に室温まで冷却 し、アンモニアとメタノールを減圧留去した。残渣として淡黄色油状物 26. 6gを得た( 反応収率: 67%、光学純度: 85. 8%e. e. )。
工程 1— 1 (R)— 1—ベンジノレ一 3—ァミノピロリジンの製造
オートクレーブに(S)— 1一べンジルー 3—(メタンスルホニルォキシ)ピロリジン 5· 3 03g (20mmol、光学純度: 100%e. e. )、 40重量0 /0のアンモニア水 42. 53g (50当 量)を入れ、 80°Cに加熱すると内圧が 8バールとなった。 20時間反応後に室温まで 冷却し、 30重量%水酸化ナトリウム水溶液 4. 00g (l . 5当量)を加えた後、アンモニ ァを減圧留去した。残渣を酢酸ェチル 30mLで 3回抽出し、有機層を合わせて飽和 食塩水 3mLで洗浄後、無水硫酸マグネシウムで乾燥、減圧濃縮することにより濃赤 色油状物 3. 6146gを得た (反応収率: 73%、光学純度: 92. 4%e. e. )。
以下に、特許第 3639449号の実施例 5、比較例 1、比較例 2、実施例 1の結果を表 に纏めた。
[0094] 特許第 3639449号の実施例 5は、工業的に実施困難な、反応温度 110°C、 80バ ールの圧力下では 96· 8%e. e. の(R)— 1—ベンジル一 3—ァミノピロリジンが得ら れている。しかしながら、上記特許第 3639449号の実施例 5を参考に、反応温度、 反応圧力を低下させると、反応は良好に進行するものの、その光学純度は 91. 2%e . e.まで低下した(比較例 1)。本発明に用いる水の変わりにメタノールを添加して、 反応温度 100°C、 10バールの圧力で反応を行ったところ、生成物の光学純度は 85 . 8%e. e.となった(比較例 2)。水を加えて工業的に実施可能な 30バール以下の 圧力である 8バールおよび 80°Cで反応を行ったところ、生成物の光学純度は 92. 4 %e. e.であり(実施例 1)、 55バールの液体アンモニア中での反応とほぼ同等の結 果となった。
[0095] [表 1]
Figure imgf000033_0001
工程 1—2 (R)—l—ベンジノレ— 3—ァミノピロリジン西乍酸塩の製造
工程 1— 1で製造した (R) - 1—ベンジル— 3—ァミノピロリジンの粗製物 3· 6146g (14. 6mmol、光学純度: 92· 4%e. e.、不純物として 1一べンジルー 3—ピロリジノ 一ノレを 29. 5重量0 /0、 1一べンジルー 2, 5—ジヒドロー 1H—ピロールを 0. 8重量0 /0 含む)の酢酸ェチル溶液(30mUに、酢酸 960mg (16mmol)を加えると結晶が析 出した。 5°C、 30分攪拌後、結晶を減圧濾別し、酢酸ェチル 20mLで洗浄後、真空 乾燥することにより白色結晶 2. 5804gを得た(収率: 75%、光学純度: 94. 3%e. e . 、 1一べンジルー 3—ピロリジノールと 1一べンジルー 2, 5—ジヒドロー 1H—ピロ一 ルは不検出)。 工程 1—3 (R)— 1 ペンジノレー 3—ァミノピロリジン阜化水素酸塩の製造
工程 1—2で製造した (R)—l—ベンジル— 3 ァミノピロリジン酢酸塩 1 · 00g (4. 2 3mmol)のイソプロパノール溶液(20mUに、 48重量%臭化水素酸 714mg (1当量 )を加えて減圧濃縮した。残渣にイソプロパノール 20mLを加えて再度濃縮し、残渣 にイソプロパノール lmLと酢酸ェチル 20mLを加えると結晶が析出した。 20°C、 30 分攪拌後、結晶を減圧濾別し、酢酸ェチル 10mLで洗浄、真空乾燥することにより白 色結晶 700· 9mgを得た(収率: 64%、光学純度: 98· 7%e. e. )。
実施例 2 (R) - 1 - (tert ブトキシカルボニル) 3 ァミノピロリジン酢酸塩の製 造
オートクレーブに(S)— 1一(tert ブトキシカルボニル) 3—(メタンスルホニルォ キシ)ピロリジン 11. 2g (29. 5mmol)、 40重量0 /0のアンモニア水 62. 7g (50当量) を入れ、 80°Cに加熱すると内圧が 8バールとなった。 10時間反応後に室温まで冷却 し、減圧濃縮した。残渣に 30重量%水酸化ナトリウム水溶液 4. 13g、飽和食塩水 31 . 3g、トルエン 19. 6gを加えて抽出し、減圧濃縮することにより黄色油状物 5. 09gを 得た。ここに、トルエン 53· 8g、酢酸 1 · 43g (0. 8当量)を順次加えると結晶が析出し た。 20°C、 13時間攪拌後、結晶を減圧濾別し、トルエン 16. 2mLで洗浄後、真空乾 燥することにより白色結晶 4. 81gを得た (収率: 67%、純度: 100重量%、光学純度: 99. 9%e. e. )
— NMR (CDC1、 400MHz): δ (ppm) l . 45 (s, 9H) , 1. 88 (m, 1H) , 1. 97
(s, 3H) , 2. 13 (m, 1H) , 3. 16— 3. 32 (m, 1H) , 3. 40 (m, 1H) , 3. 46— 3. 6 2 (m, 2H)、 3. 66 (m, 1H) , 6. 63 (m, 2H)
実施例 3 (R)— 1 (ベンジロキシカルボニル) 3—ァミノピロリジン酢酸塩の製造 オートクレーブに(S)— 1 (ベンジロキシカルボニル) 3—(メタンスルホ二ルォキ シ)ピロリジン 2· 44g (7. 38mmol)、 40重量%のアンモニア水 15. 7g (50当量)を 入れ、 80°Cに加熱すると内圧が 8バールとなった。 16時間反応後に室温まで冷却し 、 30重量%水酸化ナトリウム水溶液を加えて pHを 13に調整後、アンモニアを減圧留 去した。残渣を酢酸ェチル 15mLで 3回抽出し、有機層を合わせて飽和食塩水 3mL で洗浄後、無水硫酸マグネシウムで乾燥、減圧濃縮することにより黄色油状物を得た 。ここに、酢酸ェチル 10mL、酢酸 354mg(0. 8当量)を順次加えると結晶が析出し た。 5°C、 30分攪拌後、結晶を減圧濾別し、酢酸ェチル 10mLで洗浄、真空乾燥す ることにより白色結晶 1. 1684gを得た(収率: 56%、純度: 100重量%、光学純度: 1 00 %e. e. )
'H-NMRCD 0、 400MHZ): δ (ppm)l. 75 (s, 3H) , 1. 95 (m, 1H), 2. 20 ( m, 1H), 3. 3-3.4(m, 3H) , 3. 57 (m, 1H), 3. 83 (m, 1H), 5. 00(s, 2H) , 7. 29 (m, 5H)
実施例 4 (R)— 1一べンジルー 3—(メチルァミノ)ピロリジン阜化水素酸塩の製造 オートクレーブに(S)— 1一べンジルー 3—(メタンスルホニルォキシ)ピロリジン 5· 3 03g(20mmol)、 40重量0 /0のメチノレアミン水溶 ί夜 51. 9mL (30当量)を入れ、 80°C に加熱すると内圧が 2バールとなった。 16時間反応後に室温まで冷却し、減圧濃縮 した。残渣に 30重量%水酸化ナトリウム水溶液 4.00gをカロえ、酢酸ェチル 30mLで 3回抽出した。有機層を合わせて飽和食塩水 5mLで洗浄後、減圧濃縮することによ り黄色油状物 4. 20gを得た。ここに、イソプロパノール 35mL、 48重量%臭化水素酸 3. 04g(0. 93当量)を加えて減圧濃縮し、残渣に酢酸ェチル 35mLを加えると結晶 が析出した。 5°C、 30分攪拌後、結晶を減圧濾別し、冷やした酢酸ェチル 18mLで 洗浄後、真空乾燥することにより白色結晶 4. 65gを得た (収率: 86%、純度: 100重 量%、光学純度: 98· 3%e. e. )
'H-NMRCD 0、 400MHZ): δ (ppm)l. 73 (m, 1H), 2. 17 (m, 1H), 2. 47 ( s, 3H), 2. 51 (m, 1H), 2. 54 (m, 2H) , 2. 98 (m, 1H), 3. 55 (m, 1H), 3. 6 4(s, 2H), 7. 25 (s, 5H)
参考例 1 (S)— 1一べンジルー 3—(メタンスルホニルォキシ)ピロリジンの經造
(S)— 1一べンジノレ 3 ヒドロキシピロリジン 44. 18gをトノレェン 38. 34gで溶角早し 、 30重量%水酸化ナトリウム水溶液 66. 88gを添加した。次に塩化メタンスルホニル を、内温 5〜; 10°Cを維持できる速度で滴下した。水層に析出した食塩を 90mlの水を 加えて溶解して分液した後、得られた有機層を減圧濃縮し、標題化合物を淡褐色油 状物質 60· 14gとして得た。
'H-NMRCCDCI ): δ (ppm) 2. 08 (m, 1H) , 2. 28 (m, 1H) , 2. 49 (m, 1H) , 2. 99 (s, 3H) , 3. 65 (m, 2H) , 7. 30— 7. 33 (m, 5H)
比較製造例 1 (S)— 1一(tert ブトキシカルボニル) 3—(メタンスルホ二ルォキ シ)ピロリジンの製造
参考例 1に記載の方法で製造した(S)— 1一べンジルー 3—(メタンスルホ二ルォキ シ)ピロリジン 1. 39gをメタノール 10mlに溶解し、濃塩酸 678mg、 5重量%パラジゥ ム—炭素 128mgを添加した後、常圧水素雰囲気下、 40°C、 18時間撹拌した。パラ ジゥムを減圧濾別後、メタノール 10mlで洗いこみ、濾液を減圧濃縮し、濃縮物を得 た。ここに、水 10mlと酢酸ェチル 10mlを加え、氷冷下にてトリエチノレアミン 660mg、 二炭酸ジ tert ブチル 1. 13gを添加し、 30分撹拌した。分液後、有機層を水 10ml で洗浄し、得られた有機層を減圧濃縮する事により、標題化合物を無色透明油状物 質 1. 23g (化学純度 97. 6area%、収率 86%)として得た。
'H-NMR CCDCl ): δ (ppm) l . 47 (s, 9H) , 2. 15 (m, 1Η) , 2. 27 (m, 1H) ,
3. 05 (s, 3H) , 3. 42 - 3. 78 (m, 4H) , 5. 26 (m, 1H)
製造例 1 (S)— 1一(tert ブトキシカルポニル)一 3—(メタンスルホニルォキシ)ピ 口リジンの製造
参考例 1に記載の方法で製造した(S)— 1一べンジルー 3—(メタンスルホ二ルォキ シ)ピロリジン 1. 39gをメタノール 10mlに溶解し、二炭酸ジ t ブチル 1. 13g、 5重量 %パラジウム—炭素 127mgを添加した後、常圧水素雰囲気下、 24°C、 3時間撹拌し た。ノ ラジウムを減圧濾別後、メタノール 30mlで洗いこみ、濾液を減圧濃縮する事に より、標題化合物を淡黄色油状物質 1. 37g (化学純度 90. 9area%、収率 96%)とし て得た。比較製造例 1に比較して、極めて高収率で標題化合物を得る事ができた。 製造例 2 (S)— 1一(tert ブトキシカルボニル) 3—(メタンスルホニルォキシ)ピ 口リジンの製造
参考例 1に記載の方法で製造した(S)— 1一べンジルー 3—(メタンスルホ二ルォキ シ)ピロリジン 180gのトルエン溶液 627gに、二炭酸ジ t ブチル 159g、 10%パラジ ゥム炭素 27gを添加し、常圧水素雰囲気下、 22°C、 7時間撹拌した。パラジウムを減 圧濾別後、トルエン 270gで洗いこみ、濾液を減圧濃縮する事により、標題化合物 16 7g (収率 89%、化学純度 93· 0area%、光学純度: 100%e. e. )を含むトルエン溶 液 238gとして得た。
実施例 5
工程 5—1 (R)—1 (tert ブトキシカルボニル)ー3—ァミノピロリジンの製造 製造例 2に記載の方法で製造した(S)— 1一(tert ブトキシカルボニル) 3—(メ タンスノレホュノレ才キシ)ピロリジン 5· 56gに 28重量0 /0アンモユア水溶 ί夜 36 · 4gをカロ え、 90°C、 19時間撹拌した(内圧約 4バール)。冷却後、アンモニアを留去し、水 10 mlと 30重量%水酸化ナトリウム水溶液 3. 21gを添加した。水溶液を減圧濃縮後、飽 和食塩水 10mlを加え、 目的物を酢酸ェチル 20mlで 3回抽出した。得られた有機層 を飽和食塩水 3mlで洗浄後、減圧濃縮して標題化合物を黄色液体 3. 20g (化学純 度 63. 5area%、、光学純度: 100%e. e.収率 64%)として得た。尚、上記式(3)で 示す光学活性な 1一(tert ブトキシカルボニル) 3—ヒドロキシピロリジンが標題化 合物の HPLC面積値に対して 41 · 4%混入し、上記式(4)で示す 1一(tert ブトキ シカルボニル) 3,4—デヒドロピロリジンが標題化合物の HPLC面積値に対して 7. 8%混入して!/、る事を確認した。
工程 5— 2 (R)—1 (tert ブトキシカルボニル)ー3 ァミノピロリジン酢酸塩の製 造
工程 5—1で得られた(R)—1— (tert ブトキシカルボニル) 3—ァミノピロリジン 3. 20g (化学純度 63· 5area%、上記式(3)で示す光学活性な 1一(tert ブトキシ カルボニル)ー3 ヒドロキシピロリジンが標題化合物の HPLC面積値に対して 41. 4 %混入。上記式(4)で示す 1一(tert ブトキシカルボニル)一 3,4—デヒドロピロリジ ンが標題化合物の HPLC面積値に対して 7. 8%混入。)を酢酸ェチル 42. 2gで溶 解し、酢酸 990mgを添加した。氷冷下にて 30分撹拌した後、へキサン 2. 53gを加え て更に 30分撹拌して、結晶を減圧濾別した。結晶を酢酸ェチルとへキサンからなる 溶液 5. 06gで洗浄後、真空乾燥する事により、標題化合物を白色固体 2. 78g (化学 純度 99. 8area%、収率 88%、ェナンチォマー不検出)として得た。尚、上記式(3) で示す光学活性な 1一(tert ブトキシカルボニル)一 3—ヒドロキシピロリジンは標題 化合物の HPLC面積値に対して 0. 22%まで減少し、上記式(4)で示す 1一(tert— ブトキシカルボニル) 3,4—デヒドロピロリジンは、 HPLCで不検出である事を確認 した。
実施例 6
工程 6—1 (R)—1 (tert ブトキシカルボニル)ー3—ァミノピロリジンの製造
製造例 2に記載の方法で製造した(S)— 1一 (tert ブトキシカルボニル)一 3 (メ タンスルホニルォキシ)ピロリジン 7· 83gを含むトルエン溶液 11 · 2gに 40重量%アン モユア水溶液 62. 7gを加え、 80°C、 10時間撹拌した(内圧約 8バール)。冷却後、 反応液を減圧濃縮し、飽和食塩水 31. 3g、トルエン 19. 6g、 30重量%水酸化ナトリ ゥム水溶液 4. 13gを添加した。得られた有機層を減圧濃縮して標題化合物を黄色 液体 5. 09g (化学純度 74. 5area%、収率 74%、光学純度 99. 4%ee)として得た。 尚、上記式(3)で示す光学活性な 1一 (tert ブトキシカルボニル)一 3—ヒドロキシピ 口リジンが標題化合物の HPLC面積値に対して 18. 1 %混入し、上記式 (4)で示す 1 一(tert ブトキシカルボニル) 3,4—デヒドロピロリジンが標題化合物の HPLC面 積値に対して 4. 1 %混入して!/、る事を確認した。
工程 6— 2 (R)—1 (tert ブトキシカルボニル) 3 ァミノピロリジン酢酸塩の製 造
工程 6—1で得られた(R)—1— (tert ブトキシカルボニル) 3—ァミノピロリジン 5. 09g (化学純度 74. 5area%、光学純度 99. 4%ee、上記式(3)で示す光学活性 な 1一(tert ブトキシカルボニル)ー3—ヒドロキシピロリジンが標題化合物の HPLC 面積値に対して 18· 1 %混入。上記式(4)で示す 1一 (tert ブトキシカルボニル)一 3,4—デヒドロピロリジンが標題化合物の HPLC面積値に対して 4. 1 %混入。)をトル ェン 58. 3gで溶解し、酢酸を 1. 43g添加した。 22°Cで 13時間撹拌した後、結晶を 減圧濾別した。結晶をトルエン 16mlで洗浄後、真空乾燥する事により、標題化合物 を白色固体 4. 81g (化学純度 99. 6area%、収率 90%、光学純度 99. 9%ee)とし て得た。尚、上記式(3)で示す光学活性な 1一 (tert ブトキシカルボニル)一 3—ヒ ドロキシピロリジンは標題化合物の HPLC面積値に対して 0. 30%まで減少し、上記 式(4)で示す 1一(tert ブトキシカルボニル)ー3,4ーデヒドロピロリジンは、 HPLC で不検出である事を確認した。
ェ呈 6— 3 (El— 1— ( rt ブトキシカルボニル) _ 3—ァミノピロ1ジンの 工程 6— 2に記載の方法で製造して得られた(R)—1— (tert ブトキシカルボニル )一 3 ァミノピロリジン酢酸塩 61 lmg (化学純度 99· 8area%)に 23重量%食塩水 1. 22g、トルエン 2. 45g、 30重量%水酸化ナトリウム水溶液 367mgを加えて撹拌し た。分液後に有機層を濃縮し、真空乾燥する事により、標題化合物を無色透明液体 480mg (ィ匕学純度 99. 6area%)として得た。 工程 7— 1 (S) 1一(tert ブトキシカルボニル)一 3—メチルァミノピロリジン塩酸 塩の製造
製造例 2に記載の方法で製造した (R)— 1一(tert ブトキシカルボニル)一 3—(メ タンスルホニルォキシ)ピロリジン 5. 31gを含むトルエン溶液 7. 58gに 40重量%メチ ルァミン水溶液 77. 7gを加え、 80°C、 18時間撹拌した(内圧約 2バール)。冷却後、 反応液を減圧濃縮し、飽和食塩水 21. 2g、トルエン 13. 3g、 30重量%水酸化ナトリ ゥム水溶液 2. 81gを添加した。得られた有機層を減圧濃縮して標題化合物を黄色 液体 4· 61gとして得た。ここに、イソプロパノール 40mL、濃塩酸 1 · 72g (0. 83当量 )を加えて減圧濃縮し、残渣に酢酸ェチル 53. 9gを加えると結晶が析出した。 22°C で 1時間撹拌、更に 4°Cで 1時間攪拌した後に結晶を減圧濾別し、冷やした酢酸ェチ ル 15mLで洗浄後、真空乾燥することにより標題化合物を白色固体 3. 45g (化学純 度 100. Oarea%、収率 73%、光学純度 99. 5%ee)として得た。尚、上記式(3)で 示す光学活性な 1一(tert ブトキシカルボニル) 3—ヒドロキシピロリジンは標題化 合物の HPLC面積値に対して、 0. 03%まで減少した(晶析前は 6. 4%であった)。 上記式(4)で示す 1一(tert ブトキシカルボニル) 3,4—デヒドロピロリジンは、 HP LCで不検出である事を確認した(晶析前は 1. 6%であった)。
'H-NMR CCDCl ): δ (ppm) l . 47 (s, 9H) , 2. 36 (m, 2Η) , 2. 72 (s, 3Η) , 3
. 39 (m, 1Η) , 3. 60— 3. 70 (m, 3H) , 3. 81 (m, 1H) , 9. 91 (m, 1H)
工程 7— 2 (R)—1— (tert ブトキシカルボニル) 3—メチルァミノピロリジンの製 造
工程 7— 1に記載の方法で製造して得られた (R)— 1一(tert ブトキシカルボニル )ー3 メチルァミノピロリジン塩酸塩 1 · 18g (化学純度 99· 9area%)に 23重量%食 塩水 2. 30g、トルエン 4. 71g、 30重量%水酸化ナトリウム水溶液 734mgを加えて撹 拌した。分液後に有機層を濃縮し、真空乾燥する事により、標題化合物を無色透明 液体 946mg (化学純度 99. 3area%、収率 97%)として得た。
'H-NMRCCDCl ): δ (ppm) l . 45 (s, 9H) , 1. 71 (m, 2Η) , 2. 04 (m, 1Η) ,
2. 44 (s, 3H) , 3. 03- 3. 28 (m, 2H) , 3. 29— 3. 65 (m, 3H) 工程 8—1 (R)— 1— (tert ブトキシカルボニル)—3—ェチルァミノピロリジン塩酸 塩の製造
製造例 2に記載の方法で製造した(S)— 1一(tert ブトキシカルボニル)一 3 (メ タンスルホニルォキシ)ピロリジン 5. 31gを含むトルエン溶液 7. 58gに 70重量%ェチ ルァミン水溶液 64. 4gを加え、 80°C、 18時間撹拌した(内圧約 2バール)。冷却後、 反応液を減圧濃縮し、飽和食塩水 21. 2g、トルエン 13. 3g、 30重量%水酸化ナトリ ゥム水溶液 2. 80gを添加した。得られた有機層を減圧濃縮して標題化合物を黄色 液体 5· 61gとして得た。ここに、イソプロパノール 40mL、濃塩酸 1 · 89g (0. 91当量 )を加えて減圧濃縮し、残渣に酢酸ェチル 53. 9gを加えると結晶が析出した。 22°C で 1時間撹拌、更に 4°Cで 1時間攪拌した後に結晶を減圧濾別し、冷やした酢酸ェチ ル 15mLで洗浄後、真空乾燥することにより標題化合物を白色固体 3. 91g (化学純 度 99. 7area%、収率 78%)として得た。尚、上記式(3)で示す光学活性な 1一(tert ブトキシカルボニル)ー3—ヒドロキシピロリジンは標題化合物の HPLC面積値に対 して、 0. 03%まで減少した(晶析前は 6. 1 %であった)。上記式(4)で示す 1一(tert ブトキシカルボニル)ー3,4ーデヒドロピロリジンは、標題化合物の HPLC面積値に 対して、 0. 02%まで減少した(晶析前は 20. 1 %であった)。
'H-NMRCCDCl ): δ (ppm) l . 45 (s, 9H) , 1. 53 (t, 3Η) , 2. 27— 2. 49 (m,
2Η) , 3. 07 (m, 2H) , 3. 35 (m, 1H) , 3. 66 (m, 3H) , 3. 86 (m, 1H) , 9. 97 ( m, 1H)
工程 8— 2 (R)—1— (tert ブトキシカルボニル)—3 ェチルァミノピロリジンの製 造
工程 8 1で得られた(R)— 1一(tert ブトキシカルボニル)一 3—ェチルアミノビ 口リジン塩酸塩 1. 25g (ィ匕学純度 99. 7area%)に 23重量0 /0食塩水 2. 46g、 卜ノレエ ン 5. 03g、 30重量%水酸化ナトリウム水溶液 733mgを加えて撹拌した。分液後に有 機層を濃縮し、真空乾燥する事により、標題化合物を無色透明液体 1. 05g (化学純 度 99· 2area%、収率 98%)として得た。
'H-NMRCCDCl ) : δ (ppm) l . 12 (t, 3H) , 1. 48 (s, 9Η) , 1. 68 (m, 2Η) , 2
. 06 (m, 1Η) , 2. 65 (m, 2H) , 3. 02— 3. 10 (m, 1H) , 3. 25— 3. 57 (m, 4H) 実施例 9
工程 9 1 (R) - 1 - (tert ブトキシカルボニル) 3—ジメチルァミノピロリジン塩 酸塩の製造
製造例 2に記載の方法で製造した(S)— 1一(tert ブトキシカルボニル) 3 (メ タンスルホニルォキシ)ピロリジン 5. 31gを含むトルエン溶液 7. 58gに 50重量0 /0ジメ チルァミン水溶液 90. 2gを加え、 80°C、 18時間撹拌した(内圧約 2バール)。冷却後 、反応液を減圧濃縮し、飽和食塩水 21. 2g、トルエン 13. 3g、 30重量%水酸化ナト リウム水溶液 2. 80gを添加した。得られた有機層を減圧濃縮して標題化合物を黄色 ί夜体 5· 43gとして得た。ここに、イソプロノ ノーノレ 40mL、濃塩酸 1 · 86g (0. 89当量 )を加えて減圧濃縮し、残渣に酢酸ェチル 53. 9gを加えると結晶が析出した。 22°C で 1時間撹拌、更に 4°Cで 1時間攪拌した後に結晶を減圧濾別し、冷やした酢酸ェチ ル 15mLで洗浄後、真空乾燥することにより標題化合物を白色固体 3. 83g (化学純 度 99. 9area%、収率 75%)として得た。尚、上記式(3)で示す光学活性な 1一(tert ブトキシカルボニル)ー3—ヒドロキシピロリジンは、 HPLCで不検出である事を確 認した(晶析前は 4. 6%であった)。また、上記式(4)で示す 1一(tert ブトキシカル ボニル)ー3,4ーデヒドロピロリジンは、 HPLCで不検出である事を確認した(晶析前 は 3. 9%であった)。
'H-NMRCCDCl ) : δ (ppm) l . 46 (s, 9H) , 1. 89 (m, 1Η) , 2. 35 (m, 1H) ,
2. 84 (s, 6H) , 3. 38 (m, 1H) , 3. 51— 3. 91 (m, 4H)
工程 9— 2 (R)—1— (tert ブトキシカルボニル)ー3 ジメチルァミノピロリジンの 製造
工程 9一 1で得られた(R)— 1一(tert ブトキシカルボニル)一 3—ジメチルアミノビ 口リジン塩酸塩 1. 25g (ィ匕学純度 99. 9area%)に 23重量0 /0食塩水 2. 46g、 卜ノレエ ン 5. 03g、 30重量%水酸化ナトリウム水溶液 738mgを加えて撹拌した。分液後に有 機層を濃縮し、真空乾燥する事により、標題化合物を無色透明液体 999mg (化学純 度 99. 5area%、収率 95%)として得た。
'H-NMR CCDCl ): δ (ppm) l . 46 (s, 9H) , 1. 74 (m, 1Η) , 2. 05 (m, 1H) ,
2. 24 (s, 6H) , 2. 63 (m, 1H) , 3. 05 (m, 1H) , 3. 27 (m, 1H) , 3. 45— 3. 69 (m, 2H)
<第二の本発明〉
実施例 10
工程 10—1 (R)— 1— (tert ブトキシカルボニル)—3 ァミノピロリジンの製造 製造例 2に記載の方法で製造した(S)— 1一(tert ブトキシカルボニル)一 3 (メ タンスルホニルォキシ)ピロリジン 5. 52gをメタノール 10mlに溶解し、予め混合したァ ンモユア/メタノール溶液(10. 7mol/l) 56mlを加え、 80°C、 16時間撹拌した(内 圧約 9バール)。冷却後、アンモニアを留去し、水 10mlと 30重量%水酸化ナトリウム 水溶液 3. 2 lgを添加した。水溶液を減圧濃縮後、飽和食塩水 10mlを加え、 目的物 を酢酸ェチル 20mlで 3回抽出した。得られた有機層を飽和食塩水 3mlで洗浄後、 減圧濃縮して標題化合物を黄色液体 4. 35g (化学純度 48. Oarea%、収率 72%、 光学純度 96. 6%ee)として得た。尚、上記式(9)で示す光学活性な 1一(tert ブト キシカルボニル) 3 メトキシピロリジンが標題化合物の HPLC面積値に対して 48 . 4%混入し、上記式(10)で示す 1一(tert ブトキシカルボニル) 3,4—デヒドロピ 口リジンが標題化合物の HPLC面積値に対して 31. 5%混入している事を確認した。
'H-NMR CCDCl ): δ (ppm) l . 22 (m, 2H) , 1. 46 (s, 9Η) , 1. 65 (m, 1Η) ,
2. 04 (m, 1H) , 3. 03 (m, 1H) , 3. 36— 3. 59 (m, 4H)
工程 10— 2 (R)—1— (tert ブトキシカルボニル)ー3 ァミノピロリジン酢酸塩の 製造
工程 10—1で得られた(R)—1— (tert ブトキシカルボニル) 3—ァミノピロリジ ン 4. 35g (化学純度 48. Oarea%、光学純度 96. 6%ee、上記式(9)で示す光学活 性な 1一(tert ブトキシカルボニル)ー3—メトキシピロリジンが標題化合物の HPLC 面積値に対して 48. 4%混入。上記式(10)で示す 1一(tert ブトキシカルボニル) 3,4 デヒドロピロリジンが標題化合物の HPLC面積値に対して 31 · 5%混入。)を 酢酸ェチル 50mlで溶解し、酢酸を 951mg添加した。氷冷下にて 30分撹拌した後、 へキサン 2. 69gを加えて更に 30分撹拌し、結晶を減圧濾別した。結晶を酢酸ェチ ルとへキサンからなる溶液 20mlで洗浄後、真空乾燥する事により、標題化合物を白 色固体 2. 80g (化学純度 100. Oarea%、収率 82%、光学純度 99. 0%ee)として得 た。尚、上記式(9)で示す光学活性な 1一(tert ブトキシカルボニル) 3—メトキシ ピロリジンと上記式(10)で示す 1一(tert ブトキシカルボニル) 3,4—デヒドロピロ リジンは、 HPLCで不検出である事を確認した。
'H-NMR CCDCl ): δ (ppm) l . 45 (s, 9H) , 1. 88 (m, 1Η) , 1. 97 (s, 3H) , 2
. 13 (m, 1H) , 3. 16 - 3. 32 (m, 1H) , 3. 40 (m, 1H) , 3. 46— 3. 62 (m, 2H) 、 3. 66 (m, 1H) , 6. 63 (m, 2H)
工程 10 3 (R)—1— (tert ブトキシカルボニル) 3—ァミノピロリジン塩酸塩の mm
工程 10—1に記載の方法で製造した(R)—1— (tert ブトキシカルボニル) 3— ァミノピロリジン (化学純度 48. 7area%、光学純度 96. 6%ee、上記式(9)で示す光 学活性な 1一(tert ブトキシカルボニル) 3—メトキシピロリジンが標題化合物の H PLC面積値に対して 48. 4%混入。上記式(10)で示す 1一(tert ブトキシカルボ ニル) 3,4 デヒドロピロリジンが標題化合物の HPLC面積値に対して 31. 9%混 入。)2. 60gを含むイソプロパノール溶液 30mlに濃塩酸 1. 39gを添加し、減圧濃縮 した。ここに、酢酸ェチル 50mlを添加し、 22°Cで 30分撹拌、更に氷冷下にて 30分 撹拌した後、結晶を減圧濾別した。結晶を酢酸ェチル 20mlで洗浄後、真空乾燥す る事により、標題化合物を白色固体 2. 51g (化学純度 99. 6area%、収率 95%、光 学純度 99. 7%ee)として得た。尚、上記式(9)で示す光学活性な 1— (tert ブトキ シカルボニル) 3—メトキシピロリジンと上記式(10)で示す 1一(tert ブトキシカル ボニル) 3,4—デヒドロピロリジンは、 HPLCで不検出である事を確認した。

Claims

請求の範囲
[1] 下記式(1) ;
[化 15]
Figure imgf000044_0001
(式中、 R1は置換基を有してもよい炭素数 1〜20のアルキル基、置換基を有してもよ V、炭素数 3〜20のシクロアルキル基、置換基を有してもよ!/、炭素数 2〜20のァルケ ニル基、置換基を有してもよい炭素数 7〜20のァラルキル基、置換基を有してもよい 炭素数 6〜20のァリール基、置換基を有してもよ!/、炭素数 3〜20のへテロアリール 基、ヒドロキシル基、炭素数 1〜20のアルキルォキシ基、炭素数 6〜20のァリールォ キシ基、炭素数 7〜20のァラルキルォキシ基、又はアミノ基の保護基を表す。 Lは脱 離基を表す。 *は不斉炭素原子を表す。 nは;!〜 3の整数を表す。)で表される光学 活性 3—置換含窒素化合物と、アンモニア、メチルァミン、ェチルァミン又はジメチル ァミンとの反応を、水の存在下で行うことを特徴とする、 3位の立体が反転した下記式 (2) ;
[化 16]
Figure imgf000045_0001
(式中、 *、
Figure imgf000045_0002
nは前記に同じ。 R2はァミノ基、メチルァミノ基、ェチルァミノ基又はジ メチルァミノ基である。)で表される光学活性 3—ァミノ含窒素化合物の製造法。
[2] アンモニア、メチルァミン、ェチルァミン又はジメチルァミンとの反応を 100°C未満の 温度、 30バール未満の圧力で行うことを特徴とする、請求項 1に記載の製造法。
[3] Lが置換基を有してもよい炭素数 1〜20のアルキルスルホニルォキシ基、置換基を 有してもよい炭素数 6〜20のァリールスルホニルォキシ基、又は塩素原子である、請 求項 1又は 2に記載の製造法。
[4] Lがメタンスルホニルォキシ基である、請求項;!〜 3のいずれかに記載の製造法。
[5] R1がべンジル基、ァリル基、ヒドロキシル基、ァセチル基、ベンゾィル基、メトキシカ ノレボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、 tert—ブトキシカ ノレボニル基、又はべンジロキシカルボニル基である、請求項;!〜 4のいずれかに記載 の製造法。
[6] R1がべンジル基、 tert—ブトキシカルボニル基、又はべンジロキシカルボニル基で ある、請求項;!〜 4のいずれかに記載の製造法。 [7] 前記化合物(1)が、 n= lの光学活性 3—置換ピロリジン誘導体であり、前記化合物 (2)が、 n= lの光学活性 3—ァミノピロリジン誘導体である、請求項;!〜 6のいずれか に記載の製造法。
[8] 請求項 1〜7のいずれかに記載の方法により製造した前記化合物(2)と酸から塩を 形成させ、有機溶媒を用いて晶析することにより、混入している不純物を母液に残し 、該塩を結晶として取得することを特徴とする、光学活性 3—ァミノ含窒素化合物の塩 の製造法。
[9] 前記混入している不純物が、前記化合物(1)、前記化合物(2)のェナンチォマー、 下記式(3);
[化 17]
Figure imgf000046_0001
(式中、
Figure imgf000046_0002
nは前記に同じ)で表される 3—ヒドロキシ含窒素化合物、及び、下記式 (
4) ;
[化 18]
Figure imgf000047_0001
(式中、
Figure imgf000047_0002
nは前記に同じ)で表されるデヒドロ含窒素化合物からなる群より選ばれる 少なくとも 1つである、請求項 8に記載の製造法。
[10] 前記有機溶媒が、メタノール、エタノール、イソプロパノール、酢酸ェチル、酢酸 n— プロピル、酢酸イソプロピル、テトラヒドロフラン、メチル tert—ブチルエーテル、ァセト ン、ァセトニトリル、トルエン、へキサン、ヘプタン及びメチルシクロへキサンからなる群 より選ばれる少なくとも 1つである、請求項 8又は 9に記載の製造法。
[11] 前記酸が塩化水素、臭化水素、酢酸、メタンスルホン酸、又は p—トルエンスルホン 酸である、請求項 8〜; 10のいずれかに記載の製造法。
[12] 下記式(5) ;
[化 19]
Figure imgf000048_0001
(式中、 R3は置換基を有してもよい炭素数 1〜20のアルキル基、置換基を有してもよ い炭素数 6〜20のァリール基、又は置換基を有してもよい炭素数 7〜20のァラルキ ル基を表す。 R4は置換基を有してもよい炭素数 1〜20のアルキル基、置換基を有し てもよレ、炭素数 2〜20のアルケニル基、置換基を有してもよ!/、炭素数 6〜20のァリー ル基、又は置換基を有してもよい炭素数 7〜20のァラルキル基を表す。 *は不斉炭 素原子を表す。)で表される光学活性な 1—保護— 3— (スルホニルォキシ)ピロリジン 誘導体と、アンモニア、メチルァミン、ェチルァミン又はジメチルァミンの反応を、メタノ ール、エタノール、 n—プロパノール及びイソプロパノールからなる群より選択される 少なくとも 1つの存在下、 30バール未満の圧力下で行うことを特徴とする、 3位の立 体配置が反転した下記式(6);
[化 20]
Figure imgf000049_0001
(式中、 *、 R4は前記に同じ。 R5はァミノ基、メチルァミノ基、ェチルァミノ基、又はジメ チルァミノ基である。)で表される光学活性な 1一保護一 3—ァミノピロリジン誘導体の 製造法。
前記化合物(5)が、下記式 (7) ;
[化 21]
Figure imgf000050_0001
(式中、 *、R3は前記に同じ。)で表される光学活性な 1一べンジルー 3—(スルホニ ルォキシ)ピロリジン誘導体を、下記式 (8);
[化 22]
Figure imgf000050_0002
(式中、 R4は前記に同じ。)で表される酸無水物存在下、接触還元することにより製造 したものである、請求項 12に記載の製造法。
[14] R3がメチル基、ェチル基、トリフルォロメチル基、 p—メチルフエニル基または p—ク ロロフェニル基である、請求項 12又は 13に記載の製造法。
[15] R4力 Sメチル基、ェチル基、 n—プロピル基、イソプロピル基、 tert—ブチル基、又は ベンジル基である、請求項 12〜; 14のいずれかに記載の製造法。
[16] R3がメチル基であり、 R4が tert—ブチル基である、請求項 12〜; 15のいずれかに記 載の製造法。
[17] 請求項 12〜; 16のいずれかに記載の方法により製造した前記化合物(6)と酸から 塩を形成させ、有機溶媒から晶析することによって、混入している不純物を母液に残 し、該塩を結晶として取得することを特徴とする、光学活性な 1一保護一 3—ァミノピロ リジン誘導体の塩の製造法。
[18] 前記混入している不純物が、前記化合物(5)、前記化合物(6)のェナンチォマー、 下記式(9);
[化 23]
Figure imgf000051_0001
(式中、 *、 R4は前記に同じ。 R°はメチル基、ェチル基、 n—プロピル基、又はイソプ 口ピル基を表す。)で表される化合物及び下記式(10);
[化 24]
(10)
Figure imgf000052_0001
R4
(式中、 R4は前記に同じ。)で表される化合物からなる群より選択される少なくとも 1つ である、請求項 17に記載の製造法。
[19] 前記有機溶媒が、メタノール、エタノール、イソプロパノール、酢酸ェチル、酢酸 n— プロピル、酢酸イソプロピル、テトラヒドロフラン、メチル tert—ブチルエーテル、ァセト ン、ァセトニトリル、トルエン、へキサン、ヘプタン及びメチルシクロへキサンからなる群 より選択される少なくとも 1つである、請求項 17又は 18のいずれかに記載の製造法。
[20] 前記酸が、塩化水素、臭化水素、酢酸、メタンスルホン酸、又は p—トルエンスルホ ン酸である、請求項 17〜; 19のいずれかに記載の製造法。
PCT/JP2007/064406 2006-07-28 2007-07-23 Méthode de production d'un composé 3-amino-azoté optiquement actif WO2008013130A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07791139A EP2050735A4 (en) 2006-07-28 2007-07-23 METHOD FOR PRODUCING AN OPTICALLY ACTIVE 3-AMINO-NITROGENATED COMPOUND
US12/375,141 US8030501B2 (en) 2006-07-28 2007-07-23 Process for producing optically active 3-amino nitrogen-containing compounds
JP2008526753A JP5164842B2 (ja) 2006-07-28 2007-07-23 光学活性3−アミノ含窒素化合物の製造法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-205923 2006-07-28
JP2006205926 2006-07-28
JP2006-205926 2006-07-28
JP2006205923 2006-07-28

Publications (1)

Publication Number Publication Date
WO2008013130A1 true WO2008013130A1 (fr) 2008-01-31

Family

ID=38981442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064406 WO2008013130A1 (fr) 2006-07-28 2007-07-23 Méthode de production d'un composé 3-amino-azoté optiquement actif

Country Status (4)

Country Link
US (1) US8030501B2 (ja)
EP (1) EP2050735A4 (ja)
JP (1) JP5164842B2 (ja)
WO (1) WO2008013130A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079605A1 (ja) * 2009-01-09 2010-07-15 東レ・ファインケミカル株式会社 高純度1-ベンジル-3-アミノピロリジンの製造方法
WO2020017569A1 (ja) 2018-07-17 2020-01-23 日本ケミファ株式会社 T型カルシウムチャネル阻害剤
WO2020203609A1 (ja) 2019-03-29 2020-10-08 日本ケミファ株式会社 掻痒を治療するためのt型カルシウムチャネル阻害剤の使用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851542A (zh) * 2019-01-28 2019-06-07 爱斯特(成都)生物制药股份有限公司 一种(s)-n-甲基-n-(吡咯烷-3-基)乙酰胺二盐酸盐及其合成方法
CN111592480B (zh) * 2020-06-18 2023-06-23 山西千岫制药有限公司 一种头孢吡普酯中间体(r)-1-叔丁氧基羰基-3-氨基吡咯烷的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341452A (ja) * 1986-08-08 1988-02-22 Tokyo Kasei Kogyo Kk N,n’,n’−置換−3−アミノピロリジンの製造法
JPH02218664A (ja) * 1989-02-17 1990-08-31 Tokyo Kasei Kogyo Kk 光学活性な1h−3−アミノピロリジン化合物の製造法
JPH02290870A (ja) 1989-04-05 1990-11-30 Bayer Ag 対掌体的に純粋な7‐(3‐アミノ‐1‐ピロリジニル)‐キノロン‐および‐ナフチリドンカルボン酸
JPH10204086A (ja) 1995-12-21 1998-08-04 Sankyo Co Ltd 1−メチルカルバペネム誘導体
JP2948857B2 (ja) 1989-03-28 1999-09-13 ワーナー―ランバート・コンパニー (s)‐7‐(3‐アミノ‐1‐ピロリジニル)‐1‐シクロプロピル‐6‐フルオロ‐1,4‐ジヒドロ‐4‐オキソ‐1,8‐ナフチリジン‐3‐カルボン酸
JP2000053642A (ja) * 1998-01-12 2000-02-22 F Hoffmann La Roche Ag 3―アミノ―ピロリジン誘導体の製造方法
US6140347A (en) 1996-05-03 2000-10-31 Merck Sharp & Dohme Ltd. Azetidine, pyrrolidine and piperidine derivatives as 5-HT receptor agonists
JP2001114759A (ja) 1999-08-12 2001-04-24 Sankyo Co Ltd メルカプトピロリジン誘導体
WO2001094304A1 (fr) 2000-06-08 2001-12-13 Kaneka Corporation Procede de production d'esters sulfoniques
JP2005343835A (ja) * 2004-06-04 2005-12-15 Dai Ichi Seiyaku Co Ltd 2,5−2置換光学活性ピロリジン誘導体の製造法
JP2006008518A (ja) 2004-06-22 2006-01-12 Sankyo Co Ltd 光学活性3−アミノ−1−tert−ブトキシカルボニルピロリジンの製造法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1416872A (en) * 1972-03-10 1975-12-10 Wyeth John & Brother Ltd 4-aminoquinoline derivatives
US4785119A (en) 1985-10-11 1988-11-15 Tokyo Kasei Kogyo Co., Ltd. 3-aminopyrrolidine compound and process for preparation thereof
US5109013A (en) * 1990-06-06 1992-04-28 A. H. Robins Company, Incorporated 2-(2-substituted aminoethyl)-1,4-dialkyl-3,4-dihydro-1H-1,3,5]triazepino[3,2-a]benzimidazol-5(2H)-ones as muscle relaxants

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341452A (ja) * 1986-08-08 1988-02-22 Tokyo Kasei Kogyo Kk N,n’,n’−置換−3−アミノピロリジンの製造法
JPH02218664A (ja) * 1989-02-17 1990-08-31 Tokyo Kasei Kogyo Kk 光学活性な1h−3−アミノピロリジン化合物の製造法
JP2948857B2 (ja) 1989-03-28 1999-09-13 ワーナー―ランバート・コンパニー (s)‐7‐(3‐アミノ‐1‐ピロリジニル)‐1‐シクロプロピル‐6‐フルオロ‐1,4‐ジヒドロ‐4‐オキソ‐1,8‐ナフチリジン‐3‐カルボン酸
JPH02290870A (ja) 1989-04-05 1990-11-30 Bayer Ag 対掌体的に純粋な7‐(3‐アミノ‐1‐ピロリジニル)‐キノロン‐および‐ナフチリドンカルボン酸
JPH10204086A (ja) 1995-12-21 1998-08-04 Sankyo Co Ltd 1−メチルカルバペネム誘導体
US6140347A (en) 1996-05-03 2000-10-31 Merck Sharp & Dohme Ltd. Azetidine, pyrrolidine and piperidine derivatives as 5-HT receptor agonists
JP2000053642A (ja) * 1998-01-12 2000-02-22 F Hoffmann La Roche Ag 3―アミノ―ピロリジン誘導体の製造方法
JP3639449B2 (ja) 1998-01-12 2005-04-20 バジリア ファルマスーチカ アーゲー 3−アミノ−ピロリジン誘導体の製造方法
JP2001114759A (ja) 1999-08-12 2001-04-24 Sankyo Co Ltd メルカプトピロリジン誘導体
WO2001094304A1 (fr) 2000-06-08 2001-12-13 Kaneka Corporation Procede de production d'esters sulfoniques
JP2005343835A (ja) * 2004-06-04 2005-12-15 Dai Ichi Seiyaku Co Ltd 2,5−2置換光学活性ピロリジン誘導体の製造法
JP2006008518A (ja) 2004-06-22 2006-01-12 Sankyo Co Ltd 光学活性3−アミノ−1−tert−ブトキシカルボニルピロリジンの製造法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 10, no. 21, 2000, pages 2417 - 2419
DI CESARE P. ET AL.: "Fluoronaphthyridines and -quinolones as Antibacterial Agents. 5. Synthesis and Antimicrobial Activity of Chiral 1-tert-Butyl-6-fluoro-7-substituted-naphthyridones", JOURNAL OF MEDICINAL CHEMISTRY, vol. 35, no. 22, 1992, pages 4205 - 4213, XP002175569 *
J. MED. CHEM., vol. 35, 1992, pages 1764 - 1773
J. MED. CHEM., vol. 35, 1992, pages 4205 - 4213
See also references of EP2050735A4
SYNLETT, vol. 1, 1995, pages 55 - 57
THEODORA W. GREENE: "PROTECTIVE GROUPS in ORGANIC SYNTHESIS", JOHN WILEY & SONS, INC., pages: 494 - 653

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079605A1 (ja) * 2009-01-09 2010-07-15 東レ・ファインケミカル株式会社 高純度1-ベンジル-3-アミノピロリジンの製造方法
JP5397706B2 (ja) * 2009-01-09 2014-01-22 東レ・ファインケミカル株式会社 高純度1−ベンジル−3−アミノピロリジンの製造方法
WO2020017569A1 (ja) 2018-07-17 2020-01-23 日本ケミファ株式会社 T型カルシウムチャネル阻害剤
WO2020203609A1 (ja) 2019-03-29 2020-10-08 日本ケミファ株式会社 掻痒を治療するためのt型カルシウムチャネル阻害剤の使用

Also Published As

Publication number Publication date
US20090326246A1 (en) 2009-12-31
JPWO2008013130A1 (ja) 2009-12-17
EP2050735A4 (en) 2011-12-21
US8030501B2 (en) 2011-10-04
EP2050735A1 (en) 2009-04-22
JP5164842B2 (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
AU2013203283B2 (en) Processes for the preparation of (S)-1-(3-ethoxy-4-methoxyphenyl)-2-methanesulfonylethylamine
WO2008013130A1 (fr) Méthode de production d&#39;un composé 3-amino-azoté optiquement actif
US8158798B2 (en) Coupling process for preparing quinolone intermediates
US20110021779A1 (en) Process for the preparation of 6-substituted-1-(2h)-isoquinolinones
TW201213297A (en) Production method of intermediate compound for synthesizing medicament
JP4634326B2 (ja) ピロリジン誘導体
KR100939347B1 (ko) 광학적으로 순수한 (s)-3-히드록시 피롤리딘의 제조방법
JP3819532B2 (ja) ピペリジン誘導体およびその製造方法
WO2006043595A1 (ja) 2-シアノ-4-フルオロピロリジン誘導体の製造法
JP5977289B2 (ja) イソキノリン誘導体又はその塩の新規製造方法
CN109020977B (zh) 一种Acalabrutinib的制备方法
Peña et al. An improved chemoenzymatic synthesis of both enantiomers of trans-cyclopentane-1, 2-diamine
CN110078657A (zh) 一种手性3-氨基哌啶及其衍生物的合成方法
WO2008066083A1 (fr) Procédé de production d&#39;un dérivé de n-(n&#39;-glycyle substitué)-2-cyanopyrrolidine
JP2009023978A (ja) トランス−2−ベンジロキシシクロヘキシルアミンの製造法
JP2010095453A (ja) 光学活性1−アリール−3−ピロリジノールの製造法
WO2005000810A1 (ja) 含窒素複素環化合物の製造方法
JP2006022045A (ja) 光学活性1−t−ブトキシカルボニル−3−アミノピロリジン塩の単離精製方法
JP5450387B2 (ja) (s)−3−(1−シアノ−1,1−ジフェニルメチル)−ピロリジンの製造法
CN110963959B (zh) 一种合成n-保护及非保护的3-羟基-4,4-二甲基哌啶的制备方法
JP2007297306A (ja) 光学活性3−(1−ピロリジニル)ピロリジンの製造法
WO2005066124A1 (ja) ピロリジン誘導体の製造法
CA3214107A1 (en) New process for the synthesis of 5-{5-chloro-2-[(3s)-3- [(morpholin-4-yl)methyl]-3,4-dihydroisoquinoline-2(1h)- carbonyl]phenyl}-1,2-dimethyl-1h-pyrrole-3-carboxylic acid derivatives and its application for the production of pharmaceutical compounds
JP2008001611A (ja) 3r−アミノピロリジン誘導体の製造方法
JP5438976B2 (ja) 光学活性2−アリールピペラジン誘導体の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791139

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008526753

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007791139

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12375141

Country of ref document: US