WO2008011791A1 - Voglibose tetrabenzyle cristallin et procédé de préparation associé - Google Patents

Voglibose tetrabenzyle cristallin et procédé de préparation associé Download PDF

Info

Publication number
WO2008011791A1
WO2008011791A1 PCT/CN2007/001902 CN2007001902W WO2008011791A1 WO 2008011791 A1 WO2008011791 A1 WO 2008011791A1 CN 2007001902 W CN2007001902 W CN 2007001902W WO 2008011791 A1 WO2008011791 A1 WO 2008011791A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystalline
tetrabenzyl
voglibose
tetrabenzyl voglibose
oily
Prior art date
Application number
PCT/CN2007/001902
Other languages
English (en)
French (fr)
Inventor
Ligang Liu
Ruiwen Li
Original Assignee
Pharmaxyn Laboratories Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37877872&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008011791(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pharmaxyn Laboratories Ltd. filed Critical Pharmaxyn Laboratories Ltd.
Priority to JP2009519780A priority Critical patent/JP5216006B2/ja
Priority to CA002654424A priority patent/CA2654424A1/en
Priority to KR1020087031619A priority patent/KR101379988B1/ko
Publication of WO2008011791A1 publication Critical patent/WO2008011791A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/42Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups or hydroxy groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C215/44Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups or hydroxy groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton bound to carbon atoms of the same ring or condensed ring system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Definitions

  • the present invention relates to a crystalline tetrabenzyl voglibose.
  • the invention further relates to a process for the preparation of the crystalline tetrabenzyl voglibose.
  • Voglibose is a (glucosidase inhibitor, developed by Japan Takeda Pharmaceutical Co., Ltd. (EP56194) for the treatment of diabetes. It has been marketed in Japan, Korea and China. Its structure is as follows (I ) shown:
  • voglibose is (1S)-(1 (hydroxy), 2,4,5/1,3)-5-[(2-hydroxy-1-(hydroxymethyl)ethyl)amino] 1-Carbo-hydroxymethyl-1,2,3,4-cyclohexanetetraol, which is produced in several ways. It was first produced by fermentation to produce Valienamine, which was then used as a raw material. Chemical synthesis method manufacturing (Patent Document EP56194); However, the preparation and separation process of Jinggangmycin is cumbersome, requires a lot of labor energy consumption, and impurities in the product prepared by the method are not easy to remove, and requires complicated column chromatography for refining work. .
  • Oily tetrabenzyl voglibose is not conducive to preservation and transportation. It is inconvenient to use and weigh when used. Easy to feed and production operations. At the same time, due to the low purity and content of the oily tetrabenzyl voglibose, when the voglibose is prepared by using the same, more impurities are introduced or generated in the reaction, so it is difficult to prepare a higher quality. Voglibose.
  • the technical problem to be solved by the present invention is to provide a crystalline tetrabenzyl voltolose sugar and a process for the preparation thereof.
  • the present inventors prepared a key intermediate, tetrabenzyl voglibose, and all the literatures and existing data show that tetrabenzyl voglibose It is an oily substance, and the present invention has studied this substance, and successfully obtained the crystal of tetrabenzylvogliopose. This crystallization is in a stable crystalline state at room temperature and under normal conditions.
  • the crystalline tetrabenzyl voglibose can be used to prepare a high purity a-glucosidase inhibitor, voglibose, and is convenient for storage, transportation and production operations.
  • the preparation method has the advantages of fewer steps, simple and easy reagents, low pollution, simple operation and high product purity.
  • the present invention also provides a process for preparing voglibose from the crystalline tetrabenzyl voglibose.
  • the content of voglibose prepared by using the crystal can reach 99.9% or more, so that the preparation can have better therapeutic effect and less toxic side effects.
  • the present invention provides a crystalline tetrabenzyl voglibose having the following physical properties: In a Cu X-ray powder diffraction pattern, at 2 ⁇ is 16.84 ⁇ 0.20 °, 18.99 + 0.20 °, 24.11 Characteristic peak at ⁇ 0.20°;
  • the melting point is 88.0 ° C ⁇ 90.8 ° C.
  • the crystalline tetrabenzyl voglibose of the present invention is further 8.39 ⁇ 0.20 °, 11.91 ⁇ 0.20 °, 22.11 ⁇ 0.20 °, 23.37 + 0.20 °, 24.53 ⁇ at 2 ⁇ . Characteristic peaks at 0.20°, 25.63 ⁇ 0.20°, 25.99 + 0.20°.
  • the crystalline tetrabenzylvoglibose DSC of the present invention has an endothermic peak of about 89.7 ° C.
  • the single crystal of the crystalline tetrabenzyl voglibose has a molecular perspective as shown in Fig. 5.
  • the crystalline tetrabenzyl voglibose molecules are combined by hydrogen bonding forces.
  • the crystalline tetrabenzyl voltolide has an infrared spectrum as shown in Fig. 9.
  • the content of the crystalline tetrabenzyl voglibose provided by the present invention may be 95% or more, specifically, the HPLC content is between 95% and 99.5%, which is significantly higher than the oily tetrabenzyl voglibose.
  • the present invention also provides a method of preparing the crystal.
  • the oily tetrabenzyl voglibose is dissolved in a polar aprotic solvent such as ethyl acetate, diisopropyl ether, diethyl ether, tetrahydrofuran, etc.; then another non-polar is added.
  • a solvent such as cyclohexane, n-hexane, carbon tetrachloride, petroleum ether or the like, which is precipitated under stirring at room temperature, cooled, filtered, and dried to obtain the present invention. Crystallization of tetrabenzyl voglibose.
  • the preparation method comprises dissolving 1 part of oily tetrabenzyl voglibose in 0.5-5 times (volume by weight) of a polar aprotic solvent, preferably 1 to 3 times; then adding 2 ⁇ 20 times (volume by weight) of another one or more non-polar solvents, preferably 2 to 10 times.
  • the polar aprotic solvent may be ethyl acetate, isopropyl ether, diethyl ether, tetrahydrofuran or the like, preferably ethyl acetate or isopropyl ether;
  • the non-polar solvent may be cyclohexane, n-hexane or carbon tetrachloride.
  • Petroleum ether or the like is preferably cyclohexane or n-hexane.
  • the obtained solution is crystallized at room temperature with stirring, then cooled, filtered, and dried, for example, placed for 1 hour to 5 hours, and then left at 0 ° C to 5 ° C for 1 to 5 hours, and the filtered crystals are vacuum dried 10 From the hour to 12 hours, the crystal of the above tetrabenzyl voglibose was obtained.
  • the obtained tetrabenzyl voltolide can be obtained by further debenzylation to obtain high-purity voltosepodose.
  • the present invention describes the characteristics of the crystal by detecting the single crystal state and the powder state of the crystal. Therefore, the present invention is based on single crystal X-ray diffraction, powder X-ray diffraction, differential scanning calorimetry (DSC), infrared (IR) pattern and data of the crystal, and the crystalline tetrabenzyl voglibose Characterize.
  • DSC differential scanning calorimetry
  • IR infrared
  • the crystallization can also be characterized by its powder X-ray diffraction data, specifically 2 X is an X-ray diffraction peak of 16.84 + 0.20 °, 18.99 + 0.20 °, 24.11 ⁇ 0.20 °, and can further pass 2 ⁇ X-ray diffraction peaks at 8.39 ⁇ 0.20°, 11.91 ⁇ 0.20°, 22.11 ⁇ 0.20°, 23.37+0.20°, 24.53 ⁇ 0.20°, 25.63 ⁇ 0.20°, 25.99 ⁇ 0.20°.
  • the crystallization can indicate thermodynamic characteristics by its DSC, and its endothermic peak is at 89.7 °C.
  • the positive effect of the invention is that the crystalline tetrabenzyl voglibose is easier to store and transport than the oily tetrabenzyl voglibose, and is convenient to use and weigh in use, and is convenient for feeding and production. operating.
  • the crystalline tetrakisole voglibose usually has a higher purity and content than the oil, when the voglibose is prepared by using the same, less impurities are introduced or generated in the reaction, so the use is utilized. This crystallization can produce a higher quality voglibose, so that the produced voglibose can be formulated to have a better therapeutic effect and less toxic side effects.
  • Fig. 1 is an X-ray diffraction pattern of a crystalline tetrabenzylvoltopodose crystal powder of Example 2 of the present invention.
  • Fig. 2 is a view showing the X-ray diffraction pattern of the crystalline tetrabenzyl voltolose sugar crystal powder of Example 3 of the present invention.
  • Example 3 is an X-ray derivative of a crystalline tetrabenzyl voltolose powder crystal powder according to Example 4 of the present invention. Shooting.
  • Fig. 4 is a view showing the X-ray diffraction pattern of the crystalline tetrabenzylvoglibose crystal powder of Example 5 of the present invention.
  • Fig. 5 is a molecular perspective view of the crystalline tetrabenzyl voltolose of the present invention obtained by single crystal X-ray diffraction.
  • Fig. 6 is a view showing the molecular unit cell deposition in the crystal of the crystalline tetrabenzyl voltolose sugar of the present invention.
  • Fig. 7 is a view showing the combination of molecules in the crystal structure of the crystalline tetrabenzylvoguripose of the present invention by hydrogen bonding.
  • Figure 8 is a differential scanning calorimetry diagram of the crystalline tetrabenzyl voglibose of the present invention.
  • Figure 9 is an infrared spectrum of the crystalline tetrabenzyl voltolose of the present invention.
  • Figure 10 is a process route for preparing voglibose by the tetrabenzyl voltolose of the present invention. detailed description
  • the reaction mixture was concentrated, and the residue was dissolved in ethyl acetate (300 ml), washed with 100 ml of water, and then washed twice with 100 ml of 1% aqueous hydrochloric acid.
  • the mixture was washed twice with 100 ml of a 5% aqueous solution of sodium carbonate, and washed twice with 100 ml of a saturated brine, and dried over anhydrous sodium sulfate.
  • the oily tetrabenzyl voglibose (prepared from Example 1) was dissolved in 2.5 ml of ethyl acetate, and 6 ml of cyclohexane was added thereto with stirring. After the addition, the solution was stirred at room temperature for 1.5 hours. White crystals were formed, and the mixture was allowed to stand at room temperature for 5 hours, and then left at 0 ° C to 5 ° C for 5 hours, filtered, and the crystals were dried under vacuum at room temperature for 12 hours to obtain white crystals of 0.76 g.
  • Figure 1 is a powder X-ray diffraction pattern of tetrabenzyl voltolose crystals. The powder X-ray diffraction data are shown in Table 1.
  • the crystal powder was subjected to diffraction analysis using a D/max-2500/PC copper target X-ray diffractometer of Japan Science and Technology Co., Ltd. (detection unit: Nanjing Normal University), and the diffraction measurement conditions were the same as in Example 2, and Fig. 2 is a tetrabenzyl voltagli Powder X-ray diffraction pattern of sugar crystals, the powder X-ray diffraction data are shown in Table 2.
  • the crystal powder was subjected to diffraction analysis using a D/max-2500/PC copper target X-ray diffractometer of Japan Science and Technology Co., Ltd. (detection unit: Nanjing Normal University), and the diffraction measurement conditions were the same as in Example 2, and Fig. 3 is a tetrabenzyl voltagli Powder X-ray diffraction pattern of sugar crystals, the powder X-ray diffraction data are shown in Table 3.
  • the crystal powder was subjected to diffraction analysis using a D/max-niB copper target X-ray diffractometer of Japan Science and Technology Co., Ltd. (detection unit: Zhengzhou University), and the diffraction measurement conditions were:
  • Figure 4 is a powder X-ray diffraction pattern of tetrabenzylvoglibose crystals, and the powder X-ray diffraction data are shown in Table 4.
  • Table 4 X-ray diffraction data of tetrabenzylvogliopose crystal powder
  • the infrared spectrometer was a Nicolet NEXUS-470 type, which was measured by a potassium bromide tableting method. 3, differential scanning calorimetry
  • the differential scanning calorimeter is the DSC204 type of NETZSCH.
  • Heating rate 3 ° C / min.
  • Figure 8 is a differential scanning calorimetry analysis of tetrabenzylvoglibose crystals. Figure 8 shows that its thermodynamic characteristics are that the endothermic peak is around 89.7 °C.
  • Figure 9 is an infrared spectrum of the crystals of tetrabenzylvoglibose.
  • Atomic coordinates (x l0 4 ) and equivalent isotropic displacement parameters (A 2 ⁇ 10 3 ) ⁇ U(eq) is defined as one third of the trace of the orthogonal Uij tensor. )
  • Atomic atomic length atomic atomic length atomic atomic length atomic atomic length
  • FIG. 10 A process route for the preparation of voglibose by tetrabenzylvogliopose is shown in Figure 10.
  • the tetrabenzyl voglibose crystals prepared above (3.0 g, 4.8 mmol) were dissolved in 90% formic acid/methanol (1:19, 60 ml), and palladium black (0.6 g) was added under nitrogen atmosphere at room temperature.
  • the reaction was carried out for 12 hours, filtered, washed with methanol / 7J (1:1) 20 ml, the filtrate was concentrated, and the residue was adsorbed with a strong acidic ion exchange resin (250 ml), washed with water, and then eluted with 0.5N aqueous ammonia.
  • the crystalline tetrabenzyl voglibose is easier to store and transport than the oily tetrabenzyl voglibose phase. It is easier to use and weigh in use, and is convenient for feeding and production operations.
  • the crystalline tetrabenzyl voglibose usually has a higher purity and content than the oily tetrabenzyl voglibose, when it is used to prepare voglibose, the reaction is brought into or produced. With less impurities, higher quality voglibose can be prepared by using this crystallization, so that the produced voglibose has a better therapeutic effect and less toxic side effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Diabetes (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Endocrinology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

结晶型四苄基伏格列波糖及其制备方法 技术领域
本发明涉及一种结晶型四苄基伏格列波糖。
本发明还涉及该结晶型四苄基伏格列波糖的制备方法。
背景技术
伏格列波糖是一种(—葡萄糖苷酶抑制剂, 是由日本武田制药公司开发 (EP56194), 用于糖尿病的治疗, 目前己经在日本、 韩国及中国上市。 其结 构如式 (I) 所示:
Figure imgf000003_0001
伏格列波糖的化学名是 (1S)-(1 (羟基 ),2,4,5/1,3)-5-[(2-羟基 -1- (羟甲基)乙基) 氨基] -1-碳-羟甲基 -1,2,3,4-环己烷四醇, 它的制造方法有几种, 最早是通过发 酵产生井冈霉烯胺 (Valienamine), 再以此为原料进行化学合成方法制造(专 利文献 EP56194); 但是井冈霉烯胺的制备分离工艺繁琐, 需要大量的劳力能 耗, 并且该方法制备的产品中杂质不易去除, 又需要繁琐的柱色谱层析进行精 制工作。 后来又有一些通过以 D-葡萄糖为原料进行化学全合成的方法, 例如 专利文献 EP260121 , J. Org. Chem. 1992, 57, 3651, WO03/080561 , WO2005/030698等中文献记载的方法。
其中, 比较有代表性的工艺路线是专利文献 EP260121和 J. Org. Chem. 1992, 57, 3651 公开的路线 (见图 10 )。 在该制备路线中, (1S)-(1 (羟 基), 2,4,5/1,3)-2,3,4-三-氧 -苄基 -5-[(2-羟基小 (轻甲基)乙基)氨基] -ί-碳-苄氧基甲 基 -1,2,3,4-环己烷四醇(简称四苄基伏格列波糖(以下同)), 结构为式(II)所 示的化合物,是一个非常关键的中间体, 伏格列波糖就是通过其进行脱苄反应 直接制备而来, 所以其品质直接影响到作为治疗糖尿病药物伏格列波糖的质
Figure imgf000003_0002
已有的文献和方法(如专利文献 EP260121 J. Org. Chem. 1992, 57, 3651 ,
WO2005/030698)报道中该中间体均为油状产物。
油状四苄基伏格列波糖不利于保存和运输,使用时取用和称量不方便,不 便于投料和生产操作。同时由于油状四苄基伏格列波糖的纯度和含量不高, 因 而在利用其制备伏格列波糖的时候, 反应中带入或产生的杂质较多, 所以不易 制备出更高质量的伏格列波糖。
发明内容
为了克服现有的油状四苄基伏格列波糖存在的不足之处,本发明所要解 决的技术问题在于提供一种结晶型四苄基伏格列波糖及其制备方法。
本发明人在研究伏格列波糖制备工艺的过程中,制备了关键的中间体—— 四苄基伏格列波糖,通常的所有文献和现有资料显示四苄基伏格列波糖是一种 油状物质, 本发明对这种物质进行了研究, 并且成功地获得了四苄基伏格列波 糖的结晶。 这种结晶在室温和通常条件下呈稳定的结晶状态。
该结晶型四苄基伏格列波糖可以用来制备高纯度的 a-葡萄糖苷酶抑制剂 ——伏格列波糖, 并且便于保存、运输和生产操作。 该制备方法具有步骤少、 试剂简单易得、 污染小、 操作简便、 产品纯度高等优点。
本发明同时还提供了由该结晶型四苄基伏格列波糖制备伏格列波糖的方 法。用该结晶制备得到的伏格列波糖的含量可达到 99.9%以上, 从而制成制剂 后能够具有更好的治疗效果, 更少的毒副作用。
因此,本发明提供了一种结晶型四苄基伏格列波糖,其具有下列物理性状: 在 Cu X-射线粉末衍射图谱中, 在 2 Θ 为 16.84±0.20° 、 18.99 + 0.20° 、 24.11 ±0.20° 处具有特征峰;
熔点为 88.0°C~90.8°C。
在 Cu X-射线粉末衍射图谱中, 本发明的结晶型四苄基伏格列波糖进一步 在 2 Θ 为 8.39±0.20° 、 11.91 ±0.20° 、 22.11 ±0.20° 、 23.37+0.20° 、 24.53±0.20° 、 25.63 ±0.20° 、 25.99 + 0.20° 处具有特征峰。
本发明的结晶型四苄基伏格列波糖 DSC吸热峰值约为 89.7° C。 . 在单晶 X-射线衍射中, 所述结晶型四苄基伏格列波糖的单晶具有如图 5 所示的分子立体图。
进一步地, 所述结晶型四苄基伏格列波糖属于正交晶系, P2(l)2(l)2(l)空 间群, 晶胞参数为 a=7.8487 A, b=20.746 A, c=20.988 A, R值为 0.0748。
所述结晶型四苄基伏格列波糖分子之间通过氢键作用力相结合。
在红外光谱分析中,所述结晶型四苄基伏格列波糖具有如图 9所示的红外 光谱。
本发明所提供的结晶型四苄基伏格列波糖含量可为 95%以上, 具体为 HPLC含量在 95%~99.5%之间, 明显高于油状四苄基伏格列波糖。
本发明还提供了一种制备该结晶的方法。在该方法中, 将油状的四苄基伏 格列波糖溶解于一种极性非质子性溶剂中, 如乙酸乙酯、 异丙醚、 乙醚、 四氢 呋喃等; 然后加入另外一种非极性溶剂, 如环己烷、 正己垸、 四氯化碳、 石油 醚等, 在室温搅拌下析出结晶, 冷却后, 过滤, 干燥, 从而得到本发明所述的 四苄基伏格列波糖的结晶。
具体地,该制备方法是将 1份油状的四苄基伏格列波糖溶解于 0.5-5倍 (体 积重量比) 的极性非质子性溶剂中, 优选 1~3倍; 然后加入 2~20倍 (体积重 量比) 的另外一种或多种非极性溶剂, 优选 2~10倍。 该极性非质子性溶剂可 以是乙酸乙酯、 异丙醚、 乙醚、 四氢呋喃等, 优选乙酸乙酯、 异丙醚; 该非极 性溶剂可以是环己烷、 正己垸、 四氯化碳、 石油醚等, 优选环己烷、 正己烷。 所得到的溶液在搅拌下于室温析出结晶, 然后冷却、 过滤、 干燥, 例如, 放置 1 小时〜 5 小时, 再在 0°C~5°C放置 1~5 小时, 过滤出的结晶真空干燥 10小时〜 12小时, 就得到上述四苄基伏格列波糖的结晶。
所得到的四苄基伏格列波糖通过进一步的脱苄反应, 可以制得高纯度的伏 格列波糖。
本发明通过对该结晶的单晶状态和粉末状态进行检测,阐述了该结晶的特 征。 因此本发明基于该结晶的单晶 X-射线衍射、 粉末 X-射线衍射、 差示扫描 量热分析 (DSC)、 红外 (IR) 图谱和数据, 对该结晶型四苄基伏格列波糖进 行表征。
该结晶的单晶 X-射线衍射试验表明, 该晶体的分子式为 C38H45N07; 该晶 体属于正交晶系, P2(l)2(l)2(l)空间群, 晶胞参数为 a=7.8487 A, b=20.746 A, c=20.988 A, R值为 0.0748。 通常, 该结晶还可以通过其粉末 X-射线衍射的数 据所表征, 具体的是 2Θ 为 16.84 + 0.20° 、 18.99+0.20° 、 24.11 ±0.20° 的 X-射线衍射峰, 还可以进一步通过 2Θ 为 8.39±0.20° 、 11.91 ±0.20° 、 22.11 ±0.20° 、 23.37+0.20° 、 24.53 ±0.20° 、 25.63 ±0.20° 、 25.99±0.20° 处的 X-射线衍射峰所表征。
另外, 该结晶可以通过其 DSC表明热力学特征, 其吸热峰值是在 89.7°C。 本发明的积极效果是:结晶型四苄基伏格列波糖同油状四苄基伏格列波糖 相比, 更容易保存和运输, 使用时取用和称量更方便, 便于投料和生产操作。 同时由于结晶状态的四苄基伏格列波糖通常具有比油状更高的纯度和含量,因 而在利用其制备伏格列波糖的时候, 反应中带入或产生的杂质更少, 所以利用 这种结晶可以制备出更高质量的伏格列波糖,从而使生产出来的伏格列波糖制 成制剂后具有更好的治疗效果, 更少的毒副作用。
以下结合附图和实施例对本发明作进一步的说明, 但是, 实施例不对本发 明构成任何限制。
附图说明
图 1是本发明实施例 2的结晶型四苄基伏格列波糖结晶粉末的 X—射线衍 射图。
图 2是本发明实施例 3的结晶型四苄基伏格列波糖结晶粉末的 X—射线衍 射图。
图 3是本发明实施例 4的结晶型四苄基伏格列波糖结晶粉末的 X—射线衍 射图。
图 4是本发明实施例 5的结晶型四苄基伏格列波糖结晶粉末的 X—射线衍 射图。
图 5是本发明的结晶型四苄基伏格列波糖进行单晶 X-射线衍射获得的分 子立体图。
图 6是本发明的结晶型四苄基伏格列波糖的晶体中分子晶胞堆积图。
图 7是本发明的结晶型四苄基伏格列波糖晶体结构中分子之间通过氢键 作用力结合的示意图。
图 8是本发明的结晶型四苄基伏格列波糖的差示扫描量热分析图。
图 9是本发明的结晶型四苄基伏格列波糖的红外光谱图。
图 10是通过本发明的四苄基伏格列波糖制备伏格列波糖的工艺路线。 具体实施方式
在以下实施例中所采用的制备原料如无特别说明, 均为市售购买产品。
油状四苄基伏格列波糖的制备
实施例 1 油状四苄基伏格列波糖的制备 (参照文献 J. Org. Chem. 1992, 57, 3642的方法)
将 (1 S)-(l (羟基 ),2,4,5/1 ,3)-2,3,4-三 -氧-苄基- 1 -碳-苄氧基甲基 -5-氧- 1 ,2,3,4- 环己烷四醇(6.0g, 10.8mmol)和 2-氨基 -1,3-丙二醇(3.0g, 33mmol)溶解于 30ml甲醇中, 于室温下分批加入氰基硼氢化钠(1.5g, 24mmol), 加毕, 在室 温下继续搅拌 16小时, 将反应液浓缩, 残余用乙酸乙酯 300ml溶解, 用 100ml 水洗涤, 再用 1 %盐酸水溶液 100ml洗涤 2次, 5 %碳酸钠水溶液 100ml洗涤 2次, 饱和食盐水 100ml洗涤 2次, 无水硫酸钠干燥。 回收乙酸乙酯, 残余用 硅胶(150ml) 柱层析, 用乙酸乙酯洗脱, 浓缩乙酸乙酯, 得到浅黄色的油状 物 5.2g。 HPLC法测定含量为 89.4%。
结晶型四苄基伏格列波糖的制备
实施例 2
将油状四苄基伏格列波糖(由实施例 1制备得到) l .Og溶解于 2.5ml乙酸 乙酯中, 搅拌下加入环己烷 6ml, 加毕, 将溶液在室温下搅拌 1.5小时, 生成 白色结晶, 继续在室温放置 5小时, 然后再于 0°C~5°C放置 5小时, 过滤, 结 晶在室温下真空干燥 12小时, 得到白色结晶 0.76g。 HPLC法测定含量为 98.5%; mp: 88.2-90.8°C ; [a]22 D+30.8°(cl , 氯仿); ^ NMRCCDC^, 500Hz), δ: 1.63 ( IH, dd, J=2.8, 15.1 Hz) , 1.91 (IH, dd, J=2.9, 15.1Hz) , 2.78 (IH, m), 3.19 (IH, d, J=8.6 Hz), 3.39 (IH, m), 3.54 (IH, d, J=8.6Hz), 3.62-3.73 (6H, m), 4.13 (IH, t, J=9.6Hz), 4.39 (2H, s), 4.59 (IH, d, J=l l.l), 4.64 (IH, d, J=11.4), 4.72 (1H, d, J=11.4), 4.82 (1H, d, J=10,6), 4.91 (IH, d, J=11.2), 4.93 (IH, d, J=10.7),
7.24-7.35 (20H, m)。 采用日本理学公司 D/max-2500/PC铜靶 Χ-#ϊ射仪对结晶粉末进行衍射分 析 (检测单位: 南京师范大学), 衍射测量条件为:
发散度 '· 1°
接收缝隙: 0.3 mm
散射度: 1°
电压: 40 KV, 电流: 100 mA
扫描速度: 5deg/min,间隔 0.02 deg
图 1为四苄基伏格列波糖结晶的粉末 X-射线衍射图, 其粉末 X-射线衍射 数据见表 1,
表 1 四苄基伏格列波糖结晶粉末 X-射线衍射数据
序号 2 d値 I/I。値
1 8. 44 10. 4677 38
2 11. 96 7. 3937 12
3 16. 86 5. 2543 40
4 19. 02 4. 6622 100
5 22. 16 4. 0081 14
6 23. 42 3. 7953 9
7 24. 14 3. 6837 35
8 24. 58 3. 6187 21
9 25. 68 3. 4662 10
10 26. 00 3. 4242 11
实施例 3
将油状四苄基伏格列波糖 (由实施例 1制备得到) 3.0g溶解于 10ml异丙 醚中, 搅拌下加入正己垸 25ml, 加毕, 将溶液在室温下搅拌 1小时, 生成粉 末状的结晶, 继续在室温放置 5小时, 然后再于 01〜 5°C放置 5小时, 过滤, 结晶在室温下真空干燥 12小时,得到白色结晶 2.5& HPLC法测定含量为 98.7 % ; mp: 88.5-90.7°C ; [a]22 D+30.6°(cl , 氯仿), 氢谱数据同实施例 2的一致。
采用日本理学公司 D/max-2500/PC铜靶 X-衍射仪对结晶粉末进行衍射分 析 (检测单位: 南京师范大学), 衍射测量条件同实施例 2, 图 2为四苄基伏 格列波糖结晶的粉末 X-射线衍射图, 其粉末 X-射线衍射数据见表 2
表 2 四苄基伏格列波糖结晶粉末 X-射线衍射数据
序号 2 値 d値 1/1。値
1 8. 44 10. 4677 60
2 11. 96 7. 3936 20
3 16. 86 5. 2543 50
4 19. 02 4. 6622 100
5 22. 16 4. 0081 16
6 23. 42 3. 7953 7
7 24. 14 3. 6837 29
8 24. 58 3. 6187 21 25. 66 3. 4688
26. 04 3. 4190 实施例 4
将油状四苄基伏格列波糖(由实施例 1制备得到) 3.0g溶解于 1.5ml乙醚 中, 搅拌下加入石油醚 6ml, 加毕, 将溶液在室温下搅拌 1小时, 生成结晶, 继续在室温放置 1小时, 然后再于 0°C~5°C放置 1小时, 过滤, 结晶在室温下 真空干燥 10小时, 得到白色结晶 2.3g。 HPLC法测定含量为 98.5 % ; mp: 88.1-90.6 ; [a]22 D+30.5°(cl, 氯仿), 氢谱数据同实施例 2的一致。
采用日本理学公司 D/max-2500/PC铜靶 X-衍射仪对结晶粉末进行衍射分 析(检测单位: 南京师范大学), 衍射测量条件同实施例 2, 图 3为四苄基伏 格列波糖结晶的粉末 X-射线衍射图, 其粉末 X-射线衍射数据见表 3,
表 3 四苄基伏格列波糖结晶粉末 X-射线衍射数据
序号 2 0値 d値 I/I。値
1 8. 44 10. 4677 57
2 11. 96 7. 3936 20
3 16. 86 5. 2543 48
4 19. 02 4. 6622 100
5 22. 16 4. 0081 15
6 23. 42 3. 7953 9
7 24. 14 3. 6837 32
8 24. 58 3. 6187 22
9 25. 68 3. 4662 10
10 26. 04 3. 4190 11
实施例 5
将油状四苄基伏格列波糖(由实施例 1制备得到) 2.0g溶解于 10ml四 氢呋喃中, 搅拌下加入四氯化碳 40ml, 加毕, 将溶液在室温下搅拌 1小时, 生成结晶, 继续在室温放置 5小时, 然后再于 0°C~5°C放置 5小时, 过滤, 结 晶在室温下真空干燥 12小时, 得到白色结晶 1.2g。 HPLC测定含量为 98.6% ; mp: 88.0-90.5 °C ; [a]22 D+30.7°(cl , 氯仿), 氢谱数据同实施例 2的一致。
采用日本理学公司 D/max-niB铜靶 X-衍射仪对结晶粉末进行衍射分析 (检测单位: 郑州大学), 衍射测量条件为:
发散度: 1°
接收缝隙: 0.15 mm
散射度: 1°
电压: 35 KV, 电流: 30 mA
扫描速度: 4deg/min,间隔 0.02 deg
图 4为四苄基伏格列波糖结晶的粉末 X-射线衍射图, 其粉末 X-射线衍射数据 见表 4, 表 4 四苄基伏格列波糖结晶粉末 X-射线衍射数据
序号 2 0値 d値 I/I。値
1 8. 24 10. 7216 16
2 11. 76 7. 5191 15
3 16. 76 5. 2855 35
4 18. 90 4. 6916 100
5 21. 94 4. 0479 15
6 23. 22 3. 8275 17
7 24. 00 3. 7049 39
8 24. 36 3. 6509 15
9 25. 50 3. 4902 12
10 25. 88 3. 4399 16 结晶型四苄基伏格列波糖的检测
实施例 6
一、 检测条件
1、 单晶 X-射线衍射
仪器型号: X—射线影像板系统 AXIS-IV型, 日本理学公司生产。
2、 红外光谱
红外光谱仪是 Nicolet公司 NEXUS-470型, 采用溴化钾压片法测定。 3 、 差示扫描量热法
差示扫描量热仪是 NETZSCH公司的 DSC204型。
进样重量: 3mg;
温度范围: 30°C~200°C ;
加热速度: 3°C/min。
二、 检测样品
依照上述实施例 5制备得到的结晶型四苄基伏格列波糖。
三、 检测结果
单晶 X-射线衍射试验表明, 该晶体的分子式为 C38H45N07; 该晶体属于正 交晶系, P2(l)2(l)2(l)空间群, 晶胞参数为 a=7.8487 A, b=20.746 A, c=20.988 A, R值为 0.0748。 该分子的空间立体结构如图 5所示; 分子在 A方向的晶胞 堆积图如图 6所示; 图 7显示分子间通过氢键作用力结合。 下列表 5〜 10分别 列出了晶体数据, 原子坐标、 键长、 键角、 扭角、 氢键键长键角的数据。
图 8为四苄基伏格列波糖结晶的差示扫描量热分析图。 图 8表明,其热力 学特征为, 吸热峰值是在 89.7°C左右。
图 9为四苄基伏格列波糖结晶的红外光谱图。
表 5. 晶体数据和结构修正数据 (Crystal data and structure refinement) 分子式 ( Empirical formula ) C38H45N07
分子量 (Formula weight) 627.75
Figure imgf000010_0001
表 6.原子坐标和各向同性位移参数 (Atomic coordinates(x l04 ) and equivalent isotropic displacement parameters( A2 χ 103 )· U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. )
原子 (Atom) X y z U(eq)
N(l) 5785(6) -985 (2) 9877 (2) 40 (1)
0(1) 9116 (5) -631(1) 10222(2) 40 (1)
0(2) 8817(6) 667 (2) 11368 (2) 56 (1)
0(3) 10227(4) 666(2) 9853 (2) 42 (1)
0(4) 7531(5) 865 (2) 8953 (2) 41 (1)
0(5) 4948(4) -87 (2) 8950 (2) 41 (1)
0(6) 4900 (8) -2648 (2) 10350 (3) 101 (2)
0(7) 2146(5) -1327(2) 9956 (2) 57(1) C(D 8413(6) -50(3) 10476 (2) 34 (1)
C(2) 8503 (6) 498 (3) 9981(2) 34 (1)
C(3) 7546(7) 324 (2) 9378(2) 31 (D
C(4) 5704(7) 156(3) 9531(2) 35 (1)
C(5) 5419 (6) -317(3) 10082 (3) 34 (1)
C(6) 6530(7) -135 (3) 10654 (2) 38(1)
C(7) 9481 (7) 109 (3) 11065 (3) 45(2)
C(8) 9567 (9) 789 (3) 11965 (3) 62 (2)
C(9) 8629 (8) 1328(3) 12296(3) 47 (2)
C(10) 8259 (10) 1277(4) 12928(3) 71 (2)
C(ll) 7396 (13) 1763(5) 13246 (4) 96 (3)
C(12) 6883 (12) 2316 (5) 12911 (5) 103(3)
C(13) 7275 (13) 2360(4) 12273(4) 94 (3)
C(14) 8130 (10) 1869 (4) 11977(4) 72 (2)
C(15) 10541 (9) 1324 (4) 9762(6) 110 (4)
C(16) 12286(7) 1518 (3) 9942 (3) 43 (2)
C(17) 12841(10) 1457(4) 10561 (4) 71 (2)
C(18) 14385 (15) 1641 (4) 10758 (6) 109 (3)
C(19) 15420 (11) 1910 (4) 10347(6) 89 (3)
C(20) 15112(12) 1989 (3) 9718(6) 89 (3)
C(21) 13399(11) 1785(3) 9497 (4) 71 (2)
C(22) 8099 (9) 752(3) 8335 (3) 59 (2)
C(23) 7695 (7) 1317(3) 7910 (3) 46(2)
C(24) 7829 (10) 1947 (4) 8117 (4) 71 (2)
C(25) 7430 (14) 2454 (4) 7715 (4) 93 (3)
C(26) 6907(12) 2320 (6) 7103 (5) 98(3)
C(27) 6868(14) 1723(6) 6893 (5) 106 (3)
C(28) 7229 (12) 1211 (5) 7295 (4) 87 (3)
C(29) 3134 (9) -57(5) 8936 (4) 99 (3)
C(30) 2531 (8) -35(4) 8259(3) 47(2)
C(31) 2904 (12) 484 (5) 7907 (5) 96 (3)
C(32) 2326 (16) 551(8) 7321 (6) 151 (6)
C(33) 1265(13) 70 (8) 7107 (5) 142 (7)
C(34) 793 (13) -494 (8) 7395(8) 164 (8)
C(35) 1548(11) -504 (5) 8048 (5) 94(3)
C(36) 5090(8) -1500(3) 10286(3) 44(2)
C(37) 5345 (9) - 2125(3) 9945(4) 66(2)
C(38) 3232 (8) -1421 (3) 10485 (3) 53(2)
表 Ί.键长(Bond lengths [A: )
原子一原子 长度 原子一原子 长度 原子一原子 长度
(Atom-atom) (Length) (Atom-atom) (Length) (Atom-atom) (Length)
N(l) -C(36) 1.475 (7) C(8) -C(9) 1.508 (9) C(23)-C(24) 1.380 (10)
N(l) -C(5) 1.480(7) C(8) -H(8A) 0.9700 C(24)-C(25) 1.384(11)
N(l) -H(1B) 1.01(6) C(8) -H(8B) 0.9700 C(24)-H(24A) 0.9300
0(1) -C(l) 1.429(6) C(9) -C(14) 1.361 (9) C(25)-C(26) 1.376(13)
0(1) -H(1E) 0.907 (11) C(9) -C(10) 1.364 (9) C(25)-H(25A) 0.9300
0(2) -C(8) 1.409 (7) C(10) -C(ll) 1.385 (12) C(26)-C(27) 1.315 (12)
0(2) -C(7) 1.418 (7) C(10)-H(10A) 0.9300 C(26)-H(26A) 0.9300 /u/ iiislud/ Oz-lloizAV
Figure imgf000012_0001
s/D O ii-oosId/-Π0AV
Figure imgf000013_0001
/s/D/ O iiz-oosId Ϊ6/-Π0800ΖAV
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000015_0002
伏格列波糖的制备
实施例 7
通过四苄基伏格列波糖制备伏格列波糖的工艺路线图见图 10。 将上述制 备的四苄基伏格列波糖结晶 (3.0g, 4.8mmol)溶解于 90%甲酸 /甲醇 (1:19, 60ml) 中, 加入钯黑 (0.6g), 在氮气保护下于室温反应 12小时, 过滤, 用甲 醇 /7J ( 1: 1 ) 20ml洗涤, 滤液浓缩, 残余用强酸性离子交换树脂 (250ml) 吸附, 水洗涤, 然后用 0.5N氨水洗脱, 洗脱液浓缩后, 加入无水乙醇 50ml, 煮沸, 稍冷却, 加入活性炭, 继续加热 10分钟, 过滤, 滤液自然冷却至室温, 析出白色结晶, 继续在 0°C~5°C放置 3小时, 过滤, 少量无水乙醇洗涤, 真空 干燥 12小时, 得到白色结晶 l.lg, mp: 164〜166°C。 HPLC测定纯度 99.9%, 结构确证光谱数据与文献报道的一致。
当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的情 况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形, 但 这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业应用, ί生
结晶型四苄基伏格列波糖同油状四苄基伏格列波糖相 更容易保存和运 输, 使用时取用和称量更方便, 便于投料和生产操作。 同时由于结晶型四苄基 伏格列波糖通常具有比油状四苄基伏格列波糖更高的纯度和含量 因而在利用 其制备伏格列波糖的时候, 反应中带入或产生的杂质更少, 所以利用这种结晶 可以制备出更高质量的伏格列波糖,从而使生产出来的伏格列波糖制成制剂后 具有更好的治疗效果, 更少的毒副作用。

Claims

权利要求
I、 一种结晶型四苄基伏格列波糖, 结构式为如下所示-
其特征在于,
Figure imgf000016_0001
在 Cu X-射线粉末衍射中, 在 2 Θ ¾ 16.84 + 0.20° 、 18.99±0.20° 和 24.11 ±0.20° 处具有特征峰。
2、根据权利要求 1所述的结晶型四苄基伏格列波糖, 其特征在于, 在 Cu
X-射线粉末衍射中, 进一步在 2 Θ 为 8.39±0.20° 、 11.91 ±0.20° 、 22.11 +0.20° 、 23.37±0.20° 、 24.53 ±0.20° 、 25.63 ±0.20° 和 25.99±0.20° 处的 X-射线衍射峰所表示处具有特征峰。
3、 根据权利要求 1所述的结晶型四苄基伏格列波糖, 其特征在于, 在差 示扫描量热分析中, 其吸热峰值约为 89.7°C。
4、 根据权利要求 1所述的结晶型四苄基伏格列波糖, 其特征在于, 在红 外光谱分析中, 其具有如图 9所示的红外光谱。
5、 根据权利要求 1所述的结晶型四苄基伏格列波糖, 其特征在于, 所述 结晶型四苄基伏格列波糖的熔点为 88.0〜90.8°C。
6、 根据权利要求 1所述的结晶型四苄基伏格列波糖, 其特征在于, 在单 晶 X-射线衍射中, 所述结晶型四苄基伏格列波糖的单晶具有如图 5所示的分 子立体图。
7、 根据权利要求 1所述的结晶型四苄基伏格列波糖, 其特征在于, 所述 结晶型四苄基伏格列波糖属于正交晶系, P2(l)2(l)2(l)空间群, 晶胞参数为 a=7.8487 A, b=20.746 A, c=20.988 A, R值为 0.0748。
8、 根据权利要求 1所述的结晶型四苄基伏格列波糖, 其特征在于, 所述 结晶型四苄基伏格列波糖分子之间通过氢键作用力相结合。
9、 根据权利要求 1所述的结晶型四苄基伏格列波糖, 其特征在于, 所述 结晶型四苄基伏格列波糖的含量为 95%以上。
10、 一种制备结晶型四苄基伏格列波糖的方法, 包括下述步骤:
1 )将油状四苄基伏格列波糖溶解于极性非质子性溶剂中, 所述极性非质 子性溶剂与油状四苄基伏格列波糖的体积重量比为 0.5〜5: 1;
2)加入非极性溶剂中, 在室温搅拌下析出结晶, 所述非极性溶剂与油状 四苄基伏格列波糖的体积重量比为 2〜20: 1;
3 )冷却后, 过滤, 干燥, 即得到结晶型四苄基伏格列波糖。
II、 根据权利要求 10所述的制备方法, 其特征在于, 在步骤 1 ) 中, 所 述极性非质子性溶剂为选自乙酸乙亂异丙醚、 乙醚和四氢呋喃中的一种或几 种。
12、 根据权利要求 11所述的制备方法, 其特征在于, 所述极性非质子性 溶剂为乙酸乙酯和 /或异丙醚。
13、 根据权利要求 10所述的制备方法, 其特征在于, 在步骤 1)中, 所述 极性非质子性溶剂与油状四苄基伏格列波糖的体积重量比为 1〜3: 1。
14、 根据权利要求 10所述的制备方法, 其特征在于, 在步骤 2) 中, 所 述非极性溶剂为选自环己烷、 正己烷、 四氯化碳和石油醚中的一种或几种。
15、 根据权利要求 14所述的制备方法, 其特征在于, 所述非极性溶剂为 环己烷和 /或正己烷。
16、 根据权利要求 10所述的制备方法, 其特征在于, 在步骤 2) 中, 所 述极性非质子性溶剂与油状四苄基伏格列波糖的体积重量比为 2~10: 1。
17、 根据权利要求 10所述的制备方法, 其特征在于, 在步骤 3) 中, 放 置 1小时〜 5小时, 再在 0°C〜5°C放置 1~5小时, 过滤出的结晶真空干燥 10小 时〜 12小时, 即得到结晶型四苄基伏格列波糖。
18、 一种制备伏格列波糖的方法, 其特征在于, 使用权利要求 1所述的结 晶型四苄基伏格列波糖, 制备伏格列波糖。
PCT/CN2007/001902 2006-07-17 2007-06-18 Voglibose tetrabenzyle cristallin et procédé de préparation associé WO2008011791A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009519780A JP5216006B2 (ja) 2006-07-17 2007-06-18 結晶型テトラベンジルボグリボース及びその製造方法
CA002654424A CA2654424A1 (en) 2006-07-17 2007-06-18 Tetra-benzyl voglibose in crystalline form and a method for preparing the same
KR1020087031619A KR101379988B1 (ko) 2006-07-17 2007-06-18 결정상의 테트라벤질 보글리보스 및 그의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2006100617134A CN100393694C (zh) 2006-07-17 2006-07-17 四苄基伏格列波糖的结晶及制备方法
CN200610061713.4 2006-07-17

Publications (1)

Publication Number Publication Date
WO2008011791A1 true WO2008011791A1 (fr) 2008-01-31

Family

ID=37877872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001902 WO2008011791A1 (fr) 2006-07-17 2007-06-18 Voglibose tetrabenzyle cristallin et procédé de préparation associé

Country Status (5)

Country Link
JP (1) JP5216006B2 (zh)
KR (1) KR101379988B1 (zh)
CN (1) CN100393694C (zh)
CA (1) CA2654424A1 (zh)
WO (1) WO2008011791A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100393694C (zh) * 2006-07-17 2008-06-11 深圳市药兴生物科技开发有限公司 四苄基伏格列波糖的结晶及制备方法
EP3331822A4 (en) * 2015-08-07 2019-04-10 North Carolina State University SYNTHESIS AND PROCESSING OF Q-CARBON AND Q-BN AND DIRECT CONVERSION OF CARBON DIAMOND, BN AND C-BN
CN105254514B (zh) * 2015-11-12 2017-09-05 重庆植恩药业有限公司 一种四苄基伏格列波糖的制备方法
CN110317142B (zh) * 2019-07-18 2023-03-28 植恩生物技术股份有限公司 一种伏格列波糖的制备方法
CN113214094A (zh) * 2021-04-26 2021-08-06 潍坊天福化学科技有限公司 一种伏格列波糖的合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005030698A1 (en) * 2003-09-26 2005-04-07 Ranbaxy Laboratories Limited Process for the preparation of voglibose
WO2005049547A1 (en) * 2003-11-21 2005-06-02 Ranbaxy Laboratories Limited Process for the preparation of 1,2,3,4-cyclohexanetetrol derivatives
CN1931826A (zh) * 2006-07-17 2007-03-21 深圳市药兴生物科技开发有限公司 四苄基伏格列波糖的结晶及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205455A (ja) * 1985-03-11 1986-09-11 Takeda Chem Ind Ltd 低カロリ−砂糖含有組成物
JP2001058944A (ja) * 1999-06-18 2001-03-06 Takeda Chem Ind Ltd 速崩壊性固形製剤
JP2003034655A (ja) * 2001-05-15 2003-02-07 Takeda Chem Ind Ltd 速崩壊性固形製剤
JP4408340B2 (ja) * 2002-03-22 2010-02-03 武田薬品工業株式会社 速崩壊性固形製剤
US20070129409A1 (en) * 2003-11-20 2007-06-07 Lain-Yen Hu Androgen receptor modulators

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005030698A1 (en) * 2003-09-26 2005-04-07 Ranbaxy Laboratories Limited Process for the preparation of voglibose
WO2005049547A1 (en) * 2003-11-21 2005-06-02 Ranbaxy Laboratories Limited Process for the preparation of 1,2,3,4-cyclohexanetetrol derivatives
CN1931826A (zh) * 2006-07-17 2007-03-21 深圳市药兴生物科技开发有限公司 四苄基伏格列波糖的结晶及制备方法

Also Published As

Publication number Publication date
KR101379988B1 (ko) 2014-04-01
KR20090031376A (ko) 2009-03-25
JP2009543814A (ja) 2009-12-10
CN1931826A (zh) 2007-03-21
JP5216006B2 (ja) 2013-06-19
CA2654424A1 (en) 2008-01-31
CN100393694C (zh) 2008-06-11

Similar Documents

Publication Publication Date Title
US8372822B2 (en) Polymorphs of eltrombopag and eltrombopag salts and processes for preparation thereof
EP2951158B1 (en) Process for the preparation of ivacaftor and solvates thereof
US9126928B2 (en) 4-hydroxy-2-oxo-1-pyrrolidineacetamide racemate crystal form I and preparation method therefor
CN102046175A (zh) 取代的杂环稠合的γ-咔啉固体
WO2008011791A1 (fr) Voglibose tetrabenzyle cristallin et procédé de préparation associé
TW202002969A (zh) 製備方法
JP5546539B2 (ja) バリオールアミンの立体選択的合成を行うための物質及び方法
TW201311694A (zh) 晶狀(1r,4r)-6’-氟基-N,N-二甲基-4-苯基-4’,9’-二氫-3’H-螺[環己烷-1,1’-吡喃[3,4,b]吲哚]-4-胺
CA2556921A1 (en) Levalbuterol hydrochloride polymorph b
WO2015111085A2 (en) Processes for the preparation of eltrombopag and pharmaceutically acceptable salts, solvates and intermediates thereof
CN105693603A (zh) 改良的马来酸茚达特罗制备工艺
CN108558748A (zh) 药物分子异烟酰胺与磺基水杨酸结晶成盐的同质多晶体及其制备方法
WO2014079356A1 (zh) 恩曲他滨水杨酸盐及其晶型、制备方法和用途
CN104817482B (zh) 2‑取代吡咯烷类化合物、制备方法及其在制备维格列汀中的应用
WO2014008639A1 (zh) 制备茚达特罗的方法
WO2020029762A1 (zh) 稠合三环γ-氨基酸衍生物的制备方法及中间体
CN100390172C (zh) 一种甲磺酸多拉司琼晶型及其制备方法
CN103497234B (zh) 一种特拉匹韦中间体a晶型及其合成方法
EP2424839A2 (en) A process for the preparation of lasofoxifene tartrate
CN101811975B (zh) 氢溴酸安非他酮的多晶型物及其制备方法
JPS59501589A (ja) 3−アミノ−5−ヒドロオキシ安息香酸及びその誘導体ならびに類似体の合成方法
CN113024433A (zh) 一种氨磺必利亚砜杂质的制备方法
CN107365314A (zh) 一种吡唑类化合物、其晶型及其制备方法
CN108727317A (zh) 一种麦考酚酸的晶型物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1112/DELNP/2008

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07721475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2654424

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020087031619

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2009519780

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07721475

Country of ref document: EP

Kind code of ref document: A1