WO2008007516A1 - Multijoint robot - Google Patents

Multijoint robot Download PDF

Info

Publication number
WO2008007516A1
WO2008007516A1 PCT/JP2007/062154 JP2007062154W WO2008007516A1 WO 2008007516 A1 WO2008007516 A1 WO 2008007516A1 JP 2007062154 W JP2007062154 W JP 2007062154W WO 2008007516 A1 WO2008007516 A1 WO 2008007516A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
moving mechanism
articulated robot
hand
arm
Prior art date
Application number
PCT/JP2007/062154
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Sueyoshi
Kentaro Tanaka
Tomohiro Matsuo
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to KR1020087018493A priority Critical patent/KR101120824B1/en
Priority to JP2007548639A priority patent/JP4168410B2/en
Priority to CN2007800014784A priority patent/CN101360589B/en
Publication of WO2008007516A1 publication Critical patent/WO2008007516A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • B25J18/04Arms extensible rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S414/00Material or article handling
    • Y10S414/135Associated with semiconductor wafer handling
    • Y10S414/141Associated with semiconductor wafer handling includes means for gripping wafer

Definitions

  • the present invention relates to an articulated robot for putting a thin plate-like workpiece such as a glass substrate for liquid crystal or a semiconductor wafer into and out of stock force.
  • the conventional articulated robot 1 includes two sets of arms 2 that are rotatably connected by joint portions 3, 4, and 5 to transmit a rotational force from a rotational drive source and perform a desired operation. Therefore, the rotation center axis of the joint portion 3 at the base end provided in the two sets of arms 2 is arranged vertically (or in the axial direction).
  • the multi-joint robot 1 has a two-threaded arm 2, one arm drive type device 2 is used for supply and the other is used for take-out, and the supply operation of the work 9 and the take-out operation of another work 9 are performed simultaneously. Is possible.
  • the conventional articulated robot 1 is configured such that the hand portion 8 that holds the workpiece 9 by the arm 2 can be linearly moved in the direction of taking out and supplying the workpiece 9 indicated by an arrow X in the figure.
  • the conventional articulated robot 1 includes a moving member 11 that moves the support member 10 provided with the arm 2 up and down (hereinafter referred to as the up-and-down moving mechanism 11) so that the vertical position of the arm 2 can be adjusted. It is said.
  • the pedestal 13 of the vertical movement mechanism 11 is rotatably provided so that the articulated robot 1 can be turned to change its direction.
  • the base 13 is mounted on the base in the direction indicated by the arrow Y in the figure, that is, in the direction orthogonal to the moving direction of the hand unit 8 and the vertical moving direction of the support member 10. It is provided so as to be movable with respect to 14, and the position of the vertical movement mechanism 11 is adjustable. Further, the two sets of arms 2 provided in the conventional articulated robot 1 have, for example, a plurality of joint parts, that is, the articulated robot 1 is configured as a horizontal articulated robot.
  • the arm 2 includes a first arm 6 (hereinafter referred to as the upper arm 6), a second arm 7 connected to the upper arm 6 (hereinafter referred to as the forearm 7), and a work arm 9 connected to the forearm 7. And a hand portion 8 for holding the
  • the base end of the upper arm 6 is connected to the support member 10 via a drive shaft to constitute a rotatable joint 3 (hereinafter referred to as a shoulder joint 3).
  • This shoulder joint 3 becomes the joint 3 at the base end of the arm 2.
  • the distal end of the upper arm 6 and the proximal end of the forearm 7 are connected via a drive shaft to constitute a rotatable joint 4 (hereinafter referred to as an elbow joint 4).
  • the tip of the forearm 7 and the hand portion 8 are connected via a drive shaft to constitute a rotatable joint portion 5 (hereinafter referred to as a hand joint portion 5).
  • the shoulder joint part 3 is arranged so as to face in the vertical direction so that the rotation center axis is coaxial.
  • the arm 2 rotates the shoulder joint portion 3, the elbow joint portion 4 and the hand joint portion 5 by a rotation drive source (not shown) to move the hand portion 8 in the workpiece take-out and supply direction.
  • a rotation drive source not shown
  • the hand portion 8 is directed in the opposite direction, the extended position where the upper arm 6 and the forearm 7 are fully extended, and the contracted position where the upper arm 6 and the forearm 7 are folded. Extend and retract so that it moves linearly between
  • the center force of the work 9 held by the node 8 is designed to coincide with the rotation center of the pedestal 13 at the contracted position of the arm 2 shown in FIG. ing. Furthermore, when rotating the pedestal 13 by offsetting the rotation center of the shoulder joint 4 and the rotation center of the pedestal 13 in a direction orthogonal to the moving direction of the node 8, the surroundings of the articulated robot 1 The turning radius of the multi-joint robot 1 can be reduced so that the elbow joint 4 and the end 8 do not protrude from the minimum area circle 15 required for the joint.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-274218 (Pages 4-5, Figure 1, Figure 2)
  • Multi-articulated robots that take in and out thin plate-like workpieces such as glass substrates for liquid crystals and semiconductor wafers with stocking force are increasing in size, increasing the number of substrates to be processed, and processing in a short time
  • it is required to suppress dust generation from the robot as much as possible. For this reason, it is a major challenge for robots to realize high speed, high accuracy, and low dust generation, despite the fact that the equipment itself becomes large until the stocking force for placing the substrates reaches the ceiling. It has become.
  • large-scale equipment requires a large amount of capital investment in order to keep the surrounding degree of cleanliness clean. For this reason, it is desirable to arrange and process more substrates in the stocker. ing.
  • articulated robots It is also desirable for articulated robots to have a small footprint and a small turning radius so that there is no interference with equipment installed in the factory.
  • the conventional articulated robot has a structure in which the base end of the arm projects so that the moving surface force also protrudes and faces the transfer board, so it cannot prevent dust generation from the vertical movement mechanism. For this reason, there has been a problem that fine dust accumulates on the substrate.
  • the conventional articulated robot has a structure in which the base end of the arm is coaxially arranged vertically. For this reason, in order to replace the motor or pulley, which is a mechanical component located at the base end of the arm, it is necessary to take a method such as exchanging after removing one arm. There was a problem that productivity was reduced due to the huge amount.
  • the conventional articulated robot moves the support member on one column by a moving mechanism, so if the stopping force becomes high enough to reach the ceiling, the column length inevitably needs to be increased, resulting in reduced rigidity.
  • the guide mechanism of the moving mechanism arranged inside must also have a length that matches the column length.
  • the accuracy of the support member that is moved by the moving mechanism decreases because the guide accuracy decreases, and the liquid crystal placed on the hand portion 8 at the end of the arm decreases.
  • the positioning accuracy of the substrate and the semiconductor wafer is lowered, and the substrate and the wafer collide with the stock force. This causes a problem in that the yield is lowered.
  • the present invention has been made in view of such a problem, and prevents contamination of the substrate due to dust generation from the vertical movement shaft, and improves productivity such as a glass substrate for a liquid crystal or a semiconductor wafer.
  • the purpose is to provide an articulated robot that can put a thin plate-shaped workpiece into and out of the stock force.
  • the present invention is configured as follows.
  • the invention according to claim 1 is connected to the hand unit for placing a transported object and the hand unit, and includes at least two or more rotary joints, and expands and contracts the hand unit to move in one direction.
  • a multi-joint arm arranged so as to face in the axial direction; a support member that connects the multi-joint arm to a moving mechanism attached to a column that moves up and down; and a turning function provided in the moving mechanism
  • the mobile mechanism is arranged in a column in the same direction as the movement direction of the hand part, and the support member arranged in the movement mechanism is a direction orthogonal to the movement direction of the hand part. Projecting from the column and connected to the articulated arm.
  • the invention according to claim 2 is characterized in that the support member is offset in the moving direction of the hand portion so as not to interfere with the pedestal when moved to the lowest position of the column by the moving mechanism. Formed.
  • the rotary joints of the support members disposed above and below are disposed at positions that are relatively offset.
  • the invention according to claim 4 is arranged at a position where either one of the rotary joints of the support member arranged above and below is relatively offset in the moving direction of the hand portion.
  • the rotary joint arranged below the rotary joint of the support member arranged above and below is arranged in a moving direction of the hand unit with respect to the upper rotary joint. It is arranged at an offset position.
  • the moving mechanism has a shield function.
  • the invention according to claim 7 is connected to the hand unit for placing a conveyed product, the hand unit, and includes at least two or more rotary joints, and expands and contracts to move the hand unit in one direction, A multi-joint arm arranged so as to face in the axial direction; a support member that connects the multi-joint arm to a moving mechanism attached to a column that moves up and down; and a turning function provided in the moving mechanism
  • an articulated robot comprising a pedestal, the rotation center of the rotary joint arranged on the support member, the rotation center of the hand unit, and the rotation center of the pedestal coincide with the axis of movement of the hand unit. It is formed so as to be offset.
  • the invention according to claim 9 is connected to the hand unit for placing a conveyed product and the hand unit, and includes at least two or more rotary joints, and expands and contracts the hand unit to move in one direction,
  • a multi-joint arm disposed so as to face in the axial direction; a support member that connects the multi-joint arm and a movement mechanism attached to a column that moves up and down; and the movement mechanism
  • the multi-joint robot comprising a pedestal having a turning function provided in the above-mentioned structure, a plurality of blocks of the column force are connected.
  • the block of the column is provided with an opening for adjusting the arrangement of the guide mechanism of the moving mechanism.
  • the connecting portion of the column block is formed with a fitting structure.
  • the moving mechanism is arranged in the column in the same direction as the moving direction of the hand portion, and the support member arranged in the moving mechanism is in a direction perpendicular to the moving direction of the hand portion. Since it protrudes and is connected to the articulated arm, the sliding part is arranged without facing the liquid crystal substrate or semiconductor wafer, and dust generated by the sliding part force is directly generated by the liquid crystal substrate or semiconductor wafer. Therefore, the contamination of the liquid crystal substrate and the semiconductor wafer can be reduced and the production yield of the substrate and the wafer can be improved.
  • the support member has a shape offset in the moving direction of the hand portion so as not to interfere with the pedestal when moved to the lowest position of the column by the moving mechanism.
  • the support member can move to the lowermost surface of the vertical movement mechanism without colliding with the pedestal, and the movable range can be widened. For this reason, it is possible to place a liquid crystal substrate or semiconductor wafer under the stocker without increasing the stocking force required to move the liquid crystal substrate or semiconductor wafer in and out. Since the movable range can be widened, many can be arranged. For this reason, the productivity of the entire factory can be improved.
  • the rotary joints of the support members arranged above and below are arranged at a relatively offset position.
  • the rotation center of the rotary joint arranged on the support member, the rotation center of the hand unit, and the rotation center of the pedestal are formed so as to be offset so as to coincide with the axis of the movement direction of the hand unit.
  • the column of the block can be connected to a stocker that is high enough to reach the ceiling of the factory.
  • the guide accuracy of the longer moving mechanism cannot be lowered, the moving accuracy of the support member moved by the moving mechanism is not lowered. For this reason, the positioning accuracy of the liquid crystal substrate and the semiconductor wafer placed on the hand is transported without deteriorating, and the yield due to the collision between the substrate and the wafer is not reduced to the stock force.
  • FIG. 1 is a perspective view of an articulated robot showing an embodiment of the present invention.
  • FIG. 2 is a top view of an articulated robot showing an embodiment of the present invention.
  • FIG. 3 is a front view of an articulated robot showing an embodiment of the present invention.
  • FIG. 4 is a diagram showing the turning radius of an articulated robot showing an embodiment of the present invention.
  • FIG. 1 is a perspective view of an articulated robot according to the present invention.
  • FIG. 2 is a top view of the articulated robot of the present invention.
  • FIG. 3 is a front view of the articulated robot of the present invention.
  • the articulated robot 1 of the present invention has a structure in which columns 12 divided into a plurality of blocks are connected in order to cope with an increase in the stocking force (not shown). In this way, the articulated robot 1 having a height corresponding to the high floor is formed by sequentially connecting the column blocks 16.
  • the articulated robot 1 having a height corresponding to the high floor is formed by sequentially connecting the column blocks 16.
  • four column blocks 16 are connected. Both end surfaces of each column block 16 have a fitting structure so that the column blocks 16 are connected to each other, and there are positioning holes (not shown) in order to accurately arrange a guide mechanism including a linear guide. And it is assembled by adjusting using a positioning jig.
  • the articulated robot 1 of the present invention includes two sets of arms 2 that are rotatably connected by joint portions 3, 4, and 5 to transmit a rotational force from a rotational drive source and perform a desired operation.
  • the hand portion 8 holding the workpiece 9 by the arm 2 is configured to be linearly movable in the direction of taking out and supplying the workpiece 9 indicated by an arrow X in the drawing.
  • the relationship between the rotation center axes of the proximal joints 3 provided in the two arms 2 is that the hand 8 moves relative to the proximal joint 3 of the upper arm 21, as shown in FIG.
  • the joint 3 at the base end of the lower arm 22 is arranged so as to be displaced in the direction.
  • the arm 2 is provided, and a vertical movement member 11 for moving the support member 10 up and down is provided so that the vertical position of the arm 2 can be adjusted.
  • the base of the vertical movement mechanism 11 Reference numeral 13 is provided so as to be rotatable, and the articulated robot 1 can be turned to change its direction.
  • the vertical movement mechanism 11 is disposed in the same direction as the movement direction of the hand portion 8, and the support member 10 protrudes from the vertical drive mechanism 11 in a direction orthogonal to the movement direction of the hand portion 8, It is connected to the proximal joint 3.
  • the supporting member 10 connected to the lower arm 22 does not interfere with the base 13 when the arm 2 is moved downward by the vertical movement mechanism 11, so that the moving direction of the hand portion 8 is as shown in FIG. An offset shape can be formed.
  • the vertical movement mechanism 11 is covered with a protective cover having a shield function (not shown) to suppress dust generation from the inside of the column 12.
  • the part in which the present invention is different from Patent Document 1 is that the vertical movement mechanism is arranged in the same direction as the movement direction of the hand part, and the support member 10 that connects the vertical movement mechanism and the joint part at the base end of the arm 2 is This is a portion formed so as to be offset in the moving direction of the hand portion so that the supporting member 10 protruding perpendicularly to the moving direction and coupled to the lower arm 22 does not interfere with the base 13.
  • the two sets of arms 2 provided in the articulated robot 1 of the present invention have, for example, a plurality of joint portions, that is, the articulated robot 1 is configured as a horizontal articulated robot.
  • the arm 2 in this embodiment has a structure similar to that of the conventional arm 2.
  • the base end of the upper arm 6 is connected to the support member 10 via a drive shaft to form a rotatable shoulder joint 3.
  • This shoulder joint 3 becomes the joint 3 at the base end of the arm 2.
  • the distal end of the upper arm 6 and the proximal end of the forearm 7 are connected via a drive shaft to constitute a rotatable elbow joint 4.
  • the tip of the forearm 7 and the hand portion 8 are connected via a drive shaft to constitute a rotatable hand joint portion 5.
  • the arm 2 rotates the shoulder joint portion 3, the elbow joint portion 4 and the hand joint portion 5 by a rotation drive source (not shown) to move the hand portion 8 in the workpiece take-out and supply direction.
  • a rotation drive source not shown
  • the hand portion 8 is directed in the opposite direction, the extended position where the upper arm 6 and the forearm 7 are fully extended, and the contracted position where the upper arm 6 and the forearm 7 are folded. Extend and retract so that it moves linearly between
  • the turning radius of the articulated robot 1 of the present embodiment will be described using the lower arm 22.
  • the center of the work 9 held by the hand portion 8 is designed to coincide with the center of rotation of the base 13.
  • the pedestal 13 is rotated by offsetting so that the rotation center of the shoulder joint 3, the rotation center of the hand joint 5, and the rotation center of the pedestal 13 coincide with the axis of movement of the hand 8.
  • the turning radius of the articulated robot 1 can be reduced by preventing the elbow joints 4 and 8 from protruding from the minimum area circle 15 required around the articulated robot 1 when it can.
  • the center of the work 9 is designed so that the center of the work 9 coincides with the center of rotation of the pedestal 13 for the upper arm 21 described using the lower arm in order to avoid complication of the drawing.
  • the positional relationship between the rotation center of the shoulder joint part 3, the hand joint part 5 and the pedestal 13 is the same as that of the lower arm.
  • the arm 2 is attached to the support member 10 and moves to the vertical movement mechanism 11 in the vertical direction according to a command from a controller (not shown). As shown in FIG. 3, when the support member 10 moves downward, the support member 10 does not collide with the pedestal 13. The moving mechanism 11 can be lowered to the lowest moving position.
  • an articulated robot having an upper arm and a lower arm has been described.
  • an articulated robot having either upper or lower arm force may be used.
  • the multi-joint robot with the fixed hand joint unit described for the multi-joint robot having the shoulder joint, the elbow joint and the hand joint rotation joint naturally has the same action and effect.
  • the present invention can also be applied to a transporting work of a thick plate or a box-like article.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manipulator (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

[PROBLEMS] To provide a multijoint robot which prevents contamination of a substrate due to dusts generated from a vertically moving shaft, and puts in and takes out thin-board-shaped works having improved productivity, such as a glass substrate for liquid crystal and a semiconductor wafer, to and from a stocker. [MEANS FOR SOLVING PROBLEMS] A multijoint robot (1) is composed of a hand section (8) for placing an object to be transferred; a multijoint arm (1), which is connected to the hand section (8), has at least two or more rotating joints (3, 4, 5), extends and retracts to move the hand section (8) in one direction and faces a shaft direction; a supporting member (10) for connecting the multijoint arm (1) with a moving mechanism (11) which vertically moves; and a base (13), which is arranged on the moving mechanism (11) and has a turning function. The moving mechanism (11) has a column (12) in the same direction as the moving direction of the hand section (8), and the supporting member (10), which is arranged on the moving mechanism (11), protrudes in a direction orthogonally intersecting with the moving direction of the hand section (8) and is connected to the multijoint arm (2).

Description

多関節ロボット  Articulated robot
技術分野  Technical field
[0001] 本発明は、液晶用のガラス基板や半導体ウェハ等の薄板状のワークをストツ力に出 し入れする多関節ロボットに関する。  TECHNICAL FIELD [0001] The present invention relates to an articulated robot for putting a thin plate-like workpiece such as a glass substrate for liquid crystal or a semiconductor wafer into and out of stock force.
背景技術  Background art
[0002] 従来の多関節ロボットしては、肩関節部の回転中心と台座の回転中心とをオフセッ トすることで台座を回動させる際に多関節ロボットの旋回半径を小さくするものが提案 されている(例えば、特許文献 1参照)。  [0002] Conventional articulated robots have been proposed in which the turning radius of the articulated robot is reduced when the pedestal is rotated by offsetting the rotational center of the shoulder joint and the rotational center of the pedestal. (For example, refer to Patent Document 1).
従来の多関節ロボット 1は、図 5に示すように関節部 3, 4, 5により回転可能に連結 されて回転駆動源よる回転力を伝達し所望の動作をさせるアーム 2を二組備えてなる もので、二組のアーム 2に設けられる基端の関節部 3の回転中心軸を上下 (または軸 方向)に配置するように構成されている。  As shown in FIG. 5, the conventional articulated robot 1 includes two sets of arms 2 that are rotatably connected by joint portions 3, 4, and 5 to transmit a rotational force from a rotational drive source and perform a desired operation. Therefore, the rotation center axis of the joint portion 3 at the base end provided in the two sets of arms 2 is arranged vertically (or in the axial direction).
多関節ロボット 1は、二糸且のアーム 2を備え、一方のアーム駆動型装置 2を供給用、 他方を取り出し用とし、ワーク 9の供給動作と別のワーク 9の取り出し動作とを同時に 行うことを可能としている。  The multi-joint robot 1 has a two-threaded arm 2, one arm drive type device 2 is used for supply and the other is used for take-out, and the supply operation of the work 9 and the take-out operation of another work 9 are performed simultaneously. Is possible.
また、従来の多関節ロボット 1は、アーム 2によりワーク 9を保持するハンド部 8は図 中矢印 Xで示すワーク 9の取り出し '供給方向に直線移動可能であるように構成され る。  Further, the conventional articulated robot 1 is configured such that the hand portion 8 that holds the workpiece 9 by the arm 2 can be linearly moved in the direction of taking out and supplying the workpiece 9 indicated by an arrow X in the figure.
また、従来の多関節ロボット 1は、アーム 2が設けられている支持部材 10を上下に 移動させる移動部材 11 (以下、上下移動機構 11と呼ぶ)を備えて、アーム 2の上下 位置を調整可能としている。また、上下移動機構 11の台座 13は回動可能に設けら れ、多関節ロボット 1を旋回して向きを変えられるようにしている。  In addition, the conventional articulated robot 1 includes a moving member 11 that moves the support member 10 provided with the arm 2 up and down (hereinafter referred to as the up-and-down moving mechanism 11) so that the vertical position of the arm 2 can be adjusted. It is said. The pedestal 13 of the vertical movement mechanism 11 is rotatably provided so that the articulated robot 1 can be turned to change its direction.
さらに、本実施形態の多関節ロボット 1では、図中矢印 Yで示す方向、即ちハンド部 8の移動方向と支持部材 10の上下移動方向とのそれぞれに直交する方向に、台座 1 3を基台 14に対して移動可能に設けて上下移動機構 11の位置を調整可能としてい る。 また、従来の多関節ロボット 1に備えられる二組のアーム 2は、例えば、複数の関節 部を有するものであり、即ち多関節ロボット 1は、水平多関節型ロボットとして構成され る。本実施形態でのアーム 2は、第一アーム 6 (以下、上腕 6と呼ぶ)と、上腕 6と連結 される第二アーム 7 (以下、前腕 7と呼ぶ)と、前腕 7と連結されワーク 9を保持するハ ンド部 8とを備える。 Further, in the articulated robot 1 of the present embodiment, the base 13 is mounted on the base in the direction indicated by the arrow Y in the figure, that is, in the direction orthogonal to the moving direction of the hand unit 8 and the vertical moving direction of the support member 10. It is provided so as to be movable with respect to 14, and the position of the vertical movement mechanism 11 is adjustable. Further, the two sets of arms 2 provided in the conventional articulated robot 1 have, for example, a plurality of joint parts, that is, the articulated robot 1 is configured as a horizontal articulated robot. In this embodiment, the arm 2 includes a first arm 6 (hereinafter referred to as the upper arm 6), a second arm 7 connected to the upper arm 6 (hereinafter referred to as the forearm 7), and a work arm 9 connected to the forearm 7. And a hand portion 8 for holding the
上腕 6の基端は、支持部材 10に駆動軸を介して連結されて、回動可能な関節部 3 ( 以下、肩関節部 3と呼ぶ)を構成する。この肩関節部 3がアーム 2の基端の関節部 3と なる。また、上腕 6の先端と前腕 7の基端とが駆動軸を介して連結されて、回動可能 な関節部 4 (以下、肘関節部 4と呼ぶ)を構成する。また、前腕 7の先端とハンド部 8と が駆動軸を介して連結されて、回動可能な関節部 5 (以下、ハンド関節部 5と呼ぶ)を 構成する。肩関節部 3の回転中心軸が同軸上であるように、上下方向に対面するよう に配置する。  The base end of the upper arm 6 is connected to the support member 10 via a drive shaft to constitute a rotatable joint 3 (hereinafter referred to as a shoulder joint 3). This shoulder joint 3 becomes the joint 3 at the base end of the arm 2. Further, the distal end of the upper arm 6 and the proximal end of the forearm 7 are connected via a drive shaft to constitute a rotatable joint 4 (hereinafter referred to as an elbow joint 4). Further, the tip of the forearm 7 and the hand portion 8 are connected via a drive shaft to constitute a rotatable joint portion 5 (hereinafter referred to as a hand joint portion 5). The shoulder joint part 3 is arranged so as to face in the vertical direction so that the rotation center axis is coaxial.
アーム 2は、図示しない回転駆動源により肩関節部 3と肘関節部 4とハンド関節部 5 とを回動させて、ハンド部 8をワーク取り出し '供給方向に移動させる。この際、アーム 2では、その機構上、ハンド部 8がー方向を向いて、上腕 6と前腕 7とを伸ばしきつた 伸長位置と、上腕 6と前腕 7とを折り畳んだ状態とした縮み位置との間を直線移動す るように、伸縮動作を行う。  The arm 2 rotates the shoulder joint portion 3, the elbow joint portion 4 and the hand joint portion 5 by a rotation drive source (not shown) to move the hand portion 8 in the workpiece take-out and supply direction. At this time, in the arm 2, due to the mechanism, the hand portion 8 is directed in the opposite direction, the extended position where the upper arm 6 and the forearm 7 are fully extended, and the contracted position where the upper arm 6 and the forearm 7 are folded. Extend and retract so that it moves linearly between
ここで、従来の多関節ロボット 1では、図 6に示すアーム 2の縮み位置において、ノヽ ンド部 8により保持されるワーク 9の中心力 台座 13の回転中心と一致するものとなる ように設計されている。さらに、肩関節部 4の回転中心と台座 13の回転中心とをノ、ン ド部 8の移動方向に対して直交方向にオフセットすることで台座 13を回動させる際に 多関節ロボット 1の周囲に必要となる最小領域円 15から肘関節部 4ゃノ、ンド部 8が突 出することがないようにして、多関節ロボット 1の旋回半径を小さくすることができる。 特許文献 1 :特開 2001— 274218 (第 4頁〜 5頁、図 1、図 2)  Here, in the conventional articulated robot 1, the center force of the work 9 held by the node 8 is designed to coincide with the rotation center of the pedestal 13 at the contracted position of the arm 2 shown in FIG. ing. Furthermore, when rotating the pedestal 13 by offsetting the rotation center of the shoulder joint 4 and the rotation center of the pedestal 13 in a direction orthogonal to the moving direction of the node 8, the surroundings of the articulated robot 1 The turning radius of the multi-joint robot 1 can be reduced so that the elbow joint 4 and the end 8 do not protrude from the minimum area circle 15 required for the joint. Patent Document 1: Japanese Patent Laid-Open No. 2001-274218 (Pages 4-5, Figure 1, Figure 2)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
液晶用のガラス基板や半導体ウェハ等の薄板状のワークをストツ力に出し入れする 多関節ロボットは大型化が進み、処理する基板の枚数も増えるとともに短時間で処理 することが求められ、さらには基板の歩留まりを上げるためにロボットからの発塵を極 力抑えることが要求されている。このためロボットには、基板を配置するストツ力が天井 に届くほどの高さになるまで設備自体が大型化するにも関わらず、高速、高精度、低 発塵を実現することが大きな課題となっている。一方、大型化する設備は、周囲のタリ 一ン度を清浄に保っために多額の設備投資が必要となっており、そのためにストッカ にはより多くの基板を配置させ、処理することが望まれている。また、多関節ロボットに はフットプリントを小さくして、工場に配置する装置との干渉がないように旋回半径を 小さくすることも望まれて 、る。 Multi-articulated robots that take in and out thin plate-like workpieces such as glass substrates for liquid crystals and semiconductor wafers with stocking force are increasing in size, increasing the number of substrates to be processed, and processing in a short time In addition, in order to increase the yield of the substrate, it is required to suppress dust generation from the robot as much as possible. For this reason, it is a major challenge for robots to realize high speed, high accuracy, and low dust generation, despite the fact that the equipment itself becomes large until the stocking force for placing the substrates reaches the ceiling. It has become. On the other hand, large-scale equipment requires a large amount of capital investment in order to keep the surrounding degree of cleanliness clean. For this reason, it is desirable to arrange and process more substrates in the stocker. ing. It is also desirable for articulated robots to have a small footprint and a small turning radius so that there is no interference with equipment installed in the factory.
また、液晶基板や半導体ウェハの生産枚数は、年々多くなつており、生産性を上 げるためにロボットには、搬送する-プットが求められている。しかしながら、ロボットは 機械部品を含んで ヽるためにメンテナンスが必要であり、メンテナンス時間もスルー プットに関わる大きなファクタとなっており、容易にメンテナンスできることが望まれて いる。  In addition, the number of liquid crystal substrates and semiconductor wafers produced is increasing year by year, and robots are required to have a transfer-put to improve productivity. However, since robots include machine parts, maintenance is required, and maintenance time is a major factor related to throughput, and it is desirable that maintenance be easy.
し力 ながら、従来の多関節ロボットは、アーム基端が移動面力も突出して搬送基 板に対向するように配置された構造であるために、上下移動機構からの発塵を防ぐこ とができないことから細かな塵が基板上に堆積する等の問題が生じていた。  However, the conventional articulated robot has a structure in which the base end of the arm projects so that the moving surface force also protrudes and faces the transfer board, so it cannot prevent dust generation from the vertical movement mechanism. For this reason, there has been a problem that fine dust accumulates on the substrate.
また、アームが上下移動機構により下方へ移動した場合、アームの支持部材は、 台座と衝突するために上下移動機構の最下面まで移動することができず、可動範囲 が狭くなるという問題が生じ、液晶基板や半導体ウェハを出し入れするストッ力の高さ が高くなるという問題が生じていた。さらに言うと、ストツ力の高さは工場建物の高さに 制限されるために、配置されるパネルや基板の枚数は、上下移動機構の可動範囲が 狭くなることで少なくなり、生産性を低下させる問題が生じることになつている。  In addition, when the arm is moved downward by the vertical movement mechanism, the support member of the arm cannot move to the lowermost surface of the vertical movement mechanism because it collides with the pedestal, resulting in a problem that the movable range becomes narrow, There has been a problem that the stocking force for taking in and out the liquid crystal substrate and the semiconductor wafer becomes high. Furthermore, since the height of the stocking force is limited to the height of the factory building, the number of panels and boards to be arranged decreases as the movable range of the vertical movement mechanism becomes narrower, reducing productivity. Cause problems to occur.
また、アーム基端にはモータやプーリなどがあるために、上下方向に厚い構造と なっている。このために、ストッカ内の液晶基板や半導体基板を配置する間隔を広く 取らざるを得なる問題が生じていた。つまり、ストッカ内に配置できるパネルや基板の 枚数が少なくなることから生産性が低下すると言う問題が生じていた。これを回避する ために、上下移動機構で出し入れする時にアームの高さを変えることが考えられるが 、この場合は、アームを上下に移動させるシーケンスを繰り返すために時間がかかり 、作業時間が長くなる等の問題が生じていた。 In addition, because there is a motor and pulley at the base end of the arm, it has a thick structure in the vertical direction. For this reason, there has been a problem that a wide interval is required for arranging the liquid crystal substrate and the semiconductor substrate in the stocker. In other words, the number of panels and substrates that can be placed in the stocker is reduced, resulting in a problem of reduced productivity. In order to avoid this, it is conceivable to change the height of the arm when taking it in and out with the vertical movement mechanism, but in this case, it takes time to repeat the sequence of moving the arm up and down. , Problems such as longer work time have occurred.
また、従来の多関節ロボットは、アーム基端が上下に同軸に配置された構造とな つている。このために、アーム基端に配置された機構部品であるモータやプーリの交 換を行うためには、片方のアームを取り外した後に交換する等の方法を取らざるを得 ないため、メンテナンス時間が膨大に係り、生産性が低下するという問題が生じてい た。  In addition, the conventional articulated robot has a structure in which the base end of the arm is coaxially arranged vertically. For this reason, in order to replace the motor or pulley, which is a mechanical component located at the base end of the arm, it is necessary to take a method such as exchanging after removing one arm. There was a problem that productivity was reduced due to the huge amount.
また、従来の多関節ロボットは、 1つのコラム上を移動機構により支持部材が移動 するために、ストッ力が天井に届くほど高くなると、必然的にコラム長を長くする必要が あり、剛性が低下するとともに、内部に配置された移動機構の案内機構もコラム長に 合わせた長さにする必要がある。し力しながら、案内機構を長くする場合、案内精度 が長くすることで低下するために移動機構で移動される支持部材の移動精度が低下 し、アーム先端のハンド部 8に載置された液晶基板や半導体ウェハの位置決め精度 が低下することになり、ストツ力に基板やウェハが衝突することが起こることから歩留ま りの低下をまねくと 、う問題が生じて 、た。  In addition, the conventional articulated robot moves the support member on one column by a moving mechanism, so if the stopping force becomes high enough to reach the ceiling, the column length inevitably needs to be increased, resulting in reduced rigidity. At the same time, the guide mechanism of the moving mechanism arranged inside must also have a length that matches the column length. However, when the guide mechanism is lengthened while the force is applied, the accuracy of the support member that is moved by the moving mechanism decreases because the guide accuracy decreases, and the liquid crystal placed on the hand portion 8 at the end of the arm decreases. The positioning accuracy of the substrate and the semiconductor wafer is lowered, and the substrate and the wafer collide with the stock force. This causes a problem in that the yield is lowered.
本発明はこのような問題点に鑑みてなされたものであり、上下移動軸からの発塵 による基板の汚染を防止するとともに、生産性を向上させた液晶用のガラス基板や半 導体ウェハ等の薄板状のワークをストツ力に出し入れする多関節ロボットを提供するこ とを目的とする。  The present invention has been made in view of such a problem, and prevents contamination of the substrate due to dust generation from the vertical movement shaft, and improves productivity such as a glass substrate for a liquid crystal or a semiconductor wafer. The purpose is to provide an articulated robot that can put a thin plate-shaped workpiece into and out of the stock force.
課題を解決するための手段 Means for solving the problem
上記問題を解決するため、本発明は、次のように構成したものである。  In order to solve the above problems, the present invention is configured as follows.
請求項 1に記載の発明は、搬送物を載置するハンド部と、前記ハンド部と連結され 、少なくとも 2つ以上の回転関節を備え、前記ハンド部を 1方向に移動するように伸縮 し、軸方向に対向するように配置された多関節アームと、前記多関節アームと上下に 移動するコラムに取り付けられた移動機構とを連結する支持部材と、前記移動機構 に備えられた旋回機能を有する台座とからなる多関節ロボットにおいて、前記移動機 構力 前記ハンド部の移動方向と同方向にコラムに配置され、前記移動機構に配置 された支持部材は、前記ハンド部の移動方向に直交する方向に前記コラムから突出 し、前記多関節アームと連結されたものである。 請求項 2に記載の発明は、前記支持部材は、前記移動機構により前記コラムの最 下位置に移動されたときに前記台座に干渉しな 、ように前記ハンド部の移動方向に オフセットした形状を形成したものである。 The invention according to claim 1 is connected to the hand unit for placing a transported object and the hand unit, and includes at least two or more rotary joints, and expands and contracts the hand unit to move in one direction. A multi-joint arm arranged so as to face in the axial direction; a support member that connects the multi-joint arm to a moving mechanism attached to a column that moves up and down; and a turning function provided in the moving mechanism In an articulated robot comprising a pedestal, the mobile mechanism is arranged in a column in the same direction as the movement direction of the hand part, and the support member arranged in the movement mechanism is a direction orthogonal to the movement direction of the hand part. Projecting from the column and connected to the articulated arm. The invention according to claim 2 is characterized in that the support member is offset in the moving direction of the hand portion so as not to interfere with the pedestal when moved to the lowest position of the column by the moving mechanism. Formed.
請求項 3に記載の発明は、上下に配置された前記支持部材の前記回転関節が、 相対的にオフセットした位置に配置されたものである。  According to a third aspect of the present invention, the rotary joints of the support members disposed above and below are disposed at positions that are relatively offset.
請求項 4に記載の発明は、上下に配置された前記支持部材の前記回転関節のい ずれか一方力 相対的に前記ハンド部の移動方向にオフセットした位置に配置され たものである。  The invention according to claim 4 is arranged at a position where either one of the rotary joints of the support member arranged above and below is relatively offset in the moving direction of the hand portion.
請求項 5に記載の発明は、上下に配置された前記支持部材の前記回転関節の下 側に配置された前記回転関節が、上側の前記回転関節に対して、前記ハンド部の移 動方向にオフセットした位置に配置されたものである。  According to a fifth aspect of the present invention, the rotary joint arranged below the rotary joint of the support member arranged above and below is arranged in a moving direction of the hand unit with respect to the upper rotary joint. It is arranged at an offset position.
請求項 6に記載の発明は、前記移動機構はシールド機能を有するものである。 請求項 7に記載の発明は、搬送物を載置するハンド部と、前記ハンド部と連結され 、少なくとも 2つ以上の回転関節を備え、前記ハンド部を 1方向に移動するように伸縮 し、軸方向に対向するように配置された多関節アームと、前記多関節アームと上下に 移動するコラムに取り付けられた移動機構とを連結する支持部材と、前記移動機構 に備えられた旋回機能を有する台座とからなる多関節ロボットにおいて、前記支持部 材に配置された前記回転関節の回転中心と、ハンド部の回転中心と、台座の回転中 心とがハンド部の移動方向の軸線上に一致するようにオフセットするように形成され たものである。  In the invention according to claim 6, the moving mechanism has a shield function. The invention according to claim 7 is connected to the hand unit for placing a conveyed product, the hand unit, and includes at least two or more rotary joints, and expands and contracts to move the hand unit in one direction, A multi-joint arm arranged so as to face in the axial direction; a support member that connects the multi-joint arm to a moving mechanism attached to a column that moves up and down; and a turning function provided in the moving mechanism In an articulated robot comprising a pedestal, the rotation center of the rotary joint arranged on the support member, the rotation center of the hand unit, and the rotation center of the pedestal coincide with the axis of movement of the hand unit. It is formed so as to be offset.
請求項 8に記載の発明は、前記回転関節の回転中心と、ハンド部の回転中心と、 台座の回転中心との位置関係が、前記ハンド部を引き込むように移動させた際に、 ハンド部の移動方向関する軸線上に前方力 前記回転関節の回転中心、台座の回 転中心、ハンド部の回転中心の順番で配置されるように形成されたものである。 請求項 9に記載の発明は、搬送物を載置するハンド部と、前記ハンド部と連結され 、少なくとも 2つ以上の回転関節を備え、前記ハンド部を 1方向に移動するように伸縮 し、軸方向に対向するように配置された多関節アームと、前記多関節アームと上下に 移動するコラムに取り付けられた移動機構とを連結する支持部材と、前記移動機構 に備えられた旋回機能を有する台座とからなる多関節ロボットにおいて、前記コラム 力 複数個のブロックが連結された構造のものである。 In the invention according to claim 8, when the positional relationship between the rotation center of the rotary joint, the rotation center of the hand portion, and the rotation center of the pedestal is moved so as to retract the hand portion, A forward force is formed on the axis related to the moving direction so that the rotation center of the rotary joint, the rotation center of the pedestal, and the rotation center of the hand portion are arranged in this order. The invention according to claim 9 is connected to the hand unit for placing a conveyed product and the hand unit, and includes at least two or more rotary joints, and expands and contracts the hand unit to move in one direction, A multi-joint arm disposed so as to face in the axial direction; a support member that connects the multi-joint arm and a movement mechanism attached to a column that moves up and down; and the movement mechanism In the multi-joint robot comprising a pedestal having a turning function provided in the above-mentioned structure, a plurality of blocks of the column force are connected.
請求項 10に記載の発明は、前記コラムのブロックには、前記移動機構の案内機構 の配置を調整する開口部を備えたものである。  In the invention according to claim 10, the block of the column is provided with an opening for adjusting the arrangement of the guide mechanism of the moving mechanism.
請求項 11に記載の発明は、前記コラムのブロックの連結部は、嵌合構造が形成さ れたものである。  According to an eleventh aspect of the present invention, the connecting portion of the column block is formed with a fitting structure.
発明の効果 The invention's effect
請求項 1および 6に記載の発明によると、移動機構が、ハンド部の移動方向と同方 向にコラムに配置され、移動機構に配置された支持部材は、ハンド部の移動方向に 直交する方向に突出し、前記多関節アームと連結された構造であることから、摺動部 が液晶基板や半導体ウェハに対面することがなく配置されており、摺動部力もの発塵 は直接液晶基板や半導体ウェハに堆積することがないことから、液晶基板や半導体 ウェハの汚染を低減できるとともに、基板やウェハの生産上の歩留まりを向上させるこ とがでさる。  According to the first and sixth aspects of the invention, the moving mechanism is arranged in the column in the same direction as the moving direction of the hand portion, and the support member arranged in the moving mechanism is in a direction perpendicular to the moving direction of the hand portion. Since it protrudes and is connected to the articulated arm, the sliding part is arranged without facing the liquid crystal substrate or semiconductor wafer, and dust generated by the sliding part force is directly generated by the liquid crystal substrate or semiconductor wafer. Therefore, the contamination of the liquid crystal substrate and the semiconductor wafer can be reduced and the production yield of the substrate and the wafer can be improved.
請求項 2に記載の発明によると、支持部材は、前記移動機構により前記コラムの最 下位置に移動されたときに前記台座に干渉しな 、ように前記ハンド部の移動方向に オフセットした形状に形成されたことにより、支持部材は台座と衝突することなぐ上下 移動機構の最下面まで移動することができ、可動範囲を広くすることができる。このた め、液晶基板や半導体ウェハを出し入れするストッ力の高さが高くしなくても、ストッカ 下部にも液晶基板や半導体ウェハを配置できるようになり、基板やウェハの枚数は、 上下移動機構の可動範囲を広くできることから、多く配置できるようになる。このような ことから工場全体の生産性は高められることになる。  According to the second aspect of the present invention, the support member has a shape offset in the moving direction of the hand portion so as not to interfere with the pedestal when moved to the lowest position of the column by the moving mechanism. By being formed, the support member can move to the lowermost surface of the vertical movement mechanism without colliding with the pedestal, and the movable range can be widened. For this reason, it is possible to place a liquid crystal substrate or semiconductor wafer under the stocker without increasing the stocking force required to move the liquid crystal substrate or semiconductor wafer in and out. Since the movable range can be widened, many can be arranged. For this reason, the productivity of the entire factory can be improved.
請求項 3から 5に記載の発明によると、上下に配置された前記支持部材の前記回転 関節が、相対的にオフセットした位置に配置されたことで、 請求項 7および 8に記載 の発明によると、前記支持部材に配置された前記回転関節の回転中心と、ハンド部 の回転中心と、台座の回転中心とがハンド部の移動方向の軸線上に一致するように オフセットするように形成されたことで、ハンドが液晶基板や半導体ウェハを引き込ん だ位置に来た場合、台座の回転機能により旋回しても基板やウェハの旋回半径から 突出することなく旋回できるので、フットプリントを小さくして、工場に配置する装置と の干渉がな!、ようにロボットを配置できる。 According to the inventions of claims 3 to 5, according to the inventions of claims 7 and 8, the rotary joints of the support members arranged above and below are arranged at a relatively offset position. The rotation center of the rotary joint arranged on the support member, the rotation center of the hand unit, and the rotation center of the pedestal are formed so as to be offset so as to coincide with the axis of the movement direction of the hand unit. When the hand comes to the position where the liquid crystal substrate or semiconductor wafer is pulled in, even if the hand is turned by the rotation function of the pedestal, the turning radius of the substrate or wafer Since the robot can turn without protruding, the footprint can be reduced and the robot can be placed so that it does not interfere with the equipment placed in the factory!
請求項 9から 11に記載の発明によると、前記コラムは、複数個のブロックが連結さ れた構造にしたことから、工場の天井に届くほど高いストッカにもブロックのコラムを連 結することで対応できるとともに、長くなる移動機構の案内機構についても案内精度 を低下することがな 、ので、移動機構で移動される支持部材の移動精度も低下する ことがな 、。このためにハンドに載置された液晶基板や半導体ウェハの位置決め精 度も低下することなく搬送され、ストツ力に基板やウェハの衝突による歩留まりの低下 をまねくこともない。  According to the invention described in claims 9 to 11, since the column has a structure in which a plurality of blocks are connected, the column of the block can be connected to a stocker that is high enough to reach the ceiling of the factory. In addition to being able to cope with this, since the guide accuracy of the longer moving mechanism cannot be lowered, the moving accuracy of the support member moved by the moving mechanism is not lowered. For this reason, the positioning accuracy of the liquid crystal substrate and the semiconductor wafer placed on the hand is transported without deteriorating, and the yield due to the collision between the substrate and the wafer is not reduced to the stock force.
図面の簡単な説明  Brief Description of Drawings
[0006] [図 1]本発明の実施例を示す多関節ロボットの斜視図 FIG. 1 is a perspective view of an articulated robot showing an embodiment of the present invention.
[図 2]本発明の実施例を示す多関節ロボットの上面図  FIG. 2 is a top view of an articulated robot showing an embodiment of the present invention.
[図 3]本発明の実施例を示す多関節ロボットの正面図  FIG. 3 is a front view of an articulated robot showing an embodiment of the present invention.
[図 4]本発明の実施例を示す多関節ロボットの旋回半径を示す図  FIG. 4 is a diagram showing the turning radius of an articulated robot showing an embodiment of the present invention.
[図 5]従来の多関節ロボットの斜視図  [Figure 5] Perspective view of a conventional articulated robot
[図 6]従来の多関節ロボットの旋回半径を示す図  [Figure 6] Diagram showing turning radius of conventional articulated robot
符号の説明  Explanation of symbols
[0007] 1 多関節ロボット [0007] 1 Articulated robot
2 アーム  2 arms
21 上アーム  21 Upper arm
22 下アーム  22 Lower arm
3 肩関節部  3 Shoulder joint
4 肘関節部  4 Elbow joint
5 ハンド関節部  5 Hand joint
6 上腕 11 上下移動機構 6 upper arm 11 Vertical movement mechanism
12 コラム  12 columns
13 台座  13 pedestal
14 基台  14 base
15 最小領域円  15 Minimum area circle
16 =3ラムブロック  16 = 3 ram blocks
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施例 1  Example 1
[0009] 図 1は、本発明の多関節ロボットの斜視図である。図 2は、本発明の多関節ロボット の上面図である。図 3は本発明の多関節ロボットの正面図である。  FIG. 1 is a perspective view of an articulated robot according to the present invention. FIG. 2 is a top view of the articulated robot of the present invention. FIG. 3 is a front view of the articulated robot of the present invention.
本発明の多関節ロボット 1は、図示しないストッ力の高層化に対応するために複数 ブロックに分けられたコラム 12が連結された構造となっている。このように各コラムブロ ック 16を順次連結することで高層に対応した高さをもつ多関節ロボット 1を形成してい る。本実施例では、 4つのコラムブロック 16が連結された構造となっている。各コラム ブロック 16の両端面は、コラムブロック 16間が連結されるように嵌合構造となっており 、さらに、リニアガイドからなる案内機構を精度良く配置するために図示しない位置決 め穴を有し、位置決め冶具を用いて調整することで組み立てられる。  The articulated robot 1 of the present invention has a structure in which columns 12 divided into a plurality of blocks are connected in order to cope with an increase in the stocking force (not shown). In this way, the articulated robot 1 having a height corresponding to the high floor is formed by sequentially connecting the column blocks 16. In this embodiment, four column blocks 16 are connected. Both end surfaces of each column block 16 have a fitting structure so that the column blocks 16 are connected to each other, and there are positioning holes (not shown) in order to accurately arrange a guide mechanism including a linear guide. And it is assembled by adjusting using a positioning jig.
また、本発明の多関節ロボット 1は、関節部 3, 4, 5により回転可能に連結されて回 転駆動源よる回転力を伝達し所望の動作をさせるアーム 2を二組備えて 、る。また、 アーム 2によりワーク 9を保持するハンド部 8は図中矢印 Xで示すワーク 9の取り出し' 供給方向に直線移動可能であるように構成される。また、二組のアーム 2に設けられ る基端の関節部 3の回転中心軸の関係は、図 2に示すように、上アーム 21の基端の 関節部 3に対してハンド部 8の移動方向にずれるように下アーム 22の基端の関節部 3 が配置するように構成されて 、る。  Further, the articulated robot 1 of the present invention includes two sets of arms 2 that are rotatably connected by joint portions 3, 4, and 5 to transmit a rotational force from a rotational drive source and perform a desired operation. Further, the hand portion 8 holding the workpiece 9 by the arm 2 is configured to be linearly movable in the direction of taking out and supplying the workpiece 9 indicated by an arrow X in the drawing. In addition, the relationship between the rotation center axes of the proximal joints 3 provided in the two arms 2 is that the hand 8 moves relative to the proximal joint 3 of the upper arm 21, as shown in FIG. The joint 3 at the base end of the lower arm 22 is arranged so as to be displaced in the direction.
また、アーム 2が設けられて 、る支持部材 10を上下に移動させる上下移動部材 11 を備えて、アーム 2の上下位置を調整可能としている。また、上下移動機構 11の台座 13は回動可能に設けられ、多関節ロボット 1を旋回して向きを変えられるようにしてい る。ここで、上下移動機構 11は、ハンド部 8の移動方向と同方向に配置され、支持部 材 10は上下駆動機構 11からハンド部 8の移動方向に対して直交する方向に突出し 、アーム 2の基端の関節部 3に連結されている。また、下アーム 22に連結する支持部 材 10は、アーム 2が上下移動機構 11により下方へ移動した際に、台座 13に干渉し な 、ように図 2に示すようにハンド部 8の移動方向にオフセットした形状を形成して ヽ る。また、上下移動機構 11は、図示しないシールド機能を有する保護カバーで覆わ れ、コラム 12内部からの発塵を抑制している。 Further, the arm 2 is provided, and a vertical movement member 11 for moving the support member 10 up and down is provided so that the vertical position of the arm 2 can be adjusted. Also, the base of the vertical movement mechanism 11 Reference numeral 13 is provided so as to be rotatable, and the articulated robot 1 can be turned to change its direction. Here, the vertical movement mechanism 11 is disposed in the same direction as the movement direction of the hand portion 8, and the support member 10 protrudes from the vertical drive mechanism 11 in a direction orthogonal to the movement direction of the hand portion 8, It is connected to the proximal joint 3. Further, the supporting member 10 connected to the lower arm 22 does not interfere with the base 13 when the arm 2 is moved downward by the vertical movement mechanism 11, so that the moving direction of the hand portion 8 is as shown in FIG. An offset shape can be formed. Further, the vertical movement mechanism 11 is covered with a protective cover having a shield function (not shown) to suppress dust generation from the inside of the column 12.
本発明が特許文献 1と異なる部分は、上下移動機構がハンド部の移動方向と同方 向に配置され、上下移動機構とアーム 2の基端の関節部とを連結する支持部材 10が ハンド部の移動方向に直交するように突出し、かつ下アーム 22と連結する支持部材 10が台座 13に干渉しな 、ようにハンド部の移動方向にオフセットしたように形成され た部分である。  The part in which the present invention is different from Patent Document 1 is that the vertical movement mechanism is arranged in the same direction as the movement direction of the hand part, and the support member 10 that connects the vertical movement mechanism and the joint part at the base end of the arm 2 is This is a portion formed so as to be offset in the moving direction of the hand portion so that the supporting member 10 protruding perpendicularly to the moving direction and coupled to the lower arm 22 does not interfere with the base 13.
[0010] 次に、動作について説明する。本発明の多関節ロボット 1に備えられる二組のァー ム 2は、例えば、複数の関節部を有するものであり、即ち多関節ロボット 1は、水平多 関節型ロボットとして構成される。本実施形態でのアーム 2は、従来のアーム 2の構造 と同様な構造を備えている。  Next, the operation will be described. The two sets of arms 2 provided in the articulated robot 1 of the present invention have, for example, a plurality of joint portions, that is, the articulated robot 1 is configured as a horizontal articulated robot. The arm 2 in this embodiment has a structure similar to that of the conventional arm 2.
上腕 6の基端は、支持部材 10に駆動軸を介して連結されて、回動可能な肩関節部 3 を構成する。この肩関節部 3がアーム 2の基端の関節部 3となる。また、上腕 6の先端 と前腕 7の基端とが駆動軸を介して連結されて、回動可能な肘関節部 4を構成する。 また、前腕 7の先端とハンド部 8とが駆動軸を介して連結されて、回動可能なハンド関 節部 5を構成する。  The base end of the upper arm 6 is connected to the support member 10 via a drive shaft to form a rotatable shoulder joint 3. This shoulder joint 3 becomes the joint 3 at the base end of the arm 2. Further, the distal end of the upper arm 6 and the proximal end of the forearm 7 are connected via a drive shaft to constitute a rotatable elbow joint 4. Further, the tip of the forearm 7 and the hand portion 8 are connected via a drive shaft to constitute a rotatable hand joint portion 5.
アーム 2は、図示しない回転駆動源により肩関節部 3と肘関節部 4とハンド関節部 5 とを回動させて、ハンド部 8をワーク取り出し '供給方向に移動させる。この際、アーム 2では、その機構上、ハンド部 8がー方向を向いて、上腕 6と前腕 7とを伸ばしきつた 伸長位置と、上腕 6と前腕 7とを折り畳んだ状態とした縮み位置との間を直線移動す るように、伸縮動作を行う。  The arm 2 rotates the shoulder joint portion 3, the elbow joint portion 4 and the hand joint portion 5 by a rotation drive source (not shown) to move the hand portion 8 in the workpiece take-out and supply direction. At this time, in the arm 2, due to the mechanism, the hand portion 8 is directed in the opposite direction, the extended position where the upper arm 6 and the forearm 7 are fully extended, and the contracted position where the upper arm 6 and the forearm 7 are folded. Extend and retract so that it moves linearly between
[0011] ここで、本実施例の多関節ロボット 1の旋回半径について下アーム 22を用いて説明 する。図 4に示すアーム 22の縮み位置において、ハンド部 8により保持されるワーク 9 の中心が、台座 13の回転中心と一致するものとなるように設計されている。さらに、肩 関節部 3の回転中心と、ハンド関節部 5の回転中心と、台座 13の回転中心とがハンド 部 8の移動方向の軸線上に一致するようにオフセットすることで台座 13を回動させる 際に多関節ロボット 1の周囲に必要となる最小領域円 15から肘関節部 4ゃノ、ンド部 8 が突出することがないようにして、多関節ロボット 1の旋回半径を小さくすることができ る。 Here, the turning radius of the articulated robot 1 of the present embodiment will be described using the lower arm 22. To do. In the contracted position of the arm 22 shown in FIG. 4, the center of the work 9 held by the hand portion 8 is designed to coincide with the center of rotation of the base 13. Further, the pedestal 13 is rotated by offsetting so that the rotation center of the shoulder joint 3, the rotation center of the hand joint 5, and the rotation center of the pedestal 13 coincide with the axis of movement of the hand 8. The turning radius of the articulated robot 1 can be reduced by preventing the elbow joints 4 and 8 from protruding from the minimum area circle 15 required around the articulated robot 1 when it can.
ここでは、図面が煩雑になるのを避けるために下アームを用いて説明した力 上ァ ーム 21についても同様に、ワーク 9の中心は台座 13の回転中心と一致するように設 計されており、肩関節部 3、ハンド関節部 5と台座 13の回転中心の位置関係も下ァー ムと同じ構成である。  Here, similarly, the center of the work 9 is designed so that the center of the work 9 coincides with the center of rotation of the pedestal 13 for the upper arm 21 described using the lower arm in order to avoid complication of the drawing. The positional relationship between the rotation center of the shoulder joint part 3, the hand joint part 5 and the pedestal 13 is the same as that of the lower arm.
次に上下方向の動作について説明する。アーム 2は、支持部材 10に取り付けられ 、上下移動機構 11に上下方向に図示しないコントローラの指令により移動する。図 3 に示すように下方に移動する際には、支持部材 10が台座 13に衝突しな 、ようにハン ド 8の移動方向にオフセットした形状を形成していることから支持部材 10は、上下移 動機構 11の最下点の移動位置まで下降することが可能である。  Next, the operation in the vertical direction will be described. The arm 2 is attached to the support member 10 and moves to the vertical movement mechanism 11 in the vertical direction according to a command from a controller (not shown). As shown in FIG. 3, when the support member 10 moves downward, the support member 10 does not collide with the pedestal 13. The moving mechanism 11 can be lowered to the lowest moving position.
尚、本発明では、上アームと下アームを有する多関節ロボットについて述べたが、 上下いずれか一方のアーム力もなる多関節ロボットでも良いことは自明である。また、 肩関節、肘関節とハンド関節の回転関節を有する多関節ロボットについて述べた力 ハンド関節部が固定された多関節ロボットについても同様な作用および効果を有す ることは当然である。  In the present invention, an articulated robot having an upper arm and a lower arm has been described. However, it is obvious that an articulated robot having either upper or lower arm force may be used. In addition, the multi-joint robot with the fixed hand joint unit described for the multi-joint robot having the shoulder joint, the elbow joint and the hand joint rotation joint naturally has the same action and effect.
産業上の利用可能性 Industrial applicability
このようなハンド部に物品を載置して搬送することによって物品の入れ替え作業を することができるので、厚板や箱状の物品の搬送作業という用途にも適用できる。  Since an article can be exchanged by placing the article on such a hand part and transporting it, the present invention can also be applied to a transporting work of a thick plate or a box-like article.

Claims

請求の範囲 The scope of the claims
[1] 搬送物を載置するハンド部と、前記ハンド部と連結され、少なくとも 2つ以上の回転 関節を備え、前記ハンド部を 1方向に移動するように伸縮し、軸方向に対向するよう に配置された多関節アームと、前記多関節アームと上下に移動するコラムに取り付け られた移動機構とを連結する支持部材と、前記移動機構に備えられた旋回機能を有 する台座とからなる多関節ロボットにおいて、  [1] A hand unit for placing a transported object and the hand unit, which includes at least two rotary joints, expands and contracts so that the hand unit moves in one direction, and faces the axial direction A multi-joint arm, a support member that connects the multi-joint arm and a moving mechanism attached to a column that moves up and down, and a pedestal having a turning function provided in the moving mechanism. In joint robots,
前記移動機構は、前記ハンド部の移動方向と同方向にコラムに配置され、前記移 動機構に配置された支持部材は、前記ハンド部の移動方向に直交する方向に突出 し、前記多関節アームと連結されたことを特徴とする多関節ロボット。  The moving mechanism is arranged in the column in the same direction as the moving direction of the hand part, and a support member arranged in the moving mechanism protrudes in a direction perpendicular to the moving direction of the hand part, and the articulated arm An articulated robot characterized by being connected to.
[2] 前記支持部材は、前記移動機構により前記コラムの最下位置に移動されたときに 前記台座に干渉しな 、ように前記ハンド部の移動方向にオフセットした形状に形成さ れたことを特徴とする請求項 1に記載の多関節ロボット。  [2] The support member is formed in a shape offset in the moving direction of the hand part so as not to interfere with the pedestal when moved to the lowest position of the column by the moving mechanism. The articulated robot according to claim 1, characterized in that:
[3] 上下に配置された前記支持部材の前記回転関節が、相対的にオフセットした位置 に配置されたことを特徴とする請求項 1に記載の多関節ロボット。  3. The articulated robot according to claim 1, wherein the rotary joints of the support members arranged above and below are arranged at positions that are relatively offset.
[4] 上下に配置された前記支持部材の前記回転関節のいずれか一方が、相対的に前 記ハンド部の移動方向にオフセットした位置に配置されたことを特徴とする請求項 1 に記載の多関節ロボット。  [4] The rotary joint according to claim 1, wherein any one of the rotary joints of the support member disposed above and below is disposed at a position relatively offset in the moving direction of the hand unit. Articulated robot.
[5] 上下に配置された前記支持部材の前記回転関節の下側に配置された前記回転関 節力 上側の前記回転関節に対して、前記ハンド部の移動方向にオフセットした位 置に配置されたことを特徴とする請求項 1に記載の多関節ロボット。  [5] The rotary joint force arranged below the rotary joint of the support member arranged above and below is arranged at a position offset in the moving direction of the hand unit with respect to the upper rotary joint. The articulated robot according to claim 1, wherein:
[6] 前記移動機構はシールド機能を有することを特徴とする請求項 1に記載の多関節 ロボット。  6. The articulated robot according to claim 1, wherein the moving mechanism has a shield function.
[7] 搬送物を載置するハンド部と、前記ハンド部と連結され、少なくとも 2つ以上の回転 関節を備え、前記ハンド部を 1方向に移動するように伸縮し、軸方向に対向するよう に配置された多関節アームと、前記多関節アームと上下に移動するコラムに取り付け られた移動機構とを連結する支持部材と、前記移動機構に備えられた旋回機能を有 する台座とからなる多関節ロボットにおいて、  [7] A hand unit for placing a transported object and the hand unit, including at least two or more rotary joints, extending and contracting the hand unit to move in one direction, and facing the axial direction A multi-joint arm, a support member that connects the multi-joint arm and a moving mechanism attached to a column that moves up and down, and a pedestal having a turning function provided in the moving mechanism. In joint robots,
前記支持部材に配置された前記回転関節の回転中心と、ハンド部の回転中心と、 台座の回転中心とがハンド部の移動方向の軸線上に一致するようにオフセットするよ うに形成されたことを特徴とする多関節ロボット。 A rotation center of the rotary joint disposed on the support member, a rotation center of the hand portion, An articulated robot formed so as to be offset so that the center of rotation of the pedestal coincides with the axis of movement of the hand portion.
[8] 前記回転関節の回転中心と、ハンド部の回転中心と、台座の回転中心との位置関 係力 前記ハンド部を引き込むように移動させた際に、ハンド部の移動方向関する軸 線上に前方力も前記回転関節の回転中心、台座の回転中心、ハンド部の回転中心 の順番で配置されるように形成されたことを特徴とする請求項 7に記載の多関節ロボ ッ卜。  [8] Positional relation force between the rotation center of the rotary joint, the rotation center of the hand unit, and the rotation center of the pedestal When the hand unit is moved so as to be retracted, it is on an axis related to the movement direction of the hand unit. 8. The articulated robot according to claim 7, wherein the forward force is formed so as to be arranged in the order of the rotation center of the rotary joint, the rotation center of the base, and the rotation center of the hand portion.
[9] 搬送物を載置するハンド部と、前記ハンド部と連結され、少なくとも 2つ以上の回転 関節を備え、前記ハンド部を 1方向に移動するように伸縮し、軸方向に対向するよう に配置された多関節アームと、前記多関節アームと上下に移動するコラムに取り付け られた移動機構とを連結する支持部材と、前記移動機構に備えられた旋回機能を有 する台座とからなる多関節ロボットにおいて、  [9] A hand unit for placing a transported object, coupled to the hand unit, including at least two or more rotary joints, extending and contracting the hand unit to move in one direction, and facing the axial direction A multi-joint arm, a support member that connects the multi-joint arm and a moving mechanism attached to a column that moves up and down, and a pedestal having a turning function provided in the moving mechanism. In joint robots,
前記コラムは、複数個のブロックが連結された構造にしたことを特徴とする多関節口 ホット。  The articulated mouth hot, wherein the column has a structure in which a plurality of blocks are connected.
[10] 前記コラムのブロックには、前記移動機構の案内機構の配置を調整する開口部を 備えたことを特徴とする請求項 9に記載の多関節ロボット。  10. The articulated robot according to claim 9, wherein the column block includes an opening for adjusting the arrangement of the guide mechanism of the moving mechanism.
[11] 前記コラムのブロックの連結部は、嵌合構造が形成されたことを特徴とする請求項 9 に記載の多関節ロボット。 11. The articulated robot according to claim 9, wherein the connecting portion of the column block is formed with a fitting structure.
PCT/JP2007/062154 2006-07-11 2007-06-15 Multijoint robot WO2008007516A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020087018493A KR101120824B1 (en) 2006-07-11 2007-06-15 Multijoint robot
JP2007548639A JP4168410B2 (en) 2006-07-11 2007-06-15 Articulated robot
CN2007800014784A CN101360589B (en) 2006-07-11 2007-06-15 Multijoint robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006190822 2006-07-11
JP2006-190822 2006-07-11

Publications (1)

Publication Number Publication Date
WO2008007516A1 true WO2008007516A1 (en) 2008-01-17

Family

ID=38923081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062154 WO2008007516A1 (en) 2006-07-11 2007-06-15 Multijoint robot

Country Status (5)

Country Link
JP (3) JP4168410B2 (en)
KR (3) KR100914387B1 (en)
CN (3) CN101863015B (en)
TW (3) TW200817151A (en)
WO (1) WO2008007516A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018480A (en) * 2006-07-11 2008-01-31 Yaskawa Electric Corp Articulated robot and transfer method and installation method for the robot
JP2010064219A (en) * 2008-09-12 2010-03-25 Yaskawa Electric Corp Multi-joint robot
CN102145488A (en) * 2011-02-14 2011-08-10 山东碧通通信技术有限公司 Flexible four-DOF (Degree of Freedom) mechanical arm
CN103189168A (en) * 2010-11-30 2013-07-03 川崎重工业株式会社 Conveyance robot

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591624B1 (en) * 2010-03-12 2010-12-01 株式会社安川電機 Industrial robot
KR200466172Y1 (en) * 2010-04-28 2013-04-09 히라따기꼬오 가부시키가이샤 Substrate transferring robot
CN103079774B (en) * 2010-09-13 2015-03-04 丰田自动车株式会社 Support arm
KR101211911B1 (en) * 2010-11-02 2012-12-13 주식회사 로보스타 Robot for reversing panels of display apparatus
KR101682465B1 (en) * 2010-11-17 2016-12-05 삼성전자 주식회사 Robot for transporting substrate
JP5565345B2 (en) * 2011-03-07 2014-08-06 株式会社安川電機 Transfer robot
CN102161199B (en) * 2011-03-16 2012-09-19 哈尔滨工业大学 W-axis coaxial transmission mechanism for silicon wafer transmission robot
CN102126209B (en) * 2011-03-16 2012-08-15 哈尔滨工业大学 W-shaft differential shaft transmission mechanism used for wafer-handling robot
CN102126208B (en) * 2011-03-16 2012-09-19 哈尔滨工业大学 Parallel connection type R-shaft expansion mechanical arm
CN102152297B (en) * 2011-03-16 2013-04-10 哈尔滨工业大学 Series type R-shaft expanding mechanical arm
JP5387622B2 (en) * 2011-06-17 2014-01-15 株式会社安川電機 Transfer robot
JP5429256B2 (en) * 2011-10-03 2014-02-26 株式会社安川電機 Robot system
JP5768827B2 (en) * 2013-03-14 2015-08-26 株式会社安川電機 Robot system and workpiece transfer method
KR101458697B1 (en) * 2013-04-19 2014-11-05 현대중공업 주식회사 Apparatus and Method for Transferring Substrate
JP6295037B2 (en) * 2013-08-08 2018-03-14 日本電産サンキョー株式会社 Industrial robot
KR101506188B1 (en) * 2013-08-30 2015-03-26 주식회사 로보스타 Transfer robot having multiple arm
JP6352016B2 (en) * 2014-03-27 2018-07-04 日本電産サンキョー株式会社 Industrial robot
CN105922233B (en) * 2016-06-28 2018-08-07 江苏捷帝机器人股份有限公司 A kind of high accurate intelligent mechanical arm and its working method
CN105922242B (en) * 2016-06-28 2018-06-29 江苏捷帝机器人股份有限公司 A kind of efficient Intelligentized mechanical arm and its method of work
CN106041876B (en) * 2016-06-28 2019-01-29 江苏捷帝机器人股份有限公司 A kind of the Intelligentized mechanical arm and its working method of all-around mobile
CN106078724B (en) * 2016-06-29 2020-01-24 微创(上海)医疗机器人有限公司 Mechanical arm and surgical robot thereof
CN106175934B (en) * 2016-06-29 2019-04-30 微创(上海)医疗机器人有限公司 Operating robot and its mechanical arm
JP6873881B2 (en) * 2017-10-13 2021-05-19 日本電産サンキョー株式会社 Industrial robot
KR102059445B1 (en) 2017-11-28 2019-12-27 주식회사 엠티에스이 Mobile work table
CN108608460A (en) * 2018-04-23 2018-10-02 深圳市华星光电半导体显示技术有限公司 Mechanical arm configuration and robot
CN110549354A (en) * 2018-05-31 2019-12-10 北新集团建材股份有限公司 Lower-copying type mechanical grabbing clamp
CN110454554A (en) * 2019-08-26 2019-11-15 苏州领裕电子科技有限公司 A kind of uniaxial folding linear arm mould group
JP2022104004A (en) * 2020-12-28 2022-07-08 日本電産サンキョー株式会社 Industrial robot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09511453A (en) * 1994-03-04 1997-11-18 マイケル、ジョゼフ Programmable material
JPH11347982A (en) * 1998-06-02 1999-12-21 Mecs Corp Sliding part structure of carrying robot
JP2001274218A (en) * 2000-03-23 2001-10-05 Sankyo Seiki Mfg Co Ltd Double-arm robot

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109284A (en) * 1981-12-22 1983-06-29 株式会社小松製作所 Robot device
JP2599571B2 (en) * 1994-05-11 1997-04-09 ダイトロンテクノロジー株式会社 Substrate transfer robot
CN2341778Y (en) * 1998-12-02 1999-10-06 和椿事业股份有限公司 Mechanical arm
JP2003158170A (en) * 2001-11-20 2003-05-30 Aitec:Kk Slot detector of cassette for substrate
CN2637135Y (en) * 2003-07-02 2004-09-01 陕西科技大学 Can type lifting and position rotating mechanical hand
CN100342519C (en) * 2003-07-16 2007-10-10 东京毅力科创株式会社 Transport device and drive mechanism
JP4063781B2 (en) * 2004-03-04 2008-03-19 株式会社ラインワークス Transport device
KR101108767B1 (en) * 2006-07-11 2012-03-13 가부시키가이샤 야스카와덴키 Multi-joint robot and wiring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09511453A (en) * 1994-03-04 1997-11-18 マイケル、ジョゼフ Programmable material
JPH11347982A (en) * 1998-06-02 1999-12-21 Mecs Corp Sliding part structure of carrying robot
JP2001274218A (en) * 2000-03-23 2001-10-05 Sankyo Seiki Mfg Co Ltd Double-arm robot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018480A (en) * 2006-07-11 2008-01-31 Yaskawa Electric Corp Articulated robot and transfer method and installation method for the robot
JP2010064219A (en) * 2008-09-12 2010-03-25 Yaskawa Electric Corp Multi-joint robot
CN103189168A (en) * 2010-11-30 2013-07-03 川崎重工业株式会社 Conveyance robot
US9579804B2 (en) 2010-11-30 2017-02-28 Kawasaki Jukogyo Kabushiki Kaisha Transfer robot
CN102145488A (en) * 2011-02-14 2011-08-10 山东碧通通信技术有限公司 Flexible four-DOF (Degree of Freedom) mechanical arm

Also Published As

Publication number Publication date
TWI315243B (en) 2009-10-01
KR101120824B1 (en) 2012-03-23
JP5077406B2 (en) 2012-11-21
CN101360589B (en) 2011-02-09
TW200932456A (en) 2009-08-01
KR20080081196A (en) 2008-09-08
TWI315244B (en) 2009-10-01
KR20080082606A (en) 2008-09-11
CN101863015B (en) 2012-02-15
CN101844359B (en) 2013-06-05
KR100914386B1 (en) 2009-08-28
JP2010274413A (en) 2010-12-09
JP2008155361A (en) 2008-07-10
TW200817151A (en) 2008-04-16
TWI357375B (en) 2012-02-01
TW200930524A (en) 2009-07-16
CN101360589A (en) 2009-02-04
KR20080081197A (en) 2008-09-08
KR100914387B1 (en) 2009-08-28
CN101863015A (en) 2010-10-20
JP4596375B2 (en) 2010-12-08
CN101844359A (en) 2010-09-29
JP4168410B2 (en) 2008-10-22
JPWO2008007516A1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
WO2008007516A1 (en) Multijoint robot
KR100955405B1 (en) Multijoint robot and method for exchanging speed reducer of multijoint robot
JP3973006B2 (en) Double arm robot
JP4603604B2 (en) Robot system that attaches and detaches workpieces to machine tools by robot
JP4519824B2 (en) Double arm robot
JP2009072840A (en) Handling device
JPWO2009034795A1 (en) Substrate transfer robot, vacuum processing equipment
KR101182600B1 (en) Parallel-kinematic robotic manipulator with a large cylindrical workspace
JP2009533229A (en) Compact, high-precision computer-controlled multi-spindle machine tool
JP2006198768A (en) Double arm type robot
WO2008007517A1 (en) Multi-joint robot and wiring method
JP4168409B1 (en) Articulated robot
JP4228245B1 (en) Articulated robot
JP2010064219A (en) Multi-joint robot
JP4962880B2 (en) Articulated robot and manufacturing method of production equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001478.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2007548639

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745408

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087018493

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07745408

Country of ref document: EP

Kind code of ref document: A1