WO2008007517A1 - Multi-joint robot and wiring method - Google Patents

Multi-joint robot and wiring method Download PDF

Info

Publication number
WO2008007517A1
WO2008007517A1 PCT/JP2007/062156 JP2007062156W WO2008007517A1 WO 2008007517 A1 WO2008007517 A1 WO 2008007517A1 JP 2007062156 W JP2007062156 W JP 2007062156W WO 2008007517 A1 WO2008007517 A1 WO 2008007517A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
articulated robot
core cable
cable
connection hole
Prior art date
Application number
PCT/JP2007/062156
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Sueyoshi
Kentaro Tanaka
Tomohiro Matsuo
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to CN2007800255988A priority Critical patent/CN101484281B/en
Priority to KR1020087023056A priority patent/KR101108767B1/en
Priority to JP2008524741A priority patent/JP4911371B2/en
Publication of WO2008007517A1 publication Critical patent/WO2008007517A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0025Means for supplying energy to the end effector
    • B25J19/0029Means for supplying energy to the end effector arranged within the different robot elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance

Definitions

  • the present invention relates to an articulated robot for putting a thin plate-like workpiece such as a glass substrate for liquid crystal or a semiconductor wafer into and out of stock force.
  • the conventional articulated robot 1 includes two sets of arms 2 that are rotatably connected by joint portions 3, 4, and 5 to transmit a rotational force from a rotational drive source and perform a desired operation. Therefore, the rotation center axis of the joint portion 3 at the base end provided in the two sets of arms 2 is arranged vertically (or in the axial direction).
  • the articulated robot 1 includes a double-threaded arm 2, and one arm drive type device 2 is used for supplying and the other is used for taking out, and a workpiece 9 supplying operation and another workpiece 9 extracting operation are performed. It is possible to do it at the same time.
  • the conventional articulated robot 1 is configured such that the hand portion 8 that holds the workpiece 9 by the arm 2 can be linearly moved in the direction of taking out and supplying the workpiece 9 indicated by an arrow X in the figure.
  • the conventional articulated robot 1 includes a moving member 11 that moves the support member 10 provided with the arm 2 up and down (hereinafter referred to as the up-and-down moving mechanism 11) so that the vertical position of the arm 2 can be adjusted. It is said.
  • the pedestal 13 of the vertical movement mechanism 11 is rotatably provided so that the articulated robot 1 can be turned to change its direction.
  • the base 13 is mounted on the base in the direction indicated by the arrow Y in the figure, that is, in the direction orthogonal to the moving direction of the hand unit 8 and the vertical moving direction of the support member 10. It is provided so as to be movable with respect to 14, and the position of the vertical movement mechanism 11 can be adjusted.
  • the two sets of arms 2 provided in the conventional articulated robot 1 have, for example, a plurality of joint parts, that is, the articulated robot 1 is configured as a horizontal articulated robot.
  • the arm 2 includes a first arm 6 (hereinafter referred to as the upper arm 6), a second arm 7 connected to the upper arm 6 (hereinafter referred to as the forearm 7), and a work arm 9 connected to the forearm 7. And a hand portion 8 for holding the
  • the base end of the upper arm 6 is connected to the support member 10 via a drive shaft to constitute a rotatable joint 3 (hereinafter referred to as a shoulder joint 3).
  • This shoulder joint 3 becomes the joint 3 at the base end of the arm 2.
  • the distal end of the upper arm 6 and the proximal end of the forearm 7 are connected via a drive shaft to constitute a rotatable joint 4 (hereinafter referred to as an elbow joint 4).
  • the tip of the forearm 7 and the hand portion 8 are connected via a drive shaft to constitute a rotatable joint portion 5 (hereinafter referred to as a hand joint portion 5).
  • the shoulder joint part 3 is arranged so as to face in the vertical direction so that the rotation center axis is coaxial.
  • the arm 2 rotates the shoulder joint portion 3, the elbow joint portion 4 and the hand joint portion 5 by a rotation drive source (not shown) to move the hand portion 8 in the workpiece take-out and supply direction.
  • a rotation drive source not shown
  • the hand portion 8 is directed in the opposite direction, the extended position where the upper arm 6 and the forearm 7 are fully extended, and the contracted position where the upper arm 6 and the forearm 7 are folded. Extend and retract so that it moves linearly between
  • Patent Document 1 JP 2001-274218 (Pages 4-5, Fig. 1)
  • the conventional articulated robot stores a motor, a pulley, and the like at the base end of the arm, and wires a cable to a sensor arranged at the hand portion.
  • this cable Considering the bending radius of this cable, it has a thick structure in the vertical direction.
  • the interval between the arms cannot be reduced, there arises a problem that the interval for arranging the liquid crystal substrate and the semiconductor substrate in the stocker must be widened.
  • productivity is lowered because the number of panels and substrates that can be arranged in the stocker is reduced.
  • the present invention has been made in view of such a problem, and provides an articulated robot for taking in and out a thin plate-like workpiece such as a glass substrate for liquid crystal or a semiconductor wafer with improved productivity. With the goal.
  • the present invention is configured as follows.
  • the invention according to claim 1 is connected to the hand unit for placing a transported object and the hand unit, and includes at least two or more rotary joints, and expands and contracts the hand unit to move in one direction.
  • a multi-joint arm comprising a multi-joint arm disposed so as to face in the axial direction, a support member that connects the multi-joint arm and a moving mechanism that moves up and down, and a pedestal having a turning function provided in the moving mechanism.
  • a hollow connection hole is provided at the rotation center of at least one of the rotary joints.
  • the invention according to claim 2 is arranged such that a cable passes through the hollow connection hole.
  • the invention according to claim 3 is such that the single-core cable from which the coating of the multi-core cable is removed is wired so as to pass through at least one of the rotary joints.
  • the single-core cable from which the coating of the multicore cable is removed is wired so as to pass through at least one of the rotary joints through the hollow connection hole provided in the rotary joint. It is a thing.
  • the invention according to claim 5 is characterized in that at least one of the single-core cables from which the sheath of the multi-core cable is removed passes through the hollow connection holes provided in the rotary joints, and any of the hollow connection holes.
  • the single-core cable is wired in a fountain shape so that the single-core cable passes on the circumference when the single-core cable exits.
  • the single-core cable from which the sheath of the multi-core cable is removed is wired so as to pass through at least one of the rotary joints, and when the multi-core cable is changed to the single-core cable, the single-core cable is A bundling means for fixing the cable is provided.
  • the invention described in claim 7 is such that the bundling means is provided in the hollow portion of the hollow connecting hole.
  • the binding means has a substantially C-shaped cross section, and the C-shaped opening portion has a fastening portion such as a screw.
  • the invention according to claim 9 is the one in which the rotary joint provided in the support member is provided with a hollow connection hole, and the cable passing through the rotary joint is a single-core cable and wired through the hollow connection hole. It is.
  • the invention according to claim 10 is connected to a hand unit for placing a transported object and the hand unit,
  • a multi-joint arm provided with at least two or more rotary joints, extending and contracting to move the hand part in one direction, and arranged to face each other in the axial direction, and a movement to move up and down with the multi-joint arm
  • the axial thickness of the upper arm that is rotatably connected to the support member is The thickness is the same as or thinner than the thickness of the support member.
  • a hand unit for placing a transported object, the hand unit coupled to the hand unit, including at least two or more rotary joints, and the hand unit is expanded and contracted to move in one direction.
  • a multi-joint arm arranged to face in the axial direction; a support member that connects the multi-joint arm and a moving mechanism that moves up and down; and a pedestal that has a turning function provided in the moving mechanism.
  • a cable is wired through a hollow connection hole provided in the rotary joint.
  • the invention according to claim 12 is such that the cable passing through the rotary joint is wired in a single core cable.
  • the hollow joint hole is provided in the rotary joint, so that the cable is not rotationally connected and the cable is not twisted by the member. Furthermore, by routing the cable in the hollow connection hole, the cable can be routed without arranging a wiring path, and thus the size can be reduced. In addition, by making the cable passing through the hollow connection hole into a multicore cable force single core cable, the cable's radius of curvature can be reduced, and by removing unnecessary space, the vertical thickness of the rotary joint is reduced. can do.
  • the axial thickness of the upper arm rotatably connected to the support member is formed to be equal to or thinner than the thickness of the support member. Since the vertical thickness of the rotary joint can be reduced, the arm spacing can be narrowed, and a large number of liquid crystal substrates and semiconductor substrates can be placed in the stocker, improving productivity. It is.
  • FIG. 1 is a perspective view of an articulated robot showing an embodiment of the present invention.
  • FIG. 2 is a top view of an articulated robot showing an embodiment of the present invention.
  • FIG. 3 is a sectional side view of a rotary joint of an articulated robot showing an embodiment of the present invention.
  • FIG. 4 is a top view of a rotary joint of an articulated robot showing an embodiment of the present invention.
  • FIG. 1 is a perspective view of an articulated robot according to the present invention.
  • the articulated robot 1 of the present invention includes two sets of arms 2 that are rotatably connected by joint portions 3, 4, and 5 to transmit a rotational force from a rotational drive source and perform a desired operation.
  • the hand unit 8 that holds the workpiece 9 by the arm 2 is configured to be linearly movable in the direction of taking out the workpiece 9 indicated by an arrow X in the drawing.
  • the relationship between the rotation center axes of the base joints 3 provided in the two arms 2 is in the moving direction of the hand part 8 with respect to the base joints 3 of the upper arm.
  • Position the joint 3 at the base end of the lower arm so that it is displaced It is configured as follows.
  • the articulated robot 1 has a structure in which columns 12 divided into a plurality of blocks are connected in order to cope with an increase in stock force (not shown).
  • the articulated robot 1 having a height corresponding to the high floor is formed by sequentially connecting the column blocks 16.
  • four column blocks 16 are connected.
  • the arm 2 is provided, and a vertical movement member 11 for moving the support member 10 up and down is provided so that the vertical position of the arm 2 can be adjusted.
  • the pedestal 13 of the vertical movement mechanism 11 is rotatably provided so that the articulated robot 1 can be turned to change its direction.
  • the vertical movement mechanism 11 is disposed in the same direction as the hand movement direction, and the support member 10 protrudes from the vertical drive mechanism 11 in a direction perpendicular to the movement direction of the hand, and the joint portion at the base end of the arm Linked to 3.
  • the joint 3 at the base end of the arm 2 includes a motor 17 for turning the arm 2, a pulley 18 and a belt 19 connected to the motor 17, and the like. , Don't show the figure provided for the 8th!
  • the sensor cable 20 is routed through the hollow connection hole 23. In order to reduce the thickness of the joint 3 at the proximal end, it is necessary to bend the cable 20 when the sensor cable 20 enters the hollow connection hole 23 from the upper arm 6, but a plurality of single-core cables are bundled.
  • the coating of the multicore cable 201 is removed in the section from the inside of the hollow connection hole 23 to the upper arm 6 so that the bend radius is reduced in the present invention.
  • a single-core cable 202 is formed, and when the single-core cable 201 exits from the hollow connection hole 23 to the upper arm 6, it is wired in a fountain shape so that the single-core cable 202 passes on the circumference, and is wired to the upper arm 6. The At this time, when the single-core cable 202 is bundled into the multi-core cable 201, the single-core cable 201 can be bundled together by the bundling means 25.
  • the bundling means 25 is provided in the inside of the connecting hole 23 and the upper arm 6 and has a shape having a substantially C-shaped cross section and a C-shaped opening having a fastening portion such as a screw.
  • the radius of curvature of the sensor cable 20 can be reduced, the thickness of the joint 3 at the proximal end can be made thinner than the thickness of the support member 10, and the distance between the two arms can be reduced.
  • the force described for the wiring structure between the support member and the upper arm is not limited to this. Of course, the same method can be used between the upper arm and the forearm or between the forearm and the hand.
  • the cable passing through each joint is composed of a single-core cable, and the axial radius of the arm is reduced by reducing the radius of curvature of the cable. It is the part formed so that a space
  • the two sets of arms 2 provided in the articulated robot 1 of the present invention have, for example, a plurality of joint portions, that is, the articulated robot 1 is configured as a horizontal articulated robot.
  • the arm 2 in this embodiment has a structure similar to that of the conventional arm 2.
  • the base end of the upper arm 6 is connected to the support member 10 via a drive shaft to form a rotatable shoulder joint 3.
  • This shoulder joint 3 becomes the joint 3 at the base end of the arm 2.
  • the distal end of the upper arm 6 and the proximal end of the forearm 7 are connected via a drive shaft to constitute a rotatable elbow joint 4.
  • the tip of the forearm 7 and the hand portion 8 are connected via a drive shaft to constitute a rotatable hand joint portion 5.
  • the arm 2 rotates the shoulder joint 3, the elbow joint 4, and the hand joint 5 by a rotation drive source (not shown), and moves the hand 8 in the workpiece take-out and supply direction.
  • the hand portion 8 is directed in the opposite direction, the extended position where the upper arm 6 and the forearm 7 are fully extended, and the contracted position where the upper arm 6 and the forearm 7 are folded. Extends and retracts so that it moves linearly between.
  • the present invention can also be applied to a work of transporting a thick plate or box-shaped article.

Abstract

[PROBLEMS] To provide a multi-joint robot with increased productivity, used for loading and unloading thin sheet-like workpieces, such as glass substrates for liquid crystal and semiconductor wafers, into and from a stocker. [MEANS FOR SOLVING THE PROBLEMS] The multi-joint robot (1) has a hand part (8) for placing an object to be carried; multi-joint arms (1) connected to the hand part (8), having at least two or more rotating joints (3, 4, 5), extending/retracting so as to move the hand part (8) in one direction, and disposed so as to face each other in the axial direction; a support member (10) for connecting together the multi-joint arms (2) and a moving mechanism (11) moving in the vertical direction; and a pedestal (13) installed on the moving mechanism (11) and having a swing function. A connection hole (23) is formed in the rotation center of at least one of the rotating joints (3, 4, 5).

Description

明 細 書  Specification
多関節ロボットおよび配線方法  Articulated robot and wiring method
技術分野  Technical field
[0001] 本発明は、液晶用のガラス基板や半導体ウェハ等の薄板状のワークをストツ力に出 し入れする多関節ロボットに関する。  TECHNICAL FIELD [0001] The present invention relates to an articulated robot for putting a thin plate-like workpiece such as a glass substrate for liquid crystal or a semiconductor wafer into and out of stock force.
背景技術  Background art
[0002] 従来の多関節ロボットしては、肩関節部の回転中心と台座の回転中心とをオフセッ トすることで台座を回動させる際に多関節ロボットの旋回半径を小さくするものが提案 されている(例えば、特許文献 1参照)。  [0002] Conventional articulated robots have been proposed in which the turning radius of the articulated robot is reduced when the pedestal is rotated by offsetting the rotational center of the shoulder joint and the rotational center of the pedestal. (For example, refer to Patent Document 1).
従来の多関節ロボット 1は、図 5に示すように関節部 3, 4, 5により回転可能に連結 されて回転駆動源よる回転力を伝達し所望の動作をさせるアーム 2を二組備えてなる もので、二組のアーム 2に設けられる基端の関節部 3の回転中心軸を上下 (または軸 方向)に配置するように構成されている。  As shown in FIG. 5, the conventional articulated robot 1 includes two sets of arms 2 that are rotatably connected by joint portions 3, 4, and 5 to transmit a rotational force from a rotational drive source and perform a desired operation. Therefore, the rotation center axis of the joint portion 3 at the base end provided in the two sets of arms 2 is arranged vertically (or in the axial direction).
[0003] 多関節ロボット 1は、二糸且のアーム 2を備え、一方のアーム駆動型装置 2を供給用、 他方を取り出し用とし、ワーク 9の供給動作と別のワーク 9の取り出し動作とを同時に 行うことを可能としている。 [0003] The articulated robot 1 includes a double-threaded arm 2, and one arm drive type device 2 is used for supplying and the other is used for taking out, and a workpiece 9 supplying operation and another workpiece 9 extracting operation are performed. It is possible to do it at the same time.
また、従来の多関節ロボット 1は、アーム 2によりワーク 9を保持するハンド部 8は図 中矢印 Xで示すワーク 9の取り出し '供給方向に直線移動可能であるように構成され る。  Further, the conventional articulated robot 1 is configured such that the hand portion 8 that holds the workpiece 9 by the arm 2 can be linearly moved in the direction of taking out and supplying the workpiece 9 indicated by an arrow X in the figure.
また、従来の多関節ロボット 1は、アーム 2が設けられている支持部材 10を上下に 移動させる移動部材 11 (以下、上下移動機構 11と呼ぶ)を備えて、アーム 2の上下 位置を調整可能としている。また、上下移動機構 11の台座 13は回動可能に設けら れ、多関節ロボット 1を旋回して向きを変えられるようにしている。  In addition, the conventional articulated robot 1 includes a moving member 11 that moves the support member 10 provided with the arm 2 up and down (hereinafter referred to as the up-and-down moving mechanism 11) so that the vertical position of the arm 2 can be adjusted. It is said. The pedestal 13 of the vertical movement mechanism 11 is rotatably provided so that the articulated robot 1 can be turned to change its direction.
さらに、本実施形態の多関節ロボット 1では、図中矢印 Yで示す方向、即ちハンド部 8の移動方向と支持部材 10の上下移動方向とのそれぞれに直交する方向に、台座 1 3を基台 14に対して移動可能に設けて上下移動機構 11の位置を調整可能としてい る。 また、従来の多関節ロボット 1に備えられる二組のアーム 2は、例えば、複数の関節 部を有するものであり、即ち多関節ロボット 1は、水平多関節型ロボットとして構成され る。本実施形態でのアーム 2は、第一アーム 6 (以下、上腕 6と呼ぶ)と、上腕 6と連結 される第二アーム 7 (以下、前腕 7と呼ぶ)と、前腕 7と連結されワーク 9を保持するハ ンド部 8とを備える。 Further, in the articulated robot 1 of the present embodiment, the base 13 is mounted on the base in the direction indicated by the arrow Y in the figure, that is, in the direction orthogonal to the moving direction of the hand unit 8 and the vertical moving direction of the support member 10. It is provided so as to be movable with respect to 14, and the position of the vertical movement mechanism 11 can be adjusted. Further, the two sets of arms 2 provided in the conventional articulated robot 1 have, for example, a plurality of joint parts, that is, the articulated robot 1 is configured as a horizontal articulated robot. In this embodiment, the arm 2 includes a first arm 6 (hereinafter referred to as the upper arm 6), a second arm 7 connected to the upper arm 6 (hereinafter referred to as the forearm 7), and a work arm 9 connected to the forearm 7. And a hand portion 8 for holding the
上腕 6の基端は、支持部材 10に駆動軸を介して連結されて、回動可能な関節部 3 ( 以下、肩関節部 3と呼ぶ)を構成する。この肩関節部 3がアーム 2の基端の関節部 3と なる。また、上腕 6の先端と前腕 7の基端とが駆動軸を介して連結されて、回動可能 な関節部 4 (以下、肘関節部 4と呼ぶ)を構成する。また、前腕 7の先端とハンド部 8と が駆動軸を介して連結されて、回動可能な関節部 5 (以下、ハンド関節部 5と呼ぶ)を 構成する。肩関節部 3の回転中心軸が同軸上であるように、上下方向に対面するよう に配置する。  The base end of the upper arm 6 is connected to the support member 10 via a drive shaft to constitute a rotatable joint 3 (hereinafter referred to as a shoulder joint 3). This shoulder joint 3 becomes the joint 3 at the base end of the arm 2. Further, the distal end of the upper arm 6 and the proximal end of the forearm 7 are connected via a drive shaft to constitute a rotatable joint 4 (hereinafter referred to as an elbow joint 4). Further, the tip of the forearm 7 and the hand portion 8 are connected via a drive shaft to constitute a rotatable joint portion 5 (hereinafter referred to as a hand joint portion 5). The shoulder joint part 3 is arranged so as to face in the vertical direction so that the rotation center axis is coaxial.
アーム 2は、図示しない回転駆動源により肩関節部 3と肘関節部 4とハンド関節部 5 とを回動させて、ハンド部 8をワーク取り出し '供給方向に移動させる。この際、アーム 2では、その機構上、ハンド部 8がー方向を向いて、上腕 6と前腕 7とを伸ばしきつた 伸長位置と、上腕 6と前腕 7とを折り畳んだ状態とした縮み位置との間を直線移動す るように、伸縮動作を行う。  The arm 2 rotates the shoulder joint portion 3, the elbow joint portion 4 and the hand joint portion 5 by a rotation drive source (not shown) to move the hand portion 8 in the workpiece take-out and supply direction. At this time, in the arm 2, due to the mechanism, the hand portion 8 is directed in the opposite direction, the extended position where the upper arm 6 and the forearm 7 are fully extended, and the contracted position where the upper arm 6 and the forearm 7 are folded. Extend and retract so that it moves linearly between
特許文献 1 :特開 2001— 274218 (第 4頁〜 5頁、図 1) Patent Document 1: JP 2001-274218 (Pages 4-5, Fig. 1)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
液晶用のガラス基板や半導体ウェハ等の薄板状のワークをストツ力に出し入れする 多関節ロボットは大型化が進み、処理する基板の枚数も増えるとともに短時間で処理 することが求められている。このためロボットには、基板を配置するストツ力が天井に届 くほどの高さになるまで設備自体が大型化するにも関わらず、ストツ力にはより多くの 基板を配置させ、処理することが望まれている。また、液晶基板や半導体ウェハの生 産枚数は、年々多くなつており、生産性を上げるためにロボットには、搬送するスルー プットが求められている。し力しながら、ロボットは機械部品を含んでいるためにメンテ ナンスが必要であり、メンテナンス時間もスループットに関わる大きなファクタとなって おり、容易にメンテナンスできることが望まれている。 Articulated robots that take in and out thin plate-like workpieces such as glass substrates for liquid crystals and semiconductor wafers in stock force are required to be processed in a short time as the number of substrates to be processed increases and the number of substrates to be processed increases. For this reason, robots must arrange and process more substrates for the stock force even though the equipment itself becomes larger until the stock force for placing the substrate reaches a height that reaches the ceiling. Is desired. In addition, the number of liquid crystal substrates and semiconductor wafers produced is increasing year by year, and robots are required to have throughput to carry them in order to increase productivity. However, since robots contain machine parts, maintenance is required, and maintenance time is a major factor related to throughput. Therefore, it is desired that maintenance can be easily performed.
し力しながら、従来の多関節ロボットは、アーム基端にモータやプーリ等を格納し 、ハンド部に配置したセンサへケーブルを配線する。このケーブルの曲げ半径を考 慮して、上下方向に厚い構造となっている。このために、アームの間隔を狭くすること ができないために、ストッカ内の液晶基板や半導体基板を配置する間隔を広く取らざ るを得なる問題が生じていた。つまり、ストッカ内に配置できるパネルや基板の枚数が 少なくなることから生産性が低下すると言う問題が生じていた。これを回避するために 、上下移動機構で出し入れする時にアームの高さを変えることが考えられる力 この 場合は、アームを上下に移動させるシーケンスを繰り返すために時間がかかり、作業 時間が長くなる等の問題が生じていた。  However, the conventional articulated robot stores a motor, a pulley, and the like at the base end of the arm, and wires a cable to a sensor arranged at the hand portion. Considering the bending radius of this cable, it has a thick structure in the vertical direction. For this reason, since the interval between the arms cannot be reduced, there arises a problem that the interval for arranging the liquid crystal substrate and the semiconductor substrate in the stocker must be widened. In other words, there has been a problem that productivity is lowered because the number of panels and substrates that can be arranged in the stocker is reduced. To avoid this, it is possible to change the height of the arm when moving it in and out with the vertical movement mechanism. In this case, it takes time to repeat the sequence of moving the arm up and down, and the work time becomes long. The problem was occurring.
本発明はこのような問題点に鑑みてなされたものであり、生産性を向上させた液晶 用のガラス基板や半導体ウェハ等の薄板状のワークをストツ力に出し入れする多関節 ロボットを提供することを目的とする。  The present invention has been made in view of such a problem, and provides an articulated robot for taking in and out a thin plate-like workpiece such as a glass substrate for liquid crystal or a semiconductor wafer with improved productivity. With the goal.
課題を解決するための手段 Means for solving the problem
上記問題を解決するため、本発明は、次のように構成したものである。  In order to solve the above problems, the present invention is configured as follows.
請求項 1に記載の発明は、搬送物を載置するハンド部と、前記ハンド部と連結され 、少なくとも 2つ以上の回転関節を備え、前記ハンド部を 1方向に移動するように伸縮 し、軸方向に対向するように配置された多関節アームと、前記多関節アームと上下に 移動する移動機構とを連結する支持部材と、前記移動機構に備えられた旋回機能を 有する台座とからなる多関節ロボットにおいて、少なくとも 1つの前記回転関節の回転 中心に中空連結孔を備えたものである。  The invention according to claim 1 is connected to the hand unit for placing a transported object and the hand unit, and includes at least two or more rotary joints, and expands and contracts the hand unit to move in one direction. A multi-joint arm comprising a multi-joint arm disposed so as to face in the axial direction, a support member that connects the multi-joint arm and a moving mechanism that moves up and down, and a pedestal having a turning function provided in the moving mechanism. In the joint robot, a hollow connection hole is provided at the rotation center of at least one of the rotary joints.
請求項 2に記載の発明は、前記中空連結孔にはケーブルが通過するように配置さ れたものである。  The invention according to claim 2 is arranged such that a cable passes through the hollow connection hole.
請求項 3に記載の発明は、多芯ケーブルの被覆を除去した単芯ケーブルが少なく とも 1つの前記回転関節を通過するように配線されたものである。  The invention according to claim 3 is such that the single-core cable from which the coating of the multi-core cable is removed is wired so as to pass through at least one of the rotary joints.
請求項 4に記載の発明は、多芯ケーブルの被覆を除去した単芯ケーブルが少なく とも 1つの前記回転関節を、前記回転関節に備えられた中空連結孔を通って、通過 するように配線されたものである。 請求項 5に記載の発明は、多芯ケーブルの被覆を除去した単芯ケーブルが少なく とも 1つの前記回転関節を、前記回転関節に備えられた中空連結孔を通って、前記 中空連結孔のいずれか一方の端面で、前記単芯ケーブルが出る際に円周上に単芯 ケーブルが通過するように噴水状に配線されたものである。 In the invention according to claim 4, the single-core cable from which the coating of the multicore cable is removed is wired so as to pass through at least one of the rotary joints through the hollow connection hole provided in the rotary joint. It is a thing. The invention according to claim 5 is characterized in that at least one of the single-core cables from which the sheath of the multi-core cable is removed passes through the hollow connection holes provided in the rotary joints, and any of the hollow connection holes. At one of the end faces, the single-core cable is wired in a fountain shape so that the single-core cable passes on the circumference when the single-core cable exits.
請求項 6に記載の発明は、多芯ケーブルの被覆を除去した単芯ケーブルが少なく とも 1つの前記回転関節を通過するように配線され、多芯ケーブルから単芯ケーブル にする際に、単芯ケーブルを固定する結束手段を備えたものである。  In the invention of claim 6, the single-core cable from which the sheath of the multi-core cable is removed is wired so as to pass through at least one of the rotary joints, and when the multi-core cable is changed to the single-core cable, the single-core cable is A bundling means for fixing the cable is provided.
請求項 7に記載の発明は、前記結束手段が中空連結孔の中空部に備えられたもの である。  The invention described in claim 7 is such that the bundling means is provided in the hollow portion of the hollow connecting hole.
請求項 8に記載の発明は、前記結束手段の断面が略 C型形状で形成され、 C型開 口部をねじ等による締結部を有するものである。  In the invention according to claim 8, the binding means has a substantially C-shaped cross section, and the C-shaped opening portion has a fastening portion such as a screw.
請求項 9に記載の発明は、前記支持部材に備えられた前記回転関節に中空連結 孔を備え、前記回転関節を通過するケーブルが単芯ケーブルからなり、前記中空連 結孔を通して配線されたものである。  The invention according to claim 9 is the one in which the rotary joint provided in the support member is provided with a hollow connection hole, and the cable passing through the rotary joint is a single-core cable and wired through the hollow connection hole. It is.
請求項 10に記載の発明は、搬送物を載置するハンド部と、前記ハンド部と連結さ れ、  The invention according to claim 10 is connected to a hand unit for placing a transported object and the hand unit,
少なくとも 2つ以上の回転関節を備え、前記ハンド部を 1方向に移動するように伸縮し 、軸方向に対向するように配置された多関節アームと、前記多関節アームと上下に移 動する移動機構とを連結する支持部材と、前記移動機構に備えられた旋回機能を有 する台座とからなる多関節ロボットにおいて、前記支持部材に回動自在に連結された 上腕の軸方向の厚さが前記支持部材の厚さと同じ厚さまたはそれよりも薄く形成され たものである。 A multi-joint arm provided with at least two or more rotary joints, extending and contracting to move the hand part in one direction, and arranged to face each other in the axial direction, and a movement to move up and down with the multi-joint arm In an articulated robot comprising a support member that connects a mechanism and a pedestal having a turning function provided in the moving mechanism, the axial thickness of the upper arm that is rotatably connected to the support member is The thickness is the same as or thinner than the thickness of the support member.
請求項 11に記載の発明は、搬送物を載置するハンド部と、前記ハンド部と連結さ れ、少なくとも 2つ以上の回転関節を備え、前記ハンド部を 1方向に移動するように伸 縮し、軸方向に対向するように配置された多関節アームと、前記多関節アームと上下 に移動する移動機構とを連結する支持部材と、前記移動機構に備えられた旋回機能 を有する台座とからなる多関節ロボットの配線方法において、前記回転関節に設けら れた中空連結孔を通じてケーブルを配線するものである。 請求項 12に記載の発明は、前記回転関節を通過する前記ケーブルが単芯ケープ ルで配線されたものである。 According to an eleventh aspect of the present invention, there is provided a hand unit for placing a transported object, the hand unit coupled to the hand unit, including at least two or more rotary joints, and the hand unit is expanded and contracted to move in one direction. A multi-joint arm arranged to face in the axial direction; a support member that connects the multi-joint arm and a moving mechanism that moves up and down; and a pedestal that has a turning function provided in the moving mechanism. In this multi-joint robot wiring method, a cable is wired through a hollow connection hole provided in the rotary joint. The invention according to claim 12 is such that the cable passing through the rotary joint is wired in a single core cable.
発明の効果  The invention's effect
[0006] 請求項 1から 9および請求項 11と 12に記載の発明によると、回転関節内に中空連 結孔を備えることで、回転連結され部材によりケーブルがねじられることなくなる。さら に、この中空連結孔内にケーブルを配線することで、配線用の経路を配置することな くケーブルを配線できるので小型化できる。また、中空連結孔内を通過するケーブル を多芯ケーブル力 単芯ケーブルにすることにより、ケーブルの曲陸半径が小さくで き、不要な空間を取り除くことで回転関節の上下方向の厚さを薄くすることができる。 また、請求項 10に記載の発明によると、支持部材に回動自在に連結された上腕の 軸方向の厚さが支持部材の厚さと同じ厚さまたはそれよりも薄く形成されたものであ るから、回転関節の上下方向の厚さを薄くできるために、アームの間隔を狭くすること ができ、ストッカ内の液晶基板や半導体基板を多く配置することができることから生産 性を向上することが可能である。  [0006] According to the inventions of claims 1 to 9 and claims 11 and 12, the hollow joint hole is provided in the rotary joint, so that the cable is not rotationally connected and the cable is not twisted by the member. Furthermore, by routing the cable in the hollow connection hole, the cable can be routed without arranging a wiring path, and thus the size can be reduced. In addition, by making the cable passing through the hollow connection hole into a multicore cable force single core cable, the cable's radius of curvature can be reduced, and by removing unnecessary space, the vertical thickness of the rotary joint is reduced. can do. According to the invention of claim 10, the axial thickness of the upper arm rotatably connected to the support member is formed to be equal to or thinner than the thickness of the support member. Since the vertical thickness of the rotary joint can be reduced, the arm spacing can be narrowed, and a large number of liquid crystal substrates and semiconductor substrates can be placed in the stocker, improving productivity. It is.
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1]本発明の実施例を示す多関節ロボットの斜視図 FIG. 1 is a perspective view of an articulated robot showing an embodiment of the present invention.
[図 2]本発明の実施例を示す多関節ロボットの上面図  FIG. 2 is a top view of an articulated robot showing an embodiment of the present invention.
[図 3]本発明の実施例を示す多関節ロボットの回転関節の側断面図  FIG. 3 is a sectional side view of a rotary joint of an articulated robot showing an embodiment of the present invention.
[図 4]本発明の実施例を示す多関節ロボットの回転関節の上面図  FIG. 4 is a top view of a rotary joint of an articulated robot showing an embodiment of the present invention.
[図 5]従来の多関節ロボットの斜視図  [Figure 5] Perspective view of a conventional articulated robot
符号の説明  Explanation of symbols
[0008] 1 多関節ロボット [0008] 1 Articulated robot
2 アーム  2 arms
21 上アーム  21 Upper arm
22 下アーム  22 Lower arm
3 肩関節部  3 Shoulder joint
4 肘関節部  4 Elbow joint
5 ハンド関節部 7 前腕 5 Hand joint 7 Forearm
8 ハンド部  8 Hand part
9 ワーク  9 Work
10 支持部材  10 Support member
11 上下移動機構  11 Vertical movement mechanism
12 コラム  12 columns
13 台座  13 pedestal
14 基台  14 base
16 =3ラムブロック  16 = 3 ram blocks
17 モータ  17 Motor
18 プーリ  18 pulley
19 ベノレト  19 Benoleto
20 ケーブル  20 cable
201 多芯ケーブル  201 multi-core cable
202 単芯ケーブル  202 single core cable
23 中空連結孔  23 Hollow connection hole
24 結束手段  24 Bundling means
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施例 1  Example 1
[0010] 図 1は、本発明の多関節ロボットの斜視図である。  FIG. 1 is a perspective view of an articulated robot according to the present invention.
本発明の多関節ロボット 1は、関節部 3, 4, 5により回転可能に連結されて回転駆 動源よる回転力を伝達し所望の動作をさせるアーム 2を二組備えている。また、ァー ム 2によりワーク 9を保持するハンド部 8は図中矢印 Xで示すワーク 9の取り出し '供給 方向に直線移動可能であるように構成される。また、二組のアーム 2に設けられる基 端の関節部 3の回転中心軸の関係は、図 2に示すように、上アームの基端の関節部 3 に対してハンド部 8の移動方向にずれるように下アームの基端の関節部 3が配置する ように構成されている。 The articulated robot 1 of the present invention includes two sets of arms 2 that are rotatably connected by joint portions 3, 4, and 5 to transmit a rotational force from a rotational drive source and perform a desired operation. Further, the hand unit 8 that holds the workpiece 9 by the arm 2 is configured to be linearly movable in the direction of taking out the workpiece 9 indicated by an arrow X in the drawing. In addition, as shown in FIG. 2, the relationship between the rotation center axes of the base joints 3 provided in the two arms 2 is in the moving direction of the hand part 8 with respect to the base joints 3 of the upper arm. Position the joint 3 at the base end of the lower arm so that it is displaced It is configured as follows.
また、多関節ロボット 1は、図示しないストッ力の高層化に対応するために複数ブロッ クに分けられたコラム 12が連結された構造となっている。このように各コラムブロック 1 6を順次連結することで高層に対応した高さをもつ多関節ロボット 1を形成している。 本実施例では、 4つのコラムブロック 16が連結された構造となっている。  Further, the articulated robot 1 has a structure in which columns 12 divided into a plurality of blocks are connected in order to cope with an increase in stock force (not shown). Thus, the articulated robot 1 having a height corresponding to the high floor is formed by sequentially connecting the column blocks 16. In this embodiment, four column blocks 16 are connected.
また、アーム 2が設けられて 、る支持部材 10を上下に移動させる上下移動部材 11 を備えて、アーム 2の上下位置を調整可能としている。また、上下移動機構 11の台座 13は回動可能に設けられ、多関節ロボット 1を旋回して向きを変えられるようにしてい る。ここで、上下移動機構 11は、ハンドの移動方向と同方向に配置され、支持部材 1 0は上下駆動機構 11からハンドの移動方向に対して直交する方向に突出し、アーム の基端の関節部 3に連結されている。  Further, the arm 2 is provided, and a vertical movement member 11 for moving the support member 10 up and down is provided so that the vertical position of the arm 2 can be adjusted. The pedestal 13 of the vertical movement mechanism 11 is rotatably provided so that the articulated robot 1 can be turned to change its direction. Here, the vertical movement mechanism 11 is disposed in the same direction as the hand movement direction, and the support member 10 protrudes from the vertical drive mechanism 11 in a direction perpendicular to the movement direction of the hand, and the joint portion at the base end of the arm Linked to 3.
次に、アームの詳細な構造について説明する。アーム 2の基端の関節部 3には、図 3および図 4に示すようにアーム 2を旋回するモータ 17とこのモータ 17に連結するプ ーリ 18およびベルト 19等が構成されるとともに、ノ、ンド 8に備えられた図示しな!、セン サのケーブル 20が中空連結孔 23を通じで配線されている。基端の関節部 3の厚さを 薄くするためには、センサのケーブル 20が上腕 6から中空連結孔 23に入る際にケー ブル 20を曲げる必要があるが、単芯ケーブルを複数本束ねた多芯ケーブル 201を 曲げると曲率半径が大きくなるために、本発明では曲げ半径を小さくする構造になる ように、中空連結孔 23内部から上腕 6までの区間で多芯ケーブル 201の被覆を除去 した単芯ケーブル 202に形成し、中空連結孔 23から上腕 6へ単芯ケーブル 201が出 る際に円周上に単芯ケーブル 202が通過するように噴水状に配線され、上腕 6へ配 線される。この際、単芯ケーブル 202から多芯ケーブル 201にまとめられる際には各 々、結束手段 25により単芯ケーブル 201をまとめられるようになつている。本実施例 では、結束手段 25は、連結孔 23内部と上腕 6に設けられており、断面略 C型形状で C型開口部をねじ等による締結部を有する形状となっている。このような構造により、 センサのケーブル 20の曲率半径が小さくでき、基端の関節部 3の厚さを支持部材 10 の厚さよりも薄くでき、 2つのアームの間隔を狭くすること可能となっている。また、本 実施例では、支持部材と上腕間の配線構造について述べた力 これに限られるもの ではなぐ上腕と前腕間や前腕とハンド間でも同様の方法により行うことができること は当然である。 Next, the detailed structure of the arm will be described. As shown in FIGS. 3 and 4, the joint 3 at the base end of the arm 2 includes a motor 17 for turning the arm 2, a pulley 18 and a belt 19 connected to the motor 17, and the like. , Don't show the figure provided for the 8th! The sensor cable 20 is routed through the hollow connection hole 23. In order to reduce the thickness of the joint 3 at the proximal end, it is necessary to bend the cable 20 when the sensor cable 20 enters the hollow connection hole 23 from the upper arm 6, but a plurality of single-core cables are bundled. Since the radius of curvature increases when the multicore cable 201 is bent, the coating of the multicore cable 201 is removed in the section from the inside of the hollow connection hole 23 to the upper arm 6 so that the bend radius is reduced in the present invention. A single-core cable 202 is formed, and when the single-core cable 201 exits from the hollow connection hole 23 to the upper arm 6, it is wired in a fountain shape so that the single-core cable 202 passes on the circumference, and is wired to the upper arm 6. The At this time, when the single-core cable 202 is bundled into the multi-core cable 201, the single-core cable 201 can be bundled together by the bundling means 25. In this embodiment, the bundling means 25 is provided in the inside of the connecting hole 23 and the upper arm 6 and has a shape having a substantially C-shaped cross section and a C-shaped opening having a fastening portion such as a screw. With this structure, the radius of curvature of the sensor cable 20 can be reduced, the thickness of the joint 3 at the proximal end can be made thinner than the thickness of the support member 10, and the distance between the two arms can be reduced. Yes. In this embodiment, the force described for the wiring structure between the support member and the upper arm is not limited to this. Of course, the same method can be used between the upper arm and the forearm or between the forearm and the hand.
本発明が特許文献 1と異なる部分は、各関節を通るケーブルが単芯ケーブルで構 成され、ケーブルの曲率半径が小さくなることによりアームの軸方向の厚さが薄くなる ことで 2つのアームの間隔が狭く配置されるように形成された部分である。  The difference between the present invention and Patent Document 1 is that the cable passing through each joint is composed of a single-core cable, and the axial radius of the arm is reduced by reducing the radius of curvature of the cable. It is the part formed so that a space | interval may be arrange | positioned narrowly.
[0012] 次に、動作について説明する。本発明の多関節ロボット 1に備えられる二組のァー ム 2は、例えば、複数の関節部を有するものであり、即ち多関節ロボット 1は、水平多 関節型ロボットとして構成される。本実施形態でのアーム 2は、従来のアーム 2の構造 と同様な構造を備えている。 Next, the operation will be described. The two sets of arms 2 provided in the articulated robot 1 of the present invention have, for example, a plurality of joint portions, that is, the articulated robot 1 is configured as a horizontal articulated robot. The arm 2 in this embodiment has a structure similar to that of the conventional arm 2.
上腕 6の基端は、支持部材 10に駆動軸を介して連結されて、回動可能な肩関節部 3 を構成する。この肩関節部 3がアーム 2の基端の関節部 3となる。また、上腕 6の先端 と前腕 7の基端とが駆動軸を介して連結されて、回動可能な肘関節部 4を構成する。 また、前腕 7の先端とハンド部 8とが駆動軸を介して連結されて、回動可能なハンド関 節部 5を構成する。  The base end of the upper arm 6 is connected to the support member 10 via a drive shaft to form a rotatable shoulder joint 3. This shoulder joint 3 becomes the joint 3 at the base end of the arm 2. Further, the distal end of the upper arm 6 and the proximal end of the forearm 7 are connected via a drive shaft to constitute a rotatable elbow joint 4. Further, the tip of the forearm 7 and the hand portion 8 are connected via a drive shaft to constitute a rotatable hand joint portion 5.
[0013] アーム 2は、図示しない回転駆動源により肩関節部 3と肘関節部 4とハンド関節部 5 とを回動させて、ハンド部 8をワーク取り出し '供給方向に移動させる。この際、アーム 2では、その機構上、ハンド部 8がー方向を向いて、上腕 6と前腕 7とを伸ばしきつた 伸長位置と、上腕 6と前腕 7とを折り畳んだ状態とした縮み位置との間を直線移動す るように、伸縮動作を行なう。  [0013] The arm 2 rotates the shoulder joint 3, the elbow joint 4, and the hand joint 5 by a rotation drive source (not shown), and moves the hand 8 in the workpiece take-out and supply direction. At this time, in the arm 2, due to the mechanism, the hand portion 8 is directed in the opposite direction, the extended position where the upper arm 6 and the forearm 7 are fully extended, and the contracted position where the upper arm 6 and the forearm 7 are folded. Extends and retracts so that it moves linearly between.
産業上の利用可能性  Industrial applicability
[0014] このようなハンド部に物品を載置して搬送することによって物品の入れ替え作業を することができるので、厚板や箱状の物品の搬送作業という用途にも適用できる。  [0014] Since the article replacement work can be performed by placing the article on such a hand portion and transporting it, the present invention can also be applied to a work of transporting a thick plate or box-shaped article.

Claims

請求の範囲 The scope of the claims
[1] 搬送物を載置するハンド部と、前記ハンド部と連結され、少なくとも 2つ以上の回転 関節を備え、前記ハンド部を 1方向に移動するように伸縮し、軸方向に対向するよう に配置された多関節アームと、前記多関節アームと上下に移動する移動機構とを連 結する支持部材と、前記移動機構に備えられた旋回機能を有する台座とからなる多 関節ロボットにおいて、  [1] A hand unit for placing a transported object and the hand unit, which includes at least two rotary joints, expands and contracts so that the hand unit moves in one direction, and faces the axial direction A multi-joint robot comprising: a multi-joint arm disposed on the base; a support member that connects the multi-joint arm to a moving mechanism that moves up and down; and a pedestal having a turning function provided in the moving mechanism.
少なくとも 1つの前記回転関節に中空連結孔を備えたことを特徴とする多関節ロボ ッ卜。  An articulated robot comprising a hollow connection hole in at least one of the rotary joints.
[2] 前記中空連結孔にはケーブルが通過するように配置されたことを特徴とする請求項 [2] The hollow connection hole is arranged so that a cable passes therethrough.
1に記載の多関節ロボット。 The articulated robot according to 1.
[3] 多芯ケーブルの被覆を除去した単芯ケーブルが少なくとも 1つの前記回転関節を 通過するように配線されたことを特徴とする請求項 1に記載の多関節ロボット。 [3] The multi-joint robot according to claim 1, wherein the single-core cable from which the sheath of the multi-core cable is removed is wired so as to pass through at least one of the rotary joints.
[4] 多芯ケーブルの被覆を除去した単芯ケーブルが少なくとも 1つの前記回転関節を、 前記回転関節に備えられた中空連結孔を通って、通過するように配線されたことを特 徴とする請求項 1に記載の多関節ロボット。 [4] The single-core cable from which the sheath of the multicore cable has been removed is wired so as to pass through at least one of the rotary joints through a hollow connection hole provided in the rotary joint. The articulated robot according to claim 1.
[5] 多芯ケーブルの被覆を除去した単芯ケーブルが少なくとも 1つの前記回転関節を、 前記回転関節に備えられた中空連結孔を通って、前記中空連結孔のいずれか一方 の端面で、前記単芯ケーブルが出る際に円周上に単芯ケーブルが通過するように噴 水状に配線されたことを特徴とする請求項 1に記載の多関節ロボット。 [5] The single-core cable from which the coating of the multicore cable has been removed passes through at least one of the rotary joints through the hollow connection hole provided in the rotary joint, and at one end surface of the hollow connection hole, 2. The articulated robot according to claim 1, wherein the multi-joint robot is wired in a fountain shape so that the single-core cable passes on the circumference when the single-core cable comes out.
[6] 多芯ケーブルの被覆を除去した単芯ケーブルが少なくとも 1つの前記回転関節を 通過するように配線され、多芯ケーブルから単芯ケーブルにする際に、単芯ケープ ルを固定する結束手段を備えたことを特徴とする請求項 1に記載の多関節ロボット。 [6] Bundling means for fixing the single-core cable when the single-core cable from which the coating of the multi-core cable has been removed is wired so as to pass through at least one of the rotary joints and is changed from the multi-core cable to the single-core cable. The articulated robot according to claim 1, further comprising:
[7] 前記結束手段が中空連結孔の中空部に備えられたことを特徴とする請求項 6に記 載の多関節ロボット。 7. The articulated robot according to claim 6, wherein the binding means is provided in a hollow portion of a hollow connection hole.
[8] 前記結束手段の断面が略 C型形状で形成され、 C型開口部をねじ等による締結部 を有することを特徴とする請求項 6に記載の多関節ロボット。  8. The articulated robot according to claim 6, wherein the binding means has a substantially C-shaped cross section, and the C-shaped opening has a fastening portion such as a screw.
[9] 前記支持部材に備えられた前記回転関節に中空連結孔を備え、前記回転関節を 通過するケーブルが単芯ケーブル力 なり、前記中空連結孔を通して配線されたこと を特徴とする請求項 1に記載の多関節ロボット。 [9] The rotary joint provided in the support member has a hollow connection hole, and a cable passing through the rotary joint becomes a single-core cable force and is wired through the hollow connection hole. The articulated robot according to claim 1, wherein:
[10] 搬送物を載置するハンド部と、前記ハンド部と連結され、少なくとも 2つ以上の回転 関節を備え、前記ハンド部を 1方向に移動するように伸縮し、軸方向に対向するよう に配置された多関節アームと、前記多関節アームと上下に移動する移動機構とを連 結する支持部材と、前記移動機構に備えられた旋回機能を有する台座とからなる多 関節ロボットにおいて、  [10] A hand unit for placing a transported object and the hand unit, which includes at least two or more rotary joints, expands and contracts so that the hand unit moves in one direction, and faces the axial direction. A multi-joint robot comprising: a multi-joint arm disposed on the base; a support member that connects the multi-joint arm to a moving mechanism that moves up and down; and a pedestal having a turning function provided in the moving mechanism.
前記支持部材に回動自在に連結された上腕の軸方向の厚さが前記支持部材の厚 さと同じ厚さまたはそれよりも薄く形成されたことを特徴とする多関節ロボット。  An articulated robot characterized in that an axial thickness of an upper arm that is rotatably connected to the support member is formed to be equal to or thinner than a thickness of the support member.
[11] 搬送物を載置するハンド部と、前記ハンド部と連結され、少なくとも 2つ以上の回転 関節を備え、前記ハンド部を 1方向に移動するように伸縮し、軸方向に対向するよう に配置された多関節アームと、前記多関節アームと上下に移動する移動機構とを連 結する支持部材と、前記移動機構に備えられた旋回機能を有する台座とからなる多 関節ロボットのケーブル配線方法にぉ 、て、  [11] A hand unit for placing a transported object, coupled to the hand unit, including at least two or more rotary joints, extending and contracting the hand unit to move in one direction, and facing the axial direction Cabling for an articulated robot comprising: a multi-joint arm arranged on the base; a support member that connects the articulated arm to a moving mechanism that moves up and down; and a pedestal having a turning function provided in the moving mechanism.ぉ to the way
前記回転関節に設けられた中空連結孔を通じてケーブルを配線することを特徴と する多関節ロボットの配線方法。  A wiring method for an articulated robot, wherein a cable is routed through a hollow connection hole provided in the rotary joint.
[12] 前記回転関節を通過する前記ケーブルが単芯ケーブルで配線されたことを特徴と する多関節ロボットの配線方法。  [12] A wiring method for an articulated robot, wherein the cable passing through the rotary joint is wired with a single-core cable.
PCT/JP2007/062156 2006-07-11 2007-06-15 Multi-joint robot and wiring method WO2008007517A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800255988A CN101484281B (en) 2006-07-11 2007-06-15 Multi-joint robot and wiring method
KR1020087023056A KR101108767B1 (en) 2006-07-11 2007-06-15 Multi-joint robot and wiring method
JP2008524741A JP4911371B2 (en) 2006-07-11 2007-06-15 Articulated robot and wiring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006190823 2006-07-11
JP2006-190823 2006-07-11

Publications (1)

Publication Number Publication Date
WO2008007517A1 true WO2008007517A1 (en) 2008-01-17

Family

ID=38923082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062156 WO2008007517A1 (en) 2006-07-11 2007-06-15 Multi-joint robot and wiring method

Country Status (5)

Country Link
JP (1) JP4911371B2 (en)
KR (1) KR101108767B1 (en)
CN (1) CN101484281B (en)
TW (1) TW200817150A (en)
WO (1) WO2008007517A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064219A (en) * 2008-09-12 2010-03-25 Yaskawa Electric Corp Multi-joint robot
JP2010069552A (en) * 2008-09-17 2010-04-02 Rexxam Co Ltd Double arm type robot

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007516A1 (en) * 2006-07-11 2008-01-17 Kabushiki Kaisha Yaskawa Denki Multijoint robot
CN104470688B (en) * 2012-07-13 2016-09-14 Abb技术有限公司 structure for robot
CN103802131A (en) * 2012-11-08 2014-05-21 沈阳新松机器人自动化股份有限公司 Stacker arm structure and wire layout method thereof
JP6108859B2 (en) * 2013-02-13 2017-04-05 日本電産サンキョー株式会社 Industrial robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639890A (en) * 1979-09-04 1981-04-15 Meidensha Electric Mfg Co Ltd Joint in manipulator*etc*
JPH01306193A (en) * 1988-06-01 1989-12-11 Fanuc Ltd Cable process device at joint part of robot for industrial use
JPH04269193A (en) * 1991-02-19 1992-09-25 Canon Inc Industrial robot
JP2001274218A (en) * 2000-03-23 2001-10-05 Sankyo Seiki Mfg Co Ltd Double-arm robot
JP2007015053A (en) * 2005-07-07 2007-01-25 Fanuc Ltd Industrial robot

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258188A (en) * 1985-09-09 1987-03-13 Rhythm Watch Co Ltd Analogue hand retracting device of analogue/digital display timepiece
JPS6258188U (en) * 1985-09-27 1987-04-10
JP4269193B2 (en) * 1997-05-26 2009-05-27 株式会社大一商会 Pachinko machine
JP2002079487A (en) * 2000-09-05 2002-03-19 Nachi Fujikoshi Corp Wrist device for industrial robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639890A (en) * 1979-09-04 1981-04-15 Meidensha Electric Mfg Co Ltd Joint in manipulator*etc*
JPH01306193A (en) * 1988-06-01 1989-12-11 Fanuc Ltd Cable process device at joint part of robot for industrial use
JPH04269193A (en) * 1991-02-19 1992-09-25 Canon Inc Industrial robot
JP2001274218A (en) * 2000-03-23 2001-10-05 Sankyo Seiki Mfg Co Ltd Double-arm robot
JP2007015053A (en) * 2005-07-07 2007-01-25 Fanuc Ltd Industrial robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064219A (en) * 2008-09-12 2010-03-25 Yaskawa Electric Corp Multi-joint robot
JP2010069552A (en) * 2008-09-17 2010-04-02 Rexxam Co Ltd Double arm type robot

Also Published As

Publication number Publication date
JPWO2008007517A1 (en) 2009-12-10
KR20080102223A (en) 2008-11-24
CN101484281A (en) 2009-07-15
JP4911371B2 (en) 2012-04-04
TW200817150A (en) 2008-04-16
CN101484281B (en) 2011-10-26
TWI329558B (en) 2010-09-01
KR101108767B1 (en) 2012-03-13

Similar Documents

Publication Publication Date Title
TWI357375B (en)
KR100955405B1 (en) Multijoint robot and method for exchanging speed reducer of multijoint robot
EP2213425B1 (en) Vertical multi-joint robot
WO2008007517A1 (en) Multi-joint robot and wiring method
EP3415282B1 (en) Workpiece conveying apparatus for a pressing machine
JP4852719B2 (en) Articulated robot
KR101310003B1 (en) Work transfer apparatus
US11167408B2 (en) Robotic system for carrying out an operation
JP2001274218A (en) Double-arm robot
CN204935245U (en) Lathe and machining production line
JP2006198768A (en) Double arm type robot
JP4840599B2 (en) Work transfer device
US7740122B2 (en) Workpiece transfer apparatus
JP4228245B1 (en) Articulated robot
JP4168409B1 (en) Articulated robot
JP4962880B2 (en) Articulated robot and manufacturing method of production equipment
JP2001225286A (en) Conveying device
JP2008018480A (en) Articulated robot and transfer method and installation method for the robot

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780025598.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745410

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008524741

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087023056

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07745410

Country of ref document: EP

Kind code of ref document: A1