WO2008001508A1 - contrôleur de gestion de groupe d'ascenseurs - Google Patents

contrôleur de gestion de groupe d'ascenseurs Download PDF

Info

Publication number
WO2008001508A1
WO2008001508A1 PCT/JP2007/050822 JP2007050822W WO2008001508A1 WO 2008001508 A1 WO2008001508 A1 WO 2008001508A1 JP 2007050822 W JP2007050822 W JP 2007050822W WO 2008001508 A1 WO2008001508 A1 WO 2008001508A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevator
value
weighting factor
evaluation
floor
Prior art date
Application number
PCT/JP2007/050822
Other languages
English (en)
French (fr)
Inventor
Shingo Kobori
Masafumi Iwata
Naohiko Suzuki
Shiro Hikita
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to CN2007800215533A priority Critical patent/CN101466629B/zh
Priority to US12/300,227 priority patent/US8006807B2/en
Priority to KR1020087031296A priority patent/KR101088283B1/ko
Priority to DE112007001577.2T priority patent/DE112007001577B4/de
Priority to JP2008522312A priority patent/JP5112313B2/ja
Publication of WO2008001508A1 publication Critical patent/WO2008001508A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/2408Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration where the allocation of a call to an elevator car is of importance, i.e. by means of a supervisory or group controller
    • B66B1/2458For elevator systems with multiple shafts and a single car per shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/02Control systems without regulation, i.e. without retroactive action
    • B66B1/06Control systems without regulation, i.e. without retroactive action electric
    • B66B1/14Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements
    • B66B1/18Control systems without regulation, i.e. without retroactive action electric with devices, e.g. push-buttons, for indirect control of movements with means for storing pulses controlling the movements of several cars or cages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/10Details with respect to the type of call input
    • B66B2201/102Up or down call input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/20Details of the evaluation method for the allocation of a call to an elevator car
    • B66B2201/211Waiting time, i.e. response time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/20Details of the evaluation method for the allocation of a call to an elevator car
    • B66B2201/216Energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/20Details of the evaluation method for the allocation of a call to an elevator car
    • B66B2201/222Taking into account the number of passengers present in the elevator car to be allocated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/20Details of the evaluation method for the allocation of a call to an elevator car
    • B66B2201/234Taking into account uncertainty terms for predicted values, e.g. the predicted arrival time of an elevator car at the floor where a call is made
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/20Details of the evaluation method for the allocation of a call to an elevator car
    • B66B2201/235Taking into account predicted future events, e.g. predicted future call inputs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/30Details of the elevator system configuration
    • B66B2201/301Shafts divided into zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/40Details of the change of control mode
    • B66B2201/403Details of the change of control mode by real-time traffic data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B50/00Energy efficient technologies in elevators, escalators and moving walkways, e.g. energy saving or recuperation technologies

Definitions

  • the present invention relates to an elevator group management control device that efficiently operates a plurality of elevators.
  • the elevator group management control device efficiently operates the plurality of elevators to reduce the waiting time of passengers.
  • Elevator group management and control devices are designed to save energy in addition to reducing passenger waiting time.
  • the number of hall calls allowed is set for each floor, and the number of hall calls generated on each floor is the number of hall calls accepted. Do not accept newly generated hall calls! / Like ⁇ ! / Speak. Thereby, the use of an elevator is restricted and energy saving is achieved.
  • the elevator group management control device disclosed in Patent Document 2 below predicts the probability of occurrence of a hall call on each floor when performing standby control in a quiet time when the number of passengers is small.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-167129 (paragraph numbers [0017] to [0021], FIG. 1)
  • Patent Document 2 Japanese Patent Laid-Open No. 10-36019 (paragraph number [0016], FIG. 2)
  • the conventional elevator group management control device Since the conventional elevator group management control device is configured as described above, if the number of hall calls generated on each floor exceeds the allowable number of calls allowed, the newly generated hall calls will not be accepted. In this case, the use of elevators is restricted and energy saving is achieved. However, on the floor where the number of hall calls that have occurred exceeds the allowable number of calls accepted, passengers cannot get on the elevators, resulting in a very inconvenient situation. In addition, when the number of landing calls generated is less than the allowable number of calls accepted, the use of elevators is not restricted, and there is a problem that energy saving cannot be achieved.
  • the present invention has been made to solve the above-described problems, and reduces the mileage of the elevator that does not cause an inconvenient situation such as a long waiting time for passengers, thereby saving energy.
  • the purpose is to obtain an elevator group management control device that can improve the performance.
  • the elevator group management control device considers the relationship between the travel distance of the elevator and the waiting time of the passengers, and calculates the weight coefficient of the evaluation item calculated by the travel distance force predicted by the prediction calculation means.
  • Weight coefficient determination means for determining, comprehensive evaluation value calculation means for calculating the overall evaluation value of each elevator from the evaluation items for the waiting time of passengers, the evaluation items for the travel distance, and the weight coefficients determined by the weight coefficient determination means And select the elevator with the best overall evaluation value for the medium power of multiple elevators.
  • the hall call is assigned to the beta one.
  • the weighting factor determination that determines the weighting factor of the evaluation item calculated from the traveling distance predicted by the prediction calculating means in consideration of the relationship between the travel distance of the elevator and the waiting time of the passengers.
  • a comprehensive evaluation value calculation means for calculating a total evaluation value of each elevator from the evaluation item of the waiting time of the passenger, the evaluation item of the travel distance, and the weighting factor determined by the weighting factor determination unit, Since the elevator with the best overall evaluation value is selected from among the elevators and a hall call is assigned to the elevator, the distance traveled by the elevator without causing inconveniences such as longer waiting time for passengers This can reduce energy consumption and increase the energy saving effect.
  • FIG. 1 is a configuration diagram showing an elevator group management controller according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing the processing contents of the elevator group management controller according to Embodiment 1 of the present invention.
  • FIG. 4 is an explanatory diagram showing the relationship between variable (P, Q, R, S, C) and weighting factor w.
  • FIG. 5 is an explanatory diagram showing the relationship between variable (P, Q, R, S, C) and weighting factor w.
  • FIG. 6 is an explanatory diagram showing an OD table.
  • FIG. 7 is an explanatory diagram of an OD table showing the relative traffic volume between two zones.
  • FIG. 9 is an explanatory diagram showing the situation where a hall call is occurring.
  • FIG. 10 is a block diagram showing an elevator group management control apparatus according to Embodiment 2 of the present invention.
  • FIG. 11 is a flowchart showing the processing contents of the elevator group management controller according to Embodiment 2 of the present invention.
  • FIG. 12 is an explanatory diagram for explaining a situation in which a candidate elevator selection rule for the purpose of reducing travel distance is applied.
  • FIG. 13 is a block diagram showing an elevator group management control apparatus according to Embodiment 3 of the present invention.
  • FIG. 14 is a flowchart showing the processing contents of the elevator group management controller according to Embodiment 3 of the present invention.
  • FIG. 1 is a configuration diagram showing an elevator group management control device according to Embodiment 1 of the present invention.
  • an elevator control device 1 is provided for each elevator installed in a building. This device controls the elevator under the instructions in 2.
  • the elevator group management control device 2 performs processing such as assigning the hall call to an appropriate elevator.
  • the communication unit 11 of the elevator group management control device 2 includes a communication interface that performs data communication with the elevator control device 1. For example, from the elevator control device 1, the current position of the elevator, the landing call generation floor, the landing Call direction, traveling direction (up, down)
  • the prediction calculation unit 12 of the elevator group management controller 2 assigns the hall call to each elevator.
  • each elevator responds to the landing call and the distance traveled from the current position to the landing call generation floor and the landing call generation floor The calculation of the distance traveled to the destination floor of the passenger on the floor where the hall call occurred is performed.
  • the prediction calculation unit 12 is required to reach the current floor force new floor call generation floor if there is a situation where other hall calls are generated. Travel time and current position force Travel distance to the new landing call generation floor and landing call generation floor force The travel distance to the destination floor of the passenger on the landing call generation floor is predicted and calculated.
  • a landing call is generated, if there is already another landing call, the movement required from the current location to the landing call that has already occurred is reached only by the new landing call generation floor. Time, distance traveled from the current location to the landing call generation floor that has already occurred, and the distance from the generation floor call generation floor to the destination floor of the passenger call generation floor Prediction calculation is also performed for the travel distance.
  • prediction calculation unit 12 constitutes a prediction calculation means.
  • the parameter calculation unit 13 of the elevator group management control device 2 considers the relationship between the reduction rate of the mileage of the elevator and the improvement rate of the average waiting time of passengers, and the traffic state (for example, traffic volume, traffic pattern) , Elevator specifications (eg, rated speed, acceleration, number of elevators (number of cars), elevator capacity (cage capacity), door opening and closing time), building specifications (eg, floor height, express zone distance, number of floors) and elevator control
  • the weight coefficient w of the evaluation item calculated from the mileage predicted by the prediction calculation unit 12 is determined using at least one parameter among the parameters indicating the state (for example, suitability of the operation mode).
  • the parameter calculation unit 13 constitutes a weighting factor determination unit.
  • the evaluation calculation unit 14 of the elevator group management control device 2 is multiplied by the weighting coefficient w determined by the parameter calculation unit 13!
  • the overall evaluation of iBj (i) is performed.
  • the evaluation calculation unit 14 constitutes a total evaluation value calculation means!
  • the hall call assignment section 15 of the elevator group management control device 2 is The comprehensive evaluation city (i) calculated by the evaluation calculation unit 14 selects the best elevator and assigns a hall call to the elevator.
  • the hall call allocation unit 15 constitutes hall call allocation means!
  • the operation control unit 16 of the elevator group management control device 2 performs a process of controlling the elevator control device 1 according to the allocation result of the hall call allocation unit 15.
  • the communication unit 11, the prediction calculation unit 12, the parameter calculation unit 13, the evaluation calculation unit 14, the hall call assignment unit 15, and the operation control unit 16 that are components of the elevator group management control device 2.
  • FIG. 2 is a flowchart showing the processing contents of the elevator group management controller according to Embodiment 1 of the present invention.
  • the evaluation calculation unit 14 of the elevator group management control device 2 calculates a comprehensive evaluation town (i) of each elevator i as shown in the following formula (1).
  • Elevator i is full when a new hall call is assigned to elevator i
  • the evaluation values E (i) to E (i) are calculated by the prediction calculation unit 12 when a new hall call is generated.
  • the prediction calculation result power is also derived.
  • these prediction calculation methods include the method disclosed in Japanese Patent Laid-Open No. 54-102745.
  • the elevator is virtually moved to the current floor for each current floor, and the movement time is accumulated.
  • the travel time accumulated up to the floor where the hall call is generated is used as the prediction calculation result.
  • the prediction calculation method disclosed in Japanese Patent Laid-Open No. 54-102745 can be applied to the prediction calculation of each item.
  • the hall call assigning unit 15 of the elevator group management control device 2 calculates the total evaluation city (i) of the elevator i when the evaluation calculation unit 14 calculates the total evaluation city (i) of the elevator i.
  • the evaluation city (i) is the largest or smallest elevator) and the elevator call is assigned to that elevator.
  • the elevator that is closest to the hall where the hall call originates is not necessarily the unit that can respond the earliest.
  • the distance can be reduced and the energy saving effect can be improved, but the waiting time of passengers is long. And transportation efficiency may deteriorate.
  • step ST1 when a new hall call is generated when a passenger presses a hall call button of an elevator installed at a boarding area (step ST1), the communication unit 11 of the elevator group management control device 2 From elevator controller 1 of elevator i, travel information such as current position of elevator i, landing call generation floor, landing call direction, traveling direction (up and down), destination floor, etc. are collected.
  • the destination floor registration method can also register the destination floor, and the destination floor is also collected. However, it is not always necessary to collect the destination floor.
  • the parameter calculation unit 13 of the elevator group management control device 2 considers the relationship between the reduction rate of the travel distance of the elevator and the improvement rate of the average waiting time of passengers, and determines the traffic state (for example, traffic volume, traffic Pattern), elevator specifications (eg, rated speed, acceleration, number of elevators (number of cars), elevator capacity (car capacity), door opening and closing time), building specifications (eg, floor height, express zone distance, floor Number) and elevator control status (for example, whether or not the operation mode is appropriate), using at least one parameter or more for the evaluation value E (i) of the travel distance predicted by the prediction calculation unit 12.
  • Calculate weighting factor w (
  • the parameter calculation unit 13 uses, for example, the following equation (2) to evaluate the travel distance evaluation value E (i).
  • P is the traffic volume
  • Q is the traffic pattern variable representing the traffic pattern
  • R is the elevator specification variable representing the characteristics of the elevator one specification
  • S is the building specification variable representing the characteristics of the building specification
  • C is the control representing the elevator control status It is a parameter influence variable.
  • the function f is determined based on the relationship between the weighting coefficient w experimentally obtained by a prior simulation experiment or the like and P, Q, R, S, C. [0022] Here, the procedure for determining the equation (2) will be described.
  • the comprehensive evaluation town (i) of the formula (1) is calculated, and the comprehensive evaluation ⁇ (i) assigns a new hall call to the best elevator i. Yes.
  • Figure 3 shows the total distance traveled per unit time (TRD: total ru)
  • the function f of w needs to be set to change with respect to P, Q, R, S, and C.
  • the waiting time includes stop time such as getting on and off and door opening and closing time independent of the distance traveled. Therefore, the function f of the weighting coefficient is set so as to monotonously decrease with respect to the evaluation value E (i) of the travel distance (express zone distance, floor height, number of floors).
  • the decrease rate is large. This is because the mileage does not change much even if the number of cars increases, but the waiting time is simply the inverse of the number of cars. Therefore, the function f of the weighting factor is set so as to decrease monotonously with the number of cars.
  • E (i) is relative to the travel distance (express zone distance, floor height, number of floors)
  • the function f of the weighting factor is set so as to increase monotonously with the travel distance (express zone distance, floor height, number of floors).
  • the decrease rate is large. This is because the mileage does not change much even if the number of cars increases, but the waiting time is simply the inverse of the number of cars. Therefore, the function f of the weighting factor is set so as to decrease monotonously with the number of cars.
  • Nth order regression equation For example, the following Nth order regression equation can be prepared.
  • y, ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ should be smaller than the experimentally estimated weight coefficient w as shown in Fig. 4 or Fig. 5.
  • the values expressed by the primary regression equation and the secondary regression equation are also shown.
  • higher-order regression equations can represent experimentally estimated values with higher accuracy.
  • Figures 4 and 5 also show values represented by exponential regression and logarithmic regression.
  • exponential functions and logarithmic functions can represent values with higher precision than higher-order polynomials.
  • a function that combines an Nth-order polynomial, exponential function, and logarithmic function can express the value more accurately.
  • the description is given with the goal that the elevator group management control device controls the operation so as to obtain the maximum travel distance reduction within a range that does not deteriorate the average waiting time.
  • the ability to control the operation so as to obtain the maximum reduction in travel distance within the range where the average waiting time is not adversely affected, or a certain degree of transportation efficiency is allowed.
  • Set the weighting factor w to a value greater than “17” to control the operation so that more reduction in mileage can be obtained, or the reduction in mileage and the improvement rate of average waiting time Judgment such as the ability to control the operation by setting the weighting coefficient w to a value smaller than "17" so that it can be enjoyed little by little depends on the aim of the elevator group management control device designer and the request of the user It is.
  • the aim and use of the elevator group management control device designer It depends on the request of the person.
  • the appropriate value of the weighting factor w differs depending on the judgment, so it depends on the judgment that the formula (2) is prepared using P, Q, R, S, C. It will be.
  • the parameter calculation unit 13 calculates the traffic volume P using, for example, the following equation (4).
  • P (Psum) / (LD XT) (4)
  • Psum is the number of passengers that is estimated by force, such as passenger number data sent from the elevator controller 1 and call button information. It is derived for each unit time (T) from the sum of the number of passengers.
  • LD in equation (4) indicates the number of passengers that can be transported by elevator in one second (transportation capacity).
  • transportation capacity For example, “Elevator Planning Guidelines for Building Design” (issued by Japan Elevator Association) The following equation (5) can be calculated based on the five-minute transportation capacity that can be calculated by the traffic calculation method described in 1.
  • the parameter calculation unit 13 calculates the traffic pattern variable Q using, for example, the following equation (6).
  • the function g in Eq. (6) is determined based on the relationship between the OD table and traffic pattern variable Q obtained experimentally by a prior simulation experiment.
  • Fig. 6 is an explanatory diagram showing the OD table.
  • the values in the OD table in Figure 6 represent the relative traffic volume between floors.
  • the number “2” on the first floor of the departure floor and the 10th floor of the destination floor means that the percentage of people who go from 1F to 10F per unit time is 2% of the total number of passengers.
  • the elevator control unit 1 force The number of passengers on each floor estimated from the sum of the number of passengers and the number of passengers that are estimated, such as the number of passenger data and call button information that are transmitted, Derived every (T).
  • Each numerical value in the OD table is a force that itself indicates the characteristics of the traffic pattern. If a large number of numerical values in the OD table are used as calculation parameters, the function g becomes complicated and the required calculation resources also increase. .
  • an OD table for each zone represented by 2 ⁇ 2 as shown in FIG. 7 is created from the OD table of FIG.
  • the OD table in Figure 7 shows that the building floor is divided into two zones: the main floor (basement to 1F) and the upper floor (2F to upper floor). Represents
  • the Q value expressed by the following equation (7) is the same. In the first embodiment, this Q value is handled as a traffic pattern variable.
  • the parameter calculation unit 13 calculates the elevator specification variable R using, for example, the function p of the following equation (8).
  • R p (rated speed, acceleration, elevator capacity, number of elevators, door opening and closing time)
  • Parameters used for calculating the elevator specification variable R include rated speed, acceleration, elevator capacity, number of elevators, and door opening / closing time.
  • the parameters that represent the specifications of the elevator are different forces for each building to which the elevator is delivered. Since they rarely fluctuate after the start of the elevator operation, they are stored in advance in the elevator group management control device by prior work. Shall.
  • Equation (8) For rated speed, acceleration, and door opening / closing time, it is assumed that fixed values such as the maximum, minimum, and average values of each parameter are used in Equation (8) .For example, using a sensor, etc. If it can be detected, you can use the instantaneous value.
  • the function p in Eq. (8) is based on the relationship between the rated speed, acceleration, elevator capacity, number of elevators, door opening / closing time, etc., obtained experimentally by a prior simulation experiment, and the elevator specification variable R. Decided.
  • the parameter calculation unit 13 calculates the building specification variable S using, for example, the function q of the following equation (9).
  • the parameters used for the calculation of the building specification variable S include floor height, number of floors, express zone distance, and so on.
  • parameters that represent building specifications such as floor height, number of floors, express zone distance, etc., vary depending on the building to which the elevator is delivered. It is assumed that the elevator group management control device stores the information in advance.
  • Equation (9) The function q in Equation (9) is determined based on the relationship between the building specification variable S and the floor height, number of floors, express zone distance, etc. obtained experimentally by a prior simulation experiment.
  • the parameter calculation unit 13 calculates the control parameter influence variable C using, for example, the function u of the following equation (10).
  • Equation (10) The function u in Eq. (10) is determined based on the relationship between the control meter N and the control parameter effect variable C obtained experimentally by a prior simulation experiment. However, in equation (10), the number of control parameters N is not necessarily one force.
  • control parameter N will be described.
  • One is a type in which the operation mode is always implemented after the operation starts if it is decided to apply before the elevator operation starts.
  • the control parameter indicating that the operation mode is not applied Z and the control parameter indicating that the operation mode is being implemented Z are not being handled separately.
  • the execution time is included as an execution condition, the time data also becomes a control parameter.
  • control parameters by applying the operation mode. For example, in operation mode (1), (5), (9), and (10), the number of vehicles dispatched, in operation mode (3), the number of zones divided, in operation mode (4), the number of hall calls in the DOWN direction, the operation mode (6 ), It is necessary to set the acceleration after the change, the operation mode (7), the new rated speed and the service level specified value, and the operation mode (8), the number of operating elevators and the service level specified value.
  • control parameters may be fixed to values determined before the start of operation, or may be changed after the start of operation, which will affect the quality of service in the operation mode.
  • the decision as to whether the control parameter for each operation mode is a fixed force variable is also handled as a control parameter in the elevator group management control device.
  • each elevator i responds to the hall call, In addition to predicting the travel time required from the current position to the call generation floor (new landing call generation floor, assigned landing call generation floor, assigned car call), each elevator i In response to the mileage from the current position to the call generation floor (new landing call generation floor, assigned floor call generation floor, allocated car call generation floor) and landing call generation from the current position
  • the calculation of the distance traveled to the destination floor of passengers on the floor, the number of passengers on each floor and the number of passengers in the elevator associated therewith are performed (step ST3).
  • the prediction calculation unit 12 determines the new hall call and the assigned hall from the current position of the elevator i, the traveling direction, the assigned hall call, the car call, etc. Predictive calculations such as the travel time of elevator i with respect to the call, probability of unforeseen forecast, fullness probability, and mileage are performed.
  • control parameters other than the weight coefficient w calculated by the parameter calculation unit 13 in step ST2 may be used for the prediction calculation in step ST3.
  • the evaluation calculation unit 14 of the elevator group management control device 2 performs prediction calculations such as the travel time of the elevator i with respect to a new hall call, the forecast outlier probability, the full probability, and the mileage. Based on the predicted calculation results, travel time, unforeseen probability, fullness Evaluation values E (i) to E (i) are derived with the rate and travel distance as evaluation items (step ST4).
  • Evaluations for other predicted items such as fullness probability, unforeseen probability, mileage, etc. are also performed using a predetermined evaluation function, similar to the above-mentioned evaluation value calculation of waiting time.
  • the evaluation calculation unit 14 derives the evaluation values E (i) to E (i) whose evaluation items are travel time, out-of-prediction probability, fullness probability, and travel distance, as shown in the above equation (1). Evaluation value E (i) ⁇
  • Each element is obtained by multiplying E (i) by the weighting factors w to w and obtaining the sum of the multiplication results.
  • Beta 1 The overall evaluation ⁇ (i) of i is calculated (step ST5).
  • the weight coefficient w is a value calculated by the parameter calculation unit 13 and the weight coefficient w
  • ⁇ w is a preset fixed value or a value calculated by the parameter calculation unit 13.
  • the hall call assigning unit 15 of the elevator group management control device 2 calculates the comprehensive evaluation value J (i (i)) from among a plurality of elevators when the evaluation calculation unit 14 calculates the total evaluation city (i) of each elevator i. ) Selects the best elevator (for example, the elevator with the highest overall evaluation city (i)). However, if Equation (1) is adopted, which is the best elevator as the overall evaluation i (i) is smaller, the elevator with the smallest overall evaluation city (i) is selected.
  • the hall call assigning unit 15 When the best elevator is selected from a plurality of elevators, the hall call assigning unit 15 performs a process of assigning a new hall call to the elevator (step ST6).
  • the operation control unit 16 of the elevator group management control device 2 notifies the elevator control device 1 related to the elevator to which the hall call is assigned by the hall call assignment unit 15 that the hall call has been assigned. (Step ST7).
  • Elevator control device 1 assigns hall calls from elevator group management control device 2. When the notification is received, the elevator is controlled to move the elevator to the landing call generation floor.
  • the relationship between the travel distance of the elevator and the average waiting time of the passengers is taken into account from the travel distance predicted by the prediction calculation unit 12.
  • a parameter calculator 13 that determines the weighting factor w of the evaluation item to be calculated,
  • the overall evaluation city (i) selects the best elevator and assigns a hall call to the elevator, the inconveniences such as longer waiting time for passengers are caused. It is possible to reduce the distance traveled by the elevator and increase the energy saving effect.
  • Embodiment 1 the parameters are roughly divided into five (P, Q, R, S, C) and parameters P, Q, Weight coefficient w from R, S, C
  • Eqs. (6), (8), (9), and (10) should be prepared so that the parameters P, Q, R, S, and C can be easily used in Eq. (2).
  • the element used for calculating the weighting factor w does not include the floor height
  • the control parameter is not limited to the weighting factor W.
  • other weights such as W, W, W, W
  • the weighting factor w is calculated according to equation (1) when determining the elevator to which the hall call is assigned.
  • the weighting factors W, W, W, etc. are changed dynamically.
  • FIG. 10 is a block diagram showing an elevator group management control apparatus according to Embodiment 2 of the present invention.
  • the same reference numerals as those in FIG. 1 are identical to FIG. 10 and the same reference numerals as those in FIG. 10
  • the parameter calculation unit 21 of the elevator group management control device 2 considers the relationship between the reduction rate of the mileage of the elevator and the improvement rate of the average waiting time of passengers, traffic conditions (for example, traffic volume, traffic pattern), elevator specifications (For example, rated speed, acceleration, number of elevators (number of cars), elevator capacity (car capacity), door opening and closing time), building specifications (for example, floor height, express zone distance, number of floors) and elevator control status (for example, Control parameters X (rules) for candidate elevator selection rules (selection rules) that may be assigned a new hall call using at least one of the parameters indicating whether the operation mode is appropriate) Perform processing to calculate (adapted value).
  • the parameter calculation unit 21 constitutes a suitable value calculation means.
  • the candidate elevator selection unit 22 of the elevator group management control device 2 is a process of selecting, as a candidate elevator, an elevator in which the control parameter X calculated by the parameter calculation unit 21 satisfies the selection rule from among a plurality of elevators.
  • the weather The auxiliary elevator selection unit 22 constitutes a candidate elevator selection means.
  • the evaluation calculation unit 23 of the elevator group management control device 2 performs a process of calculating a total evaluation value of candidate elevators using the travel time predicted by the prediction calculation unit 12 as an evaluation item.
  • the evaluation calculation unit 23 constitutes a comprehensive evaluation value calculation means.
  • the hall call assigning unit 24 of the elevator group management control device 2 selects the elevator having the best overall evaluation value calculated by the evaluation calculating unit 23 from the candidate elevators selected by the candidate elevator selecting unit 22, and newly adds that elevator to the elevator. Implement the process of assigning a hall call.
  • the hall call assignment unit 24 constitutes hall call assignment means.
  • the communication unit 11, the prediction calculation unit 12, the parameter calculation unit 21, the candidate elevator selection unit 22, the evaluation calculation unit 23, and the hall call assignment unit that are components of the elevator group management control device 2
  • the operation control unit 16 and the operation control unit 16 are configured with dedicated hardware (for example, a semiconductor integrated circuit board mounted with an MPU)
  • the elevator group management When the control device 2 is configured by a computer, the processing of the communication unit 11, the prediction calculation unit 12, the parameter calculation unit 21, the candidate elevator selection unit 22, the evaluation calculation unit 23, the hall call assignment unit 24, and the operation control unit 16 Store the program that describes the contents in the computer's memory, and let the computer's CPU execute the program stored in that memory.
  • FIG. 11 is a flowchart showing the processing contents of the elevator group management controller according to Embodiment 2 of the present invention.
  • step ST1 when a passenger is installed at a boarding area and a new hall call is generated by pressing the elevator hall call button (step ST1), the communication unit 11 of the elevator group management control device 2 As with form 1, travel information such as the current position of elevator i, landing call generation floor, landing call direction, travel direction (up and down), destination floor, etc. is collected from elevator control device 1 of each elevator i. To do.
  • the parameter calculation unit 21 of the elevator group management control device 2 takes into account the relationship between the reduction rate of the mileage of the elevator and the improvement rate of the average waiting time of passengers, and calls for a new landing call
  • the control parameter X for the candidate elevator selection rule that may be assigned is calculated (step ST11). That is, the parameter calculation unit 21 uses the traffic volume P, the traffic pattern variable Q, the elevator specification variable, the building specification variable S, and the control parameter influence variable C to determine the candidate elevator selection rule. Calculate control parameter X.
  • control parameter X for the candidate elevator selection rule is calculated using the following equation (11).
  • the function f is based on the relationship between the control parameter X experimentally obtained by a prior simulation experiment and the like, and P, Q, R, S, and C. It is determined by the same procedure as determining the function f of.
  • the prediction calculation unit 12 of the elevator group management control device 2 assigns a new landing call to each elevator i as in the first embodiment. Assuming that the current position of each elevator i, direction of travel, assigned hall call, car call, etc., the travel time and forecast of elevator i for new hall calls and assigned hall calls Predictive calculations such as outage probability and fullness probability are performed (step ST12).
  • the candidate elevator selection unit 22 of the elevator group management control device 2 is a candidate for an elevator in which the control parameter X calculated by the parameter calculation unit 21 satisfies the selected rule from among a plurality of elevators. Select as an elevator (step ST13).
  • FIG. 12 is an explanatory diagram for explaining a situation in which a candidate elevator selection rule for the purpose of reducing the travel distance is applied.
  • elevator No. 1 (# 1) has a car call on the 6th floor and starts leaving from the 1st floor, and Unit 2 (# 2) is waiting on the 7th floor. If a 4FUp hall call is generated in such a state, it is possible to arrive at 4FUp at the same time even if a landing call is assigned to Unit 1 (# 1) and Unit 2 (# 2).
  • the mileage can be shortened by assigning a landing call to an elevator that is traveling or scheduled to travel in the same direction as the new landing call (see Figures 12 (a) to (d)).
  • the candidate elevator selection unit 22 has a selection rule that allows a hall call to be assigned to an elevator that is traveling or is scheduled to travel in the same direction as a new hall call.
  • the candidate elevator selection unit 22 uses, for example, a selection rule on condition that the control parameter X is equal to or greater than a specified value, a parameter is selected from a plurality of elevators.
  • An elevator whose control parameter X calculated by the calculation unit 21 is equal to or greater than the specified value is selected as a candidate elevator.
  • a selection rule that requires that the force control parameter X is less than or equal to the specified value, which indicates that the selection rule is based on the condition that the control parameter X is greater than or equal to the specified value.
  • the elevator is selected as a candidate elevator.
  • the candidate elevator selection unit 22 selects all elevators as candidate elevators. In such a case, the elevator to which the hall call is assigned is determined in the same procedure as before.
  • the evaluation calculation unit 23 of the elevator group management control device 2 performs a prediction calculation such as the travel time of the elevator i for a new hall call, the forecast failure probability, the full probability, etc.
  • an evaluation value E (i) that uses the predicted calculation results as the evaluation items are the travel time, forecast loss probability, and full probability of each candidate elevator.
  • evaluation calculation unit 23 derives evaluation values E (i) to E (i) whose evaluation items are travel time, out-of-prediction probability, and fullness probability, as shown in the following equation (12), the evaluation value E ( i) to E (i)
  • Equation (1) the comprehensive evaluation street (i) of each candidate elevator i is equivalent to Equation (1) except that the evaluation items related to travel distance are omitted.
  • the hall call allocating unit 24 of the elevator group management control device 2 calculates the total evaluation street (i) of each candidate elevator i selected by the candidate calculating unit 22 by the evaluation calculating unit 14, From the candidate elevators, select the elevator with the best overall evaluation town (i) (for example, the elevator with the highest overall evaluation (i)). However, if the formula (12) is adopted such that the smaller the overall rating ⁇ (i) is, the best elevator is selected.
  • the hall call assigning unit 15 performs a process of assigning a new hall call to the elevator (step ST16).
  • the operation control unit 16 of the elevator group management control device 2 notifies the elevator control device 1 related to the elevator to which the hall call is assigned by the hall call assignment unit 24 that the hall call has been assigned. (Step ST7).
  • the elevator controller 1 When the elevator controller 1 receives the hall call assignment notification from the elevator group management controller 2, the elevator controller 1 controls the elevator and moves the elevator to the floor where the hall call is generated.
  • control parameter X in the second embodiment. If the specified value to be compared with the control parameter X is set to a small value, for example, the number of candidate elevators that may be assigned a new landing call increases, and it is possible to select an elevator with good transportation efficiency. Power There is not much difference from the conventional method of determining the assigned elevator, so it is not possible to obtain much reduction in travel distance.
  • the specified value to be compared with the control parameter X is set to a large value, so it is possible to reduce a lot of mileage, but the elevator power that requires less mileage. Since the waiting time is not always short, the transportation efficiency may deteriorate.
  • control parameter X it is possible to allow the power to calculate the control parameter X so that the maximum reduction in the travel distance can be obtained within a range in which the average waiting time is not deteriorated at all, or to allow a certain degree of transportation efficiency to be reduced. Whether the control parameter X is calculated so as to obtain a large reduction in travel distance, or whether the control parameter X is calculated so that the travel distance reduction rate and the average waiting time improvement rate can be enjoyed little by little. , Which varies depending on the design of the elevator group management control device and the user's request. Depends on the setting in 1).
  • a candidate elevator that may assign a hall call in consideration of the relationship between the distance traveled by the elevator and the average waiting time of the passengers.
  • a parameter calculation unit 21 that calculates the control parameter X for the selection rule, and a candidate elevator that selects, from among a plurality of elevators, candidate elevators that have the control parameter X calculated by the parameter calculation unit 21 satisfying the selection rule
  • a selection unit 22 and an evaluation calculation unit 23 that calculates a total evaluation value of candidate elevators using the travel time predicted by the prediction calculation unit 12 as an evaluation item, and the candidate elevator selected by the candidate elevator one selection unit 22
  • the elevator with the best overall evaluation value calculated by the evaluation calculator 23 is selected from among the elevators. Since it is configured to assign a tobacco beauty, reduce inconvenient Kotonagu mileage elevator leading to the occurrence of conditions such as passenger waiting time becomes longer, an effect that can Rukoto enhance energy-saving effect.
  • FIG. 13 is a block diagram showing an elevator group management control apparatus according to Embodiment 3 of the present invention.
  • the reference parameter calculation unit 31 has a built-in reference value calculation unit 31a corresponding to the traffic condition, and the reference value calculation unit 31a corresponding to the traffic condition sets the reference value w of the weighting factor for the evaluation item of the travel distance from the parameter parameter indicating the traffic condition. Perform the calculation process.
  • Correction value calculation unit 32 includes floor height correction value calculation unit 32a, express zone distance correction value calculation unit 32b, floor number correction value calculation unit 32c, rated speed correction value calculation unit 32d, acceleration correction value calculation unit 32e, elevator number correction Built-in value calculation unit 32f, elevator capacity correction value calculation unit 32g, door opening / closing time correction value calculation unit 32h, and control parameter correction value calculation unit 32i, parameters indicating elevator specifications, building specifications, and elevator control status
  • weighting coefficient determination means is configured from the reference parameter calculation unit 31 and the correction value calculation unit 32. It is made.
  • the communication unit 11, the prediction calculation unit 12, the evaluation calculation unit 14, the hall call assignment unit 15, the operation control unit 16, and the reference parameter calculation unit that are components of the elevator group management control device 2 Assuming that 31 and the correction value calculation unit 32 are configured by dedicated hardware (for example, a semiconductor integrated circuit board on which an MPU or the like is mounted), the elevator group management control device 2 If the computer is configured, describe the processing contents of the communication unit 11, prediction calculation unit 12, evaluation calculation unit 14, hall call assignment unit 15, operation control unit 16, reference parameter calculation unit 31, and correction value calculation unit 32 Store the program in the computer's memory and execute the program stored in the memory of the computer's CPU.
  • FIG. 14 is a flowchart showing the processing contents of the elevator group management controller according to Embodiment 3 of the present invention.
  • the appropriate value of one control parameter in the elevator group management controller is a number of factors (for example, floor height, express zone distance, floor number, rated speed, acceleration, number of elevators, elevator capacity, door opening / closing time, control parameters N) affected. For this reason, floor height, express zone distance, floor number, rated speed, acceleration, number of elevators, elevator capacity, door opening / closing time, control parameters N) affected. For this reason, floor height, express zone distance, floor number, rated speed, acceleration, number of elevators, elevator capacity, door opening / closing time, control parameters N) affected. For this reason
  • Equation (2) for calculating the control parameters described in the first embodiment is expressed by the parameters P, Q, R, S, C and weights obtained experimentally by a prior simulation experiment or the like. It is determined based on the relationship between the coefficient w.
  • step ST1 when a new hall call is generated when a passenger presses a hall call button of an elevator installed at a boarding area (step ST1), the communication unit 11 of the elevator group management control device 2 As in Embodiment 1, from elevator control device 1 of each elevator i, travel information such as the current position of elevator i, landing call generation floor, landing call direction, traveling direction (up and down), destination floor, etc. To collect.
  • the reference parameter calculation unit 31 of the elevator group management control device 2 calculates the reference value w of the weighting factor for the evaluation value E (i) of the travel distance (step ST21).
  • the reference value W of the weighting factor is a factor that determines the weighting factor W (traffic volume, traffic pattern,
  • elevator power of a specific elevator specification (cage specification) Once installed in a specific building and once in service, the floor height, express zone distance, number of floors, rated speed, acceleration, number of elevators, elevators Capacity, door opening and closing time will fluctuate from time to time And few.
  • traffic volume and traffic patterns are factors that change from time to time even after the elevator operation is started.
  • the reference value calculation unit 31a of the reference parameter calculation unit 31 includes the floor height, express zone distance, floor number, rated speed, acceleration, number of elevators, elevator capacity, door opening / closing time.
  • the following equation (13) is used.
  • the reference function f is a parameter experimentally obtained by a prior simulation experiment, etc.
  • the maximum travel distance reduction amount is obtained and the weighting factor w is within a range that does not deteriorate the average waiting time with respect to changes in the variables (P, Q, R, S, C).
  • the elevator group management control device controls the operation so as to obtain the maximum reduction in travel distance within a range that does not deteriorate the average waiting time.
  • the weighting factor w is set to a value larger than "17" to allow the vehicle to be operated as controlled, or to allow some deterioration in transportation efficiency and to obtain more mileage reduction.
  • the aim and use of the elevator group management control device designer It depends on the request of the person.
  • the weighting factor w w
  • the correction value calculation unit 32 generates a reference value w generated by the difference between the determined reference environment and the actual environment.
  • a correction value Cu for correcting the difference between 4_ba and the appropriate value is calculated (step ST22).
  • Factors used to calculate the correction value Cu include floor height, express zone distance, number of floors, elevator rated speed, acceleration, elevator capacity, door opening / closing time, and control parameter N.
  • the correction value Cu is calculated according to a specific function cf in the following equation (15).
  • Function cf is corrected with floor height, express zone distance, number of floors, rated speed, acceleration, number of elevators, number of elevators, door opening / closing time, control parameter N, etc. experimentally obtained by simulation experiments etc. Value is determined based on the relationship with Cu.
  • Equation 15 can be determined by the same procedure as that for determining the function f of Equation (2).
  • the function cf which represents the relationship between the correction value Cu and all the elements, exhibits a monotonous change as shown in Fig. 4 or Fig. 5 to be a complicated function.
  • the function contains fewer elements, the change in the correction value Cu becomes monotonous and the function becomes simpler.
  • correction values corresponding to all factors correction values according to building specifications such as floor height, number of floors, express zone distance, rated speed, acceleration, elevator capacity, number of elevators, doors
  • a correction value according to the elevator specifications such as opening / closing time and a correction value according to the control parameter N are calculated individually.
  • the correction value C according to the building specification is used using the floor height, number of floors, express zone distance, etc.
  • the function cq is determined based on the relationship between the correction value C and the floor height, number of floors, express zone distance, etc. obtained experimentally by a prior simulation experiment.
  • the correction value C to be obtained is used as a correction coefficient and multiplied by the reference value w in equation (13).
  • the correction value C according to the elevator specification is set to the rated speed, acceleration, elevator.
  • the function cp is the relationship between the correction speed C and the rated speed, calo speed, elevator capacity, number of elevators, door opening / closing time, etc., obtained experimentally by a prior simulation experiment, etc.
  • the correction value C to be obtained is used as a correction coefficient and multiplied by the reference value w in equation (13).
  • the correction value C based on the control parameter N is obtained using the control parameter N
  • the function cc is determined based on the relationship between the control parameter N and the correction value C obtained experimentally by a prior simulation experiment.
  • the control parameter N is explained in the first embodiment.
  • the correction value C to be obtained is used as a correction coefficient and multiplied by the reference value w in equation (13).
  • the function f of equation (2) in the first embodiment is The function cc of equation (18) can be determined by the same procedure as that.
  • a value for correcting the weight coefficient reference value w to calculate the final weight coefficient w is C
  • the function f is determined based on the relationship between C, C, C, and final S P C obtained experimentally by a prior simulation experiment.
  • the weighting factor w becomes 1Z2 depending on one of the correction values C, C, and C.
  • Equation (20) becomes Equation (19)
  • equations (16), (17), and (18) all elements are roughly divided into three categories: building specifications, elevator specifications, and control parameter N, and the force category for which correction values are calculated for each category.
  • the number of is not limited to three.
  • the method of classifying elements into each category is not limited to the above method.
  • the correction value is calculated for each category, but the function is simpler if the function contains fewer elements. By calculating the correction value for each element, the function becomes simpler.
  • the floor height correction value calculation unit 32a of the correction value calculation unit 32 calculates the following correction value C according to the floor height of the building.
  • the function f is the floor height and the correction value c obtained experimentally, such as by a prior simulation experiment.
  • the function f of the equation (21) can be determined by the same procedure as that for determining the function f of the equation (2) of the first embodiment.
  • the travel distance of the elevator increases in proportion thereto.
  • the mileage evaluation value increases.
  • the waiting time for passengers includes the stoppage time of elevators, even if the floor height doubles, the waiting time does not necessarily double in proportion. Therefore, considering the relationship between the mileage evaluation value and the waiting time evaluation value, the weighting coefficient of the mileage evaluation value needs to be calculated to a smaller value as the floor height increases.
  • the following correction coefficient for the weighting coefficient based on the floor height is calculated.
  • the standard floor height is the floor height of the building used as the standard environment. If the correction coefficient in Equation (22) is multiplied by the weight coefficient reference value, the weight coefficient is calculated to be smaller as the floor height is higher than the reference floor height.
  • the explanation assumes that the mileage evaluation value becomes larger as the mileage becomes longer, but the mileage evaluation value is calculated so that the mileage evaluation value becomes smaller as the mileage increases. If there is, the weight coefficient of the mileage evaluation value needs to be calculated to a larger value as the floor height increases.
  • Equation (22) the reciprocal of the value represented by Equation (22) may be used as the correction coefficient C.
  • the correction coefficient of 22) is an example of a correction value based on the floor height expressed by Equation (21).
  • the express zone distance correction value calculation unit 32b of the correction value calculation unit 32 calculates the following correction value C according to the express zone distance of the building.
  • the elevator travel distance increases in proportion. As the travel distance becomes longer, the travel distance evaluation value becomes larger. However, since the waiting time of passengers includes the stoppage time of the elevator, even if the express zone distance is doubled, the waiting time is not necessarily doubled proportionally. Therefore, considering the relationship between the travel distance evaluation value and the waiting time evaluation value, the weight coefficient of the travel distance evaluation value needs to be calculated to a smaller value as the express zone distance becomes longer.
  • the correction coefficient of the weighting coefficient by the following express zone distance is calculated.
  • the standard express zone distance is the express zone distance of the building used as the reference environment. If the weighting coefficient reference value is multiplied by the correction coefficient in Eq. (24), the weighting coefficient is calculated to be smaller as the express zone distance becomes longer than the reference express zone distance.
  • the explanation is based on the assumption that the longer the mileage, the larger the mileage evaluation value, but the longer the mileage, the smaller the mileage evaluation value. If calculated, the weighting factor of the mileage evaluation value increases as the express zone distance increases. It needs to be calculated to a value.
  • the correction coefficient in 24) is an example of a correction value based on the express zone distance expressed by equation (23).
  • the floor number correction value calculation unit 32c of the correction value calculation unit 32 calculates the following correction value C according to the number of floors of the building.
  • the function f is a prior simulation
  • the function f of the equation (25) can be determined by the same procedure as the function f of the equation (2) of the first embodiment.
  • the travel distance of the elevator increases in proportion thereto.
  • the mileage evaluation value increases.
  • the waiting time for passengers includes the stoppage time of elevators, even if the number of floors doubles, the waiting time does not necessarily double in proportion. Therefore, considering the relationship between the travel distance evaluation value and the waiting time evaluation value, the weight coefficient of the travel distance evaluation value needs to be calculated to a smaller value as the number of floors increases.
  • a correction coefficient for the weighting coefficient based on the number of floors is calculated as follows.
  • the standard number of floors is the number of floors in the building as the standard environment. Weighting the correction coefficient in Equation (26) If the coefficient reference value is multiplied, the weight coefficient is calculated to a smaller value as the number of floors increases compared to the reference floor number. Although the explanation is based on the assumption that the mileage evaluation value becomes larger as the mileage becomes longer, the mileage evaluation value is calculated so that the mileage evaluation value becomes smaller as the mileage increases. If so, the weight coefficient of the mileage evaluation value needs to be calculated as a larger value as the number of floors increases.
  • the correction coefficient of 26) is an example of a correction value based on the number of floors expressed by Equation (25).
  • the rated speed correction value calculation unit 32d of the correction value calculation unit 32 calculates the following correction value C according to the rated speed.
  • the function f is the rated speed and correction obtained experimentally, such as by a prior simulation experiment.
  • the function f of the equation (27) can be determined by the same procedure as that for determining the function f of the equation (2) of the first embodiment.
  • the acceleration correction value calculation unit 32e of the correction value calculation unit 32 calculates the following correction value C according to the acceleration.
  • the function f is the acceleration and correction value obtained experimentally, such as by a prior simulation experiment.
  • the function f of the equation (28) can be determined by the same procedure as the procedure of determining the function f of the equation (2) of the first embodiment.
  • the correction value calculation unit 32 of the correction value calculation unit 32 calculates the following correction value C according to the number of elevators.
  • the function f is an elevator platform experimentally obtained by a prior simulation experiment.
  • the function f in equation (29) can be determined in the same procedure as the function f in equation (2) in the first embodiment. it can.
  • the weighting coefficient of the mileage evaluation value needs to be calculated to a smaller value as the number of elevators increases. Therefore, for example, the following correction coefficient for the weight coefficient by the number of elevators is calculated.
  • Equation (30) is an example of the correction value based on the number of elevators expressed by Equation (29).
  • the elevator capacity correction value calculation section 32g of the correction value calculation section 32 calculates the following correction value C according to the elevator capacity.
  • the function f is an elevator constant obtained experimentally, such as by a prior simulation experiment.
  • the function f of equation (31) can be determined by the same procedure as that for determining the function f of equation (2) of the first embodiment. it can.
  • the door opening / closing time correction value calculating unit 32h of the correction value calculating unit 32 calculates the following correction value C according to the door opening / closing time.
  • the function f of the equation (32) can be determined by the same procedure as the function f of the equation (2) of the first embodiment.
  • the control parameter correction value calculation unit 32 i of the correction value calculation unit 32 calculates the following correction value C according to the control parameter N.
  • the function f is a control parameter experimentally obtained by a prior simulation experiment, etc.
  • the function f in equation (33) can be determined in the same procedure as the function f in equation (2) in the first embodiment. it can.
  • the weight coefficient reference value w is calculated in order to calculate the final weight coefficient w.
  • the function f is c ⁇ obtained experimentally by a prior simulation experiment etc.
  • the weighting coefficient w is represented as follows c
  • the function f final — 2 of the equation (34) can be determined by the same procedure as that for determining the function f of the equation (2) of the first embodiment.
  • the correction coefficient C obtained by the above equation (34) is expressed as a base nnal as shown in the following equation (35).
  • the weighting coefficient w is calculated (step ST23).
  • Equation (36) if the floor height, number of floors, or express zone distance is increased, the mileage will be doubled compared to the standard building specifications, and the mileage evaluation value of Equation (1) E (
  • Equation (36) becomes Equation (34)
  • step ST3 When the correction value calculation unit 32 calculates the weighting factor w, step ST3
  • Embodiment 3 when the weighting coefficient w is calculated, the elevator operation is started.
  • the reference value w is calculated according to the traffic conditions that change from time to time, and other control parameters N
  • control parameter N includes a parameter that varies after the elevator starts, and a parameter that does not vary.
  • the reference parameter calculation unit 31 sets the reference value w.
  • the reference function f is determined on the basis of the relationship between the parameters P—Q, N and the reference value w obtained experimentally by a prior simulation experiment.
  • equation (37) can be determined by a procedure similar to the procedure for determining function f in equation (2) of the first embodiment.
  • N is in operation mode
  • N is the power that the operation mode is being executed (assumed to be “1”).
  • the reference parameter calculation unit 31 prepares as many reference functions as there are N assumed values. Thus, the influence of the weighting factor w due to the control parameter N may be taken into account.
  • the traffic condition corresponding reference value calculation unit 31a of the reference parameter calculation unit 31 calculates the reference value w as shown in the following equation (38).
  • the weighting coefficient w may be calculated as in Expression (35).
  • the parameters representing the elevator specifications and building specifications such as rated speed, acceleration, elevator capacity, number of elevators, door opening and closing time, floor height, number of floors, express zone distance, etc. Different power Since there is little fluctuation after the start of elevator operation, it is preliminarily stored in the elevator group management control device by prior work. However, regarding the rated speed, acceleration, and door opening / closing time, it is assumed that the force assumes a fixed value such as the maximum value, minimum value, and average value of each value.If the sensor can detect it, use the instantaneous value. Moh.
  • 1 9 can also be used with the Nth power.
  • the weight coefficient w force lZ (2 N ) is obtained by any N power value among the correction values C, C, and C.
  • the element used for calculating the weighting factor w does not include the floor height
  • the control parameter is not limited to the weighting factor W.
  • other weights such as W, W, W, W
  • the weighting factor w is calculated according to equation (1) when determining the elevator to which the hall call is assigned.
  • the weighting factors W, W, W, etc. are changed dynamically.
  • the reference value w of the weight coefficient w for the evaluation item of the travel distance is derived from the parameter indicating the traffic state, and the elevator
  • Weighting factor W depending on the specifications, building specifications and elevator control parameters
  • an appropriate weight can be selected according to the fluctuations in traffic conditions.
  • the reference environment is determined by fixing elements other than specific elements (parameters), and the reference value of control parameter 1 is calculated using a reference function that varies only the elements that are not fixed based on the reference environment.
  • the difference between the reference environment and the reference value of control parameter 1 caused by the actual difference between the values of each element and the appropriate value is filled.
  • the method for deriving control parameter 1 is simplified as a whole. It is easy to estimate the situation where the derived control parameter 1 deviates from the assumed value, and even if the control parameter 1 deviates from the assumed value force, the cause can be easily clarified.
  • the reference parameter calculation unit 31 uses the weight coefficient reference value w.
  • the reference parameter calculation unit 31 calculates the reference value of the control parameter X, and the correction value calculation unit 32 sets the reference value of the control parameter X. It is also possible to calculate a correction value to correct the control parameter and correct the control parameter X reference value according to the parameter fluctuation.
  • control parameter X is the same as the weight coefficient w.
  • the reference value and correction value of the control parameter X can also be obtained by the same calculation method as the reference value w and correction values C to C of the weight coefficient.
  • the elevator group management control device evaluates the waiting time of passengers in consideration of the relationship between the distance traveled by the elevator and the waiting time of passengers from among a plurality of elevators. It is configured to select and assign the best elevator according to the overall evaluation value of each elevator calculated from the items, the evaluation item of the mileage, and the weighting factor of the evaluation item calculated from the predicted mileage, Elevator group management in buildings where multiple elevators are installed because the distance traveled by elevators can be reduced without causing inconveniences such as longer waiting times for passengers and energy saving effects can be enhanced. Suitable for use in control devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)

Description

明 細 書
エレベーター群管理制御装置 技術分野
[0001] この発明は、複数のエレベーターを効率的に運用するエレベーター群管理制御装 置に関するものである。
背景技術
[0002] 複数のエレベーターがビル内に設置される場合、エレベーター群管理制御装置が 複数のエレベーターを効率的に運用することにより、乗客の待ち時間の短縮化を図 るようにしている。
エレベーター群管理制御装置は、乗客の待ち時間の短縮化を図るほかに、省エネ ルギー化を図ることも目的の一つにしている。
[0003] 例えば、以下の特許文献 1に開示されているエレベーター群管理制御装置では、 乗場呼びの許容受付呼び数を各階毎に設定し、各階で発生した乗場呼びの数が許 容受付呼び数を超えると、新たに発生した乗場呼びを受け付けな!/ヽようにして!/ヽる。 これにより、エレベーターの利用が制限されて、省エネルギー化が図られる。
し力しながら、発生した乗場呼びの数が許容受付呼び数を超えている階では、乗 客がエレベーターに乗車することができず、非常に不便な状況が発生する。
一方、発生した乗場呼びの数が許容受付呼び数に満たない場合、エレベーターの 利用が制限されることがないため、省エネルギー化が図られることがない。
[0004] また、以下の特許文献 2に開示されているエレベーター群管理制御装置では、乗 客の数が少ない閑散時の待機制御を実施するに際して、各階の乗場呼びの発生確 率を予測する。
そして、乗場呼びの発生確率が所定範囲内の階が複数ある場合、乗場呼びの発 生確率が所定範囲内の階の中で、乗り捨てられたエレベーターに近い階を待機階と して選択し、その待機階にエレベーターを待機させるようにしている。これにより、固 定階を待機階とする場合よりも、エレベーターが待機階に移動するまでの距離が短く なり、省エネルギー化が図られる。 しかしながら、省エネルギー化が図られるのは、元々エレベーターの移動が少ない 乗客閑散時に限られ、また、待機階への走行距離もさほど長くないため、省エネルギ 一効果が限定的である。
[0005] 特許文献 1 :特開 2002— 167129号公報(段落番号 [0017]から [0021]、図 1) 特許文献 2:特開平 10— 36019号公報 (段落番号 [0016]、図 2)
[0006] 従来のエレベーター群管理制御装置は以上のように構成されているので、各階で 発生した乗場呼びの数が許容受付呼び数を超えると、新たに発生した乗場呼びを受 け付けないようにする場合、エレベーターの利用が制限されて、省エネルギー化が図 られる。しかし、発生した乗場呼びの数が許容受付呼び数を超えている階では、乗客 がエレベーターに乗車することができず、非常に不便な状況が発生する。また、発生 した乗場呼びの数が許容受付呼び数に満たない場合、エレベーターの利用が制限 されることがないため、省エネルギー化が図られることがない課題があった。
また、乗場呼びの発生確率が所定範囲内の階を待機階とする場合、固定階を待機 階とする場合よりも、エレベーターが待機階に移動するまでの距離が短くなり、省ェ ネルギー化が図られる。し力し、省エネルギー化が図られるの力 元々エレベーター の移動が少ない乗客閑散時に限られ、また、待機階への走行距離もさほど長くない ため、省エネルギー効果が限定的である課題があった。
[0007] この発明は上記のような課題を解決するためになされたもので、乗客の待ち時間が 長くなるなどの不便な状況の発生を招くことなぐエレベーターの走行距離を削減し て、省エネルギー効果を高めることができるエレベーター群管理制御装置を得ること を目的とする。
発明の開示
[0008] この発明に係るエレベーター群管理制御装置は、エレベーターの走行距離と乗客 の待ち時間との関係を考慮して、予測演算手段により予測された走行距離力 演算 される評価項目の重み係数を決定する重み係数決定手段と、乗客の待ち時間の評 価項目と上記走行距離の評価項目と上記重み係数決定手段により決定された重み 係数から各エレベーターの総合評価値を演算する総合評価値演算手段とを設け、 複数のエレベーターの中力も総合評価値が最良のエレベーターを選択し、そのエレ ベータ一に乗場呼びを割り当てるようにしたものである。
[0009] この発明によれば、エレベーターの走行距離と乗客の待ち時間との関係を考慮し て、予測演算手段により予測された走行距離から演算される評価項目の重み係数を 決定する重み係数決定手段と、乗客の待ち時間の評価項目と上記走行距離の評価 項目と上記重み係数決定手段により決定された重み係数から各エレベーターの総合 評価値を演算する総合評価値演算手段とを設け、複数のエレベーターの中から総合 評価値が最良のエレベーターを選択し、そのエレベーターに乗場呼びを割り当てる ように構成したので、乗客の待ち時間が長くなるなどの不便な状況の発生を招くこと なぐエレベーターの走行距離を削減して、省エネルギー効果を高めることができる 効果がある。
図面の簡単な説明
[0010] [図 1]この発明の実施の形態 1によるエレベーター群管理制御装置を示す構成図で ある。
[図 2]この発明の実施の形態 1によるエレベーター群管理制御装置の処理内容を示 すフローチャートである。
[図 3]重み係数 wの変化に対する単位時間当りの総走行距離の削減率と、単位時間
4
当りの乗客の平均待ち時間の改善率との関係を示すグラフ図である。
[図 4]variable (P, Q, R, S, C)と重み係数 wの関係を示す説明図である。
4
[図 5]variable (P, Q, R, S, C)と重み係数 wの関係を示す説明図である。
4
[図 6]OD表を示す説明図である。
[図 7]2つのゾーン間の相対的な交通量を表す OD表の説明図である。
[図 8]図 7におけるゾーン 1間の交通量が少ないと仮定して (A=0)、 Bと Cの値を変 化させて 2 X 2の OD表を整列させたときの説明図である。
[図 9]乗場呼びが発生している状況等を示す説明図である。
[図 10]この発明の実施の形態 2によるエレベーター群管理制御装置を示す構成図で ある。
[図 11]この発明の実施の形態 2によるエレベーター群管理制御装置の処理内容を示 すフローチャートである。 [図 12]走行距離の削減を目的とする候補エレベーターの選択ルールが適用される状 況を説明する説明図である。
[図 13]この発明の実施の形態 3によるエレベーター群管理制御装置を示す構成図で ある。
[図 14]この発明の実施の形態 3によるエレベーター群管理制御装置の処理内容を示 すフローチャートである。 発明を実施するための最良の形態
[0011] 以下、この発明をより詳細に説明するために、この発明を実施するための最良の形 態について、添付の図面に従って説明する。
実施の形態 1.
図 1はこの発明の実施の形態 1によるエレベーター群管理制御装置を示す構成図 であり、図において、エレベーター制御装置 1はビル内に設置されているエレベータ 一毎に設けられ、エレベーター群管理制御装置 2の指示の下、当該エレベーターを 制御する装置である。
エレベーター群管理制御装置 2は例えば乗場呼びが発生すると、その乗場呼びを 適正なエレベーターに割り当てるなどの処理を実施する。
[0012] エレベーター群管理制御装置 2の通信部 11はエレベーター制御装置 1とデータ通 信を実施する通信インタフェースを備えており、例えば、エレベーター制御装置 1から エレベーターの現在位置、乗場呼び発生階、乗場呼び方向、進行方向(上り、下り)
、行き先階などの走行情報等を収集する。
エレベーター群管理制御装置 2の予測演算部 12は或る階で新規の乗場呼びが発 生すると、その乗場呼びを各エレベーターに割り当てた場合に、各エレベーターが乗 場呼びに応答して、現在位置から乗場呼び発生階に至るまでに要する移動時間の 予測演算を実施するほか、各エレベーターが乗場呼びに応答して、現在位置から乗 場呼び発生階に至るまでの走行距離と、乗場呼び発生階から乗場呼び発生階の乗 客の行き先階に至るまでの走行距離の予測演算などを実施する。
ただし、予測演算部 12は、新規の乗場呼びが発生したとき、他の乗場呼びが発生 して ヽな 、状況であれば、現在位置力 新規の乗場呼び発生階に至るまでに要する 移動時間と、現在位置力 新規の乗場呼び発生階に至るまでの走行距離と、乗場呼 び発生階力 乗場呼び発生階の乗客の行き先階に至るまでの走行距離を予測演算 するが、新規の乗場呼びが発生したとき、既に他の乗場呼びが発生している状況で あれば、新規の乗場呼び発生階だけでなぐ現在位置から既に発生している乗場呼 び発生階に至るまでに要する移動時間と、現在位置から既に発生している乗場呼び 発生階に至るまでの走行距離と、既に発生して!/、る乗場呼び発生階から乗場呼び発 生階の乗客の行き先階に至るまでの走行距離についても予測演算する。また、新規 の乗場呼びが発生したとき、既に他の乗場呼びとかご呼びが発生して 、る状況であ れば、新規の乗場呼び発生階だけでなぐ現在位置から既に発生している乗場呼び 発生階に至るまでに要する移動時間と、現在位置力 既に発生しているかご呼び発 生階に至るまでに要する移動時間と、現在位置から既に発生している乗場呼び発生 階に至るまでの走行距離と、現在位置力 既に発生しているかご呼び発生階に至る までの走行距離と、現在位置から既に発生して!/ヽる乗場呼び発生階から乗場呼び発 生階の乗客の行き先階に至るまでの走行距離についても予測演算する。
なお、予測演算部 12は予測演算手段を構成している。
[0013] エレベーター群管理制御装置 2のパラメータ演算部 13はエレベーターの走行距離 の削減率と、乗客の平均待ち時間の改善率との関係を考慮し、交通状態 (例えば、 交通量、交通パターン)、エレベーター仕様 (例えば、定格速度、加速度、エレベータ 一台数 (かご台数)、エレベーター定員 (かご定員)、戸開閉時間)、ビル仕様 (例えば 、階高、急行ゾーン距離、階床数)及びエレベーター制御状態 (例えば、運行モード の適否)を示すパラメータのうち、少なくとも 1以上のパラメータを使用して、予測演算 部 12により予測された走行距離カゝら演算される評価項目の重み係数 wを決定する
4
処理を実施する。なお、パラメータ演算部 13は重み係数決定手段を構成している。
[0014] エレベーター群管理制御装置 2の評価演算部 14はパラメータ演算部 13により決定 された重み係数 wが乗算されて!ヽる走行距離と移動時間などを評価項目とする各ェ
4
レベータ一の総合評価 iBj(i)を演算する処理を実施する。なお、評価演算部 14は総 合評価値演算手段を構成して!/ヽる。
エレベーター群管理制御装置 2の乗場呼び割当部 15は複数のエレベーターの中 力も評価演算部 14により演算された総合評価街 (i)が最良のエレベーターを選択し 、そのエレベーターに乗場呼びを割り当てる処理を実施する。なお、乗場呼び割当 部 15は乗場呼び割当手段を構成して!/ヽる。
エレベーター群管理制御装置 2の運転制御部 16は乗場呼び割当部 15の割当結 果に応じてエレベーター制御装置 1を制御する処理を実施する。
[0015] 図 1の例では、エレベーター群管理制御装置 2の構成要素である通信部 11、予測 演算部 12、パラメータ演算部 13、評価演算部 14、乗場呼び割当部 15及び運転制 御部 16が専用のハードウエア (例えば、 MPUなどを実装している半導体集積回路基 板)で構成されていることを想定しているが、エレベーター群管理制御装置 2がコンビ ユータで構成されている場合、通信部 11、予測演算部 12、パラメータ演算部 13、評 価演算部 14、乗場呼び割当部 15及び運転制御部 16の処理内容を記述したプログ ラムをコンピュータのメモリに格納し、コンピュータの CPUが当該メモリに格納されて V、るプログラムを実行するようにしてもょ 、。
図 2はこの発明の実施の形態 1によるエレベーター群管理制御装置の処理内容を 示すフローチャートである。
[0016] 次に動作について説明する。
エレベーター群管理制御装置 2の評価演算部 14は、詳細は後述するが、下記の 式(1)に示すような各エレベーター iの総合評価街 (i)を演算する。
J (i) = w E (i) + w E (i) + w E (i) + w E (i) (1)
1 1 2 2 3 3 4 4
E (i):新規の乗場呼びをエレベーター iに割り当てた場合に、エレベーター iが乗場
1
呼び階に到着するまでの乗客の待ち時間の評価値 (現在位置力 乗場呼び発生階 に至るまでに要する移動時間の評価値)
E (i):新規の乗場呼びをエレベーター iに割り当てた場合に、乗場呼びに対する予
2
報外れ確率の評価値
E (i):新規の乗場呼びをエレベーター iに割り当てた場合に、エレベーター iの満員
3
確率の評価値
E (i):新規の乗場呼びをエレベーター iに割り当てた場合に、エレベーター iが現在
4
位置から停止するまでの走行距離の評価値 [0017] w:待ち時間の評価値 E (i)に対する重み係数
1 1
w:予報外れ確率の評価値 E (i)に対する重み係数
2 2
w:満員確率の評価値 E (i)に対する重み係数
3 3
w:走行距離の評価値 E (i)に対する重み係数
4 4
なお、評価値 E (i)〜E (i)は、新規の乗場呼びが発生したとき、予測演算部 12が
1 4
エレベーター iの現在位置、進行方向、割当済みの乗場呼び、かご呼びなどの状況 から、新規の乗場呼び及び割当済みの乗場呼びに対するエレベーター iの移動時間 、予報外れ確率、満員確率、走行距離などの予測演算を実施するので、その予測演 算結果力も導出される。これらの予測演算の手法は、例えば、特開昭 54— 102745 号公報に開示されている方法がある。特開昭 54— 102745号公報では、エレベータ 一を仮想的に現在位置力も一階床毎に移動させ、その移動時間を累計している。そ して、乗場呼びが発生している階床に至るまでに累計された移動時間を予測演算結 果としている。予報外れ確率、満員確率、走行距離などの予測演算方法については 、特開昭 54— 102745号公報に開示されている予測演算方法を、それぞれの項目 の予測演算に適用することが考えられる。
[0018] エレベーター群管理制御装置 2の乗場呼び割当部 15は、評価演算部 14がエレべ 一ター iの総合評価街 (i)を演算すると、総合評価街 (i)が最良のエレベーター (総 合評価街 (i)が最大又は最小のエレベーター)を選択し、そのエレベーターに乗場 呼びを割り当てる処理を実施する。
乗場呼び割当部 15が乗場呼びに応答するエレベーターを決定するに際して、乗 場呼び発生階に最も近くに ヽるエレベーターが最も早く応答することが可能な号機 であるとは限らない。
乗場呼び発生階の近くに 、るエレベーターが、現在位置から乗場呼び発生階に至 る途中で停止する必要がある階がある場合、乗場呼び発生階から少し遠くにいても、 途中停止せずに乗場呼び発生階まで直通できるエレベーターがある場合、遠くに!ヽ るエレベーターの方が早く乗場呼び発生階に到着できることがあるからである。
そのため、評価値 E (i)〜E (i)の中で、走行距離の評価値 E (i)を重視すると、走
1 4 4
行距離を削減して、省エネルギー効果を高めることができるが、乗客の待ち時間が長 くなり、輸送効率が悪化することがある。
そこで、この実施の形態 1では、輸送効率の悪ィ匕を招くことなぐ省エネルギー効果 を高めるため、走行距離の評価値 E (i)の重み係数 wを適正な値に設定するよう〖こ
4 4
している。
以下、この実施の形態 1の内容を具体的に説明する。
[0019] 例えば、乗客が乗車場に設置されているエレベーターの乗場呼びボタンを押すこと により、新規の乗場呼びが発生すると (ステップ ST1)、エレベーター群管理制御装 置 2の通信部 11は、各エレベーター iのエレベーター制御装置 1から、エレベーター i の現在位置、乗場呼び発生階、乗場呼び方向、進行方向(上り、下り)、行き先階な どの走行情報等を収集する。
この実施の形態 1では、行き先階も登録できる行き先階登録方式を想定して、行き 先階も収集するようにして 、るが、行き先階を必ず収集する必要はな 、。
[0020] エレベーター群管理制御装置 2のパラメータ演算部 13は、エレベーターの走行距 離の削減率と、乗客の平均待ち時間の改善率との関係を考慮し、交通状態 (例えば 、交通量、交通パターン)、エレベーター仕様 (例えば、定格速度、加速度、エレべ一 ター台数 (かご台数)、エレベーター定員 (かご定員)、戸開閉時間)、ビル仕様 (例え ば、階高、急行ゾーン距離、階床数)及びエレベーター制御状態 (例えば、運行モー ドの適否)を示すパラメータのうち、少なくとも 1以上のパラメータを使用して、予測演 算部 12により予測される走行距離の評価値 E (i)に対する重み係数 wを演算する(
4 4
ステップ ST2)。
[0021] パラメータ演算部 13は、例えば、以下の式 (2)を使用して、走行距離の評価値 E (i
4
)に対する重み係数 wを演算する。
4
w =f (P, Q, R, S, C) (2)
4
ただし、 Pは交通量、 Qは交通パターンを表す交通パターン変数、 Rはエレベータ 一仕様の特徴を表すエレベーター仕様変数、 Sはビル仕様の特徴を表すビル仕様 変数、 Cはエレベーター制御状態を表す制御パラメータ影響変数である。
また、関数 fは、事前のシミュレーション実験などにより実験的に得られた重み係数 wと P, Q, R, S, Cとの関係に基づいて決定される。 [0022] ここで、式(2)を決定する手順につ!、て説明する。
エレベーター群管理制御装置では、上述したように、式(1)の総合評価街 (i)を演 算し、総合評価銜 (i)が最良のエレベーター iに新規の乗場呼びを割り当てるように している。
図 3は、重み係数 wの変化に対する単位時間当りの総走行距離 (TRD: total ru
4
nning distance)の削減率と、単位時間当りの乗客の平均待ち時間(AWT: avera ge waiting time)の改善率との関係を示す実験結果である。
図 3に示すように、走行距離の評価値 E (i)に対する重み係数 wが大きくなる程、
4 4
走行距離の削減量が増加し、乗客の平均待ち時間が悪ィ匕する傾向がある。これは、 重み係数 wが増加すると、式(1)の総合評価街 (i)の中で、走行距離の評価値 E (i
4 4
)の優先度が高くなり、逆に待ち時間の評価値 E (i)の優先度が下がるためである。
1
したがって、図 3の例では、平均待ち時間を悪化させない範囲で、最大の走行距離 の削減量が得られるようにするには、 w = 17付近になるように、式(2)を用意する必
4
要があることが分る。
[0023] wの関数 fは、 P、 Q、 R、 S、 Cに対して変化するように設定する必要がある。以下で
4
は議論を単純にするために、 E (i)
4 は距離に対する一次以上の単調増加関数である 場合を考える。
E (i) =∑ (走行距離)11 n≥l
4
このとき、走行距離の評価値 E (i)の増加に対する、乗客の待ち時間の増加率は小
4
さい。それは、待ち時間には走行距離に依存しない乗降時間や戸開閉時間などの 停止時間が含まれるためである。よって重み係数の関数 fは走行距離 (急行ゾーン距 離、階高、階床数)の評価値 E (i)に対して単調減少するように設定する。
4
また、台数が増えると走行距離の評価値 E (i)の増加に対する、乗客の待ち時間の
4
減少率が大きい。それは、台数が増カロしても走行距離はあまり変わらないが、待ち時 間は、単純ィ匕すると台数の逆数で減少するためである。そのため、重み係数の関数 f はかご台数に対して単調減少するように設定する。
[0024] あるいは、例えば、 E (i)は走行距離 (急行ゾーン距離、階高、階床数)に対する
4 一 次以上の単調減少関数である場合を考える。 E (i) =—∑ (走行距離)11 n≥l
4
このとき、上記の説明とは反対に、走行距離の評価値 E (i)の減少に対する、乗客
4
の待ち時間の減少率は小さい。そのため、重み係数の関数 fは走行距離 (急行ゾー ン距離、階高、階床数)に対して単調増加するように設定する。
また、台数が増えると走行距離の評価値 E (i)の減少に対する、乗客の待ち時間の
4
減少率が大きい。それは、台数が増カロしても走行距離はあまり変わらないが、待ち時 間は、単純ィ匕すると台数の逆数で減少するためである。そのため、重み係数の関数 f はかご台数に対して単調減少するように設定する。
[0025] ここでは、走行距離と台数についてのみ述べた力 wは他の P、 Q、 R、 S、 Cに対し
4
ても同様に変化させるように関数 fを設定する。例えば、シミュレーション実験を実施し た結果、平均待ち時間を悪化させない範囲で、最大の走行距離の削減量が得られる 重み係数 wの値(value)力 variable (P, Q, R, S, C)のいずれかの変化に対して
4
、図 4あるいは図 5のような変化を示したとする。
このような関係が判明すれば、実験的に見積もられた重み係数 wの値 (value)から
4
、例えば、次のような N次の回帰式を用意することができる。
w ={a (Ρ)Ν+α (Ρ)Ν_1+....+ α (Ρ)+Ύ }
4 Ρ_Ν Ρ_(Ν Ρ— Ρ
Χ{α (Q)N+a (Q)N_1+....+ a (Q) +y }
Q_N Q_(N Q_l _Q
X{a (R)N+ひ (R)N_1+....+ a (R) +y }
RN R_(N R _R
X{a (S)N+a (S)N_1+....+ a (S) +y }
S_N S— (N-l) S— S
X{a (C)N+a (0Ν_1+····+α (C) +y } (3)
C_N C_(N C— P
あるいは、例えば、次のような指数関数の回帰式を用意することができる。
_r \(3_ )( ) , τ v r x(j3_q χ
w—{ + y )X{a e + y )
4
Figure imgf000012_0001
X{a (e)(/3-c)(C)+7 } (3,)
e_5 2_C
あるいは、例えば、次のような対数関数の回帰式を用意することができる。
w ={ Ln(P) + y }X{ Ln(Q) + y }X{ Ln(R) + y }X{ Ln(S)+ y }
4 1— P 3— P 1_Q 3_Q 1_R 3_R 1— S 3— S
X{ Ln(C)+ y } (3,,)
1_C 3— C
[0026] ¾ 3) (3,)(3")の a 、 ひ 、 · ·、 <¾ 、 ひ 、 ひ 、 · ·、 <¾ 、 ひ 、 ひ 、
P_N P— (N-l) Ρ— Q_N Q_(N Q_l R_N R— (N-l) •·、 α 、 a 、 a 、 · ·、 α 、 a 、 a 、 · ·、 <¾ 、 a 、 a 、 a 、 a ゝ 1 -1) 1 1) 1 1
ヽ β—p、 β—q、 β—r、 β—s、 β—c、 γ 、 γ 、 γ 、 γ 、 γ 、 γ 、 γ 、 γ 、
1 1 1 1 1
y 、 γ 、 γ 、 γ 、 γ 、 γ 、 γ は、図 4または図 5に示されているような実 験的に見積もられた重み係数 wの値 (value)と誤差力小さくなるように設定する。 図 4または図 5には 1次回帰式、 2次回帰式によって表される値を併記する。一般的 に高次の回帰式の方が、実験的に見積もられた値を高精度に表わすことができる。 図 4または図 5には指数関数の回帰式、対数関数の回帰式によって表される値も併 記する。実験的に見積もられた値によっては、高次の多項式よりも、指数関数や対数 関数などの方が、値を高精度に表わすことができる。また、実験的に見積もられた値 によっては、 N次の多項式と指数関数、対数関数を複合した関数の方が、値を高精 度に表すことができる。
[0027] ここでは、平均待ち時間を悪化させない範囲で、最大の走行距離の削減量が得ら れるようにエレベーター群管理制御装置が運行制御することを目標として説明してい る。
しかし、図 3のグラフにおいて、平均待ち時間を全く悪ィ匕させない範囲で、最大の走 行距離の削減量が得られるように運行制御させる力 あるいは、ある程度の輸送効率 の悪ィ匕を許容し、より多くの走行距離の削減量が得られるように、重み係数 wを" 17" よりも大きな値に設定して運行制御させるか、あるいは、走行距離の削減量と平均待 ち時間の改善率を少しずつ享受できるように重み係数 wを" 17"よりも小さな値に設 定して運行制御させる力などの判断は、エレベーター群管理制御装置の設計者の狙 いや利用者の要求によって変わるものである。
また、待ち時間に限らず、式(1)の予報外れ確率や満員確率又は走行距離の削減 量の何れをどの程度優先させるかなどの判断もエレベーター群管理制御装置の設 計者の狙いや利用者の要求によって変わるものである。その判断によって、重み係 数 wの適正な値は異なるので、 P, Q, R, S, Cを利用して、式(2)をどのような形で 用意するかは、その判断に依存することになる。
[0028] 以下、式(2)における交通量 P、交通パターン変数 Q、エレベーター仕様変数 R、ビ ル仕様変数 S、制御パラメータ影響変数 Cにつ 、て説明する。 パラメータ演算部 13は、例えば、以下の式 (4)を使用して、交通量 Pを演算する。 P = (Psum) / (LD X T) (4)
交通量 Pは、エレベーターの運行開始後にも変動するパラメータであるため、式 (4) における「Psum」は、エレベーター制御装置 1から送信される乗客数データや呼び ボタンの情報など力 推定される各階毎の乗降者人数の和から、単位時間 (T)毎に 導出される。
また、式 (4)における「LD」は、 1秒間でエレベーターが輸送可能な人数 (輸送能力 )を示し、例えば、「建築設計'施行のための昇降機計画指針」(日本エレベーター協 会発行)などに記載されている交通計算法によって演算可能な 5分間輸送能力を基 に以下の式 (5)力ら計算することができる。
LD= (1台当りの 5分間輸送能力) X M/300 (5)
ただし、 Mはエレベーターの台数である。
[0029] パラメータ演算部 13は、例えば、以下の式 (6)を使用して、交通パターン変数 Qを 演算する。
Q=g (OD表) (6)
式 (6)における関数 gは、事前のシミュレーション実験などにより実験的に得られた OD表と交通パターン変数 Qとの関係を基に決められる。
図 6は OD表を示す説明図である。
図 6の OD表中の値は、階床間の相対的な交通量の数値を表している。例えば、出 発階 1F、行き先階 10Fにある" 2"という数字は、単位時間当りに 1Fから 10Fに行く 人の割合が、全体の乗客数の 2%であると 、うことを意味して 、る。
[0030] OD表は、エレベーターの運行開始後にも変動するので、エレベーター制御装置 1 力 送信される乗客数データや呼びボタンの情報など力 推定される各階毎の乗降 者人数の和から、単位時間 (T)毎に導出される。
OD表内の各数値は、それ自体が交通パターンの特徴を示す数値である力 OD 表内の多数の数値を演算パラメータとして利用すると、関数 gが複雑になる上、必要 な演算リソースも大きくなる。
一方、 OD表内の 1つの数値だけでは、局所的な交通の変動によって全体の交通 パターンを見誤る恐れがある。
そのため、この実施の形態 1では、図 6の OD表から図 7に示すような 2 X 2で表され るゾーン毎の OD表を作成する。
[0031] 図 7の OD表は、ビルの階床を主階床(地下〜 1F)と上層階(2F〜上層階)の 2つ にゾーンに分けて、各ゾーン間の相対的な交通量を表して 、る。
図 8は、図 7におけるゾーン 1間の交通量が少ないと仮定して (A=0)、 Bと Cの値を 変化させて 2 X 2の OD表を整列させたときの説明図である。
図 7に示すように、 A+B + C + D= 100に正規化されている場合、 A=0に固定し て、 Bと Cの値を変動させると、 Dの値は自動的に決定される。
図 8の同じ矢印上にある OD表では、以下の式(7)によって表される Qの値が同じに なる。この実施の形態 1では、この Qの値を交通パターン変数として扱うようにする。
Q= (100— B+C) (7)
[0032] パラメータ演算部 13は、例えば、以下の式 (8)の関数 pを使用して、エレベーター 仕様変数 Rを演算する。
R=p (定格速度、加速度、エレベーター定員、エレベーター台数、戸開閉時間)
(8)
エレベーター仕様変数 Rの演算に利用されるパラメータ(エレベーターの仕様を表 すパラメータ)としては、定格速度、加速度、エレベーター定員、エレベーター台数、 戸開閉時間などが挙げられる。一般的に、エレベーターの仕様を表すパラメータは、 エレベーターが納入されるビル毎に異なる力 エレベーターの運行開始後に変動す ることは少ないので、事前の作業により、予めエレベーター群管理制御装置に保存さ れるものとする。
定格速度、加速度、戸開閉時間に関しては、各パラメータの最大値、最小値、平均 値などの固定値が式 (8)で利用されることを想定している力 例えば、センサーなど を使用して検知することが可能であるならば、瞬時値を利用してもよ 、。
式 (8)の関数 pは、事前のシミュレーション実験などによって実験的に得られた定格 速度、加速度、エレベーター定員、エレベーター台数、戸開閉時間などと、エレべ一 ター仕様変数 Rとの関係を基に決められる。 [0033] パラメータ演算部 13は、例えば、以下の式(9)の関数 qを使用して、ビル仕様変数 Sを演算する。
S = q (階高、階床数、急行ゾーン距離) (9)
ビル仕様変数 Sの演算に利用されるパラメータ (ビルの仕様を表すパラメータ)とし ては、階高、階床数、急行ゾーン距離などが挙げられる。一般的に、階高、階床数、 急行ゾーン距離などのビル仕様を表すパラメータは、エレベーターが納入されるビル 毎に異なる力 エレベーターの運行開始後に変動することは少ないので、事前の作 業により、予めエレベーター群管理制御装置に保存されるものとする。
式(9)の関数 qは、事前のシミュレーション実験などにより実験的に得られた階高、 階床数、急行ゾーン距離などとビル仕様変数 Sとの関係を基に決められる。
[0034] パラメータ演算部 13は、例えば、以下の式(10)の関数 uを使用して、制御パラメ一 タ影響変数 Cを演算する。
C=u(制御パラメータ N) (10)
式(10)の関数 uは、事前のシミュレーション実験などにより実験的に得られた制御 ノ メータ Nと制御パラメータ影響変数 Cとの関係を基に決められる。ただし、式(10) では、制御パラメータ Nの数が 1つである力 1つであるとは限らない。
以下、制御パラメータ Nについて説明する。
[0035] エレベーター群管理制御装置では、複数の運行モードが用意されていることが多 い。
運行モードとして、例えば、下記の示すようなものがある。
(1)主階床から上層階に移動する人が多い UPピーク時に、主階床に対して複数台 のエレベーターをサービスさせることで、待ち時間の減少を図る運行モード
(2)同一目的階に行く乗客を極力同一のエレベーターに乗車させることで、輸送効 率を上げる運行モード
(3)主階床から上層階に移動する人が多い UPピーク時に、主階床以上の上層階を 複数のゾーンに分割して、各エレベーターがサービスを提供する階を限定することで 、輸送効率の向上を図る運行モード
(4)上層階から主階床に移動する人が多い DOWNピーク時に、各エレベーターが 受け持てる DOWN呼び数を制限し、 UP方向の乗場呼びと DOWN方向の乗場呼び を受け持つエレベーターを極力分離することで、走行時間の短縮を図るとともに、満 員通過の可能性の減少を図る運行モード
(5)昼食時に食堂階に対して複数台のエレベーターをサービスさせることで、待ち時 間の短縮を図る運行モード
(6)エレベーター内の混雑時に、加速度を上げて、走行時間の短縮を図る運行モー ド、
(7)サービス水準が所定値よりも良 、状態でエレベーターが運行されて 、る場合に、 速度制御を実施して、省電力を図る運行モード
(8)サービス水準が所定値よりも良 、状態でエレベーターが運行されて 、る場合に、 運行しているエレベーターの台数を制限して、省電力を図る運行モード
(9)特定の階にて、突発的に発生する乗客によって、一時的な混雑が発生した場合 に、複数台のエレベーターを配車して混雑緩和を図る運行モード
(10)ビル全体の交通を考慮しながら、混雑階への配車台数をリアルタイムに制御す る運行モード
[0036] これらの運行モードは、大きく分けて、 2つのタイプに分かれる。
1つは、エレベーターの運行開始前に適用することが決定したら、運行開始後に常 に運行モードが実施されるタイプである。
もう 1つは、エレベーターの運行開始前に、適用することが決定しても、常にその運 行モードが実施されるわけではないタイプである。例えば、運行モード(1) (3) (4) (5
) (7) (8) (9)に関しては、エレベーターの運行開始後に、実施条件を満たしていると きのみ実施される。
この場合、エレベーター群管理制御装置では、運行モードの適用 Z非適用を表す 制御パラメータと、運行モードの実施中 Z未実施中を表す制御パラメータは別に扱 われること〖こなる。
[0037] 実施条件として、実施時刻が含まれて ヽる場合には、時刻データも制御パラメータ になる。
また、運行モードを適用することによって新たに発生する制御パラメータがある。 例えば、運行モード(1) (5) (9) (10)では配車台数、運行モード(3)ではゾーン分 割数、運行モード (4)では受け持てる DOWN方向の乗場呼び数、運行モード (6)で は変更後の加速度、運行モード (7)では変更後の定格速度とサービス水準所定値、 運行モード (8)では運行エレベーター台数とサービス水準所定値を設定する必要が ある。
これらの制御パラメータは、運行開始前に決められた数値に固定される場合と、運 行開始後にも変動させる場合があり、運行モードのサービスの質に影響を与えること になる。各運行モードの制御パラメータを固定値とする力 変数とするかの決定も、ェ レベータ一群管理制御装置内で制御パラメータとして扱われることになる。
[0038] 次に、エレベーター群管理制御装置 2の予測演算部 12は、或る階で発生した新規 の乗場呼びを各エレベーター iに割り当てた場合に、各エレベーター iが乗場呼びに 応答して、現在位置から呼び発生階 (新規の乗場呼び発生階、割当済みの乗場呼 び発生階、割当て済みかご呼び)に至るまでに要する移動時間の予測演算を実施す るほか、各エレベーター iが乗場呼びに応答して、現在位置から呼び発生階 (新規の 乗場呼び発生階、割当済みの乗場呼び発生階、割当済みかご呼びの発生階)に至 るまでの走行距離と、現在位置から乗場呼び発生階の乗客の行き先階に至るまでの 走行距離の予測演算、各階での乗降人数とそれに伴うエレベーター内の人数予測 などを実施する (ステップ ST3)。
即ち、予測演算部 12は、新規の乗場呼びが発生したとき、エレベーター iの現在位 置、進行方向、割当済みの乗場呼び、かご呼びなどの状況から、新規の乗場呼び及 び割当済みの乗場呼びに対するエレベーター iの移動時間、予報外れ確率、満員確 率、走行距離などの予測演算を実施する。
予測演算部 12の予測演算方法は、例えば、特開昭 54— 102745号公報に開示さ れている方法がある。なお、ステップ ST2でパラメータ演算部 13により演算された重 み係数 w以外の制御パラメータをステップ ST3の予測演算に利用してもよ 、。
4
[0039] エレベーター群管理制御装置 2の評価演算部 14は、予測演算部 12が新規の乗場 呼びに対するエレベーター iの移動時間、予報外れ確率、満員確率、走行距離など の予測演算を実施すると、その予測演算結果から移動時間、予報外れ確率、満員確 率及び走行距離を評価項目とする評価値 E (i)〜E (i)を導出する (ステップ ST4)。
1 4
例えば、エレベーターが図 9に示すように 10Fにいるとき、乗場呼びが 6Fで発生し 、予測演算部 12の予測演算結果である乗場呼び発生階 6Fに対する移動時間が 10 秒後であり、この乗場呼びが発生して力も現在までに既に 15秒が経過しているなら ば、この乗場呼びに対する待ち時間は、 10+ 15 = 25秒のように計算が行われる。 そして、この待ち時間 25秒に対する評価は、所定の評価関数 fvを用いて、 v=fv( 25秒)のようにして実施される。
満員確率 ·予報外れ確率 ·走行距離などの予測演算されたその他の項目に対する 評価についても、上記の待ち時間の評価値演算と同様に、所定の評価関数を用い て実施される。
[0040] 評価演算部 14は、移動時間、予報外れ確率、満員確率及び走行距離を評価項目 とする評価値 E (i)〜E (i)を導出すると、上記の式(1)に示すように、評価値 E (i)〜
1 4 1
E (i)に重み係数 w〜wを乗算して、各乗算結果の総和を求めることにより、各エレ
4 1 4
ベータ一 iの総合評価銜 (i)を演算する (ステップ ST5)。
なお、重み係数 wは、パラメータ演算部 13により演算された値であり、重み係数 w
4 1
〜wは予め設定された固定値又はパラメータ演算部 13により演算された値である。
3
[0041] エレベーター群管理制御装置 2の乗場呼び割当部 15は、評価演算部 14が各エレ ベータ一 iの総合評価街 (i)を演算すると、複数のエレベーターの中から総合評価値 J (i)が最良のエレベーター(例えば、総合評価街 (i)が最大のエレベーター)を選択 する。ただし、総合評価銜 (i)が小さい程、最良のエレベーターであるような式(1)が 採用されている場合には、総合評価街 (i)が最小のエレベーターを選択する。
乗場呼び割当部 15は、複数のエレベーターの中から最良のエレベーターを選択 すると、そのエレベーターに新規の乗場呼びを割り当てる処理を実施する (ステップ S T6)。
[0042] エレベーター群管理制御装置 2の運転制御部 16は、乗場呼び割当部 15により乗 場呼びが割り当てられたエレベーターに係るエレベーター制御装置 1に対して、乗場 呼びが割り当てられた旨を通知する (ステップ ST7)。
エレベーター制御装置 1は、エレベーター群管理制御装置 2から乗場呼びの割当 通知を受けると、エレベーターを制御して、乗場呼び発生階までエレベーターを移動 させる。
[0043] 以上で明らかなように、この実施の形態 1によれば、エレベーターの走行距離と乗 客の平均待ち時間との関係を考慮して、予測演算部 12により予測された走行距離か ら演算される評価項目の重み係数 wを決定するパラメータ演算部 13と、乗客の待ち
4
時間の評価項目と走行距離の評価項目とパラメータ演算部 13により決定された重み 係数 wから各エレベーター iの総合評価 » (i)を演算する評価演算部 14とを設け、
4
複数のエレベーターの中力も総合評価街 (i)が最良のエレベーターを選択し、その エレベーターに乗場呼びを割り当てるように構成したので、乗客の待ち時間が長くな るなどの不便な状況の発生を招くことなぐエレベーターの走行距離を削減して、省 エネルギー効果を高めることができる効果を奏する。
[0044] なお、この実施の形態 1では、パラメータ演算部 13が式 (2)を使用して、走行距離 の評価値 E (i)に対する重み係数 wを演算するものについて示した力 本来的には
4 4
、定格速度、加速度、エレベーター定員、エレベーター台数、戸開閉時間、階高、階 床数、急行ゾーン距離、制御パラメータ Nなど、変動する値を全て変数として有する 重み係数 wの式を用意できるのが理想である。
4
しかし、そのような式を用意することは困難であるため、この実施の形態 1では、パラ メータを 5つ(P, Q, R, S, C)に大別し、ノ ラメータ P, Q, R, S, Cから重み係数 wを
4 求めるようにしている。ただし、重み係数 wを求めるための式(2)をどのような形で用
4
意するかは、エレベーター群管理制御装置の設計者の狙いや利用者の要求に依存 するということは、既に述べた通りである。
式 (6) (8) (9) (10)の関数は、パラメータ P, Q, R, S, Cが式(2)で利用し易くなる ように用意すればよい。
[0045] また、この実施の形態 1では、交通量、交通パターン、定格速度、加速度、エレべ一 ター定員、エレベーター台数、戸開閉時間、階高、急行ゾーン距離、階床数、制御 ノ ラメータ Nを利用して重み係数 wを演算している力 必ずしも全ての要素を利用し
4
なくてもよい。
ただし、一般的に、重み係数 wを少ない要素で演算する程、重み係数 wの最適値 と比較して、演算される重み係数 Wの精度が劣化することになる。
4
例えば、重み係数 wの演算に利用される要素に階高を含まないとすると、階高が
4
変化したときに、重み係数 wが適正な値に演算されない可能性が高くなる。
4
[0046] また、この実施の形態 1では、重み係数 wの演算を例にして説明した力 演算され
4
る制御パラメータは重み係数 Wのみに限らない。例えば、 W、 W、 Wなどの他の重
4 1 2 3
み係数を演算してもよい。
重み係数 wは、乗場呼びを割り当てるエレベーターを決定する際に、式(1)の走行
4
距離の評価値 E (i)を、他の評価値 E (i)、 E (i)、 E (i)と比較して、どの程度重視す
4 1 2 3
るかを相対的に表す重み係数である。
重み係数 Wを固定値とする代わりに、重み係数 W、 W、 Wなどを動的に変動させる
4 1 2 3
ことで、待ち時間をあまり悪化させずに走行距離を削減できるように運行制御すること は可能であり、それは重み係数 wを動的に変動させることと同義である。
4
[0047] 実施の形態 2.
図 10はこの発明の実施の形態 2によるエレベーター群管理制御装置を示す構成 図であり、図において、図 1と同一符号は同一または相当部分を示すので説明を省 略する。
エレベーター群管理制御装置 2のパラメータ演算部 21はエレベーターの走行距離 の削減率と、乗客の平均待ち時間の改善率との関係を考慮し、交通状態 (例えば、 交通量、交通パターン)、エレベーター仕様 (例えば、定格速度、加速度、エレベータ 一台数 (かご台数)、エレベーター定員 (かご定員)、戸開閉時間)、ビル仕様 (例えば 、階高、急行ゾーン距離、階床数)及びエレベーター制御状態 (例えば、運行モード の適否)を示すパラメータのうち、少なくとも 1以上のパラメータを使用して、新規の乗 場呼びを割り当てる可能性がある候補エレベーターの選択ルール (選択規則)に対 する制御パラメータ X(規則適合値)を演算する処理を実施する。なお、パラメータ演 算部 21は適合値演算手段を構成して ヽる。
[0048] エレベーター群管理制御装置 2の候補エレベーター選択部 22は複数のエレべ一 ターの中からパラメータ演算部 21により演算された制御パラメータ Xが選択ルールを 満足するエレベーターを候補エレベーターとして選択する処理を実施する。なお、候 補エレベーター選択部 22は候補エレベーター選択手段を構成している。
エレベーター群管理制御装置 2の評価演算部 23は予測演算部 12により予測され た移動時間を評価項目とする候補エレベーターの総合評価値を演算する処理を実 施する。なお、評価演算部 23は総合評価値演算手段を構成している。
エレベーター群管理制御装置 2の乗場呼び割当部 24は候補エレベーター選択部 22により選択された候補エレベーターの中から評価演算部 23により演算された総合 評価値が最良のエレベーターを選択し、そのエレベーターに新規の乗場呼びを割り 当てる処理を実施する。なお、乗場呼び割当部 24は乗場呼び割当手段を構成して いる。
[0049] 図 10の例では、エレベーター群管理制御装置 2の構成要素である通信部 11、予 測演算部 12、パラメータ演算部 21、候補エレベーター選択部 22、評価演算部 23、 乗場呼び割当部 24及び運転制御部 16が専用のハードウェア(例えば、 MPUなどを 実装して!/、る半導体集積回路基板)で構成されて 、ることを想定して 、るが、エレべ 一ター群管理制御装置 2がコンピュータで構成されている場合、通信部 11、予測演 算部 12、パラメータ演算部 21、候補エレベーター選択部 22、評価演算部 23、乗場 呼び割当部 24及び運転制御部 16の処理内容を記述したプログラムをコンピュータ のメモリに格納し、コンピュータの CPUが当該メモリに格納されているプログラムを実 行するようにしてちょい。
図 11はこの発明の実施の形態 2によるエレベーター群管理制御装置の処理内容 を示すフローチャートである。
[0050] 次に動作について説明する。
例えば、乗客が乗車場に設置されて 、るエレベーターの乗場呼びボタンを押すこと により、新規の乗場呼びが発生すると (ステップ ST1)、エレベーター群管理制御装 置 2の通信部 11は、上記実施の形態 1と同様に、各エレベーター iのエレベーター制 御装置 1から、エレベーター iの現在位置、乗場呼び発生階、乗場呼び方向、進行方 向(上り、下り)、行き先階などの走行情報等を収集する。
[0051] エレベーター群管理制御装置 2のパラメータ演算部 21は、エレベーターの走行距 離の削減率と、乗客の平均待ち時間の改善率との関係を考慮して、新規の乗場呼び を割り当てる可能性がある候補エレベーターの選択ルールに対する制御パラメータ X を演算する(ステップ ST11)。候補エレベーターの選択ルールについては後述する 即ち、パラメータ演算部 21は、交通量 P、交通パターン変数 Q、エレベーター仕様 変数 ビル仕様変数 S、制御パラメータ影響変数 Cを利用して、候補エレベーター の選択ルールに対する制御パラメータ Xを演算する。
例えば、以下の式(11)を使用して、候補エレベーターの選択ルールに対する制御 ノ ラメータ Xを演算する。
X=f (P, Q, R, S, C) (11)
交通量 P、交通パターン変数 Q、エレベーター仕様変数 R、ビル仕様変数 S、制御 ノ メータ影響変数 Cの演算方法は、上記実施の形態 1と同様であるため説明を省 略する。
また、関数 fは、事前のシミュレーション実験などにより実験的に得られた制御パラメ ータ Xと P, Q, R, S, Cとの関係に基づいて、上記実施の形態 1の式(2)の関数 fを 決めるのと同様の手順で決定される。
[0052] 次に、エレベーター群管理制御装置 2の予測演算部 12は、或る階で新規の乗場 呼びが発生すると、上記実施の形態 1と同様に、新規の乗場呼びを各エレベーター i に割り当てた場合を想定し、各エレベーター iの現在位置、進行方向、割当済みの乗 場呼び、かご呼びなどの状況から、新規の乗場呼び及び割当済みの乗場呼びに対 するエレベーター iの移動時間、予報外れ確率、満員確率などの予測演算を実施す る(ステップ ST12)。
[0053] 次に、エレベーター群管理制御装置 2の候補エレベーター選択部 22は、複数のェ レベータ一の中からパラメータ演算部 21により演算された制御パラメータ Xが選択ル ールを満足するエレベーターを候補エレベーターとして選択する (ステップ ST13)。 ここで、図 12は走行距離の削減を目的とする候補エレベーターの選択ルールが適 用される状況を説明する説明図である。
図 12 (a)の例では、エレベーターの 1号機(# 1)が 6Fにかご呼びを有し、 1Fから 出発を開始するところであり、 2号機 ( # 2)は 7Fに待機中である。 このような状態で 4FUpの乗場呼びが発生すると、 4FUpには、 1号機(# 1) , 2号 機( # 2)の 、ずれに乗場呼びを割り当ててもほぼ同時に到着可能である。
しかし、 1号機( # 1) , 2号機 ( # 2)の走行距離の合計は、 1号機( # 1)に乗場呼び を割り当てた場合の方が短くなる。
つまり、新規の乗場呼びと同じ方向に走行中又は走行予定のエレベーターに乗場 呼びを割り当てると、走行距離を短縮することができる(図 12 (a)〜 (d)を参照)。
[0054] そこで、候補エレベーター選択部 22は、新規の乗場呼びと同じ方向に走行中又は 走行予定のエレベーターに乗場呼びを割り当てることができるようにする選択ルール を保有している。
例えば、以下の選択ルールを保有している。
IF ( (新規の乗場呼びが自階割当になるエレベーター)
or
(乗場呼び発生階に乗場呼びを有するエレベーター)
or
(新規の乗場呼びと同方向に走行中又は走行予定のエレベーター))
THEN
(当該エレベーターを候補エレベーターとして選択する)
[0055] ただし、上記の選択ルールでは、新規の乗場呼びと同方向、かつ、前方に乗場呼 びを有するエレベーターであっても、既に多数の乗場呼びが割り当てられているエレ ベータ一に新規の乗場呼びを割り当てると長待ちが発生し、ビル全体の輸送効率を 悪化させる場合がある。
そこで、以下の選択ルールでは、長待ちの発生を防止するため、停止予定回数が 所定回数以内のエレベーターを選択する条件を追加している(and以下の条件を参 照)。
[0056] IF ( (新規の乗場呼びが自階割当になるエレベーター)
or
(乗場呼び発生階に乗場呼びを有するエレベーター)
or (新規の乗場呼びと同方向に走行中又は走行予定のエレベーター) and
(新規の乗場呼びと同方向かつ前方に乗場呼びを一つだけ有するエレベータ 一))
THEN
(当該エレベーターを候補エレベーターとして選択する)
[0057] あるいは、
IF ( (新規の乗場呼びが自階割当になるエレベーター)
or
(乗場呼び発生階に乗場呼びを有するエレベーター)
or
(新規の乗場呼びと同方向に走行中又は走行予定のエレベーター) and
(新規の乗場呼びを割り当てても長待ちが発生しないエレベーター))
THEN
(当該エレベーターを候補エレベーターとして選択する)
[0058] あるいは、
IF ( (新規の乗場呼びが自階割当になるエレベーター)
or
(乗場呼び発生階に乗場呼びを有するエレベーター)
or
(新規の乗場呼びと同方向に走行中又は走行予定のエレベーター) and
(制御パラメータ Xが規定値以上))
THEN
(当該エレベーターを候補エレベーターとして選択する)
[0059] 候補エレベーター選択部 22が、例えば、制御パラメータ Xが規定値以上であること を条件とする選択ルールを使用する場合、複数のエレベーターの中から、ノ ラメータ 演算部 21により演算された制御パラメータ Xが規定値以上であるエレベーターが候 補エレベーターとして選択される。ここでは、制御パラメータ Xが規定値以上であるこ とを条件とする選択ルールを使用しているものを示している力 制御パラメータ Xが規 定値以下であることを条件とする選択ルールを使用している場合には、パラメータ演 算部 21により演算された制御パラメータ Xが規定値以下であるエレベーターが候補 エレベーターとして選択される。
なお、候補エレベーター選択部 22は、選択ルールを満足するエレベーターが存在 しない場合には、全てのエレベーターを候補エレベーターとして選択する。このような 場合には、従来と同じ手順で、乗場呼びを割り当てるエレベーターが決定されること になる。
[0060] エレベーター群管理制御装置 2の評価演算部 23は、予測演算部 12が新規の乗場 呼びに対するエレベーター iの移動時間、予報外れ確率、満員確率などの予測演算 を実施し、候補エレベーター選択部 22が候補エレベーターを選択すると、その予測 演算結果から各候補エレベーターの移動時間、予報外れ確率及び満員確率を評価 項目とする評価値 E (i)
1 〜E (i)を導出する (ステップ ST14)
3 。
評価演算部 23は、移動時間、予報外れ確率及び満員確率を評価項目とする評価 値 E (i)〜E (i)を導出すると、下記の式(12)に示すように、評価値 E (i)〜E (i)
1 3 1 3 重み係数 w〜wを乗算して、各乗算結果の総和を求めることにより、各候補エレべ
1 3
一ター iの総合評価銜 (i)を演算する (ステップ ST15)。
J (i) = w E (i) + w E (i) + w E (i) (12)
1 1 2 2 3 3
なお、各候補エレベーター iの総合評価街 (i)は、走行距離に関する評価項目が 省略されている点を除けば、式(1)と同等である。
[0061] エレベーター群管理制御装置 2の乗場呼び割当部 24は、評価演算部 14が候補ェ レベータ一選択部 22により選択された各候補エレベーター iの総合評価街 (i)を演 算すると、各候補エレベーターの中から総合評価街 (i)が最良のエレベーター(例え ば、総合評価銜 (i)が最大のエレベーター)を選択する。ただし、総合評価銜 (i)が 小さい程、最良のエレベーターであるような式(12)が採用されている場合には、総合 評価銜 (i)が最小のエレベーターを選択する。 乗場呼び割当部 15は、候補エレベーター選択部 22により選択された候補エレべ 一ターの中から最良のエレベーターを選択すると、そのエレベーターに新規の乗場 呼びを割り当てる処理を実施する (ステップ ST16)。
[0062] エレベーター群管理制御装置 2の運転制御部 16は、乗場呼び割当部 24により乗 場呼びが割り当てられたエレベーターに係るエレベーター制御装置 1に対して、乗場 呼びが割り当てられた旨を通知する (ステップ ST7)。
エレベーター制御装置 1は、エレベーター群管理制御装置 2から乗場呼びの割当 通知を受けると、エレベーターを制御して、乗場呼び発生階までエレベーターを移動 させる。
[0063] 上記実施の形態 1では、図 3を用いて、重み係数 wの変化に対する総走行距離の
4
削減率と乗客の平均待ち時間の改善率を示している。重み係数 wが大きくなる程、
4
走行距離の削減率が増加し、平均待ち時間が悪ィ匕する傾向になるのは、走行距離 の評価指標の優先度が高くなるためであると説明している。
この実施の形態 2における制御パラメータ Xに関しても同様のことが言える。 制御パラメータ Xと比較する規定値を例えば小さな値に設定すると、新規の乗場呼 びを割り当てる可能性がある候補エレベーターの数が多くなり、輸送効率の良いエレ ベータ一を選択することが可能になる力 従来の割当エレベーターの決定方法とあま り差が生じな 、ので、あまり多くの走行距離の削減量が得られな 、。
逆に、制御パラメータ Xと比較する規定値を大きな値に設定すると、候補エレベータ 一の数が少なくなるので、多くの走行距離を削減することが可能になるが、走行距離 が短くて済むエレベーター力 必ずしも待ち時間が短いとは限らないので、輸送効率 が悪ィ匕することがある。
[0064] したがって、平均待ち時間を全く悪化させない範囲で、最大の走行距離の削減量 が得られるように制御パラメータ Xを演算させる力 あるいは、ある程度の輸送効率の 悪ィ匕を許容して、より多くの走行距離の削減量を得られるように制御パラメータ Xを演 算させるか、あるいは、走行距離の削減率と平均待ち時間の改善率を少しずつ享受 できるように制御パラメータ Xを演算させるかは、エレベーター群管理制御装置の設 計者の狙いや利用者の要求によって変わるものであり、パラメータ演算部 21の式(1 1)の設定に依存する。
[0065] 以上で明らかなように、この実施の形態 2によれば、エレベーターの走行距離と乗 客の平均待ち時間との関係を考慮して、乗場呼びを割り当てる可能性がある候補ェ レベータ一の選択ルールに対する制御パラメータ Xを演算するパラメータ演算部 21 と、複数のエレベーターの中からパラメータ演算部 21により演算された制御パラメ一 タ Xが選択ルールを満足するエレベーターを候補エレベーターとして選択する候補 エレベーター選択部 22と、予測演算部 12により予測された移動時間を評価項目と する候補エレベーターの総合評価値を演算する評価演算部 23とを設け、候補エレ ベータ一選択部 22により選択された候補エレベーターの中から評価演算部 23により 演算された総合評価値が最良のエレベーターを選択し、そのエレベーターに乗場呼 びを割り当てるように構成したので、乗客の待ち時間が長くなるなどの不便な状況の 発生を招くことなぐエレベーターの走行距離を削減して、省エネルギー効果を高め ることができる効果を奏する。
[0066] 実施の形態 3.
図 13はこの発明の実施の形態 3によるエレベーター群管理制御装置を示す構成 図であり、図において、図 1と同一符号は同一または相当部分を示すので説明を省 略する。
基準パラメータ演算部 31は交通状態対応基準値演算部 31aを内蔵しており、交通 状態対応基準値演算部 31aが交通状態を示すパラメータカゝら走行距離の評価項目 に対する重み係数の基準値 w を演算する処理を実施する。
4— basic
補正値演算部 32は階高補正値演算部 32a、急行ゾーン距離補正値演算部 32b、 階床数補正値演算部 32c、定格速度補正値演算部 32d、加速度補正値演算部 32e 、エレベーター台数補正値演算部 32f、エレベーター定員補正値演算部 32g、戸開 閉時間補正値演算部 32h及び制御パラメータ補正値演算部 32iを内蔵しており、ェ レベータ一仕様、ビル仕様及びエレベーター制御状態を示すパラメータに応じて基 準パラメータ演算部 31により演算された重み係数の基準値 w を補正する処理を
4_basic
実施する。
なお、基準パラメータ演算部 31及び補正値演算部 32から重み係数決定手段が構 成されている。
[0067] 図 13の例では、エレベーター群管理制御装置 2の構成要素である通信部 11、予 測演算部 12、評価演算部 14、乗場呼び割当部 15、運転制御部 16、基準パラメータ 演算部 31及び補正値演算部 32が専用のハードウェア(例えば、 MPUなどを実装し て 、る半導体集積回路基板)で構成されて 、ることを想定して 、るが、エレベーター 群管理制御装置 2がコンピュータで構成されている場合、通信部 11、予測演算部 12 、評価演算部 14、乗場呼び割当部 15、運転制御部 16、基準パラメータ演算部 31及 び補正値演算部 32の処理内容を記述したプログラムをコンピュータのメモリに格納し 、コンピュータの CPUが当該メモリに格納されて 、るプログラムを実行するようにして ちょい。
図 14はこの発明の実施の形態 3によるエレベーター群管理制御装置の処理内容 を示すフローチャートである。
[0068] 次に動作について説明する。
エレベーター群管理制御装置内の 1つの制御パラメータの適正値は、多数の要素 (例えば、階高、急行ゾーン距離、階床数、定格速度、加速度、エレベーター台数、 エレベーター定員、戸開閉時間、制御パラメータ N)によって影響を受ける。このため
、全ての要素をパラメータとする関数は、多数の要素が影響を与え合う複雑な関数に なる。
そこで、特許文献である特開平 4— 76913号公報では、求めたい制御パラメータを 変動させて定期的にシミュレーション評価を実施し、得られた性能の曲線と目標値に よって、現在のエレベーター群管理制御装置の運行制御に適切な制御パラメータを 決定する方法を用いて 、る。
[0069] し力しながら、上述の方法では、適切な制御パラメータを求めるために、エレベータ 一の運転制御系ソフトウェアと別のシミュレーション系ソフトウェアをエレベーター群管 理制御装置に搭載することになり、全体としてパラメータを決定するための仕組みが 複雑になる。
定期的にシミュレーション評価してパラメータを決定しているため、シミュレーション の初期設定に必要な要素だけでなぐシミュレーション精度や、出力結果の統計処理 方法なども、パラメータの決定に寄与する要素となるため、求めている制御パラメータ が想定値力 外れる状態を推定することが難しぐ仮に演算された制御パラメータが 想定値カゝら外れていたと判明した場合も、原因の解明が難解になる。
また、上記実施の形態 1で述べた制御パラメータを演算するための式(2)の関数 f は、事前のシミュレーション実験などにより実験的に得られたパラメータ P, Q, R, S, Cと重み係数 wとの間の関係を基に決定するとしている。
4
[0070] し力しながら、関数 常に図 4、図 5に示すように、単調な変化を示すグラフから 求められるとは限らず、各要素が相互に影響を与え合う複雑な関数になることが予想 される。
求めて 、る制御パラメータが想定値力 外れる状態を推定することが難しく、仮に 演算された制御パラメータが想定値力 外れていたと判明した場合も、原因の解明が 難解になるので、制御パラメータの決定方法に改良が必要である。
以下、この実施の形態 3では、制御パラメータの決定方法を詳細に説明する。
[0071] 例えば、乗客が乗車場に設置されているエレベーターの乗場呼びボタンを押すこと により、新規の乗場呼びが発生すると (ステップ ST1)、エレベーター群管理制御装 置 2の通信部 11は、上記実施の形態 1と同様に、各エレベーター iのエレベーター制 御装置 1から、エレベーター iの現在位置、乗場呼び発生階、乗場呼び方向、進行方 向(上り、下り)、行き先階などの走行情報等を収集する。
[0072] エレベーター群管理制御装置 2の基準パラメータ演算部 31は、走行距離の評価値 E (i)に対する重み係数の基準値 w を演算する (ステップ ST21)。
4— basic
重み係数の基準値 W は、重み係数 Wを決定する要素(交通量、交通パターン、
basic
階高、急行ゾーン距離、階床数、定格速度、加速度、エレベーター台数、エレベータ 一定員、戸開閉時間、制御パラメータ N)のうち、特定の要素以外の値を固定した状 態 (基準環境)で、特定の要素の変動に対応した基準関数 f により求められる値で
basic
ある。
例えば、特定のエレベーター仕様 (かご仕様)のエレベーター力 特定のビルに備 え付けられ、一度運行が開始されると、階高、急行ゾーン距離、階床数、定格速度、 加速度、エレベーター台数、エレベーター定員、戸開閉時間などが随時変動するこ とは少ない。
一方、交通量や交通パターンは、エレベーターの運行が開始された後も随時変動 する要素である。
そこで、この実施の形態 3では、基準パラメータ演算部 31の交通状態対応基準値 演算部 31aが、階高、急行ゾーン距離、階床数、定格速度、加速度、エレベーター 台数、エレベーター定員、戸開閉時間、制御パラメータ Nなどのビル仕様、エレべ一 ター仕様などを表す値を固定した基準環境で、交通量と交通パターンなどの交通状 態の変動にのみ着目し、下記の式(13)を用いて、重み係数の基準値 w を演算
4_basic
する。
w =f (P, Q) (13)
4_basic basic
基準関数 f は事前のシミュレーション実験などにより実験的に得られたパラメータ
basic
P、 Qと基準値 w との間の関係を基に決められる。
4_basic
[0073] 例えば、特定のエレベーター仕様、ビル形状、制御パラメータ Nの下 (基準環境の 下)でシミュレーション実験を実施した結果、平均待ち時間を悪ィ匕させな 、範囲で、 最大の走行距離の削減量が得られる重み係数の基準値 w の値 (value)力 vari
4_basic
able (P、 Q)のいずれかの変化に対して、図 4あるいは図 5のような変化を示したとす ると、上記実施の形態 1の式 (2)の関数 fを決める手順と同様の手順で、式(13)の f
bas を決めることができる。
[0074] 上記実施の形態 1では、変数 (P、 Q、 R、 S、 C)の変化に対して、平均待ち時間を 悪化させない範囲で、最大の走行距離の削減量が得られ重み係数 wの値が、図 4あ
4
るいは図 5のような変化を示すものと仮定して説明を行っている力 変数 , Q, R, S , C)の中に含まれる要素が多いので、各要素が影響を与え合うことになり、図 4ある いは図 5のような単調な変化を示すことは少な 、。
変化が複雑になる程、回帰式は複雑になる。逆に、変数の中に含まれる要素が少 ない程、適正な重み係数 wの値の単調な変化が得られやすい。単調な変化が得ら
4
れることで、単純な回帰式を求め易くなる。
[0075] ここでは、平均待ち時間を悪化させない範囲で、最大の走行距離の削減量が得ら れるようにエレベーター群管理制御装置が運行制御することを目標として説明する。 しかし、上記実施の形態 1で式 (2)を設定する場合と同様に、図 3のグラフを観察し たときに、平均待ち時間を全く悪化させない範囲で、最大の走行距離の削減量が得 られるように運行制御させるカゝ、あるいは、ある程度の輸送効率の悪化を許容し、より 多くの走行距離削減量を得られるように重み係数 wを" 17"よりも大きな値に設定し
4
て運行制御させるか、あるいは、走行距離の削減量と平均待ち時間の改善率を少し ずつ享受できるように重み係数を" 17"よりも小さな値に設定して運行制御させるかな どの判断は、エレベーター群管理制御装置の設計者の狙いや利用者の要求によつ て変わるものである。
待ち時間に限らず、式(1)の予報外れ確率、満員確率、走行距離の削減量のいず れをどの程度優先させるかなどの判断も、エレベーター群管理制御装置の設計者の 狙いや利用者の要求によって変わるものである。その判断によって、重み係数 wの
4 適正な値が異なるので、 P, Qを利用して、式(13)をどのような形で用意するかは、そ の判断に依存することになる。
[0076] 補正値演算部 32は、定めた基準環境と実際の環境の差によって生じる基準値 w
4_ba と適正値の差を補正するための補正値 Cuを演算する (ステップ ST22)。 補正値 Cuの演算に利用される要素としては、階高、急行ゾーン距離、階床数、ェ レベータ一の定格速度、加速度、エレベーター定員、戸開閉時間、制御パラメータ N などがある。
これらの要素を利用して、補正値 Cuを下記の式( 15)の特定の関数 cfに従って演 算する。
Cu=cf (階高、急行ゾーン距離、階床数、定格速度、加速度、エレベーター定員 、エレベーター台数、戸開閉時間、制御パラメータ N) (15)
関数 cfは、事前のシミュレーション実験などにより実験的に得られた階高、急行ゾー ン距離、階床数、定格速度、加速度、エレベーター定員、エレベーター台数、戸開 閉時間、制御パラメータ Nなどと補正値 Cuとの関係を基に決められる。
[0077] 以下、式(15)を決定する手順について説明する。
例えば、求める補正値 Cuを補正係数として利用し、式(13)の基準値 w に乗算
4_basic すると仮定すると、重み係数 wは下記のように表される。 w =w X Cu
4 4— basic
ここで、重み係数 wの適正値を事前の実験により見積もったとすると、 w =w X
basic
Cuであるならば、 Cu=w /w でなければならない。
4 4_basic
見積もられた重み係数 wと、式(13)で演算される基準値 w から、適切な Cu=
4 4— basic
w /w を見積ちることができる。
4 4_oasic
見積もられた適切な Cu=w /w (value)力 variable (階高、急行ゾーン距離
4 4_basic
、階床数、定格速度、加速度、エレベーター定員、エレベーター台数、戸開閉時間、 制御パラメータ N)のいずれかに対して図 4あるいは図 5のような変化を示したとすると 、上記実施の形態 1の式 (2)の関数 fを決める手順と同様の手順で、式(15)の関数 c f決めることができる。
[0078] なお、式(15)を決定する手順にお!、て、全ての条件で重み係数 wの適正値を事
4
前の実験により見積もる必要はない。
し力しながら、補正値 Cuと全ての要素の関係を表す関数 cfが、図 4あるいは図 5に 示すような単調な変化を示すことは少なぐ複雑な関数になることが予想される。 関数に含まれる要素は少ない方が、補正値 Cuの変化が単調になり、関数がよりシ ンプルになる。
そこで、全ての要素に対応する補正値の代わりに、階高、階床数、急行ゾーン距離 などのビル仕様に応じた補正値と、定格速度、加速度、エレベーター定員、エレべ一 ター台数、戸開閉時間などのエレベーター仕様に応じた補正値と、制御パラメータ N に応じた補正値を個別に演算する。
例えば、ビル仕様による補正値 Cを階高、階床数、急行ゾーン距離などを利用して
S
、例えば、以下の式(16)の特定の関数 cqに従って導出する。
C =cq (階高、階床数、急行ゾーン距離) (16)
S
関数 cqは、事前のシミュレーション実験などにより実験的に得られた階高、階床数、 急行ゾーン距離などと補正値 Cとの関係を基に決められる。
S
[0079] 以下、式(16)を決定する手順について説明する。
例えば、求める補正値 Cを補正係数として利用し、式(13)の基準値 w に乗算
5 4— basic すると仮定すると、重み係数 wは下記のように表される。 w =w X C
4 4— basic S
ここで、重み係数 Wの適正値を事前の実験により見積もったとすると、
4 4— Dasic
Cであるならば、 C =w /w でなければならない。
見積もられた重み係数 wと、式(13)で演算される基準値 w から、適切な C =w
4 4— basic S
/w を見積もることができる。
4 4— basic
見積もられた適切な C =w /w (value)が、 variable (階高、急行ゾーン距離、
S 4 4— basic
階床数)のいずれかに対して図 4あるいは図 5のような変化を示したとすると、上記実 施の形態 1の式(2)の関数 fを決める手順と同様の手順で、式( 16)の関数 cq決める ことができる。
[0080] また、例えば、エレベーター仕様による補正値 Cを定格速度、加速度、エレベータ
P
一台数、エレベーター定員、戸開閉時間などを利用して、式(17)の特定の関数 cp に従って導出する。
C
P
=cp (定格速度、加速度、エレベーター定員、エレベーター台数、戸開閉時間)
(17)
関数 cpは、事前のシミュレーション実験などにより実験的に得られた定格速度、カロ 速度、エレベーター定員、エレベーター台数、戸開閉時間などと補正値 Cとの関係
P
を基に決められる。
[0081] 以下、式(17)を決定する手順について説明する。
例えば、求める補正値 Cを補正係数として利用し、式(13)の基準値 w に乗算
P 4— basic すると仮定すると、重み係数 wは下記のように表される。
4
w =w Xし
4 4— basic P
ここで、重み係数 wの適正値を事前の実験により見積もったとすると、 w =w X
4 4 4— basic
Cであるならば、 C =w /w でなければならない。
P P 4 4— basic
見積もられた重み係数 wと、式(13)で演算される基準値 w から、適切な C =w
4 4— basic P
/w を見積もることができる。
4 4— basic
見積もられた適切な C =w Zw (value)力 variable (定格速度、加速度、エレ
P 4 4—り asic
ベータ一定員、エレベーター台数、戸開閉時間)のいずれかに対して図 4あるいは図 5のような変化を示したとすると、上記実施の形態 1の式(2)の関数 fを決める手順と 同様の手順で、式( 17)の関数 cp決めることができる。
[0082] また、例えば、制御パラメータ Nによる補正値 Cを、制御パラメータ Nを利用して、
C
式(18)の特定の関数 ccに従って導出する。
C =cc (制御パラメータ N) (18)
C
関数 ccは、事前のシミュレーション実験により実験的に得られた制御パラメータ Nと 補正値 Cとの関係を基に決められる。制御パラメータ Nは、上記実施の形態 1で説
C
明した制御パラメータ Nと同じである。
[0083] 以下、式(18)を決定する手順について説明する。
例えば、求める補正値 Cを補正係数として利用し、式(13)の基準値 w に乗算
C basic すると仮定すると、重み係数 wは下記のように表される。
4
w =w Xし
4 4— basic C
ここで、重み係数 wの適正値を事前の実験により見積もったとすると、 w =w X
4— basic
Cであるならば、 C =w /w でなければならない。
C C 4 4— basic
見積もられた重み係数 wと、式(13)で演算される基準値 w から、適切な C =w
4 4— basic C
/w を見積もることができる。
4 basic
見積もられた適切な C =w /w (value)力 variable (制御パラメータ N—l、制
C 4 4— basic
御パラメータ N— 2、 · · ·、制御パラメータ N—N)のいずれかに対して図 4あるいは図 5のような変化を示したとすると、上記実施の形態 1の式(2)の関数 fを決める手順と 同様の手順で、式(18)の関数 cc決めることができる。
[0084] 最終的な重み係数 wを演算するために重み係数基準値 w を補正する値を C
4 4— basic final とすると、式 (16)、(17)、(18)によって個別に演算される C 、 C 、 Cと C の間の式
S P C final
が必要となる。
C =f (C 、 C 、 C ) (19)
final final S P C
関数 f は、事前のシミュレーション実験などにより実験的に得られた C 、 C 、 Cな final S P C どと C との関係を基に決められる。
final
例えば、補正値 C を補正係数として利用し、式(13)の基準値 w に乗算すると
nnal 4_basic
仮定すると、重み係数 wは下記のように表される。 w =w X C
4 4— basic fi
ここで、重み係数 Wの適正値を事前の実験により見積もったとすると、
4 4— Dasic
Cであるならば、 C =w /w でなければならない。
見積もられた重み係数 wと、式(13)で演算される基準値 w から、適切な C =
4 4— basic nnai w /w を見積ちることができる。
4 4_oasic
見積もられた適切な C =w /w (value)力 variable (C、 C、 C )の!/、ずれ final 4 4— basic S P C
かに対して図 4あるいは図 5のような変化を示したとすると、上記実施の形態 1の式(2 )の関数 fを決める手順と同様の手順で、式(19)の関数 f を決めることができる。
final
[0085] 式 (19)によって表される関数 f として、例えば、次のような式 (20)がある。
final
C =C X C X C (20)
final S P C
式 (20)を用いると、仮に、階高、階床数又は急行ゾーン距離の増加によって、基準 環境とするビル仕様に比べて走行距離が 2倍となり、式(1)の走行距離の評価値 E (
4 i)が 2倍になっても、補正値 C , C , Cのいずれかにより、重み係数 wが 1Z2になる
S P C 4
ので、走行距離の評価値 E (i)が重視され過ぎることがなくなる。式 (20)は、式 (19)に
4
よって表される式の一例である。
式(16) (17) (18)では、全ての要素をビル仕様と、エレベーター仕様と、制御パラ メータ Nの 3つのカテゴリーに大別し、カテゴリー毎に補正値を演算している力 カテ ゴリーの数は 3つに限らない。また、要素の各カテゴリーへの分類方法も、上記の方 法に限らない。
上述した方法では、カテゴリー毎に補正値を演算しているが、関数に含まれる要素 は少ない方が、関数がよりシンプルになる。要素 1つずつに対する補正値を演算する ことで、関数がよりシンプルになる。
[0086] そこで、補正値演算部 32の階高補正値演算部 32aは、ビルの階高に応じて、以下 のような補正値 Cを演算する。
1
C =f (階高) (21)
1 1
関数 f は、事前のシミュレーション実験などにより実験的に得られた階高と補正値 c
1 1 との関係を基に決められる。
例えば、補正値 Cを補正係数として利用し、式(13)の基準値 w に乗算すると
1 4_basic 仮定すると、重み係数 wは下記のように表される。
4
w =w Xし
4 4— basic 1
ここで、重み係数 wの適正値を事前の実験により見積もったとすると、 w =w X basic
Cであるならば、 C =w /w でなければならない。
1 1 4 4— basic
見積もられた重み係数 wと、式(13)で演算される基準値 w から、適切な C =w
4 basic 1
/w を見積もることができる。
4 4— basic
見積もられた適切な C =w /w (value)力 variable (階高)に対して図 4ある
1 4 4— basic
Vヽは図 5のような変化を示したとすると、上記実施の形態 1の式( 2)の関数 fを決める 手順と同様の手順で、式 (21)の関数 fを決めることができる。
1
なお、階高が高くなると、それに比例してエレベーターの走行距離が長くなる。走行 距離が長くなると走行距離評価値が大きな値となる。しかしながら、乗客の待ち時間 には、エレベーターの停止時間なども含まれるため、仮に階高が 2倍になっても、待 ち時間はそれに比例して 2倍になるとは限らない。そのため、走行距離評価値と待時 間評価値の関係を考慮すると、走行距離評価値の重み係数は、階高が高くなるほど 、小さな値に演算される必要がある。
[0087] そこで、例えば、次のような階高による重み係数の補正係数を演算する。
じ = (
1 基準階高) 7 (階高) (22)
基準階高とは、基準環境とするビルの階高とする。式 (22)の補正係数を重み係数 基準値に乗算すれば、基準階高と比較して、階高が高くなるほど、重み係数は小さ な値に演算される。走行距離が長くなるほど走行距離評価値が大きな値となることを 想定して説明しているが、走行距離が大きくなるほど、走行距離評価値が小さな値に なるように走行距離評価値を演算するのであれば、走行距離評価値の重み係数は、 階高が高くなるほど、大きな値に演算される必要がある。
この場合は、例えば、式 (22)で表される値の逆数を、補正係数 Cとしても良い。式(
1
22)の補正係数は、式 (21)によって表される階高による補正値の一例である。
[0088] 補正値演算部 32の急行ゾーン距離補正値演算部 32bは、ビルの急行ゾーン距離 に応じて、以下のような補正値 Cを演算する。
2
C =f (急行ゾーン距離) (23) 関数 f
2は、事前のシミュレーション実験などにより実験的に得られた急行ゾーン距離 と補正値 cとの関係を基に決められる。
2
例えば、補正値 Cを補正係数として利用し、式(13)の基準値 w に乗算すると
2 4_basic
仮定すると、重み係数 wは下記のように表される。
4
w =w X C
4 4— basic 2
ここで、重み係数 wの適正値を事前の実験により見積もったとすると、 w =w X
4 4 4— basic
Cであるならば、 C =w /w でなければならない。
2 2 4 4— basic
見積もられた重み係数 wと、式(13)で演算される基準値 w から、適切な C =w
4— basic 2
/w を見積もることができる。
4— basic
見積もられた適切な C =w /w (value)力 variable (急行ゾーン距離)に対し
2 4 4— basic
て図 4ある ヽは図 5のような変化を示したとすると、上記実施の形態 1の式( 2)の関数 f を決める手順と同様の手順で、式 (23)の関数 f
2を決めることができる。
なお、急行ゾーン距離が長くなると、それに比例してエレベーターの走行距離が長 くなる。走行距離が長くなると走行距離評価値が大きな値となる。しかしながら、乗客 の待ち時間には、エレベーターの停止時間なども含まれるため、仮に急行ゾーン距 離が 2倍になっても、待ち時間はそれに比例して 2倍になるとは限らない。そのため、 走行距離評価値と待時間評価値の関係を考慮すると、走行距離評価値の重み係数 は、急行ゾーン距離が長くなるほど、小さな値に演算される必要がある。
そこで、例えば、次のような急行ゾーン距離による重み係数の補正係数を演算する
C = (急行ゾーン以外の走行距離 +基準急行ゾーン距離)
2
/ (急行ゾーン以外の走行距離 +急行ゾーン距離) (24)
基準急行ゾーン距離とは、基準環境とするビルの急行ゾーン距離とする。式 (24)の 補正係数を重み係数基準値に乗算すれば、基準急行ゾーン距離と比較して、急行 ゾーン距離が長くなるほど、重み係数は小さな値に演算される。走行距離が長くなる ほど走行距離評価値が大きな値となることを想定して説明して ヽるが、走行距離が大 きくなるほど、走行距離評価値が小さな値になるように走行距離評価値を演算するの であれば、走行距離評価値の重み係数は、急行ゾーン距離が高くなるほど、大きな 値に演算される必要がある。
この場合は、例えば、式 (24)で表される値の逆数を、補正係数 Cとしても良い。式(
2
24)の補正係数は、式 (23)によって表される急行ゾーン距離による補正値の一例で ある。
[0090] 補正値演算部 32の階床数補正値演算部 32cは、ビルの階床数に応じて、以下の ような補正値 Cを演算する。
3
C =f (階床数) (25)
3 3
関数 f は、事前のシミュレーション
3 実験などにより実験的に得られた階床数と補正値
Cとの関係を基に決められる。
3
例えば、補正値 Cを補正係数として利用し、式(13)の基準値 w に乗算すると
3 4_basic
仮定すると、重み係数 wは下記のように表される。 ここで、重み係数 wの適正値を事前の実験により見積もったとすると、 w =w X
4 4 4— basic
Cであるならば、 C =w /w でなければならない。
3 3 4 4— basic
見積もられた重み係数 wと、式(13)で演算される基準値 w から、適切な C =w
4— basic 3
/w を見積もることができる。
4— basic
見積もられた適切な C =w /w (value)力 variable (階床数)に対して図 4あ
3 4 4— basic
るいは図 5のような変化を示したとすると、上記実施の形態 1の式(2)の関数 fを決め る手順と同様の手順で、式 (25)の関数 fを決めることができる。
3
なお、階床数が多くなると、それに比例してエレベーターの走行距離が長くなる。走 行距離が長くなると走行距離評価値が大きな値となる。しかしながら、乗客の待ち時 間には、エレベーターの停止時間なども含まれるため、仮に階床数が 2倍になっても 、待ち時間はそれに比例して 2倍になるとは限らない。そのため、走行距離評価値と 待時間評価値の関係を考慮すると、走行距離評価値の重み係数は、階床数が多く なるほど、小さな値に演算される必要がある。
[0091] そこで、例えば、次のような階床数による重み係数の補正係数を演算する。
Figure imgf000039_0001
基準階床数とは、基準環境とするビルの階床数とする。式 (26)の補正係数を重み 係数基準値に乗算すれば、基準階床数と比較して、階床数が多くなるほど、重み係 数は小さな値に演算される。走行距離が長くなるほど走行距離評価値が大きな値と なることを想定して説明しているが、走行距離が大きくなるほど、走行距離評価値が 小さな値になるように走行距離評価値を演算するのであれば、走行距離評価値の重 み係数は、階床数が多くなるほど、大きな値に演算される必要がある。
この場合は、例えば、式 (26)で表される値の逆数を、補正係数 Cとしても良い。式(
3
26)の補正係数は、式 (25)によって表される階床数による補正値の一例である。
[0092] 補正値演算部 32の定格速度補正値演算部 32dは、定格速度に応じて、以下のよう な補正値 Cを演算する。
4
C =f (定格速度) (27)
4 4
関数 f は、事前のシミュレーション実験などにより実験的に得られた定格速度と補正
4
値 Cとの関係を基に決められる。
4
例えば、補正値 Cを補正係数として利用し、式(13)の基準値 w に乗算すると
4— basic
仮定すると、重み係数 wは下記のように表される。
4
w =w Xし
4 4— basic 4
ここで、重み係数 wの適正値を事前の実験により見積もったとすると、 w =w X
basic
Cであるならば、 C =w /w でなければならない。
4 4 4— basic
見積もられた重み係数 wと、式(13)で演算される基準値 w から、適切な C =w
4 basic 4
/w を見積もることができる。
4 4— basic
見積もられた適切な C =w /w (value)力 variable (定格速度)に対して図 4
4 4 4— basic
あるいは図 5のような変化を示したとすると、上記実施の形態 1の式(2)の関数 fを決 める手順と同様の手順で、式 (27)の関数 fを決めることができる。
4
[0093] 補正値演算部 32の加速度補正値演算部 32eは、加速度に応じて、以下のような補 正値 Cを演算する。
5
C =f (加速度) (28)
5 5
関数 f は、事前のシミュレーション実験などにより実験的に得られた加速度と補正値
5
Cとの関係を基に決められる。
5
例えば、補正値 Cを補正係数として利用し、式(13)の基準値 w に乗算すると
5 4_basic 仮定すると、重み係数 Wは下記のように表される c
w =w X C
4 4— basic 5
ここで、重み係数 Wの適正値を事前の実験により見積もったとすると、
4 4— Dasic
Cであるならば、 C =w /w でなければならない。
見積もられた重み係数 wと、式(13)で演算される基準値 w から、適切な C =w
4 4— basic 5
/w を見積もることができる。
4 4— basic
見積もられた適切な C =w /w (value)力 variable (加速度)に対して図 4あ
5 4 4— basic
るいは図 5のような変化を示したとすると、上記実施の形態 1の式(2)の関数 fを決め る手順と同様の手順で、式 (28)の関数 fを決めることができる。
5
補正値演算部 32のエレベーター台数補正値演算部 32fは、エレベーター台数に 応じて、以下のような補正値 Cを演算する。
6
C =f (エレベーター台数) (29)
6 6
関数 f は、事前のシミュレーション実験などにより実験的に得られたエレベーター台
6
数と補正値 cとの関係を基に決められる。
6
例えば、補正値 Cを補正係数として利用し、式(13)の基準値 w に乗算すると
D 4_basic
仮定すると、重み係数 wは下記のように表される。
4
w =w Xし
4 4— basic 6
ここで、重み係数 wの適正値を事前の実験により見積もったとすると、 w =w X
4 4 4— basic
Cであるならば、 C =w /w でなければならない。
b 6 4 4— basic
見積もられた重み係数 wと、式(13)で演算される基準値 w から、適切な C =w
4 4— basic ο
/w を見積もることができる。
4 4— basic
見積もられた適切な C =w /w (value)力 variable (エレベーター台数)に対
D 4 4— basic
して図 4あるいは図 5のような変化を示したとすると、上記実施の形態 1の式(2)の関 数 fを決める手順と同様の手順で、式 (29)の関数 fを決めることができる。
6
なお、エレベーター台数が多くなると、同じ乗客数、交通パターンであったとしても、 乗客の待ち時間は減少する。し力しながら、エレベーターの走行距離は変わらない。 そのため、走行距離評価値と待時間評価値の関係を考慮すると、走行距離評価値 の重み係数は、エレベーター台数が多くなるほど、小さな値に演算される必要がある [0095] そこで、例えば、次のようなエレベーター台数による重み係数の補正係数を演算す る。
= (M-基準かご台数) (go)
6
ここで、 rは相対度 (0以上 1以下)を表す。式 (30)の補正係数を重み係数基準値に 乗算すれば、エレベーター台数が多くなるほど、重み係数は小さな値に演算される。 式 (30)の補正係数は、式 (29)によって表されるエレベーター台数による補正値の一 例である。
[0096] 補正値演算部 32のエレベーター定員補正値演算部 32gは、エレベーター定員に 応じて、以下のような補正値 Cを演算する。
7
C =f (エレベーター定員) (31)
7 7
関数 f は、事前のシミュレーション実験などにより実験的に得られたエレベータ一定
7
員と補正値 Cとの関係を基に決められる。
7
例えば、補正値 Cを補正係数として利用し、式(13)の基準値 w に乗算すると
7 4_basic
仮定すると、重み係数 wは下記のように表される。
4
w =w Xし
4 4— basic 7
ここで、重み係数 wの適正値を事前の実験により見積もったとすると、 w =w X
basic
Cであるならば、 C =w /w でなければならない。
7 7 4 4— basic
見積もられた重み係数 wと、式(13)で演算される基準値 w から、適切な C =w
4 basic 7
/w を見積もることができる。
4 4— basic
見積もられた適切な C =w /w (value)力 variable (エレベーター定員)に対
7 4 4— basic
して図 4あるいは図 5のような変化を示したとすると、上記実施の形態 1の式(2)の関 数 fを決める手順と同様の手順で、式 (31)の関数 fを決めることができる。
7
[0097] 補正値演算部 32の戸開閉時間補正値演算部 32hは、戸開閉時間に応じて、以下 のような補正値 Cを演算する。
8
C =f (戸開閉時間) (32)
8 8
関数 f ュレーション
8は、事前のシミ 実験などにより実験的に得られた戸開閉時間と補 正値 Cとの関係を基に決められる。
8 例えば、補正値 Cを補正係数として利用し、式(13)の基準値 w に乗算すると
8 4_basic
仮定すると、重み係数 wは下記のように表される。
4
w =w Xし
4 4— basic 8
ここで、重み係数 Wの適正値を事前の実験により見積もったとすると、
4 Dasic
Cであるならば、 C =w /w でなければならない。
見積もられた重み係数 wと、式(13)で演算される基準値 w から、適切な C =w
4 basic 8
/w を見積もることができる。
4 4— basic
見積もられた適切な C = w /w (value)力 variable (戸開閉時間)に対して
8 4 4— basic
図 4あるいは図 5のような変化を示したとすると、上記実施の形態 1の式(2)の関数 fを 決める手順と同様の手順で、式 (32)の関数 fを決めることができる。
8
[0098] 補正値演算部 32の制御パラメータ補正値演算部 32iは、制御パラメータ Nに応じて 、以下のような補正値 Cを演算する。
9
C =f (制御パラメータ N) (33)
9 9
関数 f は、事前のシミュレーション実験などにより実験的に得られた制御パラメータ
9
Nと補正値 Cとの関係を基に決められる。ただし、この実施の形態 3では、補正値 C
9 9 を 1つとしている力 制御パラメータ Nの数に応じて、補正値 Cの数は幾つあってもよ
9
い。
例えば、補正値 Cを補正係数として利用し、式(13)の基準値 w に乗算すると
9 4_basic
仮定すると、重み係数 wは下記のように表される。
4
w =w Xし
4 4— basic 9
ここで、重み係数 wの適正値を事前の実験により見積もったとすると、 w =w X
basic
Cであるならば、 C =w /w でなければならない。
9 9 4 4— basic
見積もられた重み係数 wと、式(13)で演算される基準値 w から、適切な C =w
4 basic 9
/w を見積もることができる。
4 4— basic
見積もられた適切な C =w /w (value)力 variable (制御パラメータ N)に対
9 4 4— basic
して図 4あるいは図 5のような変化を示したとすると、上記実施の形態 1の式(2)の関 数 fを決める手順と同様の手順で、式 (33)の関数 fを決めることができる。
9
[0099] 補正値演算部 32では、最終的な重み係数 wを演算するために重み係数基準値 w
4 4— を補正する値を C とすると、式 (21)、(23)、(25)、(27)、(28)、(29)、(31)、 ( final
32)、(33)によって個別に演算される C〜Cと C の間の関数 f を基に、 C を
1 9 nnal nnal_2 final 演算する必要がある。
C =f (C、C、C、C、C、C、C、C、C) (34)
final final— 2 1 2 3 4 5 6 7 8 9
関数 f は、事前のシミュレーション実験などにより実験的に得られた c〜
2 cとじ final— 1 9 final との関係を基に決められる。
例えば、補正値 C を補正係数として利用し、式(13)の基準値 w に乗算すると 仮定すると、重み係数 wは下記のように表される c
w =w X C
4 4— basic fi
ここで、重み係数 Wの適正値を事前の実験により見積もったとすると、
4 4— Dasic
Cであるならば、 C =w /w でなければならない。
見積もられた重み係数 wと、式(13)で演算される基準値 w から、適切な C =
4 4— basic nnai w /w を見積ちることができる。
4 4_oasic
見積もられた適切な C =w /w (value)力 variable (C、 C、 C、 C、 C、 C final 4 4— basic 1 2 3 4 5
、 C、 C、 C )のいずれかに対して図 4あるいは図 5のような変化を示したとすると、上
6 7 8 9
記実施の形態 1の式 (2)の関数 fを決める手順と同様の手順で、式 (34)の関数 f final— 2 を決めることができる。
上記の式 (34)によって求められる補正係数 C を、下記の式(35)に示すように、基 nnal
準パラメータ演算部 31により演算された重み係数の基準値 w に乗算することによ
4_basic
り、重み係数 wを演算する (ステップ ST23)。
4
w =w Xし 5)
4 4— basic final
式 (34)によって表される関数 f として、例えば、次のような式 (36)がある。
final— 2
C =C XC XC XC XC XC XC XC XC (36)
final 1 2 3 4 5 6 7 8 9
式 (36)を用いると、仮に、階高、階床数又は急行ゾーン距離の増加によって、基準 環境とするビル仕様に比べて走行距離が 2倍となり、式(1)の走行距離の評価値 E (
4 i)が 2倍になっても、補正値 C, C, C3のいずれ力により、重み係数 w力 にな
1 2 4
るので、走行距離の評価値 E (i)が重視され過ぎることがなくなる。式 (36)は、式 (34)
4
によって表される式の一例である。 [0101] 補正値演算部 32が重み係数 wを演算すると、以降、ステップ ST3
4 〜ST7の処理が 実施されるが、ステップ ST3〜ST7の処理は、上記実施の形態 1と同様であるため説 明を省略する。
[0102] この実施の形態 3では、重み係数 wを演算するに際して、エレベーターの運行開
4
始後も随時変動する交通状態に応じて基準値 w を演算し、他の制御パラメータ N
4_basic
による影響は、制御パラメータ補正値演算部 32iにより演算される補正値 Cによって
9 考慮している。
しかし、上記実施の形態 1で説明しているように、制御パラメータ Nの中には、エレ ベータ一の運行開始後に変動するパラメータと、変動しな 、パラメータがある。
そこで、制御パラメータ Nに関しては、基準パラメータ演算部 31が基準値 w の
4— basic 演算に利用するようにしてもょ 、。
[0103] 例えば、エレベーターの運行開始後にも、変動する制御パラメータ Nを、 N として var 表し、 N の変動による影響を基準パラメータ演算部 31で考慮すると、下記の式 (37 var
)で基準値 w を演算する。
4_basic
w =f (P, Q, N ) (37)
4— basic basic— 2 var
基準関数 f は、事前のシミュレーション実験などにより実験的に得られたパラメ basic— 2 一 タ P、Q、N と基準値 w との間の関係を基に決められる。
var 4_basic
例えば、特定のエレベーター仕様、ビル形状、制御パラメータ Nの下 (基準環境の 下)でシミュレーション実験を実施した結果、平均待ち時間を悪ィ匕させな 、範囲で、 最大の走行距離の削減量が得られる重み係数の基準値 w の値 (value)力 vari
4_basic
able (P、 Q、 N )のいずれかの変化に対して、図 4あるいは図 5のような変化を示し var
たとすると、上記実施の形態 1の式 (2)の関数 fを決める手順と同様の手順で、式 (37 )の を決めることができる。
basic— 2
[0104] あるいは、例えば、 N が運行モードの実施
var Z未実施を表すパラメータであるとする と、 N は、運行モードが実施中(仮に" 1"とする)であるの力、未実施中(仮に" 0"と var
する)であるのかを示す 2種類となり、選択できる値の数が少なぐ値も既知であり限 定される。
そこで、基準パラメータ演算部 31が N の想定値の数だけ、基準関数を用意するこ とで、制御パラメータ Nによる重み係数 wの影響を考慮してもよい。
4
例えば、 N の想定値の数が n個あり、 n個の各値が l〜nまでであると仮定すると、 var
基準パラメータ演算部 31の交通状態対応基準値演算部 31aでは、下記の式(38)の ように基準値 w を演算する。
4_basic
w =f (P, Q) (ただし、 N = = 1) (38)
4— basic basic— 1 var
f (P, Q) (ただし、 N = = 2)
f (P, Q) (ただし、 N = =n)
basic— n var
上記の式 (37)や式 (38)で演算された基準値 w と、残りの補正値を利用して、
4_basic
例えば、式(35)のように、重み係数 wを演算してもよい。
4
関数 f 〜f を決定する手順は、式(13)の関数 f を決定する手順と同じであ
Dasic— 1 basic— n oasic
る。
[0105] なお、定格速度、加速度、エレベーター定員、エレベーター台数、戸開閉時間、階 高、階床数、急行ゾーン距離などのエレベーター仕様、ビル仕様を表すパラメータは 、エレベーターが納入されるビル毎に異なる力 エレベーターの運行開始後に変動 することは少ないので、事前の作業により、予めエレベーター群管理制御装置に保 存されているものとする。ただし、定格速度、加速度、戸開閉時間に関しては、各値 の最大値、最小値、平均値といった固定値を想定している力 もしセンサーにより検 知可能であるならば、瞬時値を利用してもょ ヽ。
[0106] また、式(1)の待ち時間の評価値 E (i)や走行距離の評価値 E (i)として、待ち時
1 4
間や走行距離の N乗評価値が利用される場合は、式 (35)において、補正値 C〜C
1 9 も N乗して利用してもよい。
仮に、階高、階床数又は急行ゾーン距離の増加によって、走行距離が 2倍になるこ とで、 N乗評価の影響により、式(1)の走行距離の評価値 E (i)が 2N倍になるとしても
4
、補正値 C, C, Cの中のいずれかの N乗値により、重み係数 w力 lZ(2N)になるの
1 2 3 4 で、走行距離の評価値 E (i)が重視され過ぎることはなくなる。
4
また、式 (34)やその他の補正値の回帰式の導出過程において、補正値を補正係 数として利用し、基準値に乗算することとしているが、どのような四則演算を利用して ネ ΐ正してちょい。
[0107] また、この発明の実施の形態 3では、交通量、交通パターン、定格速度、加速度、 エレベーター定員、エレベーター台数、戸開閉時間、階高、急行ゾーン距離、階床 数、制御パラメータ Νを利用して、重み係数 wを演算している力 必ずしも全ての要
4
素を利用しなくてもよい。
ただし、一般的に、重み係数 wを少ない要素で演算する程、重み係数 wの最適値
4 4 と比較して、演算される重み係数 Wの精度が劣化することになる。
4
例えば、重み係数 wの演算に利用される要素に階高を含まないとすると、階高が
4
変化したときに、重み係数 wが適正な値に演算されない可能性は高くなる。
4
[0108] また、この実施の形態 3では、重み係数 wの演算を例にして説明した力 演算され
4
る制御パラメータは重み係数 Wのみに限らない。例えば、 W , W , Wなどの他の重
4 1 2 3
み係数を演算してもよい。
重み係数 wは、乗場呼びを割り当てるエレベーターを決定する際に、式(1)の走行
4
距離の評価値 E (i)を、他の評価値 E (i)、 E (i)、 E (i)と比較して、どの程度重視す
4 1 2 3
るかを相対的に表す重み係数である。
重み係数 Wを固定値とする代わりに、重み係数 W、 W、 Wなどを動的に変動させる
4 1 2 3
ことで、待ち時間をあまり悪化させずに走行距離を削減できるように運行制御すること は可能であり、それは重み係数 wを動的に変動させることと同義である。
4
[0109] 以上で明らかなように、この実施の形態 3によれば、交通状態を示すパラメータから 走行距離の評価項目に対する重み係数 wの基準値 w を導出し、エレベーター
4 4— basic
仕様、ビル仕様及びエレベーター制御状態を示すパラメータに応じて重み係数 Wの
4 基準値 w を補正するように構成したので、交通状態の変動に応じて適正な重み
_basic
係数を得ることができる効果を奏する。
即ち、特定の要素 (パラメータ)以外の要素を固定して基準環境を定め、基準環境 の基で固定していない要素だけを変動させる基準関数を利用して制御パラメータ 1の 基準値を演算することで、基準関数がシンプルになる。また、基準環境と、実際の各 要素の値の差分によって生じる制御パラメータ 1の基準値と適正値との差を埋めるた めの補正値を別途演算することで、制御パラメータ 1を導出するための方法が全体と してもシンプルになる。導出される制御パラメータ 1が想定値から外れる状況を推定 することが容易になり、仮に制御パラメータ 1が想定値力 外れていたとしても、原因 の解明が容易になる効果を奏する。
[0110] なお、この実施の形態 3では、基準パラメータ演算部 31が重み係数の基準値 w
4— basic を演算し、補正値演算部 32が基準値 w を補正するための補正値 C〜Cを演算
4_Dasic 1 9 するものについて示した力 上記実施の形態 2における演算パラメータ 21の代わりに 、基準パラメータ演算部 31が制御パラメータ Xの基準値を演算し、補正値演算部 32 が制御パラメータ Xの基準値を補正するための補正値を演算し、パラメータの変動に 応じて制御パラメータ Xの基準値を補正するようにしてもょ 、。
上記実施の形態 2でも説明したように、制御パラメータ Xは重み係数 wと同様の演
4
算方法で求めることができるので、制御パラメータ Xの基準値や補正値も、重み係数 の基準値 w や補正値 C〜Cと同様の演算方法で求めることができる。
4— basic 1 9
産業上の利用可能性
[0111] 以上のように、この発明に係るエレベーター群管理制御装置は、複数のエレベータ 一の中から、エレベーターの走行距離と乗客の待ち時間との関係を考慮して、乗客 の待ち時間の評価項目と、走行距離の評価項目と、予測された走行距離から演算さ れる評価項目の重み係数から演算された各エレベーターの総合評価値により、最良 のエレベーターを選択して割り当てるように構成して、乗客の待ち時間が長くなるなど の不便な状況の発生を招くことなぐエレベーターの走行距離を削減して、省エネル ギー効果を高めることができるため、複数のエレベーターが設置されるビルにおける エレベーター群管理制御装置に用いるのに適して 、る。

Claims

請求の範囲
[1] 複数のエレベーターが運用されているとき乗場呼びが発生すると、上記乗場呼び を各エレベーターに割り当てた場合に、各エレベーターが上記乗場呼びに応答して
、現在位置力 乗場呼び発生階に至るまでに要する移動時間を予測するとともに、 各エレベーターが上記乗場呼びに応答して、現在位置から乗場呼び発生階に至る までの走行距離を予測する予測演算手段と、エレベーターの走行距離と乗客の待ち 時間との関係を考慮して、上記予測演算手段により予測された走行距離力 演算さ れる評価項目の重み係数を決定する重み係数決定手段と、上記走行距離の評価項 目と上記移動時間の評価項目と上記重み係数決定手段により決定された重み係数 から各エレベーターの総合評価値を演算する総合評価値演算手段と、複数のエレべ 一ターの中から上記総合評価値演算手段により演算された総合評価値が最良のェ レベータ一を選択し、上記エレベーターに上記乗場呼びを割り当てる乗場呼び割当 手段とを備えたエレベーター群管理制御装置。
[2] 重み係数決定手段は、交通状態、エレベーター仕様、ビル仕様及びエレベーター 制御状態を示すパラメータのうち、少なくとも 1以上のパラメータを使用して、予測演 算手段により予測された走行距離カゝら演算される評価項目の重み係数を決定するこ とを特徴とする請求項 1記載のエレベーター群管理制御装置。
[3] 重み係数決定手段は、交通状態を示すパラメータから走行距離の評価項目に対す る重み係数の基準値を導出し、エレベーター仕様、ビル仕様及びエレベーター制御 状態を示すパラメータに応じて上記重み係数の基準値を補正することを特徴とする 請求項 2記載のエレベーター群管理制御装置。
[4] 複数のエレベーターが運用されているとき乗場呼びが発生すると、上記乗場呼び を各エレベーターに割り当てた場合に、各エレベーターが上記乗場呼びに応答して
、現在位置力 乗場呼び発生階に至るまでに要する移動時間を予測する予測演算 手段と、エレベーターの走行距離と乗客の待ち時間との関係を考慮して、上記乗場 呼びを割り当てる可能性がある候補エレベーターの選択規則に対する規則適合値を 演算する適合値演算手段と、複数のエレベーターの中から上記適合値演算手段に より演算された規則適合値が選択規則を満足するエレベーターを候補エレベーター として選択する候補エレベーター選択手段と、上記予測演算手段により予測された 移動時間を評価項目とする上記候補エレベーターの総合評価値を演算する総合評 価値演算手段と、上記候補エレベーター選択手段により選択された候補エレベータ 一の中から上記総合評価値演算手段により演算された総合評価値が最良のエレべ 一ターを選択し、上記エレベーターに上記乗場呼びを割り当てる乗場呼び割当手段 とを備えたエレベーター群管理制御装置。
[5] 適合値演算手段は、交通状態、エレベーター仕様、ビル仕様及びエレベーター制 御状態を示すパラメータのうち、少なくとも 1以上のパラメータを使用して、乗場呼び を割り当てる可能性がある候補エレベーターの選択規則に対する規則適合値を演算 することを特徴とする請求項 4記載のエレベーター群管理制御装置。
[6] 適合値演算手段は、交通状態を示すパラメータから候補エレベーターの選択規則 に対する規則適合値の基準値を導出し、エレベーター仕様、ビル仕様及びエレべ一 ター制御状態を示すパラメータに応じて上記規則適合値の基準値を補正することを 特徴とする請求項 5記載のエレベーター群管理制御装置。
PCT/JP2007/050822 2006-06-27 2007-01-19 contrôleur de gestion de groupe d'ascenseurs WO2008001508A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2007800215533A CN101466629B (zh) 2006-06-27 2007-01-19 电梯群管理控制装置
US12/300,227 US8006807B2 (en) 2006-06-27 2007-01-19 Elevator group control apparatus
KR1020087031296A KR101088283B1 (ko) 2006-06-27 2007-01-19 엘리베이터 그룹 관리 제어 장치 및 방법
DE112007001577.2T DE112007001577B4 (de) 2006-06-27 2007-01-19 Aufzuggruppensteuervorrichtung
JP2008522312A JP5112313B2 (ja) 2006-06-27 2007-01-19 エレベーター群管理制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006176916 2006-06-27
JP2006-176916 2006-06-27

Publications (1)

Publication Number Publication Date
WO2008001508A1 true WO2008001508A1 (fr) 2008-01-03

Family

ID=38845283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050822 WO2008001508A1 (fr) 2006-06-27 2007-01-19 contrôleur de gestion de groupe d'ascenseurs

Country Status (6)

Country Link
US (1) US8006807B2 (ja)
JP (1) JP5112313B2 (ja)
KR (1) KR101088283B1 (ja)
CN (1) CN101466629B (ja)
DE (1) DE112007001577B4 (ja)
WO (1) WO2008001508A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2371752A1 (en) * 2008-12-25 2011-10-05 Fujitec Co., Ltd Method and device for managing/controlling group of elevators
CN102328859A (zh) * 2011-08-25 2012-01-25 天津大学 节能派梯方法及其验证装置
US8602172B2 (en) 2008-10-20 2013-12-10 Mitsubishi Electric Corporation Elevator group management system
JP2015067437A (ja) * 2013-09-30 2015-04-13 フジテック株式会社 エレベータの群管理システム
CN104724555A (zh) * 2013-12-19 2015-06-24 株式会社日立制作所 电梯群管理系统以及电梯群管理方法
JP2016016993A (ja) * 2014-07-11 2016-02-01 フジテック株式会社 エレベータの群管理システム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009024853A1 (en) * 2007-08-21 2009-02-26 De Groot Pieter J Intelligent destination elevator control system
US7975808B2 (en) * 2007-08-28 2011-07-12 Thyssenkrupp Elevator Capital Corp. Saturation control for destination dispatch systems
CN102612480B (zh) * 2009-11-27 2014-03-26 三菱电机株式会社 电梯组群管理系统
JP5535836B2 (ja) * 2010-09-06 2014-07-02 東芝エレベータ株式会社 エレベータの群管理制御装置
JP5511037B1 (ja) * 2013-02-13 2014-06-04 東芝エレベータ株式会社 エレベータの群管理システム
CN103130050B (zh) * 2013-03-13 2015-08-19 永大电梯设备(中国)有限公司 一种电梯群控系统的调度方法
WO2016070937A1 (en) * 2014-11-07 2016-05-12 Kone Corporation Method for controlling an elevator system
CN110950197B (zh) * 2019-12-12 2022-04-01 中国联合网络通信集团有限公司 一种智能电梯的选择方法及智能电梯控制装置
US20210276826A1 (en) * 2020-03-05 2021-09-09 Otis Elevator Company Receiver-less device positioning
CN112551288A (zh) * 2020-12-04 2021-03-26 深圳市普渡科技有限公司 机器人的乘梯控制方法、装置、机器人及介质
CN115402891A (zh) * 2022-07-28 2022-11-29 中国电信股份有限公司 一种电梯群的控制方法、装置、电子设备和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811479A (ja) * 1981-07-15 1983-01-22 株式会社日立製作所 エレベ−タ群管理制御装置
JPS5982279A (ja) * 1982-11-04 1984-05-12 株式会社日立製作所 エレベ−タ−群管理制御装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117777B1 (ja) * 1970-10-19 1976-06-04
JPS5652830B2 (ja) 1974-08-16 1981-12-15
US4046228A (en) * 1975-05-05 1977-09-06 Westinghouse Electric Corporation Elevator system
JPS594350B2 (ja) * 1976-10-28 1984-01-28 三菱電機株式会社 エレベ−タの群管理装置
JPS54102745A (en) 1978-01-26 1979-08-13 Hitachi Ltd Elevator cage supervisory control system
JPS54159955A (en) 1978-06-06 1979-12-18 Mitsubishi Electric Corp Group controller for elevator
JPS5751668A (en) * 1980-09-12 1982-03-26 Tokyo Shibaura Electric Co Method of controlling group of elevator
JPS57121571A (en) * 1981-01-19 1982-07-29 Fujitec Kk Controller for group of elevator
JPS60106774A (ja) 1983-11-16 1985-06-12 株式会社東芝 エレベ−タの群管理制御方法
JPH02163274A (ja) * 1988-12-14 1990-06-22 Toshiba Corp エレベータの制御装置
JPH0725491B2 (ja) * 1989-04-06 1995-03-22 三菱電機株式会社 エレベータの群管理装置
JP2712648B2 (ja) * 1989-10-17 1998-02-16 三菱電機株式会社 エレベータ群管理学習制御装置
JPH0476913A (ja) 1990-07-18 1992-03-11 Toshiba Corp 3―5族化合物半導体素子の製造方法
JPH06156893A (ja) * 1993-08-06 1994-06-03 Hitachi Ltd エレベーターの群管理制御装置
US5563386A (en) * 1994-06-23 1996-10-08 Otis Elevator Company Elevator dispatching employing reevaluation of hall call assignments, including fuzzy response time logic
JPH0853271A (ja) * 1994-08-10 1996-02-27 Toshiba Corp エレベータの群管理制御装置
JPH1036019A (ja) 1996-07-19 1998-02-10 Hitachi Ltd エレベータの制御装置
JPH10194619A (ja) 1997-01-10 1998-07-28 Toshiba Corp 昇降機のod表推定装置
FI111929B (fi) 1997-01-23 2003-10-15 Kone Corp Hissiryhmän ohjaus
JP4870863B2 (ja) * 2000-04-28 2012-02-08 三菱電機株式会社 エレベータ群最適管理方法、及び最適管理システム
JP2002167129A (ja) 2000-12-06 2002-06-11 Hitachi Ltd エレベーター制御装置及び方法
US7114595B2 (en) * 2003-09-11 2006-10-03 Otis Elevator Company Method of assigning elevators for sky lobbies
US7389857B2 (en) * 2004-03-26 2008-06-24 Mitsubishi Denki Kabushiki Kaisha Elevator group control system
JP2006036382A (ja) * 2004-07-22 2006-02-09 Hitachi Ltd エレベーターの表示制御装置
JP4688469B2 (ja) * 2004-10-26 2011-05-25 東芝エレベータ株式会社 エレベータの群管理制御装置
EP1942069A4 (en) 2005-10-26 2013-01-09 Mitsubishi Electric Corp ELEVATOR GROUP MANAGEMENT AND CONTROL APPARATUS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811479A (ja) * 1981-07-15 1983-01-22 株式会社日立製作所 エレベ−タ群管理制御装置
JPS5982279A (ja) * 1982-11-04 1984-05-12 株式会社日立製作所 エレベ−タ−群管理制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8602172B2 (en) 2008-10-20 2013-12-10 Mitsubishi Electric Corporation Elevator group management system
EP2371752A1 (en) * 2008-12-25 2011-10-05 Fujitec Co., Ltd Method and device for managing/controlling group of elevators
EP2371752A4 (en) * 2008-12-25 2013-08-07 Fujitec Kk METHOD AND DEVICE FOR MANAGING / CONTROLLING LIFT GROUPS
US8960374B2 (en) 2008-12-25 2015-02-24 Fujitec Co., Ltd. Elevator group control method and device for performing control based on a waiting time expectation value of all passengers on all floors
CN102328859A (zh) * 2011-08-25 2012-01-25 天津大学 节能派梯方法及其验证装置
JP2015067437A (ja) * 2013-09-30 2015-04-13 フジテック株式会社 エレベータの群管理システム
CN104724555A (zh) * 2013-12-19 2015-06-24 株式会社日立制作所 电梯群管理系统以及电梯群管理方法
JP2016016993A (ja) * 2014-07-11 2016-02-01 フジテック株式会社 エレベータの群管理システム

Also Published As

Publication number Publication date
US20100230213A1 (en) 2010-09-16
KR20090027663A (ko) 2009-03-17
DE112007001577T5 (de) 2009-05-07
JPWO2008001508A1 (ja) 2009-11-26
CN101466629B (zh) 2013-03-27
KR101088283B1 (ko) 2011-12-01
JP5112313B2 (ja) 2013-01-09
DE112007001577B4 (de) 2021-03-04
US8006807B2 (en) 2011-08-30
CN101466629A (zh) 2009-06-24

Similar Documents

Publication Publication Date Title
WO2008001508A1 (fr) contrôleur de gestion de groupe d&#39;ascenseurs
US7275623B2 (en) Allocating landing calls in an elevator group using a cost function
JP5566740B2 (ja) エレベータの群管理制御装置
JP5511037B1 (ja) エレベータの群管理システム
JP4139819B2 (ja) エレベータの群管理システム
JP5230749B2 (ja) エレベーター群管理装置
JP6173780B2 (ja) エレベータシステム
KR101674693B1 (ko) 엘리베이터의 군 관리 제어 방법 및 장치
JP5464979B2 (ja) エレベータの群管理システム
JP5264717B2 (ja) エレベータの群管理制御装置
WO2007049342A1 (ja) エレベーター群管理制御装置
JP4663755B2 (ja) エレベータの群管理システム
JP5047246B2 (ja) エレベータの省エネ運行システム
JP2007284164A (ja) エレベータの群管理制御方法およびシステム
JP3042904B2 (ja) エレベータ配送システム
KR101442896B1 (ko) 엘리베이터의 그룹 관리 장치
JP6243726B2 (ja) エレベーター群管理システムおよびエレベーター群管理方法
JPH0610069B2 (ja) エレベータの群管理装置
JP5159794B2 (ja) エレベータ群管理システム
CN112209188B (zh) 电梯的群管理系统
JP6540383B2 (ja) エレベータの群管理制御装置及び群管理制御方法
JP4357248B2 (ja) エレベータの群管理制御装置
JP3714343B2 (ja) エレベータ群管理簡易シミュレータならびにエレベータ群管理装置
JP7322127B2 (ja) マルチデッキエレベータの群管理制御装置および群管理制御方法
JP6420217B2 (ja) エレベータ装置及びエレベータ装置の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780021553.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07707110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008522312

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12300227

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: KR

WWE Wipo information: entry into national phase

Ref document number: 1120070015772

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

RET De translation (de og part 6b)

Ref document number: 112007001577

Country of ref document: DE

Date of ref document: 20090507

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07707110

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607