WO2007148798A1 - 還元型補酵素q10含有組成物およびその製造方法 - Google Patents

還元型補酵素q10含有組成物およびその製造方法 Download PDF

Info

Publication number
WO2007148798A1
WO2007148798A1 PCT/JP2007/062627 JP2007062627W WO2007148798A1 WO 2007148798 A1 WO2007148798 A1 WO 2007148798A1 JP 2007062627 W JP2007062627 W JP 2007062627W WO 2007148798 A1 WO2007148798 A1 WO 2007148798A1
Authority
WO
WIPO (PCT)
Prior art keywords
reduced coenzyme
oil
particulate composition
fatty acid
weight
Prior art date
Application number
PCT/JP2007/062627
Other languages
English (en)
French (fr)
Inventor
Takashi Ueda
Shinsuke Akao
Shiro Kitamura
Hideyuki Kishida
Takahiro Ueda
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to EP07767436.4A priority Critical patent/EP2039353B1/en
Priority to AU2007261943A priority patent/AU2007261943B2/en
Priority to CN2007800232416A priority patent/CN101472573B/zh
Priority to KR1020097001340A priority patent/KR101449072B1/ko
Priority to ES07767436T priority patent/ES2712704T3/es
Priority to DK07767436.4T priority patent/DK2039353T3/en
Priority to CA2666688A priority patent/CA2666688C/en
Priority to JP2008522552A priority patent/JP5140585B2/ja
Publication of WO2007148798A1 publication Critical patent/WO2007148798A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/26Quinones containing groups having oxygen atoms singly bound to carbon atoms
    • C07C50/28Quinones containing groups having oxygen atoms singly bound to carbon atoms with monocyclic quinoid structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • A61K31/122Ketones having the oxygen directly attached to a ring, e.g. quinones, vitamin K1, anthralin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1664Compounds of unknown constitution, e.g. material from plants or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4858Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4875Compounds of unknown constitution, e.g. material from plants or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles

Definitions

  • the present invention relates to a particulate composition containing reduced coenzyme Q10 and a method for producing the same. More specifically, the present invention relates to a particulate composition containing reduced coenzyme Q10 having both high oxidative stability and high oral absorbability, and a method for producing the same. The present invention also relates to reduced coenzyme Q10 that is in an amorphous state.
  • Coenzyme Q is an essential component widely distributed in living organisms from bacteria to mammals. In humans, it is known that coenzyme Q10 has 10 repeating side chains and coenzyme Q10 is the main component. Coenzyme Q10 is a physiological component that exists as a component of the mitochondrial electron transport system in cells in the body, and plays a role as a transport component in the electron transport system by repeated oxidation and reduction in the body. Yes.
  • Coenzyme Q10 is known to exhibit energy production, membrane stabilization and antioxidant activity in the living body, and its usefulness is wide. Coenzyme Q10 has an oxidized form and a reduced form, and it is known that about 40 to 90% is usually present in a reduced form in vivo. Of coenzyme Q10, oxidized coenzyme Q10 (also known as ubiquinone or ubidecarenone) is used for pharmaceutical use as a congestive heart failure drug, and for non-medical use as well as vitamins. It is widely used as an agent.
  • reduced coenzyme Q10 exhibits higher oral absorbability than oxidized coenzyme Q10, and is used in foods, nutritional functional foods, foods for specified health use, nutritional supplements, nutrients, veterinary drugs, beverages, It is an excellent compound that is effective as feed, pet food, cosmetics, pharmaceuticals, therapeutics, preventives, etc.
  • reduced coenzyme Q10 is oxidized to oxidized coenzyme Q10 by molecular oxygen and immediately reduced coenzyme Q10 is converted into food, functional nutrition food, food for specified health use, nutritional supplement, nutritional supplement, animal drug, Stabilization of beverages, feeds, pet foods, cosmetics, pharmaceuticals, therapeutics, preventives, etc.
  • a composition comprising a surfactant or vegetable oil or a mixture thereof and, if necessary, a solvent
  • composition for oral administration in which the above composition is formulated into gelatin capsules or tablets
  • Patent Document 1 does not have a detailed description regarding the quality and stabilizing effect of reduced coenzyme Q10 contained in the composition.
  • the above composition and the preparation method thereof have multiple roles in the composition (that is, a role as a reaction field for reducing oxidized coenzyme Q10 to reduced coenzyme Q10 and reduced coenzyme Q10). It is very complicated and complicated.
  • ascorbic acid reducing agent
  • the reaction mixture is used as it is, so that it is not always safe.
  • this ascorbic acid is oxidized to produce a considerable amount of dehydroascorbic acid. This is the point at which it is mixed into the composition.
  • dehydroascorbic acid and oxalic acid produced by decomposition are highly harmful.
  • reduced coenzyme Q10 is mainly composed of oil (but excluding olive oil) and Z or polyol.
  • a method for stabilizing reduced coenzyme Q10 characterized by comprising a composition that does not substantially inhibit the stabilization of reduced coenzyme Q10. In some cases, the stability of reduced coenzyme Q10 is insufficient.
  • compositions described in Patent Document 1 and Patent Document 2 are oily compositions in which reduced coenzyme Q10 is dissolved in fats and / or surfactants, and their application range is limited. Under such circumstances, there has been a demand for a reduced coenzyme Q10-containing composition that is stable in powder form and can be used in various applications.
  • Patent Document 1 WO01 / 052822
  • Patent Document 2 W 0 03/062182
  • the present invention provides foods, nutritional functional foods, foods for specified health use, nutritional supplements, nutrients, animal drugs, beverages, feeds, pet foods, cosmetics, pharmaceuticals, therapeutic drugs, Proposes a particulate composition containing reduced coenzyme Q10 that combines high resistance, high oxidation stability and high resistance, and bioabsorbability, a manufacturing method, and a stabilization method in the field of preventive drugs, etc.
  • the challenge is to do this.
  • Another object of the present invention is to provide a reduced coenzyme Q10 that is excellent in in vivo absorbability and is not in a crystalline state, and a reduced coenzyme Q10 that contains a reduced coenzyme Q10 that is not in the crystalline state.
  • the inventors of the present invention have polydispersed an oily component containing reduced coenzyme Q10 in a matrix containing a water-soluble excipient.
  • the present inventors have found that the particulate composition is a composition having both high oxidative stability and high oral absorbability, thereby completing the present invention.
  • the present invention provides the following:
  • the water-soluble excipient is at least one selected from the group consisting of a water-soluble polymer, a surfactant (C), a sugar, and a yeast cell wall, [1] to [4] A particulate composition as described in 1.
  • Water-soluble polymers include gum arabic, gelatin, agar, starch, pectin, carrageenan, casein, dried egg white, curdlan, alginic acids, soy polysaccharides, pullulan, celluloses, xanthan gum, canolemellose salt, and poly
  • the surfactant (C) is selected from the group consisting of glycerin fatty acid esters, sucrose fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, lecithins and saponins
  • the particulate composition according to [5] which is as described above.
  • An oily component (A) containing reduced coenzyme Q10 is 5 to: 100% by weight reduced coenzyme Q10, 0 to 95% by weight fat and oil, and 0 to 95% by weight surfactant (The particulate composition according to any one of [1] to [8], comprising D).
  • the particulate composition according to [9] which is at least one selected from the group consisting of lecithins.
  • Retention rate of reduced coenzyme Q10 in the particulate composition after storage for 30 days under light-shielding conditions in air at 40 ° C is 50% by weight or more [1] to [: 13]
  • a preparation comprising the particulate composition according to any one of [1] to [: 14].
  • a reduced coenzyme characterized by placing the particulate composition according to any one of [1] to [14] or the preparation according to [15] in an environment having a relative humidity of 90% or less in the surroundings.
  • a reduced coenzyme characterized in that the particulate composition according to any one of [1] to [14] or the preparation according to [15] is placed in an ambient environment having a relative humidity of 90% or less. Handling and method of particulate composition or preparation containing Q10.
  • the particulate composition according to any one of [1] to [14] or the preparation according to [15] is packaged and packed with a glass, plastic and / or metal material.
  • the particulate composition according to any one of [1] to [: 14] or the preparation according to [15] is packaged and packed with a glass, plastic and / or metal material.
  • Oily component (A) containing reduced coenzyme Q10 and an aqueous solution containing a water-soluble excipient Strength After the prepared oil-in-water emulsion composition was suspended in the oily component (B), Oil component ( A method for producing a particulate composition containing reduced coenzyme Q10, wherein water in the emulsified composition is removed in B).
  • Surfactant (E) is composed of glycerin fatty acid esters, polydarlicerin esters, sucrose fatty acid esters, sorbitan fatty acid esters and polyoxyethylene sorbitan fatty acid esters with HLB of 10 or less, and lecithins
  • the water-soluble excipient is at least one selected from the group consisting of a water-soluble polymer, a surfactant (C), a sugar, and a yeast cell wall, [22] to [27] The manufacturing method as described in.
  • Surfactant (C) is selected from the group consisting of glycerin fatty acid esters, sucrose fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, lecithins and saponins 1 [28] The production method according to [28].
  • Oily component (A) containing reduced coenzyme Q10 is 5 to: 100% by weight of reduced coenzyme Element Q10, 0 to 95% by weight of fat and oil, and 0 to 95% by weight of surfactant (D),
  • Surfactant (D) is a glycerin fatty acid ester, polyglycerin ester, sucrose fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester or polyoxyethylene sorbitan fatty acid ester having an HLB of 10 or less
  • the production method according to [32] which is at least one selected from the group consisting of lecithins.
  • the retention rate of reduced coenzyme Q10 after storage for 30 days at 40 ° C in the air under light-shielded conditions is 50% by weight or more [22]-[33]
  • the manufacturing method in any one of.
  • a method for producing a preparation comprising the step according to any one of [22] to [34].
  • the present invention provides a reduced coenzyme Q10 that maintains the high oral absorbency inherent in reduced coenzyme Q10, and that can retain reduced coenzyme Q10 that is unstable in air extremely stably.
  • a particulate composition is provided.
  • the present invention also provides an industrial production method for the particulate composition.
  • the present invention provides a reduced coenzyme Q10 comprising a reduced coenzyme Q that is not in a crystalline state and a reduced coenzyme Q that is not in a crystalline state. Reduced coenzyme Q 10 that is not in a crystalline state has excellent absorbability in the body.
  • FIG. 1 shows an electron micrograph of the appearance of the particulate composition obtained in Example 1.
  • FIG. 2 shows an electron micrograph of a cross section of the particulate composition obtained in Example 5.
  • FIG. 3 shows an electron micrograph of the appearance of the particulate composition obtained in Example 7.
  • FIG. 4 shows an electron micrograph of a cross section of the particulate composition obtained in Example 8.
  • FIG. 5 shows an electron micrograph of the appearance of the particulate composition obtained in Example 16.
  • FIG. 6 shows an electron micrograph of a cross section of the particulate composition obtained in Example 16.
  • FIG. 7 shows oral absorption test results of the particulate compositions obtained in Examples 5, 6, and 7 and the powder obtained in Comparative Example 1.
  • FIG. 8 shows the results of oral absorption tests when the particulate compositions obtained in Examples 5, 8, 14, 15, and 16 and the powder obtained in Comparative Example 1 were ingested.
  • the particulate composition of the present invention is a particulate composition in which an oily component (A) containing reduced coenzyme Q10 forms a domain and is polydispersed in a matrix containing a water-soluble excipient. It is a composition.
  • the reduced coenzyme Q10 contained in the particulate composition of the present invention is represented by the following formula (1).
  • coenzyme Q10 has a reduced form and an oxidized form.
  • reduced coenzyme Q10 is targeted as coenzyme Q10.
  • the particulate composition of the present invention must contain reduced coenzyme Q10, which may be reduced form alone or a mixture of oxidized coenzyme Q10 and reduced coenzyme Q10. Coenzyme Q 10 may be used.
  • the reduced coenzyme Q10 is the total amount of coenzyme Q10 (that is, reduced coenzyme).
  • the ratio of the total amount of Q10 and oxidized coenzyme Q10) is not particularly limited, but is, for example, about 20% by weight or more, usually about 40% by weight or more, preferably about 60% by weight or more, more preferably about 80% or more, in particular about 90% or more, especially about 96% or more.
  • the upper limit is 100% by weight and is not particularly limited, but is usually about 99.9% by weight or less.
  • reduced coenzyme Q10 can be synthesized with oxidized coenzyme Q10 by a conventionally known method such as synthesis, fermentation, or extraction from a natural product. After obtaining coenzyme Q10, which is a mixture of reduced coenzyme Q10, it can be produced by, for example, concentrating reduced coenzyme Q10 in the effluent using chromatography. In this case, after reducing the oxidized coenzyme Q10 contained in the coenzyme Q10 using a general reducing agent such as sodium borohydride, sodium dithionite (sodium hyposulfite), Concentration by chromatography may be performed. Reduced coenzyme Q10 can be obtained by allowing the above reducing agent to act on existing high-purity oxidized coenzyme Q10.
  • a general reducing agent such as sodium borohydride, sodium dithionite (sodium hyposulfite)
  • the existing high-purity oxidized coenzyme Q10 or coenzyme Q10 which is a mixture of oxidized coenzyme Q10 and reduced coenzyme Q10, is mixed with a common reducing agent such as hydrosulfite sodium ( Sodium hyposulfite), sodium borohydride, ascorbic acid, etc., and more preferably, the existing high-purity oxidized coenzyme Q10, certain la, is oxidized It was obtained by reducing coenzyme Q10, which is a mixture of enzyme Q10 and reduced coenzyme Q10, using ascorbic acids.
  • a common reducing agent such as hydrosulfite sodium ( Sodium hyposulfite), sodium borohydride, ascorbic acid, etc.
  • the matrix in the present invention is one that retains the oily component (A) containing reduced coenzyme Q10 in the particulate composition to form a particle shape.
  • the matrix in the present invention contains a water-soluble excipient as a main component.
  • the main component as used herein means that 80% by weight or more of the matrix component is a water-soluble excipient.
  • the water-soluble excipient in the present invention is not particularly limited, but one kind selected from the group consisting of a water-soluble polymer, a surfactant (C), a sugar, and a yeast cell wall, or a mixture thereof. It is preferable that The water-soluble excipient is not particularly limited as long as it is acceptable for foods, cosmetics, and pharmaceuticals, but is preferably acceptable for foods.
  • water-soluble polymer examples include gum arabic, gelatin, agar, starch, pectin, carrageenan, casein, casein compound, dried egg white, curdlan, alginic acid, soy polysaccharide, punoreran. , Celluloses, xanthan gum, carmellose salts (such as carmellose sodium or carmellose calcium), higher fatty acid sugar esters, tragacanth, milk, etc., water-soluble polymers based on amino acids and / or sugars, etc. Can use polybulurpyrrolidone alone or as a mixture of two or more.
  • gum arabic, gelatin, agar, starch, pectin, carrageenan, strength Zein, dried egg white, curdlan, alginic acids, soy polysaccharides, pullulan, celluloses, xanthan gum, canolemellose salt, and polypyrrole pyrrolidone are preferable for handling aqueous solutions during production, or the high oxidation stability that is the object of the present invention.
  • Gum arabic, gelatin, and soybean polysaccharide are more preferably used from the viewpoint of obtaining a particulate composition that has both a high bioabsorbability and a high bioabsorbability.
  • the surfactant (C) is not particularly limited as long as it is acceptable for foods, cosmetics, and pharmaceuticals, but those particularly acceptable for foods are preferred.
  • glycerin fatty acid esters Sucrose fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, lecithins and saponins. Needless to say, in the present invention, these can be used alone or as a mixture of two or more.
  • glycerin fatty acid esters examples include monoglycerin fatty acid organic acid esters, polyglycerin fatty acid esters, polyglycerin condensed ricinoleic acid esters, and the like.
  • monoglycerin fatty acid organic acid esters include monoglycerin stearate citrate, monoglycerin stearate acetate, monoglycerin stearate succinate, monoglycerin caproleic acid succinate, monoglycerine stearic acid.
  • monoglycerin fatty acid organic acid esters include monoglycerin stearate citrate, monoglycerin stearate acetate, monoglycerin stearate succinate, monoglycerin caproleic acid succinate, monoglycerine stearic acid.
  • examples thereof include lactic acid esters, diglyceryl stearate diacetyl tartrate, and the like.
  • polyglycerol fatty acid ester examples include those having an average degree of polymerization of 2 to 10 and a constituent fatty acid having 6 to 22 carbon atoms.
  • polyglycerin-condensed ricinoleic acid ester examples include those having an average degree of polymerization of polyglycerin of 2 to 10 and an average degree of condensation of polyricinoleic acid (average number of condensation of ricinoleic acid) of 2 to 4. It is done.
  • sucrose fatty acid esters one or more hydroxyl groups of sucrose each have a carbon number.
  • An esterified fatty acid of 6 to 18 and preferably 6 to 12 is mentioned.
  • Examples of the sorbitan fatty acid esters include those obtained by esterifying one or more hydroxyl groups of sorbitans with fatty acids having 6 to 18, preferably 6 to 12, carbon atoms.
  • the polyoxyethylene sorbitan fatty acid esters have a polyoxyethylene chain in one or more of the hydroxyl groups of sorbitans, and further have one or more of the hydroxyl groups present having a carbon number. Examples thereof include those obtained by esterifying 6 to 18, preferably 6 to 12 fatty acids.
  • lecithins examples include egg yolk lecithin, purified soybean lecithin, phosphatidinorecholine, phosphatidylethanolamine, phosphatidylserine, sphingomyelin, dicetyl phosphate, stearylamine, phosphatidylglycerol, phosphatidic acid, phosphatidyl.
  • lecithins include egg yolk lecithin, purified soybean lecithin, phosphatidinorecholine, phosphatidylethanolamine, phosphatidylserine, sphingomyelin, dicetyl phosphate, stearylamine, phosphatidylglycerol, phosphatidic acid, phosphatidyl.
  • examples include inositolamine, cardiolipin, ceramide phosphorylethanolamine, ceramide phosphorylglycerol, enzymatically decomposed lecithin (lysolecithin), and mixtures thereof
  • saponins examples include genjusaponin, kirasaponin, soybean saponin, yucca saponin and the like.
  • the oily component containing the reduced coenzyme Q10 can be stably emulsified, and both high oxidation stability and high bioabsorbability, which are the objects of the present invention, are combined.
  • the surfactant (C) is a hydrophilic surfactant because, for example, HLB is 4 or more, usually HLB is 6 or more, preferably HL.
  • a surfactant having B of 8 or more, more preferably HLB force of 5 or more, and further preferably 11 or more can be used.
  • surfactants include monoglycerin fatty acid organic acid esters such as monoglyceryl stearate citrate ester and monoglyceryl stearate diacetyl tartrate; triglycerin monolaurate, triglycerin Monomyristic acid ester, Triglycerol monooleate, Triglycerol monostearate ester, Pentaglycerol monomyristic ester, Pentaglycerol trimyristate ester, Pentaglycerol monooleate, Pentaglycerol trioleate
  • the sugar is not particularly limited as long as it is acceptable for foods, for example, monosaccharides such as dalcose, fructose, galactose, arabinose, xylose, mannose; disaccharides such as maltose, sucrose, ratatose; Preferred are oligosaccharides such as furato-oligosaccharide, soybean oligosaccharide, galactoligosaccharide, and xylooligosaccharide; sugar alcohols such as sorbitol, maltitol, erythritol, latathitol, and xylitol; polysaccharides such as dextrin; .
  • monosaccharides such as dalcose, fructose, galactose, arabinose, xylose, mannose
  • disaccharides such as maltose, sucrose, ratatose
  • the dextrin any low-molecular dextrin or high-molecular dextrin can be suitably used as long as it is a decomposition product of starch.
  • the dextrose equivalent (DE) is usually 40 or less, preferably 35 or less, more preferably 30 or less, and usually 1 or more, preferably 2 or more, More preferably, dextrin of 5 or more can be preferably used.
  • dextrin, maltodextrin, cyclodextrin, cluster dextrin, etc. can be used.
  • yeast cell wall examples include a cell wall of brewer's yeast.
  • the weight ratio of the water-soluble polymer and sugar is not particularly limited, but the weight of the water-soluble polymer relative to the total weight of the water-soluble polymer and sugar is usually 25% or more, preferably 40. / o or more, more preferably 50. / o or more, particularly preferably 60% or more, and usually 99% or less, preferably 95% or less, more preferably 90% or less, and particularly preferably 85% or less.
  • the oily component (A) containing reduced coenzyme Q10 in the particulate composition of the present invention includes (1) reduced coenzyme Q10 alone, or reduced coenzyme Q10 and oxidized coenzyme.
  • Coenzyme Q10 (hereinafter simply referred to as coenzyme Q10), which is a mixture of Q10, may be used alone, or (2) reduced coenzyme Q10 or coenzyme Q10 and fat or Z or surfactant (D) It may be a mixture of When it is a mixture of reduced coenzyme Q10 or coenzyme Q10 and oil or fat and / or surfactant (D) as oil component (A), it is visually uniform when heated and melted at 50 ° C or higher It is preferable to use an oily component that can be mixed. From the viewpoint of maintaining a high content of reduced coenzyme Q10 in the oil component (A), the above (1) is preferable.
  • the oil and fat used when the oil component (A) is (2) is not particularly limited.
  • the oil or fat may be a natural oil or fat from animals or plants, or a synthetic oil or processed oil or fat. Good. More preferably, it is acceptable for food, cosmetics or medicine.
  • vegetable oils include, for example, palm oil, palm oil, palm kernel oil, flax oil, camellia oil, brown rice germ oil, rapeseed oil, rice oil, peanut oil, corn oil, wheat germ oil, soybean oil, sesame oil , Cottonseed oil, sunflower seed oil, kapok oil, evening primrose oil, shea fat, monkey fat, cocoa butter, sesame oil, safflower oil, olive oil, etc.
  • animal fats include pork fat, milk fat, fish oil And beef tallow, and oils and fats processed by fractionation, hydrogenation, transesterification, etc. (for example, hardened oil) can also be exemplified.
  • medium chain triglycerides MCT
  • the medium-chain fatty acid triglyceride include triglycerides in which the fatty acid has 6 to 12 carbon atoms, preferably 8 to 12 carbon atoms.
  • fats and oils vegetable oils, synthetic fats and processed fats and oils are used from the viewpoints of ease of handling and odor Etc. are preferred.
  • examples include coconut oil, palm oil, palm kernel oil, rapeseed oil, rice oil, soybean oil, cottonseed oil, safflower oil, olive oil, MCT and the like.
  • the surfactant (D) used when the oil component (A) is (2) is, for example, glycerin fatty acid esters, polyglycerin esters, sucrose fatty acid esters, sorbitan fatty acid.
  • esters propylene glycol fatty acid esters, and polyoxyethylene sorbitan fatty acid esters, surfactants having an HLB of 10 or less, or lecithins are preferable, but not limited thereto.
  • Examples of such glycerin fatty acid esters include monoglycerides and diglycerides in which the fatty acid has 6 to 18 carbon atoms, preferably 6 to 12 carbon atoms.
  • Examples of the polydaririne esters include polyglycerin having a polymerization degree of 2 to 10 as a main component, and one or more hydroxyl groups of the polyglycerin each having 6 to 18, preferably 6 to 12 carbon atoms. The thing which esterified the fatty acid of this is mentioned.
  • Examples of the sucrose fatty acid esters include those obtained by esterifying one or more hydroxyl groups of sucrose with a fatty acid having 6 to 18 carbon atoms, preferably 6 to 12 carbon atoms.
  • sorbitan fatty acid esters examples include those obtained by esterifying a fatty acid having 6 to 18 carbon atoms, preferably 6 to 12 carbon atoms, into one or more hydroxyl groups of sorbitans.
  • propylene glycol fatty acid esters include monoglycerides and diglycerides in which the number of carbon atoms of the fatty acid is 6 to 18 and preferably 6 to 12 respectively.
  • polyoxyethylene sorbitan fatty acid esters at least one hydroxyl group of sorbitans has a polyoxyethylene chain, and more than one of the existing hydroxyl groups has 6 to 18 carbon atoms, preferably 6 ⁇ : 12 fatty acids esterified.
  • lecithins examples include egg yolk lecithin, purified soybean lecithin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingomyelin, dicetyl phosphate, stearylamine, phosphatidylglycerol, phosphatidic acid, phosphatidylinositolamine, cardiolipin, ceramide
  • lecithins include egg yolk lecithin, purified soybean lecithin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingomyelin, dicetyl phosphate, stearylamine, phosphatidylglycerol, phosphatidic acid, phosphatidylinositolamine, cardiolipin, ceramide
  • ceramide examples thereof include phosphoroline ethanolamine, ceramide phosphorylglycerol, enzymatically de
  • surfactants (D) particles exhibiting good compatibility with the reduced coenzyme Q 10 or the object of the present invention, which has high oxidation stability and high bioabsorbability Group
  • a lipophilic surfactant is preferred from the viewpoint of obtaining a composition, for example, an HLB of 9 or less, preferably an HLB of 8 or less, more preferably an HLB of 6 or less, and even more preferably less than 5.
  • HLB 9 or less
  • lecithins can be suitably used without being limited to the HLB.
  • surfactants include monoglycerin monostearate, monoglycerin monooleate, monoglycerin monomyristic acid ester, monoglycerin monostreptyl ester, monoglycerin monolaurate, monoglycerin ester.
  • Monoglycerin monofatty acid esters such as monomonobenenic acid ester and monoglycerin monoergic acid ester; monoglycerin distearic acid ester, monoglycerin dioleic acid ester, monoglycerin dicaprylic acid ester, monoglycerin dilauric acid ester, etc.
  • Monoglycerin difatty acid ester monoglycerin stearate citrate, monoglycerin stearate acetate, monoglycerin coconut oil hardened oil acetate, monoglycerin Monoglycerin fatty acid organic acid esters such as succinic acid stearic acid ester, monoglycerin caprylic acid succinic acid ester, monoglycerin stearic acid lactate ester, monoglycerin stearic acid diacetyl tartaric acid ester; monoglycerin beef tallow oil fatty acid ester, monoglycerin rapeseed cured Monoglycerin fatty acid ester, monoglycerin soybean hardened oil fatty acid ester, monoglycerin cottonseed oil fatty acid ester, monoglycerin safflower oil fatty acid ester, etc.
  • Monoglycerin fatty acid organic acid esters such as succinic acid stearic acid ester, monoglycerin
  • monoglycerin fatty acid ester obtained using various fats and oils
  • Polyglycerol fatty acid esters such as esters of polyglycerol and fatty acids having 6 to 22 carbon atoms
  • propylene glycol monostearate, propylene glycol monooleate, and propylene Propylene glycol fatty acid esters such as glycol monolaurate
  • Sorbitan fatty acid esters such as sorbitan distearate, sorbitan tristearate, sorbitan sesquioleate, sorbitan dioleate, and sorbitan trioleate
  • glycerin fatty acid esters and lecithins one or a mixture of two or more selected from glycerin fatty acid esters and lecithins is preferable.
  • monoglycerin fatty acid acetate and the monoglycerin coconut hardened oil acetate include 50% acetylated monodallyline monostearate and the fully acetylated monoglyceride monoglyceride.
  • oil-soluble components such as solid fats and oils, fatty acids and ester derivatives thereof can be contained in the oil component (A) according to various purposes.
  • solid fats and oils examples include food waxes such as beeswax, molasses, cayderilla wax, rice bran wax, strength lunauba wax and snow wax.
  • Examples of the fatty acid and its ester derivative include strength prillic acid, strength purine acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, behenic acid and esters thereof such as methyl esters thereof, The ability to include ethyl ester is not limited to these.
  • the composition ratio of the oily component (A) containing the reduced coenzyme Q10 in the particulate composition of the present invention is not particularly limited, but the particulate form containing the finally obtained reduced coenzyme Q10 is not limited.
  • the content of reduced coenzyme Q10 in the oily component (A) is usually 5% by weight or more, preferably 20% by weight or more. More preferably, it is 40% by weight or more, more preferably 50% by weight or more, and particularly preferably 60% by weight or more.
  • the upper limit of the content of reduced coenzyme Q10 in oil component (A) is 100% by weight, and it is always necessary to use oils and surfactants other than reduced coenzyme Q10 as oil component (A). Hanare, but if you use oils or surfactants When used, the upper limit of the content of reduced coenzyme Q10 in the oily component (A) is 99.99% by weight.
  • the content of fats and oils in the oil component (A) is usually 95% by weight or less, preferably 75% by weight or less, more preferably 50% by weight or less, and particularly preferably 30% by weight or less.
  • the lower limit is 0% by weight, but the content when used is usually 0.01% by weight or more.
  • the surfactant content is usually 95% by weight or less, preferably 75% by weight or less, more preferably 50% by weight or less, and particularly preferably 30% by weight or less.
  • the surfactant is not necessarily used. However, the lower limit is 0% by weight, but when used, the content is usually 0.01% by weight or more. That is, the composition of the oil component (A) preferably contains 5 to: 100% by weight of reduced coenzyme Q10, 0 to 95% by weight of fats and oils, and 0 to 95% by weight of surfactant. It is more preferable to contain 20 to 100% by weight of reduced coenzyme Q10, 0 to 75% by weight of fat and oil, and 0 to 75% by weight of surfactant.
  • the reduced coenzyme Q10 may be a mixture of reduced coenzyme Q10 and oxidized coenzyme Q10, that is, coenzyme Q10.
  • the average particle size of the domain formed by the oil component (A) containing reduced coenzyme Q10 in the particulate composition of the present invention is not particularly limited as long as the object of the present invention can be achieved.
  • the absorbability of the particulate composition may be lowered. Therefore, it is usually 50 xm or less, preferably 20 zm or less, more preferably 15 ⁇ m or less, particularly preferably. Is less than 10 zm.
  • the average particle size of the domain is small, excessive water-soluble excipients are required to maintain the stability of the emulsified droplets in the manufacturing process, and an excessive load is required on the emulsifying equipment. Therefore, it is usually 0.001 xm or more, preferably f or 0.005 xm or more, more preferably f or 0.01 xm or more, particularly (preferably 0.1 ⁇ m or more.
  • the average particle size of the domain formed by the oily component (A) containing reduced coenzyme Q10 The particle composition can be obtained by image analysis from an electron microscopic image of the fractured surface obtained by breaking the particulate composition into a hemispherical shape.
  • the content of reduced coenzyme Q10 in the particulate composition of the present invention is not particularly limited, but it reduces the intake of the particulate composition when ingesting a predetermined amount of reduced coenzyme Q10. From this viewpoint, it is usually 1% by weight or more, preferably 5% by weight or more, more preferably 10% by weight or more. On the other hand, from the viewpoint of maintaining high stability of reduced coenzyme Q10 in the particulate composition, it is usually 70% by weight or less, preferably 50% by weight or less, more preferably 40% by weight or less. That is, the content of reduced coenzyme Q 10 in the particulate composition of the present invention is usually:! To 70% by weight, preferably 5 to 50% by weight, more preferably 10 to 40% by weight.
  • an oily component (A) containing reduced coenzyme Q10 forms 5 or more domains in a polydisperse in a matrix containing a water-soluble excipient. More than 1,000 are more preferable, more than 10,000 are more preferable 100,000 and more are particularly preferable. The upper limit is not particularly limited, but is usually about 1 billion.
  • the number of domains in the matrix containing the water-soluble excipient is less than 3 ⁇ 4
  • the content of reduced coenzyme Q10 in the finally obtained particulate composition decreases, and a predetermined amount of
  • the original coenzyme Q10 is orally administered, it is not preferable because a large amount of particulate composition needs to be ingested.
  • the sphericity of the particulate composition is preferably 0.8 or more, more preferably 0.85 or more, and most preferably 0.9 or more. .
  • the higher the sphericity of the particulate composition the smaller the total surface area per unit weight of the particulate composition, and accordingly, the oxidation reaction by oxygen molecules in the air, which is estimated to progress from the particle surface, is performed. It tends to be difficult to receive.
  • the sphericity of the particulate composition is low, the total surface area per unit weight of the particulate composition increases, and the air is estimated to travel from the surface of the particulate composition.
  • the sphericity of the particulate composition is determined by taking a photograph of the target particulate composition with an electron microscope or the like, and using the image analysis software WinROOF Ver. It can be obtained from the diameter ratio of the smallest circle that circumscribes the diameter.
  • the smaller the surface roughness (Ra) of the particulate composition the smaller the total surface area per unit weight of the particulate composition, and the amount of oxygen molecules in the air estimated to travel from the surface of the particle. It is thought that it becomes difficult to receive the oxidation reaction by.
  • the surface roughness (Ra) of the particulate composition is large, the total surface area per unit weight of the particulate composition is large, and it is estimated that the amount proceeds from the particle surface.
  • the surface roughness (Ra) of the particles can be determined as an arithmetic average surface roughness (Ra) defined by, for example, JIS B 0601-1994. Note that the surface roughness referred to here is considered to have a roughly contradictory relationship with the sphericity, and the higher the sphericity, the smaller the surface roughness tends to be.
  • the reduced coenzyme Q10 in the composition is usually added.
  • 10% by weight or more is not in a crystalline state, that is, in an amorphous state or a melt state. It is preferably 20% by weight or more, more preferably 50% by weight or more, further preferably 70% by weight or more, particularly preferably 80% by weight or more, and at most 100% by weight not preferred in the crystalline state.
  • the reduced coenzyme Q is a force that gradually changes to a crystalline state when stored below the melting point.
  • 10% by weight or more of the reduced coenzyme Q10 in the composition is not in a crystalline state.
  • the reduced coenzyme Q10 is retained in the particulate composition in an amorphous state or melted state in a crystalline state, so that the particulate composition is disintegrated and released in the gastric fluid or intestinal fluid after oral administration. It is assumed that the reduced coenzyme Q10 of component (A) also maintains the amorphous state or the melt state. Determined.
  • the reduced coenzyme Q10 in the amorphous state or in the melt state than the reduced coenzyme Q10 in the crystalline state The surface activity coexisting in the living body or in the particulate composition in the stomach or intestine As a result, the reduced coenzyme Q10 in an amorphous state or a melt is more easily absorbed from the digestive tract than the crystalline reduced coenzyme Q10. As a result, the preferred particulate composition of the present invention is considered to have high oral absorption, which is one of the purposes.
  • the structure of the oily component (A) containing the reduced coenzyme Q 10 is controlled so as to be polydispersed by forming a domain in the water-soluble excipient matrix.
  • the oily component (A) containing the reduced coenzyme Q10 in a melt is confined in a microcapsule surrounded by a water-soluble excipient. It is presumed that the crystal nucleus generation probability of enzyme Q10 is greatly reduced and the amorphous state or melt state is maintained for a long period of time after particle preparation.
  • the volume average particle diameter of the particulate composition of the present invention is not particularly limited as long as the object of the present invention can be achieved, but is preferably 1 ⁇ or more, and more preferably 5 from the viewpoint of ease of recovery as a powder. ⁇ m or more, more preferably 10 ⁇ m or more, particularly preferably 20 ⁇ m or more, and particularly preferably 50 ⁇ m or more.
  • the upper limit of the volume average particle diameter is not particularly limited as long as the high stability and high absorbency of reduced coenzyme Q10, which is the object of the present invention, can be maintained, but it can be processed into foods, pharmaceuticals, cosmetics and the like.
  • the volume average particle diameter of the particulate composition of the present invention is preferably:! To 5000 zm, more preferably 5 to 2000 ⁇ , still more preferably 10 to 1000 xm, and particularly preferably 20 to 800 ⁇ m. m, particularly preferably 50 to 700 zm.
  • the volume average particle diameter can be measured using, for example, an ethanol solvent in a laser diffraction / scattering particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd .; Microtrack ⁇ 3000 mm).
  • the particulate composition of the present invention contains various additives and active ingredients other than coenzyme Q10 that can be used for various purposes in food, cosmetics, and pharmaceutical applications. Can be added accordingly.
  • excipients such as crystalline cellulose, calcium phosphate and calcium sulfate, disintegrants such as calcium citrate, calcium carbonate, sodium bicarbonate, dextrin, crystalline cellulose, carboxymethylcellulose, tragacanth and alginic acid
  • Lubricants such as talc, magnesium stearate, polyethylene glycol, silica, hydrogenated oil, titanium oxide, food dyes, bengara dyes, safflower dyes, caramel dyes, gardenia dyes, tar dyes, chlorophyll dyes, stearic acid
  • Anti-aggregation agents such as talc, light anhydrous caustic acid, hydrous silicon dioxide, absorption accelerators such as higher alcohols and higher fatty acids, solubilizing agents such as fumaric acid, succinic acid and malic acid, benzoic acid, sodium benzoate, Ethyl paraoxybenzoate, beeswax Mention may be made of a
  • the active ingredient other than coenzyme Q10 is not particularly limited as long as it is acceptable for food, cosmetics or pharmaceutical use.
  • the active ingredient other than coenzyme Q10 is not particularly limited as long as it is acceptable for food, cosmetics or pharmaceutical use.
  • vitamin C ester derivatives Preferably, glutathione, L-cystine, tocotrienol, vitamin E (one tocopherol) and its ester derivatives, erythorbic acid and its ester derivatives and salts, vitamin A and its ester derivatives, carotenoids, rutin, Examples include staxanthin, lycopene, flavonoids, and L-carnitine. Among these, from the viewpoint of the stability of reduced coenzyme Q10 Antioxidants such as carotenoids, wastaxanthins, vitamin E and their ester derivatives are preferred. Needless to say, the various ingredients listed here can be used as a mixture of two or more.
  • the particulate composition of the present invention is preferably obtained by the following production method, but the production method is not limited to the following if a similar particulate composition can be obtained by other production methods.
  • the particulate composition containing the reduced coenzyme Q10 of the present invention is preferably
  • the water-soluble excipient is not particularly limited in its concentration, which is preferably used in the form of an aqueous solution dissolved in water. It is preferable to handle the aqueous solution at a concentration that does not exceed lPoise to ensure transferability. Specific examples, preferred examples, and examples of the water-soluble excipient at this time are the same as those described in the description of the particulate composition.
  • oily component (A) containing reduced coenzyme Q10 is necessary for reduced coenzyme Q10 melted at 50 ° C or higher.
  • the method of adding fats and oils and / or surfactant (D) and the like and mixing by stirring or the like is the simplest and preferable, but the method is not limited to this.
  • Specific examples, preferred examples, and examples of the oil component (A) at this time are the same as those described in the description of the particulate composition.
  • an oil-in-water solution is obtained from an oily component (A) containing the reduced coenzyme Q10 and an aqueous solution containing a water-soluble excipient.
  • a mold emulsion composition is prepared.
  • Oil component containing reduced coenzyme Q10 prepared at a temperature equal to or higher than the melting point of reduced coenzyme Q10 in an aqueous solution containing a water-soluble excipient heated to 50 ° C or higher (A )
  • the oil component (A) is finely dispersed and emulsified to a desired average particle size using a known emulsifier such as a high-pressure homogenizer.
  • a known emulsifier such as a high-pressure homogenizer.
  • it can be heated to a temperature of 50 ° C or higher, and then added to an aqueous solution containing a water-soluble excipient, reduced coenzyme Q10 powder, or other oils as required.
  • the emulsion particle size of the oily component (A) containing reduced coenzyme Q10 of the oil-in-water emulsion composition is not particularly limited, but the oily component of the oil-in-water emulsion composition is not limited.
  • the absorbability of the particulate composition may be lowered, so that it is usually 50 ⁇ or less, preferably 20 / im or less, more preferably 15 / im Im or less, particularly preferably 10 / m or less.
  • the average particle size of the oil-based component (A) of the oil-in-water emulsion composition is small, an excessive amount of water-soluble excipient is required to maintain the stability of the emulsified droplets during the production process. Therefore, it is usually 0.001 ⁇ or more, more preferably 0.05 ⁇ or more, and particularly preferably 0.1 ⁇ or more.
  • the emulsion particle size of the oil component (A) of the oil-in-water emulsion composition can be measured with a commercially available laser diffraction-scattering particle size distribution analyzer.
  • the temperature in the step of preparing the oil-in-water emulsion composition from the aqueous solution containing (A) and a water-soluble excipient and the emulsification step is such that the reduced coenzyme Q10 in the oil-in-water composition is melted.
  • the temperature is not particularly limited as long as the temperature is higher than the normal temperature, but is usually 50 ° C or higher, preferably 55 ° C or higher. Above, more preferably 60 ° C or higher.
  • the upper limit is the boiling point of the system, and differs depending on the conditions such as pressurization, and the temperature cannot be defined unconditionally. However, under normal pressure conditions, it is usually 100 ° C or lower, preferably 90 ° C or lower.
  • the above oil-in-water emulsion composition is further mixed with another oil component (B) to obtain a desired particle size. Suspend the oil-in-water emulsion composition in a 0 / W / 0 emulsion.
  • the oil-in-water emulsion composition containing the reduced coenzyme Q10 to the oil component (B) that has been heated to 50 ° C or higher in advance.
  • Adjustment of the suspended particle size of the oil-in-water emulsion composition in the oil component (B) can be achieved by applying shear to the mixed solution such as stirring and circulation of the solution.
  • the temperature of the oil component (B) at the time of preparing the mixed solution is usually preferably in the range of 50 to 100 ° C. in order to avoid rapid evaporation of moisture.
  • the mixing ratio of the oil-in-water emulsion composition and the oil component (B) in the production method (1) of the present invention is not particularly limited, but the oil-in-water emulsion composition and the oil component (B) are not particularly limited.
  • the weight% of the oil-in-water emulsified composition in the mixed liquid is preferably 1% by weight or more, more preferably 10% by weight or more from the viewpoint of production efficiency, etc. 15% by weight The above is particularly preferable. Further, from the viewpoint of suspendability in the oily component (B) of the oil-in-water emulsion composition, it is preferably 70% by weight or less, particularly preferably 60% by weight or less. % Or less is particularly preferable. Usually:! To 70% by weight, preferably 10 to 60% by weight, particularly preferably 15 to 50% by weight.
  • the water is removed from the oil-in-water emulsion composition suspended in the oil component (B) after making the above-mentioned emulsion of type O / W / O. .
  • the water is evaporated by heating to 80 ° C. or higher, preferably 100 ° C. or higher under atmospheric pressure.
  • a method of evaporating moisture under an arbitrary reduced pressure by setting the temperature to near the boiling point of water under the pressure may be mentioned, but the method is not limited thereto. From the viewpoint of minimizing the operation time, it is preferable to carry out under an arbitrary reduced pressure.
  • the oil component (B) in the production method (1) is an oil or fat or, if necessary, A component containing surfactant (E).
  • the oil and fat used in the oil component (B) is not particularly limited as long as it is an oil that can suspend the above-mentioned oil-in-water emulsion composition.
  • it may be a natural oil from animals and plants. Or processed oils and fats. More preferably, it is acceptable for food, cosmetics or medicine.
  • vegetable oils and fats include, for example, palm oil, palm oil, palm kernel oil, flax oil, camellia oil, brown rice germ oil, rapeseed oil, rice oil, peanut oil, corn oil, wheat germ oil, soybean oil, Sesame oil, cottonseed oil, castor coconut seed oil, kapok oil, evening primrose oil, shea fat, monkey fat, cacao fat, sesame oil, safflower oil, olive oil, and the like.
  • animal fats include pork fat, Examples thereof include milk fat, fish oil, beef tallow and the like, and oils and fats (for example, hardened oil) obtained by adding them by fractionation, hydrogenation, transesterification and the like. Needless to say, medium chain fatty acid triglycerides (MCT) can also be used. Moreover, you may use these mixtures.
  • MCT medium chain fatty acid triglycerides
  • Examples of the medium-chain fatty acid triglycerides include triglycerides in which the fatty acid has 6 to 12 carbon atoms, preferably 8 to 12 carbon atoms.
  • oils and fats described above vegetable oils, synthetic oils and processed oils and fats, etc. are preferable from the viewpoint of easy handling and odor.
  • examples include coconut oil, palm oil, palm kernel oil, rapeseed oil, rice oil, soybean oil, cottonseed oil, safflower oil, olive oil, MCT and the like.
  • the oil component (B) may be an oil or fat alone, but if necessary, a surfactant (E) may be added to the oil component (B). it can.
  • the droplets of the oil-in-water emulsified composition tend to gradually increase in tackiness as the drying progresses and tend to aggregate between particles.
  • the surfactant (E) is allowed to coexist in the oil component (B)
  • the aggregation between the oil-in-water emulsion composition droplets during the drying process with increased tackiness is greatly relieved. It is preferable because the recovery rate of the particulate composition having a desired volume average particle diameter can be remarkably improved.
  • the content of the surfactant (E) in the oil component (B) is not particularly limited, but from the viewpoint of suppressing aggregation between droplets of the oil-in-water emulsion composition during drying, the oil component
  • the weight percent of the surfactant (E) relative to (B) is usually 0.001% by weight or more, preferably 0.005% by weight or more, more preferably 0.01% by weight or more.
  • the upper limit is not particularly limited, it is usually preferably 95% by weight or less from the viewpoint of fluidity of the oil component (B), removability of the surfactant (E), and the like. Or 80% by weight or less, more preferably 60% by weight or less.
  • the surfactant (E) is not particularly limited as long as it is acceptable for foods, cosmetics, and pharmaceuticals, but is particularly preferably acceptable for foods.
  • HLB is 10 or less.
  • Surfactants such as glycerin fatty acid esters, polyglycerin esters, sucrose fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, and lecithins. Needless to say, in the present invention, these may be used alone or as a mixture of two or more.
  • Examples of the glycerin fatty acid esters include monoglycerides and diglycerides in which the fatty acid has 6 to 18, preferably 12 to 18 carbon atoms.
  • polyglycerin esters examples include polyglycerin mainly composed of polyglycerin having a degree of polymerization of 2 to 10, and one or more hydroxyl groups of polyglycerin each having 6 to 18 carbon atoms, preferably Polyglycerin fatty acid ester obtained by esterifying 12 to 18 fatty acids, polyglycerin condensed ricinoleic acid ester, and the like.
  • sucrose fatty acid esters one or more hydroxyl groups of sucrose each have 6 to 6 carbon atoms.
  • sorbitan fatty acid esters include those obtained by esterifying one or more hydroxyl groups of sorbitans with fatty acids having 6 to 18, preferably 12 to 18 carbon atoms.
  • polyoxyethylene sorbitan fatty acid esters include the hydroxyl groups of sorbitans.
  • One or more has a polyoxyethylene chain, and furthermore, one or more hydroxyl groups present are esterified with a fatty acid having 6 to 18 carbon atoms, preferably 6 to 12 carbon atoms. .
  • lecithins examples include egg yolk lecithin, purified soybean lecithin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingomyelin, discetinorelic acid, stearylamine, phosphatidylglycerol, phosphatidic acid, phosphatidyl.
  • lecithins include egg yolk lecithin, purified soybean lecithin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingomyelin, discetinorelic acid, stearylamine, phosphatidylglycerol, phosphatidic acid, phosphatidyl.
  • examples include inositolamine, cardiolipin, ceramide phosphorylethanolamine, ceramide phosphorylglycerol, enzymatically degraded lecithin (lysolecithin), and mixture
  • the surfactant (E) HLB is agglomerated between droplets of the oil-in-water emulsion composition during drying. Is preferably 10 or less, more preferably 7 or less, and most preferably 5 or less. However, lecithins can be suitably used without being limited to the HLB.
  • surfactants include monoglycerin monostearate, monoglycerin monooleate, monoglycerin monomyristic acid ester, monoglycerin monostreptyl ester, monoglycerin monolaurate, monoglycerin ester.
  • Monoglycerin monofatty acid esters such as monomonobenenic acid ester and monoglycerin monoergic acid ester; monoglycerin distearic acid ester, monoglycerin dioleic acid ester, monoglycerin dicaprylic acid ester, monoglycerin dilauric acid ester, etc.
  • Monoglycerin difatty acid ester monoglycerin stearate citrate, monoglycerin stearate acetate, monoglycerin coconut oil hardened oil acetate, monoglycerin Monoglycerin fatty acid organic acid esters such as succinic acid stearic acid ester, monoglycerin caprylic acid succinic acid ester, monoglycerin stearic acid lactate ester, monoglycerin stearic acid diacetyl tartaric acid ester; monoglycerin beef tallow oil fatty acid ester, monoglycerin rapeseed cured Monoglycerin fatty acid ester, monoglycerin soybean hardened oil fatty acid ester, monoglycerin cottonseed oil fatty acid ester, monoglycerin safflower oil fatty acid ester, etc.
  • Monoglycerin fatty acid organic acid esters such as succinic acid stearic acid ester, monoglycerin
  • polyglycerin fatty acid ester such as ester of polyglycerin and fatty acid having 6 to 22 carbon atoms, and polyglycerin condensed resin such as ester of average degree of polymerization of 2 to: polyglycerin of 10 to polyricinoleic acid of degree of condensation 2 to 4 Polyglycerin esters such as noreic acid ester; propylene glycol fatty acid esters such as propylene glycol monostearic acid ester, propylene glycol monooleic acid ester, and propylene glycol monolauric acid ester; sorbitan distearic acid ester, sorbitan tristearic acid ester, sorbitan Sorbitan fatty acid esters such as sesquioleate, sorbitan dioleate, and sorbitan trioleate; polyoxyethylene sorbitan fatty acid esters such as polyoleate; and soybean lecithin, egg
  • glycerin fatty acid esters preferably one or a mixture of two or more selected from glycerin fatty acid esters, polyglycerin fatty acid esters, polyglycerin condensed ricinoleic acid esters, and lecithins, more preferably monoglycerin mono fatty acid esters and monoglycerin diesters.
  • Fatty acid ester Fatty acid ester, monoglycerin fatty acid organic acid ester (especially monoglycerin fatty acid acetate ester, monoglycerin palm hardened oil acetate ester), polyglycerin fatty acid ester (especially polyglycerin having an average degree of polymerization of 2 to 10 and 6 to 22 carbon atoms) Ester of fatty acid) and polyglycerin condensed ricinoleic acid ester (especially average polymerization degree 2 to: ester of polyglycerin having a degree of condensation of 2 to 4 and polyricinoleic acid having a degree of condensation of 2 to 4)
  • a mixture more preferably mono Glycerin fatty acid organic acid ester (especially monoglycerin fatty acid acetate, monoglycerin coconut hardened oil vinegar, fully acetylated coconut palm oil monoglyceride), tetraglycerin pentaoleate, polyglycerin condensed ricinoleate, egg
  • MCT as the fat and oil, and egg yolk lecithin, soybean lecithin or enzymatically decomposed lecithin as the surfactant (E) in combination.
  • the time required for removing water from the oil-in-water emulsion composition droplets is not particularly limited, but is preferably 5 seconds to 24 hours, more preferably 1 minute. -12 hours, most preferably in the range of 5 minutes to 6 hours. If the time required for removing the water is less than 5 seconds, it is not preferable because the oil component (B) is heated and evaporated rapidly. On the other hand, if the time required for removing water is longer than 24 hours, productivity is unfavorable.
  • the removal of water in the production method (1) of the present invention means that even when the water is not completely removed, the drying of the oil-in-water emulsion composition droplets proceeds and the particles Any form that can be recovered in the form is acceptable.
  • the residual water content is preferably 30% by weight or less, more preferably 10% by weight or less, and most preferably 5% by weight or less of the recovered particle weight.
  • the method for recovering the particulate composition after removing water is not particularly limited, but the particulate composition obtained after removing the oil component (B) by solid-liquid separation is used. The most convenient and preferred method is to wash most of the oil component (B) by washing it with an organic solvent, and to remove the organic solvent by drying and recover it as a powder.
  • the organic solvent for washing the oily component (B) is not particularly limited as long as it is an organic solvent capable of dissolving and removing the oily component (B), but it is used for the production of foods, pharmaceuticals, cosmetics and the like. Such organic solvents are preferred. Examples of such a solvent include ethanol, methanol, isopropanol, acetone, hexane, ethyl acetate, and tetrahydrofuran. Among these, when using the particulate composition of the present invention for food applications, it is most preferable to use ethanol. Examples of the method for drying the organic solvent include, but are not limited to, vacuum drying, heat drying, and air drying. The particulate composition after collection can be subjected to a classification operation in order to obtain a desired particle size as a predetermined product.
  • an oil-in-water prepared from an oily component (A) containing reduced coenzyme Q10 and an aqueous solution containing a water-soluble excipient can be made into the particulate composition of the present invention by spray drying in the gas phase.
  • a so-called spray drying method can be used as the spray drying method in the gas phase.
  • the conditions for spray drying can be appropriately selected from the conditions that are usually carried out.
  • the individual oil-in-water emulsion composition droplets suspended substantially spherically in oil component (B) are spherical. Since the removal of water proceeds while maintaining the form, it tends to be easy to obtain a particulate composition having high oxidation stability, high sphericity and low surface roughness (Ra), which is the object of the present invention. Therefore, it is a more preferable production method.
  • the reduced coenzyme Q10 that is close to a spherical shape and has a small surface roughness (Ra) can be obtained by appropriately controlling the temperature and residence time during drying.
  • a particulate composition can be prepared.
  • a method for stabilizing and handling a particulate composition containing the reduced coenzyme Q10 of the present invention will be described.
  • the stabilization described in the present specification indicates that reduced coenzyme Q10 is inhibited from being oxidized to oxidized coenzyme Q10.
  • the handling described in this specification is to maintain or exert the function of an object by applying an external action to the object. Examples of handling may include, but are not limited to, dispensing from the coating machine, packaging, packing, storage, storage, transport, classification. Preservation is preferred.
  • the upper limit of the temperature in the method for stabilizing and handling the particulate composition containing the reduced coenzyme Q 10 of the present invention is usually about 100 ° C or less, preferably about 80 ° C. In the following, it is more preferably about 60 ° C. or less, further preferably about 40 ° C. or less, particularly preferably about 20 ° C. or less.
  • the lower limit of the temperature is usually about ⁇ 100 ° C. or higher, preferably about ⁇ 80 ° C. or higher, more preferably about _60 ° C. or higher, more preferably about _40 ° C. or higher, particularly preferably about _ Above 20 ° C.
  • the retention rate (%) of the reduced coenzyme Q10 after storage for 30 days at 40 ° C in air and under light-shielded conditions is not particularly limited, but is about 50% by weight or more, preferably about 60% by weight or more, more preferably about 70% by weight or more, more preferably about 80% by weight or more, and particularly preferably about 90% by weight or more.
  • the present invention provides a particulate composition containing reduced coenzyme Q10 and a method for stabilizing and handling a preparation containing the composition, characterized by adjusting relative humidity.
  • the humidity in the storage atmosphere is important, and the stability of the particulate composition containing reduced coenzyme Q10 can be significantly improved by adjusting the humidity. I can do it.
  • the upper limit of the relative humidity is not particularly limited as long as the particulate composition containing the reduced coenzyme Q10 can be stably stored, but usually the relative humidity is about 90% or less, preferably the relative humidity is about 80% or less, more preferably The particulate composition containing reduced coenzyme Q10 can be handled more stably in an environment adjusted to a relative humidity of about 70% or less, particularly preferably a relative humidity of about 60% or less.
  • the lower limit of relative humidity is 0%.
  • the environment in which the relative humidity is adjusted is the dehumidification of environmental power or the dehumidified gas ( Air may be used, but is preferably provided by introduction of dry inert gas such as dry nitrogen into the environment.
  • the dehumidification is not particularly limited, but can be achieved by freezing moisture, using a dehumidifier, a desiccant (silica gel, calcium chloride, synthetic zeolite, etc.) and the like. Needless to say, the method is not particularly limited as long as an environment in which the relative humidity is adjusted is given.
  • the particulate composition of the present invention is naturally produced and stored in a deoxygenated atmosphere from the viewpoint of the stability of reduced coenzyme Q10.
  • a deoxygenated atmosphere such as an inert gas such as nitrogen gas or argon gas.
  • the particles containing reduced coenzyme Q10 obtained in the present invention are characterized by being packaged and packed with a glass, plastic and / or metal material.
  • a method for stabilizing and handling a glassy composition is provided. The stability of the particulate composition is remarkably improved by packaging and packing with the above materials.
  • the glass material examples include soft glass and hard glass.
  • plastic materials include high density polyethylene, medium density polyethylene, low density polyethylene, polypropylene, polyethylene terephthalate, polybutyl alcohol, poly salt vinyl, poly salt vinylidene, and nylon. it can.
  • films made by laminating the above plastic materials, films made by laminating aluminum etc. on plastic materials such as aluminum laminate, and films made by evaporating aluminum, alumina, silica, etc. on plastic materials are also plastic. Included in the material made.
  • the metal material include iron, anorium, zinc, nickel, cobalt, copper, tin, titanium, chromium, and alloys thereof (stainless steel, brass, etc.).
  • materials such as enamels that combine glass and metal can be used.
  • the above-mentioned material is preferably molded into bottles, bags, cans, drums, boxes, etc., and the particulate composition of the present invention is preferably packaged and packed.
  • the above materials can be used for PTP packaging, three-side seal packaging, four-side seal packaging, pillow packaging, strip packaging, aluminum molding packaging, stick packaging, and the like.
  • materials with relatively low gas barrier properties and moisture resistance such as polyethylene
  • deposited films such as aluminum laminate, aluminum, alumina, silica, etc.
  • Relatively gas barrier properties such as glass and metal, prevention It is particularly preferable to use a highly wet material. After packaging and packing, they can be transported and stored in steel drums, resin drums, fiber drums, cardboard, etc. as necessary.
  • the present invention provides the method for stabilizing or handling the particulate composition containing reduced coenzyme Q10 in combination with a moisture-proofing agent.
  • a moisture-proofing agent in combination, the stability of the particulate composition is remarkably improved.
  • the moisture-proofing agent include silica gel, salted canola, synthetic zeolite and the like.
  • the retention is not particularly limited, but is usually about 80% by weight or more, preferably about 85% by weight or more, more preferably 90% by weight or more, more preferably about 95% by weight or more, particularly preferably about 97% by weight or more. is there. Needless to say, by using the above-mentioned packaging package, the relative humidity can be adjusted.
  • the particulate composition containing reduced coenzyme Q10 obtained in the present invention is a tablet, pill, force capsule (nodal capsule, soft capsule, microcapsule, etc.), chewable tablet, powder, granule, syrup. It can be processed or used as pharmaceuticals, other foods, cosmetics, etc. as a preparation such as a drink. That is, the preparations mentioned here include not only pharmaceutical products but also those belonging to foods and cosmetics and having the above-mentioned forms.
  • disintegrants in addition to excipients, disintegrants, lubricants, binders, anti-aggregation agents, absorption promoters, solubilizers, stabilizers, etc., when used as capsules, oils and fats, lecithin, lysolecithin, etc.
  • a surfactant can also be used in combination.
  • the above preparation should be handled or stored in an environment where the relative humidity is adjusted as described above. And Z or the ability to pack or pack as described above in handling or storing is a preferred embodiment.
  • the present invention further provides a reduced coenzyme Q10 having a melting point or lower and not in a crystalline state, and also provides reduced coenzyme Q10 in which at least a part of the reduced coenzyme Q10 is not in a crystalline state.
  • a reduced coenzyme Q10 that is not more than 80% by weight, more preferably 50% by weight or more, still more preferably 70% by weight or more, particularly preferably 80% by weight or more, and at most 100% by weight is not in a crystalline state. It is.
  • “not in a crystalline state” means that it is in an amorphous state or a melt state.
  • the reduction component contained in the oily component (A) in the particulate composition obtained by the aforementioned method for producing a particulate composition is used. Since type coenzyme Q10 is not usually in a crystalline state, it can be produced by the production method.
  • Other production methods include, for example, a water-soluble polymer solution having a property of forming a physical gel, a first smoke-like liquid containing a reduced coenzyme Q10, and a second aerosol containing a gelling agent. A method of contacting the liquid is mentioned.
  • a water-soluble polymer having a property of forming a physical gel means a property that a gel-crosslinked state can be formed by hydrogen bonding, ionic bonding, chelate formation, or the like between polymers. It is a water-soluble polymer.
  • Physical gel-forming properties refers to the addition of inorganic salts and acids to water-soluble high-molecular aqueous solutions, or operations such as heating / cooling, which can be used to create elastic bodies from viscous fluids (sols). It means that the change to (gel) has a property that can be perceived visually.
  • water-soluble polymer examples include water-soluble alginic acid and derivatives thereof, low methoxyl pectin, gelatin, xanthan gum, carmellose sodium, polyvinylpyrrolidone, water-soluble cellulose and derivatives thereof, and the like.
  • Examples of the gelling agent include aqueous solutions of calcium chloride, magnesium chloride, or barium chloride.
  • a predetermined amount of an aqueous solution of the coagulant (gelator) is sprayed continuously in the form of a smoke.
  • the reduced coenzyme Q10-containing water-soluble polymer solution is preferably put into a milky state in the solidified gas phase atmosphere and continuously sprayed or dripped for contact.
  • a reduced coenzyme Q10-containing granule is obtained, but the reduced form contained in this granule Coenzyme Q10 includes at least those that are not normally in a crystalline state.
  • the HPLC analysis conditions are described below.
  • the sphericity of the obtained particulate composition is determined by analyzing the image obtained by electron microscope observation of the recovered particles with image analysis software (WinROOF Ver. 3.30), and the diameter and circumscribed circle of the same area. It was calculated from the diameter ratio of the smallest circle. In the analysis, 20 samples were analyzed and the average value was obtained.
  • the degree of crystallinity of reduced coenzyme Q10 in the obtained particulate composition was 25 ° C, stored in air for 30 days, and then the following DSC (differential scanning calorimeter [EXSTAR 6000 manufactured by Seiko Denshi Kogyo Co., Ltd.]) It was obtained by conducting an analysis. After storing the particulate compositions obtained in Examples and Comparative Examples under the above-mentioned predetermined conditions, 10 mg of them are taken into an aluminum pan, and the temperature is increased from 15 ° C to 70 ° C at a temperature rising rate of 5 ° C / min. The temperature was raised and the heat of crystal melting at that time was measured. The degree of crystallization was calculated according to the following formula from the theoretical heat of fusion determined from the content of reduced coenzyme Q10 in the particulate composition and the data of heat of fusion measured with DSC.
  • DSC differential scanning calorimeter
  • Crystallinity (%) (Measured heat of fusion / Theoretical heat of heat) X 100 [0115] (Volume average particle diameter)
  • the volume average particle size of the obtained particulate composition was measured using an ethanol solvent in a laser diffraction / scattering particle size distribution measuring device (manufactured by Nikkiso Co., Ltd .; Microtrack MT3000II).
  • the obtained particulate composition was added to a two-component curable adhesive (manufactured by AZONE Corporation; Araldite) and then cured.
  • the obtained embedded sample was immersed in liquid nitrogen for 5 minutes, cooled sufficiently, and then broken using a hammer. After immersing the fracture surface in hexane for 15 minutes to remove the oil component (A), the fracture surface of the particulate composition was photographed with a scanning electron microscope (Hitachi; S-4800).
  • the average particle size of the domain was determined by selecting 50 vacancies from random images and measuring the particle size and averaging.
  • oxidized coenzyme 310 crystals (manufactured by Kanechi Co., Ltd.) and 60 g of L-ascorbic acid were added to lOOOOg ethanol and stirred at 78 ° C. to carry out a reduction reaction. Thereafter, the mixture was cooled to 50 ° C., and 400 g of ethanol and 7] a00 g were added while maintaining the same temperature, and the ethanol solution was stirred and cooled to 2 ° C. at a cooling rate of 10 ° C./hour. After washing with cold ethanol and then cold water, the wet crystals obtained were dried under reduced pressure to obtain 95 g of white dry crystals (solid yield of 95 mol%). The purity of the obtained crystals was 99.1%, and the weight ratio (%) of reduced coenzyme Q10 to the total amount of coenzyme Q was 99.0%.
  • the emulsion particle size (average particle size of the domain) of reduced coenzyme Q10 in the oil-in-water emulsion composition was about 1 ⁇ m.
  • This oil-in-water emulsified composition was subjected to a hot air entering temperature of 200 ° C using a spray dryer (B_ 290 manufactured by Nihon Büch Co., Ltd.). Was spray dried to obtain a particulate composition containing reduced coenzyme Q10.
  • the obtained particulate composition had a sphericity of 0.87, a volume average particle size; 6.9 / m, a coenzyme Q content; 11.8% by weight and a reduced coenzyme Q content; 11. 1% by weight.
  • Fig. 1 shows an electron micrograph of the appearance of the obtained particulate composition.
  • the retention rate of reduced coenzyme Q10 after storage for 30 days at 40 ° C. in air and under light-shielded conditions was 83%.
  • the crystallinity measured by DSC was 21%.
  • the oil-in-water emulsion composition is spray-dried using a spray dryer (B-290, manufactured by Nihon Büch Co., Ltd.) at a temperature of 200 ° C with hot air, and contains a reduced coenzyme Q10. I got a thing.
  • a spray dryer B-290, manufactured by Nihon Büch Co., Ltd.
  • the obtained particulate composition had a sphericity of 0.83, a coenzyme Q content; 11.8 wt% and a reduced coenzyme Q content; 10.8 wt%.
  • the crystallinity measured by DSC was 27%.
  • This oil-in-water emulsified composition is applied to a spray dryer (Nippon Büch Corporation).
  • a particulate composition containing reduced coenzyme Q10 was obtained by spray drying using a hot air containing temperature of 200 ° C. using B-290).
  • the obtained particulate composition had a sphericity of 0.81, a coenzyme Q content; 13.4 wt% and a reduced coenzyme Q content; 12.5 wt%.
  • the crystallinity measured by DSC was 36%.
  • the reduced coenzyme Q10 emulsion particle size in the oil-in-water emulsion composition was about 1 ⁇ m.
  • the oil-in-water emulsion composition is spray-dried using a spray dryer (B-290, manufactured by Nihon Büch Co., Ltd.) at a temperature of 200 ° C with hot air, and contains a reduced coenzyme Q10. I got a thing.
  • the obtained particulate composition had a sphericity of 0.84, a coenzyme Q content; 13.2% by weight and a reduced coenzyme Q content; 12.2% by weight.
  • the crystallinity measured by DSC was 49%.
  • the temperature of the suspension was adjusted to 105 ° C, so that water removal from the oil-in-water emulsion composition suspension droplets progressed for about 30 minutes. Most of the water evaporated. Thereafter, according to a conventional method, the oily component (B) is separated by solid-liquid separation, and the oily component (B) adhering to the particles is washed with about 500 g of ethanol, and then dried at 50 ° C. A particulate composition containing enzyme Q10 was obtained.
  • the resulting particulate composition had a sphericity of 0.97, a volume average particle size of 130 ⁇ m, a domain particle size of 1.4 zm, a coenzyme Q content of 12.8% by weight and Reduced coenzyme Q content; 11.9% by weight.
  • the retention rate of reduced coenzyme Q10 after storage for 30 days at 40 ° C. in air under light-shielded conditions was 100%.
  • the crystallinity measured by DSC was 0%.
  • FIG. 2 An electron micrograph of a cross section of the obtained particulate composition is shown in FIG. As shown in FIG. 2, it was confirmed that the domains formed by the oil component (A) were dispersed as fine pores in the particulate composition. From this photograph, the number of domains in one particle is estimated to be about 100,000.
  • the emulsion particle diameter of reduced coenzyme Q10 in the oil-in-water emulsion composition was about 0. here 75 g of the oil-in-water emulsion composition obtained in step 1 was heated to 90 ° C in advance, 145 g of MCT (Actor M-2 manufactured by Riken Vitamin Co., Ltd.) and a surfactant (polyglycerin condensed ricinoleic acid ester: Sakamoto Pharmaceutical Co., Ltd.) SY GLISTAR CRS—75) Co., Ltd. was added to 5 g of the oil component (B), and the stirring speed was adjusted so that the particle size of the oil-in-water emulsion composition suspension droplets was about 200 ⁇ m. .
  • the sphericity of the obtained particulate composition was 0.97, and the coenzyme Q content was 11.6 wt% and the reduced coenzyme Q content was 10.7 wt%.
  • the retention rate of reduced coenzyme Q10 after storage for 30 days at 40 ° C. in air under light-shielded conditions was 100%.
  • the crystallinity measured by DSC was 0%.
  • the obtained particulate composition had a sphericity of 0.97, a volume average particle size; 131 ⁇ m, a coenzyme Q content; 12.3% by weight and a reduced coenzyme Q content; 3% by weight.
  • the retention rate of reduced coenzyme Q10 after storage for 30 days at 40 ° C. in air and under light-shielded conditions was 94%.
  • the crystallinity measured by DSC was 0%.
  • FIG. 3 An electron micrograph of the appearance of the obtained particulate composition is shown in FIG. As shown in FIG. 3, it was confirmed that the particulate composition obtained in Example 7 had high sphericity and particles.
  • oil-in-water emulsion composition obtained here was heated to 90 ° C in advance, 145 g of MCT (Actor M-2 manufactured by Riken Vitamin Co., Ltd.) and a surfactant (polyglycerin condensed ricinoleate: SY Glyster CRS—75) from Sakamoto Yakuhin Kogyo Co., Ltd. Add to 5 g of oil component (B) and stir rotation speed so that the particle size of the oil-in-water emulsion suspension droplets is about 200 / m Adjusted.
  • MCT Vector M-2 manufactured by Riken Vitamin Co., Ltd.
  • a surfactant polyglycerin condensed ricinoleate: SY Glyster CRS—75
  • the resulting particulate composition had a sphericity of 0.97, a domain particle size of 1.4 ⁇ m, a coenzyme Q content of 30% by weight and a reduced coenzyme Q content of 29. It was 5% by weight.
  • the retention rate of reduced coenzyme Q10 after storage for 30 days at 40 ° C in air and under light-shielded conditions is 1 It was 00%.
  • the crystallinity measured by DSC was 0%.
  • FIG. 4 An electron micrograph of a cross section of the obtained particulate composition is shown in FIG. As shown in FIG. 4, it was confirmed that the domains formed by the oil component (A) were dispersed in the particulate composition as fine pores. From this photograph, the number of domains in one particle is estimated to be about 250,000.
  • 75 g of the oil-in-water emulsified composition obtained here was heated to 90 ° C in advance, 100 g of MCT (Actor M-2 manufactured by Riken Vitamin Co., Ltd.) and surfactant (tetraglycerin pentaoleate: Sakamoto SY Glyster PO-3S, HLB3.0 manufactured by Yakuhin Kogyo Co., Ltd. Add to 50 g of oil component (B) and stir so that the particle size of the oil-in-water emulsion suspension droplets is about 200 / m The rotation speed was adjusted.
  • MCT Vector M-2 manufactured by Riken Vitamin Co., Ltd.
  • surfactant tetraglycerin pentaoleate: Sakamoto SY Glyster PO-3S, HLB3.0 manufactured by Yakuhin Kogyo Co., Ltd.
  • the obtained particulate composition had sphericity; 0.97, coenzyme Q content; 12.3% by weight and reduced coenzyme Q content; 11.6% by weight.
  • the crystallinity measured by DSC was 0%.
  • Example 10 In 140 g of distilled water, 45 g of gum arabic (Ara gum A, manufactured by Ina Food Industry Co., Ltd.) and 15 g of gelatin (APH-250, manufactured by Nitta Gelatin Co., Ltd.) are dissolved at 60 ° C to prepare a water-soluble excipient solution. did.
  • gum arabic Ara gum A, manufactured by Ina Food Industry Co., Ltd.
  • gelatin APH-250, manufactured by Nitta Gelatin Co., Ltd.
  • 75 g of the oil-in-water emulsified composition obtained here was heated to 90 ° C in advance, 75 g of MCT (Actor M-2, manufactured by Riken Vitamin Co.) and a surfactant (tetraglycerin pentaoleate ester : Sakamoto Yakuhin Kogyo Co., Ltd.
  • MCT ctor M-2, manufactured by Riken Vitamin Co.
  • surfactant tetraglycerin pentaoleate ester : Sakamoto Yakuhin Kogyo Co., Ltd.
  • the obtained particulate composition had a sphericity of 0.96, a coenzyme Q content; 12.5 wt% and a reduced coenzyme Q content; 11.5 wt%.
  • the retention rate of reduced coenzyme Q10 after storage for 30 days at 40 ° C. in air and under light-shielded conditions was 97%.
  • the crystallinity measured by DSC was 0%.
  • the obtained particulate composition had a sphericity of 0.87, a coenzyme Q content; 12.5 wt% and a reduced coenzyme Q content; 11.6 wt%.
  • the retention rate of reduced coenzyme Q10 after storage for 30 days at 40 ° C. in air and under light-shielded conditions was 97%.
  • the crystallinity measured by DSC was 0%.
  • the emulsion particle size of reduced coenzyme Q10 in the oil-in-water emulsion composition was about lxm.
  • 75 g of the oil-in-water emulsion composition obtained here was heated to 90 ° C in advance, 149.6 g of MCT (actor M-2 manufactured by Riken Vitamin Co., Ltd.) and enzyme-degraded lecithin (Nippon Siebel Hegner, Inc.) Emultop (Handle) HL50)
  • Add to 0.4 g of oil component (B) Add to 0.4 g of oil component (B), and the oil-in-water emulsion composition suspension droplets have a particle size of about 200
  • the stirring rotation speed was adjusted to be / m.
  • the resulting particulate composition had a sphericity of 0.97, a coenzyme Q content; 13.3% by weight and a reduced coenzyme Q content; 12.4% by weight.
  • the crystallinity measured by DSC was 0%.
  • the oily component (B) is separated by solid-liquid separation, the oily component (B) adhering to the particles is washed with about 500 g of ethanol, and then dried at 50 ° C to obtain a reduced type. A particulate composition containing coenzyme Q10 was obtained.
  • the obtained particulate composition had a sphericity of 0.97, a coenzyme Q content; 13.3% by weight and a reduced coenzyme Q content; 12.4% by weight.
  • the crystallinity measured by DSC was 0%.
  • the emulsion particle size of reduced coenzyme Q10 in the oil-in-water emulsion composition was about 1 ⁇ m.
  • 75 g of the oil-in-water emulsified composition obtained here was added to an oil component (B) consisting of 150 g of MCT (actor M-2 manufactured by Riken Vitamin Co., Ltd.) that had been heated to 90 ° C in advance.
  • the stirring rotation speed was adjusted so that the particle size of the oil-type emulsion composition suspension droplets was about 200 / m.
  • the oily component (B) is separated by solid-liquid separation, and the oily component (B) adhering to the particles is washed with about 500 g of ethanol, and then dried at 50 ° C. A particulate composition containing coenzyme Q10 was obtained.
  • the resulting particulate composition had a sphericity of 0.97, a coenzyme Q content; 13.9 wt% and a reduced coenzyme Q content; 12.9 wt%.
  • the crystallinity measured by DSC was 0%.
  • the emulsion particle size of reduced coenzyme Q10 in the oil-in-water emulsion composition was about 1 ⁇ .
  • 75 g of the oil-in-water emulsified composition obtained here was previously heated to 90 ° C and added to the oily component (B) consisting of 150 g of MCT (actor M-2 manufactured by Riken Vitamin Co., Ltd.).
  • the stirring rotation speed was adjusted so that the particle diameter of the emulsion composition suspension droplets was about 200 ⁇ m.
  • water removal from the oil-in-water emulsified composition suspension droplets progressed for about 30 minutes. Most of the water evaporated.
  • the oily component (B) is separated by solid-liquid separation, the oily component (B) adhering to the particles is washed with about 500 g of ethanol, dried at 50 ° C, and reduced type. A particulate composition containing coenzyme Q10 was obtained.
  • the obtained particulate composition had a sphericity of 0.97, a coenzyme Q content; 13.3% by weight, and a reduced coenzyme Q content; 12.4% by weight.
  • the crystallinity measured by DSC was 0%.
  • the oily component (B) is separated by solid-liquid separation, the oily component (B) adhering to the particles is washed with about 500 g of ethanol, and then dried at 50 ° C. A particulate composition containing enzyme Q10 was obtained.
  • the obtained particulate composition had a sphericity of 0.97, a volume average particle size of 309 ⁇ m, a domain particle size of 0, a coenzyme Q content of 15% by weight, and a reduced coenzyme.
  • Q content 14.0 wt%.
  • the retention rate of reduced coenzyme Q10 after storage for 30 days at 40 ° C. in air under light-shielded conditions was 100%.
  • the crystallinity measured by DSC was 0%.
  • the particulate composition obtained in Example 16 was confirmed to be particles having a high sphericity.
  • the domain formed by the oil component (A) was polydispersed in the particulate composition as fine pores. From this photo, the number of domains in one particle is estimated to be about 20 million.
  • the white dried crystals of reduced coenzyme Q10 obtained in Production Example were pulverized in a mortar to obtain reduced coenzyme Q10 powder.
  • the sphericity of the obtained powder was 0.78, and the retention rate of reduced coenzyme Q10 after storage for 30 days at 40 ° C. in air under light-shielding conditions was 28%.
  • the crystallinity measured by DSC was 100% and did not contain reduced coenzyme Q10 in an amorphous state or a melt state.
  • the particulate composition of the present invention has improved oxidation stability of the reduced coenzyme Q10 contained in the particulate composition having a high sphericity.
  • Sk SD male male 9-week-old was used (designated when the arrival weight was 320g or more).
  • a group of 5 dogs was used for 2 weeks of preliminary breeding. Rats are raised in a breeding room set at room temperature 20-26 ° C, humidity 40-70%, lighting 12 hours / day (7: 30-19: 30), solid food CE-2 (Clea Japan) Co., Ltd.) and tap water were fed freely. The day before administration The body weight of the rat was measured, and the amount of sampnore filled in the capsule was calculated. Each sample was accurately weighed so that the dose per body weight of the rat was 10 mg / kg body weight as the content of reduced coenzyme Q10, and filled into gelatin node capsules using a special funnel.
  • Administration was carried out using a capsule administration machine (manufactured by TO AP AC). Using hard capsules, rats were orally administered by gavage, and the administration time was recorded on a prescribed recording sheet. Immediately after administration, 1.5 mlZkg of distilled water was given.
  • the oral absorbability of reduced coenzyme Q10 is 0% in crystallinity compared to the powder in the conventional crystalline state, that is, all in the amorphous state or the melt state. It can be confirmed that the particulate composition of the present invention is extremely high. That is, it can be said that the particulate composition containing the reduced coenzyme Q10 of the present invention is a particulate composition having both high oxidation stability and high oral absorbability.
  • Hard capsule formulation of Example 8 (Amount used is the amount of each component per kg of rat body weight): 33.3 mg of particulate composition obtained in Example 8 (10 mg of reduced coenzyme Q10), Lara oil (constituent fatty acid oleic acid content 76.6%) 77 ⁇ 8 mg, monooleic acid hexadaririne (Sunsoft Q 17F manufactured by Taiyo Kagaku Co., Ltd.) 11. lmg, enzymatically decomposed lecithin ) 11. Mix lmg.
  • Hard capsule formulation of Comparative Example 1 (Amount used is the amount of each component per kg body weight of rat): 10 mg of powder obtained in Comparative Example 1, 51. lmg of rapeseed oil, diglycerin monooleate (RIKEN vitamin stock) Company Poem DO—100V) 21.9 mg, beeswax 7.8 mg, soy lecithin 0.09 mg.
  • KANEKA QH (registered trademark) (manufactured by KANEKI Co., Ltd.) 20 g of 20 g of sodium alginate (IL6 G manufactured by Kimiki Co., Ltd.) prepared in advance at 60 ° C. was melted by heating to 60 ° C. An aqueous solution containing 50 g of gelatin (Nitta Gelatin APH) was dispersed in 1 litter and emulsified using a homogenizer at 15000 ⁇ m for 10 minutes. The particle size (particle size distribution) of Coenzyme Q10-containing emulsified particles in this uniform emulsion was measured with a dynamic light scattering particle size distribution analyzer (LB-550 manufactured by Horiba, Ltd.). Is 7 in 1 ⁇ m.
  • LB-550 dynamic light scattering particle size distribution analyzer
  • Example of preparation Reduced Coenzyme Q 10-containing emulsion obtained in! ⁇ 3 was sprayed from the top of a cylindrical coagulation chamber with an inner diameter of 45 cm and a total height of approximately 5 m using a two-fluid nozzle (BIMJ 2004 manufactured by Miri no Ikeuchi). The spray was used with a volume average droplet diameter of 150 xm and a supply rate of 150 g / min. At the same time, a two-fluid nozzle (made by Spraying Systems 1 / J) is used so that the salty calcium aqueous solution with a concentration of 30% by weight is 5 to 15 parts by weight with respect to 100 parts by weight of the salty calcium solids.
  • a two-fluid nozzle made by Spraying Systems 1 / J
  • the collected suspension was dehydrated and dried by a conventional method to prepare granules. Using an electron microscope, it was confirmed that particles having a volume average particle size of about 50 ⁇ were produced and used in any of the emulsions of Preparation Examples 1 to 3.
  • Example 1 7 (granule obtained 3 4% from the emulsion of Preparation Example 1)
  • Example 1 7 (granule obtained 3 4% from the emulsion of Preparation Example 2)
  • Example 17 (granule obtained from the emulsion of Preparation Example 3 36%)
  • Example 17 As a result, it was confirmed that the reduced coenzyme Q10 in Example 17 was present in the reduced coenzyme Q10 particles of Example 17.
  • the oil-in-water emulsion composition had a reduced coenzyme Q10 emulsion particle size of about 1 ⁇ m.
  • 75 g of the oil-in-water emulsion composition obtained here was heated to 90 ° C in advance.
  • the pressure is reduced and water removal from the oil-in-water emulsified composition suspension droplets progresses. Most of the water evaporated in 20 minutes.
  • the oily component (B) is separated by solid-liquid separation, and the oily component (B) adhering to the particles is washed with about 500 g of ethanol. After drying at 40 ° C., 35 g of a particulate composition containing 30.2% reduced coenzyme Q10 (30.6% as coenzyme Q10) was obtained.
  • the sphericity of the obtained particulate composition was 0.97.
  • the retention rate of reduced coenzyme Q10 after storage for 30 days at 40 ° C in the air under light-shielded conditions was 99%.
  • %Met The crystallinity measured by DSC was 0%.
  • Example 19 5 g of the particulate composition containing reduced coenzyme Q10 obtained in Example 19 was placed in a polyethylene bag, and this polyethylene bag was placed in an aluminum laminate bag to pack the particulate composition. This package was placed in a constant temperature and humidity chamber at 40 ° C. and a relative humidity of 80%, and stored for 30 days under light shielding conditions. At this time, the retention rate of reduced coenzyme Q10 was 100%.
  • Example 20 Except for encapsulating lg silica gel in an aluminum laminated bag, the same packaging as in Example 20 was carried out to obtain a package of a particulate composition containing reduced coenzyme Q10. This package was placed in a constant temperature and humidity chamber at 40 ° C. and 80% relative humidity, and stored for 30 days under light-shielding conditions. The retention rate of reduced coenzyme Q10 at this time was 100%.
  • Example 19 5 g of the particulate composition containing reduced coenzyme Q10 obtained in Example 19 was placed in a polyethylene bag, and this polyethylene bag was placed in a polyethylene bag together with 3 g of silica gel to pack the particulate composition.
  • This package was placed in a constant temperature and humidity chamber at 40 ° C. and a relative humidity of 80%, and stored for 30 days under light shielding conditions. At this time, the retention rate of reduced coenzyme Q10 was 98%.
  • Example 19 5 g of the particulate composition containing reduced coenzyme Q10 obtained in Example 19 was placed in a glass bottle.
  • the glass bottle was placed in a constant temperature and humidity chamber at 40 ° C. and a relative humidity of 80% without sealing, and stored for 30 days under light shielding conditions. At this time, the retention rate of reduced coenzyme Q10 was 81%.
  • the emulsion particle size of reduced coenzyme Q10 in the oil-in-water emulsion composition was about 1 ⁇ .
  • 75 g of the oil-in-water emulsified composition obtained here was preheated to 90 ° C.
  • MCT Actor M-2, manufactured by Riken Vitamin Co., Ltd.
  • lecithin Japan Sebel Hegner Co., Ltd.
  • the water is removed from the oil-in-water emulsion composition suspension droplets by reducing the pressure, Most of the water evaporated in about 20 minutes. Thereafter, according to a conventional method, the oily component (B) is separated by solid-liquid separation, and the oily component (B) adhering to the particles is washed with about 500 g of ethanol. After drying at ° C, 35 g of a particulate composition containing 30.2% reduced coenzyme Q10 (30.7% as coenzyme Q10) was obtained.
  • the sphericity of the obtained particulate composition was 0.97.
  • the retention rate of reduced coenzyme Q10 was 99% after the obtained particulate composition was stored at 40 ° C. in air and under light-shielding conditions for 30 days.
  • Particulate composition containing reduced coenzyme Q 10 obtained in Example 1 is added to a mixture of rapeseed oil, diglycerin monooleate (RIKEN vitamin Poem DO-100V), hydrogenated oil, beeswax and lecithin. According to a conventional method, it contains reduced coenzyme Q10 consisting of the following components:
  • a mixture of rapeseed oil, diglycerin monooleate (RIKEN vitamin Poem DO-100V), hydrogenated oil, beeswax, and lecithin contains reduced coenzyme Q10 obtained in Example 19. Containing a reduced coenzyme Q10 consisting of the following components according to a conventional method.
  • a particulate composition containing reduced coenzyme Q10 obtained in Example 14 was added to a mixture consisting of rapeseed oil, diglycerin monooleate (Poem DO-100V manufactured by Riken Vitamin), hydrogenated oil, and lecithin.
  • a gel containing reduced coenzyme Q10 comprising the following components:
  • Rapeseed oil 40 0% by weight
  • the particulate composition containing reduced coenzyme Q10 obtained in Example 19 and lactose were mixed.
  • the obtained mixed powder was sized with a sieve, and then a gelatin hard capsule containing reduced coenzyme Q 10 comprising the following components was obtained by a conventional method.
  • Example 19 After mixing the particulate composition containing reduced coenzyme Q10 obtained in Example 19 and crystalline cellulose (Avicel), magnesium stearate was further added and mixed.
  • the obtained mixed powder was sized with a sieve, and the obtained sized powder was tableted with a rotary tableting machine to obtain a tablet containing reduced coenzyme Q10 comprising the following components.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Botany (AREA)
  • Nutrition Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Diabetes (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Fodder In General (AREA)

Abstract

 本発明は高い酸化安定性と高い生体吸収性を兼ね備えた、水溶性賦形剤を含むマトリックス中に、還元型補酵素Q10を含有する油性成分がドメインを形成して多分散している、還元型補酵素Q10を含有する粒子状組成物、その製造方法、およびその安定化方法を提供する。また該組成物を含む食品、栄養機能食品、特定保健用食品、栄養補助剤、栄養剤、動物薬、飲料、飼料、ペットフード、化粧品、医薬品、治療薬、予防薬等を提供する。

Description

明 細 書
還元型補酵素 Q10含有組成物およびその製造方法
技術分野
[0001] 本発明は、還元型補酵素 Q10を含有する粒子状組成物およびその製造方法に関 する。さらに詳しくは、本発明は、高い酸化安定性と高い経口吸収性を兼ね備えた還 元型補酵素 Q10を含有する粒子状組成物およびその製造方法に関する。また、本 発明は非結晶状態である還元型補酵素 Q10に関する。
背景技術
[0002] 補酵素 Qは、細菌から哺乳動物まで広く生体に分布する必須成分である。ヒトでは 、補酵素 Qの側鎖が繰り返し構造を 10個持つ、補酵素 Q10が主成分であることが知 られている。補酵素 Q10は、生体内の細胞中におけるミトコンドリアの電子伝達系構 成成分として存在する生理学的成分であり、生体内において酸化と還元を繰り返す ことで電子伝達系における伝達成分としての機能を担っている。
[0003] 補酵素 Q10は生体において、エネルギー生産、膜安定化および抗酸化活性を示 すことが知られており、その有用性は広レ、。補酵素 Q10には酸化型と還元型があり、 生体内においては通常約 40〜90%程度が還元型で存在することが知られている。 補酵素 Q10のうち、酸化型補酵素 Q10 (別名ュビキノンまたはュビデカレノン)は、鬱 血性心不全薬として医薬用途に、また医薬用途以外でも、ビタミン類同様、栄養剤、 栄養補助剤として経口剤および皮膚用剤として広く用レ、られている。
[0004] 一方、還元型補酵素 Q10は、酸化型補酵素 Q10よりも高い経口吸収性を示し、食 品、栄養機能食品、特定保健用食品、栄養補助剤、栄養剤、動物薬、飲料、飼料、 ペットフード、化粧品、医薬品、治療薬、予防薬等として有効な優れた化合物である 。しかし、還元型補酵素 Q10は、分子酸素によって酸化型補酵素 Q10に酸化されや すぐ還元型補酵素 Q10を、食品、栄養機能食品、特定保健用食品、栄養補助剤、 栄養剤、動物薬、飲料、飼料、ペットフード、化粧品、医薬品、治療薬、予防薬等或 いはそれらの素材や組成物に加工する際、及び/又は、加工後取り扱う際の安定化 が重要な課題として残されている。上記の取り扱いに際して、完全な酸素の除去或い は遮断は極めて難しぐ特に加工時の加温や長期にわたる保存において、残存する 或いは混入する酸素が大きな悪影響を及ぼし、酸化型補酵素 Q10の副生といった 品質面の問題に直結する。
[0005] このように還元型補酵素 Q 10を安定に保持する(酸化から防護する)ことは非常に 重要な課題であるが、現在まで還元型補酵素 Q10を安定に保持するための方法及 び組成物に関する研究はほとんどなされていない。わずかに、還元剤を共存させた 組成物並びにその製造法について記述した例(特許文献 1)及び油脂中で還元型補 酵素 Q10を安定化させた例を認めるのみである(特許文献 2)。
[0006] この特許文献 1には、
1)還元型補酵素 Q10が酸化型補酵素 Q10に酸化されるのを抑制するために、有効 な量の還元剤及び上記還元型補酵素 Q10と前記還元剤を溶解するために有効な 量の界面活性剤又は、植物油又はこれらの混合物、そして、必要に応じて溶媒から なる組成物
2)上記組成物をゼラチンカプセル又はタブレットに製剤化した経口投与のための組 成物
3)更に、酸化型補酵素 Q10並びに還元剤を用いて in situで還元型補酵素 Q 10を 含有する上記組成物を調製する方法が開示されている。
[0007] し力 ながら、上記特許文献 1には、組成物中に含まれる還元型補酵素 Q 10の品 質や安定化効果等に関する詳細な記述はない。又、上記の組成物やその調製方法 は、組成物に複数の役割(すなわち、酸化型補酵素 Q 10を還元型補酵素 Q 10に還 元する反応の場としての役割及び還元型補酵素 Q10を安定に保持する役割)を持 たせるため、非常に複雑、煩雑なものとなっている。又、一般にァスコルビン酸類 (還 元剤)をゼラチンカプセルに封入した場合、ゼラチンカプセルの崩壊性が悪化するこ とが知られており、これは生体への吸収性に悪影響を及ぼす。
[0008] 更に、上記組成物やその調製方法においては、反応混合物がそのまま用いられて レ、る為、必ずしも安全とは言い難い点に注目すべきである。具体的には、酸化型補 酵素 Q 10を還元型補酵素 Q 10に還元する際に還元剤としてァスコルビン酸類を用 レヽてレ、る力 このァスコルビン酸類が酸化されて相当量のデヒドロアスコルビン酸類を 生じ、それが上記組成物中に混入する点である。デヒドロアスコルビン酸類や分解に より生成したシユウ酸は、ァスコルビン酸類とは異なり、有害性が高い。たとえば、肝 臓や腎臓中の過酸化脂質量の増加と抗酸化物質の減少や腎臓中のシユウ酸量の増 加が報告されており、酸化ストレスに対する抵抗力の低下や尿管結石を発症し易い 等の副作用が懸念される。
[0009] また、特許文献 2には、還元型補酵素 Q10を酸化から防護するための方法として、 還元型補酵素 Q10を、主成分が油脂(但し、オリーブ油を除く)及び Z又はポリオ一 ノレからなり、且つ、還元型補酵素 Q10の安定化を実質的に阻害しない組成物とする ことを特徴とする還元型補酵素 Q10の安定化方法が開示されているが、上述の安定 化方法では、還元型補酵素 Q10の安定性が不十分な場合もある。
[0010] さらに、特許文献 1や特許文献 2記載の組成物は、還元型補酵素 Q10が油脂及び /又は界面活性剤に溶解した油状の組成物であり、その適用範囲が限定されてい た。そのような背景のもと、さまざまな用途で使用できる、粉体形態でかつ安定な還元 型補酵素 Q 10含有組成物が求められていた。
特許文献 1: WO01/052822号
特許文献 2 :W〇03/062182号
発明の開示
発明が解決しょうとする課題
[0011] 本発明は上記の点に解決を与えるため、食品、栄養機能食品、特定保健用食品、 栄養補助剤、栄養剤、動物薬、飲料、飼料、ペットフード、化粧品、医薬品、治療薬、 予防薬等の分野にぉレ、て、高レ、酸化安定性と高レ、生体吸収性を兼ね備えた還元型 補酵素 Q10を含有する粒子状組成物、製造方法、およびその安定化方法を提案す ることを課題とする。また、本発明は生体内吸収性に優れた、結晶状態でない還元型 補酵素 Q10、当該結晶状態でない還元型補酵素 Q10を含有する還元型補酵素 Q1 0を提供することを課題とする。
課題を解決するための手段
[0012] 本発明者らは、上記課題を解決すべく鋭意研究した結果、水溶性賦形剤を含むマ トリックス中に、還元型補酵素 Q10を含有する油性成分がドメインを形成して多分散 している粒子状組成物が、高い酸化安定性と高い経口吸収性を兼ね備えた組成物 であることを見出し、本発明を完成させた。
すなわち、本発明が提供するのは以下の通りである:
[1]水溶性賦形剤を含むマトリックス中に、還元型補酵素 Q 10を含有する油性成分( A)がドメインを形成して多分散してレ、る粒子状組成物。
[2]球形度が 0. 8以上である、 [1]に記載の粒子状組成物。
[3]粒子状組成物中の還元型補酵素 Q10の 10重量%以上が結晶状態でないことを 特徴とする、 [1]または [2]に記載の粒子状組成物。
[4]油性成分 (A)が 5個以上のドメインを形成して多分散している、 [1]〜[3]のいずれ かに記載の粒子状組成物。
[5]水溶性賦形剤が、水溶性高分子、界面活性剤(C)、糖、および酵母細胞壁から なる群より選択される 1種以上である、 [1]〜[4]のいずれかに記載の粒子状組成物。
[6]水溶性高分子が、アラビアガム、ゼラチン、寒天、澱粉、ぺクチン、カラギーナン、 カゼイン、乾燥卵白、カードラン、アルギン酸類、大豆多糖類、プルラン、セルロース 類、キサンタンガム、カノレメロース塩、およびポリビエルピロリドンからなる群より選択さ れる 1種以上である、 [5]に記載の粒子状組成物。
[7]界面活性剤(C)が、グリセリン脂肪酸エステル類、ショ糖脂肪酸エステル類、ソル ビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル類、レシチン 類およびサポニン類からなる群より選択される 1種以上である、 [5]に記載の粒子状組 成物。
[8]糖が、単糖類、二糖類、オリゴ糖類、糖アルコール類、および多糖類力 なる群よ り選択される 1種以上である、 [5]に記載の粒子状組成物。
[9]還元型補酵素 Q10を含有する油性成分 (A)が、 5〜: 100重量%の還元型補酵素 Q10、 0〜95重量%の油脂、および 0〜95重量%の界面活性剤(D)を含有する、 [1 ]〜[8]のいずれかに記載の粒子状組成物。
[10]界面活性剤(D)が、 HLBが 10以下のグリセリン脂肪酸エステル類、ポリダリセリ ンエステル類、ショ糖脂肪酸エステル類、ソルビタン脂肪酸エステル類、プロピレング リコール脂肪酸エステル類およびポリオキシエチレンソルビタン脂肪酸エステル類、 ならびに、レシチン類からなる群より選択される 1種以上である、 [9]に記載の粒子状 組成物。
[11]粒子状組成物中の還元型補酵素 Q10の含有量が 1〜70重量%である、 [1]〜[ 10]のいずれかに記載の粒子状組成物。
[12]体積平均粒子径が、 1〜: !OOO z mである、 [1]〜[: 11]のいずれかに記載の粒子 状組成物。
[13]還元型補酵素 Q10を含有する油性成分 (A)が形成するドメインの平均粒子径 が、 0. 01〜50 μ πιである、 [1]〜[12]のいずれかに記載の粒子状組成物。
[14]40°C、空気中、遮光条件下に 30日間保存後の粒子状組成物中の還元型補酵 素 Q10の保持率が、 50重量%以上である [1]〜[: 13]のいずれかに記載の粒子状組 成物。
[15][1]〜[: 14]のいずれかに記載の粒子状組成物を含む製剤。
[16][1]〜[14]のいずれかに記載の粒子状組成物又は [15]記載の製剤を、周囲の 相対湿度 90%以下の環境におくことを特徴とする、還元型補酵素 Q10を含有する 粒子状組成物又は製剤の安定化方法。
[17][1]〜[14]のいずれかに記載の粒子状組成物又は [15]記載の製剤を、周囲の 相対湿度 90%以下の環境におくことを特徴とする、還元型補酵素 Q10を含有する 粒子状組成物又は製剤の取り扱レ、方法。
[18][1]〜[14]のいずれかに記載の粒子状組成物又は [15]記載の製剤を、ガラス製 、プラスチック製及び/又は金属製の素材で包装 ·梱包することを特徴とする、還元 型補酵素 Q10を含有する粒子状組成物又は製剤の安定化方法。
[19][1]〜[: 14]のいずれかに記載の粒子状組成物又は [15]記載の製剤を、ガラス製 、プラスチック製及び/又は金属製の素材で包装 ·梱包することを特徴とする、還元 型補酵素 Q10を含有する粒子状組成物又は製剤の取り扱い方法。
[20]防湿剤を併用する [16]または [18]記載の安定化方法。
[21]防湿剤を併用する [17]または [19]記載の取り扱い方法。
[22]還元型補酵素 Q10を含有する油性成分 (A)と水溶性賦形剤を含有する水溶液 力 調製した水中油型乳化組成物を、油性成分 (B)中に懸濁させた後、油性成分( B)中で乳化組成物中の水分を除去することを特徴とする、還元型補酵素 Q10を含 有する粒子状組成物の製造方法。
[23]油性成分 (B)が、油脂 5〜: 100重量%および界面活性剤(E) 0〜95重量%から なることを特徴とする、 [22]に記載の製造方法。
[24]油性成分 (B)が、油脂 5〜99. 99重量%および界面活性剤(E) 0. 0:!〜 95重 量%からなることを特徴とする、 [22]に記載の製造方法。
[25]界面活性剤(E)が、 HLBが 10以下のグリセリン脂肪酸エステル類、ポリダリセリ ンエステル類、ショ糖脂肪酸エステル類、ソルビタン脂肪酸エステル類およびポリオ キシエチレンソルビタン脂肪酸エステル類、ならびに、レシチン類からなる群より選択 される 1種以上である、 [23]または [24]に記載の製造方法。
[26]還元型補酵素 Q10を含有する油性成分 (A)と水溶性賦形剤を含有する水溶液 力 調製した水中油型乳化組成物を、気相中で噴霧乾燥することを特徴とする、還 元型補酵素 Q 10を含有する粒子状組成物の製造方法。
[27]得られる粒子状組成物の球形度が 0. 8以上である、 [22]〜[26]のいずれかに 記載の製造方法。
[28]水溶性賦形剤が、水溶性高分子、界面活性剤 (C)、糖、および酵母細胞壁から なる群より選択される 1種以上である、 [22]〜[27]のいずれかに記載の製造方法。
[29]水溶性高分子力 アラビアガム、ゼラチン、寒天、澱粉、ぺクチン、カラギーナン 、カゼイン、乾燥卵白、カードラン、アルギン酸類、大豆多糖類、プノレラン、セルロー ス類、キサンタンガム、カルメロース塩、およびポリビエルピロリドンからなる群より選択 される 1種以上である、 [28]に記載の製造方法。
[30]界面活性剤(C)が、グリセリン脂肪酸エステル類、ショ糖脂肪酸エステル類、ソ ルビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル類、レシチ ン類およびサポニン類からなる群より選択される 1種以上である、 [28]に記載の製造 方法。
[31]糖が、単糖類、二糖類、オリゴ糖類、糖アルコール類、および多糖類からなる群 より選択される 1種以上である、 [28]に記載の製造方法。
[32]還元型補酵素 Q10を含有する油性成分 (A)が、 5〜: 100重量%の還元型補酵 素 Q10、 0〜95重量%の油脂、および 0〜95重量%の界面活性剤(D)を含有する、
[22]〜[31]のいずれかに記載の製造方法。
[33]界面活性剤(D)が、 HLBが 10以下のグリセリン脂肪酸エステル類、ポリグリセリ ンエステル類、ショ糖脂肪酸エステル類、ソルビタン脂肪酸エステル類、プロピレング リコール脂肪酸エステル類およびポリオキシエチレンソルビタン脂肪酸エステル類、 ならびに、レシチン類からなる群より選択される 1種以上である、 [32]に記載の製造方 法。
[34]得られる粒子状組成物の、 40°C、空気中、遮光条件下に 30日間保存後の還元 型補酵素 Q10の保持率が、 50重量%以上である [22]〜[33]のいずれかに記載の 製造方法。
[35][22]〜[34]のいずれかに記載の工程を有する製剤の製造方法。
[36]結晶状態でない還元型補酵素 Q10。
[37]還元型補酵素 Q10の少なくとも一部が結晶状態でないことを特徴とする、還元 型補酵素 Q 10。
[38]還元型補酵素 Q10の 10重量%以上が結晶状態でないことを特徴とする、還元 型補酵素 Q 10。
発明の効果
[0014] 本発明は、還元型補酵素 Q10が元来有する高い経口吸収性を維持し、かつ空気 中で不安定な還元型補酵素 Q 10を極めて安定に保持できる還元型補酵素 Q 10を 含有する粒子状組成物を提供する。また、本発明は当該粒子状組成物の工業的製 造方法を提供する。さらにまた、本発明は、結晶状態でない還元型補酵素 Qおよび 結晶状態でない還元型補酵素 Qを含む還元型補酵素 Q10を提供する。結晶状態で ない還元型補酵素 Q 10は体内吸収性に優れる。
図面の簡単な説明
[0015] [図 1]実施例 1で得られた粒子状組成物の外観の電子顕微鏡写真を示す。
[図 2]実施例 5で得られた粒子状組成物の断面の電子顕微鏡写真を示す。
[図 3]実施例 7で得られた粒子状組成物の外観の電子顕微鏡写真を示す。
[図 4]実施例 8で得られた粒子状組成物の断面の電子顕微鏡写真を示す。 [図 5]実施例 16で得られた粒子状組成物の外観の電子顕微鏡写真を示す。
[図 6]実施例 16で得られた粒子状組成物の断面の電子顕微鏡写真を示す。
[図 7]実施例 5、 6、 7で得られた粒子状組成物および比較例 1で得られた粉末の経口 吸収性試験結果を示す。
[図 8]実施例 5、 8、 14、 15、 16で得られた粒子状組成物および比較例 1で得られた 粉末を摂取させた場合の経口吸収性試験結果を示す。
発明を実施するための最良の形態
[0016] まず、本発明の粒子状組成物について説明する。本発明の粒子状組成物は、水溶 性賦形剤を含むマトリックス中に、還元型補酵素 Q 10を含有する油性成分 (A)がドメ インを形成して多分散してレ、る粒子状組成物である。
本発明の粒子状組成物に含まれる還元型補酵素 Q 10は、下記式( 1 )で示される。
[0017] [化 1]
Figure imgf000009_0001
[0018] (式中、 n= 10である)
[0019] 上述したように、補酵素 Q10には還元型と酸化型が存在する力 本発明において は、補酵素 Q10として還元型補酵素 Q10を対象とする。本発明の粒子状組成物は 還元型補酵素 Q10を含むことが必須であり、それは還元型単独であってもよいし、酸 化型補酵素 Q 10と還元型補酵素 Q 10の混合物である補酵素 Q 10であつても良い。 本発明の粒子状組成物中に、還元型補酵素 Q 10と酸化型補酵素 Q 10の両者を含 む場合、還元型補酵素 Q 10が補酵素 Q 10の総量 (すなわち、還元型補酵素 Q 10及 び酸化型補酵素 Q10の合計量)に占める割合は、特に制限されないが、例えば約 2 0重量%以上、普通約 40重量%以上、好ましくは約 60重量%以上、より好ましくは約 80重量%以上、とりわけ約 90重量%以上、なかんずく約 96重量%以上である。上 限は 100重量%であり、特に限定されないが、通常は約 99. 9重量%以下である。
[0020] 還元型補酵素 Q10は、特開平 10— 109933号公報に記載されているように、例え ば、合成、発酵、天然物からの抽出等の従来公知の方法により酸化型補酵素 Q10と 還元型補酵素 Q10の混合物である補酵素 Q10を得た後、クロマトグラフィーを用い て、流出液中の還元型補酵素 Q10区分を濃縮する方法等により製造できる。この場 合には、上記補酵素 Q10中に含まれる酸化型補酵素 Q10を、水素化ホウ素ナトリウ ム、亜ジチオン酸ナトリウム(次亜硫酸ナトリウム)等の一般的な還元剤を用いて還元 した後、クロマトグラフィーによる濃縮を行っても良い。また、還元型補酵素 Q10は、 既存の高純度酸化型補酵素 Q10に上記還元剤を作用させて得ることができる。
[0021] 好ましくは、既存の高純度酸化型補酵素 Q10、あるいは酸化型補酵素 Q10と還元 型補酵素 Q10の混合物である補酵素 Q10を、一般的な還元剤、例えば、ハイドロサ ルファイトナトリウム(次亜硫酸ナトリウム)、水素化ホウ素ナトリウム、ァスコルビン酸類 等を用いて還元することにより得られたものであり、より好ましくは、既存の高純度酸 化型補酵素 Q 10、あるレ、は酸化型補酵素 Q 10と還元型補酵素 Q 10の混合物である 補酵素 Q10を、ァスコルビン酸類を用いて還元することにより得られたものである。
[0022] 本発明におけるマトリックスとは、粒子状組成物内に還元型補酵素 Q 10を含有する 油性成分 (A)を保持し、粒子形状を形作るものである。本発明におけるマトリックスは 、主成分として水溶性賦形剤を含む。ここでいう、主成分とは、マトリックス成分のうち 80重量%以上が水溶性賦形剤であることを意味する。
[0023] 本発明における水溶性賦形剤は、特に限定されないが、水溶性高分子、界面活性 剤(C)、糖、および酵母細胞壁からなる群より選択される 1種、或いはそれらの混合 物であることが好ましい。また、上記、水溶性賦形剤は、食品、化粧品、医薬品用途 に許容できるものであれば特に制限されないが、特に食品に許容できるものが好まし レ、。
[0024] 上記、水溶性高分子としては、例えば、アラビアガム、ゼラチン、寒天、澱粉、ぺク チン、カラギーナン、カゼイン、カゼインィ匕合物、乾燥卵白、カードラン、アルギン酸 類、大豆多糖類、プノレラン、セルロース類、キサンタンガム、カルメロース塩(カルメロ ースナトリウムまたはカルメロースカルシウムなど)、高級脂肪酸の糖エステル、トラガ ント、ミルクなどの、アミノ酸または/および糖等を主成分とする水溶性の高分子、あ るいはポリビュルピロリドン等を、単独であるいは 2種類以上の混合物として用いるこ とができる。中でも、アラビアガム、ゼラチン、寒天、澱粉、ぺクチン、カラギーナン、力 ゼイン、乾燥卵白、カードラン、アルギン酸類、大豆多糖類、プルラン、セルロース類 、キサンタンガム、カノレメロース塩、ポリビエルピロリドンが好ましぐ製造時の水溶液 の取り扱い性、あるいは本発明の目的である高い酸化安定性と高い生体吸収性を兼 ね備えた粒子状組成物が得られる点から、アラビアガム、ゼラチン、大豆多糖類がよ り好ましく使用される。
[0025] 上記、界面活性剤(C)としては、食品、化粧品、医薬品用途に許容できるものであ れば特に制限されないが、特に食品に許容できるものが好ましぐ例えば、グリセリン 脂肪酸エステル類、ショ糖脂肪酸エステル類、ソルビタン脂肪酸エステル類、ポリオ キシエチレンソルビタン脂肪酸エステル類、レシチン類およびサポニン類が挙げられ る。言うまでもなぐ本発明では、これらは、単独であるいは 2種類以上の混合物とし て用いることができる。
[0026] 前記グリセリン脂肪酸エステル類としては、例えば、モノグリセリン脂肪酸有機酸ェ ステル、ポリグリセリン脂肪酸エステル、ポリグリセリン縮合リシノレイン酸エステル等が 挙げられる。
モノグリセリン脂肪酸有機酸エステルとしては、例えば、モノグリセリンステアリン酸ク ェン酸エステル、モノグリセリンステアリン酸酢酸エステル、モノグリセリンステアリン酸 コハク酸エステル、モノグリセリンカプリノレ酸コハク酸エステル、モノグリセリンステアリ ン酸乳酸エステル、モノグリセリンステアリン酸ジァセチル酒石酸エステル等が挙げら れる。
ポリグリセリン脂肪酸エステルとしては、例えば、ポリグリセリンの平均重合度が 2〜1 0であり、構成脂肪酸が炭素数 6〜22の脂肪酸であるものが挙げられる。
前記ポリグリセリン縮合リシノレイン酸エステルとしては、例えば、ポリグリセリンの平 均重合度が 2〜: 10、ポリリシノレイン酸の平均縮合度(リシノレイン酸の縮合数の平均 )が 2〜4であるものが挙げられる。
[0027] 前記ショ糖脂肪酸エステル類としては、ショ糖の水酸基の 1つ以上に炭素数が各々
6〜: 18、好ましくは 6〜: 12の脂肪酸をエステル化したものが挙げられる。
[0028] 前記ソルビタン脂肪酸エステル類としては、ソルビタン類の水酸基の 1つ以上に炭 素数が各々 6〜18、好ましくは 6〜: 12の脂肪酸をエステル化したものが挙げられる。 [0029] 前記ポリオキシエチレンソルビタン脂肪酸エステル類としては、ソルビタン類の水酸 基の 1つ以上にポリオキシエチレン鎖を有しており、さらに、存在する水酸基の 1っ以 上に、炭素数が各々 6〜18、好ましくは 6〜: 12の脂肪酸をエステル化したものが挙げ られる。
[0030] 前記レシチン類としては、例えば、卵黄レシチン、精製大豆レシチン、ホスファチジ ノレコリン、ホスファチジルエタノールァミン、ホスファチジルセリン、スフインゴミエリン、 ジセチルリン酸、ステアリルァミン、ホスファチジルグリセロール、ホスファチジン酸、ホ スファチジルイノシトールァミン、カルジォリピン、セラミドホスホリルエタノールァミン、 セラミドホスホリルグリセロール、酵素分解レシチン(リゾレシチン)及び、これらの混合 物等を挙げることができる。
[0031] 前記サポニン類としては、例えば、ェンジュサポニン、キラャサポニン、大豆サポニ ン、ユッカサポニン等が挙げられる。
[0032] 上記界面活性剤(C)の中でも、還元型補酵素 Q10を含有する油性成分を安定的 に乳化できる点、および本発明の目的である高い酸化安定性と高い生体吸収性を兼 ね備えた粒子状組成物が得られる点から、界面活性剤 (C)としては親水性の界面活 性剤であるのが好ましぐ例えば、 HLBが 4以上、通常 HLBが 6以上、好ましくは HL Bが 8以上、より好ましくは HLB力 5以上、さらに好ましくは 11以上の界面活性剤 が使用できる。
[0033] そのような界面活性剤としては具体的には、モノグリセリンステアリン酸クェン酸エス テル、モノグリセリンステアリン酸ジァセチル酒石酸エステル等のモノグリセリン脂肪酸 有機酸エステル類;トリグリセリンモノラウリン酸エステル、トリグリセリンモノミリスチン酸 エステル、トリグリセリンモノォレイン酸エステル、トリグリセリンモノステアリン酸エステ ノレ、ペンタグリセリンモノミリスチン酸エステル、ペンタグリセリントリミリスチン酸エステ ノレ、ペンタグリセリンモノォレイン酸エステル、ペンタグリセリントリオレイン酸エステル
、へキサグリセリンモノ力プリル酸エステル、へキサグリセリンジカプリル酸エステル、 へキサグリセリンモノラウリン酸エステル、へキサグリセリンモノミリスチン酸エステル、 へキサグリセリンモノォレイン酸エステル、へキサグリセリンモノステアリン酸エステル、 デカグリセリンモノラウリン酸エステル、デカグリセリンモノミリスチン酸エステル、デカ グリセリンモノォレイン酸エステル、デカグリセリンモノパルミチン酸エステル、デカグリ セリンモノステアリン酸エステル、デカグリセリンジステアリン酸エステル等のポリグリセ リン脂肪酸エステル;テトラグリセリン縮合リシノレイン酸エステル、ペンタグリセリン縮 合リシノレイン酸エステル、へキサグリセリン縮合リシノレイン酸エステル、ジグリセリン 縮合リシノレイン酸エステル等のポリグリセリン縮合リシノレイン酸エステル;ソルビタン モノステアリン酸エステル、ソルビタンモノォレイン酸エステル等のソルビタン脂肪酸 エステル類;ポリオキシエチレンソルビタンモノステアリン酸エステル、ポリオキシェチ レンソルビタンモノォレイン酸エステル等のポリオキシエチレンソルビタン脂肪酸エス テル類;ショ糖パルミチン酸エステル、ショ糖ステアリン酸エステル等のショ糖脂肪酸 エステル類;大豆レシチン、卵黄レシチン、酵素分解レシチン等のレシチン類;ェンジ ュサポニン、キラャサポニン、大豆サポニン、ユッカサポニン等のサポニン類が挙げら れる。
[0034] 上記糖としては、食品に許容できるものであれば特に制限はなぐ例えば、ダルコ ース、フルクトース、ガラクトース、ァラビノース、キシロース、マンノース等の単糖類; マルトース、スクロース、ラタトース等の二糖類;フラタトオリゴ糖、大豆オリゴ糖、ガラク トオリゴ糖、キシロオリゴ糖等のオリゴ糖類;ソルビトール、マルチトール、エリスリトー ノレ、ラタチトール、キシリトール等の糖アルコール類;デキストリン等の多糖類;等を好 ましく用いることができる。
デキストリンとしては、でんぷんの分解物であればよぐ低分子デキストリン、高分子 デキストリンのいずれも好適に使用でき、特に制限されなレ、。し力しながら、水層への 溶解性等の観点から、デキストロース当量 (DE)が通常 40以下、好ましくは 35以下、 より好ましくは 30以下であり、また、通常 1以上、好ましくは 2以上、より好ましくは 5以 上のデキストリンを好ましく使用できる。また、デキストリンカ、マルトデキストリン、シク ロデキストリン、クラスターデキストリン等であっても何ら差し支えなレ、。
[0035] 上記酵母細胞壁としては、ビール酵母の細胞壁等が挙げられる。
[0036] 本発明において、水溶性賦形剤として、水溶性高分子と糖を組み合わせて使用す るのが好ましぐ水溶性高分子としてはアラビアガムを、糖としてはスクロースあるいは デキストリンを、それぞれ選択して組み合わせるのがより好ましい。水溶性高分子と糖 を組み合わせて使用する場合、水溶性高分子と糖の重量比としては特に制限されな いが、水溶性高分子と糖の総重量に対する水溶性高分子の重量として、通常 25% 以上、好ましくは 40。/o以上、より好ましくは 50。/o以上、特に好ましくは 60%以上であ り、また、通常 99%以下、好ましくは 95%以下、より好ましくは 90%以下、特に好まし く 85%以下である。
[0037] 本発明の粒子状組成物における、還元型補酵素 Q10を含有する油性成分 (A)とし ては、(1)還元型補酵素 Q10単独、あるいは還元型補酵素 Q10と酸化型補酵素 Q1 0の混合物である補酵素 Q10 (以下、単に補酵素 Q10という)単独であってもよいし、 (2)還元型補酵素 Q10または補酵素 Q10と、油脂または Zおよび界面活性剤 (D) の混合物であっても良い。油性成分 (A)として、還元型補酵素 Q10または補酵素 Q 10と、油脂または/および界面活性剤(D)の混合物である場合、 50°C以上で加熱 溶融させた時に視覚的に均一に混合し得る油性成分とするのが好ましレ、。油性成分 (A)中の還元型補酵素 Q10の含有量を高く維持するという観点からは上記(1)が好 ましい。
[0038] 油性成分 (A)が前記(2)の場合に使用される油脂としては、特に制限されないが、 例えば、動植物からの天然油脂であってもよぐ合成油脂や加工油脂であってもよい 。より好ましくは、食品、化粧品又は医薬用に許容されるものである。例えば、植物油 脂としては、例えば、ヤシ油、パーム油、パーム核油、アマ二油、つばき油、玄米胚芽 油、菜種油、米油、落花生油、コーン油、小麦胚芽油、大豆油、エゴマ油、綿実油、 ヒマヮリ種子油、カポック油、月見草油、シァ脂、サル脂、カカオ脂、ゴマ油、サフラヮ 一油、オリーブ油等を挙げることができ、動物油脂としては、例えば、豚脂、乳脂、魚 油、牛脂等を挙げることができ、更に、これらを分別、水素添加、エステル交換等によ り加工した油脂(例えば、硬化油)も挙げることができる。言うまでもなぐ中鎖脂肪酸ト リグリセリド (MCT)も使用しうる。また、これらの混合物を使用しても良レ、。中鎖脂肪 酸トリグリセリドとしては、例えば、脂肪酸の炭素数が各々 6〜: 12、好ましくは 8〜: 12の トリグリセリドを挙げることができる。
[0039] 上記油脂のうち、取り扱い易さ、臭気等の面から植物油脂、合成油脂や加工油脂 等が好ましい。例えば、ヤシ油、パーム油、パーム核油、菜種油、米油、大豆油、綿 実油、サフラワー油、ォリーブ油、 MCT等を挙げることができる。
[0040] 油性成分 (A)が前記(2)の場合に使用される界面活性剤(D)としては、例えば、グ リセリン脂肪酸エステル類、ポリグリセリンエステル類、ショ糖脂肪酸エステル類、ソル ビタン脂肪酸エステル類、プロピレングリコール脂肪酸エステル類、ポリオキシェチレ ンソルビタン脂肪酸エステル類の内、 HLBが 10以下の界面活性剤、あるいは、レシ チン類等が好ましいが、これらに限定されない。
[0041] そのようなグリセリン脂肪酸エステル類としては、例えば、脂肪酸の炭素数が各々 6 〜18、好ましくは 6〜: 12のモノグリセリドゃジグリセリドを挙げることができる。ポリダリ セリンエステル類としては、例えば、重合度が 2から 10のポリグリセリンを主成分とする ポリグリセリンに、ポリグリセリンの水酸基の 1つ以上に炭素数が各々 6〜18、好ましく は 6〜: 12の脂肪酸をエステル化したものが挙げられる。ショ糖脂肪酸エステル類とし ては、ショ糖の水酸基の 1つ以上に炭素数が各々 6〜18、好ましくは 6〜: 12の脂肪 酸をエステル化したものが挙げられる。ソルビタン脂肪酸エステル類としては、ソルビ タン類の水酸基の 1つ以上に炭素数が各々 6〜18、好ましくは 6〜: 12の脂肪酸をェ ステル化したものが挙げられる。プロピレングリコール脂肪酸エステル類としては、例 えば、脂肪酸の炭素数が、各々 6〜: 18、好ましくは 6〜: 12のモノグリセリドゃジグリセ リドを挙げることができる。ポリオキシエチレンソルビタン脂肪酸エステル類としては、 ソルビタン類の水酸基の 1つ以上にポリオキシエチレン鎖を有しており、さらに、存在 する水酸基の 1つ以上に、炭素数が各々 6〜18、好ましくは 6〜: 12の脂肪酸をエス テル化したものが挙げられる。レシチン類としては、例えば、卵黄レシチン、精製大豆 レシチン、ホスファチジルコリン、ホスファチジルエタノールァミン、ホスファチジルセリ ン、スフインゴミエリン、ジセチルリン酸、ステアリルァミン、ホスファチジルグリセロール 、ホスファチジン酸、ホスファチジルイノシトールァミン、カルジォリピン、セラミドホスホ リノレエタノーノレアミン、セラミドホスホリルグリセロール、酵素分解レシチン(リゾレシチ ン)、及び、これらの混合物等を挙げることができる。
[0042] 上記界面活性剤 (D)の中でも、還元型補酵素 Q 10と良好な相溶性を示す点、ある いは本発明の目的である高い酸化安定性と高い生体吸収性を兼ね備えた粒子状組 成物が得られる点から、親油性の界面活性剤が好ましぐ例えば HLBが 9以下、好ま しくは HLBが 8以下、より好ましくは HLBが 6以下、さらに好ましくは 5未満の界面活 性剤が使用できる。但し、レシチン類はその HLBに限定されず好適に使用できる。 このような界面活性剤としては具体的には、モノグリセリンモノステアリン酸エステル 、モノグリセリンモノォレイン酸エステル、モノグリセリンモノミリスチン酸エステル、モノ グリセリンモノ力プリル酸エステル、モノグリセリンモノラウリン酸エステル、モノグリセリ ンモノべへニン酸エステル、モノグリセリンモノエル力酸エステル等のモノグリセリンモ ノ脂肪酸エステル;モノグリセリンジステアリン酸エステル、モノグリセリンジォレイン酸 エステル、モノグリセリンジカプリル酸エステル、モノグリセリンジラウリン酸エステル等 のモノグリセリンジ脂肪酸エステル;モノグリセリンステアリン酸クェン酸エステル、モノ グリセリンステアリン酸酢酸エステル、モノグリセリンヤシ硬化油酢酸エステル、モノグ リセリンステアリン酸コハク酸エステル、モノグリセリンカプリル酸コハク酸エステル、モ ノグリセリンステアリン酸乳酸エステル、モノグリセリンステアリン酸ジァセチル酒石酸 エステル等のモノグリセリン脂肪酸有機酸エステル;モノグリセリン牛脂硬化油脂肪酸 エステル、モノグリセリン菜種硬化油脂肪酸エステル、モノグリセリン大豆硬化油脂肪 酸エステル、モノグリセリン綿実油脂肪酸エステル、モノグリセリンサフラワー油脂肪 酸エステル等の種々の油脂を用いて得られるモノグリセリン脂肪酸エステル;平均重 合度 2〜: 10のポリグリセリンと炭素数 6〜22の脂肪酸とのエステル等のポリグリセリン 脂肪酸エステル類;プロピレングリコールモノステアリン酸エステル、プロピレングリコ ールモノォレイン酸エステル、及びプロピレングリコールモノラウリン酸エステル等の プロピレングリコール脂肪酸エステル類;ソルビタンジステアリン酸エステル、ソルビタ ントリステアリン酸エステル、ソルビタンセスキォレイン酸エステル、ソルビタンジォレイ ン酸エステル、及びソルビタントリオレイン酸エステル等のソルビタン脂肪酸エステル 類;ポリオキシエチレンソルビタンモノステアリン酸エステル、ポリオキシエチレンソノレ ビタンモノォレイン酸エステル等のポリオキシエチレンソルビタン脂肪酸エステル類; 並びに大豆レシチン、卵黄レシチン、酵素分解レシチン等のレシチン類から選ばれる 1種または 2種以上の混合物が挙げられる。中でも、好ましくはグリセリン脂肪酸エス テル類およびレシチン類から選ばれる 1種または 2種以上の混合物であり、より好まし くはモノグリセリンモノ脂肪酸エステル、モノグリセリンジ脂肪酸エステル、モノグリセリ ン脂肪酸有機酸エステル (特にモノグリセリン脂肪酸酢酸エステル、モノグリセリンャ シ硬化油酢酸エステル)、ポリグリセリン脂肪酸エステル (特にジグリセリンモノ脂肪酸 エステル)及びポリグリセリン縮合リシノレイン酸エステル(特に平均重合度 2〜: 10の ポリグリセリンと縮合度 2〜4のポリリシノレイン酸とのエステル)、大豆レシチン、卵黄 レシチン、酵素分解レシチンから選ばれる 1種または 2種以上の混合物であり、更に 好ましくはモノグリセリン脂肪酸有機酸エステル (特にモノグリセリン脂肪酸酢酸エス テル、モノグリセリンヤシ硬化油酢酸エステル)、ジグリセリンモノォレイン酸エステル、 大豆レシチン、卵黄レシチンまたは酵素分解レシチンである。上記モノグリセリン脂肪 酸酢酸エステル、モノグリセリンヤシ硬化油酢酸エステルの具体例としては、モノダリ セリンモノステアリン酸エステルの 50%ァセチル化物、ヤシ硬化油モノグリセリドの完 全ァセチル化物が挙げられる。
[0044] 上記以外にも、本発明においては、種々の目的に応じ、固形油脂、脂肪酸および そのエステル誘導体等の油溶性の成分を、油性成分 (A)に含有させることができる。
[0045] 前記固形油脂としては、例えば、ミツロウ、モクロウ、キヤデリラロウ、米ぬかロウ、力 ルナゥバロウ、雪ロウ等の食品用ワックス類が挙げられる。
[0046] 前記脂肪酸およびそのエステル誘導体としては、力プリル酸、力プリン酸、ラウリン 酸、ミリスチン酸、パルミチン酸、ステアリン酸、ォレイン酸、ベヘン酸およびこれらの エステル類、例えば、これらのメチルエステル、ェチルエステル等が挙げられる力 こ れらに限定されない。
[0047] 本発明の粒子状組成物における、還元型補酵素 Q10を含有する油性成分 (A)の 組成比は特に制限されないが、最終的に得られる還元型補酵素 Q10を含有する粒 子状組成物中の還元型補酵素 Q10の含量低下を抑制するという観点から、油性成 分 (A)中の還元型補酵素 Q10の含有量としては、通常 5重量%以上、好ましくは 20 重量%以上、より好ましくは 40重量%以上、さらに好ましくは 50重量%以上、特に好 ましくは 60重量%以上である。油性成分 (A)中の還元型補酵素 Q10の含有量の上 限は言うまでもなく 100重量%であり、油性成分 (A)として還元型補酵素 Q10以外の 油脂や界面活性剤を必ずしも使用する必要はなレ、が、もし油脂や界面活性剤を使 用する場合には、油性成分 (A)中の還元型補酵素 Q10の含有量の上限は 99. 99 重量%である。油性成分 (A)中の、油脂の含有量としては、通常 95重量%以下、好 ましくは 75重量%以下、より好ましくは 50重量%以下、特に好ましくは 30%重量以 下であり、油脂を必ずしも使用する必要はなくその下限は 0重量%であるが、使用す る場合の含有量は通常 0. 01重量%以上である。また、界面活性剤の含有量として は、通常 95重量%以下、好ましくは 75重量%以下、より好ましくは 50重量%以下、 特に好ましくは 30重量%以下であり、界面活性剤を必ずしも使用する必要はなくそ の下限は 0重量%であるが、使用する場合の含有量は通常 0. 01重量%以上である 。すなわち、油性成分 (A)の組成としては、 5〜: 100重量%の還元型補酵素 Q10、 0 〜95重量%の油脂、 0〜95重量%の界面活性剤を含有しているのが好ましぐ 20 〜100重量%の還元型補酵素 Q10、 0〜75重量%の油脂、 0〜75重量%の界面活 性剤を含有しているのがより好ましぐ 40〜: 100重量%の還元型補酵素 Q10、 0〜5 0重量%の油脂、 0〜50重量%の界面活性剤を含有しているのがさらに好ましぐ 50 〜100重量%の還元型補酵素 Q10、 0〜50重量%の油脂、 0〜50重量%の界面活 性剤を含有しているのが特に好ましぐ 60〜: 100重量%の還元型補酵素 Q10、 0〜 50重量%の油脂、 0〜50重量%の界面活性剤を含有しているのがとりわけ好ましい 。言うまでもなぐここでレ、う還元型補酵素 Q10は、還元型補酵素 Q 10と酸化型補酵 素 Q10の混合物、すなわち、補酵素 Q10であっても構わない。
[0048] 本発明の粒子状組成物における、還元型補酵素 Q10を含有する油性成分 (A)が 形成するドメインの平均粒子径は、本発明の目的を達成できる限り、特に制限されな いが、ドメインの平均粒子径が大きい場合には、粒子状組成物の吸収性が低下する 可能性があるため、通常、 50 x m以下、好ましくは 20 z m以下、より好ましくは 15 μ m以下、特に好ましくは、 10 z m以下である。一方、ドメインの平均粒子径が小さレ、 場合には、製造過程における乳化液滴の安定性を維持するために過剰の水溶性賦 形剤が必要となる、乳化機器に過剰な負荷を要求する等の問題が生じるため、通常 0. 001 x m以上、好ましく fま 0. 005 x m以上、より好ましく fま 0. 01 x m以上、特 (こ 好ましくは 0. 1 μ m以上である。
[0049] 尚、還元型補酵素 Q10を含有する油性成分 (A)が形成するドメインの平均粒子径 は、粒子状組成物を半球状に破断し、その破断面の電子顕微鏡画像から、画像解 析により求めることができる。
[0050] 本発明の粒子状組成物中の還元型補酵素 Q10の含有量は、特に制限されないが 、所定量の還元型補酵素 Q10を摂取する際の粒子状組成物の摂取量を低減させる という観点から、通常 1重量%以上、好ましくは 5重量%以上、より好ましくは 10重量 %以上である。一方、粒子状組成物中の還元型補酵素 Q10の高い安定性を維持す るという観点から、通常 70重量%以下、好ましくは 50重量%以下、より好ましくは 40 重量%以下である。すなわち、本発明の粒子状組成物中の還元型補酵素 Q 10の含 有量は、通常:!〜 70重量%、好ましくは 5〜50重量%、より好ましくは 10〜40重量 %である。
[0051] 本発明の粒子状組成物においては、水溶性賦形剤を含むマトリックス中に、還元型 補酵素 Q10を含有する油性成分 (A)が、 5個以上のドメインを形成して多分散してい ることが好ましぐ 1千個以上がより好ましぐ 1万個以上がさらに好ましぐ 10万個以 上が特に好ましい。上限は特に限定されないが、通常 10億個程度である。
水溶性賦形剤を含むマトリックス中のドメインの数力 ¾個よりも少ない場合は、最終 的に得られる粒子状組成物中の還元型補酵素 Q 10の含有量が低下し、所定量の還 元型補酵素 Q10を経口投与する際に、多量の粒子状組成物を摂取することが必要 となるため好ましくない。
[0052] 本発明においては、粒子状組成物の球形度が 0. 8以上であることが好ましぐ 0. 8 5以上であることがより好ましぐ 0. 9以上であることが最も好ましい。粒子状組成物の 球形度が高いほど、粒子状組成物単位重量当たりの総表面積が小さくなり、その分、 粒子表面から進行してレ、くと推定される空気中の酸素分子による酸化反応を受けに くくなる傾向にある。その一方で、粒子状組成物の球形度が低い場合は、粒子状組 成物単位重量当たりの総表面積が大きくなり、その分、粒子状組成物表面から進行 していくと推定される空気中の酸素分子による酸化反応を受けやすぐ本発明の目 的の一つである高い酸化安定性を有する粒子状組成物を得ることが困難となる傾向 にある。つまり、同じ組成の還元型補酵素 Q10を含有する粒子状組成物であっても、 その球形度によって、粒子状組成物中の高い酸化安定性を有する還元型補酵素 Q 10の酸化安定性に大きな影響があることを本発明者らは見出した。
[0053] 尚、粒子状組成物の球形度は、対象となる粒子状組成物を電子顕微鏡等で撮影し 、その画像を画像解析ソフト WinROOF Ver. 3. 30等を用い、同じ面積を持つ円 の直径と外接する最小円の直径比から求めることができる。
さらに本発明の粒子状組成物においては、粒子径が同程度である場合、その表面 粗さ(Ra)が小さいものほど好ましい。粒子状組成物の表面粗さ(Ra)が小さいほど、 粒子状組成物単位重量当たりの総表面積が小さくなり、その分、粒子表面から進行 してレ、くと推定される空気中の酸素分子による酸化反応を受けにくくなると考えられる 。その一方で、粒子状組成物の表面粗さ(Ra)が大きい場合は、粒子状組成物単位 重量当たりの総表面積が大きくなり、その分、粒子表面から進行してレ、くと推定される 空気中の酸素分子による酸化反応を受けやすぐ本発明の目的の一つである高い 酸化安定性を有する粒子状組成物を得ることが困難となる傾向にあると考えられる。 尚、粒子の表面粗さ(Ra)は、例えば JIS B 0601— 1994により規定された算術 平均表面粗さ(Ra)として求めることができる。なお、ここで言う表面粗さは、上記球形 度と概略裏腹の関係にあると考えられ、球形度が高いほど、表面粗さが小さくなる傾 向にある。
[0054] また本発明の粒子状組成物においては、通常は組成物中の還元型補酵素 Q10の
10重量%以上が、結晶状態でない、すなわち非晶状態または融液の状態である。 好ましくは 20重量%以上、より好ましくは 50重量%以上、さらに好ましくは 70重量% 以上、特に好ましくは 80重量%以上、最大で 100重量%が結晶状態でないものが好 ましい。
通常、還元型補酵素 Qは、融点以下に保存された場合徐々に結晶状態へと変化 する力 後述の好ましい製造方法によって得られる粒子状組成物においては、例え ば、製造後、 25°C、空気中、 30日間保存後においても、組成物中の還元型補酵素 Q10の 10重量%以上が結晶状態でないという特徴を有する。還元型補酵素 Q10が 結晶状態でなぐ非晶状態あるいは融液の状態で粒子状組成物内に保持されてい ることで、経口後に胃液または腸液で粒子状組成物が崩壊して放出される油性成分 (A)の還元型補酵素 Q10も、非晶状態あるいは融液の状態を維持しているものと推 定される。通常、結晶状態の還元型補酵素 Q10よりも、非晶状態あるいは融液の状 態にある還元型補酵素 Q10の方力 胃または腸で、生体内あるいは粒子状組成物 中に共存する界面活性成分による乳化を受けやすくなり、その結果、非晶状態ある いは融液の状態にある還元型補酵素 Q10は、結晶状態の還元型補酵素 Q10よりも 消化管からの吸収が促進され易くなり、結果、本発明の好ましい粒子状組成物は、そ の目的の一つである高い経口吸収性を有するものと考えられる。本発明の粒子状組 成物においては、還元型補酵素 Q 10を含有する油性成分 (A)を、水溶性賦形剤マ トリックス中にドメインを形成して多分散させるよう、その構造を制御する。例えば好ま しい製造方法においては、融液の状態にある還元型補酵素 Q10を含有する油性成 分 (A)は、水溶性賦形剤に囲まれた微小カプセル内に閉じ込められるため、還元型 補酵素 Q10の結晶核の発生確率が大幅に低下し、非晶状態あるいは融液の状態を 粒子作製後、長期間に亘り維持するものと推定される。つまり、本発明の粒子状組成 物である、水溶性賦形剤を含むマトリックス中に、還元型補酵素 Q10を含有する油性 成分 (A)がドメインを形成して多分散してレ、る構造こそが、高レ、経口吸収性を実現す る目的において、極めて重要であると考えられる。
本発明の粒子状組成物の体積平均粒子径は、本発明の目的を達成できる限り特 に制限されないが、粉体としての回収容易性等から、好ましくは 1 μ ΐη以上、より好ま しくは 5 μ m以上、さらに好ましくは 10 μ m以上、特に好ましくは 20 μ m以上、とりわ け好ましくは 50 μ m以上である。体積平均粒子径の上限としては、本発明の目的と する還元型補酵素 Q10の高い安定性と高い吸収性を維持できるのであれば、特に 制限されないが、食品、医薬品、化粧品等への加工しやすさ等から、好ましくは 500 O z m以下、より好ましくは 2000 z m以下、さらに好ましくは 1000 μ m以下、特に好 ましくは 800 x m以下、とりわけ好ましくは 700 z m以下である。すなわち、本発明の 粒子状組成物の体積平均粒子径としては、好ましくは:!〜 5000 z m、より好ましくは 5〜2000 μ πι、さらに好ましくは 10〜: 1000 x m、特に好ましくは 20〜800 μ m、とり わけ好ましくは 50〜700 z mである。体積平均粒子径は、例えば、レーザー回折'散 乱型粒度分布測定装置(日機装株式会社製;マイクロトラック ΜΤ3000Π)において、 エタノール溶媒を用いて測定することができる。 [0056] その他、本発明の粒子状組成物には、食品、化粧品、医薬品の各用途において、 種々の目的で使用され得る各種添加物や補酵素 Q 10以外の活性成分を、それぞれ の目的に応じ添加することができる。
[0057] 例えば、上記の化合物以外に、結晶セルロース、リン酸カルシウム、硫酸カルシウム 等の賦形剤、クェン酸カルシウム、炭酸カルシウム、炭酸水素ナトリウム、デキストリン 、結晶セルロース、カルボキシメチルセルロース、トラガント、アルギン酸等の崩壊剤、 タルク、ステアリン酸マグネシウム、ポリエチレングリコール、シリカ、硬化油等の滑沢 剤、酸化チタン、食用色素、ベンガラ色素、ベニバナ色素、カラメル色素、クチナシ色 素、タール色素、クロロフィル等の色素、ステアリン酸、タルク、軽質無水ケィ酸、含水 二酸化ケイ素等の凝集防止剤、高級アルコール類、高級脂肪酸類等の吸収促進剤 、フマル酸、コハク酸、リンゴ酸等の溶解補助剤、安息香酸、安息香酸ナトリウム、パ ラオキシ安息香酸ェチル、ミツロウ等の安定化剤を挙げることができる。
[0058] また、補酵素 Q10以外の活性成分としては、食品、化粧品又は医薬品用途に許容 できるものであれば特に制限されず、例えば、ダルタチオン、 L—システィン、 N ァ セチルシスティン、 α—リポ酸、トコトリエノール、ビタミン Ε ( α—トコフエロール)及び そのエステル誘導体、エリソルビン酸及びそのエステル誘導体や塩、ビタミン Α及び そのエステル誘導体、カロテノイド、ルチン、ゼアキサンチン、ァスタキサンチン、リコ ペン、フラボノイド、 L カルニチン及びその酒石酸塩ゃフマル酸塩等の薬理的に許 容される塩、ァセチルー L—カルニチン、プロピオ二ルー L—カルニチン、マグネシゥ ム、亜鉛、セレン、マンガン、リボフラビン、ナイァシンアミド、タルクミノイド、ぶどう種子 や松の樹皮から抽出されるプロアントシァニジン、 NADH (還元型ニコチンアミドアデ ニンジヌクレオチド)、 NADPH (還元型ニコチンアミドアデニンジヌクレオチドリン酸) 、レスべラトロル、苔桃抽出物、ォオアザミ抽出物、魚油等から濃縮して得られる高度 不飽和脂肪酸、ビタミン Cのエステル誘導体等を挙げることができる。好ましくは、グ ルタチオン、 L—システィン、トコトリエノーノレ、ビタミン E (ひ一トコフエロール)及びそ のエステル誘導体、エリソルビン酸及びそのエステル誘導体や塩、ビタミン A及びそ のエステル誘導体、カロチノイド、ルチン、ァスタキサンチン、リコペン、フラボノイド、 L —カルニチンが挙げられる。これらの中で還元型補酵素 Q10の安定性の観点からは 、カロテノイド、ァスタキサンチン、ビタミン E及びそのエステル誘導体等の抗酸化剤 が好ましい。言うまでもなぐここで列記した各種成分は 2種以上の混合物として使用 することちでさる。
[0059] 次に、本発明の還元型補酵素 Q10を含有する粒子状組成物の製造方法について 説明する。本発明の粒子状組成物は下記製造方法によって得られるのが好ましいが 、他の製造方法によって同様の粒子状組成物が得られるなら製造方法は下記に限 定されない。
[0060] 本発明の還元型補酵素 Q10を含有する粒子状組成物は、好ましくは、
(1)還元型補酵素 Q10を含有する油性成分 (A)と水溶性賦形剤を含有する水溶液 力 調製した水中油型乳化組成物を、油性成分 (B)中に懸濁させた後、油性成分( B)中で水中油型乳化組成物の水分を除去する方法 (以降、製造法(1)と記す)、 または、
(2)還元型補酵素 Q10を含有する油性成分 (A)と水溶性賦形剤を含有する水溶液 から調製した水中油型乳化組成物を、気相中で噴霧乾燥する方法 (以降、製造法(2 )と記す)により、製造すること力 Sできる。
[0061] 上記製造法(1)および(2)におレ、て、水溶性賦形剤は、水に溶解させた水溶液の 形態で用いるのが好ましぐその濃度には特に制限はないが、水溶液の粘度が lPoi seを超えない程度の濃度で取り扱うのが、移液性等を確保する上で好ましい。このと きの水溶性賦形剤の具体例や好ましレ、例は、上記粒子状組成物の説明で述べたも のと同じである。
[0062] 上記製造法(1)および(2)において、還元型補酵素 Q10を含有する油性成分 (A) の調製方法としては、 50°C以上で融解させた還元型補酵素 Q10に、必要に応じて 油脂または/および界面活性剤 (D)等を添加し、攪拌等により混合する手法が最も 簡便であり好ましいが、これに限定されなレ、。このときの油性成分 (A)の具体例や好 ましレ、例は、上記粒子状組成物の説明で述べたものと同じである。
[0063] 次に、本発明の製造法(1)および(2)においては、上記還元型補酵素 Q10を含有 する油性成分 (A)、および水溶性賦形剤を含有する水溶液から、水中油型乳化組 成物を調製する。上記、水中油型乳化組成物の調製法としては、例えば、あらかじめ 50°C以上に加温してぉレ、た水溶性賦形剤を含有する水溶液に、還元型補酵素 Q1 0の融点以上の温度で調製した還元型補酵素 Q10を含有する油性成分 (A)を添カロ し、高圧ホモジナイザー等、公知の乳化機器を用いて所望の平均粒子径まで油性成 分 (A)を微細に分散'乳化させることにより調製するのが、最も簡便であり好ましい。 またこれ以外に、あら力、じめ 50°C以上に加温してぉレ、た水溶性賦形剤を含有する水 溶液に、還元型補酵素 Q10粉末、あるいは必要に応じてその他の油性成分を添カロ し、水溶性賦形剤水溶液中で還元型補酵素 Q10あるいはその他の油性成分を融解 させた後、乳化する、あるいは水溶性賦形剤を含有する水溶液に還元型補酵素 Q1 0を粉末のまま、あるいは、 50°C以上で融解した融液として添カ卩し、必要に応じてそ の他の油性成分を添加した後に、 50°C以上へと加温し、還元型補酵素 Q10あるい はその他の油性成分を融解させた後に乳化することもできるが、これらに限定されな レ、。
[0064] 本発明の製造方法における、上記水中油型乳化組成物の還元型補酵素 Q10を含 有する油性成分 (A)の乳化粒子径は特に制限されないが、水中油型乳化組成物の 油性成分 (A)の平均粒子径が大きレ、場合には、粒子状組成物の吸収性が低下する 可能性があるため、通常、 50 μ ΐη以下、好ましくは 20 /i m以下、より好ましくは 15 /i m以下、特に好ましくは、 10 / m以下である。一方、水中油型乳化組成物の油性成 分 (A)の平均粒子径が小さい場合には、製造過程における乳化液滴の安定性を維 持するために過剰の水溶性賦形剤が必要となる、乳化機器に過剰な負荷を要求す る等の問題が生じるため、通常 0. 001 μ ΐη以上、より好ましくは 0. 05 μ ΐη以上、特 に好ましくは 0. 1 μ ΐη以上である。本工程における乳化液滴の粒子径をコントロール することで、得られる粒状組成物中のドメイン粒子径をコントロールすることが出来る。
[0065] 上記、水中油型乳化組成物の油性成分 (A)の乳化粒子径は、市販のレーザー回 折-散乱方式粒度分布測定装置により測定することができる。
[0066] 本発明の製造法(1)および(2)における、還元型補酵素 Q10を含有する油性成分
(A)と水溶性賦形剤を含有する水溶液から水中油型乳化組成物を調製する工程、 及び、乳化工程での温度は、水中油型組成物中の還元型補酵素 Q10が融解してい る温度以上であればよぐ特に制限されないが、通常 50°C以上、好ましくは 55°C以 上、より好ましくは 60°C以上である。上限は系の沸点であり、加圧等の条件により異 なり一概に温度の規定はできないが、常圧条件の場合、通常 100°C以下、好ましく は 90°C以下で実施するのが好ましい。
[0067] 本発明の製造法(1)においては、上記、水中油型乳化組成物を、さらに別の油性 成分 (B)と混合し、所望の粒子径となるよう、油性成分 (B)中に水中油型乳化組成物 を懸濁させて、 0/W/0型の乳化物とする。上記、混合操作は、例えば、あらかじ め 50°C以上に加温しておいた油性成分 (B)に、還元型補酵素 Q10を含有する水中 油型乳化組成物を添加するのが、最も簡便であり好ましいが、これに限定されない。 油性成分 (B)中における水中油型乳化組成物の懸濁粒子径の調整は、攪拌、液の 循環等、混合液にせん断を付与することにより達成され得る。混合液を調製する際の 油性成分 (B)の温度は、急激な水分の蒸発を避けるため、通常、 50〜100°Cの範囲 内であることが好ましい。
[0068] 本発明の製造法(1)における、水中油型乳化組成物と油性成分 (B)との混合比に は、特に制限はないが、水中油型乳化組成物と油性成分 (B)の混合液中の水中油 型乳化組成物の重量%は、生産効率等の観点から、 1重量%以上であるのが好まし く、 10重量%以上であるのがより好ましぐ 15重量%以上であるのが特に好ましい。 また、水中油型乳化組成物の油性成分 (B)中での懸濁性等の観点から、 70重量% 以下であるのが好ましぐ 60重量%以下であるのが特に好ましぐ 50重量%以下で あるのが特に好ましい。通常:!〜 70重量%、好ましくは 10〜60重量%、特に好ましく は 15〜50重量%で好適に実施できる。
[0069] 本発明の製造法(1)においては、上記〇/W/〇型の乳化物とした後、油性成分( B)中に懸濁させた水中油型乳化組成物から水分を除去する。水中油型乳化組成物 から水分を除去する手法としては、例えば、大気圧下で 80°C以上、好ましくは 100°C 以上に加熱して、水分を蒸発させる。あるいは、任意の減圧下で、その圧力下での水 の沸点近傍以上の温度に設定し、水分を蒸発させる等の手法が挙げられるがこれら に限定されない。操作時間の最短化等の観点からは、任意の減圧下で実施するの が好ましい。
[0070] 本発明において、製造法(1)における油性成分 (B)は、油脂または、必要に応じ、 界面活性剤 (E)を含む成分である。油性成分 (B)に使用される油脂としては、上記 水中油型乳化組成物を懸濁させることができる油脂であれば特に制限はなぐ例え ば動植物からの天然油脂であってもよぐ合成油脂や加工油脂であってもよい。より 好ましくは、食品、化粧品又は医薬用に許容されるものである。例えば、植物油脂と しては、例えば、ヤシ油、パーム油、パーム核油、アマ二油、つばき油、玄米胚芽油、 菜種油、米油、落花生油、コーン油、小麦胚芽油、大豆油、エゴマ油、綿実油、ヒマ ヮリ種子油、カポック油、月見草油、シァ脂、サル脂、カカオ脂、ゴマ油、サフラワー油 、オリーブ油等を挙げることができ、動物油脂としては、例えば、豚脂、乳脂、魚油、 牛脂等を挙げることができ、更に、これらを分別、水素添加、エステル交換等により加 ェした油脂(例えば、硬化油)も挙げることができる。言うまでもなぐ中鎖脂肪酸トリグ リセリド(MCT)も使用しうる。又、これらの混合物を使用しても良い。
中鎖脂肪酸トリグリセリドとしては、例えば、脂肪酸の炭素数が各々 6〜12、好ましく は 8〜: 12のトリグリセリドを挙げることができる。
[0071] 上記、油脂のうち、取り扱い易さ、臭気等の面から植物油脂、合成油脂や加工油脂 等が好ましい。例えば、ヤシ油、パーム油、パーム核油、菜種油、米油、大豆油、綿 実油、サフラワー油、ォリーブ油、 MCT等を挙げることができる。
[0072] 本発明の、製造法(1)においては、油性成分 (B)は油脂単独でも良いが、必要に 応じ、油性成分 (B)中に、界面活性剤(E)を添加することができる。水中油型乳化組 成物の液滴は、乾燥が進行するに従って、徐々に粘着性が増大し、粒子間で凝集し やすくなる傾向にある。しかし、油性成分 (B)中に界面活性剤(E)を共存させておく と、粘着性の増した乾燥途中の水中油型乳化組成物液滴間の凝集が大幅に緩和さ れ、その結果、所望の体積平均粒子径を有する粒子状組成物の回収率を飛躍的に 向上させることができ好ましい。
[0073] 油性成分 (B)中の界面活性剤 (E)の含有量には特に制限はないが、乾燥途中の 水中油型乳化組成物の液滴間の凝集抑制等の観点から、油性成分 (B)に対する界 面活性剤(E)の重量%として、通常 0. 001重量%以上、好ましくは 0. 005重量%以 上、より好ましくは、 0. 01重量%以上である。上限は特に制限されないが、油性成分 (B)の流動性、界面活性剤(E)の除去性等の観点から、通常 95重量%以下、好まし くは 80重量%以下、より好ましくは 60重量%以下である。
[0074] 上記、界面活性剤 (E)としては、食品、化粧品、医薬品用途に許容できるものであ れば特に制限されないが、特に食品に許容できるものが好ましぐ例えば、 HLBが 1 0以下の、グリセリン脂肪酸エステル類、ポリグリセリンエステル類、ショ糖脂肪酸エス テル類、ソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル 類等の界面活性剤や、レシチン類が挙げられる。言うまでもなぐ本発明では、これら は、単独であるいは 2種類以上の混合物として用いることができる。
[0075] グリセリン脂肪酸エステル類としては、例えば、脂肪酸の炭素数が各々 6〜18、好 ましくは 12〜: 18のモノグリセリドゃジグリセリドを挙げることができる。
[0076] ポリグリセリンエステル類としては、例えば、重合度が 2から 10のポリグリセリンを主 成分とするポリグリセリンに、ポリグリセリンの水酸基の 1つ以上に炭素数が各々 6〜1 8、好ましくは 12〜: 18の脂肪酸をエステルイ匕したポリグリセリン脂肪酸エステルや、ポ リグリセリン縮合リシノレイン酸エステル等が挙げられる。
[0077] ショ糖脂肪酸エステル類としては、ショ糖の水酸基の 1つ以上に炭素数が各々 6〜
18、好ましくは 12〜: 18の脂肪酸をエステルイ匕したものが挙げられる
[0078] ソルビタン脂肪酸エステル類としては、ソルビタン類の水酸基の 1つ以上に炭素数 が各々 6〜18、好ましくは 12〜: 18の脂肪酸をエステル化したものが挙げられる。
[0079] ポリオキシエチレンソルビタン脂肪酸エステル類としては、ソルビタン類の水酸基の
1つ以上にポリオキシエチレン鎖を有しており、さらに、存在する水酸基の 1つ以上に 、炭素数が各々 6〜18、好ましくは 6〜: 12の脂肪酸をエステル化したものが挙げられ る。
[0080] レシチン類としては、例えば、卵黄レシチン、精製大豆レシチン、ホスファチジルコリ ン、ホスファチジルエタノールァミン、ホスファチジルセリン、スフインゴミエリン、ジセチ ノレリン酸、ステアリルァミン、ホスファチジルグリセロール、ホスファチジン酸、ホスファ チジルイノシトールァミン、カルジォリピン、セラミドホスホリルエタノールァミン、セラミ ドホスホリルグリセロール、酵素分解レシチン(リゾレシチン)及び、これらの混合物等 を挙げることができる。
[0081] 上記、界面活性剤(E)の HLBは、乾燥途中の水中油型乳化組成物液滴間の凝集 を効率的に抑制できる点から、 10以下であることが好ましぐ 7以下であることがより好 ましぐ 5以下であることが最も好ましい。但し、レシチン類はその HLBに限定されず 好適に使用できる。
このような界面活性剤としては具体的には、モノグリセリンモノステアリン酸エステル 、モノグリセリンモノォレイン酸エステル、モノグリセリンモノミリスチン酸エステル、モノ グリセリンモノ力プリル酸エステル、モノグリセリンモノラウリン酸エステル、モノグリセリ ンモノべへニン酸エステル、モノグリセリンモノエル力酸エステル等のモノグリセリンモ ノ脂肪酸エステル;モノグリセリンジステアリン酸エステル、モノグリセリンジォレイン酸 エステル、モノグリセリンジカプリル酸エステル、モノグリセリンジラウリン酸エステル等 のモノグリセリンジ脂肪酸エステル;モノグリセリンステアリン酸クェン酸エステル、モノ グリセリンステアリン酸酢酸エステル、モノグリセリンヤシ硬化油酢酸エステル、モノグ リセリンステアリン酸コハク酸エステル、モノグリセリンカプリル酸コハク酸エステル、モ ノグリセリンステアリン酸乳酸エステル、モノグリセリンステアリン酸ジァセチル酒石酸 エステル等のモノグリセリン脂肪酸有機酸エステル;モノグリセリン牛脂硬化油脂肪酸 エステル、モノグリセリン菜種硬化油脂肪酸エステル、モノグリセリン大豆硬化油脂肪 酸エステル、モノグリセリン綿実油脂肪酸エステル、モノグリセリンサフラワー油脂肪 酸エステル等の種々の油脂を用いて得られるモノグリセリン脂肪酸エステル;平均重 合度 2〜: 10のポリグリセリンと炭素数 6〜22の脂肪酸とのエステル等のポリグリセリン 脂肪酸エステル、及び平均重合度 2〜: 10のポリグリセリンと縮合度 2〜4のポリリシノ レイン酸とのエステル等のポリグリセリン縮合リシノレイン酸エステル等のポリグリセリン エステル類;プロピレングリコールモノステアリン酸エステル、プロピレングリコールモノ ォレイン酸エステル、及びプロピレングリコールモノラウリン酸エステル等のプロピレン グリコール脂肪酸エステル類;ソルビタンジステアリン酸エステル、ソルビタントリステ アリン酸エステル、ソルビタンセスキォレイン酸エステル、ソルビタンジォレイン酸エス テル、及びソルビタントリオレイン酸エステル等のソルビタン脂肪酸エステル類;ポリオ ォレイン酸エステル等のポリオキシエチレンソルビタン脂肪酸エステル類;並びに大 豆レシチン、卵黄レシチン、酵素分解レシチン等のレシチン類から選ばれる 1種また は 2種以上の混合物が挙げられる。中でも、好ましくはグリセリン脂肪酸エステル類、 ポリグリセリン脂肪酸エステル類、ポリグリセリン縮合リシノレイン酸エステル、レシチン 類から選ばれる 1種または 2種以上の混合物であり、より好ましくはモノグリセリンモノ 脂肪酸エステル、モノグリセリンジ脂肪酸エステル、モノグリセリン脂肪酸有機酸エス テル (特にモノグリセリン脂肪酸酢酸エステル、モノグリセリンヤシ硬化油酢酸エステ ノレ)、ポリグリセリン脂肪酸エステル (特に平均重合度 2〜: 10のポリグリセリンと炭素数 6〜22の脂肪酸とのエステル)及びポリグリセリン縮合リシノレイン酸エステル(特に平 均重合度 2〜: 10のポリグリセリンと縮合度 2〜4のポリリシノレイン酸とのエステル)から 選ばれる 1種または 2種以上の混合物であり、更に好ましくはモノグリセリン脂肪酸有 機酸エステル (特にモノグリセリン脂肪酸酢酸エステル、モノグリセリンヤシ硬化油酢 物、ヤシ硬化油モノグリセリドの完全ァセチル化物)、テトラグリセリンペンタォレイン酸 エステルやポリグリセリン縮合リシノレイン酸エステル、卵黄レシチン、大豆レシチン、 酵素分解レシチンである。
[0083] 本発明の製造法(1)においては、油脂としては MCTを、界面活性剤(E)としては、 卵黄レシチン、大豆レシチン又は酵素分解レシチンを、それぞれ組み合わせて使用 するのが特に好ましい。
[0084] 本発明の製造法(1)において、水中油型乳化組成物液滴から水分を除去する所 要時間には特に制限はないが、好ましくは 5秒〜 24時間、より好ましくは 1分〜 12時 間、最も好ましくは 5分〜 6時間の範囲である。水分を除去する所要時間が 5秒未満 の場合は、油性成分 (B)から一気に水分が蒸発することによる激しレ、発泡が起こるた め好ましくない。一方、水分を除去する所要時間が 24時間より長い場合は、生産性 が低下するため好ましくない。
[0085] 尚、本発明の製造法(1)における水分の除去とは、水分が完全に除去されていな い状態であっても、水中油型乳化組成物液滴の乾燥が進行し、粒子形態での回収 が可能な状態であれば良い。残存水分量は、通常、回収後粒子重量の 30重量%以 下であることが好ましぐ 10重量%以下であることがより好ましぐ 5重量%以下である ことが最も好ましい。 [0086] 上記製造法(1)において、水分除去後の粒子状組成物の回収方法としては特に限 定されないが、固液分離により油性成分 (B)を除去後、得られた粒子状組成物を有 機溶剤等で洗浄して油性成分 (B)の大部分を流去し、さらに有機溶剤を乾燥により 除去し、粉体として回収するのが最も簡便であり好ましレ、。
[0087] 油性成分 (B)を洗浄する有機溶剤としては、油性成分 (B)を溶解 ·除去し得る有機 溶剤であれば良ぐ特に制限されないが、食品、医薬品、化粧品等の製造に使用しう る有機溶剤であるのが好ましい。このような溶媒として、例えば、エタノール、メタノー ノレ、イソプロパノール、アセトン、へキサン、酢酸ェチル、テトラヒドロフラン等を挙げる こと力 Sできる。これらの中でも、本発明の粒子状組成物を食品用途で使用する場合に は、エタノールを使用するのが最も好ましい。上記、有機溶剤の乾燥方法としては、 真空乾燥、加熱乾燥、風乾等を用いることができるが、これらに限定されない。尚、回 収後の粒子状組成物は、所定の製品として望ましい粒子径に揃えるために、分級操 作を実施することもできる。
[0088] 本発明の製造法(2)においては、上述したようにして、還元型補酵素 Q 10を含有 する油性成分 (A)と水溶性賦形剤を含有する水溶液から調製された水中油型乳化 組成物を、気相中で噴霧乾燥することによって本発明の粒子状組成物とすることが できる。気相中での噴霧乾燥方法としては、いわゆるスプレードライ法が使用できる。 スプレードライの条件は、通常実施される条件を適宜選択しうる。
[0089] 上記 2種類の製造方法のうち、製造法(1)においては、油性成分 (B)中に、ほぼ球 形で懸濁した個々の水中油型乳化組成物液滴が、球形状の形態を保持した状態で 水分の除去が進行するため、本発明の目的である高い酸化安定性を有する、球形 度が高くかつ表面粗さ(Ra)の小さな粒子状組成物が得られ易くなる傾向にあり、より 好ましい製造方法である。
[0090] 一方、製造法(2)においても、乾燥時の温度および滞留時間等を適切に制御する ことにより、球形状に近ぐかつ表面粗さ(Ra)の小さな、還元型補酵素 Q10を含有す る粒子状組成物を作製することができる。
[0091] 本発明の還元型補酵素 Q10を含有する粒子状組成物の安定化方法及び取り扱い 方法について説明する。 [0092] 本明細書で述べる安定化とは、還元型補酵素 Q10が酸化型補酵素 Q10に酸化さ れることを抑制することを示す。又、本明細書にて述べる取り扱いとは、ある物に対し て外的な作用を施すことにより、その物の機能を維持、または発揮させることである。 取り扱いの例は、限定されないが、コーティング機からの払い出し、包装、梱包、保存 、貯蔵、移送、分級を含み得る。好ましくは保存である。
[0093] また、本発明の還元型補酵素 Q 10を含有する粒子状組成物の安定化方法及び取 り扱い方法での温度の上限は、普通約 100°C以下、好ましくは約 80°C以下、より好ま しくは約 60°C以下、更に好ましくは約 40°C以下、特に好ましくは約 20°C以下である 。この場合、温度の下限は、普通約— 100°C以上、好ましくは約— 80°C以上、より好 ましくは約 _60°C以上、更に好ましくは約 _40°C以上、特に好ましくは約 _ 20°C以 上である。
[0094] さらに、本発明の還元型補酵素 Q10を含有する粒子状組成物における、 40°C、空 気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率(%)は、特に制 限されないが、約 50重量%以上、好ましくは約 60重量%以上、更に好ましくは約 70 重量%以上、より好ましくは約 80重量%以上、特に好ましくは約 90重量%以上であ る。
[0095] 本発明においては、相対湿度を調整することを特徴とする、還元型補酵素 Q10を 含有する粒子状組成物および該組成物を含む製剤の安定化方法及び取り扱い方 法を提供する。
本発明の安定化方法または取り扱い方法においては、保存雰囲気中の湿度が重 要であり、その湿度を調整することで還元型補酵素 Q10を含有する粒子状組成物の 安定性を著しく向上させることが出来る。相対湿度の上限は、還元型補酵素 Q10を 含有する粒子状組成物が安定に保存できればよぐ特に制限されないが、通常相対 湿度約 90%以下、好ましくは相対湿度約 80%以下、より好ましくは相対湿度約 70% 以下、特に好ましくは相対湿度約 60%以下に調整された環境下で、還元型補酵素 Q10を含有する粒子状組成物を、さらに安定に取り扱うことができる。相対湿度の下 限は、 0%である。
[0096] 上記、相対湿度が調整された環境は、環境力 の除湿、或いは、除湿された気体( 空気でもよいが、好ましくは、乾燥窒素等の乾燥不活性ガス)の環境への導入等によ り与えられる。上記除湿は、特に制限されないが、湿気の氷結、除湿機や乾燥剤(シ リカゲル、塩化カルシウム、合成ゼォライト等)等の使用により達成される。言うまでも なぐ相対湿度が調整された環境が与えられれば、その方法は特に問わない。
[0097] また、本発明の効果を最大限に発揮するために、還元型補酵素 Q10の安定性の 観点より、当然のことながら本発明の粒子状組成物の製造や保存は脱酸素雰囲気 下で行うことが好ましぐ例えば、窒素ガス、アルゴンガス等の不活性ガス等の脱酸素 雰囲気下で、実施することが好ましい。
[0098] 本発明においては、ガラス製、プラスチック製および/または金属製の素材にて包 装 ·梱包することを特徴とする、本発明で得られた還元型補酵素 Q 10を含有する粒 子状組成物の安定化方法および取り扱い方法を提供する。上記素材で包装'梱包 することによって該粒子状組成物の安定性が著しく向上する。
ガラス製の素材としては、例えば、軟質ガラス、硬質ガラス等を挙げる事ができる。 プラスチック製の素材としては、例えば、高密度ポリエチレン、中密度ポリエチレン、 低密度ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリビュルアルコー ノレ、ポリ塩ィ匕ビニル、ポリ塩ィ匕ビニリデン、ナイロン等を挙げること力 Sできる。言うまでも なぐ上記プラスチック製の素材を積層したフィルム、アルミラミネート等のプラスチッ ク製の素材にアルミ等を積層したフィルム、プラスチック製の素材に、アルミ、アルミナ 、シリカ等を蒸着させたフィルムもプラスチック製の素材に含まれる。金属製の素材と しては、例えば、鉄、ァノレミニゥム、亜鉛、ニッケル、コバルト、銅、すず、チタン、クロ ムあるいはこれらの合金 (ステンレス、真鍮等)を挙げることができる。また、ガラスと金 属を組み合わせたホーロー等の素材も使用できる。
上記した素材は、ボトル、袋、缶、ドラム、箱等に成型し、本発明の粒子状組成物を 包装'梱包するのが好ましい。また、上記の素材を用いて、 PTP包装、三方シール包 装、四方シール包装、ピロ一包装、ストリップ包装、アルミ成型包装、スティック包装等 とすることもできる。ポリエチレン等の比較的ガスバリア性、防湿性の低い素材を用い た場合には、 2重以上の包装'梱包とするのが好ましぐこのとき、アルミラミネートや アルミ、アルミナ、シリカ等の蒸着フィルム、ガラス、金属等の比較的ガスバリア性、防 湿性の高い素材を使用するのが特に好ましい。包装、梱包後には、必要に応じて、 鋼鉄製のドラム、樹脂製のドラム、ファイバードラム、ダンボール等に入れて輸送、保 管を行うことができる。
[0099] 本発明においては、防湿剤を併用する、還元型補酵素 Q10を含有する粒子状組 成物の上記安定化方法または取り扱い方法を提供する。防湿剤を併用することによ り該粒子状組成物の安定性が著しく向上する。防湿剤としては、シリカゲル、塩ィ匕カ ノレシゥム、合成ゼォライト等が挙げられる。
[0100] 上述したような保存雰囲気中の湿度を調整した環境、及び/又は、包装'梱包形態 における、 40°C、空気中、遮光条件下における 30日間保存後の還元型補酵素 Q 10 の保持率は、特に制限されないが、通常約 80重量%以上、好ましくは約 85重量% 以上、更に好ましくは 90重量%以上、より好ましくは約 95重量%以上、特に好ましく は約 97重量%以上である。言うまでもなぐ上記包装'梱包形態とすることで、相対湿 度が調整された環境としてもょレ、。
[0101] 本発明で得られた還元型補酵素 Q10を含有する粒子状組成物は、錠剤、丸剤、力 プセル剤(ノヽードカプセル、ソフトカプセル、マイクロカプセルなど)、チユアブル錠、 散剤、顆粒、シロップ、ドリンク剤などの製剤などとして医薬やその他食品、化粧品等 に加工または使用することが出来る。即ち、ここにいう製剤は医薬のみを指すのでは なぐ食品、化粧品に属するもので前記の形態を有するものも包含するものである。 製剤化において、賦形剤、崩壊剤、滑沢剤、結合剤、凝集防止剤、吸収促進剤、溶 解剤、安定化剤などの他、カプセル剤とする場合、油脂やレシチン、リゾレシチンなど の界面活性剤も併用することが出来る。
[0102] 還元型補酵素 Q10を含有する粒子状組成物の安定性の観点から、上記製剤にお レ、ても、上述したような、相対湿度が調整された環境下にて取り扱うあるいは保存す る、及び Z又は、取り扱うあるいは保存するに際し上述したような包装'梱包を行うの 力 好ましい態様である。
[0103] 本発明は、さらに融点以下で結晶状態でない還元型補酵素 Q10を提供するもので あり、また、還元型補酵素 Q10の少なくとも一部が結晶状態でない還元型補酵素 Q1 0を提供するものであり、通常は還元型補酵素 Q10の 10重量%以上、好ましくは 20 重量%以上、より好ましくは 50重量%以上、さらに好ましくは 70重量%以上、特に好 ましいのは 80重量%以上、最大で 100重量%が結晶状態でない還元型補酵素 Q1 0を提供するものである。ここで結晶状態でないとは、非晶状態または融液の状態で あることをレ、う。
[0104] 当該、結晶状態でない還元型補酵素 Q10の製造法としては、前述の粒子状組成 物の製造方法によって得られた、粒子状組成物中の油性成分 (A)に含有される還 元型補酵素 Q10が、通常結晶状態ではないので、当該製造方法によって製造する こと力 Sできる。
[0105] 他の製造方法としては、例えば、物理ゲルを形成する性質を有する水溶性高分子 溶液と還元型補酵素 Q10を含む第一煙霧体状液と、ゲル化剤を含む第二煙霧体状 液とを接触させる方法が挙げられる。
[0106] ここで、「物理ゲルを形成する性質を有する水溶性高分子」とは、高分子間の水素 結合やイオン結合、キレート形成などによってゲル状に架橋された状態が形成され 得る性質を有する水溶性高分子である。「物理ゲルを形成する性質」とは、水溶性高 分子の水溶液に、無機塩や酸の添加、あるいは加熱 ·冷却等の操作をカ卩えることによ り、粘性流体 (ゾル)から弾性体 (ゲル)への変化が視覚的にとらえられる性質を有す ることを意味する。
[0107] 上記水溶性高分子としては、例えば、水溶性アルギン酸やその誘導体、低メトキシ ルぺクチン、ゼラチン、キサンタンガム、カルメロースナトリウム、ポリビニルピロリドン、 水溶性セルロースやその誘導体等が例示される。
[0108] ゲル化剤としては、塩化カルシウム、塩化マグネシウム、または塩化バリウムの水溶 液などがあげられる。
[0109] 還元型補酵素 Q10含有水溶性高分子溶液と凝固剤 (ゲル化剤)の接触方法として は、例えば、凝固剤(ゲル化剤)の水溶液を所定量連続的に煙霧体状に噴霧した凝 固性気相雰囲気中に、還元型補酵素 Q10含有水溶性高分子溶液を、好ましくは乳 化状態にした上で、連続的に噴霧または滴下し接触させることによって行うことができ る。
[0110] 力、くして還元型補酵素 Q10含有顆粒が得られるが、この顆粒中に含まれる還元型 補酵素 Q10は、少なくとも通常結晶状態ではなレ、ものを含む。
実施例
[0111] 次に本発明を実施例に基づいて更に詳細に説明するが、本発明は力、かる実施例 のみに限定されるものではない。
[0112] (還元型補酵素 Q10の純度)
還元型補酵素 Q10の純度及び還元型補酵素 Q10の重量比(%)は下記 HPLC分 析により求めた(重量比(% ) = {還元型補酵素 Q 10/ (酸化型補酵素 Q 10 +還元型 補酵素 Q10)} X 100)。以下、 HPLC分析条件を記載する。
カラム: SYMMETRY C18 (Waters製) 250mm (長さ) 4· 6mm (内径)、 移動相; C H OH/CH OH = 4/3 (v/v)、
2 5 3
検出波長; 210nm、
流速; 1.0mレ min、
還元型補酵素 Q10の保持時間; 9. lmin、
酸化型補酵素 Q10の保持時間; 13. 3min。
[0113] (球形度)
得られた粒子状組成物の球形度は、回収後の粒子の電子顕微鏡観察で得た画像 を、画像解析ソフト(WinROOF Ver. 3. 30)で解析し、同じ面積を持つ円の直径と 外接する最小円の直径比から求めた。尚、解析では、 20サンプルを解析し、その平 均値を求めた。
[0114] (結晶化度)
得られた粒子状組成物中の還元型補酵素 Q10の結晶化度は、 25°C、空気中、 30 日間保存後、下記 DSC (示差走査熱量計 [セイコー電子工業株式会社製 EXSTAR 6000])分析を行うことにより求めた。実施例および比較例で得られた粒子状組成物 を上記所定条件で保存後、そのうち 10mgを、アルミニウムパンに取り、昇温速度 5°C /分の条件で、 15°Cから 70°Cまで昇温し、その際の結晶融解熱量を測定した。結 晶化度は、粒子状組成物中の還元型補酵素 Q10の含有量から求めた理論融解熱 量と、 DSCでの実測融解熱量データから、下記式に従って算出した。
結晶化度(%) = (実測融解熱量/理論融解熱量) X 100 [0115] (体積平均粒子径)
得られた粒子状組成物の体積平均粒子径は、レーザー回折'散乱型粒度分布測 定装置(日機装株式会社製;マイクロトラック MT3000II)において、エタノール溶媒 を用いて測定した。
[0116] (ドメイン平均粒子径)
得られた粒子状組成物を 2液硬化型接着剤(ァズワン株式会社取扱い品;ァラルダ イト)に添加した後硬化させた。得られた包埋サンプルを液体窒素に 5分間浸漬し十 分に冷却した後、ハンマーを用い破断した。破断面をへキサンに 15分間浸漬し、油 性成分 (A)を除去後、走査型電子顕微鏡(日立; S— 4800)で、粒子状組成物の破 断面を撮影した。ドメインの平均粒子径は、無作為に撮影した画像から、任意に 50 個の空孔を選択し、その粒子径を測長後、平均することで求めた。
[0117] (製造例)
lOOOgのエタノーノレ中に、 100§の酸化型補酵素(310結晶(株式会社カネ力製)と 、 60gの L—ァスコルビン酸を加え、 78°Cにて撹拌し、還元反応を行った。 30時間後 、 50°Cまで冷却し、同温を保持しながらエタノール 400g、 7]a00gを添カロした。この エタノール溶液を撹拌しながら、 10°C/時間の冷却速度で 2°Cまで冷却し、冷ェタノ ール、冷水の順で洗浄し、得られた湿結晶を減圧乾燥することにより、白色の乾燥結 晶 95gを得た(有姿収率 95モル%)。なお、減圧乾燥を除くすべての操作は窒素雰 囲気下で実施した。得られた結晶の純度は 99. 1%、補酵素 Q総量に対する還元型 補酵素 Q10の重量比(%)は 99. 0%であった。
[0118] (実施例 1)
332gの蒸留水に、アラビアガム (伊那食品工業株式会社製アラビアガム A) 60gを 30°Cで溶解させ、水溶性賦形剤水溶液を作製した。この水溶液を 60°Cに加温後、 上記製造例で得られた還元型補酵素 Q 10粉末 8gを添加して溶融させた後、 TKホ モミキサー Markll (プライミクス株式会社製)で 10000回転 X 5分間乳化し、水中油 型乳化組成物を得た。水中油型乳化組成物中の、還元型補酵素 Q10の乳化粒子 径(ドメインの平均粒子径)は約 1 μ mであった。この水中油型乳化組成物を、スプレ 一ドライヤー(日本ビュッヒ株式会社製 B_ 290)を用いて熱風入り温度 200°Cの条件 で噴霧乾燥し、還元型補酵素 Q10を含有する粒子状組成物を得た。
[0119] 得られた粒子状組成物は、球形度;0. 87、体積平均粒子径; 6. 9 / m、補酵素 Q 含有量; 11. 8重量%および還元型補酵素 Q含有量; 11. 1重量%であった。図 1に 得られた粒子状組成物の外観の電子顕微鏡写真を示す。
40°C、空気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率は、 8 3%であった。
また DSCにより測定した結晶化度は、 21 %であった。
[0120] (実施例 2)
336gの蒸留水に、ゼラチン(新田ゼラチン株式会社製 APH_ 250) 30gを 60°Cで 溶解させ、水溶性賦形剤水溶液を作製した。この水溶液を 60°Cに保持し、上記製造 例で得られた還元型補酵素 Q 10粉末 4gを添加して溶融させた後、 TKホモミキサー Markll (プライミクス株式会社製)で 10000回転 X 5分間乳化し、水中油型乳化組 成物を得た。水中油型乳化組成物中の、還元型補酵素 Q10の乳化粒子径は約 0. 5 μ mであった。この水中油型乳化組成物中を、スプレードライヤー(日本ビュッヒ株式 会社製 B— 290)を用いて熱風入り温度 200°Cの条件で噴霧乾燥し、還元型補酵素 Q 10を含有する粒子状組成物を得た。
[0121] 得られた粒子状組成物は、球形度; 0. 83、補酵素 Q含有量; 11. 8重量%および 還元型補酵素 Q含有量; 10. 8重量%であった。
40°C、空気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率は、 6 3%であった。
また DSCにより測定した結晶化度は、 27 %であつた。
[0122] (実施例 3)
360gの蒸留水に、大豆多糖類(不二製油株式会社製 S _ZR100) 40gを 60°Cで 溶解させ、水溶性賦形剤水溶液を作製した。この水溶液を 60°Cに保持し、上記製造 例で得られた還元型補酵素 Q 10粉末 6. 2gを添加して溶融させた後、 TKホモミキサ 一 Markll (プライミクス株式会社製)で 10000回転 X 5分間乳化し、水中油型乳化 組成物を得た。水中油型乳化組成物中の、還元型補酵素 Q10の乳化粒子径は約 1 μ mであった。この水中油型乳化組成物を、スプレードライヤー(日本ビュッヒ株式会 社製 B— 290)を用いて熱風入り温度 200°Cの条件で噴霧乾燥し、還元型補酵素 Q 10を含有する粒子状組成物を得た。
[0123] 得られた粒子状組成物は、球形度; 0. 81、補酵素 Q含有量; 13. 4重量%および 還元型補酵素 Q含有量; 12. 5重量%であった。
40°C、空気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率は、 7 9%であった。
また DSCにより測定した結晶化度は、 36%であった。
[0124] (実施例 4)
182gの蒸留水に、ゼラチン(新田ゼラチン株式会社製 APH— 250) 18gを 60°Cで 溶解させ、そこへ酵母細胞壁水溶液 (キリンビール株式会社製イーストラップ) 200g を添加し水溶性賦形剤水溶液を作製した。この水溶液を 60°Cに保持し、上記製造 例で得られた還元型補酵素 Q 10粉末 5. 4gを添加して溶融させた後、 TKホモミキサ 一 Markll (プライミクス株式会社製)で 10000回転 X 5分間乳化し、水中油型乳化 組成物を得た。水中油型乳化組成物中の、還元型補酵素 Q10の乳化粒子径は約 1 μ mであった。この水中油型乳化組成物中を、スプレードライヤー(日本ビュッヒ株式 会社製 B— 290)を用いて熱風入り温度 200°Cの条件で噴霧乾燥し、還元型補酵素 Q 10を含有する粒子状組成物を得た。
[0125] 得られた粒子状組成物は、球形度; 0. 84、補酵素 Q含有量; 13. 2重量%および 還元型補酵素 Q含有量; 12. 2重量%であった。
40°C、空気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率は、 6 4%であった。
また DSCにより測定した結晶化度は、 49%であった。
[0126] (実施例 5)
140gの蒸留水に、アラビアガム (伊那食品工業株式会社製アラビアガム A) 60gを 30°Cで溶解させ、水溶性賦形剤水溶液を作製した。この水溶液を 60°Cに加温後、 上記製造例で得られた還元型補酵素 Q 10粉末 9. 2gを添加して溶融させた後、 TK ホモミキサー Markll (プライミクス株式会社製)で 10000回転 X 5分間乳化し、水中 油型乳化組成物を得た。水中油型乳化組成物中の、還元型補酵素 Q10の乳化粒 子径は約 1 μ ΐηであった。ここで得た水中油型乳化組成物 75gを、あらかじめ 90°Cに 加熱しておいた、 MCT (理研ビタミン社製アクター M— 2) 145gおよび界面活性剤( ポリグリセリン縮合リシノレイン酸エステル:阪本薬品工業株式会社製 SYグリスター C RS— 75) 5gからなる油性成分 (B)に添加し、水中油型乳化組成物懸濁液滴の粒子 径が約 200 x mとなるよう、攪拌回転数を調整した。同攪拌数での攪拌を継続しなが ら、懸濁液の温度を 105°Cに調整することで、水中油型乳化組成物懸濁液滴からの 水の除去が進行し、約 30分間で大部分の水が蒸発した。その後は、常法に従って、 固液分離により油性成分 (B)をろ別し、約 500gのエタノールで粒子に付着した油性 成分 (B)を洗浄後、 50°Cで乾燥して、還元型補酵素 Q 10を含有する粒子状組成物 を得た。
[0127] 得られた粒子状組成物は、球形度;0. 97、体積平均粒子径; 130 μ m、ドメイン粒 子径; 1. 4 z m、補酵素 Q含有量; 12. 8重量%および還元型補酵素 Q含有量; 11. 9重量%であった。
40°C、空気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率は、 1 00%であった。
また DSCにより測定した結晶化度は、 0 %であつた。
得られた粒子状組成物の断面の電子顕微鏡写真を図 2に示した。図 2に示すとおり 、油性成分 (A)が形成していたドメインは、微細な空孔として粒子状組成物中に多分 散している様子が確認された。この写真から 1粒子中のドメイン数は約 10万個と推定 される。
[0128] (実施例 6)
140gの蒸留水に、アラビアガム (伊那食品工業株式会社製アラビアガム A) 60gを 30°Cで溶解させ、水溶性賦形剤水溶液を作製した。別途、上記製造例で得られた 還元型補酵素 Q10粉末 9. 2gと界面活性剤(ジグリセリンモノォレイン酸エステル:理 研ビタミン株式会社製ポエム DO— 100V) 4. 2gを 60°Cで均一に混合した油性成分 (A)を、 60°Cの水溶性賦形剤水溶液に添カ卩し、 TKホモミキサー Markll (プライミク ス株式会社製)で 10000回転 X 5分間乳化し、水中油型乳化組成物を得た。水中油 型乳化組成物中の、還元型補酵素 Q10の乳化粒子径は約 0. であった。ここ で得た水中油型乳化組成物 75gを、あらかじめ 90°Cに加熱しておいた、 MCT (理研 ビタミン社製アクター M— 2) 145gおよび界面活性剤(ポリグリセリン縮合リシノレイン 酸エステル:阪本薬品工業株式会社製 SYグリスター CRS— 75) 5gからなる油性成 分 (B)に添加し、水中油型乳化組成物懸濁液滴の粒子径が約 200 μ mとなるよう、 攪拌回転数を調整した。同攪拌数での攪拌を継続しながら、懸濁液の温度を 105°C に調整することで、水中油型乳化組成物懸濁液滴からの水の除去が進行し、約 30 分間で大部分の水が蒸発した。その後は、常法に従って、固液分離により油性成分 ( B)をろ別し、約 500gのエタノールで粒子に付着した油性成分 (B)を洗浄後、 50°C で乾燥して、還元型補酵素 Q 10を含有する粒子状組成物を得た。
[0129] 得られた粒子状組成物の球形度は 0. 97であり、補酵素 Q含有量; 11. 6重量%お よび還元型補酵素 Q含有量; 10. 7重量%であった。
40°C、空気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率は、 1 00%であった。
また DSCにより測定した結晶化度は、 0 %であつた。
[0130] (実施例 7)
160gの蒸留水に、ゼラチン(新田ゼラチン株式会社製 APH— 250) 40gを 60°Cで 溶解させ、水溶性賦形剤水溶液を作製した。この水溶液を 60°Cに加温後、上記製 造例で得られた還元型補酵素 Q 10粉末 6. 2gを添加して溶融させた後、 TKホモミキ サー Markll (プライミクス株式会社製)で 10000回転 X 5分間乳化し、水中油型乳化 組成物を得た。水中油型乳化組成物中の、還元型補酵素 Q10の乳化粒子径は約 0 . 5 /i mであった。ここで得た水中油型乳化組成物 75gを、あらかじめ 90°Cに加熱し ておいた、 MCT (理研ビタミン社製アクター M— 2) 145gおよび界面活性剤(ポリダリ セリン縮合リシノレイン酸エステル:阪本薬品工業株式会社製 SYグリスター CRS— 7 5) 5gからなる油性成分 (B)に添カ卩し、水中油型乳化組成物懸濁液滴の粒子径が約 200 z mとなるよう、攪拌回転数を調整した。同攪拌数での攪拌を継続しながら、懸 濁液の温度を 105°Cに調整することで、水中油型乳化組成物懸濁液滴からの水の 除去が進行し、約 30分間で大部分の水が蒸発した。その後は、常法に従って、固液 分離により油性成分 (B)をろ別し、約 500gのエタノールで粒子に付着した油性成分 (B)を洗浄後、 50°Cで乾燥して、還元型補酵素 Q 10を含有する粒子状組成物を得 た。
[0131] 得られた粒子状組成物は、球形度; 0. 97、体積平均粒子径; 131 μ m、補酵素 Q 含有量; 12. 3重量%および還元型補酵素 Q含有量; 11. 3重量%であった。
40°C、空気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率は、 9 4%であった。
また DSCにより測定した結晶化度は、 0 %であつた。
得られた粒子状組成物の外観の電子顕微鏡写真を図 3に示した。図 3に示すとおり 、実施例 7で得られた粒子状組成物は球形度の高レ、粒子であることが確認された。
[0132] (実施例 8)
140gの蒸留水に、アラビアガム (伊那食品工業株式会社製アラビアガム A) 60gを 30°Cで溶解させ、水溶性賦形剤水溶液を作製した。この水溶液を 60°Cに加温後、 上記製造例で得られた還元型補酵素 Q 10粉末 25. 7gを添加して溶融させた後、 T Kホモミキサー Markll (プライミクス株式会社製)で 10000回転 X 5分間乳化し、水 中油型乳化組成物を得た。水中油型乳化組成物中の、還元型補酵素 Q10の乳化 粒子径は約 1. 5 μ ΐηであった。ここで得た水中油型乳化組成物 75gを、あらかじめ 9 0°Cに加熱しておいた、 MCT (理研ビタミン社製アクター M— 2) 145gおよび界面活 性剤 (ポリグリセリン縮合リシノレイン酸エステル:阪本薬品工業株式会社製 SYグリス ター CRS— 75) 5gからなる油性成分 (B)に添加し、水中油型乳化組成物懸濁液滴 の粒子径が約 200 / mとなるよう、攪拌回転数を調整した。同攪拌数での攪拌を継 続しながら、懸濁液の温度を 105°Cに調整することで、水中油型乳化組成物懸濁液 滴からの水の除去が進行し、約 30分間で大部分の水が蒸発した。その後は、常法に 従って、固液分離により油性成分 (B)をろ別し、約 500gのエタノールで粒子に付着 した油性成分 (B)を洗浄後、 50°Cで乾燥して、還元型補酵素 Q 10を含有する粒子 状組成物を得た。
[0133] 得られた粒子状組成物は、球形度; 0. 97、ドメイン粒子径; 1. 4 μ m、補酵素 Q含 有量; 30重量%および還元型補酵素 Q含有量; 29. 5重量%であった。
40°C、空気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率は、 1 00%であった。
また DSCにより測定した結晶化度は、 0 %であつた。
得られた粒子状組成物の断面の電子顕微鏡写真を図 4に示した。図 4に示すとおり 、油性成分 (A)が形成していたドメインは、微細な空孔として粒子状組成物中に多分 散している様子が確認された。この写真から 1粒子中のドメイン数は約 25万個と推定 される。
[0134] (実施例 9)
140gの蒸留水に、アラビアガム (伊那食品工業株式会社製アラビアガム A) 60gを 30°Cで溶解させ、水溶性賦形剤水溶液を作製した。この水溶液を 60°Cに加温後、 上記製造例で得られた還元型補酵素 Q 10粉末 9. 2gを添加して溶融させた後、 TK ホモミキサー Markll (プライミクス株式会社製)で 10000回転 X 5分間乳化し、水中 油型乳化組成物を得た。水中油型乳化組成物中の、還元型補酵素 Q10の乳化粒 子径は約 1 μ ΐηであった。ここで得た水中油型乳化組成物 75gを、あらかじめ 90°Cに 加熱しておいた、 MCT (理研ビタミン社製アクター M— 2) 100gおよび界面活性剤( テトラグリセリンペンタォレイン酸エステル:阪本薬品工業株式会社製 SYグリスター P O— 3S、 HLB3. 0) 50gからなる油性成分(B)に添加し、水中油型乳化組成物懸濁 液滴の粒子径が約 200 / mとなるよう、攪拌回転数を調整した。同攪拌数での攪拌 を継続しながら、懸濁液の温度を 105°Cに調整することで、水中油型乳化組成物懸 濁液滴からの水の除去が進行し、約 30分間で大部分の水が蒸発した。その後は、常 法に従って、固液分離により油性成分 (B)をろ別し、約 500gのエタノールで粒子に 付着した油性成分 (B)を洗浄後、 50°Cで乾燥して、還元型補酵素 Q 10を含有する 粒子状組成物を得た。
[0135] 得られた粒子状組成物は、球形度; 0. 97、補酵素 Q含有量; 12. 3重量%および 還元型補酵素 Q含有量; 11. 6重量%であった
40°C、空気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率は、 9 9%であった。
また DSCにより測定した結晶化度は、 0 %であつた。
[0136] (実施例 10) 140gの蒸留水に、アラビアガム (伊那食品工業株式会社製アラビアガム A) 45g、 ゼラチン (新田ゼラチン株式会社製 APH— 250) 15gを 60°Cで溶解させ、水溶性賦 形剤水溶液を作製した。別途、上記製造例で得られた還元型補酵素 Q 10粉末 9. 2 gと界面活性剤(ジグリセリンモノォレイン酸エステル:理研ビタミン株式会社製ポエム DO- 100V) 4. 2gを 60°Cで均一に混合した油性成分 (A)を、 60°Cの水溶性賦形 剤水溶液に添加し、 TKホモミキサー Markll (プライミクス株式会社製)で 10000回 転 X 5分間乳化し、水中油型乳化組成物を得た。水中油型乳化組成物中の、還元 型補酵素 Q10の乳化粒子径は約 1 μ mであった。ここで得た水中油型乳化組成物 7 5gを、あらかじめ 90°Cに加熱しておいた、 MCT (理研ビタミン社製アクター M— 2) 7 5gおよび界面活性剤(テトラグリセリンペンタォレイン酸エステル:阪本薬品工業株式 会社製 SYグリスター PO_ 3S、 HLB3. 0) 75gからなる油性成分(B)に添カ卩し、水 中油型乳化組成物懸濁液滴の粒子径が約 200 μ mとなるよう、攪拌回転数を調整し た。同攪拌数での攪拌を継続しながら、懸濁液の温度を 105°Cに調整することで、水 中油型乳化組成物懸濁液滴からの水の除去が進行し、約 30分間で大部分の水が 蒸発した。その後は、常法に従って、固液分離により油性成分 (B)をろ別し、約 500g のエタノールで粒子に付着した油性成分 (B)を洗浄後、 50°Cで乾燥して、還元型補 酵素 Q 10を含有する粒子状組成物を得た。
[0137] 得られた粒子状組成物は、球形度; 0. 96、補酵素 Q含有量; 12. 5重量%および 還元型補酵素 Q含有量; 11. 5重量%であった。
40°C、空気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率は、 9 7%であった。
また DSCにより測定した結晶化度は、 0 %であつた。
[0138] (実施例 11)
140gの蒸留水に、アラビアガム (伊那食品工業株式会社製アラビアガム A) 30g、 ゼラチン (新田ゼラチン株式会社製 APH— 250) 10g、スクロース(和光純薬工業株 式会社製) 17. 5g、ラ外ース (和光純薬工業株式会社製) 2. 5gを 60°Cで溶解させ 、水溶性賦形剤水溶液を作製した。別途、上記製造例で得られた還元型補酵素 Q1 0粉末 9. 2gと界面活性剤(ジグリセリンモノォレイン酸エステル:理研ビタミン株式会 社製ポエム DO— 100V) 4. 2gを 60°Cで均一に混合した油性成分(Α)を、 60°Cの 水溶性賦形剤水溶液に添加し、 TKホモミキサー Markll (プライミクス株式会社製) で 10000回転 X 5分間乳化し、水中油型乳化組成物を得た。水中油型乳化組成物 中の、還元型補酵素 Q10の乳化粒子径は約 l z mであった。ここで得た水中油型乳 化組成物 75gを、あら力、じめ 90°Cに加熱しておいた、 MCT (理研ビタミン社製ァクタ -M- 2) 75gおよび界面活性剤(テトラグリセリンペンタォレイン酸エステル:阪本薬 品工業株式会社製 SYグリスター PO_ 3S、 HLB3. 0) 75gからなる油性成分 (B)に 添加し、水中油型乳化組成物懸濁液滴の粒子径が約 200 z mとなるよう、攪拌回転 数を調整した。同攪拌数での攪拌を継続しながら、懸濁液の温度を 105°Cに調整す ることで、水中油型乳化組成物懸濁液滴からの水の除去が進行し、約 30分間で大 部分の水が蒸発した。その後は、常法に従って、固液分離により油性成分 (B)をろ別 し、約 500gのエタノールで粒子に付着した油性成分 (B)を洗浄後、 50°Cで乾燥して 、還元型補酵素 Q10を含有する粒子状組成物を得た。
[0139] 得られた粒子状組成物は、球形度; 0. 87、補酵素 Q含有量; 12. 5重量%および 還元型補酵素 Q含有量; 11. 6重量%であった。
40°C、空気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率は、 9 7%であった。
また DSCにより測定した結晶化度は、 0 %であつた。
[0140] (実施例 12)
140gの蒸留水に、アラビアガム (伊那食品工業株式会社製アラビアガム A) 60gを 30°Cで溶解させ、水溶性賦形剤水溶液を作製した。別途、上記製造例で得られた 還元型補酵素 Q10粉末 9. 2gを、 60°Cの水溶性賦形剤水溶液に添加して溶融させ た後、 TKホモミキサー Markll (プライミクス株式会社製)で 10000回転 X 5分間乳化 し、水中油型乳化組成物を得た。水中油型乳化組成物中の、還元型補酵素 Q10の 乳化粒子径は約 l x mであった。ここで得た水中油型乳化組成物 75gを、あらかじめ 90°Cに加熱しておいた、 MCT (理研ビタミン社製アクター M— 2) 149. 6gおよび酵 素分解レシチン(日本シィベルヘグナー株式会社取扱い品ェマルトップ HL50) 0. 4 gからなる油性成分 (B)に添加し、水中油型乳化組成物懸濁液滴の粒子径が約 200 / mとなるよう、攪拌回転数を調整した。同攪拌数での攪拌を継続しながら、懸濁液 の温度を 105°Cに調整することで、水中油型乳化組成物懸濁液滴からの水の除去 が進行し、約 30分間で大部分の水が蒸発した。その後は、常法に従って、固液分離 により油性成分 (B)をろ別し、約 500gのエタノールで粒子に付着した油性成分 (B) を洗浄後、 50°Cで乾燥して、還元型補酵素 Q 10を含有する粒子状組成物を得た。
[0141] 得られた粒子状組成物は、球形度; 0. 97、補酵素 Q含有量; 13. 3重量%および 還元型補酵素 Q含有量; 12. 4重量%であった。
40°C、空気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率は、 9 9%であった。
また DSCにより測定した結晶化度は、 0 %であつた。
[0142] (実施例 13)
140gの蒸留水に、アラビアガム (伊那食品工業株式会社製アラビアガム A) 60gを 30°Cで溶解させ、水溶性賦形剤水溶液を作製した。別途、上記製造例で得られた 還元型補酵素 Q10粉末 9. 2gを、 60°Cの水溶性賦形剤水溶液に添加して溶融させ た後、 TKホモミキサー Markll (プライミクス株式会社製)で 10000回転 X 5分間乳化 し、水中油型乳化組成物を得た。水中油型乳化組成物中の、還元型補酵素 Q10の 乳化粒子径は約 1 μ ΐηであった。ここで得た水中油型乳化組成物 75gを、あらかじめ 90°Cに加熱しておいた、 MCT (理研ビタミン社製アクター M— 2) 148. 5gおよびレ シチン(日本シィベルヘグナー株式会社取扱い品ェマルパー IP) 1. 5gからなる油性 成分 )に添加し、水中油型乳化組成物懸濁液滴の粒子径が約 200 μ mとなるよう 、攪拌回転数を調整した。同攪拌数での攪拌を継続しながら、懸濁液の温度を 105 °Cに調整することで、水中油型乳化組成物懸濁液滴からの水の除去が進行し、約 3 0分間で大部分の水が蒸発した。その後は、常法に従って、固液分離により油性成 分 (B)をろ別し、約 500gのエタノールで粒子に付着した油性成分 (B)を洗浄後、 50 °Cで乾燥して、還元型補酵素 Q 10を含有する粒子状組成物を得た。
[0143] 得られた粒子状組成物は、球形度; 0. 97、補酵素 Q含有量; 13. 3重量%および 還元型補酵素 Q含有量; 12. 4重量%であった。
40°C、空気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率は、 9 9%であった。
また DSCにより測定した結晶化度は、 0 %であつた。
[0144] (実施例 14)
140gの蒸留水に、アラビアガム (伊那食品工業株式会社製アラビアガム A) 60gを 30°Cで溶解させ、水溶性賦形剤水溶液を作製した。別途、上記製造例で得られた 還元型補酵素 Q10粉末 10. 6g、および酵素分解レシチン(日本シィベルヘグナー 株式会社取扱い品ェマルトップ HL50) 5. 3gを、 60°Cの水溶性賦形剤水溶液に添 加して溶融させた後、 TKホモミキサー Markll (プライミクス株式会社製)で 10000回 転 X 5分間乳化し、水中油型乳化組成物を得た。水中油型乳化組成物中の、還元 型補酵素 Q10の乳化粒子径は約 1 μ mであった。ここで得た水中油型乳化組成物 7 5gを、あらかじめ 90°Cに加熱しておいた、 MCT (理研ビタミン社製アクター M— 2) 1 50gからなる油性成分 (B)に添加し、水中油型乳化組成物懸濁液滴の粒子径が約 2 00 / mとなるよう、攪拌回転数を調整した。同攪拌数での攪拌を継続しながら、懸濁 液の温度を 105°Cに調整することで、水中油型乳化組成物懸濁液滴からの水の除 去が進行し、約 30分間で大部分の水が蒸発した。その後は、常法に従って、固液分 離により油性成分 (B)をろ別し、約 500gのエタノールで粒子に付着した油性成分 (B )を洗浄後、 50°Cで乾燥して、還元型補酵素 Q10を含有する粒子状組成物を得た。
[0145] 得られた粒子状組成物は、球形度; 0. 97、補酵素 Q含有量; 13. 9重量%および 還元型補酵素 Q含有量; 12. 9重量%であった。
40°C、空気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率は、 9 9%であった。
また DSCにより測定した結晶化度は、 0 %であつた。
[0146] (実施例 15)
140gの蒸留水に、アラビアガム (伊那食品工業株式会社製アラビアガム A) 60gを 30°Cで溶解させ、水溶性賦形剤水溶液を作製した。別途、上記製造例で得られた 還元型補酵素 Q10粉末 10. 6g、およびレシチン(日本シィベルヘグナー株式会社 取扱い品ェマルパー IP) 1. Ogを、 60°Cの水溶性賦形剤水溶液に添加して溶融させ た後、 TKホモミキサー Markll (プライミクス株式会社製)で 10000回転 X 5分間乳化 し、水中油型乳化組成物を得た。水中油型乳化組成物中の、還元型補酵素 Q10の 乳化粒子径は約 1 μ ΐηであった。ここで得た水中油型乳化組成物 75gを、あらかじめ 90°Cに加熱しておいた、 MCT (理研ビタミン社製アクター M— 2) 150gからなる油性 成分 (B)に添加し、水中油型乳化組成物懸濁液滴の粒子径が約 200 μ mとなるよう 、攪拌回転数を調整した。同攪拌数での攪拌を継続しながら、懸濁液の温度を 105 °Cに調整することで、水中油型乳化組成物懸濁液滴からの水の除去が進行し、約 3 0分間で大部分の水が蒸発した。その後は、常法に従って、固液分離により油性成 分 (B)をろ別し、約 500gのエタノールで粒子に付着した油性成分 (B)を洗浄後、 50 °Cで乾燥して、還元型補酵素 Q 10を含有する粒子状組成物を得た。
[0147] 得られた粒子状組成物は、球形度; 0. 97、補酵素 Q含有量; 13. 3重量%および 還元型補酵素 Q含有量; 12. 4重量%であった。
40°C、空気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率は、 9 9%であった。
また DSCにより測定した結晶化度は、 0 %であつた。
[0148] (実施例 16)
140gの蒸留水に、アラビアガム (伊那食品工業株式会社製アラビアガム A) 60g、 およびスクロース(和光純薬工業株式会社製) 20gおよびレシチン(日本シィベルへ ダナ一株式会社取扱い品ェマルパー IP) 17. 2gを 30°Cで溶解させ、水溶性賦形剤 水溶液を作製した。別途、上記製造例で得られた還元型補酵素 Q10粉末 17. 2gを 、 60°Cの水溶性賦形剤水溶液に添カ卩して溶融させた後、 TKホモミキサー MarkII ( プライミクス株式会社製)で 10000回転 X 5分間乳化し、水中油型乳化組成物を得 た。水中油型乳化組成物中の、還元型補酵素 Q10の乳化粒子径は約 l x mであつ た。ここで得た水中油型乳化組成物 75gを、あらカ^め 90°Cに加熱しておいた、 MC T (理研ビタミン社製アクター M— 2) 149. 6gおよび酵素分解レシチン 0. 4g (日本シ ィベルヘグナー株式会社取扱い品ェマルトップ HL50)力 なる油性成分(B)に添 加し、水中油型乳化組成物懸濁液滴の粒子径が約 200 z mとなるよう、攪拌回転数 を調整した。同攪拌数での攪拌を継続しながら、懸濁液の温度を 105°Cに調整する ことで、水中油型乳化組成物懸濁液滴からの水の除去が進行し、約 30分間で大部 分の水が蒸発した。その後は、常法に従って、固液分離により油性成分 (B)をろ別し 、約 500gのエタノールで粒子に付着した油性成分(B)を洗浄後、 50°Cで乾燥して、 還元型補酵素 Q 10を含有する粒子状組成物を得た。
[0149] 得られた粒子状組成物は、球形度;0. 97、体積平均粒子径; 309 μ m、ドメイン粒 子径; 0. 、補酵素 Q含有量; 15重量%および還元型補酵素 Q含有量; 14. 0 重量%であった。
40°C、空気中、遮光条件下に 30日間保存後の還元型補酵素 Q10の保持率は、 1 00%であった。
また DSCにより測定した結晶化度は、 0 %であつた。
得られた粒子状組成物の外観および断面の電子顕微鏡写真を図 5および図 6に示 した。図 5に示すとおり、実施例 16で得られた粒子状組成物は、球形度の高い粒子 であることが確認された。また図 6に示すとおり、油性成分 (A)が形成していたドメイン は、微細な空孔として粒子状組成物中に多分散している様子が確認された。この写 真から 1粒子中のドメイン数は約 2千万個と推定される。
[0150] (比較例 1)
製造例で得られた還元型補酵素 Q10の白色の乾燥結晶を乳鉢で粉砕し、還元型 補酵素 Q10の粉末を得た。
得られた粉末の球形度は 0. 78であり、 40°C、空気中、遮光条件下に 30日間保存 後の還元型補酵素 Q10の保持率は、 28%であった。また、 DSCにより測定した結晶 化度は、 100%であり、非晶状態あるいは融液の状態にある還元型補酵素 Q10を含 有していなかった。
実施例および比較例より、本発明の粒子状組成物は、球形度が高ぐ粒子状組成 物中に含有される還元型補酵素 Q10の酸化安定性が向上していることがわかる。
[0151] (経口吸収性の評価)
試験には、 Sk : SD系雄性ラット 9週齢を用いた (入荷体重 320g以上で指定)。 1群 にっき 5匹を用い、 2週間の予備飼育を行った。ラットは室温 20〜26°C、湿度 40〜7 0%、照明 12時間/日(7時 30分〜 19時 30分)に設定した飼育室で飼育し、固形飼 料 CE— 2(日本クレア株式会社製)と水道水をそれぞれ自由摂餌させた。投与前日に ラットの体重を測定し、カプセルに充填するサンプノレの量り込み量を算出した。ラット の体重あたりの投与量が、還元型補酵素 Q10の含有量として 10mg/kg体重となる よう各サンプノレを正確に量り取り、専用ロートを用いてゼラチンノヽードカプセルに充填 した。
[0152] 本試験前日にラットの重量測定を行レ、、体重の平均値が群間でほぼ均等になるよう に群分けした。
投与はラット専用のカプセル投与機 (TO AP AC製)を用いた。ハードカプセルを用 レ、てラットの強制経口投与を行い、投与時間を所定の記録用紙へ記録し、投与直後 に更に 1. 5mlZkgの蒸留水を与えた。
各群の投与後、 1 , 2, 4, 8, 24時間後に頸静脈力も約 0. 5ml採血した。その後、 冷却遠心機 (4°C, 3000rpm X 20分)で血漿分離を行い、得られた血漿は分析開始 日まで冷凍庫(一 20°C)で保存した。血漿中総補酵素 Q10の定量は、 HPLCで、常 法に従って実施した。
[0153] まず、上記実施例 5、 6、 7で得られた粒子状組成物および比較例 1で得られた粉末 をそのままハードカプセルに充填して摂取させた場合の経口吸収性試験を実施した 。その結果を図 7に示す。
[0154] 上記結果より、還元型補酵素 Q10の経口吸収性は、従来の結晶状態にある粉末と 比較して、結晶化度が 0%、すなわち、すべてが非晶状態あるいは融液の状態にあ る本発明の粒子状組成物において、極めて高くなつていることが確認できる。すなわ ち、本発明の還元型補酵素 Q10を含有する粒子状組成物は、高い酸化安定性と、 高い経口吸収性を兼ね備えた粒子状組成物であるといえる。
[0155] 次に、実施例 5、 8、 14、 15、 16で得られた粒子状組成物および比較例 1で得られ た粉末を摂取させた場合の経口吸収性試験を実施し、 AUCを算出した。このとき、 上記実施例 8の粒子状組成物と比較例 1の粉末にっレ、ては、下記の処方で調製した 組成物をハードカプセルに充填し、上記実施例 5、 14、 15、 16の粒子状組成物につ いてはそのままハードカプセルに充填した。その結果を図 8に示す。
[0156] 実施例 8のハードカプセル処方 (使用量はラット体重 lkgあたりの各成分量):実施 例 8で得られた粒子状組成物 33. 3mg (還元型補酵素 Q10の量として 10mg)、サフ ラヮー油(構成脂肪酸ォレイン酸含有量 76.6%) 77· 8mg、モノォレイン酸へキサダリ セリン (太陽化学株式会社製サンソフト Q 17F) 11. lmg、酵素分解レシチン(日本 シィベルヘグナー株式会社取扱い品ェマルトップ IP) 11. lmgを混合。
[0157] 比較例 1のハードカプセル処方 (使用量はラット体重 lkgあたりの各成分量):比較 例 1で得られた粉末 10mg、ナタネ油 51. lmg、ジグリセリンモノォレイン酸エステル( 理研ビタミン株式会社製ポエム DO— 100V) 21. 9mg、ミツロウ 7. 8mg、大豆レシ チン 0. 09mgを混合。
[0158] 上記結果より、界面活性剤 (D)または (E)として、レシチン類を使用した場合、特に 高い経口吸収性を示すことが分かる。また、界面活性剤(D)または (E)としてレシチ ン類を使用しなくとも、本発明の粒子状組成物をレシチン類とともに摂取することでも さらに経口吸収性が向上することが分かる。
[0159] (調製例 1)
還元型補酵素 Q 10である「KANEKA QH (登録商標)」(株式会社カネ力製) 20g を 60°Cまで加熱して融解させ、その融解液を、あらかじめ 60°Cに調製したアルギン 酸ナトリウム(キミ力製 IL6— G) 20g含む水溶液 1リットルに分散し、ホモジナイザーを 用いて 15000rpm、 10分間の条件で乳化し乳化液を得た。
[0160] (調製例 2)
「KANEKA QH (登録商標)」(株式会社カネ力製) 20gを 60°Cまで加熱して融解 させ、その融解液を、あらかじめ 60°Cに調製したアルギン酸ナトリウム(キミ力製 IL6 G) 20g、ゼラチン(二ッタゼラチン APH)を 50g含む水溶液 1リットノレに分散し、ホ モジナイザーを用いて 15000卬 m、 10分間の条件で乳化した。この均一になったェ マルシヨン中のコェンザィム Q 10含有乳化粒子の粒径 (粒度分布)を動的光散乱式 粒径分布測定装置 (堀場製作所製 LB— 550)にて測定したところ、メジアン粒径は 1 μ mであつ 7こ。
[0161] (調製例 3)
調製例 1の組成にデカグリセリンモノォレイン酸エステル (理研ビタミン ¾J— 0381V )を 20g、中鎖脂肪酸トリダリセライド (理研ビタミン製アクター M-2)を 10g加えた以外 は同じ製法で乳化液を得た。 [0162] (実施例 17)還元型コェンザィム Q10含有粒子の作製
調製例:!〜 3で得られた還元型コェンザィム Q 10含有乳化液を、内径 45cm、全高 約 5mの円筒状凝固室の塔頂部より、噴霧手段として二流体ノズル (霧のいけうち製 BIMJ2004)を用いて体積平均液滴径が 150 x m、供給量 150g/minの条件で噴霧 した。それと同時に 30重量%濃度の塩ィ匕カルシウム水溶液を塩ィ匕カルシウム固形分 が乳化液 100重量部に対して 5〜: 15重量部になるように二流体ノズル (スプレイング システムズ社製 1 / Jシリーズ SU 13A)にて空気と混合しながら体積平均液滴径 1〜 10 z mで噴霧した。また、凝固室の塔頂部より噴霧した還元型コェンザィム Q10乳 化液が凝固室の壁面へ付着するのを防止するために、内径約 20mmのパイプに 2m πι φの孔を多数側壁に向けて開けたものを用レ、、 25°Cの蒸留水を 6L/minの条件 で連続的に供給した。凝固室を落下し、ゲル化した還元型コェンザィム Q 10含有乳 化物は、ゲル化して粒子状態となった後、塔底部より水懸濁液として回収された。回 収された懸濁液を定法により脱水、乾燥して顆粒を作製した。電子顕微鏡により、調 製例 1〜3のいずれの乳化液を用いた場合においても、体積平均粒径約 50 μ ΐηの 粒子が作製されてレヽることを確認した。
[0163] (実施例 18)粒子中の補酵素 Q10の結晶化率測定
実施例 17で得られた還元型補酵素 Q 10顆粒と調製例 1〜 3の原料として使用した 還元型補酵素 Q10粉末「KANEKA QH (登録商標)」(株式会社カネ力製)の、示 差走査型熱量分析計(SII社製; EXSTAR6000 DSC6220)による熱分析を下記 条件で実施した。その結果を表 1に示す。なお、結晶化率は、融解熱(Δ Η)の測定 値より算出した。
分析条件; 20°C → 80°C (5°C/min) → 一 50°C (— 5°C/min)
[0164] [表 1] サンプル 結晶化率
実施例 1 7 (調製例 1の乳化液より得 3 4 % られた顆粒)
実施例 1 7 (調製例 2の乳化液より得 3 4 % られた顆粒)
実施例 1 7 (調製例 3の乳化液より得 3 6 % られた顆粒)
[0165] その結果、実施例 17の還元型補酵素 Q10粒子には結晶状態でない還元型補酵 素 Q10が存在していることが確認できた。
[0166] (実施例 19)
140gの蒸留水に、アラビアガム (伊那食品工業株式会社製アラビアガム A) 75g、ス クロース 25gを 30°Cで溶解させ、水溶性賦形剤水溶液を作製した。別途、上記製造 例で得られた還元型補酵素 Q 10粉末 45. Ogを、 60°Cの水溶性賦形剤水溶液に添 加して溶融させた後、 TKホモミキサー Markll (プライミクス株式会社製)で 10000回 転 X 5分間乳化し、水中油型乳化組成物を得た。水中油型乳化組成物の、還元型 補酵素 Q10の乳化粒子径は約 1 μ mであった。ここで得た水中油型乳化組成物 75g を、あらかじめ 90°Cに加熱しておいた、 MCT (理研ビタミン社製アクター M— 2) 149 . 2g、レシチン(日本シーベルヘグナー株式会社取り扱い品ェマルパー IP) 0. 8gか らなる油性成分 (B)に添加し、水中油型乳化組成物懸濁液滴の粒子径が 200 μ mと なるよう、攪拌回転数を調整した。同攪拌数での攪拌を継続し、内温が 70°C以上を 維持するようにしながら、減圧を行うことにより、水中油型乳化組成物懸濁液滴からの 水の除去が進行し、約 20分間で大部分の水が蒸発した。その後は定法に従って、 固液分離により油性成分 (B)をろ別し、約 500gのエタノールにて粒子に付着した油 性成分 (B)を洗浄後、得られた湿体を、減圧下、約 40°Cにて乾燥して、 30. 2%の 還元型補酵素 Q10 (補酵素 Q10として、 30. 6%)を含有する粒子状組成物 35gを 得た。
[0167] 得られた粒子状組成物の球形度は 0. 97であった。尚、得られた粒子状組成物を 4 0°C、空気中、遮光条件下にて 30日間保存後の還元型補酵素 Q10の保持率は 99 %であった。また、 DSCにより測定した結晶化度は、 0%であった。
[0168] (実施例 20)
実施例 19で得られた還元型補酵素 Q 10を含有する粒子状組成物 5gをポリェチレ ン袋に入れ、さらに、このポリエチレン袋をアルミラミネート袋に入れ、粒子状組成物 を梱包した。この梱包体を、 40°C、相対湿度 80%の恒温恒湿槽にいれ、遮光条件 下、 30日間保存した。このときの還元型補酵素 Q10の保持率は 100%であった。
[0169] (実施例 21)
アルミラミネート袋に lgのシリカゲルを同封する以外は、実施例 20と同じ梱包を行 レ、、還元型補酵素 Q 10を含有する粒子状組成物の梱包体を得た。この梱包体を、 4 0°C、相対湿度 80%の恒温恒湿槽にいれ、遮光条件下、 30日間保存した。このとき の還元型補酵素 Q10の保持率は 100%であった。
[0170] (実施例 22)
実施例 19で得られた還元型補酵素 Q 10を含有する粒子状組成物 5gをポリェチレ ン袋に入れ、さらに、このポリエチレン袋をシリカゲル 3gとともにポリエチレン袋に入れ 、粒子状組成物を梱包した。この梱包体を、 40°C、相対湿度 80%の恒温恒湿槽に いれ、遮光条件下、 30日間保存した。このときの還元型補酵素 Q10の保持率は 98 %であった。
[0171] (実施例 23)
実施例 19で得られた還元型補酵素 Q 10を含有する粒子状組成物 5gをガラス瓶に 入れた。このガラス瓶を、密栓せず、 40°C、相対湿度 80%の恒温恒湿槽にいれ、遮 光条件下、 30日間保存した。このときの還元型補酵素 Q10の保持率は 81%であつ た。
[0172] (実施例 24)
140gの蒸留水に、アラビアガム (伊那食品工業株式会社製アラビアガム A) 75g、 デキストリン (松谷化学工業株式会社製パインデックス # 2 DE: 11 ± 1) 25gを 30°C で溶解させ、水溶性賦形剤水溶液を作製した。別途、上記製造例で得られた還元型 補酵素 Q10粉末 45. Ogを、 60°Cの水溶性賦形剤水溶液に添加して溶融させた後、 TKホモミキサー Markll (プライミクス株式会社製)で 10000回転 X 5分間乳化し、水 中油型乳化組成物を得た。水中油型乳化組成物の、還元型補酵素 Q10の乳化粒 子径は約 1 μ ΐηであった。ここで得た水中油型乳化組成物 75gを、あらかじめ 90°Cに 加熱しておいた、 MCT (理研ビタミン社製アクター M— 2) 149. 2g、レシチン(日本 シーベルヘグナー株式会社取り扱い品ェマルパー IP) 0. 8gからなる油性成分(B) に添加し、水中油型乳化組成物懸濁液滴の粒子径が 200 x mとなるよう、攪拌回転 数を調整した。同攪拌数での攪拌を継続し、内温が 70°C以上を維持するようにしな がら、減圧を行うことにより、水中油型乳化組成物懸濁液滴からの水の除去が進行し 、約 20分間で大部分の水が蒸発した。その後は定法に従って、固液分離により油性 成分 (B)をろ別し、約 500gのエタノールにて粒子に付着した油性成分 (B)を洗浄後 、得られた湿体を、減圧下、約 40°Cにて乾燥して、 30. 2%の還元型補酵素 Q10 ( 補酵素 Q10として、 30. 7%)を含有する粒子状組成物 35gを得た。
得られた粒子状組成物の球形度は 0. 97であった。尚、得られた粒子状組成物を 4 0°C、空気中、遮光条件下にて 30日間保存後の還元型補酵素 Q10の保持率は 99 %であった。
[0173] (製剤例 1:ソフトカプセル)
菜種油、ジグリセリンモノォレエート(理研ビタミン製ポエム DO— 100V)、硬化油、 ミツロウ、レシチンからなる混合物に、実施例 1で得た還元型補酵素 Q 10を含有する 粒子状組成物を添加し、定法により、下記成分からなる還元型補酵素 Q10を含有す
Figure imgf000054_0001
[0174] 還元型補酵素 Q 10を含有する粒子状組成物 20. 0重量%
ジグリセリンモノォレエート 12. 0重量0 /0
菜種油 53. 0重量%
硬化油 7. 0重量%
ミツロウ 6. 0重量%
レシチン 2. 0重量0 /0
[0175] (製剤例2 :ソフトカプセル)
菜種油、ジグリセリンモノォレエート(理研ビタミン製ポエム DO— 100V)、硬化油、 ミツロウ、レシチンからなる混合物に、実施例 19で得た還元型補酵素 Q10を含有す る粒子状組成物を添加し、定法により、下記成分からなる還元型補酵素 Q10を含有
[0176] 還元型補酵素 Q 10を含有する粒子状組成物 30. 0重量%
ジグリセリンモノォレエート 12. 0重量0 /0
菜種油 43. 0重量%
硬化油 8. 0重量%
ミツロウ 5. 0重量0 /0
レシチン 2. 0重量0 /0
[0177] (製剤例3 :ソフトカプセル)
菜種油、ジグリセリンモノォレエート(理研ビタミン製ポエム DO— 100V)、硬化油、 レシチンからなる混合物に、実施例 14で得た還元型補酵素 Q10を含有する粒子状 組成物を添加し、定法により、下記成分からなる還元型補酵素 Q10を含有するゼラ
[0178] 還元型補酵素 Q 10を含有する粒子状組成物 30. 0重量%
ジグリセリンモノォレエート 12. 0重量0 /0
菜種油 40. 0重量%
硬化油 16. 0重量%
レシチン 2. 0重量%
[0179] (製剤例 4 :ハードカプセル)
実施例 19で得た還元型補酵素 Q10を含有する粒子状組成物、乳糖を混合した。 得られた混合末を篩にて整粒した後、定法により、下記成分からなる還元型補酵素 Q 10を含有するゼラチンのハードカプセルを得た。
[0180] 還元型補酵素 Q 10を含有する粒子状組成物 60. 0重量%
乳糖 40. 0重量%
[0181] (製剤例 5 :チユアブル錠)
実施例 19で得た還元型補酵素 Q 10を含有する粒子状組成物、コーンスターチ、ス クロースを混合した後、さらに、ステアリン酸マグネシウムを加え、混合した。得られた 混合末を篩にて整粒した後、得られた整粒末をロータリー打錠機にて打錠し、下記 成分からなる還元型補酵素 Q 10を含有するチユアブル錠を得 :
[0182] 還元型補酵素 Q 10を含有する粒子状組成物 47. 0重量%
コーンスターテ 3. 0重量%
スクロース 48. 0重量%
ステアリン酸マグネシウム 2. 0重量%
[0183] (製剤例 6 :錠剤)
実施例 19で得た還元型補酵素 Q10を含有する粒子状組成物、結晶セルロース( アビセル)を混合した後、さらに、ステアリン酸マグネシウムを加え、混合した。得られ た混合末を篩にて整粒した後、得られた整粒末をロータリー打錠機にて打錠し、下記 成分からなる還元型補酵素 Q10を含有する錠剤を得た。
[0184] 還元型補酵素 Q 10を含有する粒子状組成物 49. 0重量%
結晶セルロース(アビカル) 50. 0重量0 /0
ステアリン酸マグネシウム 1. 0重量0 /0
[0185] 以上、本発明の具体的な態様のいくつかを詳細に説明したが、当業者であれば示 された特定の態様には、本発明の教示と利点から実質的に逸脱しない範囲で様々な 修正と変更をなすことは可能である。従って、そのような修正および変更も、すべて後 記の請求の範囲で請求される本発明の精神と範囲内に含まれるものである。
[0186] 本出願は日本で出願された特願 2006— 172086、特願 2007— 114877および 米国仮出願 60/829240を基礎としており、その内容は本明細書に全て包含される ものである。

Claims

請求の範囲
[1] 水溶性賦形剤を含むマトリックス中に、還元型補酵素 Q10を含有する油性成分 (A
)がドメインを形成して多分散している粒子状組成物。
[2] 球形度が 0. 8以上である、請求項 1に記載の粒子状組成物。
[3] 粒子状組成物中の還元型補酵素 Q10の 10重量%以上が結晶状態でないことを特 徴とする、請求項 1または 2に記載の粒子状組成物。
[4] 油性成分 (A)が 5個以上のドメインを形成して多分散している、請求項:!〜 3のいず れか 1項に記載の粒子状組成物。
[5] 水溶性賦形剤が、水溶性高分子、界面活性剤 (C)、糖、および酵母細胞壁からな る群より選択される 1種以上である、請求項 1〜4のいずれ力 1項に記載の粒子状組 成物。
[6] 水溶性高分子が、アラビアガム、ゼラチン、寒天、澱粉、ぺクチン、カラギーナン、力 ゼイン、乾燥卵白、カードラン、アルギン酸類、大豆多糖類、プルラン、セルロース類 、キサンタンガム、カルメロース塩、およびポリビュルピロリドンからなる群より選択され る 1種以上である、請求項 5に記載の粒子状組成物。
[7] 界面活性剤 (C)が、グリセリン脂肪酸エステル類、ショ糖脂肪酸エステル類、ソルビ タン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル類、レシチン類 およびサポニン類からなる群より選択される 1種以上である、請求項 5に記載の粒子 状組成物。
[8] 糖が、単糖類、二糖類、オリゴ糖類、糖アルコール類、および多糖類力 なる群より 選択される 1種以上である、請求項 5に記載の粒子状組成物。
[9] 還元型補酵素 Q10を含有する油性成分 (A)が、 5〜: 100重量%の還元型補酵素 Q10、 0〜95重量%の油脂、および 0〜95重量%の界面活性剤(D)を含有する、請 求項:!〜 8のいずれか 1項に記載の粒子状組成物。
[10] 界面活性剤 (D)力 HLBが 10以下のグリセリン脂肪酸エステル類、ポリグリセリン エステル類、ショ糖脂肪酸エステル類、ソルビタン脂肪酸エステル類、プロピレンダリ コール脂肪酸エステル類およびポリオキシエチレンソルビタン脂肪酸エステル類なら びに、レシチン類からなる群より選択される 1種以上である、請求項 9に記載の粒子状 組成物。
[11] 粒子状組成物中の還元型補酵素 Q10の含有量が 1〜70重量%である、請求項 1
〜10のいずれか 1項に記載の粒子状組成物。
[12] 体積平均粒子径が、:!〜 1000 z mである、請求項 1〜: 11のいずれ力、 1項に記載の 粒子状組成物。
[13] 還元型補酵素 Q10を含有する油性成分 (A)が形成するドメインの平均粒子径が、 0. 01〜50 x mである、請求項:!〜 12のいずれか 1項に記載の粒子状組成物。
[14] 40°C、空気中、遮光条件下に 30日間保存後の粒子状組成物中の還元型補酵素 Q10の保持率力 50重量%以上である請求項 1〜: 13のいずれか 1項に記載の粒子 状組成物。
[15] 請求項:!〜 14のいずれかに 1項に記載の粒子状組成物を含む製剤。
[16] 請求項 1〜: 14のいずれ力 4項に記載の粒子状組成物又は請求項 15記載の製剤を
、周囲の相対湿度 90%以下の環境におくことを特徴とする、還元型補酵素 Q10を含 有する粒子状組成物又は製剤の安定化方法。
[17] 請求項 1〜: 14のいずれ力 1項に記載の粒子状組成物又は請求項 15記載の製剤を
、周囲の相対湿度 90%以下の環境におくことを特徴とする、還元型補酵素 Q10を含 有する粒子状組成物又は製剤の取り扱レ、方法。
[18] 請求項 1〜: 14のいずれ力 1項に記載の粒子状組成物又は請求項 15記載の製剤を
、ガラス製、プラスチック製及び/又は金属製の素材で包装'梱包することを特徴と する、還元型補酵素 Q10を含有する粒子状組成物又は製剤の安定化方法。
[19] 請求項 1〜: 14のいずれ力 1項に記載の粒子状組成物又は請求項 15記載の製剤を
、ガラス製、プラスチック製及び Z又は金属製の素材で包装'梱包することを特徴と する、還元型補酵素 Q10を含有する粒子状組成物又は製剤の取り扱い方法。
[20] 防湿剤を併用する請求項 16または 18記載の安定化方法。
[21] 防湿剤を併用する請求項 17または 19記載の取り扱い方法。
[22] 還元型補酵素 Q10を含有する油性成分 (A)と水溶性賦形剤を含有する水溶液か ら調製した水中油型乳化組成物を、油性成分 (B)中に懸濁させた後、油性成分 (B) 中で乳化組成物中の水分を除去することを特徴とする、還元型補酵素 Q10を含有す る粒子状組成物の製造方法。
[23] 油性成分 (B) 1 油脂 5〜100重量%および界面活性剤 (E) 0〜95重量%からな ることを特徴とする、請求項 22に記載の製造方法。
[24] 油性成分 (B)が、油脂 5〜99. 99重量%および界面活性剤(E) 0. 0:!〜 95重量
%からなることを特徴とする、請求項 22に記載の製造方法。
[25] 界面活性剤 (E)力 HLBが 10以下のグリセリン脂肪酸エステル類、ポリグリセリンェ ステル類、ショ糖脂肪酸エステル類、ソルビタン脂肪酸エステル類およびポリオキシ エチレンソルビタン脂肪酸エステル類ならびに、レシチン類からなる群より選択される
1種以上である、請求項 23または 24に記載の製造方法。
[26] 還元型補酵素 Q10を含有する油性成分 (A)と水溶性賦形剤を含有する水溶液か ら調製した水中油型乳化組成物を、気相中で噴霧乾燥することを特徴とする、還元 型補酵素 Q10を含有する粒子状組成物の製造方法。
[27] 得られる粒子状組成物の球形度が 0. 8以上である、請求項 22〜26のいずれか 1 項に記載の製造方法。
[28] 水溶性賦形剤が、水溶性高分子、界面活性剤 (C)、糖、および酵母細胞壁からな る群より選択される 1種以上である、請求項 22〜27のいずれ力 1項に記載の製造方 法。
[29] 水溶性高分子が、アラビアガム、ゼラチン、寒天、澱粉、ぺクチン、カラギーナン、力 ゼイン、乾燥卵白、カードラン、アルギン酸類、大豆多糖類、プルラン、セルロース類 、キサンタンガム、カルメロース塩、およびポリビュルピロリドンからなる群より選択され る 1種以上である、請求項 28に記載の製造方法。
[30] 界面活性剤 (C)が、グリセリン脂肪酸エステル類、ショ糖脂肪酸エステル類、ソルビ タン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル類、レシチン類 およびサポニン類からなる群より選択される 1種以上である、請求項 28に記載の製造 方法。
[31] 糖が、単糖類、二糖類、オリゴ糖類、糖アルコール類、および多糖類力 なる群より 選択される 1種以上である、請求項 28に記載の製造方法。
[32] 還元型補酵素 Q10を含有する油性成分 (A)が、 5〜: 100重量%の還元型補酵素 Q10、 0〜95重量%の油脂、および 0〜95重量%の界面活性剤(D)を含有する、請 求項 22〜31のいずれか 1項に記載の製造方法。
[33] 界面活性剤 (D)力 HLBが 10以下のグリセリン脂肪酸エステル類、ポリグリセリン エステル類、ショ糖脂肪酸エステル類、ソルビタン脂肪酸エステル類、プロピレンダリ コール脂肪酸エステル類およびポリオキシエチレンソルビタン脂肪酸エステル類なら びに、レシチン類からなる群より選択される 1種以上である、請求項 32に記載の製造 方法。
[34] 得られる粒子状組成物の、 40°C、空気中、遮光条件下に 30日間保存後の還元型 補酵素 Q10の保持率力 50重量%以上である請求項 22〜33のいずれ力、 1項に記 載の製造方法。
[35] 請求項 22〜34のいずれ力 4項に記載の工程を有する製剤の製造方法。
[36] 結晶状態でない還元型補酵素 Q10。
[37] 還元型補酵素 Q10の少なくとも一部が結晶状態でないことを特徴とする、還元型補 酵素 Q10。
[38] 還元型補酵素 Q10の 10重量%以上が結晶状態でないことを特徴とする、還元型 補酵素 Q 10。
PCT/JP2007/062627 2006-06-22 2007-06-22 還元型補酵素q10含有組成物およびその製造方法 WO2007148798A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP07767436.4A EP2039353B1 (en) 2006-06-22 2007-06-22 Reduced coenzyme q10-containing composition and method for producing the same
AU2007261943A AU2007261943B2 (en) 2006-06-22 2007-06-22 Reduced coenzyme Q10-containing composition and method for producing the same
CN2007800232416A CN101472573B (zh) 2006-06-22 2007-06-22 含有还原型辅酶q10的组合物及其制备方法
KR1020097001340A KR101449072B1 (ko) 2006-06-22 2007-06-22 환원형 코엔자임 q10 함유 조성물 및 그의 제조 방법
ES07767436T ES2712704T3 (es) 2006-06-22 2007-06-22 Composición que contiene la coenzima Q10 reducida y método para su producción
DK07767436.4T DK2039353T3 (en) 2006-06-22 2007-06-22 REDUCED COENZYM Q10 CONTAINING COMPOSITION AND PROCEDURE FOR PREPARING THEREOF
CA2666688A CA2666688C (en) 2006-06-22 2007-06-22 Reduced coenzyme q10-containing composition and method for producing the same
JP2008522552A JP5140585B2 (ja) 2006-06-22 2007-06-22 還元型補酵素q10含有組成物およびその製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-172086 2006-06-22
JP2006172086 2006-06-22
US82924006P 2006-10-12 2006-10-12
US60/829,240 2006-10-12
JP2007114877 2007-04-24
JP2007-114877 2007-04-24

Publications (1)

Publication Number Publication Date
WO2007148798A1 true WO2007148798A1 (ja) 2007-12-27

Family

ID=38986609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062627 WO2007148798A1 (ja) 2006-06-22 2007-06-22 還元型補酵素q10含有組成物およびその製造方法

Country Status (9)

Country Link
US (2) US9295656B2 (ja)
EP (1) EP2039353B1 (ja)
JP (1) JP5140585B2 (ja)
KR (1) KR101449072B1 (ja)
CN (1) CN101472573B (ja)
AU (1) AU2007261943B2 (ja)
CA (1) CA2666688C (ja)
TW (1) TW200815046A (ja)
WO (1) WO2007148798A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2062574A4 (en) * 2006-09-08 2011-01-05 Kaneka Corp COMPOSITION COMPRISING REDUCED Q10 COENZYME AND LYSOLECHINE
JP2012522835A (ja) * 2009-04-06 2012-09-27 コリア リサーチ インスティチュート オブ バイオサイエンス アンド バイオテクノロジー コエンザイムq10ナノ粒子、その製造方法及び上記ナノ粒子を含む組成物
JP2015105243A (ja) * 2013-11-29 2015-06-08 ユーハ味覚糖株式会社 ユビキノール含有液状組成物
JP2016520037A (ja) * 2013-04-25 2016-07-11 ジャージャン メディスン カンパニー リミテッド シンチョン ファーマシューティカル ファクトリー 還元型コエンザイムq10粉末、その組成物及び製造方法
US9757332B2 (en) 2013-05-20 2017-09-12 Uha Mikakuto Co., Ltd. Gel-like composition having high ubiquinol content
WO2023120552A1 (ja) * 2021-12-24 2023-06-29 株式会社カネカ 還元型補酵素q10の梱包体及び保存方法
WO2023120555A1 (ja) 2021-12-24 2023-06-29 株式会社カネカ 還元型補酵素q10の保存方法
WO2023120558A1 (ja) 2021-12-24 2023-06-29 株式会社カネカ 還元型補酵素q10の保存方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100092560A1 (en) * 2007-04-16 2010-04-15 Kaneka Corporation Reduced coenzyme q10-containing particulate composition and method for producing the same
EP2172223B1 (en) * 2007-06-22 2020-12-16 Kaneka Corporation Composition containing physiologically active substance
WO2009001787A1 (ja) * 2007-06-22 2008-12-31 Kaneka Corporation 補酵素q10含有組成物
EP2186789B1 (en) * 2007-08-22 2013-12-25 Kaneka Corporation Method of producing reduced coenzyme q10 and method of stabilizing the same
CH699449A2 (de) * 2008-08-27 2010-03-15 Mivital Ag Emulsionsvorkonzentrate sowie micellare Formulierungen enthaltend Glycerinfettsäureester.
DE102009011805A1 (de) * 2009-03-05 2010-09-09 Almapharm Gmbh & Co. Kg Tablettierungshilfsstoff und Verfahren zur Herstellung von Tabletten im Verfahren der Direkttablettierung
US20110027417A1 (en) * 2009-07-31 2011-02-03 Patrick Joseph Corrigan Process for Dusting Animal Food
US9173423B2 (en) * 2009-07-31 2015-11-03 The Iams Company Animal food kibble with electrostatically adhered dusting
US9210945B2 (en) * 2009-07-31 2015-12-15 The Iams Company Animal food having low water activity
US8691303B2 (en) * 2009-07-31 2014-04-08 The Iams Company Dusted animal food
US10104903B2 (en) 2009-07-31 2018-10-23 Mars, Incorporated Animal food and its appearance
CN101966171B (zh) * 2010-09-30 2012-10-24 杭州华东医药集团康润制药有限公司 水溶性还原型辅酶q10组合物及其制备方法
US8183227B1 (en) 2011-07-07 2012-05-22 Chemo S. A. France Compositions, kits and methods for nutrition supplementation
US8168611B1 (en) 2011-09-29 2012-05-01 Chemo S.A. France Compositions, kits and methods for nutrition supplementation
HUE061928T2 (hu) * 2014-06-11 2023-09-28 SpecGx LLC Különbözõ oldódási profillal rendelkezõ porlasztva szárított készítmények és elõállításukhoz szükséges eljárások
CA2975219C (en) 2015-02-16 2022-02-22 Mars, Incorporated Interlocking kibble
MX2017013715A (es) 2015-04-28 2018-03-02 Mars Inc Proceso de preparacion de un producto de alimento para mascotas humedo esterilizado.
CN105250229B (zh) * 2015-10-13 2020-07-03 杭州华东医药集团新药研究院有限公司 一种含吉法酯的药物组合物
EP3165218A1 (en) * 2015-11-06 2017-05-10 INDENA S.p.A. Water dispersible granulates containing oxidized or reduced forms of coenzyme q10
CN105708806B (zh) * 2016-02-02 2018-05-04 扬州大学 一种制备易水分散的辅酶q10纳米颗粒粉末制剂的方法
ITUB20161247A1 (it) * 2016-03-02 2017-09-02 Labomar S R L Compressa orodispersibile contenente un principio attivo liposolubile
US11197493B2 (en) 2017-09-12 2021-12-14 Omniactive Health Technologies Limited Stabilized fat soluble nutrient compositions and process for the preparation thereof
US11471426B2 (en) 2019-10-16 2022-10-18 American River Nutrition, Llc Compositions comprising quinone and/or quinol and methods of preparations and use thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574916A (en) * 1980-05-28 1982-01-11 Furointo Sangyo Kk Activation of medical preparation
JPH10109933A (ja) 1996-08-16 1998-04-28 Kanegafuchi Chem Ind Co Ltd 医薬組成物
WO2001052822A1 (en) 2000-01-20 2001-07-26 Chopra Raj K Reduced form of coenzyme q in high bioavailability stable dosage forms and related applications
WO2003062182A1 (en) 2002-01-18 2003-07-31 Kaneka Corporation Method for stabilizing reduced coenzyme q10 and composition therefor
WO2005041945A1 (ja) * 2003-10-31 2005-05-12 Kaneka Corporation 還元型補酵素q含有組成物
WO2005046696A1 (ja) * 2003-11-14 2005-05-26 Ajinomoto Co., Inc. フェニルアラニン誘導体の固体分散体または固体分散体医薬製剤
JP2006172086A (ja) 2004-12-15 2006-06-29 Matsushita Electric Ind Co Ltd 情報表示装置
JP2007114877A (ja) 2005-10-18 2007-05-10 Toshiba Elevator Co Ltd 保守員の動静管理システム及び方法、並びに監視センタ装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198374A (ja) * 1986-02-25 1987-09-02 K D K:Kk 粉末食品の製造方法
JP2980778B2 (ja) * 1992-08-06 1999-11-22 長谷川香料株式会社 新規な顆粒状食品の製法
JP3342550B2 (ja) * 1993-10-01 2002-11-11 三栄源エフ・エフ・アイ株式会社 水溶性ヘミセルロースを含有する製剤
JPH09132775A (ja) * 1995-02-13 1997-05-20 Kiteii:Kk 油状生理活性物質の安定化剤
IL117773A (en) * 1996-04-02 2000-10-31 Pharmos Ltd Solid lipid compositions of coenzyme Q10 for enhanced oral bioavailability
JP3996691B2 (ja) * 1998-01-20 2007-10-24 エーザイ・アール・アンド・ディー・マネジメント株式会社 乳化粉末及びその製造法
US6740338B1 (en) * 2000-01-20 2004-05-25 Raj K. Chopra Reduced form of Cenzyme Q in high bioavailability stable oral dosage form
JP3583380B2 (ja) * 2001-04-26 2004-11-04 高砂香料工業株式会社 コーティング剤およびコーティング粉末
JP3553521B2 (ja) 2001-04-26 2004-08-11 高砂香料工業株式会社 コーティング剤及びコーティング粉末
CN100503543C (zh) * 2001-07-13 2009-06-24 钟渊化学工业株式会社 制备还原型辅酶q10油性产物的方法
JP3549197B2 (ja) * 2001-08-10 2004-08-04 日清ファルマ株式会社 ユビキノン含有製剤
WO2005035477A1 (ja) 2003-10-08 2005-04-21 Kaneka Corporation キノン骨格を有する化合物の安定化方法及び安定化された組成物
US7708990B2 (en) * 2004-03-23 2010-05-04 Kaneka Corporation Coenzyme Q compositions persisting in blood

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574916A (en) * 1980-05-28 1982-01-11 Furointo Sangyo Kk Activation of medical preparation
JPH10109933A (ja) 1996-08-16 1998-04-28 Kanegafuchi Chem Ind Co Ltd 医薬組成物
WO2001052822A1 (en) 2000-01-20 2001-07-26 Chopra Raj K Reduced form of coenzyme q in high bioavailability stable dosage forms and related applications
WO2003062182A1 (en) 2002-01-18 2003-07-31 Kaneka Corporation Method for stabilizing reduced coenzyme q10 and composition therefor
WO2005041945A1 (ja) * 2003-10-31 2005-05-12 Kaneka Corporation 還元型補酵素q含有組成物
WO2005046696A1 (ja) * 2003-11-14 2005-05-26 Ajinomoto Co., Inc. フェニルアラニン誘導体の固体分散体または固体分散体医薬製剤
JP2006172086A (ja) 2004-12-15 2006-06-29 Matsushita Electric Ind Co Ltd 情報表示装置
JP2007114877A (ja) 2005-10-18 2007-05-10 Toshiba Elevator Co Ltd 保守員の動静管理システム及び方法、並びに監視センタ装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2062574A4 (en) * 2006-09-08 2011-01-05 Kaneka Corp COMPOSITION COMPRISING REDUCED Q10 COENZYME AND LYSOLECHINE
JP2012522835A (ja) * 2009-04-06 2012-09-27 コリア リサーチ インスティチュート オブ バイオサイエンス アンド バイオテクノロジー コエンザイムq10ナノ粒子、その製造方法及び上記ナノ粒子を含む組成物
JP2016520037A (ja) * 2013-04-25 2016-07-11 ジャージャン メディスン カンパニー リミテッド シンチョン ファーマシューティカル ファクトリー 還元型コエンザイムq10粉末、その組成物及び製造方法
US9757332B2 (en) 2013-05-20 2017-09-12 Uha Mikakuto Co., Ltd. Gel-like composition having high ubiquinol content
JP2015105243A (ja) * 2013-11-29 2015-06-08 ユーハ味覚糖株式会社 ユビキノール含有液状組成物
WO2023120552A1 (ja) * 2021-12-24 2023-06-29 株式会社カネカ 還元型補酵素q10の梱包体及び保存方法
WO2023120555A1 (ja) 2021-12-24 2023-06-29 株式会社カネカ 還元型補酵素q10の保存方法
WO2023120558A1 (ja) 2021-12-24 2023-06-29 株式会社カネカ 還元型補酵素q10の保存方法

Also Published As

Publication number Publication date
US20080026063A1 (en) 2008-01-31
EP2039353A1 (en) 2009-03-25
JPWO2007148798A1 (ja) 2009-11-19
CN101472573B (zh) 2012-09-19
CA2666688C (en) 2016-01-19
CN101472573A (zh) 2009-07-01
CA2666688A1 (en) 2007-12-27
US9981899B2 (en) 2018-05-29
AU2007261943A1 (en) 2007-12-27
JP5140585B2 (ja) 2013-02-06
EP2039353B1 (en) 2018-12-05
US9295656B2 (en) 2016-03-29
KR20090034901A (ko) 2009-04-08
AU2007261943B2 (en) 2012-11-01
TW200815046A (en) 2008-04-01
US20160214919A1 (en) 2016-07-28
EP2039353A4 (en) 2012-11-07
KR101449072B1 (ko) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5140585B2 (ja) 還元型補酵素q10含有組成物およびその製造方法
JP5244790B2 (ja) 還元型補酵素q10含有粒子状組成物及びその製造方法
JP5256041B2 (ja) 生理活性物質含有粒子状組成物およびその製造方法
JP5343002B2 (ja) 生理活性物質含有組成物
JP5377304B2 (ja) 補酵素q10含有組成物
JP5324755B2 (ja) 粒子状組成物およびその製造方法
DK1829538T3 (en) Solid composition comprising reduced coenzyme Q10 and the process for its preparation
JP5292105B2 (ja) 補酵素q10粒子の製造方法
US20090186009A1 (en) Solid matter containing coenzyme q
US20060147542A1 (en) Solid preparation containing reduced coenzyme Q10 and method for producing the same
US20100092560A1 (en) Reduced coenzyme q10-containing particulate composition and method for producing the same
JP2009149584A (ja) 還元型補酵素q10含有粒子状組成物及びその製造方法
JPWO2005035477A1 (ja) キノン骨格を有する化合物の安定化方法及び安定化された組成物
DK2039353T3 (en) REDUCED COENZYM Q10 CONTAINING COMPOSITION AND PROCEDURE FOR PREPARING THEREOF
JP2005255619A (ja) 昇華性活性成分および多孔質セルロース粒子含有固形製剤組成物
JP2008001669A (ja) 脂溶性還元型補酵素q10組成物およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780023241.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522552

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2666688

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007261943

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5294/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007767436

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097001340

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2007261943

Country of ref document: AU

Date of ref document: 20070622

Kind code of ref document: A