WO2007148669A1 - 光記録再生方法およびシステム、ならびにプログラム - Google Patents

光記録再生方法およびシステム、ならびにプログラム Download PDF

Info

Publication number
WO2007148669A1
WO2007148669A1 PCT/JP2007/062269 JP2007062269W WO2007148669A1 WO 2007148669 A1 WO2007148669 A1 WO 2007148669A1 JP 2007062269 W JP2007062269 W JP 2007062269W WO 2007148669 A1 WO2007148669 A1 WO 2007148669A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
recording
unit
signal
reproduction
Prior art date
Application number
PCT/JP2007/062269
Other languages
English (en)
French (fr)
Inventor
Hideyuki Muto
Junichi Furukawa
Yoshio Sasaki
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2008522461A priority Critical patent/JP4717925B2/ja
Priority to US12/305,828 priority patent/US8068391B2/en
Publication of WO2007148669A1 publication Critical patent/WO2007148669A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1263Power control during transducing, e.g. by monitoring

Definitions

  • the present invention relates to an optical recording / reproducing method and system for reproducing data optically recorded on a recording medium such as a CD, a DVD, a Blu-ray DISC, and an HD (High Definition) DVD, and a program.
  • a recording medium such as a CD, a DVD, a Blu-ray DISC, and an HD (High Definition) DVD
  • Recording media such as CDs, DVDs, and next-generation DVDs (Blu-ray DISCs, HD DVDs) are irradiated with laser light, and the state of the media recording layer changes based on the heat caused by the irradiated laser light
  • a plurality of recording marks also called recording pits
  • the linear velocity (speed of the laser beam traveling on the medium 3 during recording and Z or reproduction) is increased (for example, changing from 1 ⁇ to 2 ⁇ , 32 ⁇ speed, etc.) This makes it possible to shorten playback and Z or recording speed and time.
  • a single mode laser (laser having a single longitudinal mode) having a relatively small operating current is used as a light source.
  • the laser light emitted from this single mode laser is very coherent, so noise that causes fluctuations in the laser light power of the laser light emitted from the light source (single mode laser) when reproducing data.
  • the noise that causes the laser light power fluctuation includes noise (return light noise) caused by interference with the return light from the recording medium, optical components, and the like, and laser noise caused by temperature fluctuation and the like.
  • Patent Documents 1 and 2 describe the optical coupling efficiency, which is the ratio of the amount of laser light focused on the recording medium to the total amount of laser light emitted from the light source, in its mode (recording). (Mode Z playback mode), by changing according to the type of recording medium and Z or its recording layer (multilayer Z single layer), it is possible to maintain a high CNR while suppressing the irradiation laser light power,
  • the optical coupling efficiency which is the ratio of the amount of laser light focused on the recording medium to the total amount of laser light emitted from the light source, in its mode (recording).
  • Mode Z playback mode by changing according to the type of recording medium and Z or its recording layer (multilayer Z single layer), it is possible to maintain a high CNR while suppressing the irradiation laser light power.
  • Patent Document 1 JP 2002-260272 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-196880
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-346823
  • FIG. 1 is a diagram showing an example of a relationship between a recording signal written on a part of a recording track and a laser beam output waveform obtained by high-frequency superposition.
  • the run length (mark length) along the recording track of the recording signal is a modulated force.
  • the recording signal having the shortest run length is recorded on the recording track. It is assumed that it is written in part. Also, show a state where a part of the recording track is unfolded in a straight line along the track direction! / Speak.
  • an intermittent high-frequency current having a positive duty (on-duty) in a sine wave of less than 50% is used as the high-frequency current.
  • the present invention has been made in view of the above-described circumstances. Even when the reproduction linear velocity is increased, the recorded signal recorded on the recording medium is surely read and the corresponding data is read. Its purpose is to make it possible to play
  • a recording signal written on a recording track of a recording medium is modulated by a drive signal on which a frequency signal is superimposed, and is recorded on the recording track at a predetermined scanning speed.
  • This is an optical recording / reproducing system that reads and reproduces data by light scanned along.
  • the optical recording / reproducing system includes a superposition amount control unit that controls the superposition amount of the frequency signal with respect to the drive signal in accordance with the scanning speed.
  • a recording signal periodically written on a recording track of a recording medium is modulated by a drive signal on which a frequency signal is superimposed, and the recording track is scanned at a predetermined scanning speed.
  • a program readable by a computer provided in an optical recording / reproducing system that reads and reproduces data as light scanned along the line. This program causes the computer to execute a process of controlling a superposition amount of the frequency signal with respect to the drive signal in accordance with the scanning speed.
  • a recording signal periodically written on a recording track of a recording medium is modulated by a drive signal on which a frequency signal is superimposed, and the recording track is scanned at a predetermined scanning speed.
  • This optical recording / reproducing method in which data is read by light scanned along the line and reproduced as data.
  • This optical recording / reproducing method includes a step of controlling a superposition amount of the frequency signal with respect to the drive signal in accordance with the scanning speed.
  • FIG. 1 is a diagram showing an example of the relationship between a plurality of recording marks written on a part of a recording track and a laser beam output waveform obtained by high-frequency superposition.
  • FIG. 2 is a block diagram showing a schematic configuration of the data recording / reproducing system according to the first embodiment of the present invention.
  • FIG. 3 is a flowchart schematically showing an example of processing executed by the computer of the data recording / reproducing system according to the first embodiment of the present invention.
  • FIG. 4 The two intermittent high-frequency currents superimposed on the drive current from the APC circuit shown in FIG. 2 by the processing from step SI to step S4 in FIG. Figure showing the relationship with the laser beam output from the LD unit shown in
  • FIG. 5 is a flowchart schematically showing an example of processing executed by the computer of the data recording / reproducing system according to the second embodiment of the present invention.
  • FIG. 6 The Blu-ray DISC is used as the recording medium shown in FIG. 2, and the data recorded on the Blu-ray DISC using the processing of steps S10 to S16 shown in FIG. A graph showing an example of a relationship between a change in playback speed and a change in error rate when playback is performed while changing.
  • FIG. 7 is a flowchart schematically showing an example of processing executed by a computer of the data recording / reproducing system according to the third embodiment of the present invention.
  • FIG. 8 is a flowchart schematically showing an example of processing executed by the computer of the data recording / reproducing system according to the fourth embodiment of the present invention.
  • FIG. 10 is a flowchart schematically showing an example of processing executed by the computer of the data recording / reproducing system according to the fifth embodiment of the present invention.
  • FIG. 11 A diagram corresponding to the two intermittent high-frequency currents superimposed on the drive current from the APC circuit shown in FIG. 9 and the respective intermittent high-frequency currents by the processing of step S40 to step S42 in FIG.
  • FIG. 9 is a diagram showing the relationship with the laser beam output from the LD unit shown in FIG.
  • FIG. 12 is a flowchart schematically showing an example of processing executed by the computer of the data recording / reproducing system according to the sixth embodiment of the present invention.
  • FIG. 13 The Blu-ray DISC is used as the recording medium shown in FIG. 9 and the data recorded on the Blu-ray DISC using the processing of steps S50 to S53 shown in FIG. A graph showing an example of the relationship between a change in playback speed and a change in error rate when playback is performed while changing the speed.
  • FIG. 14 is a flowchart schematically showing an example of processing executed by a computer of the data recording / reproducing system according to the seventh embodiment of the present invention.
  • FIG. 15 is a flowchart schematically showing an example of processing executed by the computer of the data recording / reproducing system according to the eighth embodiment of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of the data recording / reproducing system 1 according to the first embodiment of the present invention.
  • reference numeral 3 denotes a recording medium having, for example, a disk-shaped protective layer and a disk-shaped recording layer that includes a recording track formed in a snoral shape or a concentric shape and is laminated on the protective layer. It is.
  • the recording medium 3 can be a CD, DVD, Blu-ray Disc, HD DVD or the like.
  • the data recording / reproducing system 1 includes a function for recording information on a recording track of the recording medium 3 that rotates at a desired speed, and a recording on the recording track of the recording medium 3.
  • the apparatus has a function of reproducing the recorded information.
  • the recording track has at least one of lands and groups alternately arranged along the radial direction as one configuration example. At least one of them is meandered at a predetermined frequency, and a part thereof is phase-modulated, for example, so that information such as address information of the recording track is included in the modulation portion.
  • the data recording / reproducing system 1 includes an optical pickup unit (optical head unit) 5 for recording and / or reproducing information by spot-irradiating light onto a recording track of a rotating recording medium 3. And a power adjusting unit 7 for adjusting the uniformity of the light irradiated on the recording medium 3 on the recording medium 3.
  • optical pickup unit optical head unit
  • power adjusting unit 7 for adjusting the uniformity of the light irradiated on the recording medium 3 on the recording medium 3.
  • the data recording / reproducing system 1 includes a rotational speed control of the recording medium 3 and an optical pickup unit.
  • Servo driver 9 as a servo control system for controlling the focus position of the spot light irradiated onto the recording track of the recording medium 3 and tracking control (tracking control) of the spot light with respect to the recording track.
  • the data recording / reproducing system 1 includes a function for generating data corresponding to information to be recorded on the recording medium 3 (hereinafter referred to as recording data), and a recording medium obtained by the optical pickup unit 5.
  • a recording / playback data processing unit 11 having a function of generating data corresponding to the information recorded in 3 (hereinafter referred to as playback data) is provided.
  • the data recording / reproducing system 1 includes an optical pickup unit 5, a power adjusting unit 7, a servo driver 9, and a computer 13 for controlling the recording / reproducing data processing unit 11.
  • the computer 13 is a first memory 13a such as an HDD (Hard Disk Drive), FLASH MEMORY or the like for storing data representing processing results and the like, and a main memory of the computer 13, such as a first memory. And a second memory 13b holding a plurality of programs P loaded from 13a.
  • the plurality of programs P are programs that cause the computer 13 to execute the control operation.
  • the optical pickup unit 5 drives a laser diode (LD) unit 15 that emits laser light as information recording and Z or reproduction light, and drives and controls the LD unit 15.
  • the LD driver 17 that controls the output waveform of the laser light output from the LD unit 15 and the LC (Light Control) described later as an element for adjusting the amount of laser light output from the LD unit 15
  • It has a light control element 19 that is also configured with a liquid crystal element force in which the light transmittance is changed by a change in applied voltage from the driver.
  • the LD unit 15 and the light amount adjusting element 19 in the optical pickup unit 5 are such that the optical axis of the laser light guided through both elements is substantially parallel to the protective layer surface of the recording medium 3. It is arranged to become.
  • the light amount adjusting element 19 has a light transmittance of about 100% (attenuation rate is about 0%) in the initial state (non-voltage application state).
  • the optical pickup unit 5 is output from the LD unit 15 via a light amount adjusting element 19.
  • a beam splitter 21 is provided on the optical path of the traveling laser beam.
  • the beam splitter 21 has a function of transmitting the laser beam traveling through the light amount adjusting element 19 and reflecting the light transmitted through a rising mirror described later.
  • the optical pickup unit 5 includes a rising mirror 23 disposed on the optical path of the laser light that has passed through the beam splitter 21.
  • the rising mirror 23 is configured to reflect the laser light transmitted through the beam splitter 21 in a direction orthogonal to the optical axis and directed to the recording medium 3.
  • the optical pickup unit 5 supports the recording medium 3 so as to face the rising mirror 23 and so that the optical axis of the laser beam reflected by the rising mirror 23 is orthogonal to the surface of the protective layer. At the same time, a spindle motor 25 for rotating the recording medium 3 is provided.
  • the optical pickup unit 5 includes an objective lens 27 interposed between the rising mirror 23 and the protective layer surface of the recording medium 3.
  • This objective lens 27 has a function of focusing the laser beam reflected by the rising mirror 23 onto the recording track of the recording medium 3 and irradiating it as spot light.
  • the optical pickup unit 5 is configured to be able to move the objective lens 27 along at least the radial direction of the recording medium 3 and the direction away from the recording medium 3, and is electrically connected to the servo driver 9. And an actuator 29 connected to the.
  • the actuator 29 is configured to adjust the focus position and tracking position of the optical spot by moving the objective lens 27 based on control from the servo driver 9.
  • the objective lens 27 has a function of receiving light (reflected light) reflected from the recording track of the recording medium 3 and outputting it as parallel light having a predetermined beam diameter during reproduction.
  • the rising mirror 23 has a function of reflecting the reflected light sent through the objective lens 27 and sending it to the beam splitter 21.
  • the beam splitter 21 has a function of reflecting the reflected light transmitted through the raising mirror 23.
  • the optical pickup unit 5 is disposed on the optical path of the reflected light reflected by the beam splitter 21, and receives the reflected light and converts it into an electrical signal (hereinafter referred to as an RF signal). It has a light receiving unit 30.
  • the power adjusting unit 7 is a laser beam emitted from a surface opposite to the LD unit output end in the package of the LD unit 15 (back-side laser beam: laser beam and power emitted from a normal output end) Are placed on the optical path of the same laser beam), the power (intensity) of the back side laser beam is constantly monitored, and the monitoring result is output as a monitor signal (electrical signal for monitoring, for example, monitor current)
  • a photodiode (hereinafter simply referred to as a monitor diode) 31 and an amplifier 33 which is electrically connected to the monitor diode 31 and amplifies the monitor signal output from the monitor diode 31 are provided.
  • the amplifier 33 is electrically connected to the computer 13, and the computer 13 records the recording medium based on the monitor signal amplified by the amplifier 33 and the currently set light transmittance of the light amount adjusting element 19. It is possible to monitor the power of irradiation laser light on 3.
  • the power adjustment unit 7 includes a sample hold circuit (SZH) 35 that is electrically connected to the amplifier 33 and the computer 13.
  • the sample hold circuit 35 has a function of sampling and holding the value of the monitor signal output from the amplifier 33 when APC (Automatic Power Control) of the computer 13 is executed (when on).
  • the power adjustment unit 7 has an APC circuit 37 that is electrically connected to the sample hold circuit 35 and the LD driver 17.
  • the APC circuit 37 uses the monitor signal value sampled and held by the sample and hold circuit 35 during APC execution, so that the monitor signal value is a predetermined power value of the irradiation laser beam on the recording medium 3 (
  • the output waveform of the laser beam (output power level) output from the LD unit 15 is controlled (feedback control).
  • the power adjustment unit 7 includes a light amount adjustment element driver (LC driver) 38.
  • the LC driver 38 has a function of controlling the transmittance of the light amount adjusting element 19 by controlling the voltage applied to the light amount adjusting element 13 under the control of the computer 13.
  • the recording / reproduction data processing unit 11 is connected to the interface 41 for receiving recording data (bit string data) input from the connected device and electrically connected to the interface 41 during recording.
  • a buffer 43 that holds the recorded data, and a modem 45 that is electrically connected to the buffer 43.
  • the interface 41, the noffer 43, and the modem unit 45 are electrically connected to the computer 13, and each operation is configured to be controlled by the computer 13, for example.
  • the modulation / demodulation unit 45 performs recording on the recording data held in the buffer 43 for each predetermined unit based on the control of the computer 13 (in this embodiment, an ECC (Error Correlation Code) block) It has a function of adding an error correction code ⁇ for example, a PI (Parity Inner) correction code and a Z or PO (Parity Outer) correction code ⁇ to each unit ⁇ .
  • ECC Error Correlation Code
  • ECC block represents a unit of data recorded on the recording medium 3.
  • the ECC block has 182 bytes (172 2-byte data + 10-byte PI correction code) X 208 rows (192 rows + 16 rows PO correction code) ).
  • 172 bytes x 12 rows form one data frame
  • 16 ECCs are collected to form one ECC block.
  • the recording data of each frame of each ECC block after the error correction code is added is extracted from the wobble signal power obtained by the meandering recording track scan by the computer 13.
  • the signal level is converted from a noise level to a low level or a signal that changes from a low level to a high level in the case of the value of the bit.
  • the converted data ⁇ NRZI (Non Return to Zero Inverted) data ⁇ is data corresponding to the recording signal (record mark, pit) written to the recording track of the recording medium 3.
  • bit length (run length; recording signal length) until the edge of the NRZI data changes varies depending on the modulation method or the like.
  • NT ⁇ N is the type of recording medium 3
  • recording medium 3 is a DVD, an integer greater than or equal to 3
  • the power level on the recording medium 3 is automatically feedback-controlled to the recording power level, and the output waveform is deformed (for example, multi-track). Pulsed laser light is irradiated, and a recording signal corresponding to the run length of each NRZI data is written on the recording track of the recording medium 3.
  • This laser beam output waveform control (multi-pulse control) is called a write strategy, and the width of the multi-pulse is set appropriately according to the power level of the laser beam on the recording medium 3. Further, it is possible to prevent the deterioration of the recording signal due to the continuous irradiation of the laser beam having a constant power level.
  • the LD driver 17 controls the drive current (DC) based on the power control command sent from the APC circuit 37, and based on the superposition amount control command sent from the computer 13. For example, set the amplitude corresponding to the superposition amount control command with a high frequency of about several hundred MHz, and the current with the set amplitude (high frequency current) is, for example, the positive duty (on duty) in the sine wave
  • It has a function F1 that drives the LD unit 15 by superimposing an intermittent high-frequency current with less than 50% on the drive current and applying it to the LD unit 15. This function F1 causes the LD unit 15 to output laser light modulated by high-frequency superposition with an on-duty of less than 50%.
  • the LD driver 17 gives the controlled drive current to the LD unit 15 to drive the LD unit 15.
  • the laser light whose output power level is controlled is output from the LD unit 15.
  • the reflected light reflected from the corresponding recording signal is detected as an RF signal through the light receiving unit 30 by the operation of the optical pickup unit 5.
  • the modulation / demodulation unit 45 amplifies the RF signal obtained by the light receiving unit 30, and from the amplified RF signal, a wobble modulation signal, a tracking error signal indicating an error (error) of tracking control, And focus error signal indicating focus control error.
  • Each of these functions has a function of generating and a function of demodulating (decoding) the reproduction data (bit string data).
  • the demodulated playback data is sent to the computer 13, and this computer 13 performs error detection processing, judgment processing for determining whether or not the detected error is correctable, and correction for performing error correction when correction is possible. Processing is performed.
  • the reproduction data after the correction processing is held in the buffer 43 by the processing of the computer 13.
  • the interface 41 has a function of outputting reproduction data held in the buffer 43 to the information output device according to the control of the information output device connected to the interface 41! / RU
  • the computer 13 has setting information on the linear velocity of the recording medium 3 (speed of laser light traveling on the medium 3 during recording and Z or reproduction; for example, 1 ⁇ speed, 2 ⁇ speed,..., 32 ⁇ speed, etc.)
  • An input unit 47 for inputting various information and instructions such as an ECC block defect judgment registration processing execution instruction and a trial writing execution instruction to the computer 13 by a user operation is connected. Also, based on the linear velocity setting information set by the input unit 47 and passed through the computer 13, the computer 13 and the servo driver 9 are given a linear velocity command corresponding to the linear velocity setting information.
  • a digital signal processor (DSP) for sending to 9 is connected.
  • DSP digital signal processor
  • the servo driver 9 drives and controls the spindle motor 25 according to the linear velocity command from the DSP 49, and rotates the recording medium 3 while keeping the linear velocity set and input by the input unit 47 constant. It has a function (CLV: Constant Linear Velocity) or a function to rotate while keeping the angular velocity constant (CAV: Constant Angular Velocity) based on the set linear velocity.
  • CLV Constant Linear Velocity
  • CAV Constant Angular Velocity
  • the servo driver 9 controls the actuator 29 based on the tracking error signal and the focus error signal obtained by the modem unit 45, thereby focusing the spot light irradiated on the recording track of the recording medium 3. It has a function to perform position control and tracking control respectively!
  • a liquid crystal element whose light transmittance is changed by control information applied from the computer 13 via the LC driver 38 is used as the light amount adjusting element 19.
  • the invention is not limited to this configuration.
  • variable optical attenuator ⁇ variable ND (Neutral Density) in which the amount of light attenuation (in other words, the amount of transmitted light) changes due to a change in voltage applied from the computer 13 via a driver.
  • Filters, etc. ⁇ , polarizing elements (wavelength plates, liquid crystal elements, etc.) and beamsplitters It is also possible to use elements.
  • a light quantity adjusting unit according to the present invention by arranging a polarizing element instead of the light quantity adjusting element 19 in Fig. 2 and combining the beam splitter 21.
  • the optical axis direction (polarization direction) of the polarization element is changed by a predetermined angle from the polarization direction of the incident laser light by the control information applied from the computer 13 via the driver, and passes through the polarization element.
  • the light transmittance of the incident laser light after passing through the polarizing element and the beam splitter 21 is changed by separating the predetermined amount of light in the subsequent laser light and the remaining amount of light by the beam splitter 21. Can do.
  • the computer 13 performs the control process of the LD driver 17 and the light amount adjustment element 19 in the optical pickup unit 5, the control process of the power adjustment unit 7, and the control process of the servo driver 9. And the process relating to error detection and / or correction in the recording / reproduction data processing unit 11 is executed according to the corresponding program P loaded in the second memory 13b.
  • the power adjusting unit 7 of the computer 13 in the case of reproducing the recording data recorded on the recording track of the recording medium 3,
  • the control process for the LD driver 17 and the light amount adjusting element 19 will be mainly described.
  • the computer 13 when reproducing the recording data recorded on the recording track of the recording medium 3, stores data in the second memory 13b.
  • the processing shown in Fig. 3 is executed according to at least one program P that is loaded.
  • step S1 the computer 13 executes a recording medium playback (PLAY) process in a state where the light transmittance of the light amount adjusting element 19 is set to 100% which is an initial ratio.
  • PLAY recording medium playback
  • the light transmittance of the light amount adjusting element 19 is 100% when the light amount is not applied. This means the light transmittance of the adjusting element 19.
  • the computer 13 controls the spindle motor 25 via the DSP 49 and the servo driver 9 and moves the recording medium 3 to, for example, CLV at the linear velocity set and input by the input unit 47.
  • the power level of the irradiation laser beam on the recording medium 3 is set to a predetermined level for reproduction (hereinafter referred to as a reproduction power level), and the sample hold circuit 35 is set based on the set reproduction power level.
  • APC ON control is performed, and a superimposition amount control command is sent to the LD driver 17 with a predetermined current level as superimposition amount (assuming superimposition amplitude A1).
  • the sample hold circuit 35 samples and outputs the value of the monitor signal detected by the monitor diode 31 and output from the amplifier 33 to the APC circuit 37.
  • the APC circuit 37 sends a power control command (monitor power level) corresponding to the sampled and held monitor signal value to the LD driver 17 so as to substantially match the reproduction power level. .
  • the LD driver 17 drives the drive current based on the power control command sent from the APC circuit 37.
  • DC is controlled, and based on the superposition amount control command sent from the computer 13, for example, a current (high frequency) having a high frequency of about several hundred MHz and a superposition amplitude A1 corresponding to the superposition amount control command.
  • a current high frequency
  • the intermittent high frequency current Ioutl in which the positive duty (on duty) in the sine wave is less than 50% is superimposed on the drive current and applied to the LD unit 15 to drive the LD unit 15.
  • the laser power of high frequency superposition with less than 50% on-duty is output with 15 units of LD unit.
  • the operation of the optical pickup unit 5 irradiates the recording signal written on the recording track of the recording medium 3 with the laser beam superimposed at a high frequency.
  • the power of the irradiation laser beam on the recording medium 3 is maintained substantially constant at the reproduction power level by the APC control described above.
  • the reflected light reflected from the corresponding recording signal is detected as an RF signal through the light receiving unit 30 by the operation of the optical pickup unit 5.
  • the detected RF signal passes through the modulation / demodulation unit 45 and the reproduction data (bit string data) of the ECC block. After being decoded, it is transmitted to the computer 13, and after error correction processing, it is output to an information output device or the like via the notch 43 and the interface 41.
  • step S1 the computer 13 monitors the linear velocity of the recording medium 3 via the servo driver 9, and determines whether the linear velocity is equal to or higher than a predetermined velocity (step S1). S 2).
  • This predetermined speed is the speed at which the time required to pass the shortest run length (3T for DVD, 2T for Blu-ray D ISC) at the predetermined speed is close to the period of the intermittent high-frequency current loutl. Is set as Hereinafter, this predetermined speed is referred to as a threshold speed.
  • step S2 determines whether the result of determination in step S2 is NO (N), that is, if the monitor linear velocity is less than the threshold velocity corresponding to the shortest run length, the computer 13 at the current reproduction linear velocity, It is determined that the recording signal does not pass the laser beam scanning position during the laser beam OFF period, in other words, the recording signal can be read by the laser beam, and the process is terminated.
  • step S2 determines whether the result of determination in step S2 is YES (Y) or higher than the threshold velocity. If the result of determination in step S2 is YES (Y), that is, if the monitor linear velocity is equal to or higher than the threshold velocity, the computer 13 indicates that the recording signal is at the laser beam off period at the current reproduction linear velocity. In other words, it is determined that there is a possibility that the recording signal may not be read by the laser beam, and the process proceeds to step S3.
  • step S3 the computer 13 performs the APC control (sampling on control), that is, maintains the power of the irradiation laser light on the recording medium 3 through the LC driver 38 while maintaining the power of the irradiation laser light substantially constant.
  • the voltage applied to the light amount adjusting element 19 is controlled to reduce the light transmittance of the light amount adjusting element 19 to a predetermined value (for example, 50%).
  • the light transmittance of the light amount adjusting element 19 is 50%.
  • the ratio between the monitor power level when no voltage is applied to the light amount adjusting element 19 (transmittance 100%) and the monitor power level when controlling the applied voltage. Means approximately 50%.
  • the emission power of the laser light output from the LD unit 15 is increased by reducing the light transmittance of the light amount adjusting element 19 and by APC control (constant control of the irradiation laser light power).
  • step S4 In parallel with step S3 or before and after the processing, the computer 13 As a control command, a superimposition amount reduction command with a superposition amplitude A2 that is lower than the superposition amplitude A1 is transmitted to the LD driver 17 (step S4).
  • the LD driver 17 controls the drive current based on the power control command sent from the APC circuit 37, and superimposes it on the drive current based on the superimposed amount reduction command sent from the computer 13.
  • the amplitude A1 of the intermittent high-frequency current lout 1 is reduced to the amplitude A2 corresponding to the superposition amount reduction command.
  • the level of the high-frequency superimposed laser beam output from the LD unit 15 can be set to always on (beyond the off level) (see Fig. 1; superimposed amount setting function F1).
  • FIG. 4 shows the intermittent high-frequency currents Ioutl and Iout2 that are superimposed on the drive current Id from the APC circuit 37 and the respective intermittent high-frequency currents Ioutl by the processes in steps S1 to S4.
  • FIG. 5 is a diagram showing a relationship between laser light outputs Pol and Po2 output from the LD unit 15 corresponding to Iout2.
  • Ith in FIG. 4 is a threshold level that defines the laser light output (oscillation) in the LD unit 15.
  • the LD unit 15 Configured to start output.
  • step S2 if the monitor linear velocity is less than the threshold velocity corresponding to the shortest run length (step S2 ⁇ NO), the high-frequency current Io utl having the amplitude A1 continues to be APC. Since it is superimposed on the drive current from the circuit 37, the output waveform of the laser beam Po output from the LD unit 15 is turned on intermittently with reference to the laser beam off level as shown in FIG.
  • the output waveform Pol, ie, multimode can be set. As a result, it is possible to reduce return light noise during reproduction.
  • step S2 determines whether the monitor linear velocity is equal to or higher than the threshold velocity corresponding to the shortest run length. If the result of determination in step S2 is that the monitor linear velocity is equal to or higher than the threshold velocity corresponding to the shortest run length (step S2 ⁇ YES), the comparison between the laser light output waveform Pol and the recording signal is performed. As a result, the recording signal may pass during the laser beam off period.
  • the amplitude A1 of the high-frequency current Ioutl is reduced to the amplitude A2 in a state where the power of the irradiation laser light on the recording medium 3 is maintained substantially constant at the reproduction power level by the APC control. Is superimposed on the drive current as a high-frequency current Iout2.
  • the output waveform of the laser beam Po output from the LD unit 15 has a constant level higher than the laser beam off level, and its average value (average level: (Corresponding to the drive current value from the APC circuit 37) can be set to the output waveform Po2 that is the same as the laser light output waveform Pol.
  • the recording signal always passes the laser beam scanning position in the laser light output ON state, and the recording signal, that is, the edge of each recording mark can be reliably read. Can do.
  • the reproduction linear velocity of the recording medium 3 is set to a velocity at which the recording signal may pass through the laser beam scanning position during the laser beam off period.
  • the recording signal can be reliably read by reducing the amount of superposition of the intermittent high-frequency current to the drive current of the LD unit 15 according to the speed change.
  • the laser beam can be intermittently turned on and off via the LD unit 15 while maintaining the power of the irradiation laser beam on the recording medium 3 substantially constant. Deterioration of the recording layer of the recording medium 3 can be prevented.
  • the amount of superposition of the intermittent high-frequency current with respect to the drive current of the LD unit 15 is reduced according to the change in the reproduction linear velocity of the recording medium 3, so that the high-frequency current is reduced. Unwanted radiation caused can also be suppressed.
  • step S4 of FIG. 3 in the present embodiment the computer 13 instructs the LD driver 17 as a superposition amount control command so that the superposition amplitude A2 is an amplitude lower than the superposition amplitude A1.
  • the LD driver 17 sets the amplitude A1 of the intermittent high-frequency current Ioutl superimposed on the drive current to the amplitude corresponding to the superposition amount reduction command.
  • the present invention is not limited to this configuration.
  • step S4 in FIG. 3 the computer 13 sends a superimposition amplitude (superimposition amount) zero, that is, an intermittent high-frequency current to the LD driver 17 as a superposition amount control command.
  • the superimposition amount reduction command for superimposing (superimposition off) is transmitted, and the LD driver 17 is based on the power control command sent from the APC circuit 37 based on the superposition amount reduction command sent from the converter 13. It is also possible to drive the LD unit 15 by applying the controlled drive current to the LD unit 15 as it is (without superimposing the intermittent high-frequency current).
  • the reproduction linear velocity of the recording medium 3 is set to a velocity at which the recording signal may pass through the laser beam scanning position during the laser beam off period.
  • the recording signal can be read reliably by setting the superposition amount of the intermittent high-frequency current to the drive current of the LD unit 15 to zero (that is, superposition off) according to the speed change.
  • a data recording / reproducing system 1 that is resistant to return light noise and does not skip recorded signals while maintaining the effect of improving the reproduction efficiency due to an increase in the reproduction linear velocity. be able to.
  • a data recording / reproducing system according to a second embodiment of the present invention will be described with reference to the drawings.
  • the hardware components of the data recording / reproducing system according to the second embodiment are substantially the same as the hardware configuration of the data recording / reproducing system 1 according to the first embodiment. A description thereof will be omitted or simplified.
  • the computer 13 when reproducing the recorded data recorded on the recording track of the recording medium 3, the computer 13 is at least loaded to the second memory 13b. According to one program P, the process shown in FIG. 5 is executed instead of the process shown in FIG.
  • the computer 13 executes the light transmittance initial ratio setting process, the recording medium reproduction process, and the linear velocity determination process of the light amount adjusting element 19 (Fig. 3). 5; see steps S 10 and 11).
  • the LD driver 17 controls the drive current based on the power control command sent from the APC circuit 37, and based on the superposition amount control command sent from the computer 13. , Intermittent high frequency current I with superposition amplitude A1 corresponding to superposition amount control command I The outl is superimposed on the drive current and applied to the LD unit 15 to drive the LD unit 15.
  • laser light that is multi-mode modulated with an on-duty of less than 50% is output from the LD unit 15 force.
  • the operation of the optical pickup unit 5 irradiates the recording signal written on the recording track of the recording medium 3 and corresponding to the ECC block to be reproduced with high-frequency superimposed laser light.
  • the power of the irradiation laser beam on the recording medium 3 is maintained substantially constant at the reproduction power level by the APC on control described above.
  • the reflected light reflected from the corresponding recording signal based on the irradiated laser light is detected as an RF signal via the light receiving unit 30 by the operation of the optical pickup unit 5.
  • the detected RF signal is decoded as reproduction data (bit string data) of the ECC block via the modem unit 45 and then transmitted to the computer 13.
  • step S11 determines whether the result of determination in step S11 is YES, that is, if the monitor linear velocity is equal to or higher than the threshold velocity. It is determined that there is a possibility of passing through the optical scanning position, in other words, there is a possibility that the recording signal may become unreadable by the laser beam, and the process proceeds to step S12.
  • step S12 the computer 13 obtains an error rate as a reproduction characteristic based on the transmitted reproduction data of the ECC block, and the obtained error rate is difficult to reproduce the corresponding ECC block. It is determined whether or not the threshold is equal to or higher than a predetermined threshold value that is a criterion for determining whether or not the force is acceptable.
  • the reproduction characteristics in the present embodiment serve as an index for evaluating reproduction data obtained by the recording / reproduction data processing unit 11 and the computer 13.
  • an error rate indicating the ratio of the PI error (number of error bytes in each ECC block Z number of normal bytes) indicating the number of error noises for all rows in each ECC block is used as a reproduction characteristic.
  • step S12 If the result of determination in step S12 is NO, that is, if the error rate is less than the predetermined threshold, the computer 13 determines that the corresponding ECC block is in a reproducible state, and step S12 Move to 15 processing. As a result, the playback data of the corresponding ECC block Is output to an information output device or the like via the buffer 43 and the interface 41.
  • step S12 determines whether the result of determination in step S12 is YES, that is, if the error rate is equal to or higher than a predetermined threshold.
  • the computer 13 outputs a recording signal due to the monitor linear velocity being equal to or higher than the threshold velocity.
  • the error rate exceeds a predetermined threshold value, and it is determined that the corresponding ECC block has become difficult to reproduce, and the process proceeds to step S13.
  • step S13 as in step S3 shown in FIG. 3, the computer 13 performs the above APC on control, that is, maintains the uniformity of the irradiation laser light on the recording medium 3 substantially constant.
  • the voltage applied to the light amount adjusting element 19 is controlled via the LC driver 38 to reduce the light transmittance of the light amount adjusting element 19 to a predetermined value (for example, 50%).
  • a predetermined value for example, 50%.
  • step S14 the computer 13 transmits, to the LD driver 17, a superposition amount reduction command that sets a superposition amplitude A2 that is lower than the superposition amplitude A1 as a superposition amount control command.
  • the LD driver 17 controls the drive current based on the power control command sent from the APC circuit 37, and superimposes it on the drive current based on the superposition amount reduction command sent from the computer 13.
  • the amplitude A1 of the intermittent high-frequency current lout 1 is reduced to the amplitude A2 corresponding to the superposition amount reduction command.
  • the level of the high-frequency superimposed laser beam output from the LD unit 15 can always be set to on (see FIG. 4).
  • step S14 After the process of step S14 is completed or if the result of determination in step S12 is NO (when the ECC block can be reproduced), the computer 13 proceeds to step S15.
  • step S15 the computer 13 superimposes the monitor signal value sent from the monitor diode 31 via the amplifier 33 and / or the intermittent harmonic current lout 1 given from the LD driver 17 to the LD unit 15. Based on the drive current value, the output power of the laser beam output from the LD unit 15 is obtained, and a margin of a predetermined percentage (for example, 10%) is obtained from the calculated rated power of the LD power unit 15. Whether threshold power has been reached Judge whether or not.
  • a margin of a predetermined percentage for example, 10%
  • step SI5 determines whether the output power of the laser beam output from the LD unit 15 is less than the threshold power of the LD unit 15. If the determination result of step SI5 is NO, that is, if the output power of the laser beam output from the LD unit 15 is less than the threshold power of the LD unit 15, the computer 13 proceeds to step S12. Return.
  • the reflected light reflected from the corresponding recording signal is detected again as an RF signal via the light receiving unit 30 by the operation of the optical pickup unit 5, and the detected RF signal is detected. Is decoded as reproduction data (bit string data) of the ECC block via the modulation / demodulation unit 45 and then transmitted to the computer 13.
  • the computer 13 obtains an error rate as a reproduction characteristic based on the ECC block reproduction data transmitted again, and determines whether or not the obtained error rate is equal to or greater than a predetermined threshold (step S 12 reference).
  • the computer 13 performs the processing of steps S12 to S15 (comparison determination processing for the error rate threshold, light transmittance reduction processing of the light amount adjustment element 19, superimposition amount reduction processing via the LD driver 17, laser (Comparison and judgment processing for threshold power of light output power), the power at which determination of step S12 is NO (error rate is less than the predetermined threshold) or YES at step S15 (laser light output power reaches threshold power) Repeat until it becomes.
  • step S12 If the determination in step S12 is NO (the error rate is less than the predetermined threshold), the level of the multimode-modulated laser beam output from the LD unit 15 is always set to ON, and It is determined that the error rate of the corresponding ECC block has been improved to a reproducible state by increasing the laser beam emission power while the laser beam irradiation power on the recording medium 3 is maintained substantially constant. As a result, the reproduction data of the corresponding ECC block is output to the information output device or the like via the buffer 43, the interface 41, and the like.
  • step S12 determines whether the C block is a block is a block. If the determination in step S15 is NO, the computer 13 returns to step S12 and returns to the next playback target EC. The above-described processing of step S12 to step S15 is repeatedly executed for the C block.
  • step S 14 the process proceeds to the process of step S 15.
  • YES that is, the emission power of the laser beam output from the LD unit 15 is
  • the computer 13 the processing of Steps S12 to S15 (ECC block regeneration processing) is repeatedly executed (Step S16).
  • the reproduction linear velocity of the recording medium 3 is set to a velocity at which the recording signal may pass the laser beam scanning position during the laser beam off period. Even when the error rate exceeds a predetermined threshold value indicating that reproduction is difficult, the laser beam is reduced by reducing the light transmittance of the light quantity adjusting element 19 while maintaining the laser beam irradiation power on the recording medium 3 substantially constant. While increasing the output power, the amount of superposition of the intermittent high-frequency current to the drive current of the LD unit 15 can be reduced according to the speed change.
  • the recorded signal can be read reliably.
  • the reproduction linear velocity it is possible to provide a data recording / reproducing system that is resistant to return light noise and has no skipping of the recording signal while improving the reproduction efficiency due to the increase in the recording rate.
  • the amount of superposition of the intermittent high-frequency current with respect to the drive current of the LD unit 15 is reduced according to the change in the reproduction linear velocity of the recording medium 3, so that the high-frequency current is reduced. Unwanted radiation caused can also be suppressed.
  • FIG. 6 uses a Blu-ray Disc as the recording medium 3 and reproduces data recorded on the Blu-ray Disc using the processing of steps S10 to S16 shown in FIG. 6 is a graph (symbol G1) showing an example of a relationship between a change in reproduction speed and a change in error rate when reproduction is performed while changing the linear velocity.
  • the horizontal axis represents a change in multiple of the reproduction linear velocity (1 is 1 ⁇ , 2 is 2 ⁇ ), and the vertical axis represents the error rate change.
  • reference numeral G2 represents a case where data recorded on a B1 u-ray Disc is reproduced while changing the reproduction linear velocity using the simple high-frequency superposition described in the background art. It is a graph showing an example of the relationship between a reproduction speed change and an error rate change. Furthermore, in FIG. 6, reference numeral G3 represents the relationship between the change in playback speed and the change in error rate when data recorded on a Blu-ray Disc without high-frequency superposition is played while changing the playback linear speed. It is a graph showing an example.
  • step S 14 in FIG. 5 the computer 13 performs superimposition as a superposition amount control command to the LD driver 17. It is also possible to transmit a superposition amount reduction command for setting the amplitude to zero (intermittent high-frequency current superposition off), and the same effect as that of the modification of the first embodiment can be obtained.
  • a data recording / reproducing system according to a third embodiment of the present invention will be described with reference to the drawings.
  • the hardware components of the data recording / reproducing system according to the third embodiment are substantially the same as the hardware configuration of the data recording / reproducing system 1 according to the first embodiment. A description thereof will be omitted or simplified.
  • the computer 13 when reproducing the recording data recorded on the recording track of the recording medium 3, the computer 13 is at least imported to the second memory 13b. According to one program P, the process shown in FIG. 7 is executed instead of the process shown in FIG.
  • the computer 13 sets the light transmittance of the light amount adjusting element 19 to an arbitrary ratio (for example, With the initial ratio set to 100%, the recording medium playback process shown in step S1 of FIG. 3 is executed (step S20), and then the linear velocity determination process shown in step S2 of FIG. 3 is executed. (Step S21).
  • step S21 If the result of determination in step S21 is YES, that is, if the monitor linear velocity is equal to or higher than the threshold velocity, the computer 13 scans the laser beam during the laser beam OFF period at the current reproduction linear velocity. It is determined that there is a possibility of passing through the position, in other words, there is a possibility that the edge portion of the recording signal may become unreadable by the laser beam, and the process proceeds to step S 22.
  • step S22 the computer 13 transmits to the LD driver 17 a superimposition amount reduction command that sets the amplitude lower than the superposition amplitude A1 as the superposition amplitude A2 as the superposition amount control command.
  • the LD driver 17 controls the drive current based on the power control command sent from the APC circuit 37, and superimposes it on the drive current based on the superimposed amount reduction command sent from the computer 13.
  • the amplitude A1 of the intermittent high-frequency current lout 1 is reduced to the amplitude A2 corresponding to the superposition amount reduction command.
  • the level of the high-frequency superimposed laser beam output from the LD unit 15 can be always set to on (beyond the off level) (see FIG. 4).
  • the reproduction linear velocity of the recording medium 3 is determined so that the recording signal passes through the laser beam scanning position during the laser beam off period. Even when the speed is set to a fear, the recording signal can be reliably read by reducing the amount of intermittent high-frequency current superimposed on the drive current of the LD unit 15 according to the speed change.
  • step S23 in Fig. 7 the computer 13 performs superimposition as a superposition amount control command to the LD driver 17. It is also possible to transmit a superposition amount reduction command for setting the amplitude to zero (intermittent high-frequency current superposition off), and the same effect as that of the modification of the first embodiment can be obtained.
  • the computer 13 when reproducing the recording data recorded on the recording track of the recording medium 3, the computer 13 is at least imported to the second memory 13b.
  • the process shown in FIG. 8 is executed instead of the process shown in FIG.
  • the process shown in FIG. 8 is executed for each ECC block of recording data to be reproduced.
  • step S30 the computer 13 is equivalent to step S10 shown in FIG. 5 with the light transmittance of the light amount adjusting element 19 set to an arbitrary ratio (for example, an initial ratio of 100%).
  • a recording medium reproduction process is executed.
  • step S31 the computer 13 executes a linear velocity determination process equivalent to step S11 shown in FIG.
  • step S31 If the result of determination in step S31 is YES, that is, if the monitor linear velocity is greater than or equal to the threshold velocity, the computer 13 proceeds to processing in step S32, and in step S32, the same as step S12 is performed. Judgment processing for a predetermined threshold of error rate is executed.
  • step S32 determines that the corresponding ECC block has become difficult to reproduce and proceeds to step S33. .
  • step S33 the computer 13 executes a superimposition amount reduction command transmission process equivalent to that in step S14.
  • the reproduction linear velocity of the recording medium 3 is set to a velocity at which the recording signal may pass through the laser beam scanning position during the laser beam off period. Even when the error rate is equal to or higher than a predetermined threshold value indicating difficulty in reproduction, the amount of intermittent high-frequency current superimposed on the drive current of the LD unit 15 can be reduced according to the speed change. [0150] By reducing the amount of intermittent high-frequency current superimposed on the drive current of the LD unit 15, the recorded signal can be read reliably. As a result, as in the first embodiment, the reproduction linear velocity Thus, it is possible to provide a data recording / reproducing system without skipping reading of the recorded signal, while improving the reproduction efficiency by increasing the number of recordings.
  • step S34 in Fig. 8 the computer 13 performs superimposition as a superposition amount control command to the LD driver 17. It is also possible to transmit a superposition amount reduction command for setting the amplitude to zero (intermittent high-frequency current superposition off), and the same effect as that of the modification of the first embodiment can be obtained.
  • FIG. 9 is a block diagram showing a schematic configuration of a data recording / reproducing system 1A according to the fifth embodiment of the present invention.
  • the LD driver 17A of the data recording / reproducing system 1A uses the superposition frequency sent from the computer 13 instead of the superposition amount setting function F1 described in the first to fourth embodiments. Based on the control command, for example, a superposition frequency of the order of several hundred MHz is set. The function F2 is superimposed on
  • the hardware components other than the LD driver 17A are substantially the same as the hardware configuration of the data recording / reproducing system 1 according to the first embodiment. Omit or simplify.
  • the computer 13 when reproducing the recording data recorded on the recording track of the recording medium 3, the computer 13 is at least imported to the second memory 13b. According to one program P, the process shown in FIG. 10 is executed instead of the process shown in FIG.
  • step S40 the computer 13 reproduces the recording medium with the light transmittance of the light amount adjusting element 19 set to the initial ratio of 100% (a state in which no voltage is applied). Execute the process.
  • the computer 13 controls the spindle motor 25 via the DSP 49 and the servo driver 9 and moves the recording medium 3 to, for example, CLV at the linear velocity set and input by the input unit 47. Rotate and set the power level of the irradiation laser light on the recording medium 3 to the playback power level. Based on this playback power level, the sample hold circuit 35 is APC-on controlled, and a predetermined frequency is superimposed. A superposition frequency control command with a frequency (for example, superposition frequency fl on the order of several hundred MHz) is sent to the LD driver 17A.
  • a frequency for example, superposition frequency fl on the order of several hundred MHz
  • the sample hold circuit 35 samples the value of the monitor signal detected by the monitor diode 31 and output from the amplifier 33, and outputs it to the APC circuit 37.
  • the APC circuit 37 issues a power control command for causing the monitor power level corresponding to the value of the sampled and held monitor signal to substantially match the reproduction power level.
  • the LD driver 17A controls the drive current based on the power control command sent from the APC circuit 37, and on the basis of the superimposed frequency control command sent from the computer 13, the LD driver 17A has a predetermined frequency having the superimposed frequency fl.
  • an amplitude high-frequency current for example, an intermittent high-frequency current IoutlO in which the on-duty in a sine wave is less than 50% is superimposed on the drive current and applied to the LD unit 15 to drive the LD unit 15.
  • IoutlO an intermittent high-frequency current IoutlO in which the on-duty in a sine wave is less than 50%
  • the operation of the optical pickup unit 5 irradiates the recording data recorded on the recording track of the recording medium 3 with the laser beam superimposed at a high frequency.
  • the power of the irradiation laser beam on the recording medium 3 is maintained substantially constant at the reproduction power level by the APC control described above.
  • the reflected light reflected from the corresponding recording signal is detected as an RF signal through the light receiving unit 30 by the operation of the optical pickup unit 5.
  • the detected RF signal is decoded as reproduction data (bit string data) of the ECC block via the modulation / demodulation unit 45, and then transmitted to the computer 13. After error correction processing, And output to an information output device via the interface 41.
  • the computer 13 monitors the linear velocity of the recording medium 3 via the servo driver 9, and determines whether the linear velocity is equal to or greater than the threshold velocity (Ste S41).
  • step S41 If the result of determination in step S41 is NO, that is, if the monitor linear velocity is less than the threshold velocity, the computer 13 performs laser recording during the laser light off period at the current reproduction linear velocity. It is determined that the optical signal does not pass through the optical scanning position, in other words, the recording signal can be read out by the laser beam, and the process is terminated.
  • step S41 determines whether the result of determination in step S41 is YES, that is, if the monitor linear velocity is equal to or higher than the threshold velocity. It is determined that there is a possibility of passing the position, in other words, there is a possibility that the recording signal may become unreadable by the laser beam, and the process proceeds to step S42.
  • step S42 the computer 13 transmits to the LD driver 17A, as a superposition frequency control command, a superposition frequency increase command having a superposition frequency of the frequency f2 higher than the superposition frequency fl.
  • the LD driver 17A superimposes on the drive current based on the superimposed frequency increase command sent from the computer 13 while controlling the drive current based on the power control command sent from the APC circuit 37.
  • the frequency fl of the intermittent high-frequency current IoutlO is increased to the frequency f2 corresponding to the superposition frequency increase command.
  • the level of the high-frequency superimposed laser beam output from the LD unit 15 can be set to always on (beyond the off level) (see FIG. 9; superimposed frequency setting function F2).
  • FIG. 11 shows the intermittent high-frequency currents Ioutl0 and Ioutll superimposed on the drive current Id from the APC circuit 37 by the processing of step S40 to step S42, and the missing high-frequency currents Ioutl0, It is a figure which shows the relationship with laser beam output Pol0 and Poll output from LD unit 15 corresponding to Ioutll.
  • step S41 if the monitor linear velocity is less than the threshold velocity corresponding to the shortest run length of the recording signal (step S41 ⁇ NO), the superposition frequency fl is set. Since the high-frequency current IoutlO is continuously superimposed on the drive current from the APC circuit 37, the output waveform of the laser light Po output from the LD unit 15 is synchronized with the high-frequency current IoutlO as shown in FIG.
  • the output waveform PolO can be multimode. As a result, it is possible to reduce return light noise during reproduction.
  • step S42 determines whether the monitor linear velocity is equal to or higher than the threshold velocity. If the result of determination in step S42 is that the monitor linear velocity is equal to or higher than the threshold velocity (step S42 ⁇ YES), recording is performed so that the comparison force between the laser light output waveform PolO and the recording signal is also divided. There is a possibility that the signal passes during the laser beam off period.
  • the superposed frequency fl of the high-frequency current IoutlO is superposed while the power of the irradiation laser light on the recording medium 3 is maintained substantially constant at the reproduction power level by the APC on control.
  • the frequency rises to f2 and is superimposed on the drive current as the high-frequency current Ioutll.
  • the superposition frequency f2 is set so that the period corresponding to the superposition frequency f2 is shorter than the time length corresponding to the shortest run length of the recording signal.
  • the output waveform of the laser beam Po output from the LD unit 15 is longer than the time required for the period to pass the minimum signal length of the recording signal at the threshold speed. Shortened output waveform Po2 can be set.
  • the recording signal always passes the laser beam scanning position in the laser beam output on state, and the recording signal can be read reliably.
  • the reproduction linear velocity of the recording medium 3 is set to a velocity at which the recording signal may pass the laser beam scanning position during the laser beam off period.
  • the recording signal can be read reliably by increasing the superposition frequency of the intermittent high-frequency current to the drive current of the LD unit 15 according to the speed change.
  • a data recording / reproducing system will be described with reference to the drawings.
  • the hardware of the data recording / reproducing system according to the sixth embodiment Since the components are substantially the same as the hardware configuration of the data recording / reproducing system 1A according to the fifth embodiment, the same reference numerals are given and the description thereof is omitted or simplified.
  • the computer 13 when reproducing the recorded data recorded on the recording track of the recording medium 3, the computer 13 is loaded with at least one loaded into the second memory 13b.
  • the process shown in FIG. 12 is executed instead of the process shown in FIG. In this embodiment, the process shown in FIG. 12 is executed for each ECC block of recording data to be reproduced.
  • the computer 13 performs the light transmittance initial ratio setting process, the recording medium reproduction process, and the linear velocity determination process of the light quantity adjusting element 19 respectively. Run (see Figure 12; steps S50 and 51).
  • the LD driver 17A controls the drive current based on the power control command sent from the APC circuit 37, and superimposes based on the superposition frequency control command sent from the computer 13.
  • the intermittent high frequency current IoutlO having the superimposed frequency fl corresponding to the frequency control command is superimposed on the drive current and applied to the LD unit 15 to drive the LD unit 15.
  • the laser light superposed at a high frequency with an on-duty of less than 50% is output from the LD unit 15 force.
  • the operation of the optical pickup unit 5 irradiates a plurality of recording marks corresponding to the reproduction target ECC block written on the recording track of the recording medium 3 with high-frequency superimposed laser light. .
  • the power of the irradiation laser light on the recording medium 3 is maintained substantially constant at the reproduction power level by the APC control described above.
  • the reflected light reflected from the corresponding recording signal is detected as an RF signal through the light receiving unit 30 by the operation of the optical pickup unit 5.
  • the detected RF signal is decoded as reproduction data of the ECC block via the modulation / demodulation unit 45 and then transmitted to the computer 13.
  • step S51 determines whether the result of determination in step S51 is YES, that is, if the monitor linear velocity is greater than or equal to the threshold velocity.
  • the computer 13 uses the current reproduction linear velocity to record the recording signal during the laser beam off period. It is determined that there is a possibility of passing the optical scanning position, in other words, there is a possibility that the edge portion of the recording signal may become unreadable by the laser beam, and the step The processing shifts to S52.
  • step S52 the computer 13 obtains an error rate as reproduction characteristics based on the transmitted reproduction data of the ECC block, and determines whether or not the obtained error rate is equal to or greater than a predetermined threshold value.
  • step S52 determines that the error rate is greater than or equal to a predetermined threshold
  • the computer 13 determines that the corresponding ECC block has become difficult to reproduce and proceeds to step S53. move on.
  • step S53 the computer 13 sends, as the superposition frequency control command, a superposition frequency increase command having the superposition frequency f2 higher than the superposition frequency fl as the LD driver 17.
  • the LD driver 17A controls the drive current based on the power control command sent from the APC circuit 37, and superimposes it on the drive current based on the superimposed frequency increase command sent from the computer 13.
  • the superposition frequency fl of the intermittent high-frequency current IoutlO is increased to the superposition frequency f2 corresponding to the superposition frequency increase command.
  • the reproduction linear velocity of the recording medium 3 is set to a velocity at which the recording signal may pass through the laser beam scanning position during the laser beam off period. Even when the error rate is equal to or higher than a predetermined threshold value indicating that reproduction is difficult, the superimposed frequency of the intermittent high-frequency current with respect to the drive current of the LD unit 15 can be increased according to the speed change.
  • FIG. 13 shows a case where a Blu-ray DISC is used as the recording medium 3 and the data recorded on the Blu-ray DISC using the processing of steps S50 to S53 shown in FIG. Changes in playback speed and error rate when playing at different speeds It is a graph (code
  • the horizontal axis represents a change in multiple of the reproduction linear velocity (1 represents 1 ⁇ speed, 2 represents 2 ⁇ speed,..., And the vertical axis represents the error rate change.
  • reference numeral G12 represents a change in reproduction speed when data recorded on a Blu-ray DISC is reproduced while changing the reproduction linear velocity using the simple high-frequency superposition described in the background art.
  • 5 is a graph showing an example of the relationship between the error rate change and the error rate.
  • a data recording / reproducing system according to a seventh embodiment of the present invention will be described with reference to the drawings.
  • the hardware components of the data recording / reproducing system according to the seventh embodiment are substantially the same as the hardware configuration of the data recording / reproducing system 1A according to the fifth embodiment, and therefore the same reference numerals are used. Therefore, the explanation is omitted or simplified.
  • the computer 13 when reproducing the recording data recorded on the recording track of the recording medium 3, the computer 13 is loaded with at least one loaded into the second memory 13b. Instead of the process shown in FIG. 10, the process shown in FIG.
  • the computer 13 executes processing equivalent to steps S40 and S41 shown in FIG.
  • the computer 13 executes the recording medium reproduction process with the light transmittance of the light amount adjusting element 19 set to the initial ratio of 100% (step S40), and then executes the linear velocity determination process. (Step S41).
  • step S41 If the result of determination in step S41 is YES, that is, if the monitor linear velocity is equal to or higher than the threshold velocity, the computer 13 scans the laser beam during the laser beam OFF period at the current reproduction linear velocity. It is determined that there is a possibility that the recording signal may pass through the position. To do.
  • step S60 the computer 13 performs the APC control as in step S3 shown in FIG. 3, that is, the LC driver while maintaining the power of the irradiation laser light on the recording medium 3 substantially constant.
  • the voltage applied to the light amount adjusting element 19 is controlled via 38 to reduce the light transmittance of the light amount adjusting element 19 to a predetermined value (for example, 50%).
  • the emission power of the laser light output from the LD unit 15 is increased by reducing the light transmittance of the light quantity adjusting element 19 and by APC control (constant control of the irradiated laser light).
  • the computer 13 sends a superposition frequency increase command having a superposition frequency fl higher than the superposition frequency fl and a superposition frequency f2 as the superposition frequency control command to the LD driver 17A. (Step S42).
  • the LD driver 17A superimposes on the drive current based on the superposition frequency increase command sent from the computer 13 while controlling the drive current based on the power control command sent from the APC circuit 37.
  • the superposition frequency fl of the intermittent high-frequency current IoutlO is increased to the superposition frequency f2 corresponding to the superposition frequency increase command.
  • the level of the laser beam output from the LD unit 15 and superimposed on the high frequency can be always set to ON (see FIG. 11).
  • the reproduction linear velocity of the recording medium 3 is set to a velocity at which the recording signal may pass through the laser beam scanning position during the laser beam off period.
  • the recording signal can be read reliably by increasing the superposition frequency of the intermittent high-frequency current to the drive current of the LD unit 15 according to the speed change.
  • the laser light can be intermittently turned on and off via the LD unit 15 while maintaining the power of the irradiation laser light on the recording medium 3 substantially constant. Deterioration of the recording layer of the recording medium 3 can be prevented.
  • a data recording / reproducing system according to an eighth embodiment of the present invention will be described with reference to the drawings.
  • the hardware components of the data recording / reproducing system according to the eighth embodiment are substantially the same as the hardware configuration of the data recording / reproducing system 1A according to the fifth embodiment, and therefore the same reference numerals are used. Therefore, the explanation is omitted or simplified.
  • the computer 13 when reproducing the recorded data recorded on the recording track of the recording medium 3, the computer 13 is loaded with at least one loaded into the second memory 13b.
  • the process shown in FIG. 15 is executed instead of the process shown in FIG. In this embodiment, the process shown in FIG. 15 is executed for each ECC block of recording data to be reproduced.
  • the computer 13 executes a process equivalent to steps S50 and S51 shown in FIG.
  • the computer 13 executes the recording medium reproduction process with the light transmittance of the light quantity adjustment element 19 set to the initial ratio of 100% (step S50), and then executes the linear velocity determination process. (Step S51).
  • step S51 If the result of determination in step S51 is YES, that is, if the monitor linear velocity is greater than or equal to the threshold velocity, the computer 13 determines that the recording signal may be unreadable by the laser beam, and step In S52, an error rate is obtained as a reproduction characteristic based on the transmitted reproduction data of the ECC block, and it is determined whether or not the obtained error rate is equal to or greater than a predetermined threshold value.
  • step S52 determines that the corresponding ECC block has become difficult to reproduce and proceeds to step S60. .
  • step S60 the computer 13 performs the APC control as in step S3 shown in FIG. 3, that is, the LC driver while maintaining the power of the irradiation laser light on the recording medium 3 substantially constant.
  • the voltage applied to the light amount adjusting element 19 is controlled via 38 to reduce the light transmittance of the light amount adjusting element 19 to a predetermined value (for example, 50%).
  • the emission power of the laser light output from the LD unit 15 is increased by reducing the light transmittance of the light quantity adjusting element 19 and by APC control (constant control of the irradiated laser light).
  • step S53 the computer 13 sends, as the superposed frequency control command, a superposed frequency increase command having the superposed frequency fl higher than the superposed frequency fl and the frequency f2 as the superposed frequency.
  • the LD driver 17A superimposes on the drive current based on the superposition frequency increase command sent from the computer 13 while controlling the drive current based on the power control command sent from the APC circuit 37.
  • the superposition frequency fl of the intermittent high-frequency current IoutlO is increased to the superposition frequency f2 corresponding to the superposition frequency increase command.
  • the level of the laser beam output from the LD unit 15 and superimposed on the high frequency can be always set to ON (see FIG. 11).
  • the reproduction linear velocity of the recording medium 3 is set to a velocity at which the edge of the recording signal may pass through the laser beam scanning position during the laser beam off period.
  • the light transmittance of the light amount adjusting element 19 can be reduced while the laser beam irradiation power on the recording medium 3 is maintained substantially constant even when the error rate is equal to or higher than a predetermined threshold value indicating that reproduction is difficult.
  • the superposition frequency of the intermittent high-frequency current with respect to the drive current of the LD unit 15 can be increased according to the speed change while increasing the laser beam emission power.
  • the laser beam emission power is increased only when the error rate of the data to be reproduced (ECC block) is equal to or higher than a predetermined value. An increase and an increase in current consumption can be suppressed.
  • the LD driver 17A uses the superposition frequency of the intermittent high frequency current superimposed on the drive current of the LD unit 15.
  • the present invention is not limited to this configuration.
  • the computer 13 includes an LD driver 17A and an LD.
  • Data representing the current attenuation frequency characteristic (for example, the current attenuation frequency characteristic of the wiring between the LD driver 17A and the LD unit 15) related to current transfer between the units 15 is stored in the memory 13a in advance.
  • step S42A corresponding to step S42 of FIG. 10
  • the computer 13 also applies the LD driver 17 A force to the LD based on the superimposed frequency rise (fl ⁇ f2) as shown in FIG.
  • the amount of current attenuation during current transfer to unit 15 is obtained from the current attenuation frequency characteristic data stored in memory 13a.
  • step S4 2B the computer 13 performs a correction current for canceling the calculated attenuation of the current in addition to the superposition frequency increase command having the superposition frequency fl higher than the superposition frequency fl! Send a correction command indicating the amount to the LD driver 17A.
  • the LD driver 17A superimposes on the drive current based on the superimposed frequency increase command sent from the computer 13 while controlling the drive current based on the power control command sent from the APC circuit 37.
  • the superposition frequency fl of the intermittent high-frequency current IoutlO is increased to f2 corresponding to the superposition frequency increase command, and the amplitude of the intermittent high-frequency current IoutlO is increased by the amount of correction current in the correction command.
  • steps S42A and S42B can also be performed in processing equivalent to step S42 in other embodiments.
  • the PI in each ECC block is used as a reproduction characteristic serving as an index for evaluating the reproduction data obtained by the recording / reproduction data processing unit 11 and the computer 13.
  • the error rate is used, the present invention is not limited to this configuration, and various data can be used as long as it serves as the reproduction data evaluation index. For example, jitter representing the rate of change between the reproduced data and the clock from which the reproduced data power is also extracted can be used as the reproduction characteristic.
  • the control processing of the light amount adjusting element 19 in the optical pickup unit 5, the control processing of the power adjusting unit 7, the control processing of the servo driver 9 are performed.
  • the present invention is not limited to the above configuration. For example, it can be performed by using two or more computers.
  • the superimposition amount setting function F1 and the superposition frequency setting function F2 in the LD driver are based on, for example, a program loaded from the outside (computer or the like). It is also possible to execute the superimposition amount setting process and the superimposition frequency setting process by a computer circuit such as a microcomputer built in the driver.
  • the computer 13 when the monitored linear velocity is less than the threshold velocity corresponding to the shortest mark length, the computer 13 can read the recording signal with the laser beam.
  • the power determined to be The present invention is not limited to this configuration.
  • the computer 13 can always monitor the current playback linear velocity via the servo driver 9 during playback.
  • the playback linear velocity increases toward the outer periphery of the recording medium 3 and reaches a threshold speed (for example, 4 ⁇ ) corresponding to 3T, which is the shortest run length.
  • the computer 13 detects the increase of the reproduction linear velocity above the threshold speed and performs the above-described processes (light transmittance reduction and superposition amount reduction processing, superposition amount reduction processing, light transmittance reduction and superposition frequency increase).
  • a threshold speed for example, 4 ⁇
  • the computer 13 detects the increase of the reproduction linear velocity above the threshold speed and performs the above-described processes (light transmittance reduction and superposition amount reduction processing, superposition amount reduction processing, light transmittance reduction and superposition frequency increase).
  • the monitor diode is arranged on the optical path of the knock side laser beam emitted from the surface opposite to the LD unit output end in the LD unit package, and the back side laser is provided.
  • the present invention is not limited to this configuration.
  • it may be configured to constantly monitor the power of a part of the laser beam that has passed through the beam splitter 21 shown in FIG. 2 and has passed through the start-up mirror 23.
  • the light amount adjusting element 19 and the objective lens It is also possible to arrange it so that it is arranged on the optical path between the optical system 27 and the optical path branched from the optical system between them, and the reflected light on the corresponding optical path is monitored.
  • the present invention is not limited to the above-described embodiments and modifications, and can be implemented with various modifications within the scope belonging to the present invention.

Abstract

 記録媒体3の記録トラック上に書き込まれた記録信号を、周波数信号が重畳された駆動信号により変調され、かつ所定の走査速度で記録トラックに沿って走査される光により読み取ってデータとして再生するデータ記録再生システム1。駆動信号に対する前記周波数信号の重畳量を走査速度に応じて制御する重畳量制御ユニットコンピュータ13およびLDドライバ17を備えている。

Description

明 細 書
光記録再生方法およびシステム、ならびにプログラム
技術分野
[0001] 本発明は、例えば CD、 DVD, Blu-ray DISC, HD(High Definition) DVD等の記 録媒体に光記録されたデータを再生するための光記録再生方法およびシステム、な らびにプログラムに関する。
背景技術
[0002] CD、 DVD,次世代 DVD (Blu-ray DISC, HD DVD)等の記録媒体に対してレ 一ザ光を照射し、この照射レーザ光に起因する熱に基づく媒体記録層の状態変化 により、書き込み対象となるデータを記録信号として書き込むとともに、その記録信号 を構成する複数の記録マーク (記録ピットとも 、う)からの反射光に基づ 、て対応する データを再生する光記録再生装置は、従来の磁気テープを記録媒体とするビデオテ ープレコーダに代わるデータ記録再生装置として、急速に普及している。
[0003] このデータ記録再生装置では、線速度 (記録および Zまたは再生時に媒体 3上を 進むレーザ光の速度)を高速化 (例えば、 1倍速から 2倍速、 · · ·、 32倍速等に変化) させることにより、再生および Zまたは記録速度や時間を短縮ィ匕することを可能にし ている。
[0004] このように構成された光データ記録再生装置においては、比較的動作電流が小さ いシングルモードレーザ(縦モードが単一であるレーザ)を光源として用いている。こ のシングルモードレーザから出射されるレーザ光は、可干渉性が非常に高いため、 データを再生する際に、光源 (シングルモードレーザ)から出射されるレーザ光のレー ザ光パワー変動をもたらすノイズに対する比率(すなわち、 CNR: Carrier to Noise R atio)を高く維持する必要が生じている。このレーザ光パワー変動をもたらすノイズに は、記録媒体や光学部品等からの戻り光との干渉に起因するノイズ (戻り光ノイズ)と 、温度変動等に起因したレーザノイズとが含まれる。
[0005] 一方、上述したように、記録媒体に対するデータの書き込み (記録)は、照射光に起 因する熱に基づく媒体記録層の状態変化により行われるため、記録層劣化防止の観 点から、再生時に照射されるレーザ光のパワーには、限界がある。
[0006] この点、特許文献 1および 2には、光源から出射されるレーザ光の総光量に対する 記録媒体上に集光されるレーザ光の光量の比率である光結合効率を、そのモード( 記録モード Z再生モード)、記録媒体の種類および Zまたはその記録層(多層 Z単 層)に応じて変化させることにより、照射レーザ光パワーを抑制しながら CNRを高く維 持することを可能にして 、る。
[0007] 一方、上述した戻り光ノイズを抑制する他の方法として、例えば特許文献 3に開示さ れているように、シングルモードレーザから出射されるレーザ光の駆動電流(直流電 流)に対して例えば数百 MHz程度の高周波電流を重畳してその出射レーザ光を所 定周期で点滅 (オン Zオフ)させることにより、その縦モードをマルチモードィ匕させて いる(以下、この方法を高周波重畳法ともいう)。
[0008] 特許文献 1:特開 2002— 260272号公報
特許文献 2 :特開 2003— 196880号公報
特許文献 3:特開 2005 - 346823号公報
発明の開示
発明が解決しょうとする課題
[0009] 図 1は、ある記録トラックの一部に書き込まれた記録信号と高周波重畳により得られ たレーザ光出力波形との関係の一例を示す図である。なお、通常は、記録信号の記 録トラックに沿ったランレングス (マーク長)は変調されている力 図 1においては、説 明を容易にするため、最短ランレングスを有する記録信号が記録トラックの一部に書 き込まれているものとする。また、記録トラックの一部をそのトラック方向に沿って直線 状に展開した状態を示して!/ヽる。
[0010] さらに、図 1においては、高周波電流として、正弦波における正側のデューティ (ォ ンデューティ)が 50%未満となる間欠高周波電流を用いている。
[0011] 再生線速度を高速化して、記録信号の最短ランレングスがレーザ光走査位置を通 過する時間が間欠高周波電流周期に近付いた場合、図 1に示すように、高周波電流 オフ期間、すなわちレーザ光オフ期間に記録信号がレーザ光走査位置を通過してし まい、記録信号を読み取ることが困難になる恐れがあるという問題が一例として存在 する。
[0012] 本発明は上述した事情に鑑みてなされたものであり、再生線速度を高速化した場 合にお 1ヽても、記録媒体に記録された記録信号を確実に読み取って対応するデータ を再生することを可能にすることをその目的とする。
課題を解決するための手段
[0013] 本発明の第 1の態様は、記録媒体の記録トラック上に書き込まれた記録信号を、周 波数信号が重畳された駆動信号により変調され、かつ所定の走査速度で前記記録ト ラックに沿って走査される光により読み取ってデータとして再生する光記録再生シス テムである。この光記録再生システムは、前記駆動信号に対する前記周波数信号の 重畳量を前記走査速度に応じて制御する重畳量制御ユニットを含んでいる。
[0014] 本発明の第 2の態様は、記録媒体の記録トラック上に周期的に書き込まれた記録 信号を、周波数信号が重畳された駆動信号により変調され、かつ所定の走査速度で 前記記録トラックに沿って走査される光により読み取ってデータとして再生する光記 録再生システムに備えられたコンピュータが読み取り可能なプログラムである。このプ ログラムは、前記コンピュータに、前記駆動信号に対する前記周波数信号の重畳量 を前記走査速度に応じて制御する処理を実行させる。
[0015] 本発明の第 3の態様は、記録媒体の記録トラック上に周期的に書き込まれた記録 信号を、周波数信号が重畳された駆動信号により変調され、かつ所定の走査速度で 前記記録トラックに沿って走査される光により読み取ってデータとして再生する光記 録再生方法である。この光記録再生方法は、前記駆動信号に対する前記周波数信 号の重畳量を前記走査速度に応じて制御するステップを含んでいる。
図面の簡単な説明
[0016] [図 1]記録トラックの一部に書き込まれた複数の記録マークと高周波重畳により得られ たレーザ光出力波形との関係の一例を示す図。
[図 2]本発明の第 1の実施形態に係るデータ記録再生システムの概略構成を示すブ ロック図。
[図 3]本発明の第 1の実施形態に係るデータ記録再生システムのコンピュータにより 実行される処理の一例を概略的に示すフローチャート。 [図 4]図 3のステップ SI〜ステップ S4の処理により、図 2に示す APC回路からの駆動 電流に対して重畳される 2つの間欠高周波電流、およびそれぞれの間欠高周波電 流に対応する図 2に示す LDユニットから出力されるレーザ光出力との関係を示す図
[図 5]本発明の第 2の実施形態に係るデータ記録再生システムのコンピュータにより 実行される処理の一例を概略的に示すフローチャート。
[図 6]図 2に示す記録媒体として Blu— ray DISCを用いるとともに、図 5に示すステツ プ S10〜S16の処理を用いてその Blu-ray DISCに記録されているデータを、再生 線速度を変えながら再生した場合における再生速度変化とエラーレート変化との関 係の一例を表すグラフ。
[図 7]本発明の第 3の実施形態に係るデータ記録再生システムのコンピュータにより 実行される処理の一例を概略的に示すフローチャート。
[図 8]本発明の第 4の実施形態に係るデータ記録再生システムのコンピュータにより 実行される処理の一例を概略的に示すフローチャート。
圆 9]本発明の第 5の実施形態に係るデータ記録再生システムの概略構成を示すブ ロック図。
[図 10]本発明の第 5の実施形態に係るデータ記録再生システムのコンピュータにより 実行される処理の一例を概略的に示すフローチャート。
[図 11]図 10のステップ S40〜ステップ S42の処理により、図 9に示す APC回路から の駆動電流に対して重畳される 2つの間欠高周波電流、およびそれぞれの間欠高周 波電流に対応する図 9に示す LDユニットから出力されるレーザ光出力との関係を示 す図。
[図 12]本発明の第 6の実施形態に係るデータ記録再生システムのコンピュータにより 実行される処理の一例を概略的に示すフローチャート。
[図 13]図 9に示す記録媒体として Blu-ray DISCを用いるとともに、図 12に示すステ ップ S50〜S53の処理を用いてその Blu-ray DISCに記録されているデータを、再 生線速度を変えながら再生した場合における再生速度変化とエラーレート変化との 関係の一例を表すグラフ。 [図 14]本発明の第 7の実施形態に係るデータ記録再生システムのコンピュータにより 実行される処理の一例を概略的に示すフローチャート。
[図 15]本発明の第 8の実施形態に係るデータ記録再生システムのコンピュータにより 実行される処理の一例を概略的に示すフローチャート。
圆 16]本発明の第 5〜第 8の実施形態の変形例に係わるデータ記録再生システムの コンピュータにより実行される処理の一例を概略的に示すフローチャート。
符号の説明
1、 1A データ記録再生システム
3 記録媒体
5 光ピックアップ部
7 パワー調整部
9 サーボドライバ
11 記録再生データ処理部
13 コンピュータ
13a 第 1のメモリ
13b 第 2のメモジ
15 レーザダイオードユニット
17、 17A レーザダイオードドライバ
19 光量調整素子
21 ビームスプリッタ
23 立ち上げミラー
25 スピンドノレモータ
27 対物レンズ
29 ァクチユエータ
30 受光部
31 モニタ用フォトダイオード
33 アンプ
35 サンプルホールド回路 37 APC回路
38 LCドライバ
41 インタフェース
43 ノッファ
45 変復調部 発明を実施するための最良の形態
[0018] 以下、本発明の実施の形態について図面を用いて説明する。
[0019] (第 1の実施の形態)
図 2は、本発明の第 1の実施の形態に係わるデータ記録再生システム 1の概略構成 を示すブロック図である。
[0020] 図 2において、符号 3は、例えば円盤状の保護層と、スノィラル状または同心円状 に形成された記録トラックを含み、保護層に積層された円盤状の記録層とを有する記 録媒体である。例えば、この記録媒体 3としては、 CD、 DVD, Blu-ray Disc, HD DVD等を用いることができる。
[0021] 第 1の実施の形態に係わるデータ記録再生システム 1は、所望速度で回転する記 録媒体 3の記録トラックに対して情報を記録する機能、および記録媒体 3の記録トラッ ク上に記録された情報を再生する機能をそれぞれ有する装置である。
[0022] 例えば、本実施形態においては、記録トラックは、その一構成例として、径方向に 沿って交互に配置されたランドおよびグループの内の少なくとも一方を有しており、そ のランドおよびグループの内の少なくとも一方は、所定周波数で蛇行されており、そ の一部が例えば位相変調されることにより、記録トラックのアドレス情報等の情報がそ の変調部分に含まれている。
[0023] すなわち、データ記録再生システム 1は、回転する記録媒体 3の記録トラックに対し て光をスポット照射することにより情報を記録および Zまたは再生するための光ピック アップ部(光ヘッド部) 5と、記録媒体 3に照射される光の記録媒体 3上におけるパヮ 一を調整するためのパワー調整部 7とを備えている。
[0024] また、データ記録再生システム 1は、記録媒体 3の回転速度制御、光ピックアップ部 5により記録媒体 3の記録トラック上に照射されるスポット光のフォーカス位置制御、お よび記録トラックに対するスポット光の追跡制御(トラッキング制御)を行うためのサー ボ制御系としてのサーボドライバ 9を備えている。
[0025] さらに、データ記録再生システム 1は、記録媒体 3に記録したい情報に対応するデ ータ(以下、記録データとする)を生成する機能、および光ピックアップ部 5により得ら れた記録媒体 3に記録された情報に対応するデータ (以下、再生データとする)を生 成する機能を有する記録再生データ処理部 11を備えて!/ヽる。
[0026] そして、データ記録再生システム 1は、光ピックアップ部 5、パワー調整部 7、サーボ ドライバ 9、および記録再生データ処理部 11を制御するコンピュータ 13を備えている
[0027] コンピュータ 13は、処理結果を表すデータ等を記憶するための例えば HDD (Hard Disk Drive)、 FLASH MEMORY等の第 1のメモリ 13aと、コンピュータ 13のメインメ モリであり、例えば第 1のメモリ 13aからロードされてきた複数のプログラム Pを保持す る第 2のメモリ 13bとを備えている。この複数のプログラム Pは、コンピュータ 13に対し て上記制御動作を実行させるプログラムである。
[0028] 光ピックアップ部 5は、図 2に示すように、情報記録および Zまたは再生用の光とし てレーザ光を出射するレーザダイオード(LD)ユニット 15と、この LDユニット 15を駆 動制御することにより、 LDユニット 15から出力されるレーザ光の出力波形を制御する LDドライバ 17と、 LDユニット 15から出力されたレーザ光の光量を調整するための素 子として、後述する LC(Light Control)ドライバからの印加電圧変化により光透過率が 変化する液晶素子力も構成された光量調整素子 (Light Control Element) 19とを有 している。
[0029] 例えば本実施形態では、光ピックアップ部 5における LDユニット 15および光量調 整素子 19は、その両要素を介して案内されるレーザ光の光軸が記録媒体 3の保護 層表面に略平行となるように配置されて 、る。
[0030] なお、本実施形態では、光量調整素子 19は、初期状態 (非電圧印加状態)におい て約 100%の光透過率 (減衰率が約 0%)を有している。
[0031] また、光ピックアップ部 5は、 LDユニット 15から出力され光量調整素子 19を介して 進行するレーザ光の光路上に配置されたビームスプリッタ 21を備えている。このビー ムスプリッタ 21は、光量調整素子 19を介して進行してくるレーザ光を透過させ、かつ 後述する立ち上げミラーを介して送られてくる光を反射させる機能を有している。
[0032] さらに、光ピックアップ部 5は、ビームスプリッタ 21を透過してきたレーザ光の光路上 に配置された立ち上げミラー 23を備えている。この立ち上げミラー 23は、ビームスプ リツタ 21を透過してきたレーザ光を、その光軸に対して直交し、かつ記録媒体 3に向 力う方向に反射させるように構成されて 、る。
[0033] 光ピックアップ部 5は、記録媒体 3を、立ち上げミラー 23に対向し、かつその立ち上 げミラー 23により反射されたレーザ光の光軸が保護層表面に直交するように支持す るとともに、その記録媒体 3を回転駆動させるスピンドルモータ 25を有している。
[0034] そして、光ピックアップ部 5は、立ち上げミラー 23および記録媒体 3の保護層表面間 に介在された対物レンズ 27を有している。この対物レンズ 27は、立ち上げミラー 23 により反射されたレーザ光を、記録媒体 3の記録トラックに対して集束させてスポット 光として照射する機能を有して 、る。
[0035] 光ピックアップ部 5は、この対物レンズ 27を、少なくとも記録媒体 3の径方向および 記録媒体 3に対して離近する方向に沿って移動可能に構成され、かつサーボドライ ノ 9に電気的に接続されたァクチユエータ 29を有している。このァクチユエータ 29は 、サーボドライバ 9からの制御に基づいて対物レンズ 27を移動させることにより、光ス ポットのフォーカス位置およびトラッキング位置の調整をそれぞれ行うように構成され ている。
[0036] 対物レンズ 27は、再生時にぉ 、て、記録媒体 3の記録トラックから反射されてきた 光 (反射光)を受光し、所定のビーム径の平行光として出力する機能を有しており、立 ち上げミラー 23は、対物レンズ 27を介して送られてきた反射光を反射させてビームス プリッタ 21に送る機能を有して 、る。
[0037] そして、ビームスプリッタ 21は、立ち上げミラー 23を介して送られてきた反射光を反 射させる機能を有している。
[0038] 光ピックアップ部 5は、ビームスプリッタ 21により反射された反射光の光路上に配置 されており、この反射光を受光して電気信号 (以下、 RF信号と記載する)に変換する 受光部 30を有している。
[0039] パワー調整部 7は、 LDユニット 15のパッケージ内における LDユニット出力端の反 対側の面から出射されるレーザ光 (バック側レーザ光:通常の出力端から出射される レーザ光とパワーが同一のレーザ光)の光路上に配置され、そのバック側レーザ光の パワー(強度)を常時モニタし、このモニタ結果をモニタ信号 (モニタ用電気信号、例 えばモニタ電流)として出力するモニタ用フォトダイオード(以下、単にモニタダイォー ドとする) 31と、このモニタダイオード 31に電気的に接続されており、モニタダイォー ド 31から出力されたモニタ信号を増幅するアンプ 33とを有している。
[0040] アンプ 33はコンピュータ 13に電気的に接続されており、コンピュータ 13は、アンプ 33により増幅されたモニタ信号および光量調整素子 19の現在設定されている光透 過率に基づいて、記録媒体 3上の照射レーザ光のパワーをモニタ可能になっている
[0041] また、パワー調整部 7は、アンプ 33およびコンピュータ 13に対して電気的に接続さ れたサンプルホールド回路(SZH) 35を有している。このサンプルホールド回路 35 は、コンピュータ 13の APC (Automatic Power Control)実行時(オン時)において、ァ ンプ 33から出力されたモニタ信号の値をサンプリングしてホールドする機能を有して いる。
[0042] さらに、パワー調整部 7は、サンプルホールド回路 35および LDドライバ 17に対して 電気的に接続された APC回路 37を有している。この APC回路 37は、 APC実行時 において、サンプルホールド回路 35によりサンプル Zホールドされたモニタ信号の値 に基づいて、そのモニタ信号の値が、記録媒体 3上の照射レーザ光の所定のパワー 値 (パワーレベル)に対応する所定の値に略一致するように LDドライバ 17を介して L Dユニット 15に与える駆動電流を制御することにより、 LDユニット 15から出力される レーザ光の出力波形(出力パワーレベルを含む)を制御(フィードバック制御)する機 能を有している。
[0043] そして、パワー調整部 7は、光量調整素子ドライバ (LCドライバ) 38を有して 、る。こ の LCドライバ 38は、コンピュータ 13の制御の下で光量調整素子 13に印加する電圧 を制御することにより、光量調整素子 19の透過率を制御する機能を有している。 [0044] 記録再生データ処理部 11は、記録時においては、接続機器から入力された記録 データ(ビット列データ)を受け取るインタフェース 41と、このインタフェース 41に電気 的に接続されており、インタフェース 41により受け取られた記録データを保持するバ ッファ 43と、このバッファ 43に電気的に接続された変復調部 45とを有している。この インタフェース 41、 ノッファ 43、および変復調部 45は、それぞれコンピュータ 13に電 気的に接続されており、それぞれの動作は、例えばコンピュータ 13により制御される ように構成されている。
[0045] 変復調部 45は、記録時においては、コンピュータ 13の制御に基づいて、バッファ 4 3に保持された記録データに対して所定単位毎 {本実施形態では、 ECC (Error Corr ection Code)ブロック単位毎とする } }にエラー訂正符号 {例えば、 PI (Parity Inner)訂 正符号および Zまたは PO (Parity Outer)訂正符号等 } }を付加する機能を有して 、 る。
[0046] なお、 ECCブロックは、記録媒体 3に対して記録されるデータの単位を表して 、る。
[0047] 例えば、本実施形態の記録媒体 3が DVDの場合、 ECCブロックは、 182バイト(17 2バイトのデータ + 10バイトの PI訂正符号) X 208行( 192行 + 16行の PO訂正符号 )で構成されている。すなわち、 172バイト X 12行が 1データフレームとなり、これが 1 6個集められて 1つの ECCブロックが構成されている。
[0048] 例えば、本実施形態にぉ 、ては、エラー訂正符号が付加された後の各 ECCブロッ クの各フレームの記録データは、コンピュータ 13による蛇行記録トラック走査により得 られたゥォブル信号力 抽出された記録トラックの蛇行周波数を有するクロック(ゥォ ブルクロック)に基づいて、そのビットの値力 の場合に信号レベルをノヽィレベルか らローレベル、あるいはローレベルからハイレベルに変化させる信号に変換され、こ の変換後のデータ {NRZI (Non Return to Zero Inverted)データ }が記録媒体 3の記 録トラックに書き込まれる記録信号 (記録マーク、ピット)に対応するデータとなってい る。
[0049] なお、本実施形態では、この NRZIデータのエッジが変化するまでのビット長(ラン レングス;記録信号長)は、変調方式等により異なるが、例えば NT{Nは、記録媒体 3 の種類によって異なり、例えば記録媒体 3が DVDの場合、 3以上の整数、記録媒体 3が Blu— ray DISCの場合、 2以上の整数、 Tはゥォブルクロックの周期)となるように 構成されている。
[0050] すなわち、本実施形態によれば、記録媒体 3の記録トラックには、その媒体 3上にお けるパワーレベルが記録パワーレベルに自動的にフィードバック制御され、かつ出力 波形が変形 (例えばマルチパルス化)されたレーザ光が照射され、 NRZIデータそれ ぞれのランレングスに対応する記録信号が記録媒体 3の記録トラック上に書き込まれ るようになっている。
[0051] このレーザ光の出力波形制御(マルチパルス制御)は、ライトストラテジと呼ばれて おり、そのマルチパルスの幅を記録媒体 3上のレーザ光のパワーレベルに応じて適 宜設定することにより、一定パワーレベルのレーザ光を継続して照射することに起因 する記録信号の劣化を防止することができる。
[0052] また、再生時においては、 LDドライバ 17は、 APC回路 37から送られたパワー制御 指令に基づいて駆動電流(直流)を制御し、コンピュータ 13から送られた重畳量制御 指令に基づいて、例えば数百 MHz程度の高い周波数を有し、かつ重畳量制御指令 に対応する振幅を設定し、設定した振幅を有する電流 (高周波電流)として、例えば 正弦波における正側のデューティ (オンデューティ)が 50%未満となる間欠高周波電 流を駆動電流に重畳して LDユニット 15に与えて LDユニット 15を駆動させる機能 F1 を有している。この機能 F1により、 LDユニット 15から、オンデューティ 50%未満で高 周波重畳により変調されたレーザ光を出力させる。
[0053] 一方、間欠高周波電流を重畳しない (重畳オフ)と決定した場合には、 LDドライバ 1 7は、制御した駆動電流を LDユニット 15に与えて LDユニット 15を駆動させる。この 結果、 LDユニット 15から、出力パワーレベルが制御されたレーザ光を出力させる。
[0054] なお、この LDドライバ 17の動作については、後で詳細に説明する。
[0055] 照射されたレーザ光に基づ!/ヽて、対応する記録信号から反射された反射光は、光 ピックアップ部 5の動作により、受光部 30を介して RF信号として検出される。
[0056] 変復調部 45は、再生時においては、受光部 30により得られた RF信号を増幅し、増 幅した RF信号から、ゥォブル変調信号、トラッキング制御の誤差 (エラー)を表すトラ ッキングエラー信号、およびフォーカス制御の誤差を表すフォーカスエラー信号をそ れぞれ生成する機能、および RF信号力も再生データ (ビット列データ)を復調 (復号 ィ匕)する機能を有している。復調された再生データは、コンピュータ 13に送られ、この コンピュータ 13によりエラー検出処理、検出されたエラーが訂正可能である力否かを 判断する判断処理、訂正可能である場合にエラー訂正を行う訂正処理等が行われる 。この訂正処理後の再生データは、コンピュータ 13の処理によりバッファ 43に保持さ れる。
[0057] インタフェース 41は、再生時においては、このインタフェース 41に接続された情報 出力機器の制御に従って、バッファ 43に保持された再生データを情報出力機器に 対して出力する機能を有して!/、る。
[0058] コンピュータ 13には、記録媒体 3の線速度 (記録および Zまたは再生時に媒体 3上 を進むレーザ光の速度;例えば、 1倍速、 2倍速、 · · ·、 32倍速等)の設定情報、 EC Cブロック欠陥判定登録処理実行命令、試し書き実行命令等の各種情報や命令をュ 一ザの操作によりコンピュータ 13に入力するための入力部 47が接続されている。ま た、コンピュータ 13およびサーボドライバ 9には、入力部 47により設定されコンビユー タ 13を介して渡された線速度設定情報に基づいて、その線速度設定情報に対応す る線速指令をサーボドライバ 9に送るためのデジタルシグナルプロセッサ(Digital Sign al Processor: DSP)が接続されている。
[0059] すなわち、サーボドライバ 9は、 DSP49からの線速指令に従ってスピンドルモータ 2 5を駆動制御して、記録媒体 3を、入力部 47により設定入力された線速度を一定に 保持しながら回転させる機能(CLV : Constant Linear Velocity)、あるいは設定線速 度をベースにして角速度を一定に保持しながら(CAV: Constant Angular Velocity) 回転させる機能を有して 、る。
[0060] また、サーボドライバ 9は、変復調部 45により得られたトラッキングエラー信号および フォーカスエラー信号に基づいてァクチユエータ 29を制御することにより、記録媒体 3の記録トラック上に照射されるスポット光のフォーカス位置制御およびトラッキング制 御をそれぞれ行う機能を有して!/ヽる。
[0061] 本実施形態においては、光量調整素子 19として、コンピュータ 13から LCドライバ 3 8を介して印加される制御情報により、光透過率が変化する液晶素子を用いたが、本 発明はこの構成に限定されるものではない。
[0062] 例えば、本発明に係る光量調整部として、コンピュータ 13からドライバを介して印加 される電圧の変化により光減衰量 (言い換えれば透過光量)が変化する可変光減衰 器 {可変 ND (Neutral Density)フィルタ等 }、偏光素子 (波長板、液晶素子等)および ビームスプリツタカ 構成された素子を用いることも可能である。
[0063] 例えば、偏光素子を、図 2における光量調整素子 19の代わりに配置し、ビームスプ リツタ 21を組み合わせることにより、本発明に係る光量調整部を構成することも可能 である。
[0064] この構成によれば、コンピュータ 13からドライバを介して印加される制御情報により 偏光素子の光学軸方向 (偏光方向)を入射レーザ光の偏光方向から所定角度変化 させて、この偏光素子通過後のレーザ光における所定割合の光量分と残りの割合の 光量分とをビームスプリッタ 21により分けることにより、入射レーザ光における、偏光 素子およびビームスプリッタ 21を通過した後の光透過率を変化させることができる。
[0065] 一方、上述したように、本実施形態に係わるコンピュータ 13は、光ピックアップ部 5 における LDドライバ 17および光量調整素子 19の制御処理、パワー調整部 7の制御 処理、サーボドライバ 9の制御処理、および記録再生データ処理部 11におけるエラ 一検出および/または訂正に関する処理を、第 2のメモリ 13bにロードされた対応す るプログラム Pに従って実行するように構成されて 、る。
[0066] 次に、第 1の実施形態に関するデータ記録再生システム 1の具体的動作として、記 録媒体 3の記録トラックに記録された記録データを再生する場合におけるコンビユー タ 13のパワー調整部 7、 LDドライバ 17、および光量調整素子 19に対する制御処理 を中心に説明する。
[0067] 本実施形態に関するデータ記録再生システム 1にお!/、ては、記録媒体 3の記録トラ ックに記録された記録データを再生する際に、コンピュータ 13は、第 2のメモリ 13bに ロードされている少なくとも 1つのプログラム Pに従って、図 3に示す処理を実行する。
[0068] 最初に、ステップ S1として、コンピュータ 13は、光量調整素子 19の光透過率を初 期割合である 100%にした状態で記録媒体再生 (PLAY)処理を実行する。
[0069] なお、光量調整素子 19の光透過率が 100%とは、電圧非印加状態における光量 調整素子 19の光透過率を意味している。
[0070] すなわち、記録媒体再生処理として、コンピュータ 13は、 DSP49およびサーボドラ ィバ 9を介してスピンドルモータ 25を制御して、入力部 47により設定入力された線速 度で記録媒体 3を例えば CLV回転させ、記録媒体 3上の照射レーザ光のパワーレべ ルを再生用の所定レベル (以下、再生パワーレベルとする)に設定し、この設定した 再生パワーレベルに基づ 、てサンプルホールド回路 35を APCオン制御し、所定電 流レベルを重畳量 (重畳振幅 A1とする)重畳量制御指令を LDドライバ 17に送信す る。
[0071] ステップ S1による APCオン制御に応じて、サンプルホールド回路 35は、モニタダイ オード 31により検出されアンプ 33から出力されたモニタ信号の値をサンプルホール ドして APC回路 37に出力する。
[0072] このとき、 APC回路 37は、このサンプルホールドされたモニタ信号の値に対応する パワーレベル(モニタパワーレベル)を再生パワーレベルに略一致させるためのパヮ 一制御指令を LDドライバ 17に送る。
[0073] LDドライバ 17は、 APC回路 37から送られたパワー制御指令に基づいて駆動電流
(直流)を制御し、コンピュータ 13から送られた重畳量制御指令に基づいて、例えば 数百 MHz程度の高 、周波数を有し、かつ重畳量制御指令に対応する重畳振幅 A1 を有する電流(高周波電流)として、例えば正弦波における正側のデューティ (オンデ ユーティ)が 50%未満となる間欠高周波電流 Ioutlを駆動電流に重畳して LDユニット 15に与えて LDユニット 15を駆動させる。この結果、 LDユニット 15力 、オンデュー ティ 50%未満で高周波重畳されたレーザ光を出力させる。
[0074] この結果、光ピックアップ部 5の動作により、記録媒体 3の記録トラックに書き込まれ た記録信号に対して、高周波重畳されたレーザ光が照射される。そして、記録媒体 3 上における照射レーザ光のパワーは、上述した APC制御により、上記再生パワーレ ベルに略一定に維持されて 、る。
[0075] 照射されたレーザ光に基づいて、対応する記録信号から反射された反射光は、光 ピックアップ部 5の動作により、受光部 30を介して RF信号として検出される。検出さ れた RF信号は、変復調部 45を介して ECCブロックの再生データ(ビット列データ)と して復号化された後、コンピュータ 13に送信され、エラー訂正処理後、ノ ッファ 43お よびインタフェース 41を介して情報出力機器等に出力される。
[0076] 一方、ステップ S1の処理に並行して、コンピュータ 13は、サーボドライバ 9を介して 記録媒体 3の線速度をモニタし、その線速度が所定速度以上である力否力判断する (ステップ S 2)。
[0077] この所定速度は、該所定速度で最短ランレングス (DVDの場合、 3T、 Blu— ray D ISCの場合、 2T)を通過する際の時間が間欠高周波電流 loutlの周期に近接する速 度として設定されている。以下、この所定速度を閾値速度と記載する。
[0078] そして、このステップ S2の判断の結果 NO (N)、すなわち、モニタ線速度が最短ラ ンレングスに対応する閾値速度未満である場合には、コンピュータ 13は、現在の再 生線速度では、記録信号がレーザ光オフ期間にレーザ光走査位置を通過することは 無い、言いかえれば、レーザ光により記録信号を読み出し可能であると判断し、処理 を終了する。
[0079] 一方、ステップ S2の判断の結果 YES (Y)、すなわち、モニタ線速度が閾値速度以 上である場合には、コンピュータ 13は、現在の再生線速度では、記録信号がレーザ 光オフ期間にレーザ光走査位置を通過する可能性がある、言いかえれば、レーザ光 により記録信号の読み出しが不可能になる恐れがあると判断し、ステップ S3の処理 に移行する。
[0080] ステップ S3において、コンピュータ 13は、上記 APC制御(サンプリングオン制御)を 実行しながら、すなわち、記録媒体 3上における照射レーザ光のパワーを略一定に 維持しながら、 LCドライバ 38を介して光量調整素子 19に対する印加電圧を制御し て、光量調整素子 19の光透過率を所定の値 (例えば 50%)に減少させる。
[0081] なお、光量調整素子 19の光透過率が 50%とは、光量調整素子 19に対する電圧非 印加状態 (透過率 100%)におけるモニタパワーレベルと印加電圧制御時における モニタパワーレベルとの割合が略 50%の場合を意味している。
[0082] この光量調整素子 19の光透過率の減少および APC制御(照射レーザ光のパワー 一定制御)により、 LDユニット 15から出力されるレーザ光の出射パワーが増大する。
[0083] ステップ S3と並列的またはその処理の前後において、コンピュータ 13は、重畳量 制御指令として、重畳振幅 A1よりも低 ヽ振幅を重畳振幅 A2とする重畳量低減指令 を LDドライバ 17に送信する (ステップ S4)。
[0084] LDドライバ 17は、 APC回路 37から送られたパワー制御指令に基づいて駆動電流 を制御しながら、コンピュータ 13から送られた重畳量低減指令に基づいて、駆動電 流に重畳して 、る間欠高周波電流 lout 1の振幅 A1を、重畳量低減指令に対応する 振幅 A2に低減させる。この結果、 LDユニット 15から出力されている高周波重畳され たレーザ光のレベルを常時オン (オフレベルを超えて 、る)に設定することができる( 図 1;重畳量設定機能 F 1参照)。
[0085] ここで、図 4は、ステップ S1〜ステップ S4の処理により、 APC回路 37からの駆動電 流 Idに対して重畳される間欠高周波電流 Ioutl、 Iout2、およびそれぞれの間欠高周 波電流 Ioutl、 Iout2に対応する LDユニット 15から出力されるレーザ光出力 Pol、 Po2 との関係を示す図である。なお、図 4における Ithは、 LDユニット 15におけるレーザ光 出力(発振)を規定する閾値レベルであり、 LDユニット 15に与えられる駆動電流が閾 値レベル Ithを超えたとき、 LDユニット 15はレーザ光出力を開始するように構成され ている。
[0086] すなわち、ステップ S2の判断の結果、モニタ線速度が最短ランレングスに対応する 閾値速度未満である場合には (ステップ S2→NO)、振幅 A1を有する高周波電流 Io utlが継続して APC回路 37からの駆動電流に重畳されるため、 LDユニット 15から出 力されるレーザ光 Poの出力波形を、図 4に示すように、レーザ光オフレベルを基準と して間欠状にオンされる出力波形 Pol、すなわち、マルチモードィ匕することができる。 この結果、再生時における戻り光ノイズを低減させることができる。
[0087] 一方、ステップ S2の判断の結果、モニタ線速度が最短ランレングスに対応する閾値 速度以上である場合には (ステップ S2→YES)、レーザ光出力波形 Polと記録信号 との比較力 分力るように、記録信号がレーザ光オフ期間に通過してしまう恐れがあ る。
[0088] このとき、本実施形態では、記録媒体 3上における照射レーザ光のパワーが APC 制御により上記再生パワーレベルに略一定に維持された状態で、高周波電流 Ioutl の振幅 A1が振幅 A2に低減され、高周波電流 Iout2として駆動電流に重畳される。 [0089] この結果、図 4に示すように、 LDユニット 15から出力されるレーザ光 Poの出力波形 を、レーザ光オフレベルよりも高いコンスタントレベルを有し、その平均値(平均レべ ル: APC回路 37からの駆動電流値に相当)がレーザ光出力波形 Polと変わらない出 力波形 Po2に設定することができる。
[0090] したがって、図 4に示すように、記録信号は常にレーザ光出力オン状態においてレ 一ザ光走査位置を通過することになり、記録信号、すなわち、各記録マークのエッジ を確実に読み取ることができる。
[0091] 以上述べたように、本実施形態によれば、記録媒体 3の再生線速度を、その記録信 号がレーザ光オフ期間にレーザ光走査位置を通過する恐れがある速度に設定した 場合でも、その速度変化に応じて、 LDユニット 15の駆動電流に対する間欠高周波 電流の重畳量を低減させることにより、記録信号を確実に読み取ることができる。
[0092] この結果、再生線速度の上昇により再生性能を向上させながら、 LD出射光量上昇 に基づく戻り光ノイズの影響を低減させ、記録媒体 3上のパワーの増大を防止し、か つ記録信号読み飛ばしの無いデータ記録再生システム 1を提供することができる。
[0093] また、本実施形態によれば、記録媒体 3上の照射レーザ光のパワーを略一定に維 持しながら、 LDユニット 15を介してレーザ光を間欠状にオンオフさせることができる ため、記録媒体 3の記録層劣化を防止することができる。
[0094] さらに、本実施形態によれば、記録媒体 3の再生線速度変化に応じて、 LDユニット 15の駆動電流に対する間欠高周波電流の重畳量を低減させているため、その高周 波電流に起因した不要輻射も抑制することができる。
[0095] なお、本実施形態における図 3のステップ S4においては、コンピュータ 13は、 LDド ライバ 17に対して、重畳量制御指令として、重畳振幅 A1よりも低い振幅を重畳振幅 A2とする重畳量低減指令を送信し、 LDドライバ 17は、コンピュータ 13から送られた 重畳量低減指令に基づいて、駆動電流に重畳している間欠高周波電流 Ioutlの振 幅 A1を、重畳量低減指令に対応する振幅 A2に低減させたが、本発明はこの構成に 限定されるものではない。
[0096] すなわち、図 3のステップ S4において、コンピュータ 13は、 LDドライバ 17に対して 、重畳量制御指令として、重畳振幅 (重畳量)ゼロ、すなわち、間欠高周波電流を非 重畳 (重畳オフ)にするための重畳量低減指令を送信し、 LDドライバ 17は、コンビュ ータ 13から送られた重畳量低減指令に基づいて、 APC回路 37から送られたパワー 制御指令に基づいて制御された駆動電流を、そのまま(間欠高周波電流を重畳させ ることなく) LDユニット 15に与えて LDユニット 15を駆動させることも可能である。
[0097] 以上述べたように、本変形例によれば、記録媒体 3の再生線速度を、記録信号がレ 一ザ光オフ期間にレーザ光走査位置を通過する恐れがある速度に設定した場合で も、その速度変化に応じて、 LDユニット 15の駆動電流に対する間欠高周波電流の 重畳量をゼロ(すなわち、重畳オフ)に設定することにより、記録信号を確実に読み取 ることがでさる。
[0098] この結果、第 1実施形態と同様に、再生線速度の上昇による再生効率向上効果を 維持しながら、戻り光ノイズに強ぐかつ記録信号読み飛ばしの無いデータ記録再生 システム 1を提供することができる。
[0099] また、本変形例にお!、ても、記録媒体 3の記録層劣化を防止することができる。
[0100] (第 2の実施の形態)
本発明の第 2の実施形態に係わるデータ記録再生システムについて図面を用いて 説明する。なお、第 2の実施の形態に係わるデータ記録再生システムのハードウェア 構成要素は、第 1の実施の形態に係わるデータ記録再生システム 1のハードウェア構 成と略同様であるため、同一の符号を付してその説明は省略または簡略ィ匕する。
[0101] 本実施形態に関するデータ記録再生システムにおいては、記録媒体 3の記録トラッ クに記録された記録データを再生する際に、コンピュータ 13は、第 2のメモリ 13bに口 ードされている少なくとも 1つのプログラム Pに従って、図 3に示す処理の代わりに、図 5に示す処理を実行する。
[0102] 図 3に示すステップ S1および S2と同様に、コンピュータ 13は、光量調整素子 19の 光透過率初期割合設定処理、記録媒体再生処理、および線速度判断処理をそれぞ れ実行する(図 5;ステップ S 10および 11参照)。
[0103] この記録媒体再生処理により、 LDドライバ 17は、 APC回路 37から送られたパワー 制御指令に基づ 、て駆動電流を制御し、コンピュータ 13から送られた重畳量制御指 令に基づいて、重畳量制御指令に対応する重畳振幅 A1を有する間欠高周波電流 I outlを駆動電流に重畳して LDユニット 15に与え、 LDユニット 15を駆動させる。この LDユニット 15の駆動により、 LDユニット 15力ら、オンデューティ 50%未満でマルチ モード変調されたレーザ光が出力される。
[0104] そして、光ピックアップ部 5の動作により、記録媒体 3の記録トラックに書き込まれた、 再生対象 ECCブロックに対応する記録信号に対して、高周波重畳されたレーザ光が 照射される。そして、記録媒体 3上における照射レーザ光のパワーは、上述した APC オン制御により、上記再生パワーレベルに略一定に維持されている。
[0105] 照射されたレーザ光に基づいて対応する記録信号から反射された反射光は、光ピ ックアップ部 5の動作により、受光部 30を介して RF信号として検出される。検出され た RF信号は、変復調部 45を介して ECCブロックの再生データ(ビット列データ)とし て復号化された後、コンピュータ 13に送信される。
[0106] このとき、ステップ S11の判断の結果 YES、すなわち、モニタ線速度が閾値速度以 上である場合には、コンピュータ 13は、現在の再生線速度では、記録信号がレーザ 光オフ期間にレーザ光走査位置を通過する可能性がある、言いかえれば、レーザ光 により記録信号が読み出し不可能になる恐れがあると判断し、ステップ S12の処理に 移行する。
[0107] ステップ S12において、コンピュータ 13は、送信されてきた ECCブロックの再生デ ータに基づいて、再生特性としてのエラーレートを求め、求めたエラーレートが、対応 する ECCブロックが再生困難である力否かを判断する基準となる所定の閾値以上か 否か判断する。
[0108] なお、本実施形態における再生特性とは、記録再生データ処理部 11およびコンビ ユータ 13により得られた再生データを評価する指標となるものである。例えば、本実 施形態では、各 ECCブロックにおける全ての行に対するエラーノイト数を表す PIエラ 一の割合 (各 ECCブロックにおけるエラーバイト数 Z正常バイト数)を示すエラーレー トを再生特性として利用している。
[0109] このステップ S 12の判断の結果 NOの場合、すなわち、エラーレートが所定閾値未 満の場合には、コンピュータ 13は、対応する ECCブロックは再生可能な状態であると 判断し、ステップ S 15の処理に移行する。この結果、対応 ECCブロックの再生データ は、バッファ 43およびインタフェース 41等を介して情報出力機器等に出力される。
[0110] 一方、ステップ S12の判断の結果 YES、すなわち、エラーレートが所定の閾値以上 である場合には、コンピュータ 13は、上記モニタ線速度が閾値速度以上であることに 起因して記録信号が読み出し不可能になり、その結果エラーレートが所定の閾値以 上になり、対応する ECCブロックは再生困難になったものと判断してステップ S13に 進む。
[0111] ステップ S13において、コンピュータ 13は、図 3に示すステップ S3と同様に、上記 A PCオン制御を実行しながら、すなわち、記録媒体 3上における照射レーザ光のパヮ 一を略一定に維持しながら、 LCドライバ 38を介して光量調整素子 19に対する印加 電圧を制御して、光量調整素子 19の光透過率を所定の値 (例えば 50%)に減少さ せる。この光量調整素子 19の光透過率の減少および APCオン制御(照射レーザ光 のパヮ一一定制御)により、 LDユニット 15から出力されるレーザ光の出射パワーが増 大する。
[0112] ステップ S13と並列的またはその処理の前後において、コンピュータ 13は、重畳量 制御指令として、重畳振幅 A1よりも低 ヽ振幅を重畳振幅 A2とする重畳量低減指令 を LDドライバ 17に送信する (ステップ S 14)。
[0113] LDドライバ 17は、 APC回路 37から送られたパワー制御指令に基づいて駆動電流 を制御しながら、コンピュータ 13から送られた重畳量低減指令に基づいて、駆動電 流に重畳して 、る間欠高周波電流 lout 1の振幅 A1を、重畳量低減指令に対応する 振幅 A2に低減させる。この結果、 LDユニット 15から出力されている高周波重畳され たレーザ光のレベルを常時オンに設定することができる(図 4参照)。
[0114] ステップ S14の処理終了後、あるいはステップ S 12の判断の結果 NO (ECCブロッ クは再生可能である場合)においては、コンピュータ 13は、ステップ S15に移行する。
[0115] このステップ S15において、コンピュータ 13は、モニタダイオード 31からアンプ 33を 介して送られたモニタ信号値および/または LDドライバ 17から LDユニット 15に与え る間欠高調波電流 lout 1が重畳された駆動電流値に基づ 、て、 LDユニット 15から出 力されるレーザ光の出射パワーを求め、求めた出射パワー力LDユニット 15の定格パ ヮ一より所定パーセント(例えば 10%)のマージンを有する閾値パワーに到達したか 否か判断する。
[0116] このステップ SI 5の判断の結果 NO、すなわち、 LDユニット 15から出力されるレー ザ光の出射パワーが LDユニット 15の閾値パワー未満である場合には、コンピュータ 13は、ステップ S 12に戻る。
[0117] このとき、ステップ S14の処理により LDユニット 15から出力されている高周波重畳さ れたレーザ光のレベルがオンの状態で、光ピックアップ部 5の動作により、記録媒体 3 の記録トラックに書き込まれた記録信号に対応する複数の記録マークに対して、その レーザ光が再度照射される。そして、記録媒体 3上における照射レーザ光のパワー は、上述した APCオン制御により、上記再生パワーレベルに略一定に維持されてい る。
[0118] 照射されたレーザ光に基づいて、対応する記録信号から反射された反射光は、光 ピックアップ部 5の動作により、受光部 30を介して RF信号として再度検出され、検出 された RF信号は、変復調部 45を介して ECCブロックの再生データ(ビット列データ) として復号化された後、コンピュータ 13に送信される。
[0119] コンピュータ 13は、再度送信されてきた ECCブロックの再生データに基づいて、再 生特性としてのエラーレートを求め、求めたエラーレートが所定の閾値以上か否力判 断する (ステップ S 12参照)。
[0120] すなわち、コンピュータ 13は、ステップ S12〜S15の処理(エラーレートの閾値に対 する比較判断処理、光量調整素子 19の光透過率低減処理、 LDドライバ 17を介した 重畳量低減処理、レーザ光出射パワーの閾値パワーに対する比較判断処理)を、ス テツプ S 12の判断が NO (エラーレートが所定閾値未満)になる力 あるいはステップ S15の判断が YES (レーザ光出射パワーが閾値パワーに到達)になるまで、繰り返し 実行する。
[0121] ステップ S12の判断が NOになった場合 (エラーレートが所定閾値未満)、 LDュ- ット 15から出力されているマルチモード変調されたレーザ光のレベルが常時オンに 設定され、かつ記録媒体 3上のレーザ光照射パワーが略一定に維持された状態で、 レーザ光出射パワーが上昇したことにより、対応する ECCブロックのエラーレートが 再生可能な状態に改善したと判断される。 [0122] この結果、対応 ECCブロックの再生データは、バッファ 43およびインタフェース 41 等を介して情報出力機器等に出力される。
[0123] ステップ S 12の判断が NOになった後でステップ S 15に移行し、このステップ S 15の 判断が NOの場合、コンピュータ 13は、ステップ S12〖こ戻り、次の再生対象となる EC Cブロックに対して上述したステップ S 12〜ステップ S 15の処理を繰り返し実行する。
[0124] 一方、ステップ S 14の処理後ステップ S 15の処理に移行し、このステップ S 15の判 断の結果 YES、すなわち、 LDユニット 15から出力されるレーザ光の出射パワーが L Dユニット 15の閾値パワーに到達した場合には、これ以上、光量調整素子 19の光透 過率を低下させて LDユニット 15から出力されるレーザ光の出射パワーを上昇させる ことが困難であるため、コンピュータ 13は、光量調整素子 19の光透過率を現在の光 透過率に維持しながら、ステップ S12〜S 15の処理 (ECCブロック再生処理)を繰り 返し実行する (ステップ S 16)。
[0125] 以上述べたように、本実施形態によれば、記録媒体 3の再生線速度を、その記録信 号がレーザ光オフ期間にレーザ光走査位置を通過する恐れがある速度に設定した 結果、エラーレートが再生困難を表す所定閾値以上になった場合でも、記録媒体 3 上のレーザ光照射パワーを略一定に維持した状態で、光量調整素子 19の光透過率 を低減させることによりレーザ光出射パワーを上昇させながら、その速度変化に応じ て LDユニット 15の駆動電流に対する間欠高周波電流の重畳量を低減させることが できる。
[0126] この LDユニット 15の駆動電流に重畳される間欠高周波電流の重畳量低減により、 記録信号を確実に読み取ることが可能になり、この結果、第 1の実施形態と同様に、 再生線速度の上昇により再生効率を向上させながら、戻り光ノイズに強ぐかつ記録 信号読み飛ばしの無いデータ記録再生システムを提供することができる。
[0127] そして、本実施形態によれば、記録媒体 3の再生線速度変化に応じて、 LDユニット 15の駆動電流に対する間欠高周波電流の重畳量を低減させているため、その高周 波電流に起因した不要輻射も抑制することができる。
[0128] ここで、図 6は、記録媒体 3として Blu-ray Discを用いるとともに、図 5に示すステツ プ S10〜S16の処理を用いてその Blu-ray Discに記録されているデータを、再生 線速度を変えながら再生した場合における再生速度変化とエラーレート変化との関 係の一例を表すグラフ (符号 G1)である。
[0129] なお、図 6に示すグラフにおいて、横軸は再生線速度の倍数変化(1は 1倍速、 2は 2倍速、 · · ·)を表し、縦軸はエラーレート変化を表している。
[0130] また、図 6において、符号 G2は、背景技術で述べた単純な高周波重畳を用いて B1 u-ray Discに記録されているデータを、再生線速度を変えながら再生した場合にお ける再生速度変化とエラーレート変化との関係の一例を表すグラフである。さらに、図 6において、符号 G3は、高周波重畳を行うことなぐ Blu-ray Discに記録されている データを、再生線速度を変えながら再生した場合における再生速度変化とエラーレ ート変化との関係の一例を表すグラフである。
[0131] 図 6から明らかなように、図 5に示すステップ S10〜S16の処理を用いてその Blu-r ay Discに記録されているデータを再生線速度を変えながら再生した場合には、他 の再生方法の場合と比べて、再生線速度変化に対するエラーレートの上昇率を効果 的に抑制することが可能になる。
[0132] なお、本実施形態においても、第 1の実施形態の変形例と同様に、図 5のステップ S 14においては、コンピュータ 13は、 LDドライバ 17に対して、重畳量制御指令として、 重畳振幅ゼロ(間欠高周波電流重畳オフ)にするための重畳量低減指令を送信する ことも可能であり、第 1の実施形態の変形例と同様の効果を得ることができる。
[0133] (第 3の実施形態)
本発明の第 3の実施形態に係わるデータ記録再生システムについて図面を用いて 説明する。なお、第 3の実施の形態に係わるデータ記録再生システムのハードウェア 構成要素は、第 1の実施の形態に係わるデータ記録再生システム 1のハードウェア構 成と略同様であるため、同一の符号を付してその説明は省略または簡略ィ匕する。
[0134] 本実施形態に関するデータ記録再生システムにおいては、記録媒体 3の記録トラッ クに記録された記録データを再生する際に、コンピュータ 13は、第 2のメモリ 13bに口 ードされている少なくとも 1つのプログラム Pに従って、図 3に示す処理の代わりに、図 7に示す処理を実行する。
[0135] 最初に、コンピュータ 13は、光量調整素子 19の光透過率を任意の割合 (例えば、 初期割合 100%)に設定した状態で、図 3のステップ S1で示した記録媒体再生処理 を実行し (ステップ S 20)、次いで、図 3のステップ S 2で示した線速度判断処理を実行 する(ステップ S 21)。
[0136] このステップ S21の判断の結果 YES、すなわち、モニタ線速度が閾値速度以上で ある場合には、コンピュータ 13は、現在の再生線速度では、記録信号がレーザ光ォ フ期間にレーザ光走査位置を通過する可能性がある、言いかえれば、レーザ光によ り記録信号のエッジ部分が読み出し不可能になる恐れがあると判断し、ステップ S 22 の処理に移行する。
[0137] ステップ S22において、コンピュータ 13は、重畳量制御指令として、重畳振幅 A1よ りも低い振幅を重畳振幅 A2とする重畳量低減指令を LDドライバ 17に送信する。
[0138] LDドライバ 17は、 APC回路 37から送られたパワー制御指令に基づいて駆動電流 を制御しながら、コンピュータ 13から送られた重畳量低減指令に基づいて、駆動電 流に重畳して 、る間欠高周波電流 lout 1の振幅 A1を、重畳量低減指令に対応する 振幅 A2に低減させる。この結果、 LDユニット 15から出力されている高周波重畳され たレーザ光のレベルを常時オン (オフレベルを超えて 、る)に設定することができる( 図 4参照)。
[0139] 以上述べたように、本実施形態によれば、第 1の実施形態と同様に、記録媒体 3の 再生線速度を、その記録信号がレーザ光オフ期間にレーザ光走査位置を通過する 恐れがある速度に設定した場合でも、その速度変化に応じて、 LDユニット 15の駆動 電流に対する間欠高周波電流の重畳量を低減させることにより、記録信号を確実に 読み取ることができる。
[0140] この結果、再生線速度の上昇により再生効率を向上させながら、記録信号読み飛 ばしの無いデータ記録再生システムを提供することができる。
[0141] なお、本実施形態においても、第 1の実施形態の変形例と同様に、図 7のステップ S 23においては、コンピュータ 13は、 LDドライバ 17に対して、重畳量制御指令として、 重畳振幅ゼロ(間欠高周波電流重畳オフ)にするための重畳量低減指令を送信する ことも可能であり、第 1の実施形態の変形例と同様の効果を得ることができる。
[0142] (第 4の実施の形態) 本発明の第 4の実施形態に係わるデータ記録再生システムについて図面を用いて 説明する。なお、第 4の実施の形態に係わるデータ記録再生システムのハードウェア 構成要素は、第 1の実施の形態に係わるデータ記録再生システム 1のハードウェア構 成と略同様であるため、同一の符号を付してその説明は省略または簡略ィ匕する。
[0143] 本実施形態に関するデータ記録再生システムにおいては、記録媒体 3の記録トラッ クに記録された記録データを再生する際に、コンピュータ 13は、第 2のメモリ 13bに口 ードされている少なくとも 1つのプログラム Pに従って、図 3に示す処理の代わりに、図 8に示す処理を実行する。なお、本実施形態においては、図 8に示す処理は再生対 象となる記録データの ECCブロック毎に実行されるものとする。
[0144] 最初に、ステップ S30として、コンピュータ 13は、光量調整素子 19の光透過率を任 意の割合 (例えば、初期割合 100%)に設定した状態で、図 5に示すステップ S10と 同等の記録媒体再生処理を実行する。
[0145] 次いで、ステップ S31として、コンピュータ 13は、図 5に示すステップ S 11と同等の 線速度判断処理を実行する。
[0146] そして、ステップ S31の判断の結果 YES、すなわち、モニタ線速度が閾値速度以 上である場合には、コンピュータ 13は、ステップ S32の処理に移行し、ステップ S32 において、ステップ S12と同等のエラーレートの所定の閾値に対する判断処理を実 行する。
[0147] このステップ S32の判断の結果 YES、すなわち、エラーレートが所定の閾値以上で ある場合には、コンピュータ 13は、対応する ECCブロックは再生困難になったものと 判断してステップ S33に進む。
[0148] そして、ステップ S33において、コンピュータ 13は、ステップ S14と同等の重畳量低 減指令送信処理を実行する。
[0149] 以上述べたように、本実施形態によれば、記録媒体 3の再生線速度を、その記録信 号がレーザ光オフ期間にレーザ光走査位置を通過する恐れがある速度に設定した 結果、エラーレートが再生困難を表す所定閾値以上になった場合でも、その速度変 化に応じて LDユニット 15の駆動電流に対する間欠高周波電流の重畳量を低減させ ることがでさる。 [0150] この LDユニット 15の駆動電流に重畳される間欠高周波電流の重畳量低減により、 記録信号を確実に読み取ることが可能になり、この結果、第 1の実施形態と同様に、 再生線速度の上昇により再生効率を向上させながら、記録信号読み飛ばしの無 、デ ータ記録再生システムを提供することができる。
[0151] なお、本実施形態においても、第 1の実施形態の変形例と同様に、図 8のステップ S 34においては、コンピュータ 13は、 LDドライバ 17に対して、重畳量制御指令として、 重畳振幅ゼロ(間欠高周波電流重畳オフ)にするための重畳量低減指令を送信する ことも可能であり、第 1の実施形態の変形例と同様の効果を得ることができる。
[0152] (第 5の実施の形態)
本発明の第 5の実施形態に係わるデータ記録再生システムについて図面を用いて 説明する。
[0153] 図 9は、本発明の第 5の実施の形態に係わるデータ記録再生システム 1Aの概略構 成を示すブロック図である。
[0154] 図 9に示すように、データ記録再生システム 1 Aの LDドライバ 17Aは、第 1〜第 4実 施形態で述べた重畳量設定機能 F1の代わりに、コンピュータ 13から送られた重畳 周波数制御指令に基づいて、例えば数百 MHzオーダの重畳周波数を設定し、設定 した重畳周波数を有する高周波電流として、例えば正弦波におけるオンデューティ が 50%未満となる間欠高周波電流を、上記制御した駆動電流に対して重畳する機 能 F2を有している。
[0155] なお、 LDドライバ 17A以外のハードウェア構成要素は、第 1の実施の形態に係わる データ記録再生システム 1のハードウェア構成と略同様であるため、同一の符号を付 してその説明は省略または簡略ィ匕する。
[0156] 本実施形態に関するデータ記録再生システムにおいては、記録媒体 3の記録トラッ クに記録された記録データを再生する際に、コンピュータ 13は、第 2のメモリ 13bに口 ードされている少なくとも 1つのプログラム Pに従って、図 3に示す処理の代わりに、図 10に示す処理を実行する。
[0157] 最初に、ステップ S40として、コンピュータ 13は、光量調整素子 19の光透過率を初 期割合である 100%にした状態 (電圧非印加状態を維持した状態)で記録媒体再生 処理を実行する。
[0158] すなわち、記録媒体再生処理として、コンピュータ 13は、 DSP49およびサーボドラ ィバ 9を介してスピンドルモータ 25を制御して、入力部 47により設定入力された線速 度で記録媒体 3を例えば CLV回転させ、記録媒体 3上の照射レーザ光のパワーレべ ルを再生パワーレベルに設定し、この設定した再生パワーレベルに基づ 、てサンプ ルホールド回路 35を APCオン制御し、さらに、所定周波数を重畳周波数 (例えば数 百 MHzオーダの重畳周波数 fl)とする重畳周波数制御指令を LDドライバ 17Aに送 信する。
[0159] ステップ S40による APCオン制御に応じて、サンプルホールド回路 35は、モニタダ ィオード 31により検出されアンプ 33から出力されたモニタ信号の値をサンプルホー ルドして APC回路 37に出力する。
[0160] このとき、 APC回路 37は、このサンプルホールドされたモニタ信号の値に対応する モニタパワーレベルを再生パワーレベルに略一致させるためのパワー制御指令を L
Dドライバ 17に送る。
[0161] LDドライバ 17Aは、 APC回路 37から送られたパワー制御指令に基づいて駆動電 流を制御し、コンピュータ 13から送られた重畳周波数制御指令に基づいて、その重 畳周波数 flを有する所定振幅の高周波電流として、例えば正弦波におけるオンデュ 一ティが 50%未満となる間欠高周波電流 IoutlOを駆動電流に重畳して LDユニット 1 5に与えて LDユニット 15を駆動させる。この結果、 LDユニット 15力 、オンデューテ ィ 50%未満で高周波重畳されたレーザ光を出力させる。
[0162] この結果、光ピックアップ部 5の動作により、記録媒体 3の記録トラックに記録された 記録データに対して、高周波重畳されたレーザ光が照射される。そして、記録媒体 3 上における照射レーザ光のパワーは、上述した APC制御により、上記再生パワーレ ベルに略一定に維持されて 、る。
[0163] 照射されたレーザ光に基づいて、対応する記録信号から反射された反射光は、光 ピックアップ部 5の動作により、受光部 30を介して RF信号として検出される。検出さ れた RF信号は、変復調部 45を介して ECCブロックの再生データ(ビット列データ)と して復号化された後、コンピュータ 13に送信され、エラー訂正処理後、ノ ッファ 43お よびインタフェース 41を介して情報出力機器等に出力される。
[0164] 一方、ステップ S40の処理に並行して、コンピュータ 13は、サーボドライバ 9を介し て記録媒体 3の線速度をモニタし、その線速度が閾値速度以上である力否力判断す る(ステップ S41)。
[0165] そして、このステップ S41の判断の結果 NO、すなわち、モニタ線速度が閾値速度 未満である場合には、コンピュータ 13は、現在の再生線速度では、記録信号がレー ザ光オフ期間にレーザ光走査位置を通過することは無い、言いかえれば、レーザ光 により記録信号を読み出し可能であると判断し、処理を終了する。
[0166] 一方、ステップ S41の判断の結果 YES、すなわち、モニタ線速度が閾値速度以上 である場合には、コンピュータ 13は、現在の再生線速度では、記録信号がレーザ光 オフ期間にレーザ光走査位置を通過する可能性がある、言いかえれば、レーザ光に より記録信号が読み出し不可能になる恐れがあると判断し、ステップ S42の処理に移 行する。
[0167] ステップ S42において、コンピュータ 13は、重畳周波数制御指令として、重畳周波 数 flよりも高い周波数 f2を重畳周波数とする重畳周波数上昇指令を LDドライバ 17 Aに送信する。
[0168] LDドライバ 17Aは、 APC回路 37から送られたパワー制御指令に基づいて駆動電 流を制御しながら、コンピュータ 13から送られた重畳周波数上昇指令に基づいて、 駆動電流に重畳している間欠高周波電流 IoutlOの周波数 flを、重畳周波数上昇指 令に対応する周波数 f2に上昇させる。この結果、 LDユニット 15から出力されている 高周波重畳されたレーザ光のレベルを常時オン (オフレベルを超えて 、る)に設定す ることができる(図 9 ;重畳周波数設定機能 F2参照)。
[0169] ここで、図 11は、ステップ S40〜ステップ S42の処理により、 APC回路 37からの駆 動電流 Idに対して重畳される間欠高周波電流 Ioutl0、 Ioutll、およびそれぞれの間 欠高周波電流 Ioutl0、 Ioutllに対応する LDユニット 15から出力されるレーザ光出力 Pol0、 Pollとの関係を示す図である。
[0170] すなわち、ステップ S41の判断の結果、モニタ線速度が記録信号の最短ランレング スに対応する閾値速度未満である場合には (ステップ S41→NO)、重畳周波数 flを 有する高周波電流 IoutlOが継続して APC回路 37からの駆動電流に重畳されるため 、 LDユニット 15から出力されるレーザ光 Poの出力波形を、図 11に示すように、上記 高周波電流 IoutlOに同期する出力波形 PolOとしてマルチモードィ匕することができる。 この結果、再生時における戻り光ノイズを低減させることができる。
[0171] 一方、ステップ S42の判断の結果、モニタ線速度が閾値速度以上である場合には( ステップ S42→YES)、レーザ光出力波形 PolOと記録信号との比較力も分力るように 、記録信号がレーザ光オフ期間に通過してしまう恐れがある。
[0172] このとき、本実施形態では、記録媒体 3上における照射レーザ光のパワーが APC オン制御により上記再生パワーレベルに略一定に維持された状態で、高周波電流 Io utlOの重畳周波数 flが重畳周波数 f2に上昇し、高周波電流 Ioutllとして駆動電流 に重畳される。
[0173] 本実施形態では、重畳周波数 f2は、その重畳周波数 f2に対応する周期が記録信 号の最短ランレングスに対応する時間長よりも短くなるように設定されている。
[0174] この結果、図 11に示すように、 LDユニット 15から出力されるレーザ光 Poの出力波 形を、その周期が記録信号の最小信号長を閾値速度で通過した際にかかる時間より も短くなる出力波形 Po2に設定することができる。
[0175] したがって、図 11に示すように、記録信号は常にレーザ光出力オン状態において、 レーザ光走査位置を通過することになり、記録信号を確実に読み取ることができる。
[0176] 以上述べたように、本実施形態によれば、記録媒体 3の再生線速度を、その記録信 号がレーザ光オフ期間にレーザ光走査位置を通過する恐れがある速度に設定した 場合でも、その速度変化に応じて、 LDユニット 15の駆動電流に対する間欠高周波 電流の重畳周波数を上昇させることにより、記録信号を確実に読み取ることができる
[0177] この結果、再生線速度の上昇により再生効率を向上させながら、記録信号読み飛 ばしの無いデータ記録再生システム 1 Aを提供することができる。
[0178] (第 6の実施の形態)
本発明の第 6の実施形態に係わるデータ記録再生システムについて図面を用いて 説明する。なお、第 6の実施の形態に係わるデータ記録再生システムのハードウェア 構成要素は、第 5の実施の形態に係わるデータ記録再生システム 1Aのハードウェア 構成と略同様であるため、同一の符号を付してその説明は省略または簡略ィ匕する。
[0179] 本実施形態に関するデータ記録再生システム 1Aにおいては、記録媒体 3の記録ト ラックに記録された記録データを再生する際に、コンピュータ 13は、第 2のメモリ 13b にロードされている少なくとも 1つのプログラム Pに従って、図 10に示す処理の代わり に、図 12に示す処理を実行する。なお、本実施形態においては、図 12に示す処理 は再生対象となる記録データの ECCブロック毎に実行されるものとする。
[0180] 図 10〖こ示すステップ S40および S41と同様〖こ、コンピュータ 13は、光量調整素子 1 9の光透過率初期割合設定処理、記録媒体再生処理、および線速度判断処理をそ れぞれ実行する(図 12;ステップ S50および 51参照)。
[0181] この記録媒体再生処理により、 LDドライバ 17Aは、 APC回路 37から送られたパヮ 一制御指令に基づいて駆動電流を制御し、コンピュータ 13から送られた重畳周波数 制御指令に基づいて、重畳周波数制御指令に対応する重畳周波数 flを有する間欠 高周波電流 IoutlOを駆動電流に重畳して LDユニット 15に与え、 LDユニット 15を駆 動させる。この LDユニット 15の駆動により、 LDユニット 15力ら、オンデューティ 50% 未満で高周波重畳されたレーザ光が出力される。
[0182] そして、光ピックアップ部 5の動作により、記録媒体 3の記録トラックに書き込まれた 再生対象 ECCブロックに対応する複数の記録マークに対して、高周波重畳されたレ 一ザ光が照射される。そして、記録媒体 3上における照射レーザ光のパワーは、上述 した APC制御により、上記再生パワーレベルに略一定に維持されている。
[0183] 照射されたレーザ光に基づいて、対応する記録信号から反射された反射光は、光 ピックアップ部 5の動作により、受光部 30を介して RF信号として検出される。検出さ れた RF信号は、変復調部 45を介して ECCブロックの再生データとして復号ィ匕された 後、コンピュータ 13に送信される。
[0184] このとき、ステップ S51の判断の結果 YES、すなわち、モニタ線速度が閾値速度以 上である場合には、コンピュータ 13は、現在の再生線速度では、記録信号がレーザ 光オフ期間にレーザ光走査位置を通過する可能性がある、言いかえれば、レーザ光 により記録信号のエッジ部分が読み出し不可能になる恐れがあると判断し、ステップ S 52の処理に移行する。
[0185] ステップ S52において、コンピュータ 13は、送信されてきた ECCブロックの再生デ ータに基づいて、再生特性としてのエラーレートを求め、求めたエラーレートが所定 の閾値以上か否か判断する。
[0186] このステップ S52の判断の結果 YES、すなわち、エラーレートが所定の閾値以上で ある場合には、コンピュータ 13は、対応する ECCブロックは再生困難になったものと 判断してステップ S 53に進む。
[0187] ステップ S53において、コンピュータ 13は、重畳周波数制御指令として、重畳周波 数 flよりも高い周波数 f2を重畳周波数とする重畳周波数上昇指令を LDドライバ 17
Aに送信する。
[0188] LDドライバ 17Aは、 APC回路 37から送られたパワー制御指令に基づいて駆動電 流を制御しながら、コンピュータ 13から送られた重畳周波数上昇指令に基づいて、 駆動電流に重畳している間欠高周波電流 IoutlOの重畳周波数 flを、重畳周波数上 昇指令に対応する重畳周波数 f2に上昇させる。この結果、 LDユニット 15から出力さ れて 、る高周波重畳されたレーザ光のレベルを常時オンに設定することができる(図 11参照)。
[0189] 以上述べたように、本実施形態によれば、記録媒体 3の再生線速度を、その記録信 号がレーザ光オフ期間にレーザ光走査位置を通過する恐れがある速度に設定した 結果、エラーレートが再生困難を表す所定閾値以上になった場合でも、その速度変 化に応じて LDユニット 15の駆動電流に対する間欠高周波電流の重畳周波数を上 昇させることができる。
[0190] この LDユニット 15の駆動電流に重畳される間欠高周波電流の重畳周波数上昇に より、記録信号を確実に読み取ることが可能になり、この結果、第 5の実施形態と同様 に、再生線速度の上昇により再生効率を向上させながら、記録信号読み飛ばしの無 いデータ記録再生システム 1 Aを提供することができる。
[0191] ここで、図 13は、記録媒体 3として Blu— ray DISCを用いるとともに、図 12に示す ステップ S50〜S53の処理を用いてその Blu—ray DISCに記録されているデータを 、再生線速度を変えながら再生した場合における再生速度変化とエラーレート変化と の関係の一例を表すグラフ (符号 Gi l)である。
[0192] なお、図 13に示すグラフにおいて、横軸は再生線速度の倍数変化(1は 1倍速、 2 は 2倍速、 · · を表し、縦軸はエラーレート変化を表している。
[0193] また、図 13において、符号 G12は、背景技術で述べた単純な高周波重畳を用いて Blu-ray DISCに記録されているデータを、再生線速度を変えながら再生した場合 における再生速度変化とエラーレート変化との関係の一例を表すグラフである。
[0194] 図 13から明らかなように、図 12に示すステップ S50〜S53の処理を用いてその Blu -ray DISCに記録されているデータを、再生線速度を変えながら再生した場合には 、他の再生方法の場合と比べて、再生線速度変化に対するエラーレートの上昇率を 効果的に抑制することが可能になる。
[0195] (第 7の実施の形態)
本発明の第 7の実施形態に係わるデータ記録再生システムについて図面を用いて 説明する。なお、第 7の実施の形態に係わるデータ記録再生システムのハードウェア 構成要素は、第 5の実施の形態に係わるデータ記録再生システム 1Aのハードウェア 構成と略同様であるため、同一の符号を付してその説明は省略または簡略ィ匕する。
[0196] 本実施形態に関するデータ記録再生システム 1Aにおいては、記録媒体 3の記録ト ラックに記録された記録データを再生する際に、コンピュータ 13は、第 2のメモリ 13b にロードされている少なくとも 1つのプログラム Pに従って、図 10に示す処理の代わり に、図 14に示す処理を実行する。
[0197] 図 14に示すように、コンピュータ 13は、図 10に示すステップ S40および S41と同等 の処理を実行する。
[0198] すなわち、コンピュータ 13は、光量調整素子 19の光透過率を初期割合 100%に設 定した状態で、記録媒体再生処理を実行し (ステップ S40)、次いで、線速度判断処 理を実行する (ステップ S41)。
[0199] このステップ S41の判断の結果 YES、すなわち、モニタ線速度が閾値速度以上で ある場合には、コンピュータ 13は、現在の再生線速度では、記録信号がレーザ光ォ フ期間にレーザ光走査位置を通過する可能性がある、言いかえれば、レーザ光によ り記録信号が読み出し不可能になる恐れがあると判断し、ステップ S60の処理に移 行する。
[0200] ステップ S60において、コンピュータ 13は、図 3に示すステップ S3と同様に、 APC 制御を実行しながら、すなわち、記録媒体 3上における照射レーザ光のパワーを略 一定に維持しながら、 LCドライバ 38を介して光量調整素子 19に対する印加電圧を 制御して、光量調整素子 19の光透過率を所定の値 (例えば 50%)に減少させる。こ の光量調整素子 19の光透過率の減少および APC制御(照射レーザ光のパヮ一一 定制御)により、 LDユニット 15から出力されるレーザ光の出射パワーが増大する。
[0201] ステップ S60と並列的またはその処理の前後において、コンピュータ 13は、重畳周 波数制御指令として、重畳周波数 flよりも高 、周波数 f 2を重畳周波数とする重畳周 波数上昇指令を LDドライバ 17Aに送信する (ステップ S42)。
[0202] LDドライバ 17Aは、 APC回路 37から送られたパワー制御指令に基づいて駆動電 流を制御しながら、コンピュータ 13から送られた重畳周波数上昇指令に基づいて、 駆動電流に重畳している間欠高周波電流 IoutlOの重畳周波数 flを、重畳周波数上 昇指令に対応する重畳周波数 f2に上昇させる。この結果、 LDユニット 15から出力さ れて 、る高周波重畳されたレーザ光のレベルを常時オンに設定することができる(図 11参照)。
[0203] 以上述べたように、本実施形態によれば、記録媒体 3の再生線速度を、その記録信 号がレーザ光オフ期間にレーザ光走査位置を通過する恐れがある速度に設定した 場合でも、その速度変化に応じて、 LDユニット 15の駆動電流に対する間欠高周波 電流の重畳周波数を上昇させることにより、記録信号を確実に読み取ることができる
[0204] この結果、再生線速度の上昇により再生効率を向上させながら、戻り光ノイズに強く 、かつ記録信号読み飛ばしの無 、データ記録再生システム 1 Aを提供することができ る。
[0205] また、本実施形態によれば、記録媒体 3上の照射レーザ光のパワーを略一定に維 持しながら、 LDユニット 15を介してレーザ光を間欠状にオンオフさせることができる ため、記録媒体 3の記録層劣化を防止することができる。
[0206] (第 8の実施の形態) 本発明の第 8の実施形態に係わるデータ記録再生システムについて図面を用いて 説明する。なお、第 8の実施の形態に係わるデータ記録再生システムのハードウェア 構成要素は、第 5の実施の形態に係わるデータ記録再生システム 1Aのハードウェア 構成と略同様であるため、同一の符号を付してその説明は省略または簡略ィ匕する。
[0207] 本実施形態に関するデータ記録再生システム 1Aにおいては、記録媒体 3の記録ト ラックに記録された記録データを再生する際に、コンピュータ 13は、第 2のメモリ 13b にロードされている少なくとも 1つのプログラム Pに従って、図 10に示す処理の代わり に、図 15に示す処理を実行する。なお、本実施形態においては、図 15に示す処理 は再生対象となる記録データの ECCブロック毎に実行されるものとする。
[0208] 図 15に示すように、コンピュータ 13は、図 12に示すステップ S50および S51と同等 の処理を実行する。
[0209] すなわち、コンピュータ 13は、光量調整素子 19の光透過率を初期割合 100%に設 定した状態で、記録媒体再生処理を実行し (ステップ S50)、次いで、線速度判断処 理を実行する (ステップ S51)。
[0210] このステップ S51の判断の結果 YES、すなわち、モニタ線速度が閾値速度以上で ある場合には、コンピュータ 13は、レーザ光により記録信号が読み出し不可能になる 恐れがあると判断し、ステップ S52において、送信されてきた ECCブロックの再生デ ータに基づいて、再生特性としてのエラーレートを求め、求めたエラーレートが所定 の閾値以上か否か判断する。
[0211] このステップ S52の判断の結果 YES、すなわち、エラーレートが所定の閾値以上で ある場合には、コンピュータ 13は、対応する ECCブロックは再生困難になったものと 判断してステップ S60に進む。
[0212] ステップ S60において、コンピュータ 13は、図 3に示すステップ S3と同様に、 APC 制御を実行しながら、すなわち、記録媒体 3上における照射レーザ光のパワーを略 一定に維持しながら、 LCドライバ 38を介して光量調整素子 19に対する印加電圧を 制御して、光量調整素子 19の光透過率を所定の値 (例えば 50%)に減少させる。こ の光量調整素子 19の光透過率の減少および APC制御(照射レーザ光のパヮ一一 定制御)により、 LDユニット 15から出力されるレーザ光の出射パワーが増大する。 [0213] ステップ S60と並列的またはその処理の前後において、コンピュータ 13は、重畳周 波数制御指令として、重畳周波数 flよりも高 、周波数 f 2を重畳周波数とする重畳周 波数上昇指令を LDドライバ 17Aに送信する (ステップ S53)。
[0214] LDドライバ 17Aは、 APC回路 37から送られたパワー制御指令に基づいて駆動電 流を制御しながら、コンピュータ 13から送られた重畳周波数上昇指令に基づいて、 駆動電流に重畳している間欠高周波電流 IoutlOの重畳周波数 flを、重畳周波数上 昇指令に対応する重畳周波数 f2に上昇させる。この結果、 LDユニット 15から出力さ れて 、る高周波重畳されたレーザ光のレベルを常時オンに設定することができる(図 11参照)。
[0215] 以上述べたように、本実施形態によれば、記録媒体 3の再生線速度を、その記録信 号のエッジがレーザ光オフ期間にレーザ光走査位置を通過する恐れがある速度に 設定した結果、エラーレートが再生困難を表す所定閾値以上になった場合でも、記 録媒体 3上のレーザ光照射パワーを略一定に維持した状態で、光量調整素子 19の 光透過率を低減させることによりレーザ光出射パワーを上昇させながら、その速度変 化に応じて LDユニット 15の駆動電流に対する間欠高周波電流の重畳周波数を上 昇させることができる。
[0216] この LDユニット 15の駆動電流に重畳される間欠高周波電流の重畳周波数上昇に より、記録信号を確実に読み取ることが可能になり、この結果、再生線速度の上昇に より再生効率を向上させながら、戻り光ノイズに強ぐかつ記録信号読み飛ばしの無 いデータ記録再生システム 1 Aを提供することができる。
[0217] さらに、本実施形態によれば、再生対象データ (ECCブロック)のエラーレートが所 定値以上である場合にのみ、レーザ光出射パワーを上昇させているため、レーザ光 出力に起因した温度上昇や消費電流増大を抑制することができる。
[0218] なお、第 5〜第 8の実施形態においては、コンピュータ 13の重畳周波数上昇指令 に基づいて、 LDドライバ 17Aは、 LDユニット 15の駆動電流に重畳される間欠高周 波電流の重畳周波数を上昇させるようにしたが、本発明はこの構成に限定されるもの ではない。
[0219] 例えば、第 5の実施形態において、コンピュータ 13は、 LDドライバ 17Aおよび LD ユニット 15間の電流移送に関する電流減衰周波数特性 (例えば、 LDドライバ 17Aお よび LDユニット 15間の配線の電流減衰周波数特性)を表すデータを予めそのメモリ 13a内に記憶している。
[0220] このとき、図 10のステップ S42に対応するステップ S42Aの処理として、コンビユー タ 13は、図 16に示すように、重畳周波数上昇 (fl→f2)に基づいて、 LDドライバ 17 A力も LDユニット 15までの電流移送における電流の減衰量をメモリ 13a内に記憶さ れた電流減衰周波数特性データから求める。そして、コンピュータ 13は、ステップ S4 2Bの処理として、重畳周波数 flよりも高!、周波数 f 2を重畳周波数とする重畳周波数 上昇指令に加えて、求めた電流の減衰量を相殺するための補正電流量を表す補正 指令を LDドライバ 17Aに送信する。
[0221] LDドライバ 17Aは、 APC回路 37から送られたパワー制御指令に基づいて駆動電 流を制御しながら、コンピュータ 13から送られた重畳周波数上昇指令に基づいて、 駆動電流に重畳している間欠高周波電流 IoutlOの重畳周波数 flを、重畳周波数上 昇指令に対応する f 2に上昇させるとともに、その間欠高周波電流 IoutlOの振幅を、 補正指令における補正電流量分だけ増大させる。この結果、 LDユニット 15から出力 されているマルチモード変調されたレーザ光のレベルを常時オンに設定することがで きるとともに、間欠高周波電流の LDドライバ 17Aから LDユニット 15までの移送にお ける電流の減衰分を補正することができる。
[0222] 他の実施形態におけるステップ S42と同等の処理においても、上記ステップ S42A および S42Bの処理を行うことが可能である。
[0223] なお、上述した第 1〜第 8の実施形態においては、記録再生データ処理部 11およ びコンピュータ 13により得られた再生データを評価する指標となる再生特性として、 各 ECCブロックにおける PIエラーレートを用いたが、本発明はこの構成に限定される ものではなく、上記再生データ評価指標となるものであれば、各種のデータを用いる ことができる。例えば、再生データとこの再生データ力も抽出されたクロックとの間の 変化の割合を表すジッタを再生特性として利用することができる。
[0224] また、上述した第 1〜第 8の実施の形態においては、光ピックアップ部 5における光 量調整素子 19の制御処理、パワー調整部 7の制御処理、サーボドライバ 9の制御処 理、および記録再生データ処理部 11におけるエラー検出および Zまたは訂正に関 する処理を、それぞれ対応するプログラム Pに従ってコンピュータ 13に実行させるよう に構成した力 本発明は上記構成に限定されるものではなぐ例えば 2台以上のコン ピュータにより分散して行うことも可能である。
[0225] 特に、上述した第 1〜第 8の実施の形態において、 LDドライバにおける重畳量設定 機能 F1および重畳周波数設定機能 F2は、例えば外部 (コンピュータ等)からロード されたプログラムに基づいて、 LDドライバに内蔵されたマイクロコンピュータ等のコン ピュータ回路により、重畳量設定処理および重畳周波数設定処理として実行させるこ とも可能である。
[0226] 上述した第 1〜第 8実施形態では、コンピュータ 13は、モニタした線速度が最短マ ーク長に対応する閾値速度未満である場合には、レーザ光により記録信号を読み出 し可能であると判断した力 本発明はこの構成に限定されるものではない。
[0227] 例えば、 CAV再生時においては、コンピュータ 13は、再生時において、サーボドラ ィバ 9を介して現在の再生線速度を常時モニタすることも可能である。このように構成 すれば、 CAV再生時において再生線速度が記録媒体 3の外周側に向力つて上昇し て最短ランレングスである例えば 3Tに対応する閾値速度 (例えば、 4倍速)以上にな つた場合でも、コンピュータ 13は、その再生線速度の閾値速度以上の上昇を検出し て上述した各処理 (光透過率減少および重畳量低減処理、重畳量低減処理、光透 過率減少および重畳周波数上昇処理、ならびに重畳周波数上昇処理等)を実行す ることにより、記録信号読み飛ばしを防止することができる。
[0228] そして、本実施形態では、モニタダイオードを、 LDユニットのパッケージ内における LDユニット出力端の反対側の面から出射されるノ ック側レーザ光の光路上に配置し 、そのバック側レーザ光をモニタするように構成したが、本発明はこの構成に限定さ れるものではない。例えば、図 2に示すビームスプリッタ 21を透過し、かつ立ち上げミ ラー 23を透過したレーザ光の一部のパワーを常時モニタするように構成してもよく、 また、光量調整素子 19と対物レンズ 27との間の光路上、あるいはこの間の光学系か ら分岐された光路上等に配置し、対応する光路上の反射光をモニタするように構成 することも可會である。 本発明は、上述した実施の形態および変形例に限定されるものではなぐ本発明 に属する範囲内において、上記実施の形態および変形例を様々に変形して実施す ることが可能である。

Claims

請求の範囲
[1] 記録媒体の記録トラック上に書き込まれた記録信号を、周波数信号が重畳された 駆動信号により変調され、かつ所定の走査速度で前記記録トラックに沿って走査され る光により読み取ってデータとして再生する光記録再生システムであって、
前記駆動信号に対する前記周波数信号の重畳量を前記走査速度に応じて制御す る重畳量制御ユニットを備えたことを特徴とする光記録再生システム。
[2] 前記所定の走査速度で走査される光を出射する光源と、
前記光源からの出射光の光量を、外部力 の制御により調整できる光量調整ュ-ッ トと、
前記記録媒体上で走査される前記出射光のパワーをモニタするパワーモニタュニ ッ卜と、
前記パワーモニタユニットによりモニタされたモニタパワーに基づいて前記光量調 整ユニットを介して前記出射光の光量を制御する光量制御ユニットと、
を備えたことを特徴とする請求項 1記載の光記録再生システム。
[3] 前記走査速度が前記出射光の変調周期および前記記録信号の最短ランレングス に基づいて設定された閾値速度以上である場合に、前記重畳量制御ユニットは、前 記周波数信号の重畳量を減少させる重畳量減少部を含むことを特徴とする請求項 1 又は 2記載の光記録再生システム。
[4] 前記重畳量減少部は、前記駆動信号に対する前記周波数信号の重畳をオフにし て該重畳量をゼロにする重畳オフ部を含むことを特徴とする請求項 3記載の光記録 再生システム。
[5] 前記走査速度が前記出射光の変調周期および前記記録信号の最短ランレングス に基づいて設定された閾値速度以上である力否力判断する第 1の判断ユニットと、 この第 1の判断ユニットにより、前記走査速度が前記閾値速度以上であると判断さ れた場合に、前記光量制御ユニットは、前記パワーモニタユニットによりモニタされた モニタパワーを略一定に保持しながら、前記光量調整ユニットを介して前記出射光の 光量を可変制御することを特徴とする請求項 2記載の光記録再生システム。
[6] 前記記録信号に基づ!、て再生されたデータの再生特性を表すデータの値が再生 困難性に係わる閾値以上であるカゝ否か判断する第 2の判断ユニットを備え、 前記重畳量制御ユニットは、前記第 2の判断ユニットにより前記再生特性を表すデ ータの値が再生困難性に係わる閾値以上であると判断された場合に、前記周波数信 号の重畳量を減少させる重畳量減少部を含むことを特徴とする請求項 1又は 2記載 の光記録再生システム。
[7] 前記記録信号に基づ!、て再生されたデータの再生特性を表すデータの値が再生 困難性に係わる閾値以上であるカゝ否か判断する第 2の判断ユニットを備え、
前記光量制御ユニットは、前記第 1の判断ユニットにより、前記走査速度が前記出 射光の変調周期および前記記録信号の最短ランレングスに基づいて設定された閾 値速度以上であると判断され、かつ前記第 2の判断ユニットにより前記再生特性を表 すデータの値が再生困難性に係わる閾値以上であると判断された場合に、前記パヮ 一モニタユニットによりモニタされたモニタパワーを略一定に保持しながら、前記光量 調整ユニットを介して前記出射光の光量を変化させる光量変化部を含むことを特徴と する請求項 2記載の光記録再生システム。
[8] 前記記録信号に基づいて再生された再生データの再生特性を表すデータは、当 該再生データ内のエラー割合を示すエラーレート、および前記再生データ力 抽出 されたクロックに対する該再生データの変化割合を表すジッタの内の少なくとも一方 を含むことを特徴とする請求項 6または 7記載の光記録再生システム。
[9] 前記走査速度が前記出射光の変調周期および前記記録信号の最短ランレングス に基づいて設定された閾値速度以上である力否力判断する第 1の判断ユニットと この第 1の判断ユニットにより、前記走査速度が前記閾値速度以上であると判断さ れた場合に、前記記録信号に基づ!ヽて再生されたデータの再生特性を表すデータ の値が再生困難性に係わる閾値以上である力否か判断する第 2の判断ユニットとを 備え、
前記光量制御ユニットは、前記第 2の判断ユニットにより、前記再生特性を表すデ ータが前記再生困難性に係わる閾値以上であると判断された場合に、前記パワーモ ユタユニットによりモニタされたモニタパワーを略一定に保持しながら、前記光量調整 ユニットを介して前記出射光の光量を変化させる光量変化部を含み、 前記重畳量制御ユニットは、前記第 2の判断ユニットにより、前記再生特性を表す データが前記再生困難性に係わる閾値以上であると判断された場合に、前記周波 数信号の重畳量を減少させる重畳量減少部を含むことを特徴とする請求項 2記載の 光記録再生システム。
[10] 前記光源力もの出射光の出射パワーが該光源における定格パワー未満の閾値パ ヮ一に到達したか否力判断する第 3の判断ユニットを備え、この第 3の判断ユニットに より、前記光源力 の出射光の出射パワーが該閾値パワーに未到達であると判断さ れた場合に、前記光量変化部は、前記パワーモニタユニットによりモニタされたモ- タパワーを略一定に保持するとともに、前記光量調整ユニットを介して前記出射光の 光量を略一定に保持することを特徴とする請求項 7または 9記載の光記録再生システ ム。
[11] 前記光量変化部により、前記パワーモニタユニットでモニタされたモニタパワーが略 一定に保持され、かつ前記光量調整ユニットを介して前記出射光の光量が略一定に 保持された状態において、前記第 2の判断ユニットは、前記記録信号に基づいて再 生されたデータの再生特性を表すデータの値が再生困難性に係わる閾値以上であ る力否かを再度判断することを特徴とする請求項 10記載の光記録再生システム。
[12] 前記光量調整ユニットは、前記外部からの制御により前記光量調整度合としての光 透過率が変化して該出射光の光量を調整できる光透過素子を含むことを特徴とする 請求項 2乃至 11の内の何れか 1項記載の光記録再生システム。
[13] 前記光量調整ユニットは、前記外部からの制御により光透過率が変化して該出射 光の光量を調整できる光透過素子を含むことを特徴とする請求項 2乃至 12の内の何 れカゝ 1項記載の光記録再生システム。
[14] 前記出射光は所定の偏光方向を有しており、
前記光量調整ユニットは、前記外部からの制御に基づいて所定角度偏光方向を変 化可能な偏光素子と、前記偏光素子通過後の前記出射光の偏光方向によって該出 射光を前記光量調整度合に対応する所定の割合の光量分と残りの割合の光量分と に分けるビームスプリッタとを含むことを特徴とする請求項 2乃至 12の内の何れか 1項 記載の光記録再生システム。
[15] 記録媒体の記録トラック上に周期的に書き込まれた記録信号を、周波数信号が重 畳された駆動信号により変調され、かつ所定の走査速度で前記記録トラックに沿って 走査される光により読み取ってデータとして再生する光記録再生システムに備えられ たコンピュータが読み取り可能なプログラムであって、
前記コンピュータに、
前記駆動信号に対する前記周波数信号の重畳量を前記走査速度に応じて制御す る処理を実行させることを特徴とするプログラム。
[16] 記録媒体の記録トラック上に周期的に書き込まれた記録信号を、周波数信号が重 畳された駆動信号により変調され、かつ所定の走査速度で前記記録トラックに沿って 走査される光により読み取ってデータとして再生する光記録再生方法であって、 前記駆動信号に対する前記周波数信号の重畳量を前記走査速度に応じて制御す るステップを含むことを特徴とする光記録再生方法。
PCT/JP2007/062269 2006-06-20 2007-06-19 光記録再生方法およびシステム、ならびにプログラム WO2007148669A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008522461A JP4717925B2 (ja) 2006-06-20 2007-06-19 光記録再生方法およびシステム、ならびにプログラム
US12/305,828 US8068391B2 (en) 2006-06-20 2007-06-19 Optical recording/reproducing method, system, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006170661 2006-06-20
JP2006-170661 2006-06-20

Publications (1)

Publication Number Publication Date
WO2007148669A1 true WO2007148669A1 (ja) 2007-12-27

Family

ID=38833411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062269 WO2007148669A1 (ja) 2006-06-20 2007-06-19 光記録再生方法およびシステム、ならびにプログラム

Country Status (3)

Country Link
US (1) US8068391B2 (ja)
JP (1) JP4717925B2 (ja)
WO (1) WO2007148669A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134407A (ja) * 2009-12-25 2011-07-07 Hitachi-Lg Data Storage Inc 光ディスク装置及びディスク判別方法
JP2011134409A (ja) * 2009-12-25 2011-07-07 Hitachi-Lg Data Storage Inc 光ディスク装置及び光ディスク再生方法
JP2011134414A (ja) * 2009-12-25 2011-07-07 Hitachi-Lg Data Storage Inc 光ディスク装置及び光ディスク装置におけるデータ再生方法
JP2014086107A (ja) * 2012-10-23 2014-05-12 Funai Electric Co Ltd 光ディスク装置、及び光ディスクの再生方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119743A (ja) * 1985-11-20 1987-06-01 Hitachi Ltd 光情報処理装置
WO2007043406A1 (ja) * 2005-10-04 2007-04-19 Matsushita Electric Industrial Co., Ltd. 光ディスクドライブ装置、及びそれを用いた光ディスクの再生方法
JP2007134003A (ja) * 2005-11-14 2007-05-31 Matsushita Electric Ind Co Ltd 光ディスク装置
JP2007149234A (ja) * 2005-11-29 2007-06-14 Hitachi Ltd 光ディスク装置及び光ディスク再生方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817065A (ja) 1994-06-30 1996-01-19 Sony Corp 光ピックアップ装置
JP2001056953A (ja) * 1999-08-10 2001-02-27 Fujitsu Ltd 情報記憶装置
JP2002260272A (ja) 2001-02-28 2002-09-13 Sony Corp 光ヘッド、記録再生装置、及び光結合効率可変素子
JP4240883B2 (ja) * 2001-12-27 2009-03-18 ソニー株式会社 光ヘッド及び光記録媒体駆動装置
CN1326132C (zh) 2002-10-28 2007-07-11 松下电器产业株式会社 半导体激光驱动装置、光学头装置以及光信息处理装置
JP2005346823A (ja) 2004-06-02 2005-12-15 Sharp Corp 光ピックアップおよびその駆動方法
JP2006155698A (ja) * 2004-11-26 2006-06-15 Hitachi Ltd 光記録再生装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119743A (ja) * 1985-11-20 1987-06-01 Hitachi Ltd 光情報処理装置
WO2007043406A1 (ja) * 2005-10-04 2007-04-19 Matsushita Electric Industrial Co., Ltd. 光ディスクドライブ装置、及びそれを用いた光ディスクの再生方法
JP2007134003A (ja) * 2005-11-14 2007-05-31 Matsushita Electric Ind Co Ltd 光ディスク装置
JP2007149234A (ja) * 2005-11-29 2007-06-14 Hitachi Ltd 光ディスク装置及び光ディスク再生方法

Also Published As

Publication number Publication date
US20100232271A1 (en) 2010-09-16
JP4717925B2 (ja) 2011-07-06
US8068391B2 (en) 2011-11-29
JPWO2007148669A1 (ja) 2009-11-19

Similar Documents

Publication Publication Date Title
JP4420920B2 (ja) 光記録媒体駆動装置、フォーカスオン方法
JP4717925B2 (ja) 光記録再生方法およびシステム、ならびにプログラム
JP2006099928A (ja) 光ディスク装置、フォーカスバイアス及び球面収差補正値調整方法
JP2010055678A (ja) 光ディスク装置
JP2008299957A (ja) 光ディスク装置、及び光ディスク装置の制御方法
JP2007172770A (ja) 光ディスク装置
JP4493716B2 (ja) 光記録再生方法およびシステム、ならびにプログラム
JP4264653B2 (ja) 光ディスク装置、フォーカスバイアス及び球面収差補正値調整方法
JP4938085B2 (ja) 記録装置及び方法、並びにコンピュータプログラム
JP4493722B2 (ja) 光記録再生方法およびシステム、ならびにプログラム
JP4493051B2 (ja) 情報記録媒体、情報記録装置及び情報記録方法、並びにコンピュータプログラム
JP2006185498A (ja) 光ピックアップ
WO2007148387A1 (ja) 光記録再生方法およびシステム、ならびにプログラム
WO2007148386A1 (ja) 光記録再生方法およびシステム、ならびにプログラム
JP2006294158A (ja) 情報記録/再生方法及び光ディスク装置
JP2004288251A (ja) 光ディスク記録再生装置
WO2007148668A1 (ja) 光記録情報再生方法および装置、ならびに光記録情報再生用プログラム
WO2007148670A1 (ja) 光記録情報再生方法および装置、ならびに光記録情報再生用プログラム
JP2005310329A (ja) 光記録媒体、再生装置、トラッキングサーボ方法
JP2013033574A (ja) 光ディスク装置、及び光ディスク装置における記録パワーの制御方法
JP2005310231A (ja) 信号処理装置及び光ディスク装置
JP2011065696A (ja) 光ディスク並びに光ディスク装置及び記録方法
JP2008204550A (ja) 記録装置、光ピックアップ装置
JPWO2005122151A1 (ja) 情報記録装置及び方法、並びにコンピュータプログラム
JP2009037659A (ja) 光ディスク装置及び光ディスクの再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522461

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12305828

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745491

Country of ref document: EP

Kind code of ref document: A1